WO2005099879A1 - フッ化ビニリデン系樹脂中空糸多孔濾水膜およびその製造方法 - Google Patents

フッ化ビニリデン系樹脂中空糸多孔濾水膜およびその製造方法 Download PDF

Info

Publication number
WO2005099879A1
WO2005099879A1 PCT/JP2005/006863 JP2005006863W WO2005099879A1 WO 2005099879 A1 WO2005099879 A1 WO 2005099879A1 JP 2005006863 W JP2005006863 W JP 2005006863W WO 2005099879 A1 WO2005099879 A1 WO 2005099879A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
resin
weight
hollow fiber
porous
Prior art date
Application number
PCT/JP2005/006863
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Tada
Takeo Takahashi
Masayuki Hino
Shingo Taniguchi
Kenichi Suzuki
Toshiya Mizuno
Original Assignee
Kureha Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corporation filed Critical Kureha Corporation
Priority to CA002562165A priority Critical patent/CA2562165A1/en
Priority to EP05728382A priority patent/EP1769840A4/en
Priority to JP2006512309A priority patent/JP4987471B2/ja
Priority to AU2005233004A priority patent/AU2005233004C1/en
Priority to US11/578,425 priority patent/US7780014B2/en
Publication of WO2005099879A1 publication Critical patent/WO2005099879A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0018Thermally induced processes [TIPS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/08Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of halogenated hydrocarbons
    • D01F6/12Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of halogenated hydrocarbons from polymers of fluorinated hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/20Plasticizers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/48Influencing the pH
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/32Melting point or glass-transition temperatures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/34Molecular weight or degree of polymerisation

