WO2005099309A1 - 高周波加熱装置 - Google Patents

高周波加熱装置 Download PDF

Info

Publication number
WO2005099309A1
WO2005099309A1 PCT/JP2005/006606 JP2005006606W WO2005099309A1 WO 2005099309 A1 WO2005099309 A1 WO 2005099309A1 JP 2005006606 W JP2005006606 W JP 2005006606W WO 2005099309 A1 WO2005099309 A1 WO 2005099309A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
circuit
dead time
heating device
power supply
Prior art date
Application number
PCT/JP2005/006606
Other languages
English (en)
French (fr)
Inventor
Haruo Suenaga
Hideaki Moriya
Shinichi Sakai
Hisashi Morikawa
Toyotsugu Matsukura
Nobuo Shirokawa
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/599,431 priority Critical patent/US8217323B2/en
Priority to EP05728854A priority patent/EP1734791B1/en
Publication of WO2005099309A1 publication Critical patent/WO2005099309A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/681Circuits comprising an inverter, a boost transformer and a magnetron
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/681Circuits comprising an inverter, a boost transformer and a magnetron
    • H05B6/682Circuits comprising an inverter, a boost transformer and a magnetron wherein the switching control is based on measurements of electrical values of the circuit
    • H05B6/685Circuits comprising an inverter, a boost transformer and a magnetron wherein the switching control is based on measurements of electrical values of the circuit the measurements being made at the low voltage side of the circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present invention relates to high-frequency heating using a magnetron such as a microwave oven, and particularly to an inverter circuit thereof.
  • a conventional power supply mounted on a high-frequency heating device is heavy and large! Therefore, a small and light-weight power supply has been desired. For this reason, small-sized, light-weight, and low-cost switching by power switching have been actively promoted in various fields.
  • a high-frequency heating device that cooks food using microwaves generated by a magnetron
  • a small and lightweight power supply for driving the magnetron was required, and this was realized by an inverter circuit that was switched.
  • the high-frequency inverter circuit to which the present invention is directed is of a resonant circuit type using a switching element in which a bridge arm is formed by two stones (for example, see Patent Document 1).
  • Patent Document 1 JP-A-2000-58252
  • Fig. 1 is a diagram showing a current versus operating frequency characteristic when a constant voltage is applied to the inverter resonance circuit according to the present invention.
  • Frequency fO force The resonance frequency of the LC resonance circuit of the S inverter circuit, and the current frequency characteristic curve II in the frequency range fl to f3 above this frequency fO is used.
  • the current II is maximum, and the current II decreases as the frequency range increases to the fl force f3.
  • the lower the frequency the closer to the resonance frequency, the current II increases, and therefore the current flowing to the secondary side of the leakage transformer increases.
  • the output is changed by changing the frequency.
  • the input power is In the case of AC such as commercial power, the switching frequency is changed.
  • the highest and near 90 degrees and 270 degrees are the highest, and the force that becomes the frequency.
  • the frequency becomes even lower. This frequency changes due to changes in the commercial power supply voltage, magnetron temperature, etc., because the input power or input current control, which is natural, is being performed.
  • the power supply phase around 0 ° and 180 ° is set near fl, near the resonance frequency fO where the resonance current becomes large, in accordance with the characteristics of the magnetron, which does not emit high frequency unless a high voltage is applied.
  • the step-up ratio of the magnetron applied voltage to the commercial power supply voltage is increased, and the phase width of the commercial power supply that emits magnetron force radio waves is set to be wide.
  • FIG. 2 shows an example of a resonant high-frequency heating device driven by a two-bridge switching element described in Patent Document 1.
  • the high-frequency heating device includes a DC power supply 1, a leakage transformer 2, a first semiconductor switching element 6, a first capacitor 4, a second capacitor 5, a third capacitor (smoothing capacitor) 13, It comprises a second semiconductor switching element 7, a drive section 8, a full-wave voltage doubler rectifier circuit 10, and a magnetron 11.
  • DC power supply 1 applies full-wave rectification of commercial power supply and applies DC voltage VDC to a series circuit of second capacitor 5 and primary winding 3 of leakage transformer 2.
  • the first semiconductor switching element 6 and the second semiconductor switching 7 are connected in series, and the series circuit of the primary winding 3 of the leakage transformer 2 and the second capacitor 5 is connected to the second semiconductor switching element 7. Connect in parallel It has been continued.
  • the first capacitor 4 is connected to the second semiconductor switching 7 in parallel.
  • the high voltage output generated in the secondary winding 9 of the leakage transformer 2 is converted into a direct high voltage by the full-wave voltage doubler rectifier 10 and applied between the anode of the magnetron 11.
  • the tertiary winding 12 of the cage transformer 2 supplies current to the force sword of the magnetron 11.
  • the first semiconductor switching element 6 includes an IGBT and a flywheel diode connected in parallel to the IGBT.
  • the second semiconductor switching element 7 includes an IGBT and a diode.
  • the first and second semiconductor switching elements 6 and 7 are not limited to this type, and thyristors, GTO switching elements, and the like can be used.
  • the drive unit 8 has an oscillating unit for generating drive signals for the first semiconductor switching element 6 and the second semiconductor switching element 7 therein.
  • the oscillating unit has a predetermined frequency and a duty.
  • the first and second semiconductor switching elements 6 and 7 that generate a drive signal to the first semiconductor switching element 6 alternately, and the first and second semiconductor switching elements 6 and 7
  • the semiconductor switching elements 6 and 7 are turned off, that is, driven with a dead time. Immediately after one of the first or second semiconductor switching elements 6 and 7 is turned off, the voltage at both ends of the other semiconductor switching element is high. Loss and noise occur. By providing the dead time, the turn-on is delayed until the voltage between both ends decreases to about OV, so that the loss and the noise are prevented. Naturally, the same operation is performed when switching in the opposite manner.
  • FIG. 3 shows each mode in which the circuit of FIG. 2 operates.
  • FIG. 4 shows a voltage-current waveform diagram of a component such as a semiconductor switching element in the circuit.
  • the voltage across the first capacitor 4 reaches OV, and the diode constituting the second switching element 7 turns on.
  • the maximum value of the voltage applied to the first semiconductor switching element 6 and the second semiconductor switching element 7 can be set to the DC power supply voltage VDC.
  • Modes 2 and 5 are resonance periods in which the current from the primary winding 3 flows through the first capacitor 4 and the second capacitor 5. Since the capacitance value of the first capacitor 4 is set to be equal to or less than 1Z10 of the capacitance value of the second capacitor 5, the combined capacitance is almost close to the capacitance value of the first capacitor 4. Voltages in modes 3 and 5 applied to the first semiconductor switching element 6 and the second semiconductor switching element 7 change with a time constant determined by the combined capacitance and the impedance of the leakage transformer 3. Since this voltage change has a slope determined by the time constant described above, the switching of the first semiconductor switching element in the off state in mode 3 is performed. Loss is reduced.
  • the voltage becomes zero in mode 5 when the first semiconductor switching element is turned on in mode 1, the applied voltage of the first semiconductor switching element is zero, so that the switching loss at the time of on is reduced. Is done. This is called zero-voltage switching, and these are the characteristics of the resonant circuit method.
  • This method takes advantage of this characteristic and has the advantage that the voltage of the semiconductor switching element does not exceed the DC power supply voltage VDC.
  • the second capacitor 5 is set to a sufficiently large capacitance value so that the voltage thereof has a small ripple.
  • one of the semiconductor switching elements 6 and 7 has the power S turned off and the power has turned off.
  • both of the semiconductor switching elements 6 and 7 are turned on.
  • a dead time (dead time, DT for short) was always provided.
  • FIG. 4 shows the voltage and current waveforms of the first and second semiconductor switching elements 6 and 7 (FIG. 2) and the first and second capacitors 4 and 5 in the modes 1 to 6 described above.
  • (a) is a current waveform of the first semiconductor switching element 6 in each of the above modes 1 to 6 and is conductive from time t0 (thus, in (b), the emitter-collector voltage of the semiconductor switching element 6).
  • the semiconductor switching element 6 is turned off (the current becomes zero) at the end point tl of the mode 1.
  • (d) is the voltage waveform of the second semiconductor switching element 7, and the semiconductor switching element 7, which has been off from the time tO, remains off until the start time t2 of the mode 3 to which the on signal is applied. Therefore, in the period DTI up to the time point t2 at the time point t2, both the first semiconductor switching element 6 and the second semiconductor switching element 7 are off.
  • This period DT1 is the minimum value required for the dead time, and the maximum value is the period up to the time t3 at the time tl, and the dead time is allowed within this range.
  • the second semiconductor switching element 7 is turned off (current becomes zero) at time t4, and turned on as shown in (a).
  • DT2 is the minimum value required for the dead time until the start time t5 of mode 6 to which the signal is applied. The maximum value is the period from the time t4 to the time t6, and the dead time is allowed within this range. You.
  • this dead time DT is calculated by calculating the range in which the turn-on and turn-off of the semiconductor switching elements 6 and 7 do not overlap, and is defined as the period DTI and DT2. there were.
  • the slope of the trapezoid of vdc changes depending on the strength of resonance. If the resonance is strong (the frequency is low), the slope is steep and the voltage across the semiconductor switching element 7 is quickly reduced to zero, but if the resonance is weak (the frequency is high), the slope is loosened. take time. When driving in such a high frequency region, since the frequency is far from the resonance frequency, the time constant becomes longer, and in (d), the voltage across the other semiconductor switching element 7 (shown by a dotted line) The time it takes for the voltage to drop to 0 becomes longer, has not fallen during time tl t2, and a predetermined voltage (see Vt2 in dotted line F) is still applied after time t2.
  • the semiconductor switching element 7 when the ON signal is applied to the semiconductor switching element 7 at the time point t2, the semiconductor switching element 7 is turned on until the predetermined voltage Vt2 is applied between the emitter and the collector, so that heat loss occurs. Also, a steep spike current caused by the generation of large dvZdt flowed, and became a noise source.
  • an object of the present invention is to provide not only a high-frequency heating device of a type in which the dead time DT is fixed, but also a high-frequency heating device of a type in which the dead time DT is variously changed with respect to the frequency.
  • a high-frequency heating device that is intended to apply soft start and can easily achieve this by adding a circuit with extremely simple power. It is in.
  • an invention of a high-frequency heating device includes an AC power supply, a rectifier circuit for rectifying a voltage of the AC power supply, and a smoothing capacitor for smoothing an output voltage of the rectifier circuit.
  • the AC equivalent circuit one end of the resonance circuit is connected to a midpoint of the series circuit, and the other end is connected to one end of the DC power supply.
  • the driving means for driving each of the semiconductor switching elements, and the leakage transformer A rectifier connected to the secondary winding; and a high-frequency heating device for driving the magnetron, comprising a magnetron and a power supply connected to the rectifier.
  • the driving means has a function of limiting the lowest frequency of driving the semiconductor switching element, and the operation of the high-frequency heating device is started. It is characterized in that the setting of the lowest frequency is sometimes increased, and then the setting of the lowest frequency is gradually reduced.
  • the invention of a high-frequency heating device provides a DC power supply comprising an AC power supply, a rectifier circuit for rectifying the voltage of the AC power supply, and a smoothing capacitor for smoothing the output voltage of the rectifier circuit. It has two sets of series circuits that also provide the power of the semiconductor switching element, and a resonance circuit in which the primary winding of the leakage transformer and a capacitor are connected. Each of the two sets of series circuits is connected in parallel to the DC power supply.
  • a high-frequency heating device for driving a magnetron comprising: a rectifier connected to a secondary winding of a transformer; and a magnetron connected to the rectifier.
  • the driving means has a function of limiting the lowest frequency of driving the semiconductor switching element, and the low-frequency heating apparatus starts operating at the lowest frequency. Is set high, and then the lowest frequency setting is gradually lowered.
  • the invention of a high-frequency heating device is a DC power supply comprising an AC power supply, a rectifier circuit for rectifying the voltage of the AC power supply, and a smoothing capacitor for smoothing the output voltage of the rectifier circuit.
  • a series circuit that also has a semiconductor switching element, a resonance circuit in which a primary winding of a leakage transformer and a capacitor are connected, wherein the series circuit is connected in parallel to the DC power supply;
  • a driving means connected in parallel to one of the elements and driving each of the semiconductor switching elements; a rectifier connected to a secondary winding of the leakage transformer; and a magnetron connected to the rectifier.
  • a high-frequency heating device for driving a magnetron comprising a dead time creation circuit in which each semiconductor switching element is simultaneously turned off.
  • the driving unit has a function of limiting a lowest frequency of driving the semiconductor switching element, and the setting of the lowest frequency is set high at the start of operation of the high-frequency heating device. Thereafter, the setting of the minimum frequency is gradually lowered.
  • an error signal is created from a difference between an input current of the AC power supply and a reference current.
  • a lowest frequency limiting circuit is inserted between the frequency modulation signal generating circuit and the dead time generating circuit, Is applied to the dead time creation circuit based on the limited frequency and the output signal of the frequency modulation signal creation circuit, and when the operation of the high frequency heating apparatus starts, the set frequency of the lowest frequency limitation circuit is set earlier.
  • the limit frequency is set to be higher than the output of the frequency modulation signal generation circuit, and the limit frequency is gradually reduced with the elapse of time from the start of operation.
  • a signal having a high switching frequency among the output signals of the frequency modulation signal generation circuit is selected over time, and is gradually switched to the output signal of the frequency modulation signal generation circuit.
  • the invention according to claim 5 is the high-frequency heating device according to claim 4, wherein the minimum frequency limiting circuit includes a capacitor, and the capacitor is charged while the high-frequency heating device is stopped. At the same time as the operation of the high-frequency heating device, the voltage of the capacitor is supplied to the dead time creation circuit and the charge of the capacitor is discharged.
  • the invention according to claim 6 is the high-frequency heating device according to any one of claims 1 to 5, wherein the dead time creation circuit is constant or slightly increased regardless of a switching frequency.
  • the invention according to claim 7 is the high-frequency heating apparatus according to any one of claims 1 to 5, wherein the dead time creation circuit increases the dead time as the switching frequency increases. I do.
  • the invention according to claim 8 is the high-frequency heating device according to claim 7, wherein the dead time creation circuit makes the dead time constant or slightly increased below a predetermined switching frequency.
  • the invention according to claim 9 is the high-frequency heating device according to claim 7 or 8, wherein the dead time creation circuit sharply increases the dead time at a predetermined switching frequency or higher.
