WO2005095866A1 - 調湿装置 - Google Patents

調湿装置 Download PDF

Info

Publication number
WO2005095866A1
WO2005095866A1 PCT/JP2005/006106 JP2005006106W WO2005095866A1 WO 2005095866 A1 WO2005095866 A1 WO 2005095866A1 JP 2005006106 W JP2005006106 W JP 2005006106W WO 2005095866 A1 WO2005095866 A1 WO 2005095866A1
Authority
WO
WIPO (PCT)
Prior art keywords
humidity control
air
adsorption heat
adsorption
damper
Prior art date
Application number
PCT/JP2005/006106
Other languages
English (en)
French (fr)
Inventor
Tomohiro Yabu
Ryusuke Fujiyoshi
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to AU2005227461A priority Critical patent/AU2005227461B2/en
Priority to ES05727744T priority patent/ES2424144T3/es
Priority to EP05727744.4A priority patent/EP1736711B1/en
Priority to US11/547,188 priority patent/US20080265045A1/en
Publication of WO2005095866A1 publication Critical patent/WO2005095866A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/147Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with both heat and humidity transfer between supplied and exhausted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1429Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant alternatively operating a heat exchanger in an absorbing/adsorbing mode and a heat exchanger in a regeneration mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/02System or Device comprising a heat pump as a subsystem, e.g. combined with humidification/dehumidification, heating, natural energy or with hybrid system
    • F24F2203/021Compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/02System or Device comprising a heat pump as a subsystem, e.g. combined with humidification/dehumidification, heating, natural energy or with hybrid system
    • F24F2203/026Absorption - desorption cycle

Definitions

  • the present invention relates to a humidity control apparatus for supplying dehumidified or humidified air to a room.
  • a humidity control device that controls the humidity of air using an adsorbent.
  • This humidity control device includes an adsorption element carrying an adsorbent, and adsorbs water vapor in the air to dehumidify the air.
  • the humidity control apparatus includes a refrigerant circuit for performing a refrigeration cycle, and heats the adsorption element with air heated by a condenser of the refrigerant circuit, and humidifies the air with water vapor desorbed from the adsorption element.
  • the humidity control device supplies one of the dehumidified air and the humidified air to the room and discharges the other to the outside.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-232539
  • the humidity control apparatus of Patent Document 1 supplies conditioned air to a room through a duct.
  • a single humidity control device can dehumidify and humidify multiple rooms. In that case, only one of the dehumidified air-powered humidified air is supplied to each room at the same time.
  • the purpose of use and the state of use may differ from room to room, and there may be situations where dehumidification is required in one room and humidification is required in another room.
  • dehumidification is required in one room
  • humidification is required in another room.
  • the humidity control device may be easily used.
  • the present invention has been made in view of its power, and its object is to provide a An object of the present invention is to provide a humidity control device which is easy to use when adjusting the humidity of a room.
  • the first invention is directed to a humidity control device.
  • a plurality of humidity control units (11, 12) for selectively performing a dehumidifying operation for supplying dehumidified air to a room and a humidifying operation for supplying humidified air to a room, and a compressor (21) are provided.
  • the humidity control unit (11, 12) is connected to the compressor unit (13) to form a refrigerant circuit (15), and the refrigerant circuit (15) At least one of heating and cooling of the adsorbent is performed by the refrigerant of 15), and the humidity of the air is adjusted by contact with the adsorbent.
  • the humidity control units (11, 12) also, regardless of whether the other humidity control units (11, 12) are performing the power humidification operation during the dehumidification operation, both the dehumidification operation and the humidification operation can be selected.
  • the humidity control units (11, 12) carry an adsorbent heat exchanger that carries the adsorbent and is connected to the refrigerant circuit (15). 32, 41, 42), and the air taken in is sent to the adsorption heat exchange (31, 32, 41, 42) to be brought into contact with the adsorbent.
  • the humidity control units (11, 12) take in the first air and the second air, and form the first adsorption heat exchange functioning as an evaporator.
  • (31,41) dehumidifies the first air to become a condenser and humidifies the second air with a second adsorption heat exchanger (32,42), and evaporates! / ⁇ And the operation of dehumidifying the first air by the second adsorption heat exchanger (32, 42) and humidifying the second air by the first adsorption heat exchange (31, 41), which serves as a condenser.
  • the dehumidified first air is supplied to the room and the humidified second air is discharged outside the room.
  • the humidified second air is supplied to the room to dehumidify the first air. Is discharged outdoors.
  • the first adsorption heat exchange (31, 41), the expansion mechanism (33, 43) and the second adsorption heat exchange (31, 41) are provided in the humidity control units (11, 12).
  • the heat exchange (32, 42) is connected in series with the heat exchange (32, 42) in order to form a humidity control circuit (30, 40) forming a part of the refrigerant circuit (15), while the compressor unit (13) has the refrigerant
  • a reversing mechanism (22) is connected to the circuit (15) and is capable of reversing the flow direction of the refrigerant in all the humidity control circuits (30, 40).
  • the first heat of adsorption is provided in the humidity control units (11, 12).
  • the exchange (31, 41), the expansion mechanism (33, 43) and the second adsorption heat exchange (32, 42) are connected in series in this order, and the humidity control circuit (30,
  • a reversing mechanism (34,44) is connected to the humidity control circuit (30,40) to enable the flow direction of the refrigerant in the humidity control circuit (30,40) to be reversed. Is what is done.
  • the humidity control device (10) is configured by one compressor unit (13) and the plurality of humidity control units (11, 12). Each of the humidity control units (11, 12) is connected to the compressor unit (13).
  • the humidity control units (11, 12) and the compressor unit (13) connected to each other form a refrigerant circuit (15). When the compressor of the compressor unit (13) is operated, the refrigerant circulates in the refrigerant circuit (15) to perform a refrigeration cycle.
  • each of the plurality of humidity control units (11, 12) provided in the humidity control apparatus (10) of the present invention both the dehumidification operation and the humidification operation are possible.
  • Each of the humidity control units (11, 12) controls the humidity of the air by exchanging water vapor between the air and the adsorbent. Supply humidified air to the room.
  • the humidity control units (11, 12) use the refrigerant flowing through the refrigerant circuit (15) to heat and / or cool the adsorbent. Heating the adsorbent promotes desorption of water vapor from the adsorbent, and cooling the adsorbent promotes adsorption of water vapor to the adsorbent.
  • the dehumidification operation and the humidification operation can be set individually for each of the humidity control units (11, 12).
  • the remaining humidity control units (11, 12) may be in the dehumidifying operation or the humidifying operation. Both the operation and the humidification operation can be performed.
  • the humidity control units (11, 12) are provided with the adsorption heat exchangers (31, 32, 41, 42).
  • An adsorbent is carried by the adsorption heat exchange (31, 32, 41, 42), and the adsorbent comes into contact with air passing through the adsorption heat exchanger (31, 32, 41, 42).
  • the adsorption heat exchangers (31, 32, 41, 42) are connected to the refrigerant circuit (15). In a state where the adsorption heat exchange (31, 32, 41, 42) becomes a condenser, the adsorbent carried by the adsorption heat exchanger (31, 32, 41, 42) is generated by the refrigerant in the refrigerant circuit (15).
  • Adsorption heat exchange ⁇ (31,32,41,42) becomes an evaporator, adsorption heat exchange
  • the adsorbent carried by the containers (31, 32, 41, 42) is cooled by the refrigerant in the refrigerant circuit (15).
  • each of the humidity control units (11, 12) is provided with a plurality of adsorption heat exchangers (31, 32, 41, 42). Each of these humidity control units (11, 12) repeats two operations alternately. In one operation of the humidity control units (11, 12), the first adsorption heat exchanger (31, 41) becomes an evaporator, the second adsorption heat exchange (32, 42) becomes a condenser, and the first adsorption heat exchanger (32, 42) becomes a condenser. The first air is dehumidified by the adsorption heat exchange (31, 41), and the second air is humidified by the second adsorption heat exchanger (32, 42).
  • the second adsorption heat exchanger (32, 42) becomes an evaporator and the first adsorption heat exchanger (31, 41) becomes a condenser. Then, the first air is dehumidified by the second adsorption heat exchanger (32, 42), and the second air is humidified by the first adsorption heat exchange (31, 41). That is, in the humidity control units (11, 12), dehumidification of the first air and humidification of the second air are alternately performed in each of the adsorption heat exchangers (31, 32, 41, 42). Then, the humidity control units (11, 12) supply one of the first air and the second air passing through the adsorption heat exchanger (31, 32, 41, 42) to the room, and discharge the other to the outside.
  • the humidity control circuits (30, 40) are formed in each of the humidity control units (11, 12).
  • the first adsorption heat exchanger (31, 41), expansion mechanism (33, 43) and second adsorption heat exchange (32 , 42) are connected in series in order.
  • the humidity control circuit (30, 40) when the refrigerant flows from the first adsorption heat exchanger (31, 41) toward the second adsorption heat exchanger (32, 42), the first adsorption heat exchange (31,41) becomes a condenser and the second adsorption heat exchange (32,42) becomes an evaporator.
  • the reversing mechanism (22) is installed in the compressor unit (13).
  • the reversing mechanism (22) is connected to the refrigerant circuit (15).
  • the flow direction of the refrigerant in the humidity control circuit (30, 40) of all humidity control units (11, 12) can be reversed by the operation of the reversing mechanism (22) installed in the compressor unit (13)! / Puru.
  • the reversing mechanism (34, 44) is provided in the humidity control circuit (30, 40) of each humidity control unit (11, 12).
  • each humidity control circuit (30, 40) Mechanisms (34,44) are installed.
  • each humidity control unit (11, 12) of the humidity control device (10) it is possible to independently select whether to perform the dehumidification operation or the humidification operation. For this reason, when each humidity control unit (11, 12) supplies the conditioned air to a separate room, each humidity control unit (11, 12) uses the humidity control unit (11, 12) for the room in charge of the humidity control. It becomes possible to select either dehumidification operation or humidification operation according to the situation. In other words, in a situation where a room that needs dehumidification and a room that needs humidification are mixed at the same time, the dehumidification operation is performed by the humidity control units (11, 12) that supply air to the room that requires dehumidification.
  • Humidification operation can be performed by the humidity control units (11, 12) for supplying air to a comfortable room. Therefore, according to the present invention, the operation according to the request of each room can be performed by the humidity control units (11, 12), and the humidity control device (10) which is easy to use when adjusting the humidity of a plurality of rooms. Can be provided.
  • the adsorbent is carried in the adsorption heat exchange (31, 32, 41, 42) connected to the refrigerant circuit (15), the adsorbent is transferred to the refrigerant circuit (15).
  • the refrigerant can be heated or cooled efficiently by the refrigerant of 15).
  • the amount of water vapor transferred between the adsorbent and the air can be increased, and the capacity of the humidity control unit (11, 12) can be improved or the humidity control unit (11, 12) can be downsized. it can.
  • each of the humidity control units (11, 12) is configured such that one of the first and second adsorption heat exchangers (31, 32, 41, 42) adsorbs water vapor while the other adsorbs. Performs a batch-type operation in which is reproduced. Therefore, according to the present invention, the dehumidified first air and the humidified second air are continuously generated in each humidity control unit (11, 12), and the obtained first air or second air is generated. It can be supplied to the room continuously.
  • the first and second adsorption heat exchangers (11, 12) of the third invention.
  • the one that dehumidifies the first air is the evaporator
  • the one that humidifies the second air is the condenser. Therefore, in the adsorption heat exchange (31, 32, 41, 42) serving as an evaporator, the adsorbent is cooled by the refrigerant in the refrigerant circuit (15), and the adsorbent absorbs water vapor in the air. Wearing is promoted. In the adsorption heat exchange (31, 32, 41, 42) serving as a condenser, the adsorbent is heated by the refrigerant in the refrigerant circuit (15), and the desorption of water vapor from the adsorbent is promoted.
  • both the adsorption of water vapor to the adsorbent and the desorption of water vapor from the adsorbent can be promoted, and the capacity of the humidity control unit (11, 12) can be improved or the humidity control unit (11, 12) can be improved. ) Can be reduced in size.
  • the direction of flow of the refrigerant in all the humidity control circuits (30, 40) is reversed by the reversing mechanism (22) provided in the compressor unit (13).
  • the switching of the refrigerant flow direction in the humidity control circuits (30, 40) in accordance with the operation switching in each humidity control unit (11, 12) is performed only by the reversing mechanism (22) of the compressor unit (13). Is going. Therefore, according to the present invention, the number of components provided in the refrigerant circuit (15) can be minimized, and the humidity control device (10) can be simplified.
  • the reversing mechanism (22) operates relatively frequently and is likely to be a noise source.
  • the reversing mechanism (22) is provided in the compressor unit (13) which is assumed to be often installed outdoors. Therefore, according to the present invention, it is possible to avoid the problem of noise caused by the operation of the reversing mechanism (22).
  • each of the humidity control units (11, 12) is provided with a reversing mechanism (34, 44). Therefore, the flow direction of the refrigerant in the humidity control circuits (30, 40) of the respective humidity control units (11, 12) can be individually set by the respective reversing mechanisms (34, 44). Therefore, according to the present invention, it is possible to individually set the operation switching timing for each humidity control unit (11, 12).
  • FIG. 1 is a refrigerant circuit diagram showing a schematic configuration of a humidity control apparatus according to Embodiment 1 and an operation of both humidity control units during a dehumidifying operation.
  • FIG. 1 (A) shows a first operation.
  • FIG. 4B shows the flow of air and refrigerant in the inside, and
  • FIG. 6B shows the flow of air and refrigerant in the second operation.
  • FIG. 2 is a refrigerant circuit diagram showing a schematic configuration of a humidity control apparatus according to Embodiment 1 and an operation of both humidity control units during a humidifying operation.
  • FIG. (B) shows the flow of air and refrigerant during the second operation.
  • FIG. 3 is a schematic configuration of a humidity control apparatus and a first humidity control unit according to a first embodiment.
  • FIG. 4A is a refrigerant circuit diagram showing the operation of the second humidification unit during the humidifying operation during rotation, and FIG. 4A shows the flow of air and refrigerant during the first operation, and FIG. Shows the flow of air and refrigerant inside.
  • FIG. 4 is a perspective view showing a structure of a humidity control unit according to Embodiment 1.
  • FIG. 5 is a plan view and a left side view showing a schematic configuration of a humidity control unit in Embodiment 1.
  • FIG. 6 is a schematic plan view, a left side view, and a right side view of the humidity control unit showing a first operation of the dehumidifying operation in the first embodiment.
  • FIG. 7 is a schematic plan view, a left side view, and a right side view of the humidity control unit showing a second operation of the dehumidifying operation in the first embodiment.
  • FIG. 8 is a schematic plan view, a left side view, and a right side view of the humidity control unit showing a first operation of the humidification operation in the first embodiment.
  • FIG. 9 is a schematic plan view, a left side view, and a right side view of the humidity control unit showing a second operation of the humidifying operation in the first embodiment.
  • FIG. 10 is a schematic plan view, a left side view, and a right side view of a humidity control unit showing a first operation of a dehumidifying operation in a first modification of the first embodiment.
  • FIG. 11 is a schematic plan view, a left side view, and a right side view of a humidity control unit illustrating a second operation of the dehumidifying operation in Modification Example 1 of Embodiment 1.
  • FIG. 12 is a schematic plan view, a left side view, and a right side view of a humidity control unit showing a first operation of a humidification operation in Modification 2 of Embodiment 1.
  • FIG. 13 is a schematic plan view, a left side view, and a right side view of a humidity control unit showing a second operation of the humidification operation in Modification 2 of Embodiment 1.
  • FIG. 14 is a schematic plan view, a left side view, and a right side view of a humidity control unit illustrating a second operation of the dehumidifying operation in Modification 3 of Embodiment 1.
  • FIG. 15 is a schematic plan view, a left side view, and a right side view of a humidity control unit showing a second operation of the humidification operation in Modification 3 of Embodiment 1.
  • FIG. 16 is a schematic plan view, a left side view, and a right side view of a humidity control unit showing a second operation of the dehumidifying operation in Modification 4 of Embodiment 1.
  • FIG. 17 is a schematic plan view, a left side view, and a right side view of a humidity control unit showing a second operation of the humidification operation in Modification 4 of Embodiment 1.
  • FIG. 18 is a refrigerant circuit diagram showing a schematic configuration of a humidity control apparatus according to Embodiment 2 and an operation of both humidity control units during a dehumidifying operation.