Definitions

  • the present invention relates to a vinylidene fluoride resin hollow fiber porous drainage membrane and a method for producing the same.
  • the present invention relates to a vinylidene fluoride resin hollow fiber porous filtration membrane suitable for water treatment and a method for producing the same.
  • the porous membrane must have an appropriate porosity for the purpose of separation efficiency, have a uniform pore size distribution for the purpose of improving the separation accuracy, and have an optimum pore size for the object to be separated. Desired.
  • the properties of the film constituent material chemical resistance, weather resistance, heat resistance, and the like to chemical treatment after water treatment are required.
  • the hollow fiber porous membrane is required to have sufficient elongation at break, stress at break, and the like as mechanical strength when drainage is used.
  • Patent Document 1 Conventionly developed polyolefin resin-based porous membranes (for example, Patent Document 1 below) have a problem with chemical resistance in backwashing and ozone treatment after use as a separation membrane for water treatment. Remains.
  • Benzyl fluoride-based resin is excellent in weather resistance, chemical resistance, heat resistance, strength, and the like, and therefore, application to these porous membranes for separation has been studied.
  • the bi-lidene fluoride resin has the above-mentioned excellent properties, it is non-adhesive and has low compatibility, so that its moldability is not necessarily good.
  • As for the development of porous membranes there was no effort to obtain satisfactory mechanical strength beyond pursuing high porosity and narrow pore size distribution for the purpose of improving separation performance. For this reason, in order to reinforce the strength, when used as a filtration membrane, a porous membrane is superimposed with a supporting membrane to enhance the mechanical properties, and is currently used.
  • the research group of the present inventors has also made some proposals on a method for producing a biphenylene fluoride-based resinous porous membrane used as a microfiltration membrane or a battery separator. ing. These include, for example, crystallization of bi-fluoridene fluoride resin under controlled conditions, heat treatment and stretching, a method of forming a porous film by stretching heat treatment (Patent Document 3 below), bilidene fluoride resin of a specific molecular weight, After forming the resin together with a plasticizer into a film, the resin is cooled on one side and then the plasticizer is extracted (Patent Document 4 below).
  • porous agent After blending a high molecular weight bi-fluoridene resin with an organic or inorganic porous agent to form a film, the porous agent is extracted and removed, or in the case of an inorganic porous agent.
  • a method of forming a heat-resistant porous membrane used as a battery separator by generating pores in the membrane by acting as a stress concentration nucleus during stretching Patent Document 5 below.
  • a porous membrane obtained by extracting a plasticizer or an organic porogen is used as a filtration membrane for water treatment, necessary filtration performance (water permeability) or mechanical properties may not be obtained. .
  • the membrane thickness is generally 50 m or more to withstand the filtration pressure.For a relatively thick membrane with a membrane thickness of 50 m or more, It was found that stretchability was significantly poor.
  • porous hollow fibers of bi-lidene fluoride-based resin suitable for use as a microfiltration membrane for water treatment having micropores of an appropriate size and distribution and having excellent mechanical strength. It is a fact that a drainage membrane was obtained but not available.
  • Patent Document 1 Japanese Patent Publication No. 50-2176
  • Patent Document 2 JP-A-3-215535
  • Patent Document 3 JP-A-54-62273
  • Patent Document 4 JP-A-7-173323
  • Patent Document 5 JP-A-2000-309672
  • a main object of the present invention is to provide a bifilidene fluoride-based resin hollow fiber porous drainage membrane having fine pores of an appropriate size and distribution and excellent mechanical strength.
  • Another object of the present invention is to provide a method for stably and efficiently producing a bifil- ric acid fluoride-based resin hollow fiber porous drainage membrane as described above.
  • the present inventors have studied for the above-mentioned purpose, and as a result, after melt-extrusion of a fluorinated vinylidene resin having improved crystal properties together with a solvent and a plasticizer, the resin was cooled under controlled conditions. It was confirmed that by forming a film, extracting the plasticizer, and then stretching, a microporous film having an appropriate size and distribution was generated, and a hollow fiber porous film with good mechanical strength was obtained. Was done.
  • the porous membrane of bi-lydene fluoride-based resin hollow fiber obtained in this way is characterized by the fact that a mixture of crystal-oriented portions and crystal non-oriented portions is recognized by X-ray diffraction.
  • the bifilidene fluoride resin hollow fiber porous drainage membrane of the present invention has a weight-average molecular weight of 200,000 to 600,000, and has a melting point Tm2 (° C ) And the crystallization temperature Tc (° C) consisted of a hollow fiber multiporous membrane of bi-lidene fluoride resin with a Tm2-Tc of 32 ° C or less. It is characterized in that non-oriented portions are mixed.
  • the method for producing a vinylidene fluoride resin hollow fiber porous membrane of the present invention has a weight average molecular weight of 200,000 to 600,000 and an original melting point Tm2 (° C ) And the crystallization temperature Tc (° C) Tm2—For 100 parts by weight of bilidene fluoride resin with Tc of 32 ° C or less, 70-250 parts by weight of a plasticizer and Add 5 to 80 parts by weight of a good solvent for the lidene resin, melt extrude the resulting composition into a hollow fiber membrane, cool it from the outside in its cooling medium to form a solidified film, and then extract the plasticizer. And stretched further.
  • a drawing stress concentration nucleus is formed, and as a result, a fiber (fibril) portion and a non-drawing node (node) portion alternately distributed film are formed in the hollow fiber membrane after drawing, and this is a uniform pore as a whole. It contributes to maintaining the distribution and strength of the hollow fiber membrane.
  • the hollow fiber porous membrane of the present invention is used as a precision drainage membrane.
  • water permeability, mechanical strength and stretchability can be improved. This is supported by the ability to observe the cross section of the film with an electron microscope.
  • the pores inside the crystal are dead-end holes that are roughly connected to the center part. Therefore, spherulites are a kind of obstacle to water permeation, and when a spherulite structure is formed, the effective water permeation path is limited to pores between spherulites and bypasses spherulites. Porosity to match the porosity The quantity is not available. In addition, due to insufficient bonding of resin at the interface between spherulites, mechanical strength and stretchability are poor.
  • the formation of a spherulite structure can be suppressed by using a vinylidene fluoride resin having a Tm2-Tc of 32 ° C or less. This improves the water permeability, mechanical strength, and stretchability. By stretching the film, a film having more excellent water permeability can be produced.
  • the bi-lydene fluoride resin film formed with spherulites is stretched, the draw ratio is about 1.3 times (Comparative Example 3 described below), which is insufficient to obtain the desired property improvement. (Examples described in Comparative Examples 1 and 2 below, in which the same 5 mZ take-off rate in the cooling bath as in the example was used, and a comparative example) Photomicrographs corresponding to Fig. 3 and 4).
  • Example 4 the inner surface (the surface opposite to the cooling surface (shown in FIG. 1) of the second intermediate molded body before stretching to obtain a bi-lydene fluoride-based resin porous hollow fiber membrane Lower side)) A 1000 ⁇ scanning electron micrograph of a cross section in the vicinity.
  • FIG. 2 is a 5000 ⁇ scanning electron micrograph of the vicinity of the inner surface of FIG. 1 further enlarged.
  • FIG. 3 In Comparative Example 2, an inner surface of a second intermediate molded body before stretching obtained by drawing at a speed of 5 mZ to obtain a biphenylidene fluoride resin porous hollow fiber membrane ( 1000x scanning electron micrograph of a cross section near the surface opposite the cooling surface (lower side in the figure).
  • FIG. 4 is a 5000 ⁇ scanning electron micrograph of the vicinity of the inner surface of FIG. 3 further enlarged.
  • porous hollow fiber membrane of bililidene fluoride resin according to the present invention will be sequentially described according to the production method of the present invention, which is a preferable production method thereof.
  • a bi-lidene fluoride resin having a weight average molecular weight (Mw) of 200,000 to 600,000 is used as a main film material. If the Mw is less than 200,000, the mechanical strength of the resulting porous membrane will be small. If the Mw is 600,000 or more, the phase separation structure between the bi-lidene fluoride resin and the plasticizer becomes excessively fine, and the water permeability when the obtained porous membrane is used as a precision drainage membrane decreases. I do.
  • the bi-lidene fluoride resin is a homopolymer of bi-lidene fluoride, that is, a copolymer of poly (vinylidene fluoride) and another copolymerizable monomer. Alternatively, these mixtures are used.
  • Monomers that can be copolymerized with the bi-lydene fluoride resin include one or more of titanium tetrafluoride, propylene hexafluoride, titanium trifluoride, titanium trifluoride, and vinyl fluoride. Can be used.
  • the bi-lidene fluoride resin preferably contains at least 70 mol% of bi-lidene fluoride as a constituent unit. Among them, it is preferable to use a homopolymer composed of 100 mol% of bilidene fluoride because of its high mechanical strength.
  • the vinylidene fluoride resin having a relatively high molecular weight as described above can be obtained preferably by emulsion polymerization or suspension polymerization, particularly preferably by suspension polymerization.
  • the bi-lidene fluoride resin forming the porous membrane of the present invention has a relatively large molecular weight of 200,000 to 600,000 as described above,
  • the difference between the original melting point Tm2 (° C) of the resin and the crystallization temperature Tc (° C) Tm2-- Tc has good crystal characteristics represented by 32 ° C or less, preferably 30 ° C or less It is characterized by the following.
  • the melting point Tm2 (° C) of the resin is the melting point Tml (° C) measured by subjecting the obtained sample resin or resin forming a porous film to a heating process by DSC as it is. C). That is, the generally obtained bilidene fluoride resin has a melting point Tml (° C) different from the resin's original melting point Tm2 (° C) due to the heat and mechanical history received during the manufacturing process or the heat molding process. ° C), and the melting point Tm2 (° C) of the bi-lidene fluoride resin specified in the present invention is obtained by subjecting the obtained sample resin to a predetermined temperature cycle. It is defined as the melting point (peak temperature of the endotherm accompanying crystal melting) found again in the DSC heating process after removing the thermal and mechanical histories. Is described prior to the description.
  • Tm2-Tc ⁇ 32 ° C which is representative of the crystal characteristics of the bi-lidene fluoride resin constituting the porous membrane of the present invention, can be achieved by, for example, lowering Tm2 by copolymerization.
  • the chemical resistance of the resulting hollow fiber porous membrane tends to be reduced in some cases.
  • a bi-lidene fluoride resin having a weight average molecular weight (Mw) of 150,000 to 600,000 is a matrix (main) resin
  • 2 to 30% by weight of a high molecular weight bi-lidene fluoride resin for improving the crystal properties having Mw of 1.8 times or more, preferably 2 times or more and 1.2 million or less is added.
  • a vinylidene fluoride resin mixture obtained by blending both is used. According to such a method, the crystallization temperature Tc can be significantly increased without changing the crystal melting point of the matrix resin alone (preferably represented by Tm2 in the range of 170 to 180 ° C). it can.
  • Tc is preferably 143 ° C. or higher.
  • the Mw of the high molecular weight bi-fluoridated resin is less than 1.8 times the Mw of the matrix resin, it is difficult to sufficiently suppress the formation of a spherulite structure, If it is, it is difficult to uniformly disperse it in the matrix resin.
  • a raw material composition for forming a hollow fiber membrane is formed by adding a plasticizer and a good solvent for the above-mentioned bi-lidene fluoride resin to the above-mentioned vinylidene fluoride resin.
  • an aliphatic polyester generally having a dibasic acid and daricol power
  • an adipic acid polyester such as propylene glycol adoleate and 1,3-butylene glycolone adipate
  • sebacic acid-propylene glycol And sebacic acid-based polyesters azelaic acid-based propylene glycol-based and azelaic acid 1,3-butylene glycol-based azelaic acid-based polyesters and the like are used.
  • a solvent capable of dissolving the bi-lidene-based resin in a temperature range of 20 to 250 ° C is used.
  • N-methylpyrrolidone dimethyl Formamide, dimethylacetamide, dimethyl sulfoxide, methyl ethyl ketone, acetone, tetrahydrofuran, dioxane, ethyl acetate, propylene carbonate, cyclo Hexane, methyl isobutyl ketone, dimethyl phthalate, a mixed solvent thereof and the like can be mentioned.
  • NMP N-methylpyrrolidone
  • NMP N-methylpyrrolidone
  • the raw material composition for forming a hollow fiber membrane is preferably obtained by mixing 70 to 250 parts by weight of a plasticizer and 5 to 80 parts by weight of a good solvent with respect to 100 parts by weight of a bilidene fluoride resin.
  • the plasticizer When the plasticizer is less than 70 parts by weight, the porosity is low, and thus the filtration performance (water permeability) is inferior in the precision drainage membrane. On the other hand, if it exceeds 250 parts by weight, the porosity becomes too large, and the mechanical strength decreases.
  • the good solvent is less than 5 parts by weight, the polyvinylidene fluoride resin and the plasticizer cannot be uniformly mixed, or the mixing takes time. On the other hand, if it exceeds 80 parts by weight, it is not possible to obtain a porosity commensurate with the added amount of plasticizer. That is, efficient pore formation by extraction of the plasticizer is hindered.
  • the total amount of the plasticizer and the good solvent is preferably in the range of 100 to 250 parts by weight. Both have an effect of reducing the viscosity of the melt-extruded composition, and act to some extent as an alternative.
  • the proportion of the good solvent is preferably 5 to 40% by weight, more preferably 5 to 35% by weight, particularly preferably 10 to 30% by weight.