  • the invention according to claim 10 is the high-frequency heating device according to claim 8 or 9, wherein the dead time is a constant value or a slightly increased value at a predetermined switching frequency or less, or the dead time at a predetermined switching frequency or more. It is characterized by the fact that the time rapid increase value is variable.
  • the invention according to claim 11 is the high-frequency heating device according to any one of claims 8 to LO, wherein the value of the predetermined switching frequency is variable.
  • the invention according to claim 12 is the high-frequency heating apparatus according to any one of claims 1 to 5, wherein the dead time creation circuit increases the dead time stepwise as the switching frequency increases. It is characterized by the following.
  • the invention according to claim 13 is the high-frequency heating device according to any one of claims 1 to 12, wherein the dead time creation circuit is configured to perform the first time in proportion to an increase in switching frequency. It is characterized in that the dead time is created based on the positive and negative offset voltages that change with the slope and the predetermined switching frequency force changes with the second slope.
  • the invention according to claim 14 is the high-frequency heating device according to any one of claims 1 to 13, wherein the dead time creation circuit includes a VCC power supply, a duty control power supply, and a switching frequency.
  • a dead time is created based on the two upper and lower potentials.
  • input power or input current control is performed by changing at least one of a voltage of the duty control power supply and the switching frequency. It is characterized by having done.
  • FIG. 1 A constant voltage is applied to the inverter resonance circuit according to the present invention!
  • FIG. 7 is a diagram showing current versus operating frequency characteristics in the case of [].
  • FIG. 2 is an example of a resonance-type high-frequency heating device driven by a two-bridge switching element described in Patent Document 1.
  • FIG. 3 shows each mode in which the circuit of FIG. 2 operates.
  • FIG. 4 shows a voltage-current waveform diagram of a semiconductor switching element and the like in a circuit.
  • FIG. 5 shows a high-frequency heating device driven by a two-stone bridge according to the present invention.
  • FIG. 6 shows a first embodiment of a lowest frequency limiting circuit that performs soft start.
  • FIG. 7 shows a second embodiment of the lowest frequency limiting circuit that performs soft start.
  • FIG. 8 is a diagram for explaining the principle of creating a dead time.
  • FIG. 8 (a) is a diagram for explaining the relationship between each output of the oscillation circuit and the dead time creating circuit and the output of the rectangular wave forming circuit
  • FIG. FIG. 4 is a diagram for explaining the principle that the dead time DT does not change even when the frequency changes in a low V range and the frequency.
  • FIG. 9 is a specific example of a dead time creation circuit.
  • FIG. 10 shows current-frequency characteristics of a dead time creation circuit.
  • Dead time In the frequency characteristics diagram, (a) is an example in which the dead time DT is constant or slightly increased below the frequency fl, and the dead time DT is rapidly increased above the predetermined switching frequency fl, and (b) is a modified example. (A) An example of changing the constant value and the sudden increase value of the dead time up and down, (M) shows an example of changing the gradient at the frequency fl, and (C) shows an example of changing the inflection point frequency to the left and right ing.
  • FIG. 12 is a second embodiment in which the dead time DT is made variable.
  • FIG. 13 shows an example of the oscillation circuit of FIG.
  • FIG. 14 is another three examples of the resonance type high frequency heating device driven by the switching element of the two-stone bridge.
  • FIG. 15 is a diagram showing frequency versus phase characteristics of the inverter circuit according to the present invention.
  • FIG. 16 is a diagram showing output voltage versus phase characteristics of an inverter circuit.
  • FIG. 5 shows a high-frequency heating device driven by a two-stone bridge according to the present invention.
  • this high-frequency heating device includes a DC power supply 1, a leakage transformer 2, a first semiconductor switching element 6, a first capacitor 4, a second capacitor 5, a third capacitor (smoothing capacitor) 13,
  • the main circuit is composed of the semiconductor switching element 7, the driving section 8, the full-wave voltage doubler rectifier circuit 10, and the magnetron 11.
  • the configuration of the main circuit is the same as that of FIG.
  • the control circuit that controls the semiconductor switching elements 6 and 7 includes an error signal generation circuit 21 that determines the difference between the input current Iin and the reference current Ref, and a frequency modulation based on the error signal generation circuit 21 and the AC full-wave signal.
  • An oscillation circuit 23 that creates a square wave carrier, a dead time creation circuit 24 that changes the dead time according to the switching frequency, and a triangular wave output and a dead time creation circuit 24 of the oscillation circuit 23 VQ7C and VQ8C output It comprises a rectangular wave forming circuit 25 for forming each rectangular wave, and a switching element driving circuit 26 for generating a pulse for turning on and off the switching element by the output of the rectangular wave forming circuit 25. Each output is given to the gate of switching element (IGBT) 6,7.
  • IGBT gate of switching element
  • FIG. 6 shows a first embodiment of the lowest frequency limiting circuit that performs soft start.
  • reference numeral 221 denotes a lowest frequency limiting circuit according to the first embodiment.
  • This lowest frequency limiting circuit 221 includes a transistor 221a, resistors 221b, 221d, 221e, a capacitor 221c, a switch 221f, and an amplifier 221g.
  • the transistor 221a has an emitter connected to the resistor 221b, a collector connected to the Vcc power supply, and a base connected to the capacitor 221c.
  • the resistor 221b has one end connected to the output side of the frequency modulation signal generating circuit 22 and the other end connected to the transistor 2 as described above.
  • One end of the capacitor 221c is connected to the base of the transistor 221a and the other end is connected to the ground as described above.
  • the resistor 221e has one end connected to the Vcc power supply and the other end connected to the ground via the switch 221f and the resistor 221d.
  • the switch 221f is a normally closed contact that is turned on when the device stops, and the resistor 221d side terminal is connected to the + side of the capacitor 221c.
  • the switch 221f Since the switch 221f is ON while the high-frequency heating device is stopped, the capacitor 221c is charged to the potential determined by the voltage dividing ratio between the resistors 221e and 221d of the voltage Vcc. Therefore, the transistor 221a in which the base potential of the transistor 221a is high is in the ON state, and a high voltage VII is output from the output terminal of the lowest frequency limiting circuit 221 (Vll in FIG. B).
  • the switch 221f opens (OFF) and the charging circuit of the capacitor 221 is cut off, so that discharging starts via the resistor 221d. Accordingly, the base potential of the transistor 221a gradually decreases, and the output voltage V12 (V12 in FIG.
  • the output signal (full-wave rectification) of the frequency modulation signal generating circuit 22 enters the lowest frequency limiting circuit 221 and is connected to the output signal of the transistor 221a by a wired OR circuit.
  • the higher of the output potential of the frequency modulation signal generating circuit 22 is output from the lowest frequency limiting circuit 221 and shifts to the steady high-frequency voltage (V13 in FIG. B).
  • the output voltage from the lowest frequency limiting circuit 221 from the time when the operation of the high-frequency heating device is stopped to the time when the operation is started, the transient state, and the steady state is as shown in FIG. 6B.
  • FIG. 7 shows a second embodiment of the lowest frequency limiting circuit that performs soft start.
  • reference numeral 222 denotes a minimum frequency limiting circuit according to the second embodiment.
  • the minimum frequency limiting circuit 222 includes a transistor 222a, resistors 222b, 222d, 222e, a capacitor 222c, a switch 222f, and an amplifier 222g.
  • the transistor 222a is connected to the emitter S resistor 222b, the collector is connected to the Vcc power supply, the base is connected to the capacitor 222c, and one end of the resistor 222b is connected to the output side of the frequency modulation signal generation circuit 22.
  • the other end is connected to the emitter of the transistor 222a as described above, and one end of the capacitor 222c is connected to the base of the transistor 222a as described above and the other end is grounded.
  • the resistor 222e has one end connected to the Vcc power supply and the other end connected to the ground via the resistor 222d.
  • the switch 222f is a normally closed contact that is turned on when the device stops, and one end is connected to the + side of the capacitor 222c and the other end is connected to a connection point between the resistor 222e and the resistor 222d.
  • a constant current source 222h is connected to both ends of the capacitor 222c.
  • the capacitor 222c Since the switch 222f is in the ON state while the high-frequency heating device is stopped, the capacitor 222c has a potential determined by the voltage dividing ratio of the voltage Vcc between the resistors 222e and 222d (the force slightly affected by the constant current source 222h). It is determined by the combined impedance of resistors 222e and 222d and the value of the constant current source.) Charged to voltage Vcc. Therefore, the transistor 222a in which the base potential of the transistor 222a is high is in the ON state, and the output terminal of the lowest frequency limiting circuit 222 also outputs the high voltage VII (Vll in FIG. B).
  • the switch 222f opens (OFF) and the charging circuit of the capacitor 222 is cut off, so that discharging starts via the constant current source 222h. Accordingly, the base potential of the transistor 222a gradually decreases, and the output potential V12 (V12 in FIG. B) of the transistor 222a decreases linearly by the action of the constant current source 222h.
  • the output signal (full-wave rectification) of the frequency modulation signal generation circuit 22 is input to the lowest frequency limit circuit 222.
  • the output signal of the transistor 222a is connected to a wired OR circuit, the higher of the output potential of the transistor 222a and the output potential of the frequency modulation signal generating circuit 22 is output from the lowest frequency limiting circuit 222, Voltage (V13 in Fig. B). Accordingly, the output voltage from the lowest frequency limiting circuit 222 from the time when the high-frequency heating device stops operating to the time when the operation starts, the transient state, and the steady state are as shown in FIG. 6B.
  • the collector voltages of the transistors Q8 and Q7 are sent from the dead time creation circuit 24 to the rectangular wave formation circuit 25 (FIG. 5).
  • the triangular wave output of the oscillation circuit 23 is also sent to the rectangular wave forming circuit 25.
  • the square wave forming circuit 25 has two comparators 251 and 252.
  • the inverting input terminal (1) of the comparator 251 has the collector voltage of the transistor Q8 VQ8C force
  • the non-inverting input terminal (+) of the comparator 252 has the transistor Q7
  • the collector voltage VQ7C is supplied, and the triangular wave output of the oscillation circuit 23 is supplied to the non-inverting input terminal (+) of the comparator 251 and the inverting input terminal (-) of the comparator 252.
  • Dead time DT can be divided into the following three categories.
  • the circuit for performing the soft start according to the present invention can be applied to any of the above (1) to (3).
  • FIG. 8 shows that when the switching frequency exceeds the predetermined switching frequency of (2), the switching frequency increases.
  • (A) illustrates the relationship between the outputs of the oscillation circuit 23 and the dead time generation circuit 24 and the output of the rectangular wave forming circuit 25, b) is a diagram illustrating the principle that the dead time DT does not change below a predetermined frequency.
  • the comparator 252 (see FIG. 5) turns on the semiconductor switching element because the potential VQ7C of the non-inverting input terminal (+) exceeds the potential of the triangular wave of the inverting input terminal (1). (Output 1). At the same time, the comparator 251 determines that the potential of the triangular wave at the non-inverting input terminal (+) is lower than the potential VQ8C at the inverting input terminal ().
  • the comparator 252 outputs 1 because the potential VQ7C of the non-inverting input terminal (+) becomes higher than the potential of the triangular wave of the inverting input terminal (-).
  • the comparator 252 outputs 0 because the potential VQ7C of the non-inverting input terminal (+) becomes lower than the potential of the triangular wave of the inverting input terminal (1).
  • the outputs of the comparators 251 and 252 are supplied to a switching element (IGBT) drive circuit 26, and the switching elements 6 and 7 are turned on and off at the same timing.
  • IGBT switching element
  • the dead time DT was fixed (fixed) irrespective of the frequency, but as an improvement, the dead time DT can be made variable according to the switching frequency.
  • the dead time DT is set to a predetermined invariable value (or slightly increased value), and when it is higher than the predetermined switching frequency fl, the dead time DT is increased.
  • the potential VQ7C is between VQ8C, VQ7C and the triangular wave, as described above using the triangular wave and the ⁇ 08 and 7 of the solid line in Fig. 8 ( & ).
  • the output becomes 0 at the time tl when the potential of the triangular wave becomes lower than the potential of the triangular wave, and the dead time DT is secured until the time t2 when the potential of the triangular wave becomes higher than the potential VQ8C and becomes the output 1.
  • the waveform becomes a triangular wave indicated by a dotted line, and its slope becomes gentle. Therefore, in this case, in order to obtain the same dead time DT, the potentials VQ7C1 passing through the intersections C1 and C2 with the perpendiculars are drawn from the points of time tl and t2 toward the triangular waves indicated by dotted lines, respectively. And each offset voltage is determined so that V Q8C1. Since the resistances R8 and R7 are constant, currents 18 and 17 that cause such an offset voltage are applied to the resistances R8 and R7.
  • FIG. 9 shows a specific example of the dead time creation circuit.
  • Q01, Q02, Q1 to Q8 are transistors, and R1 to R10 are resistors.
  • the currents flowing through transistors Ql, Q3, Q4, Q5, Q6, Q7, and Q8 are II, 13, 14, 15, 16, 17, and 18, respectively, and the emitter potentials of transistors Q5, Q6, and Q7 are VQ5E and VQ6E, respectively.
  • VQ7E, and the collector potentials of the transistors Q7 and Q8 are VQ7C and VQ8C, respectively.
  • Transistors Q1 and Q2 form a current mirror circuit.
  • current mirrors of transistors Q1 and QO4, transistors Q3 and Q4, and transistors Q05 and Q8 respectively Make up the circuit.
  • the output of transistor Q04 is provided to oscillation circuit 23 (FIG. 13).
  • the emitters of the transistors Q1 and Q3 are connected to Vcc, the collectors are connected to the collectors of the transistors Q01 and Q03, respectively, and the emitters of the transistors Q01 and Q03 are connected to the terminals MOD and DTADD, respectively.
  • MOD and terminal DTADD are each grounded via a voltage dividing resistor.
  • the bases of transistors Q01 and Q03 are connected to the emitter side of transistor Q02, and the collector side of transistor Q02 is grounded.
  • the control voltage of the oscillation frequency which is the output of the frequency modulation signal generation circuit 22 (FIG. 5), is applied to the base of the transistor Q02.
  • a series connection circuit of a resistor R10, a resistor R8, a resistor R7, and a resistor R9 is provided between Vcc (here, 12V) and ground from the Vcc side, and a transistor Q8 is connected between the resistor R10 and the resistor R8.
  • a resistor R10 is provided on the emitter side and a resistor R8 is provided on the collector side.
  • a transistor Q7 is provided between the resistor R7 and the resistor R9 with the emitter side as the resistor R9 and the collector side as the resistor R7.
  • LZ2Vcc (6V in this case) is applied between resistor R8 and resistor R7.
  • the voltage drop across the upper resistor R8 is 18 XR8 and the voltage drop across the lower resistor R7 is 17 X R7.
  • Current 18 and current 17 vary with frequency!
  • the voltage drop of the resistors R7 and R8 changes according to the frequency, and as a result, the offset voltages VQ8C and VQ7C change around 6V.
  • the operation of the dead time creation circuit that is, the dead time DT is made constant (or slightly increased) when the switching frequency is lower than a predetermined switching frequency, and the dead time DT is increased when the switching frequency is higher than the predetermined switching frequency.
  • the currents 18 and 17 flowing through the transistors Q8 and Q7 are as follows, respectively.