  • FIG. 18 (A) is a diagram illustrating a refrigerant circuit during a first operation.
  • FIG. 3B shows the flow of air and refrigerant, and
  • FIG. 4B shows the flow of air and refrigerant during the second operation.
  • FIG. 19 is a refrigerant circuit diagram showing a schematic configuration of a humidity control apparatus according to Embodiment 2 and an operation of both humidity control units during a humidifying operation.
  • FIG. 19 (A) shows a refrigerant circuit diagram during a first operation.
  • FIG. 3B shows the flow of air and refrigerant, and
  • FIG. 4B shows the flow of air and refrigerant during the second operation.
  • FIG. 20 is a refrigerant circuit diagram showing a schematic configuration of the humidity control apparatus according to Embodiment 2 and an operation of the first humidity control unit during the dehumidifying operation and the second humidity control unit during the humidifying operation.
  • FIG. 21 is a schematic plan view, a left side view, and a right side view of a humidity control unit showing a first operation of a dehumidifying operation in Embodiment 3.
  • FIG. 22 is a schematic plan view, a left side view, and a right side view of a humidity control unit showing a second operation of the dehumidifying operation in the third embodiment.
  • FIG. 23 is a schematic plan view, left side view, and right side view of a humidity control unit showing a first operation of a humidification operation in Embodiment 3.
  • FIG. 24 is a schematic plan view, a left side view, and a right side view of a humidity control unit showing a second operation of the humidification operation in the third embodiment.
  • Embodiment 1 of the present invention will be described.
  • the present embodiment is a humidity control device (10) for supplying air of which humidity has been adjusted into a room.
  • the humidity control device (10) includes a first humidity control unit (11), a second humidity control unit (12), and an outdoor unit (13) that is a compressor unit. I have.
  • a refrigerant circuit (15) is formed by connecting two humidity control units (11, 12) to one outdoor unit (13).
  • the number of humidity control units (11, 12) connected to the outdoor unit (13) may be three or more.
  • the first humidity control unit (11) and the second humidity control unit (12) each contain a humidity control circuit (30, 40). The details of the humidity control units (11, 12) will be described later.
  • each humidity control circuit (30, 40) of the respective humidity control units (11, 12) has the same configuration. Specifically, each humidity control circuit (30, 40) is provided with two adsorption heat exchanges (31, 32, 41, 42) and two shut-off valves (35, 36, 45, 46). One electric expansion valve (33, 43) as a mechanism is provided. In each of the humidity control circuits (30, 40), a first closing valve (35, 45) is disposed at one end, and a second closing valve (36, 46) is disposed at the other end.
  • each humidity control circuit (30, 40) the first adsorption heat exchange (31, 41) and the electric power are sequentially turned from the first shut-off valve (35, 45) to the second shut-off valve (36, 46). Swelling The expansion valve (33, 43) and the second adsorption heat exchange (32, 42) are arranged.
  • Each of the first and second adsorption heat exchangers (31, 32, 41, 42) of each humidity control circuit (30, 40) is a cross fin type configured with a heat transfer tube and a large number of fins.
  • an adsorbent is carried on the surface of the fin.
  • zeolite, silica gel, or the like is used as the adsorbent.
  • An outdoor circuit (20) is housed in the outdoor unit (13).
  • the outdoor circuit (20) is provided with a compressor (21) and an outdoor four-way switching valve (22).
  • the compressor (21) has its discharge side connected to the first port of the outdoor four-way switching valve (22) and its suction side connected to the second port of the outdoor four-way switching valve (22). It is connected.
  • the third port of the outdoor side four-way switching valve (22) is connected to the first closing valve (35, 45) of each humidity control circuit (30, 40) via a communication pipe.
  • the fourth port of the outdoor four-way switching valve (22) is connected to the second shut-off valve (36, 46) of each humidity control circuit (30, 40) via another communication pipe! You.
  • the outdoor four-way switching valve (22) is in a first state in which the first port and the third port communicate with each other and the second port and the fourth port communicate with each other (FIG. 1 (A) State), and a second state (a state shown in FIG. 1B) in which the first port and the fourth port communicate with each other and the second port and the third port communicate with each other. Be replaced.
  • the outdoor side four-way switching valve (22) constitutes a reversing mechanism for reversing the flow direction of the refrigerant in all the humidity control circuits (30, 40).
  • the first and second humidity control units (11, 12) will be described with reference to FIGS.
  • the structure of the first humidity control unit (11) will be described, but the structure of the first humidity control unit (11) and the structure of the second humidity control unit (12) are the same.
  • the terms “up”, “down”, “left”, “right”, “front”, “rear”, “front” and “back” used in this description all refer to the humidity control unit (11, 12) as viewed from the front. Means the case where
  • the first humidity control unit (11) includes a casing (50).
  • the humidity control circuit (30, 40) is housed in the casing (50).
  • the casing (50) has a low height and is formed in a flat rectangular parallelepiped shape. casing
  • the exhaust port (54) is located to the right and the air supply port (52) is located to the left. Each is open.
  • the outside air suction port (51) is open to the right, and the inside air suction port (53) is open to the left.
  • the internal space of the casing (50) is partitioned into two parts, a front side and a back side.
  • the space on the front side in the casing (50) is further divided into left and right. Among them, the space on the right side constitutes the exhaust side flow path (65), and the space on the left side constitutes the supply side flow path (66).
  • the exhaust-side flow path (65) houses an exhaust fan (81) therein, and communicates with the outside through an exhaust port (54).
  • the air supply side flow path (66) houses an air supply fan (82) therein and communicates with the room through an air supply port (52).
  • the space on the back side in the casing (50) is divided into three on the left and right.
  • the space on the right side is partitioned into upper and lower parts, with the upper space constituting the upper right flow path (61) and the lower space constituting the lower right flow path (62).
  • the upper right flow path (61) communicates with the exhaust flow path (65).
  • the lower right flow path (62) communicates with the outside of the room via the outside air suction port (51).
  • the right upstream channel (61) and the lower right channel (62) constitute an outdoor channel that communicates outdoor.
  • the space on the left side is partitioned into upper and lower parts, and the upper space forms the upper left flow path (63), and the lower space forms the lower left flow path (64).
  • the upper left channel (63) communicates with the air supply side channel (66).
  • the lower left channel (64) communicates with the room via the inside air suction port (53).
  • the upper left channel (63) and the lower left channel (64) constitute an indoor channel that communicates with the room.
  • a central space is partitioned into front and rear.
  • the first adsorption heat exchanger (31) is stored in the front space
  • the second adsorption heat exchanger (32) is stored in the rear space. I have.
  • the first heat-of-adsorption exchanger (31) and the second heat-of-adsorption exchanger (32) are installed in a substantially horizontal position so as to partition the housed space up and down.
  • Each of the two partition plates that partition the rear side of the casing (50) to the left and right is provided with four openable dampers (71 to 78) each.
  • a first upper right dambar (71) and a second upper right dambar (72) are installed side by side at the upper part thereof, and the first lower right dambar (73) and the second right upper dambar (73) are disposed below the lower right part.
  • the lower dambar (74) is installed side by side.
  • the first upper right damper (71) is intermittent between the space above the first adsorption heat exchange (31) and the upper right flow path (61).
  • the second upper right dambar (72) is located above the second adsorption heat exchanger (32). Intermittent between space and upper right channel (61).
  • the first lower right dambar (73) is intermittent between the space below the first adsorption heat exchanger (31) and the lower right flow path (62).
  • the second lower right damper (74) is intermittent between the space below the second adsorption heat exchanger (32) and the lower right flow path (62).
  • a first upper left dambar (75) and a second upper left dambar (76) are arranged side by side on the upper part thereof, and a first lower left dambar (77) and a second lower left damper are disposed below the lower left damper (75). (78) will be installed side by side.
  • the upper left channel (63) communicates with the space above the first adsorption heat exchanger (31)
  • the second upper left damper (76) is opened, the upper left channel (63) Communicates with the space above the second adsorption heat exchanger (32).
  • the lower left channel (64) communicates with the space below the first adsorption heat exchanger (31), and when the second lower left damper (78) is opened, the lower left channel (64) is opened. ) Communicates with the space below the second adsorption heat exchanger (32).
  • the dehumidification operation and the humidification operation can be selectively performed in each of the humidity control units (11, 12).
  • the dehumidifying operation can be performed in both the first humidity control unit (11) and the second humidity control unit (12).
  • the humidification operation can be performed in both the first humidity control unit (11) and the second humidity control unit (12).
  • one of the first humidity control unit (11) and the second humidity control unit (12) can perform the dehumidification operation, and the other can perform the humidification operation.
  • FIG. 3 shows a state in which the first humidity control unit (11) performs the dehumidification operation and the second humidity control unit (12) performs the humidification operation.
  • the first operation and the second operation are alternately performed in the refrigerant circuit (15) in both the dehumidifying operation and the humidifying operation in each of the humidity control units (11, 12). Is repeated.
  • the outdoor four-way switching valve (22) is set to the first state. Then, in the humidity control circuit (30, 40) of each humidity control unit (11, 12), the first adsorption heat exchanger (31, 41) becomes a condenser and the second adsorption heat exchange (32, 40). 42) becomes the evaporator.
  • the refrigerant discharged from the compressor (21) passes through the outdoor side four-way switching valve (22) and passes through the humidity control circuit (30, 40) in each of the humidity control units (11, 12). Introduced to 1st shut-off valve (35,45) side It is.
  • the refrigerant introduced into the humidity control circuit (30, 40) flows into the first adsorption heat exchange (31, 41), radiates heat and condenses.
  • the first adsorption heat exchanger (31, 41) water is desorbed from the adsorbent heated by the refrigerant, and the desorbed water is provided to the second air.
  • the refrigerant condensed in the first adsorption heat exchange (31, 41) is decompressed when passing through the electric expansion valve (33, 43) and is introduced into the power adsorption second heat exchange (32, 42). .
  • the second adsorption heat exchange (32, 42) moisture in the first air is adsorbed by the adsorbent, and the heat of adsorption generated at that time is absorbed by the refrigerant to evaporate.
  • the refrigerant evaporated in the second adsorption heat exchange (32, 42) of each humidity control circuit (30, 40) passes through the outdoor four-way switching valve (22) after being merged, and is sucked into the compressor (21). Compressed.
  • the outdoor four-way switching valve (22) is set to the second state.
  • the humidity control circuit (30, 40) of each humidity control unit (11, 12) the second adsorption heat exchanger (32, 42) becomes a condensing device and the first adsorption heat exchange (31, 41). ) Is the evaporator.
  • the refrigerant discharged from the compressor (21) passes through the outdoor four-way switching valve (22) and passes through the humidity control circuit (30, 40) in each of the humidity control units (11, 12). Introduced to the second shutoff valve (36,46) side.
  • the refrigerant introduced into the humidity control circuit (30, 40) flows into the second adsorption heat exchanger (32, 42), radiates heat and condenses.
  • the second adsorption heat exchange (32, 42) water is desorbed from the adsorbent heated by the refrigerant, and the desorbed water is provided to the second air.
  • the refrigerant condensed in the second adsorption heat exchange (32, 42) is decompressed when passing through the electric expansion valve (33, 43), and a force is also introduced into the first adsorption heat exchange (31, 41).
  • the first adsorption heat exchange (31, 41) moisture in the first air is adsorbed by the adsorbent, and the heat of adsorption generated at that time is absorbed by the refrigerant to evaporate.
  • the refrigerant evaporated in the first adsorption heat exchanger (31, 41) of each humidity control circuit (30, 40) passes through the outdoor four-way switching valve (22) after being merged, and is sucked into the compressor (21). Compressed.
  • the first adsorption heat exchange (31, 41) and the second adsorption heat exchange (32, 42) The first air is dehumidified, and the second air is humidified on the side that serves as a condenser. If the humidity control unit (11, 12) is in the dehumidifying operation, the dehumidified first air is supplied to the room and the humidified second air is discharged outside the room (see FIG. 1). If it is inside, supply the humidified second air into the room and discharge the dehumidified first air outside the room (see Figure 2).
  • the dehumidification is performed by changing the destination of the first air and the second air that have passed through the adsorption heat exchangers (31, 32, 41, 42). Switching between operation and humidification operation is possible. If the destinations of the first air and the second air are set differently for each of the humidity control units (11, 12), the dehumidification operation is performed by one of the humidity control units (11) as shown in FIG. The humidification operation can be performed by the other humidity control unit (12).
  • the first humidity control unit (11) and the second humidity control unit (12) have a common structure, and both have the same operation.
  • the operation of the first humidity control unit (11) will be described, and the description of the operation of the second humidity control unit (12) will be omitted.
  • the first humidity control unit (11) sucks the air in the first room and supplies the conditioned air to the first room.
  • the second humidity control unit (12) sucks in the air of the second room, and supplies the conditioned air to the second room.
  • the dehumidifying operation of the first humidity control unit (11) will be described with reference to FIGS.
  • the air supply fan (82) when the air supply fan (82) is operated, the outdoor air is taken into the casing (50) from the outside air suction port (51) as the first air. Further, when the exhaust fan (81) is operated, the room air is taken into the inside air suction port (53) force casing (50) as the second air.
  • the first adsorption heat exchanger (31) functions as a condenser, and the second adsorption heat exchange (32) functions as an evaporator. Then, in the first humidity control unit (11), an adsorption operation for the second adsorption heat exchanger (32) and a regeneration operation for the first adsorption heat exchanger (31) are performed.
  • first lower right dambar (73) and the second upper right dambar (72) are closed.
  • first lower left damper (77) and the second upper left damper (76) are opened, and the first upper left damper (77) is opened.
  • the second air flowing from the inside air suction port (53) into the lower left flow path (64) passes through the first lower left damper (77), and flows into the lower side of the first adsorption heat exchange (31). 1 Pass through the adsorption heat exchange (31) upward.
  • the first adsorption heat exchange (31) water is desorbed from the adsorbent heated by the refrigerant, and the desorbed water is provided to the second air.
  • Moisture desorbed flows through the first upper right damper (71) into the upper right channel (61) together with the second air, and is exhausted after passing through the exhaust channel (65). It is discharged outside through the mouth (54).
  • the second adsorption heat exchanger (32) functions as a condenser, and the first adsorption heat exchange (31) functions as an evaporator. Then, in the first humidity control unit (11), an adsorption operation for the first adsorption heat exchanger (31) and a regeneration operation for the second adsorption heat exchanger (32) are performed.
  • the first lower right damper (73) and the second upper right damper (72) are in the open state, and the first upper right damper (71) and the second right damper (71).
  • the lower damper (74) is closed.
  • the first upper left dambar (75) and the second lower left dambar (78) are in the open state, and the first lower left damper (77) and the second upper left damper (76) are in the closed state.
  • moisture in the first air is adsorbed by the adsorbent to dehumidify the first air, and the heat of adsorption generated at that time is absorbed by the refrigerant.
  • the first air dehumidified by the first adsorption heat exchanger (31) flows into the upper left channel (63) through the first upper left damper (75), and is supplied after passing through the air supply channel (66). The air is supplied to the room from the vent (52).
  • the second adsorption heat exchanger (32) water is desorbed from the adsorbent heated by the refrigerant, and the desorbed water is provided to the second air.
  • Second adsorption heat exchange (32) The desorbed water flows into the upper right channel (61) through the second upper right damper (72) together with the second air. After passing through the exhaust-side flow path (65), the air is discharged from the exhaust port (54) to the outside of the room.
  • the humidification operation of the first humidity control unit (11) will be described with reference to FIGS.
  • the air supply fan (82) When the air supply fan (82) is operated during the humidification operation, the outdoor air is taken into the casing (50) from the outside air suction port (51) as the second air.
  • the exhaust fan (81) When the exhaust fan (81) is operated, the room air is taken into the inside air suction port (53) force casing (50) as the first air.
  • the first adsorption heat exchanger (31) functions as a condenser
  • the second adsorption heat exchange (32) functions as an evaporator. Then, in the first humidity control unit (11), an adsorption operation for the second adsorption heat exchanger (32) and a regeneration operation for the first adsorption heat exchanger (31) are performed.
  • the first lower right damper (73) and the second upper right damper (72) are opened, and the first upper right damper (71) and the second right damper (71) are opened.
  • the lower damper (74) is closed.
  • the first upper left dambar (75) and the second lower left dambar (78) are in the open state, and the first lower left damper (77) and the second upper left damper (76) are in the closed state.
  • the moisture in the first air is adsorbed by the adsorbent to dehumidify the first air, and the heat of adsorption generated at that time is absorbed by the refrigerant.