  • the melt-extruded composition is generally extruded at a temperature of 140 to 270 ° C., preferably 150 to 200 ° C. from a hollow nozzle or T-die paper to form a film. Therefore, as long as a homogeneous composition in the above temperature range is finally obtained, the mixing and melting forms of the bi-lidene fluoride resin, the plasticizer and the good solvent are arbitrary. According to one preferred embodiment for obtaining such a composition, a twin-screw kneading extruder is used, and a bifluoride (preferably also having a mixed power of the main resin and the resin for modifying crystal properties) is used.
  • the lidene-based resin is supplied from the upstream side of the extruder, and a mixture of a plasticizer and a good solvent is supplied downstream and formed into a homogeneous mixture before being discharged through the extruder.
  • This twin-screw extruder can be divided into a plurality of blocks for independent temperature control along its longitudinal axis, and appropriate temperature control is performed according to the contents of the passing material at each part. Combination of main resin and resin for crystal property modification In such a case, if the melt-kneading of both is insufficient, a desired increase in Tc and a concomitant improvement in film forming properties may not be obtained.
  • the hollow fiber membrane material extruded by the nozzle force is cooled by an external force by passing through a cooling medium such as water.
  • the temperature of the cooling medium is 5 to 120 ° C., a force in which a considerably wide temperature range force can be selected.
  • the cooled and solidified hollow fiber membrane is then introduced into an extractant bath and subjected to extraction and removal of the plasticizer and good solvent.
  • the extract is not particularly limited as long as it does not dissolve the polyvinylidene fluoride resin and can dissolve the plasticizer and the good solvent.
  • alcohols such as methanol and isopropyl alcohol, and chlorinated hydrocarbons such as dichloromethane and 1,1,1-trichloroethane having a boiling point of about 30 to 100 ° C. are suitable.
  • the hollow fiber membrane after extraction is then 80 to 160 in order to enhance the effect of increasing the water permeability by subsequent stretching.
  • C preferably 100-140. It is preferable to increase the crystallinity by heat treatment at a temperature in the range of C for 1 second to 18000 seconds, preferably 3 seconds to 3600 seconds.
  • the hollow fiber membrane is then subjected to stretching and undergoes an increase in porosity and pore size and an improvement in high elongation.
  • the stretching ratio is suitably from 1.2 to 4.0 times, especially about 1.4 to 3.0 times.
  • the stretching temperature is generally room temperature to 90 ° C, preferably 40 to 80 ° C.
  • the stretched hollow fiber porous membrane is preferably heat-set at, for example, 80 to 160 ° C for dimensional stability.
  • the relaxation rate is up to about 10% as the length. Sum (shrinkage) may be caused.
  • the bi-lydene fluoride-based resin hollow fiber porous membrane of the present invention is obtained, and it is also preferable to subject this hollow fiber porous membrane to immersion treatment with an eluent.
  • an eluent an alkaline solution, an acid solution or an extract of a plasticizer is used.
  • a solution of a strong base such as sodium hydroxide, potassium hydroxide, potassium hydroxide, etc. in water or water Z alcohol has a ⁇ of 12 or more, more preferably 13 or more.
  • a solution of a strong acid such as hydrochloric acid, sulfuric acid, phosphoric acid or the like in water or water Z alcohol ⁇ ⁇ ⁇ ⁇ ⁇ H force or less, more preferably 3 or less, particularly preferably 2 or less is preferably used.
  • the extract of the plasticizer is not particularly limited as long as it does not dissolve the polyvinyl fluoride-based resin and can dissolve the plasticizer, similarly to the extract used before stretching.
  • alcohols such as methanol and isopropyl alcohol
  • chlorinated hydrocarbons such as dichloromethane and 1,1,1-trichloromethane having a boiling point of about 30 to 100 ° C. are suitable.
  • the hollow fiber porous membrane is pre-soaked to improve the lyophilicity, if necessary, and then the eluent is treated at a temperature of about 5 to 100 ° C for 10 seconds to 6 hours. This is done by immersion in When the eluent treatment is carried out under heating, it is preferable to carry out the treatment in a fixed state so as not to cause shrinkage of the porous membrane. (Polyvinylidene fluoride-based resin hollow fiber porous membrane)
  • the porosity is generally 55 to 90%, preferably 60 to 85%, particularly preferably 65 to 80%.
  • properties with a tensile strength of 5 MPa or more and a breaking elongation of 5% or more are obtained.
  • a water permeability of 5 m 3 Zm 2 'day lOOkPa or more is obtained.
  • the thickness is usually in the range of about 5-800 ⁇ m, preferably 50-600 ⁇ m, particularly preferably 150-500 m.
  • the appropriate outer diameter of the hollow fiber is about 0.3 to 3 mm, especially about 1 to 3 mm.
  • a crystal orientation portion and a crystal non-orientation portion are recognized as fine structures by X-ray diffraction. This is a feature, which is understood to correspond to the stretched fibril part and the unstretched node part, respectively.
  • the X-ray diffraction characteristics of the hollow fiber membrane described in this specification are based on the measurement results obtained by the following measurement methods.
  • the membrane-shaped hollow fiber is cut in half along the longitudinal direction, attached to a sample table so that the longitudinal direction is vertical, and X-rays are incident perpendicularly to the longitudinal direction.
  • the X-ray generator uses Rigaku Corporation's “Rotorflex 200RB”, and uses a 30 kV—100 mA CuKa line through a Ni filter as the X-ray source.
  • an imaging plate (“BAS-S R127J” manufactured by Fuji Photo Film Co., Ltd.), a diffraction image is taken at a distance between the sample and the imaging plate of 60 mm.
  • the porous membrane of bifluoridene-fluoride-based resin hollow fibers of the present invention is obtained as a result of suppressing the generation of spherulites and performing the stretching smoothly. Therefore, another microstructural feature of the bifluoride-based resin hollow fiber porous membrane of the present invention is that no spherulite is observed by observation with a polarizing microscope. The spherulite is detected by the following method. [0052] The hollow fiber porous membrane is sliced into thin slices to form thin slices, which penetrate into the micropores of the porous membrane but do not dissolve or swell the porous membrane. Observe with a polarizing microscope using Nicol (preferably 200 to 400 times magnification). When spherulites are present in the sample, a cross-shaped quenching pattern called cross quenching or maltese cloth is observed.
  • the bi-lydene fluoride-based resin porous membrane of the present invention is suppressed from growing as spherulites in which at least a part of the bi-lydene fluoride-based resin molecular chains is crystallized. Therefore, even when observed with a polarizing microscope, no cross-shaped quenching pattern is observed over all layers in the thickness direction.
  • GPC-900 a GPC device manufactured by JASCO Corporation, using Shodex KD-806M from Showa Denko for the column, Shodex KD-G for the precolumn, and NMP for the solvent, and using a temperature of 40 ° C.
  • the molecular weight was measured by gel permeation chromatography (GPC) at a flow rate of 10 mlZ as polystyrene equivalent molecular weight.
  • the endothermic peak temperature in the reheated DSC curve was defined as the original resin melting point Tm2 (° C) that defines the crystal characteristics of the vinylidene fluoride resin of the present invention.
  • the apparent volume V (cm 2 ) of the porous membrane was calculated by measuring the length, the outer diameter and the inner diameter of the hollow fiber porous membrane, and the weight W (g) of the porous membrane was measured. I asked.
  • the hollow fiber porous membrane was immersed in ethanol for 15 minutes, then immersed in water for 15 minutes to make it hydrophilic, and then measured at a water temperature of 25 ° C and a differential pressure of 100 kPa.
  • the hollow fiber porous membrane had a sample length (length of a portion where filtration is performed) of 800 mm, and the membrane area was calculated by the following equation based on the outer diameter.
  • Membrane area (m 2 ) Outer diameter ⁇ ⁇ ⁇ Test length
  • the average pore diameter was measured by a half dry method using "Palm Porometer CFP-200AEX” manufactured by Porous Materials, Inc.
  • perfluoropolyester trade name “Galwick” was used.
  • the weight average molecular weight (Mw) is 2. 52 X 10 5 principal polyvinylidene mold - isopropylidene (PVDF) crystal properties of (powder) and Mw of 6. 59 X 10 5 reforming polyvinylidene molds - isopropylidene (PVDF) the (powder), so that the ratio of their respective 87.5 wt% and 12.5 wt%, were mixed by a Henschel mixer to obtain a Mw of 3.
  • 03 X 10 5 a is mixture a .
  • Mixture A heated to 100 ° C from the liquid supply unit provided at the position of 480 mm in the cylinder's uppermost stream.
  • the mixture AZ mixture B 37. 5 / 62.5 (% by weight) was supplied and kneaded at a barrel temperature of 210 ° C.
  • the kneaded material was formed into a hollow fiber at a discharge rate of 13 gZmin from a nozzle having a circular slit with an outer diameter of 7 mm and an inner diameter of 3.5 mm. Extruded.
  • the extruded mixture is maintained in a molten state at a temperature of 60 ° C and guided into a water bath having a water surface at a position 10 mm away from the nozzle (ie, an air gap of 10 mm), and cooled and solidified. (Residence time in a water bath: about 10 seconds), the material was taken out at a take-up speed of 5 mZ, and then wound up to obtain a first intermediate molded body.
  • the first intermediate molded body was immersed in dichloromethane at room temperature for 30 minutes while applying vibration while being fixed so as not to shrink in the longitudinal direction, and then dichloromethane was replaced with a new U.
  • the immersion was carried out again under the same conditions to extract the aliphatic polyester and the solvent.
  • the mixture was heated in an oven at a temperature of 120 ° C for 1 hour to remove dichloromethane and heat-treated.
  • An intermediate molded body was obtained.
  • the second intermediate molded body was stretched in the longitudinal direction at an ambient temperature of 25 ° C. to a magnification of 1.6 times, and then heated in an oven at a temperature of 100 ° C. for 1 hour and heat-fixed. Was performed to obtain a polyvinylidene fluoride porous hollow fiber.
  • the resulting polyvinylidene fluoride-based porous hollow fiber has an outer diameter of 1.486 mm and an inner diameter of 0.7. 02mm, film thickness 0.392mm, porosity 72%, water permeability 18. OlmVm 2 -day 100kPa, average pore size 0.086 ⁇ m, maximum pore size 0.184m, tensile strength 9.IMPa, fracture Elongation
  • Example 1 With the porous hollow fiber obtained in Example 1 fixed so as not to shrink in the longitudinal direction, it was immersed in ethanol for 15 minutes, then immersed in pure water for 15 minutes to make it hydrophilic, and then heated to 70 ° C. It was immersed in a maintained 20% aqueous solution of caustic soda (pH 14) for 1 hour, washed with water, and dried in a warm air oven maintained at a temperature of 60 ° C for 1 hour.
  • caustic soda pH 14
  • a porous hollow fiber was obtained in the same manner as in Example 1, except that the temperature of the cooling water bath for cooling the melt extrudate was changed to 11 ° C and the stretching ratio was changed to 1.8 times.
  • Figures 1 and 2 show operating electron micrographs at 1000x and 5000x, respectively.
  • PVDF Polyvinylidene fluoride with a weight average molecular weight (Mw) of 2.52 x 10 5 (powder) and polyvinylidene fluoride (PVDF) with a Mw of 6.91 x 10 5 for modifying crystal properties (Powder) was mixed using a Henschel mixer at a ratio of 75% by weight and 25% by weight, respectively, to obtain a mixture A having an Mw of 3.67 ⁇ 10 5 .
  • Adipic acid-based polyester plasticizer as aliphatic polyester (Asahi Denka Kogyo Co., Ltd. ttl @ "PN-150") N-methylpyrrolidone (NMP) as a solvent was 87.5% by weight and 12.5% by weight, respectively. %
  • NMP N-methylpyrrolidone
  • BT-30 twin-screw extruder
  • LZD 48
  • the extruded mixture is maintained in a molten state at a temperature of 60 ° C, and guided into a water bath having a water surface at a position 30 mm away from the nozzle (ie, having an air gap of 30 mm), and cooled and solidified. (Residence time in a water bath: about 10 seconds), the material was taken out at a take-up speed of 5 mZ, and then wound up to obtain a first intermediate molded body.
  • the inner diameter of the first intermediate molded body was 1.462 mm and the outer diameter was 2.05 lmm.
  • the first intermediate molded body was immersed in dichloromethane at room temperature for 30 minutes while applying vibration while being fixed so as not to contract in the longitudinal direction, and then dichloromethane was replaced with a new U.
  • the immersion was carried out again under the same conditions to extract the aliphatic polyester and the solvent.
  • the mixture was heated in an oven at a temperature of 120 ° C for 1 hour to remove dichloromethane and heat-treated.
  • An intermediate molded body was obtained.
  • the second intermediate molded body was stretched in the longitudinal direction at an ambient temperature of 25 ° C by a factor of 1.8 in the longitudinal direction. Immerse at room temperature for 30 minutes while applying vibrations, then replace the dichloromethane with a new one, immerse again under the same conditions, and then heat in an oven at a temperature of 150 ° C for 1 hour with the fixed to remove dichloromethane Then, heat fixing was performed to obtain a polyvinylidene fluoride-based porous hollow fiber.
  • the main PVDF was changed to PVDF (powder) with Mw of 4.12 x 10 5 and the reforming PVDF to PVDF (powder) with Mw of 9.36 x 10 5 .
  • the mixture A obtained by changing the mixing ratio to 95 Z5 (% by weight)
  • the mixing ratio between the plasticizer and the good solvent was 82.5.
  • the mixture B changed to 17.5 (% by weight)
  • the supply ratio of the mixture A and the mixture B was 35.7 / 64.3 (% by weight)
  • the air gap was 150 mm
  • the stretching ratio was 1.7 times.
  • a porous hollow fiber was obtained in the same manner as in Example 5, except for the change.
  • a porous hollow fiber was obtained in the same manner as in Example 6, except that the nozzle outer diameter was changed to 5 mm, the nozzle inner diameter was changed to 3.5 mm, and the air gap was changed to 170 mm.
  • a porous hollow fiber was obtained in the same manner as in Example 3, except that PVD having Mw of 2.52 ⁇ 10 5 was used alone instead of the mixture A, and the take-up speed was changed to 20 mZ. In addition, when the take-up speed was mZ, the yarn was broken during drawing, and a porous hollow fiber could not be obtained.
  • Tm2-Tc (.C) 30.9 30.9 31.0 28.5 28.8 28.6 29.1 35.0 34.2 31.8
  • a bi-lidene fluoride resin having a relatively high molecular weight and improved crystal characteristics represented by Tm2—Tc ⁇ 32 ° C. Is mixed with a plasticizer of bi-fluoridene-based resin and a good solvent.
  • the melt-extruded composition of the hollow fiber film obtained from the composition is cooled and solidified, its plasticizer is extracted and stretched.
  • bi-fluoridene fluoride is useful as a microfiltration membrane for water treatment, having micropores of appropriate dimensions and distribution, and having excellent mechanical strength represented by tensile strength and elongation at break.
  • a resin-based hollow fiber porous membrane is obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Artificial Filaments (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