  • the offset voltages VR8 and VR7 are as follows.
  • VQ8C and VQ7C are 6V with the above offset voltage adjusted.
  • the currents 18 and 17 in the low frequency range are proportional to the charge / discharge current 11 of the triangular wave. It can be used with multiples. This can be realized by a mirror circuit as shown in FIG. With currents 16 and 18 in a certain relationship with current 15, currents 16 and 18 with the same, current 17 with current 15 in a certain relationship with current 17 and current 18 with the same I have.
  • FIG. 10 shows current frequency characteristics of the variable dead time creation circuit.
  • II, 13 and 15 are currents flowing through the transistors Q1, Q3 and Q5 in FIG. 9, respectively.
  • 15 is II +13.
  • both VQ8C and VQ7C have an offset voltage proportional to the charge / discharge current II of the capacitor of the oscillation circuit.
  • the dead time is This means that if the charge / discharge current II increases slightly, the dead time will increase slightly.
  • the dead time DT changes in a certain range (that is, a range where the oscillation frequency is high and the range is high) where 13 flows, for the following reason.
  • the current 13 is 0 in the range where the oscillation frequency is low, but the current 13 is caused to flow as follows in the range where the oscillation frequency is high. That is, when the emitter frequency of the transistor Q02 of the oscillation frequency control voltage is lower than the potential of the contact DTADD !, the transistor Q03 connected to the terminal DTADD does not turn on (therefore, the current 13 does not flow). If the emitter potential of the transistor Q02 of the 1S oscillation frequency control voltage becomes higher than the potential of the terminal DTADD, the transistor Q03 connected to the terminal DTADD is turned on, so that the current 13 flows.
  • the collector potentials VQ8C and VQ7C increase, the collector potential VQ8C in FIG. 8 rises from the position shown, and VQ7C drops from the position shown in FIG.
  • the intersection of the triangular wave, which is the start point of the dead time DT, and VQ7C is earlier, and the intersection of the triangular wave, which is the end point of the dead time DT, and VQ8C is later, so that the dead time DT is larger than the width shown.
  • Fig. 11 shows various examples of the above-mentioned (2) "dead time DT that increases continuously with an increase in the switching frequency when exceeding a predetermined switching frequency”
  • Fig. 12 shows the above-mentioned (3) of the above-mentioned (3).
  • An example of “dead time DT that increases stepwise as the switching frequency increases when the switching frequency exceeds a predetermined switching frequency” is shown.
  • FIG. 11A the dead time DT is fixed (or slightly increased) at a predetermined switching frequency fl or lower, and the dead time DT is rapidly increased at a predetermined switching frequency fl or higher.
  • FIG. 11 (b) is a modification of FIG. 11 (a).
  • FIG. 11B (a) shows the constant or slightly increased value L1 of the dead time below the predetermined switching frequency fl of FIG. 11 (a) as Lll, L12, L13, and a predetermined value.
  • the sudden increase L2 of the dead time DT above the switching frequency fl is variable like L21, L22 and L23.
  • the (mouth) in FIG. 11 (b) changes the dead time in a predetermined switching frequency fl in FIG. 11 (a) to be variable like L24, L25, L26! /.
  • This gradient is determined by the combined resistance of the resistors R31 and R32 above and below the contact DTADD. If the combined resistance value is large, the current flowing from Vcc does not flow much, so the slope decreases (L26). Conversely, if the combined resistance value is small, the current flowing from Vcc increases and the slope increases (L24). That is, when the current 13 flows more, the currents 17 and 18 also increase, so that the voltage drop of the resistors R7 and R8 increases and the offset voltage from 6V increases. Therefore, the collector voltages of the transistors Q8 and Q7 increase according to the equation (2). Note that, when the oscillation frequency increases, the dead time DT acts in a direction to decrease, but an increase in the offset voltage acts in a direction in which the dead time DT becomes longer.
  • FIG. 11 (C) of FIG. 11 (b) shows that the predetermined switching frequency fl serving as an inflection point in FIG. 11 (a) is variable as fO and f2.
  • This inflection point can be changed by the resistance ratio of the resistors R31 and R32 above and below the terminal DTADD. That is, when the oscillation frequency control voltage applied to the base of the transistor q02 exceeds the voltage determined by the resistance ratio, the current 13 starts to flow, so that the resistance ratio of the resistors R31 and R32 becomes an inflection point. If the resistance R31> R32, the voltage determined by the resistance ratio is low, so the current 13 starts to flow quickly. When the current 13 flows, the currents 17 and 18 also flow, causing a voltage drop in the resistors R7 and R8, increasing the offset voltage by as much as 6V, and thus increasing the collector voltages of the transistors Q8 and Q7 according to the above equation (2).
  • the dead time DT starts increasing rapidly (fO). Conversely, if the resistors R31 and R32, the voltage determined by the resistance ratio is high, so it takes time for the current 13 to start flowing, and the dead time DT starts to increase slowly (f2).
  • FIG. 12 shows a second embodiment in which the dead time DT is variable.
  • the dead time DT is constant or slightly increased like L1 below the switching frequency fl, and rapidly increased like L2 above the switching frequency fl at the inflection point at the predetermined switching frequency fl.
  • the dead time DT is increased stepwise to L3, L4, L5, and L6 as the switching frequency increases to f0, fl, f2, and f3, respectively.
  • FIG. 13 shows an example of the oscillation circuit 23 of FIG.
  • the oscillation circuit 23 has two comparators 231 and 232, and the voltage VI of the voltage divider 235 is connected to the inverting input terminal a (-) of the comparator 231 and the voltage dividing resistor 235 is connected to the non-inverting input terminal b (+) of the comparator 232.
  • the voltage of capacitor 234 is applied to the non-inverting input terminal b (+) of comparator 231 and the inverting input terminal a (-) of comparator 232. It is.
  • the outputs of the operational amplifiers 231 and 232 are input to the S and R terminals of the SR flip-flop 233.
  • the output of the non-Q terminal of the SR flip-flop 233 forms a charge / discharge circuit for the capacitor 234.
  • the potential of the non-inverting input terminal b (+) of the comparator 232 drops, and when the potential of the non-inverting input terminal a (-) drops below the potential V2, the output 1 is transferred to the R terminal and the non-Q terminal The output forms a charging circuit for the capacitor 234.
  • the charge / discharge potential of the capacitor 234 is output, and the triangular wave oscillation circuit 23 is obtained. Also, the gradient of the triangular wave is determined by the magnitude of the charging current Ir.
  • the inverter circuit of the high-frequency heating device driven by the two-stone bridge according to the present invention is not limited to the high-frequency heating device shown in FIG. It can be applied to any inverter circuit of the resonant circuit type using switching elements.
  • Figure 14 shows three types of these inverter circuits.
  • DC power supply 1 performs full-wave rectification of commercial power supply and converts DC voltage VDC into a series connection circuit of first capacitor 41 and second capacitor 42, and first semiconductor switching element 6 And a second semiconductor switching element 7 in series.
  • the primary winding 3 and the third winding of the leakage transformer 2 are connected between the connection point of the first capacitor 41 and the second capacitor 42 and the connection point of the first semiconductor switching element 6 and the second semiconductor switching element 7.
  • the series connection circuit of the capacitor 5 is connected.
  • First semiconductor switching element 6 Each base of the second semiconductor switching element 7 is supplied with a control signal from the drive unit 8. In the driving section 8, a dead time creation circuit 24 is incorporated.
  • the secondary side of the leakage transformer 2 and the magnetron are not shown.
  • the lowest frequency limiting circuit for performing the soft start for realizing the object of the present invention can be applied to this circuit just like FIG. That is, in FIG. 5, an error signal generation circuit 21 for obtaining the difference between the input current Iin, the reference current Ref, and the force, a frequency modulation signal for generating a frequency modulation signal from the error signal generation circuit 21 and the AC full-wave signal.
  • Generating circuit 22 a minimum frequency limiting circuit 221 for performing a soft start for realizing the object of the present invention, an oscillating circuit 23 for generating a triangular wave carrier, a dead time generating circuit 24, and a triangular wave output of the oscillating circuit 23.
  • Dead time creation circuit 24 A rectangular wave forming circuit 25 that forms each rectangular wave from each output of VQ7C and VQ8C, and a switching element drive circuit that generates a pulse that turns on and off the switching element by the output of rectangular wave forming circuit 25 26 may be provided.
  • the DC power supply 1 performs full-wave rectification on the commercial power supply and converts the DC voltage VDC into a series connection circuit of the primary winding 3 of the leakage transformer 2, the first capacitor 5, and the second capacitor 43.
  • a short circuit is established between a connection point between the first capacitor 5 and the second capacitor 43 and a connection point between the first semiconductor switching element 6 and the second semiconductor switching element 7.
  • a control signal from the drive unit 8 is supplied to each base of the first semiconductor switching element 6 and the second semiconductor switching element 7.
  • a dead time creation circuit 24 is incorporated in the drive unit 8. The secondary side of the leakage transformer 2 and the magnetron are not shown.
  • the lowest frequency limiting circuit for performing the soft start for realizing the object of the present invention can be applied to this circuit just like FIG. That is, in FIG. 5, an error signal generating circuit 21 for obtaining the difference between the input current Iin, the reference current Ref, and the force is erroneously determined.
  • FIG. 14 (c) is a circuit showing a full bridge circuit.
  • a DC power supply 1 performs full-wave rectification of a commercial power supply and converts a DC voltage VDC into a series connection circuit of a first semiconductor switching element 61 and a second semiconductor switching element 71 and a third semiconductor switching element. It is applied to the series connection circuit of the element 62 and the fourth semiconductor switching element 72, respectively.
  • a primary winding of the leakage transformer 2 is provided between a connection point between the first semiconductor switching element 61 and the second semiconductor switching element 71 and a connection point between the third semiconductor switching element 62 and the fourth semiconductor switching element 72.
  • the series connection circuit of the line 3 and the third capacitor 5 is connected.
  • the third capacitor 5 can be omitted.
  • Each of the bases of the first semiconductor switching element 61, the second semiconductor switching element 71, the third semiconductor switching element 62, and the fourth semiconductor switching element 72 is supplied with a drive unit 8 and a power control signal. .
  • a dead time creation circuit 24 is incorporated in the drive unit 8. The secondary side of the leakage transformer 2 and the magnetron are not shown.
  • the lowest frequency limiting circuit for performing the soft start for realizing the object of the present invention can be applied to this circuit just like FIG. That is, in FIG. 5, an error signal generation circuit 21 for obtaining the difference between the input current Iin, the reference current Ref, and the force, a frequency modulation signal for generating a frequency modulation signal from the error signal generation circuit 21 and the AC full-wave signal.
  • the creation circuit 22 and the minimum for performing a soft start to realize the object of the present invention Frequency limiting circuit 221, oscillating circuit 23 that creates a triangular wave carrier, dead time creating circuit 24, rectangle that forms each square wave from triangular wave output of oscillating circuit 23 and VQ7C and VQ8C output of dead time creating circuit 24 What is necessary is just to provide the wave formation circuit 25 and the switching element drive circuit 26 which generates a pulse for turning on and off the switching element by the output of the rectangular wave formation circuit 25.
  • the frequency vs. phase characteristic in FIG. 15 should not be changed with respect to the phase as shown by the dotted line F0! /, In which case, the voltage is low! Since the frequency is large even in the vicinity of the degree, the output current (voltage) of the current vs. used frequency characteristic force in FIG. 1 also remains small. As a result, as shown by the dotted line VI in FIG. Insufficient voltage will be obtained.
  • the solid line F1 is a frequency-phase diagram when the input current Ri (FIG. 5) obtained by transferring an AC current when a DC power supply is generated by CT is equal to the reference current Ref and the error is zero.
  • Is a frequency-phase diagram when the input current Ri is larger than the reference current Re; f.The frequency is increased and the current is reduced within the range of use in Fig. 1, and the solid line F3 is based on the input current Ri.
  • FIG. 2 is a frequency-phase diagram when the current is smaller than Re; f, and the current is increased by lowering the frequency within the use range of FIG.
  • Vin is the voltage waveform of the commercial power supply
  • the dotted line VI above it is A voltage waveform when switching is performed at a certain constant frequency over the entire range
  • vo is a voltage (secondary voltage of the step-up transformer) obtained by further performing frequency modulation as shown in FIG. Vin, V1, and V0 have greatly different ratios, but are shown on the same diagram for easy viewing.
  • the secondary voltage of the step-up transformer at a constant frequency without modulation as indicated by the dotted line F0 in Fig. 15 is indicated by the dotted line VI, and this waveform does not match the non-linear load of the magnetron.
  • the frequency is reduced near the phase 0 or 180 degrees where the voltage is low, and the frequency is increased near the phase 90 or 180 degrees so that the phase 0 where the voltage is low is reduced.
  • the output current increases.
  • the output current is narrowed.
  • a constant voltage is generated on the secondary side of the step-up transformer in any phase over the range (180 degrees to 360 degrees). This waveform matches the nonlinear magnetron load.
  • the dead time creation circuit is effective for controlling dead time.
  • the collector voltage VQ7C and VQ8C can be linked up and down for dead time control by changing the center voltage 6V.
  • the two transistors Q8 and Q7 are turned on.
  • the off ratio can be changed (duty control). That is, when the duty ratio of the two transistors is 50:50 (operating with a 12V power supply! /, So operating at 6V! /), The output is the highest, 6V or less.
  • the driving means for driving two semiconductor switching elements for deflecting a direct current and outputting an alternating current limits the lowest frequency of driving the semiconductor switching elements.
  • the minimum frequency setting is increased, and then the minimum frequency setting is gradually reduced.
  • an error signal generation circuit that generates an error signal from a difference between an input current of an AC power supply and a reference current, and a rectified voltage Z rectified current obtained by rectifying the AC power supply are described above.
  • a frequency modulation signal generation circuit that corrects the output of the error signal generation circuit (error signal), and wherein the output of the frequency modulation signal generation circuit is provided to a dead time generation circuit.
  • a minimum frequency limiting circuit is inserted between the creating circuit and the dead time creating circuit, and the lowest frequency limiting circuit supplies the dead time creating circuit based on the limited frequency and the output signal of the frequency modulation signal creating circuit.
  • the set frequency of the minimum frequency limiting circuit is set higher than the output of the frequency modulation signal generating circuit, and when the operation is started.
  • the limit frequency is gradually reduced with the passage of time, and a signal to be supplied to the dead time creation circuit is a signal which has a high switching frequency between the limit frequency and the output signal of the frequency modulation signal creation circuit.
  • the minimum frequency limiting circuit is provided with a capacitor, and the capacitor is charged during the operation of the high frequency heating device is stopped.
  • the high-frequency heating device of the present invention there is no short-circuit of the power supply! /, It is difficult for heat loss to occur in the IGBT, so that wasteful energy is not consumed, and noise is hardly generated. With the addition of a simple circuit, soft start is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)
  • Inverter Devices (AREA)