  • the first adsorption heat exchange (31) water is desorbed from the adsorbent heated by the refrigerant, and the desorbed water is provided to the second air.
  • the second air moistened by the first adsorption heat exchange (31) flows into the upper left flow path (63) through the first upper left damper (75), and is supplied after passing through the air supply flow path (66). Vent (52) force is supplied indoors.
  • the second adsorption heat exchanger (32) functions as a condenser
  • the first adsorption heat exchange (31) functions as an evaporator.
  • the first humidity control unit (11) The adsorption operation of the adsorption heat exchanger (31) and the regeneration operation of the second adsorption heat exchanger (32) are performed.
  • first lower right dambar (73) and the second upper right dambar (72) are closed.
  • first lower left damper (77) and the second upper left damper (76) are opened, and the first upper left damper (77) is opened.
  • moisture in the first air is adsorbed by the adsorbent to dehumidify the first air, and the heat of adsorption generated at that time is absorbed by the refrigerant.
  • the first air deprived of moisture by the first adsorption heat exchanger (31) flows into the upper right passage (61) through the first upper damper (71), and after passing through the exhaust passage (65). The air is discharged outside through the exhaust port (54).
  • the second adsorption heat exchanger (32) water is desorbed from the adsorbent heated by the refrigerant, and the desorbed water is provided to the second air.
  • the second air moistened by the second adsorption heat exchange (32) flows into the upper left channel (63) through the second upper left damper (76), and is supplied after passing through the air supply channel (66). Vent (52) force is supplied indoors.
  • each humidity control unit (11, 12) in each of the humidity control units (11, 12), it is possible to independently select whether to perform the dehumidifying operation or the humidifying operation. For this reason, when each humidity control unit (11, 12) supplies conditioned air to a separate room, each humidity control unit (11, 12) requires the condition of the room in charge of humidity control. It is possible to select either dehumidification operation or humidification operation according to the conditions.
  • the dehumidification operation is performed by the humidity control unit (11, 12) that supplies air to the room that needs dehumidification Humidification operation can be performed by the humidity control units (11, 12) for supplying air to a comfortable room. Therefore, according to the present embodiment, the operation according to the request for each room can be performed by the humidity control units (11, 12), and the humidity control of a plurality of rooms can be performed.
  • the present invention can provide a humidity control device (10) which is easy to use when performing.
  • the adsorption heat exchanger (adsorption heat exchanger
  • the adsorbent Since the adsorbent is carried on the 31, 32, 41, 42), the adsorbent can be efficiently heated or cooled by the refrigerant in the refrigerant circuit (15). As a result, the amount of water vapor transferred between the adsorbent and the air can be increased, and the capacity of the humidity control unit (11, 12) can be improved or the humidity control unit (11, 12) can be downsized. it can.
  • the humidity control units (11, 12) of the present embodiment include first and second adsorption heat exchangers (31, 32, 41, 42) provided in a humidity control circuit (30, 40). One of them performs a notch type operation in which the other is regenerated while adsorbing water vapor. Therefore, according to the present embodiment, the first air dehumidified by the humidity control units (11, 12) and the humidified second air are continuously generated, and the obtained first air or second air is generated. It is possible to continuously supply indoors.
  • the first and second adsorption heat exchangers (11, 12) of the present embodiment, the first and second adsorption heat exchangers (
  • the one that dehumidifies the first air is the evaporator
  • the one that humidifies the second air is the condenser. Therefore, in the adsorption heat exchange (31, 32, 41, 42), which is an evaporator, the adsorbent is cooled by the refrigerant in the refrigerant circuit (15), and the adsorption of water vapor in the air to the adsorbent is promoted. Is done. In the adsorption heat exchange (31, 32, 41, 42) serving as a condenser, the adsorbent is heated by the refrigerant in the refrigerant circuit (15), and the desorption of water vapor from the adsorbent is promoted.
  • both the adsorption of water vapor to the adsorbent and the desorption of water vapor from the adsorbent can be promoted, and the capacity of the humidity control unit (11, 12) can be improved or the humidity control unit (11, 12) can be improved. ) Can be reduced in size.
  • the flow direction of the refrigerant in all the humidity control circuits (30, 40) is reversed by the outdoor four-way switching valve (22) installed in the outdoor unit (13).
  • the switching of the refrigerant flow direction in the humidity control circuits (30, 40) in accordance with the operation switching in each humidity control unit (11, 12) is performed only by the outdoor four-way switching valve (22) of the outdoor unit (13). It is done in. Therefore, according to the present embodiment, the number of components provided in the refrigerant circuit (15) can be minimized, and the humidity control device (10) can be simplified.
  • the outdoor four-way switching valve (22) switches relatively frequently, for example, about once every 4 to 5 minutes, and is likely to be a noise source.
  • this embodiment In the state, the outdoor unit (13) installed outdoors is provided with an outdoor four-way switching valve (22). Therefore, according to the present embodiment, it is possible to avoid the problem of noise caused by the operation of the outdoor four-way switching valve (22).
  • the outdoor air is taken in as the first air and supplied to the room, and the indoor air is taken in as the second air and discharged to the outside, and the dehumidified first air is taken out.
  • the room is ventilated.
  • the dehumidifying operation of each of the humidity control units (11, 12) only the supply of the dehumidified first air may be performed without performing indoor ventilation.
  • the operation of the humidity control units (11, 12) during the dehumidification operation will be described using the first humidity control unit (11) as an example.
  • the first upper right dambar (71) and the first lower right dambar (73) are in the open state, and the second upper right dambar (72) and the second lower right damper (73) are opened. 74) is closed.
  • the second upper left dambar (76) and the second lower left dambar (78) are in the open state, and the first upper left dambar (75) and the first lower left dambar (77) are in the closed state.
  • the first adsorption heat exchange (31) becomes a condenser and the second adsorption heat exchange (32) becomes an evaporator.
  • the water desorbed from the adsorption heat exchanger (31) is provided.
  • the moistened second air flows into the right upstream passage (61) through the first upper right damper (71), and is discharged outside through the exhaust port (54) after passing through the exhaust passage (65). You.
  • the second upper right damper (72) and the second lower right damper (74) are in the open state, and the first upper right damper (71) and the first lower right damper (74) are opened. 73) is closed.
  • first upper left dambar (75) and the first lower left dambar (77) are in the open state
  • second upper left dambar (76) and the second lower left dambar (78) are in the closed state.
  • the second adsorption heat exchange (32) becomes a condenser
  • the first adsorption heat exchange (31) becomes an evaporator.
  • the humidified second air flows into the right upstream passage (61) through the second upper right damper (72), and is discharged outside through the exhaust port (54) after passing through the exhaust passage (65). You.
  • the outdoor air is taken in as the second air and supplied to the room, and the room air is taken in as the first air and discharged to the outside.
  • the air is supplied to the room and the room is ventilated at the same time.
  • the second upper right damper (72) and the second lower right damper (74) are in the open state, and the first upper right damper (71) and the first lower right damper (74) are opened. 73) is closed. Also, the first upper left dambar (75) and the first lower left dambar (77) are opened, and the second upper left dambar (76) And the second lower left damper (78) is closed.
  • the first upper right damper (71) and the first lower right damper (73) are opened, and the second upper right damper (72) and the second lower right damper (73) are opened. 74) is closed.
  • the second upper left dambar (76) and the second lower left dambar (78) are in the open state, and the first upper left dambar (75) and the first lower left dambar (77) are in the closed state.
  • each of the humidity control units (11, 12) the operation of only supplying air from the outside to the room may be performed as a dehumidification operation or a humidification operation!
  • the operation of the humidity control unit (11, 12) during the dehumidification operation or the humidification operation in which only air supply is performed will be described using the first humidity control unit (11) as an example.
  • the air supply fan (82) and the air exhaust fan (81) are operated in each of the dehumidification operation and the humidification operation in which only air is supplied, only the outdoor air is forced into the outside air inlet (51). It is taken into the casing (50).
  • the second operation in which the second adsorption heat exchanger (32) functions as a condenser and the first adsorption heat exchanger (31) functions as an evaporator is alternately repeated.
  • the second upper right dambar (72), the first lower right dambar (73), and the second lower right dambar (74) are opened.
  • the first upper right dambar (71) is closed.
  • the first upper left dambar (75) is in the open state, and the second upper left dambar (76), the first lower left dambar (77), and the second lower left dambar (78) are in the closed state.
  • the first air flows in the order of the first lower right damper (73), the first adsorption heat exchanger (31), the first upper left damper (75), and the air supply port (52) It is supplied indoors.
  • the second air flows in the order of the second lower right damper (74), the second adsorption heat exchange (32), the second upper right damper (72), and is discharged outside the exhaust port (54) power chamber.
  • the first upper right damper (71), the first lower right dambar (73), and the second lower right damper (74) are opened.
  • the second upper right damba (72) It is closed.
  • the second upper left dambar (76) is in the open state, and the first upper left dambar (75), the first lower left dambar (77), and the second lower left dambar (78) are in the closed state.
  • the first air flows in the order of the first lower right damper (73), the first adsorption heat exchanger (31), the first upper right damper (71), and the exhaust port (54). Is discharged to
  • the second air flows in the order of the second lower right damper (74), the second adsorption heat exchanger (32), the second upper left damper (76), and is supplied into the room from the air supply port (52). .
  • each of the humidity control units (11, 12) the operation of only exhausting air from the room to the outside of the room may be performed as a dehumidifying operation or a humidifying operation!
  • the operation of the humidity control unit (11, 12) during the dehumidification operation or humidification operation in which only exhaust is performed will be described using the first humidity control unit (11) as an example.
  • the first humidity control unit (11) supplies the dehumidified first air to the room, which is the evaporator of the two adsorption heat exchangers (31, 32), and forms the condenser.
  • the humidified second air is discharged outside the room.
  • the second upper right damper (72) is in the open state, and the first upper right damper (71), the first lower right damper (73) and The second lower right dambar (74) is closed.
  • the first upper left damper (75), the first lower left damper (77), and the second lower left damper (78) are in an open state, and the second upper left damper (76) is in a closed state.
  • the first air is supplied to the first lower left damper (77), the first adsorption heat exchanger (31), and the first upper left damper (75).
  • the air is supplied to the air supply port (52).
  • the second air flows in the order of the second lower left damper (78), the second adsorption heat exchange (32), and the second upper right damper (72), and is discharged outside the exhaust port (54) power chamber.
  • the first upper right damper (71) is in the open state, and the second upper right damper (72), the first lower right damper (73) and The second lower right dambar (74) is closed.
  • the second upper left damper (76), the first lower left damper (77), and the second lower left damper (78) are in an open state, and the first upper left damper (75) is in a closed state.
  • the first air flows in the order of the first lower left damper (77), the first adsorption heat exchanger (31), the first upper right damper (71), and the exhaust port (54) is forced out of the room. Is discharged.
  • the second air flows in the order of the second lower left damper (78), the second adsorption heat exchanger (32), the second upper left damper (76), and is supplied into the room from the air supply port (52).
  • the following operation is performed in each of the humidity control units (11, 12).
  • the amount of air supplied to the room and the amount of exhaust of indoor power are basically set to be equal, but they may be set to different values.
  • the air supply amount is set to a value larger than the exhaust amount so that the room has a positive pressure.
  • the exhaust volume is set to a value larger than the supply air volume so that the room has a negative pressure.
  • the electric expansion valves (33, 43) are fully closed and the humidity control circuit ( 30, 40), the circulation of the refrigerant may be cut off, and in this state, the air supply fan (82) and the exhaust fan (81) may be operated to perform a simple ventilation operation in which only ventilation is performed.
  • a simple ventilation operation in which only ventilation is performed.
  • indoor humidity control may not be necessary. Ventilation in the power room is required throughout the year. Therefore, when such humidity adjustment is not necessary, the power consumption of the humidity control device (10) can be suppressed by performing the simple ventilation operation.
  • each of the humidity control units (11, 12) an air-conditioning operation may be performed in which the air whose temperature is adjusted only and the humidity is not adjusted is supplied indoors.
  • the two adsorbent heat exchangers (31, 32, 41, 42) become evaporators! If the open / close state of each damper (71-78) is set so that the air that has passed through the side of the condenser is sent to the outside of the room, cooling is performed by the adsorption heat exchangers (31, 32, 41, 42). The rejected air is supplied to the room to perform cooling.
  • the air passing through the condenser is the room, and the air passing the evaporator is V. If the open / close state of each damper (71-78) is set so that it is sent to each room, the air heated by adsorption heat exchange ⁇ (31,32,41,42) is supplied to the room to perform heating. Is
  • Embodiment 2 of the present invention will be described.
  • the configurations of the outdoor circuit (20) and the humidity control circuits (30, 40) in the humidity control apparatus (10) of the first embodiment are changed.
  • the configuration of the refrigerant circuit (15) is different from that of the first embodiment in accordance with the configuration change of the outdoor circuit (20) and the humidity control circuits (30, 40). are doing.
  • the difference of the humidity control apparatus (10) from the first embodiment will be described.
  • each of the humidity control circuits (30, 40) of the present embodiment is provided with one humidity control four-way switching valve (34, 44).
  • the humidity control side four-way switching valve (34, 44) constitutes a reversing mechanism for reversing the flow direction of the refrigerant in the humidity control circuit (30, 40).
  • the first shut-off valve (35, 45) is connected to the first port of the humidity control side four-way switching valve (34, 44), and the second shut-off valve is connected.
  • the valve (36, 46) is connected to the second port of the humidity control side four-way switching valve (34, 44).
  • the first adsorption heat exchange (31, 41) is performed in order from the third port to the fourth port of the humidity control side four-way switching valve (34, 44).
  • electric An expansion valve (33, 43) and a second adsorption heat exchange (32, 42) are arranged.
  • the humidity control side four-way switching valve (34, 44) of each humidity control circuit (30, 40) has a first port and a third port that communicate with each other and a second port and a fourth port.
  • the first state (the state shown in Fig. 18 (A)) communicating with each other and the second state (the figure showing the first and fourth ports communicating with each other and the second and third ports communicating with each other). 18 (B)).
  • the compressor (21) is provided in the outdoor circuit (20) of the present embodiment.
  • the end of the outdoor circuit (20) located on the discharge side of the compressor (21) is connected to the first shutoff valve (35, 45) of each humidity control circuit (30, 40) via a communication pipe.
  • the end of the outdoor circuit (20) located on the suction side of the compressor (21) is connected to the second shut-off valves (36, 46) of each humidity control circuit (30, 40) via another connecting pipe. It is connected.
  • the dehumidification operation and the humidification operation can be selectively performed in each of the humidity control units (11, 12).
  • both the first humidity control unit (11) and the second humidity control unit (12) can perform the dehumidification operation.
  • the humidification operation can be performed in both the first humidity control unit (11) and the second humidity control unit (12).
  • one of the first humidity control unit (11) and the second humidity control unit (12) can perform the dehumidification operation, and the other can perform the humidification operation.
  • FIG. 20 shows a state in which the first humidity control unit (11) performs the dehumidification operation and the second humidity control unit (12) performs the humidification operation!
  • the first operation and the second operation are alternately performed in the refrigerant circuit (15) during both the dehumidifying operation and the humidifying operation in each of the humidity control units (11, 12). Is repeated.
  • the first operation of the refrigerant circuit (15) will be described with reference to FIGS. 18 (A), 19 (A), and 20 (A).
  • the four-way switching valves (34, 44) of the humidity control units (11, 12) are set to the first state.
  • the humidity control circuit (30, 40) of each humidity control unit (11, 12) the first adsorption heat exchange (31, 41) becomes a condenser and the second adsorption heat exchange (32, 42) evaporates. Become a generator.
  • the refrigerant discharged from the compressor (21) and distributed to the humidity control circuits (30, 40) is condensed by the first adsorption heat exchange (31, 41), and then the electric expansion valve (33, 40) 43) When passing The pressure is then reduced by evaporating by the second adsorption heat exchange (32, 42), and then sucked into the compressor (21) to be compressed. Then, the second air is humidified by the first adsorption heat exchanges (31, 41), which are the condensers, and becomes the evaporator! / The second adsorption heat exchangers (32, 42) The first air is dehumidified.
  • the humidity control side four-way switching valves (34, 44) of the humidity control units (11, 12) are each set to the second state.
  • the humidity control circuit (30, 40) of each humidity control unit (11, 12) becomes a condenser and the first adsorption heat exchange (31, 41) is steamed. Become a generator.