 比較的高い分子量樹脂本来の融点Tm2と結晶化温度Tcとの差Tm2-Tcが32°C以下であることで代表される改善された結晶特性を有するフッ化ビニリデン系樹脂を、フッ化ビニリデン系樹脂の可塑剤および良溶媒とともに混合して得た組成物を、中空糸膜状に溶融押出し、その後冷却媒体中に導入して外側面から冷却し、固化、可塑剤の抽出、延伸に付することにより、X線回折法により結晶配向部と結晶非配向部の混在が認められるフッ化ビニリデン系樹脂中空糸多孔膜を製造する。得られたフッ化ビニリデン系樹脂多孔膜は、適度の寸法と分布の微細孔を有し、且つ引張り強度および破断伸度で代表される機械的強度が優れ、精密濾水膜として有用である。

Description

明 細 書
フッ化ビニリデン系樹脂中空糸多孔濾水膜およびその製造方法 技術分野
[0001] 本発明は、水処理用に適したフッ化ビニリデン系榭脂中空糸多孔濾水膜およびそ の製造方法に関する。
背景技術
[0002] 従来より合成樹脂系多孔質膜は気体隔膜分離、気液分離、固液分離等の分離膜 として、あるいは絶縁材、保温材、遮音材、断熱材などとして多方面に利用されてい る。これらの内、特に水処理用分離膜として使用される場合には分離機能に影響を 与える以下の特性が要求される。まず、多孔質膜の分離効率を目的とする適度な空 孔率を有すること、分離精度の向上を目的とした均一な孔径分布を有すること、加え て分離対象物に最適な孔径を有することが求められる。また、膜構成素材の性質とし ては、水処理後の化学処理に対する耐薬品性、耐候性、耐熱性等が要求される。さ らに、中空糸多孔質膜の濾水使用時における機械的強度として充分な破断点伸度、 破断点応力などが要求される。
[0003] この点、従来力 開発されているポリオレフイン榭脂系の多孔膜 (例えば下記特許 文献 1)は、水処理用分離膜としての使用後の逆洗ならびにオゾン処理における耐 薬品'性に問題が残る。
[0004] フッ化ビ-リデン系榭脂は耐候性、耐薬品性、耐熱性、強度等に優れて 、るため、 これら分離用多孔質膜への応用が検討されている。し力しながら、フッ化ビ-リデン 系榭脂は、前記した優れた特性を有する反面、非粘着性、低相溶性であるため成形 性は必ずしもよくない。また、多孔質膜の開発としては分離性能向上を目的とした高 ぃ空孔率、狭い孔径分布を追求する余り、機械的強度において満足すべきものは得 られていな力つた。このため強度を補充するために、濾過膜として使用する場合には 多孔質膜にサポートする膜を重ね合せて機械的物性を高めて使用しているのが現 状である。また、水処理用精密濾過膜として使用される際には、使用後の洗浄等によ る再生特性をも含めて長期間に亘つて高 ヽ濾過性を保持することが望まれて!/ヽる。 [0005] フッ化ビ-リデン系榭脂多孔膜の製造方法として、ポリフッ化ビ-リデン榭脂にフタ ル酸ジェチル等の有機液状体と無機微粉体として疎水性シリカを混合し、溶融成形 後に有機液状体と疎水性シリカを抽出する方法が開示されている(下記特許文献 2) 。こうして得られる多孔質膜は比較的大きい機械的強度を有する。し力しこの方法で は、疎水性シリカを抽出するためにアルカリ水溶液を用いることから、膜を構成するフ ッ化ビニリデン系榭脂が劣化し易 、。
[0006] これに対し、本発明者等の研究グループも、精密濾過膜あるいは電池用セパレー タとして使用されるフッ化ビ-リデン系榭脂多孔膜の製造方法に関して、幾つかの提 案をしている。それらは例えばフッ化ビ-リデン系榭脂を、制御された条件での結晶 化 熱処理一延伸 緊張熱処理して多孔膜化する方法 (下記特許文献 3)、特定の 分子量のフッ化ビ-リデン系榭脂を可塑剤とともに製膜後、片側力 冷却し次いで可 塑剤を抽出する方法 (下記特許文献 4)、通常分子量のフッ化ビ -リデン系榭脂に耐 熱変形性の向上のための高分子量フッ化ビ -リデン系榭脂と有機質多孔化剤または 無機質多孔化剤とを配合して膜形成した後、多孔化剤を抽出除去することにより、あ るいは無機質多孔化剤の場合には、これを延伸時の応力集中核として作用させるこ とにより、膜に孔を発生させて電池用セパレータとして使用される耐熱性の多孔膜と する方法 (下記特許文献 5)、等である。しかし、可塑剤あるいは有機質多孔化剤の 抽出により得られた多孔膜を水処理用の濾過膜として使用する場合に、必要な濾過 性能 (透水量)あるいは機械的な物性が得られない場合がある。他方、これら特性の 向上を目的として延伸を行おうとすると、膜が破断し易く十分な延伸倍率まで延伸で きない欠点があった。特に、水処理用の精密濾過膜として使用する場合には濾過圧 力に耐えるべく膜厚みが 50 m以上であるのが一般的である力 膜厚みが 50 m 以上の比較的肉厚の膜において延伸適性が顕著に劣ることが判明した。
[0007] 結局のところ、適度の寸法と分布の微細孔を有し、且つ機械的強度にも優れた水 処理用精密濾過膜としての使用に適したフッ化ビ-リデン系榭脂中空糸多孔濾水膜 は得られて 、なかったのが実情である。
[0008] 特許文献 1 :特公昭 50— 2176号公報
特許文献 2:特開平 3— 215535号公報 特許文献 3 :特開昭 54— 62273号公報
特許文献 4 :特開平 7— 173323号公報
特許文献 5:特開 2000 - 309672号公報
[0009] 発明の開示
従って、本発明の主要な目的は、適度の寸法と分布の微細孔を有し、且つ機械的 強度の優れたフッ化ビ-リデン系榭脂中空糸多孔濾水膜を提供することにある。
[0010] 本発明の別の目的は、上述したようなフッ化ビ-リデン系榭脂中空糸多孔濾水膜の 安定且つ効率的な製造方法を提供することにある。
[0011] 本発明者らは、上述の目的で研究した結果、結晶特性の改善されたフッ化ビ -リデ ン系榭脂をその溶剤および可塑剤とともに溶融押出後、制御された条件下で冷却し て製膜し、可塑剤を抽出し、更に延伸することにより適度の寸法と分布を有する微細 多孔が発生され、且つ機械的強度も良好に維持された中空糸多孔膜が得られること が確認された。こうして得られたフッ化ビ-リデン系榭脂中空糸多孔膜は、 X線回折 法により結晶配向部と結晶非配向部の混在が認められることが特徴的である。
[0012] すなわち、本発明のフッ化ビ-リデン系榭脂中空糸多孔濾水膜は、重量平均分子 量が 20万〜 60万であり、且つ DSC測定による榭脂本来の融点 Tm2 (°C)と結晶化 温度 Tc (°C)との差 Tm2—Tcが 32°C以下であるフッ化ビ -リデン系榭脂の中空糸多 孔膜からなり、 X線回折法により結晶配向部と結晶非配向部の混在が認められること を特徴とするものである。
[0013] また、本発明のフッ化ビニリデン系榭脂中空糸多孔膜の製造方法は、重量平均分 子量が 20万〜 60万であり、且つ DSC測定による榭脂本来の融点 Tm2 (°C)と結晶 化温度 Tc (°C)との差 Tm2— Tcが 32°C以下であるフッ化ビ-リデン系榭脂 100重量 部に対し、可塑剤を 70〜250重量部およびフッ化ビ -リデン系榭脂の良溶媒 5〜80 重量部を添加し、得られた組成物を中空糸膜状に溶融押出し、その冷却媒体中で 外側から冷却して固化成膜した後、可塑剤を抽出し、更に延伸することを特徴とする ものである。
[0014] 本発明の方法により、所望の特性のフッ化ビ-リデン系榭脂中空糸多孔膜が得ら れるためには、幾つかの要因が相乗的に寄与していると考えられる力 端的に言って 、冷却抽出までの過程において、制御された結晶特性と可塑剤の抽出後の微細孔 の存在するフッ化ビ-リデン系榭脂中空糸膜が形成されているため、従来は困難で あったフッ化ビニリデン系榭脂中空糸膜の円滑な延伸が可能となり、更に安定的に 所望の孔径 (分布)を有する中空糸多孔膜が形成されたものと解される。特に有効に 寄与して 、るファクタ一としては、以下のものが挙げられる。
[0015] ィ) Tm2— Tc≤ 32°Cで代表される原料フッ化ビ -リデン系榭脂の改善された結晶 特性により、溶融押出後の中空糸膜状物の冷却に際して、結晶の成長速度が調整( 抑制)され、その後の延伸に適した結晶特性の膜が得られる。口)溶融押出後の中空 糸膜の外側力 の冷却により厚み方向に緩やかに形成された微結晶ないし相分離 寸法の分布 (外面側が細かぐ逆側が比較的粗くなる)が、その後の延伸を円滑化さ せる。ハ)冷却固化後の中空糸膜から可塑剤を抽出することにより形成された後に残 る可塑剤の抜け孔が中空糸膜を柔軟ィ匕して延伸を容易化するとともに、一定の周期 での延伸応力集中核を形成し、結果的に延伸後の中空糸膜に延伸による繊維 (フィ ブリル)部と非延伸節 (ノード)部の交互分布膜を形成し、これが全体として一様な細 孔分布と、中空糸膜強度の維持に寄与する。
[0016] 特に上記ィ)の改善された結晶特性により、球晶(すなわち球状に発達した結晶粒 子)の成長が抑制されているため、本発明の中空糸多孔膜を精密濾水膜として用い た場合には、透水能、機械的強度および延伸性の改善が得られる。これは、膜断面 の電子顕微鏡観察力 以下のように裏付けられる。すなわち、従来法により中空糸多 孔膜を製造する場合、精密濾水膜に要求される機械的強度を担保するために 50 m以上の膜厚として片側力 冷却したときには、冷却された外側面力 膜厚さ方向に 50 m程度の深さまではスポンジ状の多孔質構造が見られるが、膜のそれより内部 力も内側面にかけては球晶粒子が凝集した構造 (球晶構造)が見られる。さらに、個 々の球晶の内部を観察すると、全体的に多孔質ではあるものの榭脂相が比較的密な 球晶の中心部から皮膜状の榭脂相が放射状に形成されており、球晶内部の孔は大 略中心部に向力つて連なった行き止まりの孔であると考えられる。したがって、球晶 は水の透過に対して一種の障害物であり、球晶構造が形成されると実質的な水の透 過経路は球晶間の孔に限られ、また球晶を迂回するために空孔率に見合った透水 量が得られない。さらに球晶同士の界面で榭脂の接合が不十分であるため機械的強 度および延伸性が劣る。
[0017] これに対して本発明の方法では、 Tm2—Tcが 32°C以下であるフッ化ビニリデン系 榭脂を用いることにより、球晶構造の形成を抑制することができる。これにより透水性 および機械的強度、延伸性が改善され、これを延伸することによりさらに透水性に優 れる膜が製造できる。球晶の生成したフッ化ビ-リデン系榭脂成膜体を延伸すると、 1. 3倍程度 (後記比較例 3)と所望の特性改善を得るには不十分な程度に延伸倍率 が低い場合を除き、糸切れが起こり、所望の物性の中空糸が得られない (後記比較 例 1および 2において、実施例と同じ冷却浴中の引き取り速度である 5mZ分を採用 したときの記載および比較例 2に対応する顕微鏡写真図 3および 4参照)。
図面の簡単な説明
[0018] [図 1]実施例 4において、フッ化ビ-リデン系榭脂多孔質中空糸膜を得るための延伸 前の第 2中間成形体の内表面 (冷却面と逆側の面(図示下側))近傍の横断面の 100 0倍走査電子顕微鏡写真。
[図 2]図 1の内表面近傍を更に拡大した 5000倍走査電子顕微鏡写真。
[図 3]比較例 2において、フッ化ビ-リデン系榭脂多孔質中空糸膜を得るために、速 度 5mZ分で引き取って得られた、延伸前の第 2中間成形体の内表面 (冷却面と逆 側の面(図示下側) )近傍の横断面の 1000倍走査電子顕微鏡写真。
[図 4]図 3の内表面近傍を更に拡大した 5000倍走査電子顕微鏡写真。
発明を実施するための最良の形態
[0019] 以下、本発明のフッ化ビ-リデン系榭脂中空糸多孔膜を、その好ましい製造方法 である本発明の製造方法に従って順次説明する。
[0020] (フッ化ビニリデン系榭脂)
本発明においては、主たる膜原料として、重量平均分子量 (Mw)が 20万〜 60万 であるフッ化ビ-リデン系榭脂を用いる。 Mwが 20万以下では得られる多孔膜の機 械的強度が小さくなる。また Mwが 60万以上であるとフッ化ビ -リデン系榭脂と可塑 剤との相分離構造が過度に微細になり、得られた多孔膜を精密濾水膜として用いる 場合の透水量が低下する。 [0021] 本発明にお 、て、フッ化ビ -リデン系榭脂としては、フッ化ビ-リデンの単独重合体 、すなわちポリフッ化ビ-リデン、他の共重合可能なモノマーとの共重合体あるいはこ れらの混合物が用いられる。フッ化ビ -リデン系榭脂と共重合可能なモノマーとして は、四フッ化工チレン、六フッ化プロピレン、三フッ化工チレン、三フッ化塩化工チレ ン、フッ化ビュル等の一種又は二種以上を用いることができる。フッ化ビ -リデン系榭 脂は、構成単位としてフッ化ビ-リデンを 70モル%以上含有することが好ましい。な かでも機械的強度の高さからフッ化ビ-リデン 100モル%からなる単独重合体を用い ることが好ましい。
[0022] 上記したような比較的高分子量のフッ化ビニリデン系榭脂は、好ましくは乳化重合 あるいは懸濁重合、特に好ましくは懸濁重合により得ることができる。
[0023] 本発明の多孔膜を形成するフッ化ビ-リデン系榭脂は、上記したように重量平均分 子量が 20万〜 60万と比較的大きな分子量を有することに加えて、 DSC測定による 榭脂本来の融点 Tm2 (°C)と結晶化温度 Tc (°C)との差 Tm2— Tcが 32°C以下、好ま しくは 30°C以下、で代表される良好な結晶特性を有することを特徴とする。
[0024] ここで榭脂本来の融点 Tm2 (°C)は、入手された試料榭脂あるいは多孔膜を形成 する榭脂を、そのまま DSCによる昇温過程に付すことにより測定される融点 Tml (°C )とは区別されるものである。すなわち、一般に入手されたフッ化ビ-リデン系榭脂は 、その製造過程あるいは加熱成形過程等において受けた熱および機械的履歴により 、榭脂本来の融点 Tm2 (°C)とは異なる融点 Tml (°C)を示すものであり、本発明を規 定するフッ化ビ -リデン系榭脂の融点 Tm2 (°C)は、入手された試料榭脂を、一旦、 所定の昇降温サイクルに付して、熱および機械的履歴を除いた後に、再度 DSC昇 温過程で見出される融点 (結晶融解に伴なう吸熱のピーク温度)として規定されるも のであり、その測定法の詳細は後述実施例の記載に先立って記載する。
[0025] 本発明の多孔膜を構成するフッ化ビ -リデン系榭脂の結晶特性を代表する Tm2— Tc≤32°Cの条件は、例えば共重合による Tm2の低下によっても達成可能であるが 、この場合には、生成する中空糸多孔膜の耐薬品性が低下する傾向が認められる場 合もある。従って、本発明の好ましい態様においては、重量平均分子量 (Mw)が 15 万〜 60万であるフッ化ビ-リデン系榭脂 70〜98重量%をマトリクス(主体)榭脂とし、 これと比べて Mwが 1. 8倍以上、好ましくは 2倍以上であり且つ 120万以下である結 晶特性改質用の高分子量フッ化ビ-リデン系榭脂を 2〜30重量%添加し、両者をブ レンドすることにより得た、フッ化ビニリデン系榭脂混合物が用いられる。このような方 法によればマトリクス榭脂単独の(好ましくは 170〜180°Cの範囲内の Tm2により代 表される)結晶融点を変化させることなぐ有意に結晶化温度 Tcを上昇させることが できる。より詳しくは Tcを上昇させることにより、膜表面に比べて冷却の遅い膜内部な らびに片側面力もの優先的冷却に際しては膜内部力も反対面にかけてフッ化ビ-リ デン系榭脂の固化を早めることが可能になり、球晶の成長を抑制することができる。 T cは、好ましくは 143°C以上である。