Abstract

 本発明の課題は、簡単な回路の付加でソフトスタートが可能となるインバータ回路を提供することである。  直流電源を2個の半導体スイッチング素子でチョッピングし、これを共振回路を介して交流出力するマグネトロン駆動用の高周波加熱装置であって、それぞれの半導体スイッチング素子が同時にオフするデッドタイム作成回路を備えた高周波加熱装置において、前記半導体スイッチング素子を駆動する駆動手段が半導体スイッチング素子を駆動する周波数の最低周波数を制限する機能を備え、該高周波加熱装置の動作開始時に前記最低周波数の設定を高くしておき、その後徐々に前記最低周波数の設定を低くするようにした。

Description

明 細 書
高周波加熱装置
技術分野
[0001] 本発明は、電子レンジなどのようにマグネトロンを用いた高周波加熱に関するもの であり、特にそのインバータ回路に関するものである。
背景技術
[0002] 高周波加熱装置に搭載されて!、る従来の電源は重たくて、かつ大き!/、ものであつ たので、その小型、軽量ィ匕が望まれてきた。このため、電源のスイッチングィ匕による小 型、軽量、低コストィ匕が現在の様々な分野で積極的に進められてきた。マグネトロン で発生されるマイクロ波により食品を調理する高周波加熱装置では、マグネトロンを 駆動するための電源の小型化、軽量ィ匕が要求され、スイッチングィ匕されたインバータ 回路により実現された。
[0003] このうち、特に、本発明が対象としている高周波インバータ回路は、 2石でブリッジ のアームを構成したスイッチング素子を用いた共振型回路方式のものである(例えば 、特許文献 1参照)。
特許文献 1:特開 2000— 58252号公報
[0004] 1石型のトランジスタインバータ(オン.オフの幅制御)であれば、トランジスタのコレク タ―ェミッタ間の耐圧 1000ボルト程度あるものを使う必要がある力 2石ブリッジ構成 にすると、トランジスタのコレクターェミッタ間の耐圧はあまり必要としなくなる。したが つてブリッジ構成にすると、トランジスタのコレクターェミッタ間の耐圧は 600V位でよ いので、安価なトランジスタを使用することができるので有利である。この種のインバ ータにおいては、インダクタンス Lとキャパシタンス Cで共振回路を構成しており、そし て共振周波数 fOをピークとした図 1のような共振特性を持っている。
[0005] 図 1は本発明に係るインバータ共振回路に一定電圧を印加した場合の電流対使用 周波数特性を示す線図である。
周波数 fO力 Sインバータ回路の LC共振回路の共振周波数で、この周波数 fOより上 の周波数範囲 fl〜f3の電流 周波数特性曲線 IIを使用している。 共振周波数 fOの時が電流 IIは最大で、周波数範囲が fl力 f 3へ高くなつてゆくに したがって電流 IIは減少する。周波数範囲 fl〜f3のうち、低周波になるほど共振周 波数に近づくので電流 IIは増加し、したがって、リーケージトランスの 2次側に流れる 電流は大きくなる。逆に、周波数が高くなるほど共振周波数力も遠ざ力るので、リーケ ージトランスの 2次側に流れる電流は小さくなる。非線形負荷である電子レンジを動 作させるインバータ回路にあっては、この周波数を変えることにより出力を変えて 、る マグネトロンの非線形負荷を使用する電子レンジは、後述するように入力される電 源が商用電源のような交流の場合、スイッチング周波数を変化させている。
それぞれの高周波出力にお 、ても 90度および 270度付近が最も高 、周波数にな る力 例えば電子レンジを 200Wで使用する場合は f3近傍に、 500Wの場合はそれ より低ぐ 1000Wの場合はさらに低い周波数になる。当然である力 入力電力または 入力電流制御を行っているので、商用電源電圧、マグネトロン温度等の変化により、 この周波数は変化して 、る。
また、前記電源位相の 0度および 180度付近は、高電圧を印加しないと高周波発 振しな ヽマグネトロンの特性に合わせて、共振電流が大きくなる共振周波数 fO近傍 の fl近傍に設定することで商用電源電圧に対するマグネトロン印加電圧の昇圧比を 高め、マグネトロン力 電波が発せられる商用電源の位相幅を広くする設定にしてい る。
図 2は特許文献 1に記載の 2石ブリッジのスイッチング素子で駆動する共振型高周 波加熱装置の 1例を示している。図 2において、高周波加熱装置は、直流電源 1、リ 一ケージトランス 2、第 1の半導体スイッチング素子 6、第 1のコンデンサ 4、第 2のコン デンサ 5、第 3のコンデンサ(平滑コンデンサ) 13、第 2の半導体スイッチング素子 7、 駆動部 8、全波倍電圧整流回路 10、およびマグネトロン 11とから構成されている。 直流電源 1は商用電源を全波整流して直流電圧 VDCを、第 2のコンデンサ 5とリー ケージトランス 2の 1次卷線 3との直列回路に印加する。第 1の半導体スイッチング素 子 6と第 2の半導体スイッチング 7とは直列に接続され、リーケージトランス 2の 1次卷 線 3と第 2のコンデンサ 5との直列回路は第 2の半導体スイッチング素子 7に並列に接 続されている。
[0007] 第 1のコンデンサ 4は第 2の半導体スイッチング 7に並列に接続されている。リーケ ージトランス 2の 2次卷線 9で発生した高電圧出力は、全波倍電圧整流回路 10で直 流の高電圧に変換されてマグネトロン 11のアノード一力ソード間に印加されている。リ 一ケージトランス 2の 3次卷線 12は、マグネトロン 11の力ソードに電流を供給する。
[0008] 第 1の半導体スイッチング素子 6は、 IGBTと、それに並列に接続されるフライホイ一 ルダイオードとから構成されて 、る。第 2の半導体スイッチング素子 7も同様に IGBT とダイオードとから構成されて ヽる。
当然であるが、前記第 1、第 2の半導体スイッチング素子 6, 7はこの種類に限定さ れるものではなぐサイリスタ、 GTOスイッチング素子等を用いることもできる。
[0009] 駆動部 8は、その内部に第 1の半導体スイッチング素子 6と第 2の半導体スィッチン グ素子 7の駆動信号をつくるための発振部を有し、この発振部で所定周波数とデュ 一ティの信号が発生され、第 1の半導体スイッチング素子 6に駆動信号を与えている 第 1および第 2の半導体スイッチング素子 6, 7は交互に、また後述するデッドタイム 作成手段により、第 1および第 2の半導体スイッチング素子 6, 7が共にオフしている 期間、すなわちデッドタイムを設けて駆動される。第 1あるいは第 2の半導体スィッチ ング素子 6, 7の一方がターンオフした直後は、他方の半導体スイッチング素子の両 端電圧は高いので、この時点でターンオンさせるとスノイク状の過大電流が流れ、不 要な損失、ノイズが発生する。デッドタイムを設けることにより、この両端電圧が約 OV に減少するまでターンオンが遅れるため、前記損失、ノイズが防止される。当然、逆 の切り換わり時も同様の働きをする。
[0010] 図 3は、図 2の回路が動作する各モードを示している。
また、図 4は回路中の半導体スイッチング素子等の部品の電圧電流波形図を示し ている。
図において、(a)モード 1は第 1の半導体スイッチング素子 6に駆動信号が与えられ る。このとき電流は直流電源 1からリーケージトランス 2の 1次卷線 3と第 2のコンデンサ 5を通って流れる。 [0011] (b)モード 2では第 1の半導体スイッチング素子 6がオフし、 1次卷線 3と第 2のコン デンサ 5を通って流れていた電流は第 1のコンデンサ 4に向かって流れ始めると同時 に第 1の半導体スイッチング素子 6の電圧が上昇する。
[0012] (c)モード 3では第 1のコンデンサ 4の電圧が VDCから OVに向かう。モード 3では第
1のコンデンサ 4の両端電圧が OVに達して、第 2のスイッチング素子 7を構成するダイ オードがオンする。
[0013] (d)モード 4では共振により 1次卷線 3と第 2のコンデンサ 5を通って流れていた電流 の向きが反転するようになるので、この時点で第 2の半導体スイッチング素子 7がオン している必要がある。モード 2, 3, 4の期間は第 1の半導体スイッチング素子 6の電圧 は直流電源電圧 VDCと同等となる。欧州のように商用電源電圧が実効値 230Vの地 域は電圧ピークが 2倍になるので直流電源電圧 VDCはおよそ 325Vとなる。
[0014] (e)モード 5では第 2の半導体スイッチング素子 7がオフし、第 2のコンデンサ 5と 1次 卷線 3に流れて 、た電流は第 1のコンデンサ 4に向かって流れ始め、第 1のコンデン サ 4の電圧が VDCまで上昇する。
[0015] (f)モード 6では第 1のコンデンサ 4の電圧が VDCに達して、第 1の半導体スィッチ ング素子 6を構成するダイオードがオンする。共振により 1次卷線 3と第 2のコンデンサ 5を通って流れていた電流の向きが反転するようになり、この時点で第 1の半導体スィ ツチング素子 5をオンしておく必要あり、これがモード 1となる。モード 6, 1の期間は第 2の半導体スイッチング素子 7の電圧は直流電源電圧 VDCと同等となる。
この回路構成によれば第 1の半導体スイッチング素子 6と第 2の半導体スイッチング 素子 7に印加する電圧の最大値を直流電源電圧 VDCとすることができる。
[0016] モード 2とモード 5は 1次卷線 3からの電流が第 1のコンデンサ 4と第 2のコンデンサ 5 に電流が流れる共振期間である。第 1のコンデンサ 4の容量値は第 2のコンデンサ 5 の容量値の 1Z10以下に設定しているので、合成容量は、ほぼ第 1のコンデンサ 4の 容量値に近くなる。この合成容量とリーケージトランス 3のインピーダンスとで決まる時 定数で第 1の半導体スイッチング素子 6と第 2の半導体スイッチング素子 7に印加する モード 3, 5における電圧が変化する。この電圧変化が前記した時定数できまる傾きを 持つことにより、第 1の半導体スイッチング素子のモード 3におけるオフ時のスィッチン グ損失が軽減される。
[0017] さらに、モード 5では電圧がゼロになるので第 1の半導体スイッチング素子のモード 1におけるオン時は、第 1の半導体スイッチング素子の印加電圧はゼロであるためォ ン時のスイッチング損失が低減される。これをゼロ電圧スイッチングと呼び、これらが 共振回路方式の特徴であり、本方式はこの特徴を活かし、かつ、半導体スイッチング 素子の電圧は直流電源電圧 VDC以上にはならないという利点がある。第 2のコンデ ンサ 5は図 4に示すように、その電圧がリップルの少ないものになるように十分大きな 容量値に設定している。
[0018] ところで、図 2のように、半導体スイッチング素子 6と 7の直列接続回路が直流電源 1 に並列に接続されているような 2石でアームを構成するインバータ回路においては、 半導体スイッチング素子 6と 7が交互にオン'オフを繰り返えすことで、リーケージトラ ンス 2の 1次卷線 3に高周波交流を発生させ、その 2次卷線 9に高圧高周波を誘導し ているのであるが、半導体スイッチング素子 6と 7が同時にオンしている期間が一瞬た りともあってはならない。直流電源 1の短絡が生じる力もである。
[0019] そこで、従来から、半導体スイッチング素子 6と 7の一方の半導体スイッチング素子 力 Sターンオフして力 他方の半導体スイッチング素子がターンオンするまでに、半導 体スイッチング素子 6と 7のどちらもオンとならない期間(デッドタイム、略して DT)を必 ず設けていた。
[0020] そこで、デッドタイム DTについて図 4を用いて説明する。
図 4は上記各モード 1〜6における第 1および第 2の半導体スイッチング素子 6、 7 ( 図 2)と第 1および第 2のコンデンサ 4、 5の電圧、電流波形を示している。
(a)は上記各モード 1〜6における第 1の半導体スイッチング素子 6の電流波形で、 t 0時点から導通して 、た(したがって、(b)で半導体スイッチング素子 6のェミッタ 'コレ クタ間電圧はゼロ)半導体スイッチング素子 6がモード 1の終了時点 tlでターンオフ( 電流ゼロになる)している。
一方、(d)は第 2の半導体スイッチング素子 7の電圧波形で、 tO時点からオフであつ た半導体スイッチング素子 7は、オン信号が加えられるモード 3の開始時点 t2までォ フが続く。 したがって、 tl時点力 t2時点までの期間 DTIは、第 1の半導体スイッチング素子 6および第 2の半導体スイッチング素子 7が共にオフとなっている。
この期間 DT1がデッドタイムに要求される最小値であり、最大値は tl時点力 t3時 点までの期間であり、この範囲内にお 、てデッドタイムが許容される。
[0021] 同じぐ(c)のように、第 2の半導体スイッチング素子 7が t4時点でターンオフ(電流 ゼロとなる)して力ら、(a)のように第 1の半導体スイッチング素子 6にオン信号が加え られるモード 6の開始時点 t5までの期間 DT2がデッドタイムに要求される最小値であ り、最大値は t4時点から t6時点までの期間であり、この範囲内においてデッドタイム が許容される。
従来の 2石インバータ回路においては、このデッドタイム DTは半導体スイッチング 素子 6、 7のそれぞれのターンオン、ターンオフに重なりが生じない範囲を計算で求 めて期間 DTI, DT2としており、この値は固定であった。
[0022] ところが電子レンジのインバータ回路の場合、周波数が高 、領域で駆動して 、ると きは、一方の半導体スイッチング素子がターンオフした後、他方の半導体スィッチン グ素子のェミッタ一コレクタ間電圧 Vceが 0に落ちるまでの時間が長くなるので、上記 一方の半導体スイッチング素子がターンオフした後、固定のデッドタイム経過後に上 記他方の半導体スイッチング素子にターンオン信号を印加すると、上記他方の半導 体スイッチング素子はェミッタ一コレクタ間電圧 Vceが 0に落ちない間にターンオンす ることになりスイッチング周波数が高い場合、半導体スイッチング素子に熱損失が発 生しうることがあり、半導体スイッチング素子の故障やスパイク電流の発生によりノイズ の発生源となった。
[0023] この熱損失が発生しノイズの発生する理由を同じく図 4を用いて説明する。
(a)において、半導体スイッチング素子 6が tl時点でターンオフ(電流ゼロになる)し ても、(d)で他方の半導体スイッチング素子 7の両端の電圧(実線)が 0に下がるのに 時間 tl—t2を必要としている。したがって、 t2時点で他方の半導体スイッチング素子 7にターンオン信号が加えられると、半導体スイッチング素子 7のェミッタ コレクタ間 の電圧が 0に下がっているので、半導体スイッチング素子 7は電圧力 オン (導通)す ることとなり(これを「ゼロボルトスイッチング」と言う。)、熱損失やノイズの問題は生じ ない。
[0024] ところが、 vdcの台形の傾きは共振の強さによって変わる。共振が強い (周波数が低 い)と傾きが急で半導体スイッチング素子 7の両端の電圧が早くゼロとなるが、共振が 弱い (周波数が高くなる)と傾きが緩くなるので、ゼロボルトまで下がるのに時間がか かる。このように周波数が高い領域で駆動しているときは、共振周波数から離れてい るので、時定数が長くなつて、(d)において、他方の半導体スイッチング素子 7の両端 の電圧(点線で示す)が 0に下がるまでの時間が長くなり、時間 tl t2の間に下がり きらず、時刻 t2を過ぎてもまだ所定の電圧(点線 Fの Vt2を参照)が加わっている。 したがって、通常通り、時点 t2で半導体スイッチング素子 7にオン信号が加えられる と、半導体スイッチング素子 7のェミッタ コレクタ間に所定の電圧 Vt2が加わったま までオンするので熱損失が発生した。また、大きな dvZdtの発生による急峻なスパイ ク電流が流れ、ノイズ源となった。
[0025] このようなハードスイッチング (電圧又は電流がゼロでなくても強制的に行うスィッチ ング)が行われても、デッドタイムは確保されているので、電源短絡といったような事故 に繋がるものではなぐ単に IGBTに熱損失が余分に発生するだけであり、しかしこれ らの熱損失はヒートシンクで冷却されるので、これが生じてもインバータ動作は正常に 続けられた。また、スパイク電流によるノイズは、大きな問題として取り上げられる値で はなかった。このため、従来のインバータ回路においては、ハードスイッチングの弊害 については全く問題とされな力つた。したがって、従来固定であったデッドタイム DT を変化させるようにして無駄なエネルギーが費やされることのな 、、半導体スィッチン グ素子の寿命に悪影響を及ぼさない、かつノイズの発生し難いインバータ回路も考え られている。
発明の開示
発明が解決しょうとする課題
[0026] そこで、本発明の目的は、デッドタイム DTを固定させるタイプの高周波加熱装置の みならず、デッドタイム DTを周波数に対して種々に可変にするタイプの高周波加熱 装置に対しても、ソフトスタートを適用させようとするもので、し力も極めて簡単な回路 を付加することでこれを簡単に実現することができる高周波加熱装置を提供すること にある。
課題を解決するための手段