  • the refrigerant discharged from the compressor (21) and distributed to the humidity control circuits (30, 40) is condensed in the second adsorption heat exchange (32, 42), and then the electric expansion valve (33 , 43), is decompressed and evaporated by the first adsorption heat exchange ⁇ (31, 41), and is then sucked into the compressor (21) and compressed.
  • the second air is humidified by each second adsorption heat exchange (32, 42) serving as a condenser
  • the first air is humidified by each first adsorption heat exchange (31, 41) serving as an evaporator. Dehumidified.
  • the first adsorption heat exchange (31, 41) and the second adsorption heat exchange (32, 42) The first air is dehumidified, and the second air is humidified on the side that serves as a condenser. If the dehumidifying unit (11, 12) is in the dehumidifying operation, the dehumidified first air is supplied to the room and the humidified second air is discharged outside the room (see FIG. 18). If it is inside, supply the humidified second air into the room and discharge the dehumidified first air outside the room (see Figure 19).
  • the dehumidification is performed by changing the destinations of the first air and the second air that have passed through the adsorption heat exchangers (31, 32, 41, 42). Switching between operation and humidification operation is possible. If the destinations of the first air and the second air are set to be different for each humidity control unit (11, 12), the dehumidification operation is performed by one of the humidity control units (11) as shown in FIG. The humidification operation can be performed by the other humidity control unit (12).
  • each of the humidity control units (11, 12) is provided with a humidity control-side four-way switching valve (34, 44). Therefore, the refrigerant flow in the humidity control circuit (30, 40) of each humidity control unit (11, 12)
  • the direction of passage can be set individually by the four-way switching valve on the humidity control side (34, 44). Therefore, according to the present embodiment, it is possible to individually set the switching timing of the first operation and the second operation for each humidity control unit (11, 12).
  • Embodiment 3 of the present invention will be described.
  • the configuration of the first and second humidity control units (11, 12) in the humidity control apparatus (10) of the second embodiment is changed.
  • the structure of the first humidity control unit (11) will be described, but the structure of the first humidity control unit (11) and the structure of the second humidity control unit (12) are the same.
  • the terms “up,” “down,” “left,” “right,” “front,” “rear,” “front,” and “back” used in the description refer to the above-mentioned humidity control unit (11, 12) as viewed from the front.
  • the first humidity control unit (11) includes a flat rectangular parallelepiped casing (110) having a low height.
  • the casing (110) houses two adsorption elements (181, 182) and a humidity control circuit (30, 40).
  • the humidity control circuits (30, 40) include a regenerative heat exchanger (172), a first heat exchanger (173), and a second heat exchanger.
  • the regenerative heat exchange (172) functions as a condenser.
  • the first heat exchanger (173) becomes an evaporator and the second heat exchanger (174) stops operating, and the second heat exchanger (174) evaporates. It is possible to switch between the operation in which the first heat exchanger (173) stops operating as a heat exchanger.
  • the end on the regeneration heat exchange (172) side is connected to the discharge side of the compressor (21) in the outdoor circuit (20), and the first and second heat exchangers are connected.
  • the end on the (173,174) side is connected to the suction side of the compressor (21) in the outdoor circuit (20).
  • the adsorption elements (181, 182) are formed in a somewhat flat rectangular parallelepiped shape.
  • a plurality of humidity control side passages (185) and cooling side passages (186) are alternately formed in the longitudinal direction.
  • the humidity control passage (185) is open on the upper and lower surfaces of the adsorption elements (181, 182).
  • an adsorbent is applied to a surface facing the humidity control side passage (185).
  • the cooling-side passage (186) is open at the front and rear side surfaces of the adsorption elements (181, 182).
  • the air flowing through the cooling side passage (186) is regulated. It exchanges heat with the air flowing through the wet side passage (185).
  • the first panel (111) on the front side is provided with an exhaust port (114) and an air supply port (116), and the second panel (111) on the rear side.
  • An outside air inlet (113) and an inside air inlet (115) are provided at 112).
  • the exhaust port (114) force is opened slightly toward the center on the right side
  • the air supply port (116) is opened slightly toward the center on the left side.
  • an outside air suction port (113) is open at a lower portion near the right end
  • an inside air suction port (115) is open at a lower portion near the left end.
  • the interior of the casing (110) is partitioned into a space on the front side and a space on the back side.
  • the space on the front side in the casing (110) is partitioned into right and left, and the space on the right side constitutes the first space (141), and the space on the left side constitutes the second space (142). .
  • the first space (141) communicates with the outside through an exhaust port (114), and an exhaust fan (145) and a first heat exchange (173) are installed inside the first space (141).
  • the second space (142) communicates with the room through an air supply port (116), and an air supply fan (146) and a second heat exchange (174) are installed therein.
  • a right partition plate (120) and a left partition plate (130) are provided upright.
  • the space on the back side is divided into three spaces on the left and right sides by a right partition plate (120) and a left partition plate (130).
  • the space between the right side plate and the right side partition plate (120) of the casing (110) is vertically partitioned.
  • the upper space forms the upper right flow path (165)
  • the lower space forms the lower right flow path (166).
  • the upper right channel (165) communicates with the outside via the first space (141) and the exhaust port (114).
  • the lower right channel (166) communicates with the outside of the room via the outside air suction port (113).
  • the space between the left side plate and the left side partition plate (130) of the casing (110) is vertically partitioned.
  • the upper space forms the upper left flow path (167), and the lower space forms the lower left flow path (168).
  • the upper left channel (167) communicates with the room through the second space (142) and the air supply port (116).
  • the lower left channel (168) communicates with the room through the inside air suction port (115).
  • two suction elements (181, 182) are installed in the space between the right partition plate (120) and the left partition plate (130) in the casing (110).
  • Two adsorption elements (181,182) are arranged at intervals. Specifically, the first adsorption element (181) is arranged near the front of the casing (110), and the second adsorption element (182) is arranged near the rear of the casing (110).
  • a humidity control side passageway (185) is opened on upper and lower surfaces, and a cooling side passageway (186) is opened on front and rear surfaces.
  • the space between the right partition plate (120) and the left partition plate (130) in the casing (110) includes a first flow path (151), a second flow path (152), and a first upper flow path.
  • the flow path (153), the first lower flow path (154), the second upper flow path (155), the second lower flow path (156), and the central flow path (157) are partitioned.
  • the first flow path (151) is formed on the front side of the first adsorption element (181), and communicates with the cooling-side passage (186) of the first adsorption element (181).
  • the second flow path (152) is formed on the inner side of the second adsorption element (182), and communicates with the cooling-side passage (186) of the second adsorption element (182).
  • the first upper channel (153) is formed above the first adsorption element (181), and communicates with the humidity control side passage (185) of the first adsorption element (181).
  • the first lower flow path (154) is formed below the first adsorption element (181), and communicates with the humidity control passage (185) of the first adsorption element (181).
  • the second upper channel (155) is formed above the second adsorption element (182), and communicates with the humidity control passage (185) of the second adsorption element (182).
  • the second lower flow path (156) is formed below the second adsorption element (182), and communicates with the humidity control side passageway (185) of the second adsorption element (182).
  • the central flow path (157) is formed between the first adsorption element (181) and the second adsorption element (182), and communicates with the cooling-side passage (186) of both adsorption elements (181, 182). You. A heat exchange for regeneration (172) is provided upright in the central flow path (157).
  • a first central damper (161) is provided below the partition between the central channel (157) and the first lower channel (154).
  • the first central damper (161) is intermittent between the central flow path (157) and the first lower flow path (154).
  • the partition between the central channel (157) and the second lower channel (156) is provided with a second central damper (162) below the partition.
  • the second central damper (162) is intermittent between the central channel (157) and the second lower channel (156).
  • the first right damper (121), the second right damper (122), the first upper right damper (123), the first lower right damper (124), and the second upper right damper are provided on the right partition (120). (125), and a second lower right dambar (126).
  • the first right dambar (121) is provided at the lowermost portion on the right side of the right partition (120).
  • the connection between the first flow path (151) and the lower right flow path (166) is interrupted.
  • the second right dambar (122) is provided at a lowermost position on the rightmost partition plate (120) and disconnects the second flow path (152) and the lower right flow path (166).
  • the first upper right damper (123) is provided above a portion of the right partition plate (120) adjacent to the first adsorption element (181), and includes a first upper flow path (153) and an upper right flow path. Intermittent between (165).
  • the first lower right damper (124) is provided below a portion of the right partition plate (120) adjacent to the first adsorption element (181), and includes a first lower flow path (154) and a lower right flow path (166). ) Intermittently.
  • the second upper right damper (125) is provided above a portion of the right partition (120) adjacent to the second adsorption element (182), and has a second upper flow path (155) and an upper right flow path (125). 165) intermittently.
  • the second lower right damper (126) is provided below a portion of the right partition plate (120) adjacent to the second adsorption element (182), and includes a second lower flow path (156) and a lower right flow path (126). 166).
  • the left partition (130) includes a first left damper (131), a second left dambar (132), a first upper left damper (133), a first lower left damper (134), and a second upper left damper (134). 135), and a second lower left damper (136).
  • the first left damper (131) is provided at a lower portion on the near side of the left partition plate (130), and connects and disconnects between the first flow path (151) and the lower left flow path (168).
  • the second left damper (132) is provided at a lower rear portion of the left partition (130), and intermittently connects the second flow path (152) and the lower left flow path (168).
  • the first upper left damper (133) is provided above a portion of the left partition plate (130) adjacent to the first adsorption element (181), and includes a first upper flow path (153) and a left upper flow path. Intermittent between (167).
  • the first lower left damper (134) is provided below a portion of the left partition plate (130) adjacent to the first adsorption element (181), and includes a first lower flow path (154) and a lower left flow path (168).
  • the second upper left damper (135) is provided above a portion of the left partition plate (130) adjacent to the second adsorption element (182), and has a second upper flow path (155) and a left upper flow path (135).
  • the second lower left damper (136) is provided below a portion of the left partition plate (130) adjacent to the second adsorption element (182), and includes a second lower flow path (156) and a lower left flow path (168). ) Intermittently.
  • the first humidity control unit (11) and the second The humidity control unit (12) has a common structure, and both have the same operation.
  • the operation of the first humidity control unit (11) will be described, and the description of the operation of the second humidity control unit (12) will be omitted.
  • the outdoor air (OA) is taken into the casing (110) as the first air from the outside air suction port (113). I will.
  • room air (RA) is taken into the casing (110) from the inside air inlet (115) as the second air.
  • the humidity control circuit (30, 40) the heat exchange for regeneration (172) becomes a condenser and the second heat exchange (174) becomes an evaporator, while the first heat exchange (174) becomes (173) pauses.
  • the first humidity control unit (11) repeats the first operation and the second operation alternately.
  • the first operation during the dehumidifying operation will be described with reference to FIG.
  • an adsorption operation for the first adsorption element (181) and a reproduction operation for the second adsorption element (182) are performed.
  • the first lower right damper (124) and the second upper right damper (125) are in the open state, and the remaining dampers (121, 122, 123, 126) are in the closed state.
  • the first left dambar (131) and the first upper left damper (133) are in the open state, and the remaining dampers (132, 134, 135, 136) are in the closed state.
  • the first central damper (161) is in a closed state, and the second central damper (162) is in an open state.
  • the first air taken into the casing (110) flows from the lower right flow path (166) to the first lower flow path (154) through the first lower right damper (124).
  • the first air in the first lower flow path (154) flows into the humidity control passage (185) of the first adsorption element (181).
  • the humidity control passage (185) the water vapor in the first air is adsorbed by the adsorbent.
  • the first air dehumidified by the first adsorption element (181) flows into the first upper flow path (153), and then passes through the first upper left damper (133) and the upper left flow path (167) in that order.
  • the first air exchanges heat with the refrigerant while passing through the second heat exchange (174) and is cooled.
  • the dehumidified and cooled first air is supplied indoors through the air supply port (116).
  • the second air taken into the casing (110) flows from the lower left channel (168) to the first left air channel. It flows into the first flow path (151) through the side damper (131), and then flows into the cooling-side passage (186) of the first adsorption element (181). While flowing through the cooling side passage (186), the second air absorbs the heat of adsorption generated in the humidity control side passage (185). The second air from which the heat of adsorption has been removed flows into the central flow path (157) and passes through the regeneration heat exchange (172), at which time it exchanges heat with the refrigerant and is further heated.
  • the heated second air flows into the central flow path (157), the second lower flow path (156), and then flows into the humidity control-side passage (185) of the second adsorption element (182). .
  • the adsorbent is heated by the second air, and water vapor is desorbed from the adsorbent.
  • the water vapor desorbed from the adsorbent is provided to the second air.
  • the second air humidified in the humidity control passage (185) flows into the second upper passage (155), and then passes through the second upper right damper (125) and the upper right passage (165) in that order. Flows into the first space (141). Thereafter, the second air passes through the suspended first heat exchanger (173), and is discharged outside through the exhaust port (114).
  • the second operation of the dehumidifying operation will be described with reference to FIG.
  • an adsorption operation for the second adsorption element (182) and a reproduction operation for the first adsorption element (181) are performed.
  • the first upper right damper (123) and the second lower right damper (126) are in the open state, and the remaining dampers (121, 122, 124, 125) are in the closed state.
  • the second left dambar (132) and the second upper left dambar (135) are in an open state, and the remaining dampers (131, 133, 134, 136) are in a closed state.
  • the first central damper (161) is in an open state, and the second central damper (162) is in a closed state.
  • the first air taken into the casing (110) flows from the lower right channel (166) through the second lower right damper (126) into the second lower channel (156).
  • the first air in the second lower flow path (156) flows into the humidity control passage (185) of the second adsorption element (182).
  • the humidity control passage (185) the water vapor in the first air is adsorbed by the adsorbent.
  • the first air dehumidified by the second adsorption element (182) flows into the second upper flow path (155), and then passes through the second upper left damper (135) and the upper left flow path (167) in that order.
  • the first air exchanges heat with the refrigerant while passing through the second heat exchange (174) and is cooled.
  • the dehumidified and cooled first air is supplied indoors through the air supply port (116).
  • the second air taken into the casing (110) flows from the lower left flow path (168) through the second left damper (132) into the second flow path (152). Then, it flows into the cooling side passageway (186) of the second adsorption element (182). While flowing through the cooling side passage (186), the second air absorbs the heat of adsorption generated in the humidity control side passage (185).
  • the second air from which the heat of adsorption has been removed flows into the central flow path (157) and passes through the regeneration heat exchange (172), at which time it exchanges heat with the refrigerant and is further heated.
  • the heated second air flows from the central flow path (157) into the first lower flow path (154), and then flows into the humidity control-side passage (185) of the first adsorption element (181). .
  • the adsorbent is heated by the second air, and water vapor is desorbed from the adsorbent.
  • the water vapor desorbed from the adsorbent is provided to the second air.
  • the second air humidified in the humidity control passage (185) flows into the first upper passage (153), and then passes through the first upper right damper (123) and the upper right passage (165) in that order. Flows into the first space (141). Thereafter, the second air passes through the suspended first heat exchanger (173), and is discharged outside through the exhaust port (114).
  • the outdoor air (OA) is taken into the casing (110) from the outside air suction port (113) as the second air.
  • the exhaust fan (145) is driven, the room air (RA) is taken into the casing (110) from the inside air suction port (115) as the first air.
  • the humidity control circuit (30, 40) the heat exchange for regeneration (172) becomes a condenser, the first heat exchange (173) becomes an evaporator, and the second heat exchange Hana (174) pauses.
  • the first humidity control unit (11) alternately repeats the first operation and the second operation.
  • the first operation of the humidification operation will be described with reference to FIG.
  • an adsorption operation for the first adsorption element (181) and a reproduction operation for the second adsorption element (182) are performed.
  • the first right damper (121) and the first right damper (123) are opened, and the remaining dampers (122, 124, 125, 126) are closed.
  • the first lower left damper (134) and the second upper left damper (135) are in the open state, and the remaining dampers (131, 132, 133, 136) are in the closed state.
  • the first central damper (161) is closed.
  • the second central damper (162) is opened.
  • the first air taken into the casing (110) flows from the lower left channel (168) through the first lower left damper (134) into the first lower channel (154).
  • the first air in the first lower flow path (154) flows into the humidity control passage (185) of the first adsorption element (181).
  • the humidity control passage (185) the water vapor in the first air is adsorbed by the adsorbent.
  • the first air deprived of moisture by the first adsorption element (181) flows into the first upper channel (153), and then flows through the first upper right damper (123) and the upper right channel (165) in order. Passes and flows into the first space (141).