[0026] 高分子量フッ化ビ -リデン系榭脂の Mwがマトリクス榭脂の Mwの 1. 8倍未満であ ると球晶構造の形成を十分には抑制し難ぐ一方、 120万以上であるとマトリックス榭 脂中に均一に分散させることが困難である。
[0027] また、高分子量フッ化ビニリデン系榭脂の添加量が 2重量%未満では球晶構造の 形成を抑制する効果が十分でなぐ一方、 30重量%を超えるとフッ化ビ -リデン系榭 脂と可塑剤の相分離構造が過度に微細化して、膜の透水量が低下する傾向がある。
[0028] 本発明に従い、上記のフッ化ビ -リデン系榭脂に、フッ化ビ -リデン系榭脂の可塑 剤および良溶媒を加えて中空糸膜形成用の原料組成物を形成する。
[0029] (可塑剤)
可塑剤としては、一般に、二塩基酸とダリコール力 なる脂肪族系ポリエステル、例 えば、アジピン酸 プロピレングリコーノレ系、アジピン酸 1, 3 ブチレングリコーノレ 系等のアジピン酸系ポリエステル;セバシン酸—プロピレングリコール系、セバシン酸 系ポリエステル;ァゼライン酸 プロピレングリコール系、ァゼライン酸 1, 3 ブチ レングリコール系等のァゼライン酸系ポリエステル等が用いられる。
[0030] (良溶媒)
また、フッ化ビ -リデン系榭脂の良溶媒としては、 20〜250°Cの温度範囲でフツイ匕 ビ-リデン系榭脂を溶解できる溶媒が用いられ、例えば、 N—メチルピロリドン、ジメチ ルホルムアミド、ジメチルァセトアミド、ジメチルスルホキシド、メチルェチルケトン、ァ セトン、テトラヒドロフラン、ジォキサン、酢酸ェチル、プロピレンカーボネート、シクロ へキサン、メチルイソプチルケトン、ジメチルフタレート、およびこれらの混合溶媒等が 挙げられる。なかでも高温での安定性力も N—メチルピロリドン (NMP)が好ましい。
[0031] (組成物)
中空糸膜形成用の原料組成物は、好ましくはフッ化ビ-リデン系榭脂 100重量部 に対し、可塑剤 70〜250重量部および良溶媒 5〜80重量部を混合することにより得 られる。
[0032] 可塑剤が 70重量部未満であると、空孔率が低くなるため、精密濾水膜においては 濾過性能 (透水量)に劣る。また、 250重量部を超えると空孔率が大きくなり過ぎるた め、機械的強度が低下する。
[0033] 良溶媒が 5重量部未満ではポリフッ化ビ -リデン系榭脂と可塑剤を均一に混合でき なかったり、あるいは混合に時間を要する。また、 80重量部を超えると可塑剤の添カロ 量に見合った空孔率が得られない。すなわち可塑剤の抽出による効率的な空孔形 成が阻害される。
[0034] 可塑剤と良溶媒の合計量は 100〜250重量部の範囲が好ましい。両者はいずれも 溶融押出し組成物の粘度低減効果があり、ある程度代替的に作用する。そのうち良 溶媒は、 5〜40重量%の割合が好ましぐより好ましくは 5〜35重量%、特に好ましく は 10〜30重量%である。
[0035] (混合'溶融押出し)
溶融押出組成物は、一般に 140〜270°C、好ましくは 150〜200°C、の温度で、中 空ノズルあるいは T—ダイカゝら押出されて膜状ィ匕される。従って、最終的に、上記温 度範囲の均質組成物が得られる限りにおいて、フッ化ビ -リデン系榭脂、可塑剤およ び良溶媒の混合並びに溶融形態は任意である。このような組成物を得るための好ま しい態様の一つによれば、二軸混練押出機が用いられ、(好ましくは主体樹脂と結晶 特性改質用榭脂の混合物力もなる)フッ化ビ-リデン系榭脂は、該押出機の上流側 から供給され、可塑剤と良溶媒の混合物が、下流で供給され、押出機を通過して吐 出されるまでに均質混合物とされる。この二軸押出機は、その長手軸方向に沿って、 複数のブロックに分けて独立の温度制御が可能であり、それぞれの部位の通過物の 内容により適切な温度調節がなされる。主体樹脂と結晶特性改質用榭脂を併用する 場合、両者の溶融混練が不充分であると、所望の Tc上昇ならびにそれに伴う成膜性 の改善効果が得られな 、ことがある。
[0036] (冷却)
本発明法に従い、ノズル力 溶融押出された中空糸膜状物は、水等の冷却媒体中 を通過させることにより外面側力 冷却される。冷却媒体の温度は 5〜120°Cと、かな り広い温度範囲力も選択可能である力 好ましくは 10〜: LOO°C、特に好ましくは 30〜 80°Cの範囲である。
[0037] (抽出)
冷却 '固化された中空糸膜状物は、次いで抽出液浴中に導入され、可塑剤および 良溶媒の抽出除去を受ける。抽出液としては、ポリフッ化ビニリデン系榭脂を溶解せ ず、可塑剤や良溶媒を溶解できるものであれば特に限定されない。例えばアルコー ル類ではメタノール、イソプロピルアルコールなど、塩素化炭化水素類ではジクロロメ タン、 1, 1, 1—トリクロロェタンなど、の沸点が 30〜100°C程度の極性溶媒が適当で ある。
[0038] (熱処理)
抽出後の中空糸膜状物は、次いで引き続く延伸による透水量の増大効果を高める ために、 80〜160。C、好ましくは 100〜140。Cの範囲の温度で、 1秒〜 18000秒、 好ましくは 3秒〜 3600秒、熱処理して、結晶化度を増大させることが好ましい。
[0039] (延伸)
中空糸膜状物は、次いで延伸に付され、空孔率および孔径の増大並びに強伸度 の改善を受ける。一般に、周速度の異なるローラ対等による膜状物の長手方向への 一軸延伸を行うことが好ましい。これは、本発明のフッ化ビ-リデン系榭脂中空糸多 孔膜の多孔率と強伸度を調和させるためには、延伸方向に沿って延伸フィブリル (繊 維)部と未延伸ノード (節)部が交互に現われる微細構造が好ま 、ことが知見されて いるからである。延伸倍率は、 1. 2〜4. 0倍、特に 1. 4〜3. 0倍程度が適当である。 また、延伸温度は、一般に室温〜 90°C、好ましくは 40〜80°C、が採用される。
[0040] 延伸後の中空糸多孔膜については、寸法安定化のために、例えば 80〜160°Cで 熱固定処理を施すことが好ましい。この際、長さとして 10%程度までの緩和率で、緩 和 (収縮)を起させてもよい。ここで緩和率とは、次式により計算された値を意味する: 緩和率 (%) = ( (延伸後の長さ (m)—緩和後の長さ (m) ) / (延伸後の長さ) )
Figure imgf000012_0001
[0041] (溶離液処理)
上記工程を通じて、本発明のフッ化ビ-リデン系榭脂中空糸多孔膜が得られるが、 この中空糸多孔膜を溶離液による浸漬処理に付すことも好まし 、。この溶離液処理 により、本発明の中空糸多孔膜の特質が本質的に損なわれることなぐその透水量が 増大するからである。溶離液としては、アルカリ液、酸液または可塑剤の抽出液が用 いられる。
[0042] 上記溶離液処理により中空糸多孔膜の透水量が増大する理由は、必ずしも明らか ではないが、延伸により拡開された微細孔壁に残存する可塑剤が露出し、溶離液処 理により効率的に除かれるためではないかと推察される。溶離液としてのアルカリお よび酸は、フッ化ビニリデン系榭脂の可塑剤として用いられるポリエステルを分解して 可溶化することによりその溶離'除去を促進する作用を有するものと解される。
[0043] したがって、アルカリ液としては、水酸化ナトリウム、水酸ィ匕カリウム、水酸ィ匕カルシゥ ム等の強塩基の水または水 Zアルコール溶液で ρΗが 12以上、より好ましくは 13以 上のものが好ましく用いられる。他方、酸液としては、塩酸、硫酸、燐酸等の強酸の水 または水 Zアルコール溶液力 ¾H力 以下、より好ましくは 3以下、特に好ましくは 2以 下のものが好ましく用いられる。
[0044] また、可塑剤の抽出液としては、延伸前に用いたものと同様に、ポリフッ化ビ -リデ ン系榭脂を溶解せず、可塑剤を溶解できるものであれば特に限定されない。例えば アルコール類では、メタノール、イソプロピルアルコールなど、塩素化炭化水素類で はジクロロメタン、 1, 1, 1—トリクロロメタンなど、の沸点が 30〜100°C程度の極性溶 媒が適当である。
[0045] 溶離液処理は、中空糸多孔膜を、必要に応じて親液性を向上するための前浸漬を 行った後、 5〜100°C程度の温度で 10秒〜 6時間溶離液中に浸漬することにより行 われる。溶離液処理を、加温下に行うときは、多孔膜の収縮が起らないように固定し た状態で行われることが好まし 、。 [0046] (フッ化ビニリデン系榭脂中空糸多孔膜)
上記のようにして得られる本発明のフッ化ビ-リデン系榭脂中空糸多孔膜によれば 、一般に空孔率が 55〜90%、好ましくは 60〜85%、特に好ましくは 65〜80%、引 張り強度が 5MPa以上、破断伸度が 5%以上の特性が得られ、これを透水処理膜と して使用する際には 5m3Zm2 ' day lOOkPa以上の透水量が得られる。また厚さは 、 5-800 μ m程度の範囲が通常であり、好ましくは 50〜600 μ m、特に好ましくは 1 50〜500 mである。中空糸の外径は 0. 3〜3mm程度、特に l〜3mm程度が適 当である。
[0047] また、本発明のフッ化ビ-リデン系榭脂多孔膜は、微細構造として、 X線回折法によ り結晶配向部と、結晶非配向部(ランダム配向部)が認められることが特徴であり、こ れはそれぞれ延伸フィブリル部と未延伸ノード部に対応するものと解される。
[0048] (X線回折法)
より詳しくは、本明細書に記載する中空糸膜状物の X線回折特性は、以下の測定 法による測定結果に基づくものである。
[0049] 膜状物中空糸は、長手方向に沿って半割にしたものを、その長手方向が鉛直とな るように試料台に取り付け、長手方向に垂直に X線を入射させる。 X線発生装置は理 学電機社製「ロータフレックス 200RB」を用い、 30kV— 100mAで Niフィルタを通し た CuK a線を X線源とする。イメージングプレート(富士写真フィルム社製「BAS— S R127J )を用いて、試料—イメージングプレート間距離 60mmで回折像を撮影する。
[0050] 結果的に、本発明の中空糸多孔膜における結晶配向部と結晶非配向部の混在は 、X線回折法による回折角 2 0 = 20. 1 ± 1° と 2 0 = 23. 0 ± 1° における子午線上 での回折強度比が 1. 1以上で、且つ 2 0 = 20. 1 ± 1° における方位角強度分布曲 線ピークの半値幅 Δ βが 80° 以下であることで、定量的に表現される。
[0051] (偏光顕微鏡観察)
本発明のフッ化ビ-リデン系榭脂中空糸多孔膜は、球晶の生成を抑制して、延伸 を円滑に実施した結果として得られるものである。従って、本発明の、フッ化ビ -リデ ン系榭脂中空糸多孔膜のもう一つの微細構造上の特徴は、偏光顕微鏡観察により 球晶が認められないことである。球晶の検出法は、以下の方法による。 [0052] 中空糸多孔膜を薄くスライスして薄片を作成し、多孔膜の微細孔内に浸透するが多 孔膜を溶解あるいは膨潤させな ヽ有機溶剤 (例えばジクロロメタン)を薄片にしみ込ま せ、直交ニコルによる偏光顕微鏡観察 (倍率は 200〜400倍が好ましい)を行う。試 料中に球晶が存在する場合には、十字消光あるいはマルテーゼクロスと呼ばれる十 文字形の消光模様が観察される。
[0053] 本発明のフッ化ビ-リデン系榭脂多孔膜は、フッ化ビ-リデン系榭脂分子鎖の少な くとも一部は結晶化している力 球晶としての成長は抑制されているため、偏光顕微 鏡観察によっても膜厚さ方向の全層にわたって十文字形の消光模様は観察されな い。力かる球晶成長の抑制が Tm2—Tc≤32°Cで代表される原料フッ化ビ-リデン 系榭脂の改良された結晶特性に由来するものであることは、本発明のフッ化ビ -リデ ン系榭脂中空糸多孔膜の製造過程における中間体である未延伸膜についての同様 な偏光顕微鏡観察によっても不規則な明暗が観察されるのみで、十文字形の消光 模様が観察されな 、ことからも理解される。
[0054] [実施例]
以下、実施例、比較例により、本発明を更に具体的に説明する。以下の記載を含 め、上記した X線回折特性以外の本明細書に記載の特性は、以下の方法による測 定値に基くものである。
[0055] (重量平均分子量(Mw) )
日本分光社製の GPC装置「GPC - 900」を用い、カラムに昭和電工社製の「 Shodex KD— 806M」、プレカラムに「Shodex KD— G」、溶媒に NMPを使用し、温 度 40°C、流量 lOmlZ分にて、ゲルパーミエーシヨンクロマトグラフィー(GPC)法によ りポリスチレン換算分子量として測定した。
[0056] (結晶融点 Tml, Tm2および結晶化温度 Tc)
パーキンエルマ一社製の示差走査熱量計 DSC7を用いて、試料榭脂 lOmgを測 定セルにセットし、窒素ガス雰囲気中で、温度 30°Cから 10°CZ分の昇温速度で 250 °Cまでー且昇温し、ついで 250°Cで 1分間保持した後、 250°Cから 10°CZ分の降温 速度で 30°Cまで降温して DSC曲線を求めた。この DSC曲線における昇温過程にお ける吸熱ピーク速度を融点 Tml (°C)とし、降温過程における発熱ピーク温度を結晶 化温度 Tc (°C)とした。引き続いて、温度 30°Cで 1分間保持した後、再び 30°Cから 10 °CZ分の昇温速度で 250°Cまで昇温して DSC曲線を測定した。この再昇温 DSC曲 線における吸熱ピーク温度を本発明のフッ化ビニリデン系榭脂の結晶特性を規定す る本来の榭脂融点 Tm2 (°C)とした。
[0057] (空孔率)
中空糸多孔膜の長さ、並びに外径および内径を測定して多孔膜の見掛け体積 V( cm2)を算出し、更に多孔膜の重量 W(g)を測定して次式より空孔率を求めた。
[数 1]
空孔率(%) = (1— WZ(VX p )) X 100
p: PVDFの比重( = 1. 78g/cm2)
[0058] (透水量(フラックス))
中空糸多孔膜をエタノールに 15分間浸漬し、次いで水に 15分間浸漬して親水化 した後、水温 25°C、差圧 lOOkPaにて測定した。中空糸多孔膜は、試長 (濾過が行 われる部分の長さ)を 800mmとし、膜面積は外径に基いて次式により算出した。
[数 2]
膜面積 (m2) =外径 Χ π Χ試長
[0059] (平均孔径)
ASTM F316— 86および ASTM E1294— 89に準拠し、 Porous Materials, Inc. 社製「パームポロメータ CFP— 200AEX」を用いてハーフドライ法により平均孔径を 測定した。試液はパーフルォロポリエステル(商品名「Galwick」)を用いた。