[0027] 上記課題を解決するため、請求項 1記載の高周波加熱装置の発明は、交流電源と 該交流電源の電圧を整流する整流回路と該整流回路の出力電圧を平滑する平滑コ ンデンサとから成る直流電源と、 2個の半導体スイッチング素子力 なる直列回路と、 リーケージトランスの 1次卷線とコンデンサが接続された共振回路とを有し、前記直列 回路は前記直流電源に並列に接続し、かつ交流等価回路において前記共振回路 の一端は前記直列回路の中点に、他端は前記直流電源の一端に接続されると共に 、それぞれの前記半導体スイッチング素子を駆動する駆動手段と、前記リーケージト ランスの 2次卷線に接続される整流手段と、前記整流手段に接続されるマグネトロン とカゝら成るマグネトロン駆動用の高周波加熱装置であって、それぞれの半導体スイツ チング素子が同時にオフするデッドタイム作成回路を備えた高周波加熱装置におい て、前記駆動手段が前記半導体スイッチング素子を駆動する周波数の最低周波数 を制限する機能を備え、該高周波加熱装置の動作開始時に前記最低周波数の設定 を高くしておき、その後徐々に前記最低周波数の設定を低くすることを特徴とする。
[0028] 請求項 2記載の高周波加熱装置の発明は、交流電源と該交流電源の電圧を整流 する整流回路と該整流回路の出力電圧を平滑する平滑コンデンサとから成る直流電 源と、 2個の半導体スイッチング素子力もなる直列回路の 2組と、リーケージトランスの 1次卷線とコンデンサが接続された共振回路とを有し、前記 2組の直列回路はそれぞ れ前記直流電源に並列に接続し、前記共振回路の一端は前記一方の直列回路の 中点に、他端は他方の直列回路の中点に接続されると共に、それぞれの前記半導 体スイッチング素子を駆動する駆動手段と、前記リーケージトランスの 2次卷線に接 続される整流手段と、前記整流手段に接続されるマグネトロンとから成るマグネトロン 駆動用の高周波加熱装置であって、それぞれの半導体スイッチング素子が同時にォ フするデッドタイム作成回路を備えた高周波加熱装置において、前記駆動手段が前 記半導体スイッチング素子を駆動する周波数の最低周波数を制限する機能を備え、 該高周波加熱装置の動作開始時に前記最低周波数の設定を高くしておき、その後 徐々に前記最低周波数の設定を低くすることを特徴とする。 [0029] 請求項 3記載の高周波加熱装置の発明は、交流電源と該交流電源の電圧を整流 する整流回路と該整流回路の出力電圧を平滑する平滑コンデンサとから成る直流電 源と、 2個の半導体スイッチング素子力もなる直列回路と、リーケージトランスの 1次卷 線とコンデンサが接続された共振回路とを有し、前記直列回路は前記直流電源に並 列に接続し、前記共振回路は前記半導体スイッチング素子の一方に並列接続される と共に、それぞれの前記半導体スイッチング素子を駆動する駆動手段と、前記リーケ ージトランスの 2次卷線に接続される整流手段と、前記整流手段に接続されるマグネ トロンとから成るマグネトロン駆動用の高周波加熱装置であって、それぞれの半導体 スイッチング素子が同時にオフするデッドタイム作成回路を備えた高周波加熱装置 にお 1、て、前記駆動手段は前記半導体スイッチング素子を駆動する周波数の最低 周波数を制限する機能を備え、該高周波加熱装置の動作開始時に前記最低周波 数の設定を高くしておき、その後徐々に前記最低周波数の設定を低くすることを特徴 とする。
[0030] 請求項 4記載の発明は、請求項 1〜3のいずれか 1項記載の高周波加熱装置にお Vヽて、前記交流電源の入力電流と基準電流との差から誤差信号を作成する誤差信 号作成回路と、前記交流電源を整流して得られる整流電圧 Z整流電流を前記誤差 信号作成回路の出力 (誤差信号)によって補正する周波数変調信号作成回路とを備 え、該周波数変調信号作成回路の出力を前記デッドタイム作成回路に与えるように した高周波加熱装置において、前記周波数変調信号作成回路と前記デッドタイム作 成回路との間に最低周波数制限回路を挿入し、該最低周波数制限回路は制限周波 数と前記周波数変調信号作成回路の出力信号を基にして前記デッドタイム作成回 路に与え、前記高周波加熱装置の動作開始時は該最低周波数制限回路の設定周 波数を前記周波数変調信号作成回路の出力より高く設定し、動作開始からの時間 経過とともに徐々に前記制限周波数を低減し、前記デッドタイム作成回路に与える信 号は前記制限周波数の低減にあわせて、前記制限周波数と前記周波数変調信号 作成回路の出力信号でスイッチング周波数が高い信号を時間経過とともに選択し、 徐々に前記周波数変調信号作成回路の出力信号に切り換えるように構成したことを 特徴とする。 [0031] 請求項 5記載の発明は、請求項 4記載の高周波加熱装置において、前記最低周波 数制限回路が、コンデンサを備え、前記高周波加熱装置の停止中に前記コンデンサ を充電しておき、前記高周波加熱装置動作開始と共に該コンデンサの電圧を前記デ ッドタイム作成回路に与えかつ該コンデンサの充電電荷を放電させるようにしたことを 特徴とする。
[0032] 請求項 6記載の発明は、請求項 1〜5のいずれか 1項記載の高周波加熱装置にお いて、前記デッドタイム作成回路が、スイッチング周波数に関係なく一定または微増 であることを特徴とする。
請求項 7記載の発明は、請求項 1〜5のいずれか 1項記載の高周波加熱装置にお いて、前記デッドタイム作成回路がスイッチング周波数が高くなるにしたがってデッド タイムを増カロさせることを特徴とする。
[0033] 請求項 8記載の発明は、請求項 7記載の高周波加熱装置において、前記デッドタイ ム作成回路が、所定のスイッチング周波数以下でデッドタイムを一定または微増させ ることを特徴とする。
[0034] 請求項 9記載の発明は、請求項 7又は 8記載の高周波加熱装置において、前記デ ッドタイム作成回路が、所定のスイッチング周波数以上でデッドタイムを急増させるこ とを特徴とする。
[0035] 請求項 10記載の発明は、請求項 8又は 9記載の高周波加熱装置において、所定 のスイッチング周波数以下での前記デッドタイムの一定値若しくは微増値、又は所定 のスイッチング周波数以上での前記デッドタイムの急増値が可変であることを特徴と する。
[0036] 請求項 11記載の発明は、請求項 8〜: LOのいずれか 1項記載の高周波加熱装置に ぉ 、て、前記所定のスイッチング周波数の値が可変であることを特徴とする。
[0037] 請求項 12記載の発明は、請求項 1〜5のいずれか 1項記載の高周波加熱装置に おいて、前記デッドタイム作成回路はスイッチング周波数が高くなるにしたがってデッ ドタイムを階段状に増加させるものであることを特徴とする。
[0038] 請求項 13記載の発明は、請求項 1〜12のいずれか 1項記載の高周波加熱装置に おいて、前記デッドタイム作成回路が、スイッチング周波数の増加に比例して第一の 傾きで変化し、かつ所定のスイッチング周波数力 は第二の傾きで変化するプラスお よびマイナスのそれぞれのオフセット電圧を基にデッドタイムを作成するものであるこ とを特徴とする。
[0039] 請求項 14記載の発明は、請求項 1〜13のいずれか 1項記載の高周波加熱装置に おいて、前記デッドタイム作成回路が、 VCC電源と、デューティ制御電源と、スィッチ ング周波数に比例して変化する第一の電流と、所定の周波数から流れ出しかつスィ ツチング周波数に比例して変化する第二の電流と、前記二つの電流を合成してかつ 所定の係数をかけた第三の電流と、前記デューティ制御電源に前記第三の電流に 比例したプラスおよびマイナスのそれぞれのオフセット電圧を付加して成る二つの上 位 ·下位電位を作成する上位 ·下位電位作成手段とを有し、前記二つの上位'下位 電位を基にデッドタイムを作成することを特徴とする。
[0040] 請求項 15記載の発明は、請求項 14記載の高周波加熱装置において、前記デュー ティ制御電源の電圧および前記スイッチング周波数の少なくとも一方を変化させて入 力電力または入力電流制御を行うようにしたことを特徴とする。
発明の効果
[0041] 以上のような構成を採ることにより、電源短絡の生じない、 IGBTに熱損失の発生し 難い、したがって無駄なエネルギーが費やされることのない、またノイズの発生し難い インバータ回路であって、し力も簡単な回路の付加でソフトスタートが可能となる。 図面の簡単な説明
[0042] [図 1]本発明に係るインバータ共振回路に一定電圧を印力!]した場合の電流対使用周 波数特性を示す線図である。
[図 2]特許文献 1記載の 2石ブリッジのスイッチング素子で駆動する共振型高周波加 熱装置の 1例である。
[図 3]図 2の回路が動作する各モードを示している。
[図 4]回路中の半導体スイッチング素子等の電圧電流波形図を示している。
[図 5]本発明に係る 2石ブリッジの駆動する高周波加熱装置を示している。
[図 6]ソフトスタートを実施する最低周波数制限回路の第 1実施例を示している。
[図 7]ソフトスタートを実施する最低周波数制限回路の第 2実施例を示している。 [図 8]デッドタイムの作成原理を説明する図で、 (a)は発振回路とデッドタイム作成回 路の各出力と矩形波形成回路の出力の関係を説明する図であり、 (b)は周波数が低 V、範囲では周波数が変わってもデッドタイム DTが変わらな 、原理を説明する図であ る。
[図 9]デッドタイム作成回路の具体例である。
[図 10]デッドタイム作成回路が有する電流 周波数特性を示している。
[図 11]デッドタイム 周波数特性図で、(a)は周波数 fl以下でデッドタイム DTを一定 または微増させ、所定のスイッチング周波数 fl以上でデッドタイム DTを急増させる例 、(b)は変形例で、(ィ)デッドタイムの一定値および急増値を上下可変する例、(口) は周波数 flでの勾配を可変する例、(ハ)は変曲点周波数を左右に移動可変する例 をそれぞれ示している。
[図 12]デッドタイム DTを可変にする第 2の実施例である。
[図 13]図 5の発振回路の 1例を示している。
[図 14]2石ブリッジのスイッチング素子で駆動する共振型高周波加熱装置の他の 3例 である。
[図 15]本発明に係るインバータ回路の周波数対位相特性を示す線図である。
[図 16]インバータ回路の出力電圧対位相特性を示す線図である。
符号の説明
1 直流電源
2 リーケージトランス
3 1次卷線
4 第 1のコンデンサ
5 第 2のコンデンサ
6 第 1の半導体スイッチング素子
7 第 2の半導体スイッチング素子
8 駆動部
9 2次卷線
10 全波倍電圧整流回路 11 マグネトロン
12 3次卷線
13 第 3のコンデンサ
21 誤差信号作成回路
22 周波数変調信号作成回路
221 第 1実施例に係る最低周波数制限回路
222 第 2実施例に係る最低周波数制限回路
221a トランジスタ
221b, 221d、 221e 抵抗
221c コンデンサ
22 If スィッチ
221g 増幅器
221h 定電流源
23 三角波搬送波発振回路
24 デッドタイム作成回路
25 矩形波形成回路
26 スイッチング素子駆動回路
発明を実施するための最良の形態
図 5は本発明に係る 2石ブリッジの駆動する高周波加熱装置を示して ヽる。
図において、この高周波加熱装置は、直流電源 1、リーケージトランス 2、第 1の半 導体スイッチング素子 6、第 1のコンデンサ 4、第 2のコンデンサ 5、第 3のコンデンサ( 平滑コンデンサ) 13、第 2の半導体スイッチング素子 7、駆動部 8、全波倍電圧整流 回路 10、およびマグネトロン 11とで主回路が構成されている。主回路の構成は図 2と 同じであるので、重複説明は省略する。
そして、半導体スイッチング素子 6、 7を制御する制御回路は、入力電流 Iinと基準 電流 Refとからその差を求める誤差信号作成回路 21と、誤差信号作成回路 21と交 流全波信号とから周波数変調信号を作成する周波数変調信号作成回路 22と、本発 明の目的を実現するためのソフトスタートを実施する最低周波数制限回路 221と、三 角波搬送波を作成する発振回路 23と、デッドタイムをスイッチング周波数の大きさに よって変化させるデッドタイム作成回路 24と、発振回路 23の三角波出力とデッドタイ ム作成回路 24の VQ7Cと VQ8Cの各出力から各矩形波を形成する矩形波形成回 路 25と、矩形波形成回路 25の出力によってスイッチング素子をオン Zオフさせるパ ルスを発生するスイッチング素子駆動回路 26から構成され、スイッチング素子駆動回 路 26の各出力がスイッチング素子 (IGBT) 6、 7のゲートに与えられる。
[0045] 図 6はソフトスタートを実施する最低周波数制限回路の第 1実施例を示している。
図において、 221は第 1実施例に係る最低周波数制限回路で、この最低周波数制 限回路 221は、トランジスタ 221aと、抵抗 221b、 221d、 221eと、コンデンサ 221cと 、スィッチ 221fと、増幅器 221gとを備え、トランジスタ 221aはェミッタが抵抗 221bに 、コレクタが Vcc電源に、ベースがコンデンサ 221cにそれぞれ接続され、抵抗 221b は一端が周波数変調信号作成回路 22の出力側に他端が前述のようにトランジスタ 2 21aのェミッタに接続され、コンデンサ 221cは一端が前述のようにトランジスタ 221a のベースに他端がアースに接続されている。また、抵抗 221eは一端が Vcc電源に接 続され、他端がスィッチ 221fと抵抗 221dとを介してアースに接続されている。スイツ チ 221fは装置が停止時に ONとなる常閉接点で、その抵抗 221d側端子はコンデン サ 221cの +側に接続されている。
[0046] 次ぎに、この最低周波数制限回路 221の動作について図 (b)を使って説明する。
高周波加熱装置が動作停止中はスィッチ 221fは ON状態であるので、コンデンサ 221cは電圧 Vccの抵抗 221eと 221dとの分圧比で決まる電位に充電されている。し たがって、トランジスタ 221aのベース電位が高ぐトランジスタ 221aは ON状態にあり 、最低周波数制限回路 221の出力端からは高電圧 VI Iが出力される(図 bの Vl l)。 高周波加熱装置が動作開始する(図 bの tl)と、スィッチ 221fが開き(OFF)、コン デンサ 221の充電回路が遮断されるので、抵抗 221dを介して放電を開始する。した がって、トランジスタ 221aのベース電位は徐々に低下し、トランジスタ 221aの出力電 位 V12 (図 bの V12)は曲線的に徐々に低下してゆく。最低周波数制限回路 221に は周波数変調信号作成回路 22の出力信号 (全波整流)が入り、トランジスタ 221aの 出力信号とワイアードオア回路で結ばれているので、トランジスタ 221aの出力電位と 周波数変調信号作成回路 22の出力電位との高い方が最低周波数制限回路 221か ら出力され、定常高周波電圧(図 bの V13)に移行する。
したがって、高周波加熱装置が動作停止中から動作開始、過渡状態、定常状態に 至るまでの最低周波数制限回路 221からの出力電圧は図 6 (b)のようになる。
[0047] 図 7はソフトスタートを実施する最低周波数制限回路の第 2実施例を示している。
図において、 222は第 2実施例に係る最低周波数制限回路で、この最低周波数制 限回路 222は、トランジスタ 222aと、抵抗 222b、 222d、 222eと、 =fンデンサ 222cと 、スィッチ 222fと、増幅器 222gと、定電流源 222hを備免、トランジスタ 222aはェミツ タカ S抵抗 222bに、コレクタが Vcc電源に、ベースがコンデンサ 222cにそれぞれ接続 され、抵抗 222bは一端が周波数変調信号作成回路 22の出力側に他端が前述のよ うにトランジスタ 222aのェミッタに接続され、コンデンサ 222cは一端が前述のようにト ランジスタ 222aのベースに他端がアースに接続されている。また、抵抗 222eは一端 が Vcc電源に接続され、他端が抵抗 222dを介してアースに接続されている。スイツ チ 222fは装置が停止時に ONとなる常閉接点で、その一端はコンデンサ 222cの + 側に接続され、他端は抵抗 222eと抵抗 222dとの接続点に接続されている。コンデ ンサ 222cの両端に定電流源 222hが接続されて 、る。
[0048] 次ぎに、この最低周波数制限回路 222の動作について図 (b)を使って説明する。
高周波加熱装置が動作停止中はスィッチ 222fは ON状態であるので、コンデンサ 222cは電圧 Vccの抵抗 222eと 222dとの分圧比で決まる電位(定電流源 222hの影 響を若干受ける力 その影響度は抵抗 222eと 222dの合成インピーダンスと定電流 源の値により決まる。)に充電されている。電圧 Vccに充電されている。したがって、ト ランジスタ 222aのベース電位が高ぐトランジスタ 222aは ON状態にあり、最低周波 数制限回路 222の出力端力もは高電圧 VI Iが出力される(図 bの Vl l)。