  • the first air is cooled by exchanging heat with the refrigerant while passing through the first heat exchange (173). Then, the first air deprived of moisture and heat is discharged outside through the exhaust port (114).
  • the second air taken into the casing (110) flows from the lower right flow path (166) through the first right damper (121) into the first flow path (151). Then, it flows into the cooling side passageway (186) of the first adsorption element (181). While flowing through the cooling side passage (186), the second air absorbs the heat of adsorption generated in the humidity control side passage (185). The second air from which the heat of adsorption has been removed flows into the central flow path (157), passes through the regeneration heat exchange (172), and is heated by exchanging heat with the refrigerant.
  • the heated second air flows into the center flow path (157), the second lower flow path (156), and then flows into the humidity control side passage (185) of the second adsorption element (182). .
  • the adsorbent is heated by the second air, and water vapor is desorbed from the adsorbent.
  • the water vapor desorbed from the adsorbent is provided to the second air.
  • the second air humidified by the second adsorption element (182) thereafter flows into the second upper flow path (155), and sequentially passes through the second upper left damper (135) and the upper left flow path (167). Flows into the second space (142). Thereafter, the second air passes through the inactive second heat exchanger (174) and is supplied to the room through the air supply port (116).
  • the second right damper (122) and the second upper right damper (125) are opened, and the remaining dampers (121, 123, 124, 126) are closed.
  • the first upper left damper (133) and the second lower left damper (136) are open,
  • the remaining dambars (131, 132, 134, 135) are closed.
  • the first central damper (161) is in an open state, and the second central damper (162) is in a closed state.
  • the first air taken into the casing (110) flows from the lower left channel (168) through the second lower left damper (136) into the second lower channel (156).
  • the first air in the second lower flow path (156) flows into the humidity control passage (185) of the second adsorption element (182).
  • the humidity control passage (185) the water vapor in the first air is adsorbed by the adsorbent.
  • the first air deprived of moisture by the second adsorption element (182) flows into the second upper flow path (155), and then flows through the second upper right damper (125) and the upper right flow path (165) in order. Passes and flows into the first space (141).
  • the first air is cooled by exchanging heat with the refrigerant while passing through the first heat exchange (173). Then, the first air deprived of moisture and heat is discharged outside through the exhaust port (114).
  • the second air taken into the casing (110) flows from the lower right flow path (166) through the second right dambar (122) into the second flow path (152). Then, it flows into the cooling side passageway (186) of the second adsorption element (182). While flowing through the cooling side passage (186), the second air absorbs the heat of adsorption generated in the humidity control side passage (185). The second air from which the heat of adsorption has been removed flows into the central flow path (157), passes through the regeneration heat exchange (172), and is heated by exchanging heat with the refrigerant.
  • the heated second air flows from the central flow path (157) into the first lower flow path (154), and then flows into the humidity control-side passage (185) of the first adsorption element (181). .
  • the adsorbent is heated by the second air, and water vapor is desorbed from the adsorbent.
  • the water vapor desorbed from the adsorbent is provided to the second air.
  • the second air humidified in the humidity control passage (185) flows into the first upper flow path (153), and the second air humidified in the first adsorption element (181) thereafter flows into the first upper flow path.
  • the present invention is useful for a humidity control apparatus for supplying dehumidified or humidified air to a room.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Central Air Conditioning (AREA)
  • Air Conditioning Control Device (AREA)
  • Drying Of Gases (AREA)

Abstract

 1台の室外ユニット(13)と2台の調湿ユニット(11,12)で調湿装置(10)を構成する。2台の調湿ユニット(11,12)は、何れも室外ユニット(13)に接続される。室外ユニット(13)の室外側四方切換弁(22)を切り換えると、各調湿ユニット(11,12)の調湿回路(30,40)において冷媒の流通方向が反転する。調湿回路(30,40)では、第1吸着熱交換器(31,41)と第2吸着熱交換器(32,42)のうち蒸発器となっている方で第1空気が除湿され、凝縮器となっている方で第2空気が加湿される。各調湿ユニット(11,12)は、除湿された第1空気を室内へ供給して除湿運転を行い、加湿された第2空気を室内へ供給して加湿運転を行う。一方の調湿ユニット(11)では、他方の調湿ユニット(12)の運転状態に拘わらず、除湿運転と加湿運転のどちらも可能となっている。

Description

明 細 書
調湿装置
技術分野
[0001] 本発明は、除湿し又は加湿した空気を室内へ供給する調湿装置に関するものであ る。
背景技術
[0002] 従来より、特許文献 1に開示されているように、吸着材を用いて空気の湿度調節を 行う調湿装置が知られている。この調湿装置は、吸着材を担持した吸着素子を備え ており、吸着素子に空気中の水蒸気を吸着させて空気を除湿する。また、この調湿 装置は、冷凍サイクルを行う冷媒回路を備えており、冷媒回路の凝縮器で加熱され た空気によって吸着素子を加熱し、吸着素子力 脱離した水蒸気で空気を加湿する 。そして、上記調湿装置は、除湿された空気と加湿された空気の一方を室内へ供給 して他方を室外へ排出する。
特許文献 1:特開 2003 - 232539号公報
発明の開示
発明が解決しょうとする課題
[0003] 上記特許文献 1の調湿装置は、調湿した空気を室内へダクトを通じて供給する。そ して、調湿された空気を複数の部屋へ分配すれば、 1つの調湿装置で複数の部屋の 除湿や加湿を行うことができる。その場合、同時に各部屋へ供給されるのは除湿され た空気力加湿された空気の一方だけである。
[0004] ところが、部屋毎にその使用目的や使用状態が異なることもあり、ある部屋では除 湿が必要でも別の部屋では加湿が必要な状況もあり得る。そして、 1つの調湿装置か ら調湿した空気を複数の部屋に分配する場合には、除湿の必要な部屋と加湿の必 要な部屋とが混在する状況に対応することができな力つた。このため、 1つの上記調 湿装置を複数の部屋の調湿に用いる場合、この調湿装置は使 、勝手の良くな 、もの となるおそれがあった。
[0005] 本発明は、力かる点に鑑みてなされたものであり、その目的とするところは、複数の 部屋の湿度調節を行う際に使い勝手の良い調湿装置を提供することにある。
課題を解決するための手段
[0006] 第 1の発明は、調湿装置を対象としている。そして、除湿した空気を室内へ供給す る除湿運転と加湿した空気を室内へ供給する加湿運転とを選択的に行う複数の調湿 ユニット(11, 12)と、圧縮機 (21)が設置される 1つの圧縮機ユニット(13)とを備え、上 記調湿ユニット(11,12)は、上記圧縮機ユニット(13)に接続されて冷媒回路(15)を形 成し、該冷媒回路(15)の冷媒によって吸着材の加熱と冷却の少なくとも一方を行つ て該吸着材との接触により空気を調湿するように構成されており、何れの上記調湿ュ ニット(11,12)においても、他の調湿ユニット(11,12)が除湿運転中力加湿運転中か に拘わらず除湿運転と加湿運転のどちらも選択可能となっているものである。
[0007] 第 2の発明は、上記第 1の発明において、調湿ユニット(11,12)は、吸着材を担持す ると共に冷媒回路(15)に接続される吸着熱交 ^^ (31,32,41,42)を備え、取り込んだ 空気を上記吸着熱交 (31,32,41,42)へ送って吸着材と接触させるものである。
[0008] 第 3の発明は、上記第 2の発明において、調湿ユニット(11,12)は、第 1空気と第 2空 気とを取り込み、蒸発器となっている第 1の吸着熱交 (31,41)で第 1空気を除湿 して凝縮器となって ヽる第 2の吸着熱交換器 (32,42)で第 2空気を加湿する動作と、 蒸発器となって!/ヽる第 2の吸着熱交換器 (32,42)で第 1空気を除湿して凝縮器となつ ている第 1の吸着熱交 (31,41)で第 2空気を加湿する動作とを交互に行い、除湿 運転時には除湿された第 1空気を室内へ供給して加湿された第 2空気を室外へ排出 し、加湿運転時には加湿された第 2空気を室内へ供給して除湿された第 1空気を室 外へ排出するものである。
[0009] 第 4の発明は、上記第 3の発明において、調湿ユニット(11,12)では、第 1の吸着熱 交 (31,41)と膨張機構 (33,43)と第 2の吸着熱交 (32,42)とが順に直列接続 されて冷媒回路(15)の一部を構成する調湿回路 (30,40)が形成される一方、圧縮機 ユニット(13)には、上記冷媒回路(15)に接続されて全ての上記調湿回路 (30,40)に おける冷媒の流通方向を反転可能とするための反転機構 (22)が設置されるものであ る。
[0010] 第 5の発明は、上記第 3の発明において、調湿ユニット(11,12)では、第 1の吸着熱 交 (31,41)と膨張機構 (33,43)と第 2の吸着熱交 (32,42)とが順に直列接続 されて冷媒回路(15)の一部を構成する調湿回路 (30,40)が形成される一方、上記調 湿回路 (30,40)には、該調湿回路 (30,40)おける冷媒の流通方向を反転可能とする ための反転機構 (34,44)力接続されるものである。
[0011] 一作用
上記第 1の発明では、 1つの圧縮機ユニット(13)と複数の調湿ユニット(11,12)とに よって調湿装置(10)が構成される。複数の調湿ユニット(11,12)は、その何れもが圧 縮機ユニット(13)に接続されている。互いに接続された調湿ユニット(11, 12)と圧縮機 ユニット(13)は、冷媒回路(15)を形成している。圧縮機ユニット(13)の圧縮機を運転 すると、冷媒回路(15)内で冷媒が循環して冷凍サイクルが行われる。
[0012] この発明の調湿装置(10)に設けられた複数の調湿ユニット(11, 12)では、それぞれ において除湿運転と加湿運転の両方が可能となっている。各調湿ユニット(11,12)は 、空気と吸着材の間で水蒸気の授受を行わせることによって空気の調湿を行い、除 湿運転中であれば除湿した空気を、加湿運転中であれば加湿した空気をそれぞれ 室内へ供給する。その際、調湿ユニット(11,12)は、冷媒回路(15)を流れる冷媒を用 V、て吸着材の加熱と冷却の何れか一方又は両方を行う。吸着材を加熱すると吸着材 からの水蒸気の脱離が促進され、吸着材を冷却すると吸着材への水蒸気の吸着が 促進される。
[0013] この発明の調湿装置(10)では、調湿ユニット(11,12)毎に除湿運転と加湿運転を個 別に設定可能となっている。つまり、調湿装置(10)に設けられた何れの調湿ユニット (11, 12)においても、残りの調湿ユニット(11, 12)が除湿運転中であろうと加湿運転中 であろうと、除湿運転と加湿運転のどちらを行うことも可能となっている。
[0014] 上記第 2の発明では、調湿ユニット(11,12)に吸着熱交換器 (31,32,41,42)が設けら れる。吸着熱交 (31,32,41,42)には吸着材が担持されており、この吸着材が吸着 熱交換器 (31,32,41,42)を通過する空気と接触する。吸着熱交換器 (31,32,41,42)は 、冷媒回路(15)に接続されている。吸着熱交翻(31,32,41,42)が凝縮器となる状態 では、吸着熱交換器 (31,32,41,42)に担持された吸着材が冷媒回路(15)の冷媒によ つて加熱される。吸着熱交 ^^ (31,32,41,42)が蒸発器となる状態では、吸着熱交換 器 (31,32,41,42)に担持された吸着材が冷媒回路(15)の冷媒によって冷却される。