[0060] (最大孔径)
ASTM F316— 86および ASTM E1294— 89に準拠し、 Porous Materials, Inc. 社製「パームポロメータ CFP— 200AEX」を用いてバブルポイント法により最大孔径 を測定した。試液はパーフルォロポリエステル(商品名「Galwick」)を用いた。
[0061] (引張り強度および破断伸度)
引張り試験機 (東洋ボールドウィン社製「RTM— 100」)を使用して、温度 23°C、相 対湿度 50%の雰囲気中で初期試料長 100mm、クロスヘッド速度 200mmZ分の条 件下で測定した。 [0062] (実施例 1)
重量平均分子量(Mw)が 2. 52 X 105の主体ポリフッ化ビ-リデン(PVDF) (粉体) と Mwが 6. 59 X 105の結晶特性改質用ポリフッ化ビ-リデン (PVDF) (粉体)を、そ れぞれ 87. 5重量%および 12. 5重量%となる割合で、ヘンシェルミキサーを用いて 混合して、 Mwが 3. 03 X 105である混合物 Aを得た。
[0063] 脂肪族系ポリエステルとしてアジピン酸系ポリエステル可塑剤 (旭電化工業株式会 社社製「PN— 150」)と、溶媒として N—メチルピロリドン(NMP)を、 87. 5重量0 /oZ 12. 5重量%の割合で、常温にて撹拌混合して、混合物 Bを得た。
[0064] 同方向回転嚙み合 、型二軸押出機 (プラスチック工学研究所社製「BT— 30」、ス クリュー直径 30mm、 LZD=48)を使用し、シリンダ最上流部から 80mmの位置に 設けられた粉体供給部力 混合物 Aを供給し、シリンダ最上流部力 480mmの位置 に設けられた液体供給部から温度 100°Cに加熱された混合物 Bを、混合物 AZ混合 物 B = 37. 5/62. 5 (重量%)の割合で供給して、バレル温度 210°Cで混練し、混 練物を外径 7mm、内径 3. 5mmの円形スリットを有するノズルから吐出量 13gZmin で中空糸状に押し出した。
[0065] 押し出された混合物を溶融状態のまま 60°Cの温度に維持され、且つノズルから 10 mm離れた位置に水面を有する(すなわちエアギャップが 10mmの)水浴中に導き冷 却 ·固化させ (水浴中の滞留時間:約 10秒)、 5mZ分の引取速度で引き取った後、 これを巻き取って第 1中間成形体を得た。
[0066] 次に、この第 1中間成形体を長手方向に収縮しないように固定したままジクロロメタ ン中に振動を与えながら室温で 30分間浸漬し、次 ヽでジクロロメタンを新 U、ものに 取り替えて再び同条件にて浸漬して、脂肪族系ポリエステルと溶媒を抽出し、次いで 固定したまま温度 120°Cのオーブン内で 1時間加熱してジクロロメタンを除去するとと もに熱処理を行!ヽ第 2中間成形体を得た。
[0067] 次に、この第 2中間成形体を雰囲気温度の 25°Cで長手方向に 1. 6倍の倍率に延 伸し、次いで温度 100°Cのオーブン内で 1時間加熱して熱固定を行い、ポリフッ化ビ 二リデン系多孔質中空糸を得た。
[0068] 得られたポリフッ化ビ-リデン系多孔質中空糸は、外径が 1. 486mm,内径が 0. 7 02mm,膜厚が 0. 392mm,空孔率が 72%、透水量が 18. OlmVm2- day 100k Pa、平均孔径 0. 086 ^ m,最大孔径 0. 184 m、引張り強度 9. IMPa、破断伸度
7%の物性を示した。
[0069] 製造条件および得られたポリフッ化ビニリデン系多孔質中空糸の物性を、以下の実 施例および比較例の結果と併せてまとめて後記表 1に記す。
[0070] (実施例 2)
実施例 1で得た多孔質中空糸を長手方向に収縮しないように固定したまま、ェタノ ールに 15分間浸漬し、次いで純水に 15分間浸漬して親水化した後、温度 70°Cに維 持された苛性ソーダ 20%水溶液 (pH14)に 1時間浸漬し、次いで水洗した後、温度 60°Cに維持された温風オーブン中で 1時間乾燥させた。
[0071] (実施例 3)
溶融押出物を冷却する冷却水浴温度を 11°Cに且つ延伸倍率を 1. 8倍に変更する 以外は実施例 1と同様にして多孔質中空糸を得た。
[0072] (実施例 4)
主体 PVDFと改質用 PVDFの混合比率を 50Z50 (重量%)と変更して得た混合物 Aを用い、エアギャップを 140mmに増大する以外は、実施例 3と同様にして多孔質 中空糸を得た。
[0073] 上記例において、中空糸膜を得るための延伸前の第 2中間成形体の長手方向に 垂直な断面の内表面 (冷却面と逆側の表面であり、図示下側)の近傍の 1000倍及 び 5000倍の操作型電子顕微鏡写真を、それぞれ図 1及び 2に示す。
[0074] (実施例 5)
重量平均分子量(Mw)が 2. 52 X 105の主体ポリフッ化ビ-リデン(PVDF) (粉体) と Mwが 6. 91 X 105の結晶特性改質用ポリフッ化ビ-リデン (PVDF) (粉体)を、そ れぞれ 75重量%および 25重量%となる割合で、ヘンシェルミキサーを用いて混合し て、 Mwが 3. 67 X 105である混合物 Aを得た。
[0075] 脂肪族系ポリエステルとしてアジピン酸系ポリエステル可塑剤 (旭電化工業株式会 ttl¾「PN—150」) 溶媒として N—メチルピロリドン(NMP)を、それぞれ 87. 5重 量%および 12. 5重量%となる割合で常温にて撹拌混合して、混合物 Bを得た。 [0076] 同方向回転嚙み合 、型二軸押出機 (プラスチック工学研究所社製「BT— 30」、ス クリュー直径 30mm、 LZD=48)を使用し、シリンダ最上流部から 80mmの位置に 設けられた粉体供給部力 混合物 Aを供給し、シリンダ最上流部力 480mmの位置 に設けられた液体供給部から温度 100°Cに加熱された混合物 Bを、混合物 AZ混合 物 B=40Z60 (重量%)の割合で供給して、バレル温度 220°Cで混練し、混練物を 外径 7mm、内径 5mmの円形スリットを有するノズルから吐出量 9. 8gZminで中空 糸状に押し出した。この際、ノズル中心部に設けた通気ロカも空気を流量 6. 2ml/ minで糸の中空部に注入した。
[0077] 押し出された混合物を溶融状態のまま 60°Cの温度に維持され、且つノズルから 30 mm離れた位置に水面を有する(すなわちエアギャップが 30mmの)水浴中に導き冷 却 ·固化させ (水浴中の滞留時間:約 10秒)、 5mZ分の引取速度で引き取った後、 これを巻き取って第 1中間成形体を得た。この第 1中間成形体の内径は 1. 462mm 、外径は 2. 05 lmmであった。
[0078] 次に、この第 1中間成形体を長手方向に収縮しないように固定したままジクロロメタ ン中に振動を与えながら室温で 30分間浸漬し、次 ヽでジクロロメタンを新 U、ものに 取り替えて再び同条件にて浸漬して、脂肪族系ポリエステルと溶媒を抽出し、次いで 固定したまま温度 120°Cのオーブン内で 1時間加熱してジクロロメタンを除去するとと もに熱処理を行!ヽ第 2中間成形体を得た。
[0079] 次に、この第 2中間成形体を雰囲気温度の 25°Cで長手方向に 1. 8倍の倍率に延 伸し、っ 、で長手方向に収縮しな 、ように固定したままジクロロメタン中に振動を与え ながら室温で 30分間浸漬し、ついでジクロロメタンを新しいものに取り替えて再び同 条件にて浸漬して、ついで固定したまま温度 150°Cのオーブン内で 1時間加熱して ジクロロメタンを除去するとともに熱固定を行い、ポリフッ化ビ-リデン系多孔質中空 糸を得た。
[0080] (実施例 6)
主体 PVDFを Mwが 4. 12 X 105の PVDF (粉体)、および改質用 PVDFを Mwが 9 . 36 X 105の PVDF (粉体)と変更し、主体 PVDFと改質用 PVDFの混合比率を 95 Z5 (重量%)と変更して得た混合物 Aを用い、可塑剤と良溶媒の混合比率を 82. 5 ,17. 5 (重量%)と変更した混合物 Bを用い、混合物 Aと混合物 Bの供給比率を 35 . 7/64. 3 (重量%)、エアギャップを 150mm、延伸倍率を 1. 7倍と変更した以外は 実施例 5と同様にして多孔質中空糸を得た。
[0081] (実施例 7)
ノズル外径を 5mm、ノズル内径を 3. 5mm、エアギャップを 170mmに変更する以 外は実施例 6と同様にして多孔質中空糸を得た。
[0082] (比較例 1)
混合物 Aの代わりに、 Mwが 2. 52 X 105の PVDFを単独で用い、引取速度を 20m Z分に変更した以外は実施例 3と同様にして多孔質中空糸を得た。なお、引取速度 力 mZ分であると延伸時に糸切れを起こして多孔質中空糸を得ることができなかつ た。
[0083] (比較例 2)
混合物 Aの代わりに Mwが 4. 92 X 105の PVDFを単独で用い、 PVDFと混合物 B の供給比率を 42. 9/57. 1 (重量%)とし、エアギャップを 140mm、引取速度を 10 mZ分、延伸倍率を 2. 0倍に変更した以外は実施例 3と同様にして多孔質中空糸を 得た。
[0084] なお、引取速度が 5mZ分であると延伸時に糸切れを起こして多孔質中空糸を得る ことができな力つた。この引取速度が 5mZ分である場合において、中空糸膜を得る ための延伸前の第 2中間成形体の長手方向に垂直な断面の内表面(図示下側)の 近傍の 1000倍及び 5000倍の操作型電子顕微鏡写真を、それぞれ図 3及び 4に示 す。
[0085] (比較例 3)
混合物 Aの代わりに Mwが 6. 59 X 105の PVDFを単独で用い、 PVDFと混合物 B の供給比率を 33. 3/66. 7 (重量%)とし、エアギャップを 300mm、引取速度を 5m Z分、延伸倍率を 1. 3倍に変更した以外は実施例 3と同様にして多孔質中空糸を得 た。なお、延伸倍率が 1. 3倍を超えると延伸時に糸切れを起こして多孔質中空糸を 得ることができな力つた。
[0086] [表 1] 実施例 1 実施例 2 実施例 3 実施例 4 実施例 5 実施例 6 実施例 7 比較例 1 比較例 2 比較例 3 主体 PVDFの Mm (x10s) 2.52 2.52 2.52 2.52 2.52 4.12 4.12 2.52 4.92 6.59 原料組成 混合物 A
改質用 PVDFの鼬 (X106) 6.59 6.59 6.59 6.59 6.91 9.36 9.36 なし なし なし
PVDF混合比率
87.5/12.5 87.5/12.5 87.5/12.5 50/50 75/25 95/5 95/5 100/0 100/0 100/0 (重量 ¾)
混合物の Mw (x105) 3.03 3.03 3.03 4.56 3.67 4.38 4.38 2.52 4.92 6.59
*"リ Iステ It可塑剤 PN-150 PN-150 PN-150 PN-150 PN-150 PN-150 PN-150 PN-150 PN-150 PN-150 混合物 B
溶 媒 NMP NMP 隱 NMP NMP NMP NMP HHP NMP N P
*"リ Iス Ϊル可塑剤
87.5/12.5 87.5/12.5 87.5/12.5 87.5/12.5 87.5/12.5 82.5/17.5 82.5/17.5 87.5/125 87.5/12.5 37.5/12.5 /溶媒混合比率 (重量?!)
混合物 A/混合物 Bの
37.5/62.5 37.5/62.5 37.5/62.5 37.5/62.5 40/60 35.7/64.3 35.7/64.3 37.5/62.5 42.9/57.1 33.3/66.7 供給比率 (重量! 4)
Iアキ 'ャ フ' (mm) 10 10 10 140 30 150 170 10 140 300 紡糸■延伸条件
水浴温度 (°C) 60 60 11 11 60 60 60 11 11 11 引取速度 (m/min) 5 5 5 5 5 5 5 20 10 5 延伸倍率 1.6 1.6 1.8 1.8 1.8 1.7 1.7 1. B 2 1.3 溶離液処理 なし アル纖 なし なし シ'クロロメタン シ'クロロメタン シ'クロ口 1タン なし なし なし 外径 (mm) 1.486 1.558 1.549 1.620 1.626 1.570 1.570 0.742 0.904 1.66 物 性
内径 (ran) 0.702 0.7155 0.736 0.542 1.133 1.065 1.072 0, 34 0-41 0.772 膜厚み (mm) 0.392 0.421 0.407 0.539 0.247 0.253 0.249 0.201 0.247 0.444 空孔率 (ft] 72 74 77 72 75 76 76 71 60 60 透水量
18, 01 36.6 13.48 5.28 36.75 66.61 71.48 3.89 1.05 1.76
(m3/m2-clay100kPa)
平均孔径 Cum) 0.086 0.096 0.072 0.065 0.129 0.130 0.131 0.071 0.060 0.062 最大孔径 (ίί[Π) 0.184 0.184 0.145 0.145 0.275 0.278 0.277 0.145 0.126 0.135 引張リ強度 (Mpa) 9.1 7.1 8.9 13.9 17.4 11.4 10.9 4.7 37.1 12.5 破断伸度 (¾) 7 6 8.7 77 40 21 18 5 44 20
Tc (°C) 144.0 144,0 144.1 146,3 146.1 145.5 145.2 141.0 139.0 140.9
DSC Tm2 (。C) 174.9 174.9 175.1 174.8 174.9 174.1 174.3 176.0 173.2 172.7
Tm2-Tc (。C) 30.9 30.9 31.0 28.5 28.8 28.6 29.1 35.0 34.2 31.8
X線回折による結晶配向部と非配向部の混在 有 有 有 有 有 有 有 有 有 有 未延伸膜についての偏光顕微鏡観察による球晶の有無 無 無 無 無 無 無 無 (有)' 無(有 有
* 比較例 1および 2において、紡糸引取速度力 i5in/minのときは球晶が認められた。
産業上の利用可能性
上記表 1の結果を見れば分力る通り、本発明によれば、比較的高い分子量と Tm2 —Tc≤32°Cで代表される改善された結晶特性を有するフッ化ビ-リデン系榭脂を、 フッ化ビ -リデン系榭脂の可塑剤および良溶媒とともに混合して得た組成物の中空 糸膜状溶融押出組成物を、その外側面力もの冷却固化、可塑剤の抽出、延伸に付 することにより、適度の寸法と分布の微細孔を有し、且つ引張り強度および破断伸度 で代表される機械的強度が優れた、水処理用精密濾過膜として有用なフッ化ビ-リ デン系榭脂中空糸多孔膜が得られる。