高周波加熱装置が動作開始する(図 bの tl)と、スィッチ 222fが開き(OFF)、コン デンサ 222の充電回路が遮断されるので、定電流源 222hを介して放電開始する。し たがって、トランジスタ 222aのベース電位は徐々に低下し、トランジスタ 222aの出力 電位 V12 (図 bの V12)は定電流源 222hの働きにより直線的に低下してゆく。最低 周波数制限回路 222には周波数変調信号作成回路 22の出力信号 (全波整流)が入 り、トランジスタ 222aの出力信号とワイアードオア回路で結ばれているので、トランジ スタ 222aの出力電位と周波数変調信号作成回路 22の出力電位との高い方が最低 周波数制限回路 222から出力され、定常高周波電圧(図 bの V13)に移行する。 したがって、高周波加熱装置が動作停止中から動作開始、過渡状態、定常状態に 至るまでの最低周波数制限回路 222からの出力電圧は図 6 (b)のようになる。
[0049] トランジスタ Q8、 Q7のコレクタ電圧は、デッドタイム作成回路 24からそれぞれ矩形 波形成回路 25に送られる(図 5)。また、発振回路 23の三角波出力も矩形波形成回 路 25に送られる。
矩形波形成回路 25はコンパレータ 251, 252の 2個を有し、コンパレータ 251の反 転入力端子(一)にトランジスタ Q8のコレクタ電圧 VQ8C力 コンパレータ 252の非反 転入力端子(+ )にトランジスタ Q7のコレクタ電圧 VQ7Cが与えられ、コンパレータ 2 51の非反転入力端子(+ )とコンパレータ 252の反転入力端子(-)に発振回路 23 の三角波出力が与えられる。
各コンパレータ 251, 252は、非反転入力端子(+ )の電位が反転入力端子(―)の 電位よりも低いときは出力はなく(電位ゼロ)、非反転入力端子(+ )の電位が反転入 力端子(―)の電位を超えて 、る間は出力を出す (電位ハイ)ようになって!/、る。
[0050] デッドタイム DTは以下の 3つのカテゴリーに分けることができる。
(1) :周波数如何にかかわらず一定(固定)とするもの。
これは従来力 行われて 、たものである。
これに対して、スイッチング周波数に応じて可変とするものとして、
(2):所定のスイッチング周波数を超えると、スイッチング周波数の増加とともに連続 的に増加するもの。
(3):所定のスイッチング周波数を超えると、スイッチング周波数の増加とともに階段 状に増加するもの。
の(2)と(3)が考えられる。
そして、本発明に係るソフトスタートを実施する回路は、上記(1)〜(3)のいずれの ちのにち適用されることがでさるのである。
[0051] 図 8は上記(2)の所定のスイッチング周波数を超えると、スイッチング周波数の増加 とともに連続的に増加するデッドタイムの作成原理を説明する図で、 (a)は発振回路 23とデッドタイム作成回路 24の各出力と矩形波形成回路 25の出力の関係を説明す る図、 (b)は所定周波数以下ではデッドタイム DTが変わらない原理を説明する図で ある。
図 8において、 tl時点より前では、コンパレータ 252 (図 5参照)は非反転入力端子 (+ )の電位 VQ7Cが反転入力端子(一)の三角波の電位を超えているので半導体ス イッチング素子がオンしている(出力 1)。同じ時、コンパレータ 251は非反転入力端 子( + )の三角波の電位が反転入力端子( )の電位 VQ8Cよりも低 、ので半導体ス イッチング素子は
オフである(出力 0)。
[0052] (l) tl時点で、コンパレータ 252は非反転入力端子(+ )の電位 VQ7Cが反転入力 端子(一)の三角波の電位より低くなるので出力 0となる。
(2) tl〜t4、コンパレータ 252は出力 0が続く。
(3) t2時点で、コンパレータ 251は非反転入力端子(+ )の三角波の電位が反転入 力端子(-)の電位 VQ8Cよりも高くなるので出力 1となる。
(4) t2〜t3、コンパレータ 251は出力 1が続く。
(5) t3時点で、コンパレータ 251は非反転入力端子(+ )の三角波の電位が反転入 力端子(一)の電位 VQ8Cよりも低くなるので出力は 0となる。
(6) t4時点で、コンパレータ 252は非反転入力端子(+ )の電位 VQ7Cが反転入力 端子(-)の三角波の電位より高くなるので出力 1となる。
(7) t4〜t5で、コンパレータ 252は出力 1が続く。
(8) t5時点で、コンパレータ 252は非反転入力端子(+ )の電位 VQ7Cが反転入力 端子(一)の三角波の電位より低くなるので出力 0となる。
(9) t3〜t6、コンパレータ 251は出力 0が続く。
以下、同様に繰り返す。
[0053] コンパレータ 251, 252の出力はスイッチング素子(IGBT)駆動回路 26に与えられ て、同じタイミングでスイッチング素子 6、 7がオン、オフされる。
このようにして、スイッチング素子 6、 7が同時にオフとなっている期間 tl〜t2、 t3〜 t4、 t5〜t6がデッドタイム DTとして得られる。
[0054] デッドタイム DTの期間は、従来は周波数如何にかかわらず一定(固定)であったが 、これを改良するものとして、デッドタイム DTをスイッチング周波数に応じて可変とす ることができる。ここでは、所定の周波数 flより小さいときはデッドタイム DTは所定の 不変値 (または微増値)とし、所定のスイッチング周波数 flより大きいときはデッドタイ ム DTは増加させるようにして!/、る。
[0055] そこで、図 8 (b)を用いて、所定のスイッチング周波数 flより小さいときはデッドタイ ム DTは所定の不変値となる原理を説明する。
図で周波数が高い(実線)ときは、図 8 (&)で先に実線の¥08じと 7じと三角波を 用いて説明したように、 VQ8Cと VQ7Cと三角波との間で、電位 VQ7Cが三角波の 電位より低くなる tl時点で出力 0となり、三角波の電位が電位 VQ8Cより高くなり出力 1となる t2時点までの間がデッドタイム DTとして確保される。
そこで周波数が低くなると点線で示す三角波となり、その傾きは緩くなる。そこで、こ こでは、同じデッドタイム DTが得られるようにするため、 tl時点と t2時点からそれぞ れ点線で示す三角波に向けて引 、た垂線との交点 C 1、 C2を通る電位 VQ7C 1と V Q8C1となるように、各オフセット電圧を決めている。抵抗 R8、 R7は一定であるので、 このようなオフセット電圧となるような電流 18、 17を各抵抗 R8、 R7に流すようにしてい る。
このようにすることにより、周波数が変化して三角波が実線力 点線のように変わつ たとしても、点線で示す三角波が 2つの電位 VQ7C1と VQ8C1を横切る時点 tl、 t2 は同じ時点となるので、デッドタイム DTは同じになる。
[0056] 図 9はデッドタイム作成回路の具体例を示して 、る。
図において、 Q01、 Q02、 Q1〜Q8はトランジスタ、 R1〜R10は抵抗である。トラン ジスタ Ql、 Q3、 Q4、 Q5、 Q6、 Q7、 Q8に流れる電流をそれぞれ II、 13、 14、 15、 16 、 17、 18とし、トランジスタ Q5、 Q6、 Q7のェミッタ電位をそれぞれ、 VQ5E、 VQ6E、 VQ7Eとし、トランジスタ Q7、 Q8のコレクタ電位をそれぞれ VQ7C、 VQ8Cとする。ト ランジスタ Q1と Q2とでカレントミラー回路を構成している。同じくトランジスタ Q1と QO 4とで、トランジスタ Q3と Q4とで、トランジスタ Q05と Q8とで、それぞれカレントミラー 回路を構成している。トランジスタ Q04の出力は発振回路 23 (図 13)へ与えられる。 また、トランジスタ Q1と Q3とはそれぞれェミッタ側を Vccに、コレクタ側をそれぞれト ランジスタ Q01と Q03のコレクタ側に接続され、トランジスタ Q01と Q03のェミッタ側 はそれぞれ端子 MOD、端子 DTADDに接続され、端子 MODと端子 DTADDはそ れぞれ分圧抵抗を介して接地されている。トランジスタ Q01と Q03のベースはトランジ スタ Q02のェミッタ側に接続され、トランジスタ Q02のコレクタ側は接地されている。ト ランジスタ Q02のベースには周波数変調信号作成回路 22 (図 5)の出力である発振 周波数の制御電圧が加えられる。
[0057] Vcc (ここでは 12V)とアースの間に Vcc側から、抵抗 R10、抵抗 R8、抵抗 R7、抵 抗 R9の直列接続回路が設けられ、かつ抵抗 R10と抵抗 R8の間にトランジスタ Q8が ェミッタ側を抵抗 R10に、コレクタ側を抵抗 R8にして設けられている。また、抵抗 R7と 抵抗 R9の間にトランジスタ Q7がェミッタ側を抵抗 R9に、コレクタ側を抵抗 R7にして 設けられている。抵抗 R8と抵抗 R7の間には lZ2Vcc (ここでは 6V)が印加されてい る。この 6Vを中心として、上方の抵抗 R8の電圧降下は 18 XR8であり、下方の抵抗 R 7の電圧降下は 17 X R7である。電流 18および電流 17は周波数によって変えて!/、る。 これによつて、抵抗 R7, R8の電圧降下分は周波数によって変化し、その結果、 6Vを 中心にオフセット電圧 VQ8Cと VQ7Cが変化する。
トランジスタ Q8のベースにはカレントミラー回路を構成するトランジスタ Q05のべ一 ス電圧が加えられる。トランジスタ Q05、 Q8の特性が等しぐ各抵抗値も等しければ、 16=17=18、 13=14、となる。
ただし、 11 =12、 13=14、 16= (17=18)
に限定されるものではなぐ比例関係にあればよい。
なお、 17=18 は必要である。
[0058] 次に、デッドタイム作成回路の動作 (すなわち、所定にスイッチング周波数以下のと きはデッドタイム DTを不変(または微増)とし、所定のスイッチング周波数以上のとき はデッドタイム DTを増カロさせる)につ 、て説明する。
[0059] 1) 13が流れていない範囲(すなわち、発振周波数が低い範囲)ではデッドタイム D Tが不変 (または微増)となる理由: 13が流れて!/ヽな 、範囲では、
11 =12 = 15、となり、
また、 VQ5E=VQ6E=VQ7E
I5 XR5 = I6 XR6 = I7 XR9 = I1 XR5、となる。
トランジスタ Q8、 Q7に流れる電流 18、 17はそれぞれ次のようになる。
18=16=11 X (R5/R6)
17=11 X (R5/R9)
オフセット電圧 VR8、 VR7はそれぞれ次のようになる。
VR8 = I8 XR8= {I1 X (R5/R6) } XR8
= I1 XR5 X (R8/R6)
VR7 = I1 XR5 X (R7/R9)
VQ8Cと VQ7Cは、 6Vに上記オフセット電圧を加減したものであるから、
VQ8C = 6V+VR8 = 6V+I1 XR5 X (R8/R6)
VQ7C = 6V-VR7 = 6V-I1 XR5 X (R7/R9) · · · (1)
[0060] このように、周波数が低!ヽ(デッドタイムが一定でょ 、)範囲での電流 18, 17は三角 波の充放電電流 11と比例関係にあるので、三角波の充放電電流 IIを何倍かした値 で用いることができる。これは図 9のようなミラー回路で実現できる。電流 15に対して 電流 16と 18をある一定の関係に置き、電流 16と 18を同じにし、電流 15に対して電流 17 をある一定の関係に置いて、電流 17と電流 18は同じにしている。
[0061] 図 10は、可変デッドタイム作成回路が有する電流 周波数特性を示している。
図において、 II、 13、 15はそれぞれ図 9のトランジスタ Ql、 Q3、 Q5に流れる電流で ある。 15は II +13である。
周波数が低い fl以下においては、電流 II (15)は一定(151)ないし微増 (152)とな つているが、周波数が fl以上の高い範囲においては、周波数 flを変曲点として 13が 急峻に流れ始めるので、これと IIとの合計である 15は急激に増加する。
[0062] 以上の VQ8Cと VQ7Cの式(1)と図 10と力も判ることは、発振周波数が低い範囲で は VQ8Cと VQ7Cは共に発振回路のコンデンサの充放電電流 IIに比例したオフセ ット電圧が得られるので、図 10のように充放電電流 IIが一定であればデッドタイムは 一定になり、また充放電電流 IIが微増となればデッドタイムも微増となるということで ある。
[0063] 2)これに対して、 13が流れて 、る範囲((すなわち、発振周波数が高 、範囲)では デッドタイム DTが変わる。その理由を次に述べる。
図 9において、発振周波数が低い範囲では電流 13 = 0だったが、発振周波数が高 い範囲では電流 13を次のようにして流すようにしている。すなわち、発振周波数制御 電圧のトランジスタ Q02のェミッタ電位が接点 DTADD点の電位よりも低!、ときは、端 子 DTADDに接続されているトランジスタ Q03はオンしない(したがって、電流 13は 流れな力つた) 1S 発振周波数制御電圧のトランジスタ Q02のェミッタ電位が端子 DT ADD点の電位よりも高くなると、端子 DTADDに接続されているトランジスタ Q03は オンするので、電流 13が流れ出す。図 10において、発振周波数が flより低い領域で は電流 151は一定又は電流 152は微増であった力 発振周波数が flより高い領域で は、それまで 0であった 13が急激に流れ始めるので、 15 =11 +13となる。
13が流れている範囲では、
15=12+14=11 +13
I5 XR5=I6 XR6=I7 XR9= (11 +13) XR5、となる。
したがって、トランジスタ Q8、 Q7のコレクタ電圧はそれぞれ式(2)のようになる。 VQ8C = 6V+VR8 = 6V+ (11 +13) XR5 X (R8/R6)
VQ7C = 6V-VR7 = 6V- (11 +13) XR5 X (R7/R9)
… · · (2)
(a)の回路において、第 1のコンデンサ 41,第 2のコンデンサ 42,の容量設定により 、第 3のコンデンサ 5を省略した回路においても同様の効果が得られる。
[0064] 以上の VQ8Cと VQ7Cの式(2)と図 10とから判ることは、 VQ8Cと VQ7Cは共に電 流 13に比例したオフセット電圧が得られ、図 10のように電流 13が急増すると、トランジ スタ Q8と Q7のコレクタ電位 VQ8Cと VQ7Cは電流 15 (=11 +13)の関数となっている ので、電流 15が増加し、これにつれてトランジスタ Q8と Q7のコレクタ電位 VQ8Cと V Q7Cは増加する。そして各コレクタ電位 VQ8Cと VQ7Cが増加すると、図 8において コレクタ電位 VQ8Cは図示の位置よりも上昇し、 VQ7Cは図示の位置よりも降下する ので、デッドタイム DTの開始点である三角波と VQ7Cの交点は早くなり、デッドタイム DTの終了点である三角波と VQ8Cの交点は遅くなるため、デッドタイム DTは図示の 幅よりも増加する。
[0065] 図 11は、前記(2)の「所定のスイッチング周波数を超えると、スイッチング周波数の 増加とともに連続的に増加するデッドタイム DT」の種々の例を示し、図 12は前記(3) の「所定のスイッチング周波数を超えると、スイッチング周波数の増加とともに階段状 に増加するデッドタイム DT」の例を示すものである。
[0066] 図 11 (a)では、所定のスイッチング周波数 fl以下でデッドタイム DTを一定 (または 微増)させ、所定のスイッチング周波数 fl以上でデッドタイム DTを急増させている。 図 11 (b)は図 11 (a)の変形例である。
図 11 (b)の (ィ)は図 11 (a)の所定のスイッチング周波数 fl以下での前記デッドタイ ムの一定値または微増値 L1を Ll l、 L12、 L13のように可変とし、および所定のスィ ツチング周波数 fl以上でのデッドタイム DTの急増値 L2を、 L21、 L22、 L23のように 可変としている。
これは図 9の端子 DTMULTIの抵抗 R5と抵抗 R6の比率を変えることで行える。 すなわち、 I5 XR5=I6 XR6
であるから、 R5と R6の比を変えれば 15と 16の比も変わる。 16は 17, 18の値を決めて いるので、 15と 16の比が変われば、 15に対する 17, 18の値も変わるので、 6Vからのォ フセット電圧も変わる。よってデッドタイム DTも変わる。このようにすれば、デッドタイム DTは同じ周波数であっても変わることができる。
[0067] 図 11 (b)の(口)は図 11 (a)の所定のスイッチング周波数 flにお ヽてデッドタイム勾 酉己を L24、 L25、 L26のように可変として!/、る。
この勾配は接点 DTADDの上下の抵抗 R31, R32の合成抵抗値で決まる。合成抵 抗値が大きいと Vccから流れる電流は余り流れないので、傾きは小さくなり(L26)、 逆に合成抵抗値が小さいと Vccから流れる電流は多くなり、傾きは大きくなる(L24)。 すなわち、電流 13が多く流れると、電流 17, 18も多く増えるので、抵抗 R7, R8の電圧 降下が多くなり、 6Vからのオフセット電圧が増える。したがって、トランジスタ Q8、 Q7 のコレクタ電圧は前記式(2)によって、増加する。 なお、発振周波数が高くなるとデッドタイム DTが狭まる方向に作用するが、オフセ ット電圧の増加はそれ以上にデッドタイム DTが長くなる方向に働く。