[0015] 上記第 3の発明では、各調湿ユニット(11,12)に吸着熱交換器 (31,32,41,42)が複 数設けられる。これら調湿ユ ット(11,12)は、それぞれが 2つの動作を交互に繰り返 す。調湿ユニット(11,12)の一方の動作では、第 1の吸着熱交換器 (31,41)が蒸発器 となって第 2の吸着熱交 (32,42)が凝縮器となり、第 1の吸着熱交 (31,41)で 第 1空気が除湿されて第 2の吸着熱交換器 (32,42)で第 2空気が加湿される。また、 調湿ユニット(11, 12)の他方の動作では、第 2の吸着熱交換器 (32,42)が蒸発器とな つて第 1の吸着熱交換器 (31,41)が凝縮器となり、第 2の吸着熱交換器 (32,42)で第 1 空気が除湿されて第 1の吸着熱交 (31,41)で第 2空気が加湿される。つまり、調 湿ユニット(11,12)では、各吸着熱交換器 (31,32,41,42)において第 1空気の除湿と 第 2空気の加湿とが交互に行われる。そして、調湿ユニット(11,12)は、吸着熱交換器 (31,32,41,42)を通過した第 1空気と第 2空気の一方を室内へ供給して他方を室外へ 排出する。
[0016] 上記第 4及び第 5の発明では、各調湿ユニット(11,12)において調湿回路 (30,40) が形成される。各調湿ユニット(11,12)の調湿回路 (30,40)では、第 1の吸着熱交換 器 (31,41)と膨張機構 (33,43)と第 2の吸着熱交翻 (32,42)とが順に直列に接続さ れる。調湿回路 (30,40)において、第 1の吸着熱交換器 (31,41)から第 2の吸着熱交 (32,42)へ向力つて冷媒が流れる状態では、第 1の吸着熱交 (31,41)が凝 縮器となって第 2の吸着熱交翻 (32,42)が蒸発器となる。逆に、第 2の吸着熱交換 器 (32,42)から第 1の吸着熱交 (31,41)へ向力つて冷媒が流れる状態では、第 2 の吸着熱交 (32,42)が凝縮器となって第 1の吸着熱交 (31,41)が蒸発器と なる。
[0017] そして、上記第 4の発明では、圧縮機ユニット(13)に反転機構 (22)が設置される。
この反転機構 (22)は、冷媒回路(15)に接続されている。全ての調湿ユニット(11,12) の調湿回路 (30,40)における冷媒の流通方向は、圧縮機ユニット(13)に設置された 反転機構 (22)の動作によって反転可能となって!/ヽる。
[0018] 一方、上記第 5の発明では、各調湿ユニット(11,12)の調湿回路 (30,40)に反転機 構 (34,44)が設けられる。つまり、この発明では、それぞれの調湿回路 (30,40)に反転 機構 (34,44)が設置される。ある調湿ユニット(11,12)において反転機構 (34,44)を動 作させると、その調湿ユニット(11,12)の調湿回路(30,40)だけにおいて冷媒の流通 方向が反転する。
発明の効果
[0019] 本発明では、調湿装置(10)の各調湿ユニット(11,12)において、除湿運転を行うか 加湿運転を行うかを独立して選択できるようになつている。このため、それぞれの調湿 ユニット( 11 , 12)が互いに別々の部屋へ調湿された空気を供給する場合、各調湿ュ ニット(11,12)では、それぞれが調湿を担当する部屋の状況に応じて除湿運転と加湿 運転のどちらを選択することも可能となる。つまり、同時に除湿の必要な部屋と加湿の 必要な部屋とが混在する状況では、除湿の必要な部屋へ空気を供給する調湿ュニ ット(11,12)で除湿運転を、加湿の必要な部屋へ空気を供給する調湿ユニット (11,12 )で加湿運転をそれぞれ行うことができる。従って、本発明によれば、部屋毎の要求 に応じた運転を調湿ユニット(11,12)で行うことができ、複数の部屋の湿度調節を行う 際に使い勝手の良い調湿装置(10)を提供することができる。
[0020] 上記第 2の発明によれば、冷媒回路(15)に接続された吸着熱交翻 (31,32,41,42 )に吸着材を担持しているため、吸着材を冷媒回路(15)の冷媒によって効率よくカロ 熱し又は冷却することができる。その結果、吸着材と空気の間で授受される水蒸気の 量を増大させることができ、調湿ユニット(11,12)の能力向上あるいは調湿ユニット( 11,12)の小型化を図ることができる。
[0021] 上記第 3の発明において、 各調湿ユニット(11,12)は、第 1及び第 2の吸着熱交換 器 (31,32,41,42)の一方が水蒸気を吸着する間に他方が再生されるバッチ式の動作 を行う。従って、この発明によれば、各調湿ユニット(11,12)において除湿された第 1 空気と加湿された第 2空気とを連続的に生成し、得られた第 1空気又は第 2空気を継 続して室内へ供給することが可能となる。
[0022] 更に、第 3の発明の各調湿ユニット(11,12)では、第 1及び第 2の吸着熱交換器(
31,32,41,42)のうち第 1空気を除湿する方が蒸発器となって第 2空気を加湿する方が 凝縮器となる。このため、蒸発器となっている吸着熱交翻(31,32,41,42)では、冷媒 回路(15)の冷媒によって吸着材が冷却され、吸着材に対する空気中の水蒸気の吸 着が促進される。また、凝縮器となっている吸着熱交翻 (31,32,41,42)では、冷媒 回路(15)の冷媒によって吸着材が加熱され、吸着材からの水蒸気の脱離が促進さ れる。従って、この発明によれば、吸着材への水蒸気の吸着と吸着材からの水蒸気 の脱離との両方を促進でき、調湿ユニット(11,12)の能力向上あるいは調湿ユニット( 11,12)の小型化を図ることができる。
[0023] 上記第 4の発明では、圧縮機ユニット(13)に設置した反転機構 (22)によって全ての 調湿回路 (30,40)における冷媒の流通方向を反転させている。つまり、各調湿ュニッ ト(11,12)での動作切換に伴う調湿回路(30,40)での冷媒流通方向の切り換えを、圧 縮機ユニット(13)の反転機構 (22)だけで行っている。従って、この発明によれば、冷 媒回路(15)に設けられる部品点数を最小限に留めることができ、調湿装置(10)の簡 素化を図ることができる。
[0024] また、反転機構 (22)は、動作する頻度が比較的高くて騒音の発生源となる可能性 が高い。これに対し、上記第 4の発明では、屋外に設置される場合が多いと想定され る圧縮機ユニット(13)に反転機構 (22)を設けている。従って、この発明によれば、反 転機構 (22)の動作に伴う騒音の問題を回避することが可能となる。
[0025] 上記第 5の発明では、それぞれの調湿ユニット(11,12)に反転機構 (34,44)を設け ている。このため、各調湿ユニット(11,12)の調湿回路(30,40)における冷媒の流通方 向を、それぞれの反転機構 (34,44)によって個別に設定することができる。従って、こ の発明によれば、調湿ユニット(11,12)毎に動作の切り換えタイミングを個別に設定 することが可能となる。
図面の簡単な説明
[0026] [図 1]図 1は、実施形態 1における調湿装置の概略構成と両方の調湿ユニットが除湿 運転中の動作を示す冷媒回路図であり、同図 (A)は第 1動作中の空気と冷媒の流れ を示し、同図 (B)は第 2動作中の空気と冷媒の流れを示す。
[図 2]図 2は、実施形態 1における調湿装置の概略構成と両方の調湿ユニットが加湿 運転中の動作を示す冷媒回路図であり、同図 (A)は第 1動作中の空気と冷媒の流れ を示し、同図 (B)は第 2動作中の空気と冷媒の流れを示す。
[図 3]図 3は、実施形態 1における調湿装置の概略構成と第 1調湿ユニットが除湿運 転中で第 2調湿ユニットが加湿運転中の動作を示す冷媒回路図であり、同図 (A)は 第 1動作中の空気と冷媒の流れを示し、同図 (B)は第 2動作中の空気と冷媒の流れを 示す。
[図 4]図 4は、実施形態 1における調湿ユニットの構造を示す斜視図である。
[図 5]図 5は、実施形態 1における調湿ユニットの概略構成を示す平面図、左側面図
、及び右側面図である。
[図 6]図 6は、実施形態 1における除湿運転の第 1動作を示す調湿ユニットの概略の 平面図、左側面図、及び右側面図である。
[図 7]図 7は、実施形態 1における除湿運転の第 2動作を示す調湿ユニットの概略の 平面図、左側面図、及び右側面図である。
[図 8]図 8は、実施形態 1における加湿運転の第 1動作を示す調湿ユニットの概略の 平面図、左側面図、及び右側面図である。
[図 9]図 9は、実施形態 1における加湿運転の第 2動作を示す調湿ユニットの概略の 平面図、左側面図、及び右側面図である。
[図 10]図 10は、実施形態 1の変形例 1における除湿運転の第 1動作を示す調湿ュ- ットの概略の平面図、左側面図、及び右側面図である。
[図 11]図 11は、実施形態 1の変形例 1における除湿運転の第 2動作を示す調湿ュ- ットの概略の平面図、左側面図、及び右側面図である。
[図 12]図 12は、実施形態 1の変形例 2における加湿運転の第 1動作を示す調湿ュニ ットの概略の平面図、左側面図、及び右側面図である。
[図 13]図 13は、実施形態 1の変形例 2における加湿運転の第 2動作を示す調湿ュニ ットの概略の平面図、左側面図、及び右側面図である。
[図 14]図 14は、実施形態 1の変形例 3における除湿運転の第 2動作を示す調湿ュ- ットの概略の平面図、左側面図、及び右側面図である。
[図 15]図 15は、実施形態 1の変形例 3における加湿運転の第 2動作を示す調湿ュニ ットの概略の平面図、左側面図、及び右側面図である。
[図 16]図 16は、実施形態 1の変形例 4における除湿運転の第 2動作を示す調湿ュ- ットの概略の平面図、左側面図、及び右側面図である。 [図 17]図 17は、実施形態 1の変形例 4における加湿運転の第 2動作を示す調湿ュニ ットの概略の平面図、左側面図、及び右側面図である。
[図 18]図 18は、実施形態 2における調湿装置の概略構成と両方の調湿ユニットが除 湿運転中の動作を示す冷媒回路図であり、同図 (A)は第 1動作中の空気と冷媒の流 れを示し、同図 (B)は第 2動作中の空気と冷媒の流れを示す。
[図 19]図 19は、実施形態 2における調湿装置の概略構成と両方の調湿ユニットが加 湿運転中の動作を示す冷媒回路図であり、同図 (A)は第 1動作中の空気と冷媒の流 れを示し、同図 (B)は第 2動作中の空気と冷媒の流れを示す。
[図 20]図 20は、実施形態 2における調湿装置の概略構成と第 1調湿ユニットが除湿 運転中で第 2調湿ユニットが加湿運転中の動作を示す冷媒回路図である。
[図 21]図 21は、実施形態 3における除湿運転の第 1動作を示す調湿ユニットの概略 の平面図、左側面図、及び右側面図である。
[図 22]図 22は、実施形態 3における除湿運転の第 2動作を示す調湿ユニットの概略 の平面図、左側面図、及び右側面図である。
[図 23]図 23は、実施形態 3における加湿運転の第 1動作を示す調湿ユニットの概略 の平面図、左側面図、及び右側面図である。
[図 24]図 24は、実施形態 3における加湿運転の第 2動作を示す調湿ユニットの概略 の平面図、左側面図、及び右側面図である。
符号の説明
10 調湿装置
11 第 1調湿ユニット
12 第 2調湿ユニット
13 室外ユニット (圧縮機ユニット)
15 冷媒回路
22 室外側四方切換弁 (反転機構)
30 調湿回路
31 第 1吸着熱交換器
32 第 2吸着熱交換器 33 電動膨張弁 (膨張機構)
34 調湿側四方切換弁 (反転機構)
40 調湿回路
41 第 1吸着熱交換器
42 第 2吸着熱交換器
43 電動膨張弁 (膨張機構)
44 調湿側四方切換弁 (反転機構)
発明を実施するための最良の形態
[0028] 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形 態は、本質的に好ましい例示であって、本発明、その適用物や用途の範囲を制限す ることを意図するものではな 、。
[0029] 《発明の実施形態 1》
本発明の実施形態 1について説明する。本実施形態は、湿度調節した空気を室内 へ供給する調湿装置(10)である。
[0030] 〈調湿装置の全体構成〉
図 1に示すように、上記調湿装置(10)は、第 1調湿ユニット(11)と、第 2調湿ユニット (12)と、圧縮機ユニットである室外ユニット(13)とを備えている。この調湿装置(10)で は、 1台の室外ユニット(13)に対して 2台の調湿ユニット(11,12)を接続することで冷 媒回路(15)が形成されている。尚、室外ユニット(13)に接続される調湿ユニット( 11,12)の台数は、 3台以上であってもよい。
[0031] 上記第 1調湿ユニット(11)と第 2調湿ユニット(12)には、調湿回路 (30,40)が 1つず つ収納されている。尚、調湿ユニット(11,12)の詳細については後述する。
[0032] 各調湿ユニット(11,12)の調湿回路(30,40)は、同様に構成されている。具体的に、 各調湿回路 (30,40)には、吸着熱交翻 (31,32,41,42)と閉鎖弁 (35,36,45,46)とが 2 つずつ設けられ、膨張機構である電動膨張弁 (33,43)が 1つずつ設けられている。各 調湿回路 (30,40)では、それぞれの一端に第 1閉鎖弁 (35,45)が、他端に第 2閉鎖弁 (36,46)がそれぞれ配置されている。また、各調湿回路 (30,40)では、第 1閉鎖弁( 35,45)から第 2閉鎖弁 (36,46)へ向力つて順に、第 1吸着熱交 (31,41)と電動膨 張弁 (33,43)と第 2吸着熱交 (32,42)とが配置されて 、る。
[0033] 各調湿回路 (30,40)の第 1,第 2吸着熱交換器 (31,32,41,42)は、何れも伝熱管と多 数のフィンとで構成されたクロスフィン形のフィン ·アンド ·チューブ熱交^^である。こ れら吸着熱交^^ (31,32,41,42)では、そのフィンの表面に吸着材が担持されている 。この吸着材としては、ゼォライトやシリカゲル等が用いられる。
[0034] 上記室外ユニット(13)には、室外回路 (20)が収納されて 、る。室外回路 (20)には 、圧縮機 (21)と室外側四方切換弁 (22)とが設けられている。室外回路 (20)において 、圧縮機 (21)は、その吐出側が室外側四方切換弁 (22)の第 1のポートに、その吸入 側が室外側四方切換弁 (22)の第 2のポートにそれぞれ接続されている。室外側四方 切換弁 (22)の第 3のポートは、連絡配管を介して各調湿回路 (30,40)の第 1閉鎖弁( 35,45)に接続されている。一方、室外側四方切換弁 (22)の第 4のポートは、別の連 絡配管を介して各調湿回路 (30,40)の第 2閉鎖弁 (36,46)に接続されて!、る。
[0035] 上記室外側四方切換弁 (22)は、第 1のポートと第 3のポートが互いに連通して第 2 のポートと第 4のポートが互いに連通する第 1状態(図 1(A)に示す状態)と、第 1のポ 一トと第 4のポートが互いに連通して第 2のポートと第 3ポートが互いに連通する第 2 状態(図 1(B)に示す状態)とに切り換わる。この室外側四方切換弁 (22)は、全ての調 湿回路 (30,40)における冷媒の流通方向を反転させるための反転機構を構成してい る。
[0036] 〈調湿ユニットの構成〉
上記第 1,第 2調湿ユニット(11,12)について、図 4,図 5を参照しながら説明する。こ こでは、第 1調湿ユニット(11)の構造について説明するが、第 1調湿ユニット(11)の 構造と第 2調湿ユニット(12)の構造は同じである。尚、ここでの説明で用いる「上」「下 」「左」「右」「前」「後」「手前」「奥」は、何れも上記調湿ユニット(11,12)を前面側力も見 た場合のものを意味して 、る。
[0037] 上記第 1調湿ユニット(11)は、ケーシング (50)を備えている。このケーシング (50)内 に上記調湿回路(30,40)が収納されて!、る。
[0038] 上記ケーシング (50)は、高さの低 、扁平な直方体状に形成されて!、る。ケーシング
(50)の前面では、右寄りの位置に排気口(54)が、左寄りの位置に給気口(52)がそ れぞれ開口している。ケーシング (50)の背面では、右寄りの位置に外気吸込口(51) 力 左寄りの位置に内気吸込口(53)がそれぞれ開口している。
[0039] ケーシング (50)の内部空間は、前面側と背面側の 2つに仕切られている。ケーシン グ (50)内の前面側の空間は、更に左右に仕切られている。そのうち、右側の空間は 排気側流路 (65)を構成し、左側の空間は給気側流路 (66)を構成している。排気側 流路 (65)は、内部に排気ファン (81)が収納されると共に、排気口(54)を介して室外 に連通している。給気側流路 (66)は、内部に給気ファン (82)が収納されると共に、給 気口(52)を介して室内に連通している。
[0040] ケーシング(50)内の背面側の空間は、左右に 3つに仕切られている。そのうち、右 側の空間は、上下に仕切られており、上側の空間が右上流路 (61)を、下側の空間が 右下流路 (62)をそれぞれ構成して!/、る。右上流路 (61)は、排気側流路 (65)に連通 している。右下流路 (62)は、外気吸込口(51)を介して室外に連通している。右上流 路 (61)及び右下流路 (62)は、室外に連通する室外側流路を構成している。一方、 左側の空間は、上下に仕切られており、上側の空間が左上流路 (63)を、下側の空間 が左下流路 (64)をそれぞれ構成して!/、る。左上流路 (63)は、給気側流路 (66)に連 通している。左下流路 (64)は、内気吸込口(53)を介して室内に連通している。左上 流路 (63)及び左下流路 (64)は、室内に連通する室内側流路を構成している。