Claims

請求の範囲
[1] 重量平均分子量が 20万〜 60万であり、且つ DSC測定による榭脂本来の融点 Tm2
(°C)と結晶化温度 Tc (°C)との差 Tm2— Tcが 32°C以下であるフッ化ビ -リデン系榭 脂の多孔膜からなり、 X線回折法により結晶配向部と結晶非配向部の混在が認めら れることを特徴とするフッ化ビ-リデン系榭脂中空糸多孔濾水膜。
[2] Tm2— Tcが 30°C以下のフッ化ビ -リデン系榭脂からなる請求項 1に記載の多孔濾 水膜。
[3] 結晶化温度 Tcが 143°C以上のフッ化ビ -リデン系榭脂からなる請求項 1または 2に 記載の多孔濾水膜。
[4] 偏光顕微鏡観察により球晶が認められない請求項 1〜3のいずれかに記載の多孔濾 水膜。
[5] フッ化ビ -リデン系榭脂が、重量平均分子量が 15万〜 60万の主体フッ化ビ-リデン 系榭脂 70〜98重量%と、重量平均分子量が主体フッ化ビニリデン系榭脂の 1. 8倍 以上且つ 120万以下である結晶特性改質用フッ化ビ-リデン系榭脂 2〜30重量%と の混合物である請求項 1〜4のいずれかに記載の多孔濾水膜。
[6] 重量平均分子量が 20万〜 60万であり、且つ DSC測定による榭脂本来の融点 Tm2
(°C)と結晶化温度 Tc (°C)との差 Tm2— Tcが 32°C以下であるフッ化ビ -リデン系榭 脂 100重量部に対し、可塑剤を 70〜250重量部およびフッ化ビ -リデン系榭脂の良 溶媒 5〜80重量部を添加し、得られた組成物を中空糸膜状冷却媒体中溶融押出し 、その外側面カゝら冷却して固化成膜した後、可塑剤を抽出し、更に延伸することを特 徴とするフッ化ビニリデン系榭脂中空糸多孔膜の製造方法。
[7] フッ化ビニリデン系榭脂 100重量部に対し、良溶媒 5〜40重量%を含む該良溶媒と 可塑剤とを合計量で 100〜250重量部使用して前記組成物を形成する請求項 6〖こ 記載の製造方法。
[8] 冷却媒体温度が 5〜120°Cである請求項 6または 7に記載の製造方法。
[9] 延伸後の中空糸多孔膜を溶離液により処理する工程を含む請求項 6〜8のいずれか に記載の製造方法。
[10] 溶離液力 ¾H12以上のアルカリ液である請求項 9に記載の製造方法。
[11] 溶離液が pH4以下の酸液である請求項 9に記載の製造方法。
[12] 溶離液が可塑剤の抽出液である請求項 9に記載の製造方法。
PCT/JP2005/006863 2003-03-13 2005-04-07 フッ化ビニリデン系樹脂中空糸多孔濾水膜およびその製造方法 WO2005099879A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002562165A CA2562165A1 (en) 2004-04-14 2005-04-07 Porous water filtration membrane of vinylidene fluoride resin hollow fiber and process for production thereof
EP05728382A EP1769840A4 (en) 2004-04-14 2005-04-07 VINYLIDENE FLUORIDE RESIN FIBER POROUS WATER FILTRATION MEMBRANE AND MANUFACTURING METHOD THEREOF
JP2006512309A JP4987471B2 (ja) 2004-04-14 2005-04-07 フッ化ビニリデン系樹脂中空糸多孔濾水膜およびその製造方法
AU2005233004A AU2005233004C1 (en) 2003-03-13 2005-04-07 Porous water filtration membrane of vinylidene fluoride resin hollow fiber and process for production thereof
US11/578,425 US7780014B2 (en) 2004-04-14 2005-04-07 Porous water filtration membrane of vinylidene fluoride resin hollow fiber and process for production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-119506 2004-04-14
JP2004119506 2004-04-14