[0068] 図 11 (b)の(ハ)は図 11 (a)の変曲点となる所定のスイッチング周波数 flを、 fO、 f2 のように可変としている。
この変曲点は端子 DTADD点の上下の抵抗 R31, R32の抵抗比によって変えられ る。すなわち、トランジスタ q02のベースにカ卩えられる発振周波数制御電圧がその抵 抗比で決まる電圧を超えたら電流 13が流れ始めるので、この抵抗 R31, R32の抵抗 比が変曲点となる。抵抗 R31 >R32であれば抵抗比で決まる電圧は低いので早く電 流 13が流れ始める。電流 13が流れると、電流 17、 18も流れるので、抵抗 R7, R8の電 圧降下が生じ、 6V力ものオフセット電圧が増え、したがって、トランジスタ Q8、 Q7の コレクタ電圧は前記式(2)によって増加し、デッドタイム DTは早く増加を始める(fO) 。逆に、抵抗 R31く R32であれば抵抗比で決まる電圧は高いので電流 13が流れ始 めるまでに時間がかかり、デッドタイム DTの増加は遅く始まる(f2)。
[0069] 図 12はデッドタイム DTの可変の第 2の実施例である。
図 11 (a)では変曲点となる所定のスイッチング周波数 flを境にデッドタイム DTは、 スイッチング周波数 fl以下では L1のように一定または微増であり、スイッチング周波 数 fl以上では L2のように急増させるものであつたが、図 12では、スイッチング周波数 が f0、 fl、 f2、 f 3と高くなるにしたがってデッドタイム DTをそれぞれ L3、 L4、 L5、 L6 と階段状に増加させるものである。
このような階段状の構成は、図 11 (b)の (ィ)で説明したデッドタイム Ll l、 L12、 LI 3を作成する手法を採用すれば簡単に実現することができる。すなわち、図 9の端子 DTMULTIの抵抗 R5と抵抗 R6をトランジスタ等の可変抵抗素子で構成し、所定の 周波数でその比率を変えるようにすれば階段状の構成が得られる。
[0070] 図 13は図 5の発振回路 23の 1例を示している。
発振回路 23はコンパレータ 231, 232の 2個を有し、コンパレータ 231の反転入力 端子 a (-)に分圧抵抗 235の電圧 VIが、コンパレータ 232の非反転入力端子 b ( + ) に分圧抵抗 236の電圧 V2 (ただし、 V1 >V2)力 コンパレータ 231の非反転入力端 子 b ( + )とコンパレータ 232の反転入力端子 a (-)にコンデンサ 234の電圧が与えら れる。
各コンパレータ 231, 232は、非反転入力端子 b ( + )の電位が反転入力端子 a (―) の電位よりも低いときは出力はゼロ、非反転入力端子 b ( + )の電位が反転入力端子 a (一)の電位を超えている間は出力 1を出すようになつている。
[0071] 各オペアンプ 231, 232の出力は、 SRフリップフロップ 233の S端子と R端子に入 れられる。 SRフリップフロップ 233の非 Q端子の出力でコンデンサ 234の充放電回路 が形成される。
そこで、今、図 13に示すように、コンデンサ 234の充電回路が形成されていると、コ ンデンサ 234の電位が上昇する。このコンデンサ 234の電位が出力される。これに伴 つてコンパレータ 231の非反転入力端子 b ( + )の電位が上昇し、反転入力端子 a (― )の電位 VIを超えたとき出力 1が S端子に加えられ、非 Q端子の出力でコンデンサ 23 4の放電回路が形成される。以後、コンデンサ 234の電位が降下し、このコンデンサ 2 34の電位が出力される。これに伴ってコンパレータ 232の非反転入力端子 b ( + )の 電位が降下し、反転入力端子 a (—)の電位 V2以下になったとき出力 1が R端子にカロ えられ、非 Q端子の出力でコンデンサ 234の充電回路が形成される。
以上のようにして、コンデンサ 234の充放電電位が出力され、三角波発振回路 23 が得られる。また、充電電流 Irの大きさで、三角波の勾配が決まる。
[0072] なお、本発明に係る 2石ブリッジの駆動する高周波加熱装置のインバータ回路とし ては、図 5で示した高周波加熱装置に限られるものではなぐこの他 2石でブリッジの アームを構成したスイッチング素子を用いた共振型回路方式のインバータ回路であ ればすべてに適用可能である。
図 14はこれらのインバータ回路の 3種を示すものである。
図 14 (a)において、直流電源 1は商用電源を全波整流して直流電圧 VDCを第 1の コンデンサ 41と第 2のコンデンサ 42との直列接続回路に、および第 1の半導体スイツ チング素子 6と第 2の半導体スイッチング素子 7との直列接続回路に印加する。第 1の コンデンサ 41と第 2のコンデンサ 42の接続点と第 1の半導体スイッチング素子 6と第 2 の半導体スイッチング素子 7の接続点との間にリーケージトランス 2の 1次卷線 3と第 3 のコンデンサ 5の直列接続回路が接続されている。第 1の半導体スイッチング素子 6と 第 2の半導体スイッチング素子 7の各ベースには、駆動部 8とからの制御信号が与え られる。そして駆動部 8の中に、デッドタイム作成回路 24が組み込まれている。なお、 リーケージトランス 2の 2次側およびマグネトロンは図示省略している。
そして、本発明の目的を実現するためのソフトスタートを実施する最低周波数制限 回路は、図 5と全く同じようにこの回路にも適用することができる。すなわち、図 5にお いて、入力電流 Iinと基準電流 Refと力もその差を求める誤差信号作成回路 21と、誤 差信号作成回路 21と交流全波信号とから周波数変調信号を作成する周波数変調 信号作成回路 22と、本発明の目的を実現するためのソフトスタートを実施する最低 周波数制限回路 221と、三角波搬送波を作成する発振回路 23と、デッドタイム作成 回路 24と、発振回路 23の三角波出力とデッドタイム作成回路 24の VQ7Cと VQ8C の各出力から各矩形波を形成する矩形波形成回路 25と、矩形波形成回路 25の出 力によってスイッチング素子をオン Zオフさせるパルスを発生するスイッチング素子 駆動回路 26を設ければよい。
このようにすることにより、電源短絡の生じない、 IGBTに熱損失の発生し難い、した がって無駄なエネルギーが費やされることのな 、、またノイズの発生し難 、インバータ 回路であって、し力も簡単な回路の付加でソフトスタートが可能となる。
図 14 (b)において、直流電源 1は商用電源を全波整流して直流電圧 VDCをリーケ ージトランス 2の 1次卷線 3と第 1のコンデンサ 5と第 2のコンデンサ 43との直列接続回 路に、および第 1の半導体スイッチング素子 6と第 2の半導体スイッチング素子 7との 直列接続回路に印加する。第 1のコンデンサ 5と第 2のコンデンサ 43の接続点と第 1 の半導体スイッチング素子 6と第 2の半導体スイッチング素子 7の接続点との間を短 絡している。第 1の半導体スイッチング素子 6と第 2の半導体スイッチング素子 7の各 ベースには、駆動部 8とからの制御信号が与えられる。そして駆動部 8の中にデッドタ ィム作成回路 24が組み込まれている。なお、リーケージトランス 2の 2次側およびマグ ネトロンは図示省略している。
そして、本発明の目的を実現するためのソフトスタートを実施する最低周波数制限 回路は、図 5と全く同じようにこの回路にも適用することができる。すなわち、図 5にお いて、入力電流 Iinと基準電流 Refと力もその差を求める誤差信号作成回路 21と、誤 差信号作成回路 21と交流全波信号とから周波数変調信号を作成する周波数変調 信号作成回路 22と、本発明の目的を実現するためのソフトスタートを実施する最低 周波数制限回路 221と、三角波搬送波を作成する発振回路 23と、デッドタイム作成 回路 24と、発振回路 23の三角波出力とデッドタイム作成回路 24の VQ7Cと VQ8C の各出力から各矩形波を形成する矩形波形成回路 25と、矩形波形成回路 25の出 力によってスイッチング素子をオン Zオフさせるパルスを発生するスイッチング素子 駆動回路 26を設ければよい。
このようにすることにより、電源短絡の生じない、 IGBTに熱損失の発生し難い、した 力 て無駄なエネルギーが費やされることのな 、、またノイズの発生し難 、インバータ 回路であって、し力も簡単な回路の付加でソフトスタートが可能となる。
図 14 (c)はフルブリッジ回路を示す回路である。
図において、直流電源 1は商用電源を全波整流して直流電圧 VDCを第 1の半導 体スイッチング素子 61と第 2の半導体スイッチング素子 71との直列接続回路におよ び第 3の半導体スイッチング素子 62と第 4の半導体スイッチング素子 72との直列接 続回路にそれぞれ印加する。第 1の半導体スイッチング素子 61と第 2の半導体スイツ チング素子 71の接続点と第 3の半導体スイッチング素子 62と第 4の半導体スィッチン グ素子 72の接続点との間にリーケージトランス 2の 1次卷線 3と第 3のコンデンサ 5の 直列接続回路が接続されている。第 3のコンデンサ 5は省略することができる。第 1の 半導体スイッチング素子 61、第 2の半導体スイッチング素子 71、第 3の半導体スイツ チング素子 62、そして第 4の半導体スイッチング素子 72の各ベースには、駆動部 8と 力もの制御信号が与えられる。そして駆動部 8の中にデッドタイム作成回路 24が組み 込まれている。なお、リーケージトランス 2の 2次側およびマグネトロンは図示省略して いる。
そして、本発明の目的を実現するためのソフトスタートを実施する最低周波数制限 回路は、図 5と全く同じようにこの回路にも適用することができる。すなわち、図 5にお いて、入力電流 Iinと基準電流 Refと力もその差を求める誤差信号作成回路 21と、誤 差信号作成回路 21と交流全波信号とから周波数変調信号を作成する周波数変調 信号作成回路 22と、本発明の目的を実現するためのソフトスタートを実施する最低 周波数制限回路 221と、三角波搬送波を作成する発振回路 23と、デッドタイム作成 回路 24と、発振回路 23の三角波出力とデッドタイム作成回路 24の VQ7Cと VQ8C の各出力から各矩形波を形成する矩形波形成回路 25と、矩形波形成回路 25の出 力によってスイッチング素子をオン Zオフさせるパルスを発生するスイッチング素子 駆動回路 26を設ければよい。
このようにすることにより、電源短絡の生じない、 IGBTに熱損失の発生し難い、した 力 て無駄なエネルギーが費やされることのな 、、またノイズの発生し難 、インバータ 回路であって、し力も簡単な回路の付加でソフトスタートが可能となる。
[0075] 図 15は本発明に係るインバータ回路の周波数対位相特性を示す線図である。図 1 5において、電圧の低い位相 0や 180度近傍では周波数を小さくし、位相 90度や 18 0度近傍では周波数を大きくするようにしている。このことにより、電圧の低い位相 0や 180度近傍では周波数を小さくしているので、図 1の電流対使用周波数特性から出 力電流 (電圧)は大きくなり、逆に位相 90度や 270度近傍では電圧は十分に高いの で、周波数を最大にして図 1の電流対使用周波数特性力も出力電流 (電圧)を絞つ ている。その結果、図 16に示すように、位相 0度〜 180度(180度〜 360度)に亘っ て出力電圧は均一に近いものとなる。
[0076] これに対して、図 15の周波数対位相特性を点線 F0で示す線図のように位相に対 して何も変化させな!/、場合は、電圧の低!、位相 0や 180度近傍でも周波数は大き 、 ので、図 1の電流対使用周波数特性力も出力電流 (電圧)は小さいままであり、その 結果、図 16に点線 VIで示すように、位相 0度や 180度近傍で十分な電圧が得られ ないものとなってしまう。
[0077] また、実線 F1は直流電源をつくるときの交流電流を CTで転出した入力電流 Ri (図 5)が基準電流 Refと等しくて誤差ゼロの場合の周波数—位相線図であり、実線 F2は 入力電流 Riが基準電流 Re;fよりも大きい場合の周波数一位相線図であり、図 1の使 用範囲内で周波数を高くして電流を下げるようにし、実線 F3は入力電流 Riが基準電 流 Re;fよりも小さい場合の周波数一位相線図であり、図 1の使用範囲内で周波数を 低くして電流を増加させて 、る。
[0078] 図 16において、 Vinは商用電源の電圧波形であり、その上の点線 VIは全位相に 亘つてある一定の周波数でスイッチングした場合の電圧波形で、 voはさらにこれに 図 15のような周波数変調をカ卩えるた電圧 (昇圧トランスの 2次側電圧)である。 Vin、 V 1、 V0はそれぞれ比率は大きく異なるが見易いように同一図上に表している。図 15 の点線 F0のように変調をかけない一定の周波数のときの昇圧トランスの 2次側電圧 は点線 VIであり、この波形は非線形であるマグネトロンの負荷には整合していない。 これに対して、図 15の線図 F1のように、電圧の低い位相 0や 180度近傍では周波数 を小さくし、位相 90度や 180度近傍では周波数を大きくすることにより、電圧の低い 位相 0や 180度近傍では出力電流 (電圧)は大きくなり、逆に位相 90度や 270度近 傍では出力電流(電圧)を絞っているので、図 16の V0に示すように、位相 0度〜 180 度(180度〜 360度)に亘つてどの位相においても一定の電圧が昇圧トランスの 2次 側に発生するようにしている。この波形は非線形であるマグネトロンの負荷には整合 している。
[0079] なお、図 5のスイッチング素子 (IGBT) 6、 7をデュティ制御した場合も、このデッドタ ィム作成回路はデッドタイムの制御に有効である。なぜなら、デッドタイムの制御のた めにコレクタ電圧 VQ7Cと VQ8Cを連動させて上下させるには、中心電圧 6Vを変え ればよぐこの 6Vを変えることによって、 2個のトランジスタ Q8、 Q7のオン'オフの比 を変える(デュティ制御)ことができるからである。すなわち、 2つのトランジスタのデュ 一ティ比が 50対 50のとき( 12V電源で動作させて!/、るので、 6 Vで動作させて!/、ると き)が出力が最も高ぐ 6V以下または以上にしてゆくと、 2つのトランジスタのコレクタ 電圧 VQ8Cと VQ7Cを連動させて同時に上下させることになり、 2つのトランジスタの オン ·オフ比が変わってゆき、したがって出力が減ってゆく。しかしながら、この場合で も、抵抗 R8と R7に発生するオフセット電圧は変わらないので、一定のまま推移する。 よってこの回路はデュティ制御の場合にもデッドタイムの可変に有効となることが判る
[0080] 以上のように、本発明によれば、直流をチヨッビングして交流を出力するための 2個 の半導体スイッチング素子を駆動する駆動手段が半導体スイッチング素子を駆動す る周波数の最低周波数を制限する機能を備え、高周波加熱装置の動作開始時に前 記最低周波数の設定を高くしておき、その後徐々に前記最低周波数の設定を低くす るものであり、具体的に、交流電源の入力電流と基準電流との差から誤差信号を作 成する誤差信号作成回路と、前記交流電源を整流して得られる整流電圧 Z整流電 流を前記誤差信号作成回路の出力 (誤差信号)によって補正する周波数変調信号 作成回路とを備え、該周波数変調信号作成回路の出力をデッドタイム作成回路に与 えるようにした高周波加熱装置において、前記周波数変調信号作成回路と前記デッ ドタイム作成回路との間に最低周波数制限回路を挿入し、該最低周波数制限回路 は制限周波数と前記周波数変調信号作成回路の出力信号を基にして前記デッドタ ィム作成回路に与え、前記高周波加熱装置の動作開始時は該最低周波数制限回 路の設定周波数を前記周波数変調信号作成回路の出力より高く設定し、動作開始 力ゝらの時間経過とともに徐々に前記制限周波数を低減し、前記デッドタイム作成回路 に与える信号は前記制限周波数の低減にあわせて、前記制限周波数と前記周波数 変調信号作成回路の出力信号でスイッチング周波数が高い信号を時間経過とともに 選択し、徐々に前記周波数変調信号作成回路の出力信号に切り換えるように構成し 、また、前記最低周波数制限回路が、コンデンサを備え、前記高周波加熱装置の停 止中に前記コンデンサを充電しておき、前記高周波加熱装置動作開始と共に該コン デンサの電圧を前記デッドタイム作成回路に与えかつ該コンデンサの充電電荷を放 電させるようにしたことで、 IGBTに熱損失の発生し難い、したがって無駄なエネルギ 一が費やされることのない、またノイズの発生し難いインバータ回路を得ると共に、簡 単な回路でソフトスタートが可能となる。
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。
本出願は、 2004年 4月 Ί日出願の日本特許出願、出願番号 2004— 113272に基 づくものであり、その内容はここに参照として取り込まれる。
産業上の利用可能性
本発明の高周波加熱装置によれば、電源短絡の生じな!/、、 IGBTに熱損失の発生 し難い、したがって無駄なエネルギーが費やされることのない、またノイズの発生し難 V、インバータ回路であって、しかも簡単な回路の付加でソフトスタートが可能となる。