[0041] 左右に仕切られたケーシング (50)内の背面側の空間のうち、中央の空間は、前後 に仕切られている。この前後に仕切られた中央の空間のうち、前面側の空間には第 1 吸着熱交換器 (31)が、背面側の空間には第 2吸着熱交換器 (32)がそれぞれ収納さ れている。第 1吸着熱交換器 (31)及び第 2吸着熱交換器 (32)は、収納された空間を 上下に仕切るように、ほぼ水平姿勢で設置されて 、る。
[0042] ケーシング (50)内の背面側を左右に仕切る 2枚の仕切板には、それぞれに開閉式 のダンバ(71〜78)が 4つずつ設けられて!/ヽる。
[0043] 右側の仕切板において、その上部には第 1右上ダンバ (71)と第 2右上ダンバ (72) が並んで設置され、その下部には第 1右下ダンバ(73)と第 2右下ダンバ(74)が並ん で設置される。第 1右上ダンバ (71)は、第 1吸着熱交 (31)の上側の空間と右上 流路 (61)の間を断続する。第 2右上ダンバ(72)は、第 2吸着熱交換器 (32)の上側の 空間と右上流路 (61)の間を断続する。第 1右下ダンバ (73)は、第 1吸着熱交換器( 31)の下側の空間と右下流路 (62)の間を断続する。第 2右下ダンバ(74)は、第 2吸 着熱交換器 (32)の下側の空間と右下流路 (62)の間を断続する。
[0044] 左側の仕切板において、その上部には第 1左上ダンバ (75)と第 2左上ダンバ (76) が並んで設置され、その下部には第 1左下ダンバ(77)と第 2左下ダンバ(78)が並ん で設置される。第 1左上ダンバ (75)を開くと左上流路 (63)が第 1吸着熱交換器 (31) の上側の空間と連通し、第 2左上ダンバ (76)を開くと左上流路 (63)が第 2吸着熱交 換器 (32)の上側の空間と連通する。第 1左下ダンバ (77)を開くと左下流路 (64)が第 1吸着熱交換器 (31)の下側の空間と連通し、第 2左下ダンバ (78)を開くと左下流路 ( 64)が第 2吸着熱交換器 (32)の下側の空間と連通する。
[0045] 運転動作
上記調湿装置(10)では、各調湿ユニット(11,12)において除湿運転と加湿運転を 選択的に行うことができる。
[0046] 具体的には、図 1に示すように、第 1調湿ユニット(11)と第 2調湿ユニット(12)の両 方で除湿運転を行うことができる。また、図 2に示すように、第 1調湿ユニット(11)と第 2調湿ユニット(12)の両方で加湿運転を行うこともできる。また、図 3に示すように、第 1調湿ユニット(11)と第 2調湿ユニット(12)の一方で除湿運転を、他方で加湿運転を それぞれ行うこともできる。尚、図 3では、第 1調湿ユニット(11)で除湿運転を行って 第 2調湿ユニット(12)で加湿運転を行う状態を示して!/ヽる。
[0047] 〈調湿装置の動作〉
図 1〜図 3に示すように、各調湿ユニット(11,12)における除湿運転中と加湿運転中 のどちらにぉ 、ても、冷媒回路(15)では第 1動作と第 2動作が交互に繰り返される。
[0048] 先ず、冷媒回路(15)の第 1動作について、図 1(A),図 2(A),図 3(A)を参照しなが ら説明する。この第 1動作では、室外側四方切換弁 (22)が第 1状態に設定される。そ して、各調湿ユニット(11,12)の調湿回路 (30,40)では、第 1吸着熱交換器 (31,41)が 凝縮器となって第 2吸着熱交翻 (32,42)が蒸発器となる。
[0049] 具体的に、圧縮機 (21)から吐出された冷媒は、室外側四方切換弁 (22)を通過し、 各調湿ユニット(11,12)における調湿回路 (30,40)の第 1閉鎖弁 (35,45)側へ導入さ れる。調湿回路 (30,40)へ導入された冷媒は、第 1吸着熱交 (31,41)へ流入し、 放熱して凝縮する。第 1吸着熱交換器 (31,41)では、冷媒で加熱された吸着材から水 分が脱離し、この脱離した水分が第 2空気に付与される。第 1吸着熱交 (31,41) で凝縮した冷媒は、電動膨張弁 (33,43)を通過する際に減圧されて力ゝら第 2吸着熱 交翻 (32,42)へ導入される。第 2吸着熱交翻 (32,42)では、第 1空気中の水分が 吸着材に吸着され、その際に生じた吸着熱を冷媒が吸熱して蒸発する。各調湿回路 (30,40)の第 2吸着熱交翻 (32,42)で蒸発した冷媒は、合流後に室外側四方切換 弁 (22)を通過し、圧縮機 (21)に吸入されて圧縮される。
[0050] 次に、冷媒回路(15)の第 2動作について、図 1(B),図 2(B),図 3(B)を参照しながら 説明する。この第 2動作では、室外側四方切換弁 (22)が第 2状態に設定される。そし て、各調湿ユニット(11,12)の調湿回路 (30,40)では、第 2吸着熱交換器 (32,42)が凝 縮器となって第 1吸着熱交 (31,41)が蒸発器となる。
[0051] 具体的に、圧縮機 (21)から吐出された冷媒は、室外側四方切換弁 (22)を通過し、 各調湿ユニット(11,12)における調湿回路 (30,40)の第 2閉鎖弁 (36,46)側へ導入さ れる。調湿回路 (30,40)へ導入された冷媒は、第 2吸着熱交換器 (32,42)へ流入し、 放熱して凝縮する。第 2吸着熱交翻 (32,42)では、冷媒で加熱された吸着材から水 分が脱離し、この脱離した水分が第 2空気に付与される。第 2吸着熱交 (32,42) で凝縮した冷媒は、電動膨張弁 (33,43)を通過する際に減圧されて力も第 1吸着熱 交 (31,41)へ導入される。第 1吸着熱交 (31,41)では、第 1空気中の水分が 吸着材に吸着され、その際に生じた吸着熱を冷媒が吸熱して蒸発する。各調湿回路 (30,40)の第 1吸着熱交換器 (31,41)で蒸発した冷媒は、合流後に室外側四方切換 弁 (22)を通過し、圧縮機 (21)に吸入されて圧縮される。
[0052] 上述した通り、各調湿ユニット(11,12)では、第 1吸着熱交翻(31,41)と第 2吸着熱 交 (32,42)のうち蒸発器となっている方で第 1空気が除湿され、凝縮器となって いる方で第 2空気が加湿される。そして、調湿ユニット(11,12)は、除湿運転中であれ ば除湿された第 1空気を室内へ供給して加湿された第 2空気を室外へ排出し (図 1を 参照)、加湿運転中であれば加湿された第 2空気を室内へ供給して除湿された第 1 空気を室外へ排出する(図 2を参照)。 [0053] このように、各調湿ユニット(11,12)では、吸着熱交換器 (31,32,41,42)を通過した第 1空気と第 2空気の送り先を変更することによって、除湿運転と加湿運転の切り換えが 可能である。そして、調湿ユニット(11,12)毎に第 1空気と第 2空気の送り先が異なるよ うに設定すれば、図 3に示すように、一方の調湿ユニット(11)で除湿運転を行って、 他方の調湿ユニット (12)で加湿運転を行うことも可能である。
[0054] 〈調湿ユニットの運転動作〉
上述のように、第 1調湿ユニット(11)と第 2調湿ユニット(12)は構造が共通しており、 両者の運転動作も共通する。ここでは、第 1調湿ユニット(11)の動作について説明し 、第 2調湿ユニット(12)の動作についての説明は省略する。尚、第 1調湿ユニット(11 )は、第 1の部屋力 空気を吸い込み、この第 1の部屋へ調湿した空気を供給する。 一方、第 2調湿ユニット(12)は、第 2の部屋力 空気を吸い込み、この第 2の部屋へ 調湿した空気を供給する。
[0055] 上記第 1調湿ユニット(11)の除湿運転について、図 6,図 7を参照しながら説明する 。除湿運転時において、給気ファン (82)を運転すると、室外空気が外気吸込口(51) からケーシング (50)内へ第 1空気として取り込まれる。また、排気ファン (81)を運転す ると、室内空気が内気吸込口(53)力 ケーシング (50)内へ第 2空気として取り込まれ る。
[0056] 除湿運転時の第 1動作では、上述したように、第 1吸着熱交換器 (31)が凝縮器とな つて第 2吸着熱交翻 (32)が蒸発器となる。そして、第 1調湿ユニット(11)では、第 2 吸着熱交換器 (32)についての吸着動作と、第 1吸着熱交換器 (31)についての再生 動作とが行われる。
[0057] この第 1動作中には、図 6に示すように、第 1右上ダンバ(71)及び第 2右下ダンパ(
74)が開状態となり、第 1右下ダンバ (73)及び第 2右上ダンバ (72)が閉状態となる。ま た、第 1左下ダンバ (77)及び第 2左上ダンバ (76)が開状態となり、第 1左上ダンパ(
75)及び第 2左下ダンバ (78)が閉状態となる。
[0058] 外気吸込口(51)から右下流路 (62)へ流入した第 1空気は、第 2右下ダンバ (74)を 通って第 2吸着熱交換器 (32)の下側へ流入し、第 2吸着熱交換器 (32)を下から上へ 向かって通過する。第 2吸着熱交 (32)では、第 1空気中の水分が吸着材に吸着 されて第 1空気が除湿され、その際に生じた吸着熱が冷媒に吸熱される。第 2吸着熱 交換器 (32)で除湿された第 1空気は、第 2左上ダンバ (76)を通って左上流路 (63)へ 流入し、給気側流路 (66)を通過後に給気口(52)から室内へ供給される。
[0059] 内気吸込口(53)から左下流路 (64)へ流入した第 2空気は、第 1左下ダンバ (77)を 通って第 1吸着熱交 (31)の下側へ流入し、第 1吸着熱交 (31)を下力 上へ 向かって通過する。第 1吸着熱交 (31)では、冷媒で加熱された吸着材から水分 が脱離し、この脱離した水分が第 2空気に付与される。第 1吸着熱交 (31)力 脱 離した水分は、第 2空気と共に第 1右上ダンバ (71)を通って右上流路 (61)へ流入し 、排気側流路 (65)を通過後に排気口(54)から室外へ排出される。
[0060] 除湿運転時の第 2動作では、上述したように、第 2吸着熱交換器 (32)が凝縮器とな つて第 1吸着熱交翻(31)が蒸発器となる。そして、第 1調湿ユニット (11)では、第 1 吸着熱交換器 (31)についての吸着動作と、第 2吸着熱交換器 (32)についての再生 動作とが行われる。
[0061] この第 2動作中には、図 7に示すように、第 1右下ダンバ(73)及び第 2右上ダンパ( 72)が開状態となり、第 1右上ダンバ (71)及び第 2右下ダンバ (74)が閉状態となる。ま た、第 1左上ダンバ (75)及び第 2左下ダンバ (78)が開状態となり、第 1左下ダンパ( 77)及び第 2左上ダンバ (76)が閉状態となる。
[0062] 外気吸込口(51)から右下流路 (62)へ流入した第 1空気は、第 1右下ダンバ (73)を 通って第 1吸着熱交 (31)の下側へ流入し、第 1吸着熱交 (31)を下力 上へ 向かって通過する。第 1吸着熱交換器 (31)では、第 1空気中の水分が吸着材に吸着 されて第 1空気が除湿され、その際に生じた吸着熱が冷媒に吸熱される。第 1吸着熱 交換器 (31)で除湿された第 1空気は、第 1左上ダンバ (75)を通って左上流路 (63)へ 流入し、給気側流路 (66)を通過後に給気口(52)から室内へ供給される。
[0063] 内気吸込口(53)から左下流路 (64)へ流入した第 2空気は、第 2左下ダンバ (78)を 通って第 2吸着熱交換器 (32)の下側へ流入し、第 2吸着熱交換器 (32)を下から上へ 向かって通過する。第 2吸着熱交換器 (32)では、冷媒で加熱された吸着材から水分 が脱離し、この脱離した水分が第 2空気に付与される。第 2吸着熱交 (32)力 脱 離した水分は、第 2空気と共に第 2右上ダンバ (72)を通って右上流路 (61)へ流入し 、排気側流路 (65)を通過後に排気口(54)から室外へ排出される。
[0064] 上記第 1調湿ユニット(11)の加湿運転について、図 8,図 9を参照しながら説明する 。加湿運転時において、給気ファン (82)を運転すると、室外空気が外気吸込口(51) からケーシング (50)内へ第 2空気として取り込まれる。また、排気ファン (81)を運転す ると、室内空気が内気吸込口(53)力 ケーシング (50)内へ第 1空気として取り込まれ る。
[0065] 加湿運転時の第 1動作では、上述したように、第 1吸着熱交換器 (31)が凝縮器とな つて第 2吸着熱交翻 (32)が蒸発器となる。そして、第 1調湿ユニット(11)では、第 2 吸着熱交換器 (32)についての吸着動作と、第 1吸着熱交換器 (31)についての再生 動作とが行われる。
[0066] この第 1動作中には、図 8に示すように、第 1右下ダンバ(73)及び第 2右上ダンパ( 72)が開状態となり、第 1右上ダンバ (71)及び第 2右下ダンバ (74)が閉状態となる。ま た、第 1左上ダンバ (75)及び第 2左下ダンバ (78)が開状態となり、第 1左下ダンパ( 77)及び第 2左上ダンバ (76)が閉状態となる。
[0067] 内気吸込口(53)から左下流路 (64)へ流入した第 1空気は、第 2左下ダンバ (78)を 通って第 2吸着熱交換器 (32)の下側へ流入し、第 2吸着熱交換器 (32)を下から上へ 向かって通過する。第 2吸着熱交 (32)では、第 1空気中の水分が吸着材に吸着 されて第 1空気が除湿され、その際に生じた吸着熱が冷媒に吸熱される。第 2吸着熱 交換器 (32)で水分を奪われた第 1空気は、第 2右上ダンバ (72)を通って右上流路( 61)へ流入し、排気側流路 (65)を通過後に排気口(54)から室外へ排出される。
[0068] 外気吸込口(51)から右下流路 (62)へ流入した第 2空気は、第 1右下ダンバ (73)を 通って第 1吸着熱交 (31)の下側へ流入し、第 1吸着熱交 (31)を下力 上へ 向かって通過する。第 1吸着熱交 (31)では、冷媒で加熱された吸着材から水分 が脱離し、この脱離した水分が第 2空気に付与される。第 1吸着熱交 (31)でカロ 湿された第 2空気は、第 1左上ダンバ(75)を通って左上流路 (63)へ流入し、給気側 流路 (66)を通過後に給気口(52)力 室内へ供給される。
[0069] 加湿運転時の第 2動作では、上述したように、第 2吸着熱交換器 (32)が凝縮器とな つて第 1吸着熱交翻(31)が蒸発器となる。そして、第 1調湿ユニット (11)では、第 1 吸着熱交換器 (31)についての吸着動作と、第 2吸着熱交換器 (32)についての再生 動作とが行われる。
[0070] この第 2動作中には、図 9に示すように、第 1右上ダンバ(71)及び第 2右下ダンパ(
74)が開状態となり、第 1右下ダンバ (73)及び第 2右上ダンバ (72)が閉状態となる。ま た、第 1左下ダンバ (77)及び第 2左上ダンバ (76)が開状態となり、第 1左上ダンパ(
75)及び第 2左下ダンバ (78)が閉状態となる。
[0071] 内気吸込口(53)から左下流路 (64)へ流入した第 1空気は、第 1左下ダンバ (77)を 通って第 1吸着熱交 (31)の下側へ流入し、第 1吸着熱交 (31)を下力 上へ 向かって通過する。第 1吸着熱交換器 (31)では、第 1空気中の水分が吸着材に吸着 されて第 1空気が除湿され、その際に生じた吸着熱が冷媒に吸熱される。第 1吸着熱 交換器 (31)で水分を奪われた第 1空気は、第 1右上ダンバ (71)を通って右上流路( 61)へ流入し、排気側流路 (65)を通過後に排気口(54)から室外へ排出される。
[0072] 外気吸込口(51)から右下流路 (62)へ流入した第 2空気は、第 2右下ダンバ (74)を 通って第 2吸着熱交換器 (32)の下側へ流入し、第 2吸着熱交換器 (32)を下から上へ 向かって通過する。第 2吸着熱交換器 (32)では、冷媒で加熱された吸着材から水分 が脱離し、この脱離した水分が第 2空気に付与される。第 2吸着熱交 (32)でカロ 湿された第 2空気は、第 2左上ダンバ(76)を通って左上流路 (63)へ流入し、給気側 流路 (66)を通過後に給気口(52)力 室内へ供給される。
[0073] 一実施形態 1の効果
本実施形態の調湿装置(10)では、各調湿ユニット(11,12)において、除湿運転を 行うか加湿運転を行うかを独立して選択できるようになつている。このため、それぞれ の調湿ユニット(11,12)が別々の部屋へ調湿された空気を供給する場合、各調湿ュ ニット(11,12)では、それぞれが調湿を担当する部屋の状況に応じて除湿運転と加湿 運転のどちらを選択することも可能となる。つまり、同時に除湿の必要な部屋と加湿の 必要な部屋とが混在する状況では、除湿の必要な部屋へ空気を供給する調湿ュニ ット(11,12)で除湿運転を、加湿の必要な部屋へ空気を供給する調湿ユニット (11,12 )で加湿運転をそれぞれ行うことができる。従って、本実施形態によれば、部屋毎の 要求に応じた運転を調湿ユニット (11,12)で行うことができ、複数の部屋の湿度調節 を行う際に使い勝手の良い調湿装置(10)を提供することができる。
[0074] また、本実施形態によれば、冷媒回路(15)に接続された吸着熱交換器(
31,32,41,42)に吸着材を担持しているため、吸着材を冷媒回路(15)の冷媒によって 効率よく加熱し又は冷却することができる。その結果、吸着材と空気の間で授受され る水蒸気の量を増大させることができ、調湿ユニット(11,12)の能力向上あるいは調 湿ユニット(11,12)の小型化を図ることができる。