Publications (1)

Publication Number Publication Date
WO2005099879A1 true WO2005099879A1 (ja) 2005-10-27

Family

ID=35149808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006863 WO2005099879A1 (ja) 2003-03-13 2005-04-07 フッ化ビニリデン系樹脂中空糸多孔濾水膜およびその製造方法

Country Status (8)

Country Link
US (1) US7780014B2 (ja)
EP (1) EP1769840A4 (ja)
JP (1) JP4987471B2 (ja)
KR (1) KR20060134157A (ja)
CN (1) CN100509124C (ja)
AU (1) AU2005233004C1 (ja)
CA (1) CA2562165A1 (ja)
WO (1) WO2005099879A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007123004A1 (ja) * 2006-04-18 2007-11-01 Kureha Corporation フッ化ビニリデン系樹脂中空糸多孔膜およびその製造方法
WO2008117740A1 (ja) * 2007-03-23 2008-10-02 Kureha Corporation フッ化ビニリデン系樹脂中空糸多孔膜およびその製造方法
JP2011074346A (ja) * 2009-09-04 2011-04-14 Kureha Corp フッ化ビニリデン系樹脂多孔膜の製造方法
JP2014226603A (ja) * 2013-05-21 2014-12-08 Jnc株式会社 高分子ナノ微多孔膜の製造方法
US9096957B2 (en) 2009-07-14 2015-08-04 Kureha Corporation Vinylidene fluoride resin porous membrane, manufacturing method therefor, and method for manufacturing filtrate water
US9095824B2 (en) 2009-02-05 2015-08-04 Kureha Corporation Vinylidene fluoride resin porous film and manufacturing method therefor
JP2017523037A (ja) * 2014-07-22 2017-08-17 アーケマ・インコーポレイテッド フッ化ビニリデンポリマーをベースとする高靱性中空繊維膜

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2004220187B2 (en) * 2003-03-13 2009-09-24 Kureha Corporation Porous membrane of vinylidene fluoride resin and process for producing the same
CN101543733B (zh) * 2009-03-31 2012-08-08 枫科(北京)膜技术有限公司 聚偏氟乙烯多芯超滤膜管的制造方法
KR20160081612A (ko) 2014-12-31 2016-07-08 도레이케미칼 주식회사 다공성 pvdf 중공사막 및 이의 제조방법
KR101902631B1 (ko) * 2016-09-27 2018-09-28 롯데케미칼 주식회사 중공사막 및 이의 제조방법
CN106621861A (zh) * 2016-11-22 2017-05-10 广东工业大学 一种聚偏氟乙烯微孔膜的制备方法
WO2019045069A1 (ja) * 2017-09-01 2019-03-07 旭化成株式会社 多孔性中空糸膜、多孔性中空糸膜の製造方法、およびろ過方法
KR102015709B1 (ko) * 2017-11-24 2019-08-28 롯데케미칼 주식회사 중공사막 및 이의 제조방법
CN111690092B (zh) * 2020-06-03 2022-04-19 乳源东阳光氟树脂有限公司 一种聚偏氟乙烯表面改性的核壳结构锂电池粘结剂及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893734A (ja) * 1981-11-30 1983-06-03 Asahi Chem Ind Co Ltd 親水性ポリフツ化ビニリデン樹脂多孔膜の製造方法
JP2000309672A (ja) * 1999-04-26 2000-11-07 Kureha Chem Ind Co Ltd ポリふっ化ビニリデン系樹脂、それからなる多孔膜およびその多孔膜を用いた電池
JP2001179062A (ja) * 1999-12-27 2001-07-03 Asahi Kasei Corp 微多孔膜
JP2002066272A (ja) * 2000-08-28 2002-03-05 Nok Corp 中空糸膜の製造方法
WO2003031038A1 (fr) * 2001-10-04 2003-04-17 Toray Industries, Inc. Film de fibres creuses et son procede de production
JP2003320228A (ja) * 2002-05-07 2003-11-11 Toray Ind Inc 微多孔膜の製造方法および微多孔膜
WO2004081109A1 (ja) * 2003-03-13 2004-09-23 Kureha Chemical Industry Company Limited フッ化ビニリデン系樹脂多孔膜およびその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3825364A (en) * 1972-06-09 1974-07-23 Gen Electric Porous abradable turbine shroud
US3900629A (en) * 1973-09-14 1975-08-19 Bendix Corp Porous laminate and method of manufacture
GB2053367B (en) * 1979-07-12 1983-01-26 Rolls Royce Cooled shroud for a gas turbine engine
US5698101A (en) * 1990-07-09 1997-12-16 Memtec Limited Hollow fiber membranes
US5080557A (en) * 1991-01-14 1992-01-14 General Motors Corporation Turbine blade shroud assembly
US5514461A (en) * 1993-10-05 1996-05-07 Kureha Chemical Industry Co., Ltd. Vinylidene fluoride porous membrane and method of preparing the same
JP3466734B2 (ja) * 1993-10-05 2003-11-17 呉羽化学工業株式会社 フッ化ビニリデン系樹脂多孔質膜とその製造方法
US6074718A (en) * 1996-02-06 2000-06-13 Koch Membrane Systems, Inc. Self supporting hollow fiber membrane and method of construction
AU736329B2 (en) * 1998-06-22 2001-07-26 Asahi Kasei Kabushiki Kaisha Porous polyvinylidene fluoride resin membrane and process for preparing the same
US6235370B1 (en) * 1999-03-03 2001-05-22 Siemens Westinghouse Power Corporation High temperature erosion resistant, abradable thermal barrier composite coating
JP4390944B2 (ja) * 2000-01-18 2009-12-24 株式会社クレハ フッ化ビニリデン系樹脂モノフィラメント及びその製造方法
DE10024302A1 (de) * 2000-05-17 2001-11-22 Alstom Power Nv Verfahren zur Herstellung eines thermisch belasteten Gussteils
JP3766050B2 (ja) 2002-08-27 2006-04-12 株式会社関門海 浄化用放線菌
CA2540471A1 (en) * 2003-10-03 2005-04-14 Kureha Corporation Vinylidene fluoride based resin porous hollow yarn and method for production thereof
EP1787711A4 (en) * 2004-06-15 2008-04-23 Kureha Corp POROUS WATER FILTRATION WOOD FIBER MEMBRANE OF VINYLIDENE FLUORIDE RESIN AND METHOD OF PRODUCTION THEREOF

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893734A (ja) * 1981-11-30 1983-06-03 Asahi Chem Ind Co Ltd 親水性ポリフツ化ビニリデン樹脂多孔膜の製造方法
JP2000309672A (ja) * 1999-04-26 2000-11-07 Kureha Chem Ind Co Ltd ポリふっ化ビニリデン系樹脂、それからなる多孔膜およびその多孔膜を用いた電池
JP2001179062A (ja) * 1999-12-27 2001-07-03 Asahi Kasei Corp 微多孔膜
JP2002066272A (ja) * 2000-08-28 2002-03-05 Nok Corp 中空糸膜の製造方法
WO2003031038A1 (fr) * 2001-10-04 2003-04-17 Toray Industries, Inc. Film de fibres creuses et son procede de production
JP2003320228A (ja) * 2002-05-07 2003-11-11 Toray Ind Inc 微多孔膜の製造方法および微多孔膜
WO2004081109A1 (ja) * 2003-03-13 2004-09-23 Kureha Chemical Industry Company Limited フッ化ビニリデン系樹脂多孔膜およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1769840A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007123004A1 (ja) * 2006-04-18 2007-11-01 Kureha Corporation フッ化ビニリデン系樹脂中空糸多孔膜およびその製造方法
JP2007283232A (ja) * 2006-04-18 2007-11-01 Kureha Corp フッ化ビニリデン系樹脂中空糸多孔膜およびその製造方法
WO2008117740A1 (ja) * 2007-03-23 2008-10-02 Kureha Corporation フッ化ビニリデン系樹脂中空糸多孔膜およびその製造方法
US9095824B2 (en) 2009-02-05 2015-08-04 Kureha Corporation Vinylidene fluoride resin porous film and manufacturing method therefor
US9096957B2 (en) 2009-07-14 2015-08-04 Kureha Corporation Vinylidene fluoride resin porous membrane, manufacturing method therefor, and method for manufacturing filtrate water
JP2011074346A (ja) * 2009-09-04 2011-04-14 Kureha Corp フッ化ビニリデン系樹脂多孔膜の製造方法
JP2014226603A (ja) * 2013-05-21 2014-12-08 Jnc株式会社 高分子ナノ微多孔膜の製造方法
JP2017523037A (ja) * 2014-07-22 2017-08-17 アーケマ・インコーポレイテッド フッ化ビニリデンポリマーをベースとする高靱性中空繊維膜

Also Published As

Publication number Publication date
CN1942236A (zh) 2007-04-04
AU2005233004B2 (en) 2011-03-10
KR20060134157A (ko) 2006-12-27
JPWO2005099879A1 (ja) 2007-08-16
EP1769840A4 (en) 2008-12-31
CN100509124C (zh) 2009-07-08
CA2562165A1 (en) 2005-10-27
US20070241050A1 (en) 2007-10-18
EP1769840A1 (en) 2007-04-04
AU2005233004C1 (en) 2011-08-04
US7780014B2 (en) 2010-08-24
JP4987471B2 (ja) 2012-07-25
AU2005233004A1 (en) 2005-10-27

Similar Documents

Publication Publication Date Title
JP4987471B2 (ja) フッ化ビニリデン系樹脂中空糸多孔濾水膜およびその製造方法
JP4885539B2 (ja) フッ化ビニリデン系樹脂多孔膜およびその製造方法
JP5339677B2 (ja) フッ化ビニリデン系樹脂中空糸多孔濾水膜およびその製造方法
JP5068168B2 (ja) フッ化ビニリデン系樹脂中空糸多孔膜
JP5036033B2 (ja) 水処理用多孔質膜及びその製造方法
JPWO2008117740A1 (ja) フッ化ビニリデン系樹脂中空糸多孔膜およびその製造方法
JP2009226338A (ja) フッ化ビニリデン系樹脂中空糸多孔膜およびその製造方法
WO2010082437A1 (ja) フッ化ビニリデン系樹脂中空糸多孔膜およびその製造方法
JPWO2007032331A1 (ja) フッ化ビニリデン系樹脂中空糸多孔膜およびその製造方法
WO2006087963A1 (ja) フッ化ビニリデン系樹脂中空糸多孔膜、それを用いる水の濾過方法およびその製造方法
JP2007313491A (ja) 低汚染性フッ化ビニリデン系樹脂多孔水処理膜およびその製造方法
JP4781691B2 (ja) 多孔質膜およびその製造方法
WO2007123004A1 (ja) フッ化ビニリデン系樹脂中空糸多孔膜およびその製造方法
JP4832739B2 (ja) フッ化ビニリデン系樹脂多孔膜の製造方法
KR20070031330A (ko) 불화비닐리덴계 수지 중공사 다공 수여과막 및 그의 제조방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512309

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2562165

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11578425

Country of ref document: US

Ref document number: 1020067021352

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580011435.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005233004

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2005233004

Country of ref document: AU

Date of ref document: 20050407

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005233004

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005728382

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067021352

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005728382

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11578425

Country of ref document: US