Claims

請求の範囲
[1] 交流電源と該交流電源の電圧を整流する整流回路と該整流回路の出力電圧を平 滑する平滑コンデンサとから成る直流電源と、 2個の半導体スイッチング素子力 なる 直列回路と、リーケージトランスの 1次卷線とコンデンサが接続された共振回路とを有 し、前記直列回路は前記直流電源に並列に接続し、かつ交流等価回路において前 記共振回路の一端は前記直列回路の中点に、他端は前記直流電源の一端に接続 されると共に、それぞれの前記半導体スイッチング素子を駆動する駆動手段と、前記 リーケージトランスの 2次卷線に接続される整流手段と、前記整流手段に接続される マグネトロンと力 成るマグネトロン駆動用の高周波加熱装置であって、それぞれの 半導体スイッチング素子が同時にオフするデッドタイム作成回路を備えた高周波加 熱装置において、
前記駆動手段は前記半導体スイッチング素子を駆動する周波数の最低周波数を 制限する機能を備え、該高周波加熱装置の動作開始時に前記最低周波数の設定を 高くしておき、その後徐々に前記最低周波数の設定を低くすることを特徴とする高周 波加熱装置。
[2] 交流電源と該交流電源の電圧を整流する整流回路と該整流回路の出力電圧を平 滑する平滑コンデンサとから成る直流電源と、 2個の半導体スイッチング素子力 なる 直列回路の 2組と、リーケージトランスの 1次卷線とコンデンサが接続された共振回路 とを有し、前記 2組の直列回路はそれぞれ前記直流電源に並列に接続し、前記共振 回路の一端は前記一方の直列回路の中点に、他端は他方の直列回路の中点に接 続されると共に、それぞれの前記半導体スイッチング素子を駆動する駆動手段と、前 記リーケージトランスの 2次卷線に接続される整流手段と、前記整流手段に接続され るマグネトロンと力 成るマグネトロン駆動用の高周波加熱装置であって、それぞれの 半導体スイッチング素子が同時にオフするデッドタイム作成回路を備えた高周波加 熱装置において、
前記駆動手段は前記半導体スイッチング素子を駆動する周波数の最低周波数を 制限する機能を備え、該高周波加熱装置の動作開始時に前記最低周波数の設定を 高くしておき、その後徐々に前記最低周波数の設定を低くすることを特徴とする高周 波加熱装置。
[3] 交流電源と該交流電源の電圧を整流する整流回路と該整流回路の出力電圧を平 滑する平滑コンデンサとから成る直流電源と、 2個の半導体スイッチング素子力 なる 直列回路と、リーケージトランスの 1次卷線とコンデンサが接続された共振回路とを有 し、前記直列回路は前記直流電源に並列に接続し、前記共振回路は前記半導体ス イッチング素子の一方に並列接続されると共に、それぞれの前記半導体スイッチング 素子を駆動する駆動手段と、前記リーケージトランスの 2次卷線に接続される整流手 段と、前記整流手段に接続されるマグネトロンとから成るマグネトロン駆動用の高周波 加熱装置であって、それぞれの半導体スイッチング素子が同時にオフするデッドタイ ム作成回路を備えた高周波加熱装置において、
前記駆動手段は前記半導体スイッチング素子を駆動する周波数の最低周波数を 制限する機能を備え、該高周波加熱装置の動作開始時に前記最低周波数の設定を 高くしておき、その後徐々に前記最低周波数の設定を低くすることを特徴とする高周 波加熱装置。
[4] 前記交流電源の入力電流と基準電流との差から誤差信号を作成する誤差信号作 成回路と、前記交流電源を整流して得られる整流電圧 Z整流電流を前記誤差信号 作成回路の出力 (誤差信号)によって補正する周波数変調信号作成回路とを備え、 該周波数変調信号作成回路の出力を前記デッドタイム作成回路に与えるようにした 高周波加熱装置において、
前記周波数変調信号作成回路と前記デッドタイム作成回路との間に最低周波数制 限回路を挿入し、該最低周波数制限回路は制限周波数と前記周波数変調信号作 成回路の出力信号を基にして前記デッドタイム作成回路に与え、前記高周波加熱装 置の動作開始時は該最低周波数制限回路の設定周波数を前記周波数変調信号作 成回路の出力より高く設定し、動作開始からの時間経過とともに徐々に前記制限周 波数を低減し、前記デッドタイム作成回路に与える信号は前記制限周波数の低減に あわせて、前記制限周波数と前記周波数変調信号作成回路の出力信号でスィッチ ング周波数が高い信号を時間経過とともに選択し、徐々に前記周波数変調信号作 成回路の出力信号に切り換えるように構成したことを特徴とする請求項 1〜3のいず れか 1項記載の高周波加熱装置。
[5] 前記最低周波数制限回路が、コンデンサを備え、前記高周波加熱装置の停止中 に前記コンデンサを充電しておき、前記高周波加熱装置動作開始と共に該コンデン サの電圧を前記デッドタイム作成回路に与えかつ該コンデンサの充電電荷を放電さ せるようにしたことを特徴とする請求項 4記載の高周波加熱装置。
[6] 前記デッドタイム作成回路は、スイッチング周波数に関係なく一定または微増であ ることを特徴とする請求項 1〜5のいずれか 1項記載の高周波加熱装置。
[7] 前記デッドタイム作成回路はスイッチング周波数が高くなるにしたがってデッドタイ ムを増加させることを特徴とする請求項 1〜5のいずれ力 1項記載の高周波加熱装置
[8] 前記デッドタイム作成回路は、所定のスイッチング周波数以下でデッドタイムを一定 または微増させることを特徴とする請求項 7記載の高周波加熱装置。
[9] 前記デッドタイム作成回路は、所定のスイッチング周波数以上でデッドタイムを急増 させることを特徴とする請求項 7又は 8記載の高周波加熱装置。
[10] 所定のスイッチング周波数以下での前記デッドタイムの一定値若しくは微増値、又 は所定のスイッチング周波数以上での前記デッドタイムの急増値が可変であることを 特徴とする請求項 8又は 9記載の高周波加熱装置。
[11] 前記所定のスイッチング周波数の値が可変であることを特徴とする請求項 8〜: LOの いずれか 1項記載の高周波加熱装置。
[12] 前記デッドタイム作成回路はスイッチング周波数が高くなるにしたがってデッドタイ ムを階段状に増加させるものであることを特徴とする請求項 1〜5のいずれか 1項記 載の高周波加熱装置。
[13] 前記デッドタイム作成回路は、スイッチング周波数の増加に比例して第一の傾きで 変化し、かつ所定のスイッチング周波数からは第二の傾きで変化するプラスおよびマ ィナスのそれぞれのオフセット電圧を基にデッドタイムを作成するものであることを特 徴とする請求項 1〜12のいずれか 1項記載の高周波加熱装置。
[14] 前記デッドタイム作成回路は、 VCC電源と、デューティ制御電源と、スイッチング周 波数に比例して変化する第一の電流と、所定の周波数から流れ出しかつスィッチン グ周波数に比例して変化する第二の電流と、前記二つの電流を合成してかつ所定 の係数をかけた第三の電流と、前記デューティ制御電源に前記第三の電流に比例し たプラスおよびマイナスのそれぞれのオフセット電圧を付カ卩して成る二つの上位.下 位電位を作成する上位'下位電位作成手段とを有し、前記二つの上位'下位電位を 基にデッドタイムを作成することを特徴とする請求項 1〜13のいずれ力 1項記載の高 周波加熱装置。
前記デューティ制御電源の電圧および前記スイッチング周波数の少なくとも一方を 変化させて入力電力または入力電流制御を行うようにしたことを特徴とする請求項 14 記載の高周波加熱装置。
PCT/JP2005/006606 2004-04-07 2005-04-04 高周波加熱装置 WO2005099309A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/599,431 US8217323B2 (en) 2004-04-07 2005-04-04 High-frequency heating device
EP05728854A EP1734791B1 (en) 2004-04-07 2005-04-04 High-frequency heating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004113272A JP4142609B2 (ja) 2004-04-07 2004-04-07 高周波加熱装置
JP2004-113272 2004-04-07

Publications (1)

Publication Number Publication Date
WO2005099309A1 true WO2005099309A1 (ja) 2005-10-20

Family

ID=35125474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006606 WO2005099309A1 (ja) 2004-04-07 2005-04-04 高周波加熱装置

Country Status (5)

Country Link
US (1) US8217323B2 (ja)
EP (1) EP1734791B1 (ja)
JP (1) JP4142609B2 (ja)
CN (1) CN100553385C (ja)
WO (1) WO2005099309A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007061002A1 (ja) 2005-11-25 2007-05-31 Matsushita Electric Industrial Co., Ltd. 高周波誘電加熱用電力制御装置およびその制御方法
EP2178340A3 (en) * 2006-06-02 2014-02-12 Panasonic Corporation Power Control Unit for High-Frequency Dielectric Heating and Control Method Thereof

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4912581B2 (ja) * 2004-10-18 2012-04-11 パナソニック株式会社 高周波加熱装置
JP4479511B2 (ja) * 2005-01-18 2010-06-09 パナソニック株式会社 高周波加熱装置
JP5092286B2 (ja) * 2006-06-07 2012-12-05 パナソニック株式会社 高周波誘電加熱用電力制御装置およびその制御方法
JP5124996B2 (ja) * 2006-06-07 2013-01-23 パナソニック株式会社 高周波誘電加熱用電力制御装置およびその制御方法
JP5124995B2 (ja) * 2006-06-07 2013-01-23 パナソニック株式会社 高周波誘電加熱用電力制御装置およびその制御方法
JP4978062B2 (ja) * 2006-06-02 2012-07-18 パナソニック株式会社 高周波誘電加熱用電力制御装置およびその制御方法
US20080285200A1 (en) * 2007-05-15 2008-11-20 Jeffrey Messer System and method for forming and controlling electric arcs
GB2449931B (en) 2007-06-08 2011-11-16 E2V Tech Power supply for radio frequency heating apparatus
US20090011940A1 (en) * 2007-06-20 2009-01-08 Anthony Francis Issa System and method for using a vacuum core high temperature superconducting resonator
WO2009070195A1 (en) * 2007-11-27 2009-06-04 Extremely Ingenious Engineering, Llc Methods and systems for wireless energy and data transmission
JP5065188B2 (ja) * 2008-05-23 2012-10-31 オリジン電気株式会社 直列共振型コンバータ
SG165202A1 (en) * 2009-03-25 2010-10-28 United Technologies Corp Method and apparatus for cleaning a component using microwave radiation
IT1397088B1 (it) * 2009-12-28 2012-12-28 St Microelectronics Srl Circuito integrato per un oscillatore atto a pilotare un dispositivo di controllo di un convertitore risonante a commutazione.
CN103078524A (zh) * 2013-01-12 2013-05-01 华南理工大学 一种开关工作频率可变的直流电源及其控制方法
CN104910925A (zh) * 2015-05-14 2015-09-16 成都中冶节能环保工程有限公司 基于电源调整电路的焦炉炉顶余热回收发电系统
EP3151631B1 (en) * 2015-10-02 2018-06-13 Electrolux Appliances Aktiebolag Induction heating method and system
TWI589189B (zh) * 2016-04-15 2017-06-21 財團法人工業技術研究院 模組化微波電源供應器
CN109417311B (zh) * 2016-06-30 2021-12-14 三菱电机株式会社 非接触电力传送系统以及感应加热烹调器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0298690U (ja) * 1989-01-25 1990-08-06
JP2000058252A (ja) * 1998-08-06 2000-02-25 Matsushita Electric Ind Co Ltd 高周波加熱装置
JP2003259643A (ja) * 2002-03-04 2003-09-12 Orc Mfg Co Ltd 電流共振型ソフトスイッチング電源回路
JP2005123026A (ja) * 2003-10-16 2005-05-12 Matsushita Electric Ind Co Ltd 高周波加熱装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61211987A (ja) 1985-03-18 1986-09-20 三洋電機株式会社 マグネトロンの高周波駆動回路
JPS6266595A (ja) * 1985-09-19 1987-03-26 松下電器産業株式会社 マグネトロン用インバ−タ電源制御方法
JPH0298490A (ja) 1988-10-06 1990-04-10 Canon Inc 転写記録媒体
JPH0298690A (ja) 1988-10-06 1990-04-11 Japan Atom Energy Res Inst 加圧水型原子炉の冷却装置
JPH0298490U (ja) 1989-01-24 1990-08-06
US5274208A (en) * 1990-03-28 1993-12-28 Kabushiki Kaisha Toshiba High frequency heating apparatus
JPH04215287A (ja) 1990-12-12 1992-08-06 Sanyo Electric Co Ltd 高周波加熱装置
US5321235A (en) 1991-06-04 1994-06-14 Sanyo Electric Co., Ltd. Half-bridge converter switching power supply for magnetron
JPH06266595A (ja) 1993-03-16 1994-09-22 Hitachi Ltd データ辞書構成方法
JPH0745361A (ja) 1993-07-28 1995-02-14 Matsushita Electric Ind Co Ltd 高周波加熱装置
JP3216568B2 (ja) 1997-04-30 2001-10-09 松下電器産業株式会社 高周波加熱装置
EP1103163B1 (en) * 1998-08-06 2003-02-12 Matsushita Electric Industrial Co., Ltd. High frequency heating apparatus
JP4752159B2 (ja) 2001-09-05 2011-08-17 パナソニック株式会社 高周波電源装置
JP2003115370A (ja) 2001-10-05 2003-04-18 Matsushita Electric Ind Co Ltd 高周波加熱装置
JP3977666B2 (ja) * 2002-02-28 2007-09-19 株式会社東芝 インバータ調理器
JP3830144B2 (ja) 2002-06-21 2006-10-04 松下電器産業株式会社 高周波誘電加熱用電力制御方法およびその装置
JP2004113272A (ja) 2002-09-24 2004-04-15 Sankyo Kk 遊技用管理装置
US7050310B2 (en) * 2004-02-10 2006-05-23 Niko Semiconductor Co., Ltd. Synchronous rectification circuit with dead time regulation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0298690U (ja) * 1989-01-25 1990-08-06
JP2000058252A (ja) * 1998-08-06 2000-02-25 Matsushita Electric Ind Co Ltd 高周波加熱装置
JP2003259643A (ja) * 2002-03-04 2003-09-12 Orc Mfg Co Ltd 電流共振型ソフトスイッチング電源回路
JP2005123026A (ja) * 2003-10-16 2005-05-12 Matsushita Electric Ind Co Ltd 高周波加熱装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007061002A1 (ja) 2005-11-25 2007-05-31 Matsushita Electric Industrial Co., Ltd. 高周波誘電加熱用電力制御装置およびその制御方法
EP1954098A1 (en) * 2005-11-25 2008-08-06 Matsushita Electric Industrial Co., Ltd. Power control device for high-frequency dielectric heating and its control method
EP1954098A4 (en) * 2005-11-25 2010-04-21 Panasonic Corp POWER CONTROL DEVICE FOR HIGH FREQUENCY DIELECTRIC HEATING AND METHOD OF CONTROLLING THE SAME
EP2160073A3 (en) * 2005-11-25 2010-04-21 Panasonic Corporation Power control device for high-frequency dielectric heating and its control method
EP2160074A3 (en) * 2005-11-25 2010-04-21 Panasonic Corporation Power control device for high-frequency dielectric heating and its control method
EP2205044A1 (en) * 2005-11-25 2010-07-07 Panasonic Corporation Power control device for high-frequency dielectric heating and its control method
US8258446B2 (en) 2005-11-25 2012-09-04 Panasonic Corporation Power control apparatus for high-frequency dielectric heating and power control method for the same
US8338762B2 (en) 2005-11-25 2012-12-25 Panasonic Corporation Power control apparatus for high-frequency dielectric heating and power control method for the same
US8492687B2 (en) 2005-11-25 2013-07-23 Panasonic Corporation Power control apparatus for high-frequency dielectric heating and power control method for the same
US8642934B2 (en) 2005-11-25 2014-02-04 Panasonic Corporation Power control apparatus for high-frequency dielectric heating and power control method for the same
EP2178340A3 (en) * 2006-06-02 2014-02-12 Panasonic Corporation Power Control Unit for High-Frequency Dielectric Heating and Control Method Thereof

Also Published As

Publication number Publication date
EP1734791A4 (en) 2009-07-01
JP4142609B2 (ja) 2008-09-03
CN100553385C (zh) 2009-10-21
EP1734791A1 (en) 2006-12-20
EP1734791B1 (en) 2011-06-08
US8217323B2 (en) 2012-07-10
US20070195561A1 (en) 2007-08-23
CN1961612A (zh) 2007-05-09
JP2005302375A (ja) 2005-10-27

Similar Documents

Publication Publication Date Title
WO2005099309A1 (ja) 高周波加熱装置
WO2005109957A1 (ja) 高周波加熱装置
EP1742512B1 (en) High-frequency heating apparatus
KR100766534B1 (ko) 마그네트론 구동용 전원
US6335520B1 (en) Microwave oven and a method for controlling the same
KR100399134B1 (ko) 전자렌지
JP4142549B2 (ja) 高周波加熱装置
JP4350772B2 (ja) 高周波加熱装置
EP1841290B1 (en) High-frequency heater
KR100361027B1 (ko) 전자렌지
JPH08227790A (ja) 高周波加熱装置
US20090283518A1 (en) High frequency heating apparatus
JP2002246161A (ja) 誘導加熱装置
JPH07101992B2 (ja) インバ−タ装置
JPH0817566A (ja) マグネトロン駆動用電源

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005728854

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 200580017673.7

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005728854

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10599431

Country of ref document: US

Ref document number: 2007195561

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10599431

Country of ref document: US