[0075] また、本実施形態の調湿ユニット (11,12)は、調湿回路 (30,40)に設けられた第 1及 び第 2吸着熱交換器 (31,32,41,42)の一方が水蒸気を吸着する間に他方が再生され るノ ツチ式の動作を行うようにしている。従って、本実施形態によれば、調湿ユニット( 11, 12)で除湿された第 1空気と加湿された第 2空気とを連続的に生成し、得られた第 1空気又は第 2空気を継続して室内へ供給することが可能となる。
[0076] また、本実施形態の調湿ユニット(11,12)では、第 1及び第 2吸着熱交換器(
31,32,41,42)のうち第 1空気を除湿する方が蒸発器となって第 2空気を加湿する方が 凝縮器となる。このため、蒸発器となっている吸着熱交翻(31,32,41,42)では、冷媒 回路(15)の冷媒によって吸着材が冷却され、吸着材に対する空気中の水蒸気の吸 着が促進される。また、凝縮器となっている吸着熱交翻 (31,32,41,42)では、冷媒 回路(15)の冷媒によって吸着材が加熱され、吸着材からの水蒸気の脱離が促進さ れる。従って、この発明によれば、吸着材への水蒸気の吸着と吸着材からの水蒸気 の脱離との両方を促進でき、調湿ユニット(11,12)の能力向上あるいは調湿ユニット( 11,12)の小型化を図ることができる。
[0077] また、本実施形態では、室外ユニット (13)に設置した室外側四方切換弁 (22)によ つて全ての調湿回路(30,40)における冷媒の流通方向を反転させている。つまり、各 調湿ユニット(11,12)での動作切換に伴う調湿回路(30,40)での冷媒流通方向の切り 換えを、室外ユニット(13)の室外側四方切換弁 (22)だけで行っている。従って、本実 施形態によれば、冷媒回路(15)に設けられる部品点数を最小限に留めることができ 、調湿装置(10)の簡素化を図ることができる。
[0078] また、室外側四方切換弁 (22)は、例えば 4〜5分毎に 1回程度の比較的高い頻度 で切り換わるものであり、騒音の発生源となる可能性が高い。これに対し、本実施形 態では、屋外に設置される室外ユニット(13)に室外側四方切換弁 (22)を設けている 。従って、本実施形態によれば、室外側四方切換弁 (22)の動作に伴う騒音の問題を 回避することが可能となる。
[0079] 実施形態 1の変形例 1
上記各調湿ユニット(11,12)の除湿運転では、室外空気を第 1空気として取り込ん で室内へ供給すると共に、室内空気を第 2空気として取り込んで室外へ排出し、除湿 した第 1空気を室内へ供給すると同時に室内の換気も行っている。
[0080] これに対し、上記各調湿ユニット(11,12)の除湿運転では、室内の換気は行わずに 除湿した第 1空気の供給だけを行うようにしてもょ 、。この除湿運転中における調湿 ユニット(11,12)の動作について、第 1調湿ユニット(11)を例に説明する。
[0081] この除湿運転時において、給気ファン (82)を運転すると、室内空気が内気吸込口( 53)力 ケーシング (50)内へ第 1空気として取り込まれる。また、排気ファン (81)を運 転すると、室外空気が外気吸込口(51)力 ケーシング (50)内へ第 2空気として取り 込まれる。この除湿運転中においても、第 1調湿ユニット(11)では第 1動作と第 2動作 が交互に繰り返される。
[0082] 第 1動作では、図 10に示すように、第 1右上ダンバ(71)及び第 1右下ダンバ(73)が 開状態となり、第 2右上ダンバ (72)及び第 2右下ダンバ (74)が閉状態となる。また、 第 2左上ダンバ(76)及び第 2左下ダンバ (78)が開状態となり、第 1左上ダンバ (75) 及び第 1左下ダンバ (77)が閉状態となる。また、第 1動作中には、第 1吸着熱交 (31)が凝縮器となって第 2吸着熱交 (32)が蒸発器となる。
[0083] 内気吸込口(53)から左下流路 (64)へ流入した第 1空気は、第 2左下ダンバ (78)を 通って第 2吸着熱交換器 (32)へ流入し、この第 2吸着熱交換器 (32)を通過する間に 除湿される。除湿された第 1空気は、第 2左上ダンバ(76)を通って左上流路 (63)へ 流入し、給気側流路 (66)を通過後に給気口(52)から室内へ供給される。
[0084] 外気吸込口(51)から右下流路 (62)へ流入した第 2空気は、第 1右下ダンバ (73)を 通って第 1吸着熱交換器 (31)へ流入し、この第 1吸着熱交換器 (31)から脱離した水 分を付与される。水分を付与された第 2空気は、第 1右上ダンバ (71)を通って右上流 路 (61)へ流入し、排気側流路 (65)を通過後に排気口(54)から室外へ排出される。 [0085] 第 2動作では、図 11に示すように、第 2右上ダンバ(72)及び第 2右下ダンバ(74)が 開状態となり、第 1右上ダンバ (71)及び第 1右下ダンバ (73)が閉状態となる。また、 第 1左上ダンバ (75)及び第 1左下ダンバ (77)が開状態となり、第 2左上ダンバ (76) 及び第 2左下ダンバ (78)が閉状態となる。また、第 2動作中には、第 2吸着熱交翻 (32)が凝縮器となって第 1吸着熱交 (31)が蒸発器となる。
[0086] 内気吸込口(53)から左下流路 (64)へ流入した第 1空気は、第 1左下ダンバ (77)を 通って第 1吸着熱交換器 (31)へ流入し、この第 1吸着熱交換器 (31)を通過する間に 除湿される。除湿された第 1空気は、第 1左上ダンバ(75)を通って左上流路 (63)へ 流入し、給気側流路 (66)を通過後に給気口(52)から室内へ供給される。
[0087] 外気吸込口(51)から右下流路 (62)へ流入した第 2空気は、第 2右下ダンバ (74)を 通って第 2吸着熱交換器 (32)へ流入し、この第 2吸着熱交換器 (32)から脱離した水 分を付与される。水分を付与された第 2空気は、第 2右上ダンバ (72)を通って右上流 路 (61)へ流入し、排気側流路 (65)を通過後に排気口(54)から室外へ排出される。
[0088] 一実施形態 1の変形例 2—
上記各調湿ユニット(11,12)の加湿運転では、室外空気を第 2空気として取り込ん で室内へ供給すると共に、室内空気を第 1空気として取り込んで室外へ排出し、加湿 した第 2空気を室内へ供給すると同時に室内の換気も行つて 、る。
[0089] これに対し、上記各調湿ユニット(11,12)の加湿運転では、室内の換気は行わずに 加湿した第 2空気の供給だけを行うようにしてもょ 、。この加湿運転中における調湿 ユニット(11,12)の動作について、第 1調湿ユニット(11)を例に説明する。
[0090] この加湿運転時において、給気ファン (82)を運転すると、室内空気が内気吸込口( 53)力 ケーシング (50)内へ第 2空気として取り込まれる。また、排気ファン (81)を運 転すると、室外空気が外気吸込口(51)力 ケーシング (50)内へ第 1空気として取り 込まれる。この加湿運転中においても、第 1調湿ユニット(11)では第 1動作と第 2動作 が交互に繰り返される。
[0091] 第 1動作では、図 12に示すように、第 2右上ダンバ(72)及び第 2右下ダンバ(74)が 開状態となり、第 1右上ダンバ (71)及び第 1右下ダンバ (73)が閉状態となる。また、 第 1左上ダンバ (75)及び第 1左下ダンバ (77)が開状態となり、第 2左上ダンバ (76) 及び第 2左下ダンバ (78)が閉状態となる。また、第 1動作中には、第 1吸着熱交翻
(31)が凝縮器となって第 2吸着熱交 (32)が蒸発器となる。
[0092] 外気吸込口(51)から右下流路 (62)へ流入した第 1空気は、第 2右下ダンバ (74)を 通って第 2吸着熱交換器 (32)へ流入し、この第 2吸着熱交換器 (32)を通過する間に 水分を奪われる。水分を奪われた第 1空気は、第 2右上ダンバ(72)を通って右上流 路 (61)へ流入し、排気側流路 (65)を通過後に排気口(54)から室外へ排出される。
[0093] 内気吸込口(53)から左下流路 (64)へ流入した第 2空気は、第 1左下ダンバ (77)を 通って第 1吸着熱交換器 (31)へ流入し、この第 1吸着熱交換器 (31)を通過する間に 加湿される。加湿された第 2空気は、第 1左上ダンバ(75)を通って左上流路 (63)へ 流入し、給気側流路 (66)を通過後に給気口(52)から室内へ供給される。
[0094] 第 2動作では、図 13に示すように、第 1右上ダンバ(71)及び第 1右下ダンバ(73)が 開状態となり、第 2右上ダンバ (72)及び第 2右下ダンバ (74)が閉状態となる。また、 第 2左上ダンバ(76)及び第 2左下ダンバ (78)が開状態となり、第 1左上ダンバ (75) 及び第 1左下ダンバ (77)が閉状態となる。また、第 2動作中には、第 2吸着熱交
(32)が凝縮器となって第 1吸着熱交 (31)が蒸発器となる。
[0095] 外気吸込口(51)から右下流路 (62)へ流入した第 1空気は、第 1右下ダンバ (73)を 通って第 1吸着熱交換器 (31)へ流入し、この第 1吸着熱交換器 (31)を通過する間に 水分を奪われる。水分を奪われた第 1空気は、第 1右上ダンバ(71)を通って右上流 路 (61)へ流入し、排気側流路 (65)を通過後に排気口(54)から室外へ排出される。
[0096] 内気吸込口(53)から左下流路 (64)へ流入した第 2空気は、第 2左下ダンバ (78)を 通って第 2吸着熱交換器 (32)へ流入し、この第 2吸着熱交換器 (32)を通過する間に 加湿される。加湿された第 2空気は、第 2左上ダンバ(76)を通って左上流路 (63)へ 流入し、給気側流路 (66)を通過後に給気口(52)から室内へ供給される。
[0097] 一実施形態 1の変形例 3—
上記各調湿ユニット(11,12)では、室外から室内への給気だけを行う運転を除湿運 転や加湿運転として行うようにしてもよ!ヽ。この給気のみを行う除湿運転中や加湿運 転中における調湿ュ-ット(11,12)の動作について、第 1調湿ュ-ット( 11 )を例に説 明する。 [0098] 給気のみを行う除湿運転と加湿運転のそれぞれにお!/、て、給気ファン (82)及び排 気ファン (81)を運転すると、室外空気だけが外気吸込口(51)力 ケーシング (50)内 へ取り込まれる。また、給気のみを行う除湿運転と加湿運転のそれぞれにおいて、第 1吸着熱交換器 (31)が凝縮器となって第 2吸着熱交換器 (32)が蒸発器となる第 1動 作と、第 2吸着熱交換器 (32)が凝縮器となって第 1吸着熱交換器 (31)が蒸発器とな る第 2動作とが交互に繰り返される。
[0099] 先ず、給気のみを行う除湿運転について説明する。ケーシング (50)内へ取り込ま れた室外空気は、その一部が第 1空気として蒸発器となっている吸着熱交 ( 31,32)へ、残りが第 2空気として凝縮器となっている吸着熱交 (31,32)へそれぞ れ導入される。そして、第 1調湿ユニット(11)は、 2つの吸着熱交換器 (31,32)のうち 蒸発器となっている方で除湿された第 1空気を室内へ供給し、凝縮器となっている方 で加湿された第 2空気を室外へ排出する。
[0100] 例えば、この除湿運転の第 2動作では、図 14に示すように、第 2右上ダンバ (72)、 第 1右下ダンバ (73)及び第 2右下ダンバ (74)が開状態となり、第 1右上ダンバ (71)が 閉状態となる。また、第 1左上ダンバ (75)が開状態となり、第 2左上ダンバ (76)、第 1 左下ダンバ(77)及び第 2左下ダンバ(78)が閉状態となる。ケーシング (50)内におい て、第 1空気は、第 1右下ダンバ (73)、第 1吸着熱交換器 (31)、第 1左上ダンバ (75) の順に流れ、給気口(52)力 室内へ供給される。一方、第 2空気は、第 2右下ダンバ (74)、第 2吸着熱交 (32)、第 2右上ダンバ (72)の順に流れ、排気口(54)力 室 外へ排出される。
[0101] 次に、給気のみを行う加湿運転について説明する。ケーシング (50)内へ取り込まれ た室外空気は、その一部が第 1空気として蒸発器となっている吸着熱交 (31,32) へ、残りが第 2空気として凝縮器となっている吸着熱交 (31,32)へそれぞれ導入 される。そして、第 1調湿ユニット(11)は、 2つの吸着熱交 (31,32)のうち蒸発器と なっている方で除湿された第 1空気を室外へ排出し、凝縮器となっている方で加湿さ れた第 2空気を室内へ供給する。
[0102] 例えば、この加湿運転の第 2動作では、図 15に示すように、第 1右上ダンバ(71)、 第 1右下ダンバ (73)及び第 2右下ダンバ (74)が開状態となり、第 2右上ダンバ (72)が 閉状態となる。また、第 2左上ダンバ (76)が開状態となり、第 1左上ダンバ (75)、第 1 左下ダンバ(77)及び第 2左下ダンバ(78)が閉状態となる。ケーシング (50)内におい て、第 1空気は、第 1右下ダンバ (73)、第 1吸着熱交換器 (31)、第 1右上ダンバ (71) の順に流れ、排気口(54)力 室外へ排出される。一方、第 2空気は、第 2右下ダンバ (74)、第 2吸着熱交換器 (32)、第 2左上ダンバ (76)の順に流れ、給気口(52)から室 内へ供給される。
[0103] 一実施形態 1の変形例 4
上記各調湿ユニット(11, 12)では、室内から室外への排気だけを行う運転を除湿運 転や加湿運転として行うようにしてもよ! ヽ。この排気のみを行う除湿運転中や加湿運 転中における調湿ュ-ット(11,12)の動作について、第 1調湿ュ-ット( 11 )を例に説 明する。
[0104] 排気のみを行う除湿運転と加湿運転のそれぞれにお!/ヽて、給気ファン (82)及び排 気ファン (81)を運転すると、室内空気だけが内気吸込口(53)力 ケーシング (50)内 へ取り込まれる。また、排気のみを行う除湿運転と加湿運転のそれぞれにおいて、第 1吸着熱交換器 (31)が凝縮器となって第 2吸着熱交換器 (32)が蒸発器となる第 1動 作と、第 2吸着熱交換器 (32)が凝縮器となって第 1吸着熱交換器 (31)が蒸発器とな る第 2動作とが交互に繰り返される。
[0105] 先ず、排気のみを行う除湿運転について説明する。ケーシング (50)内へ取り込ま れた室内空気は、その一部が第 1空気として蒸発器となっている吸着熱交 ( 31,32)へ、残りが第 2空気として凝縮器となっている吸着熱交 (31,32)へそれぞ れ導入される。そして、第 1調湿ユニット(11)は、 2つの吸着熱交換器 (31,32)のうち 蒸発器となっている方で除湿された第 1空気を室内へ供給し、凝縮器となっている方 で加湿された第 2空気を室外へ排出する。
[0106] 例えば、この除湿運転の第 2動作では、図 16に示すように、第 2右上ダンバ (72)が 開状態となり、第 1右上ダンバ (71)、第 1右下ダンバ (73)及び第 2右下ダンバ (74)が 閉状態となる。また、第 1左上ダンバ (75)、第 1左下ダンバ (77)及び第 2左下ダンパ( 78)が開状態となり、第 2左上ダンバ(76)が閉状態となる。ケーシング (50)内におい て、第 1空気は、第 1左下ダンバ (77)、第 1吸着熱交換器 (31)、第 1左上ダンバ (75) の順に流れ、給気口(52)力 室内へ供給される。一方、第 2空気は、第 2左下ダンバ (78)、第 2吸着熱交 (32)、第 2右上ダンバ (72)の順に流れ、排気口(54)力 室 外へ排出される。
[0107] 次に、排気のみを行う加湿運転について説明する。ケーシング (50)内へ取り込まれ た室内空気は、その一部が第 1空気として蒸発器となっている吸着熱交 (31,32) へ、残りが第 2空気として凝縮器となっている吸着熱交 (31,32)へそれぞれ導入 される。そして、第 1調湿ユニット(11)は、 2つの吸着熱交 (31,32)のうち蒸発器と なっている方で除湿された第 1空気を室外へ排出し、凝縮器となっている方で加湿さ れた第 2空気を室内へ供給する。
[0108] 例えば、この加湿運転の第 2動作では、図 17に示すように、第 1右上ダンバ(71)が 開状態となり、第 2右上ダンバ(72)、第 1右下ダンバ(73)及び第 2右下ダンバ(74)が 閉状態となる。また、第 2左上ダンバ (76)、第 1左下ダンバ (77)及び第 2左下ダンパ( 78)が開状態となり、第 1左上ダンバ(75)が閉状態となる。ケーシング (50)内におい て、第 1空気は、第 1左下ダンバ (77)、第 1吸着熱交換器 (31)、第 1右上ダンバ (71) の順に流れ、排気口(54)力 室外へ排出される。一方、第 2空気は、第 2左下ダンバ (78)、第 2吸着熱交換器 (32)、第 2左上ダンバ (76)の順に流れ、給気口(52)から室 内へ供給される。
[0109] 一実施形態 1の変形例 5—
上記調湿装置(10)では、各調湿ユニット(11,12)において次のような運転を行って ちょい。
[0110] 上述のように、上記各調湿ユニット(11,12)では、除湿運転中や加湿運転中に室外 力も室内への給気と室内力も室外への排気を行うようにしている。その際、室内への 給気量と室内力もの排気量は原則的に等しく設定されるが、両者を異なる値に設定 してもよい。例えば、隙間風などによって室内へ外気が侵入するのを防止したい場合 は、室内が陽圧となるように給気量を排気量よりも大きな値に設定する。また、室内空 気が室外へ漏れ出すのを防止したい場合は、室内が陰圧となるように排気量を給気 量よりも大きな値に設定する。
[0111] また、上記各調湿ユニット(11,12)では、電動膨張弁 (33,43)を全閉して調湿回路( 30,40)における冷媒の流通を遮断し、その状態で給気ファン (82)と排気ファン (81)と を運転して換気だけを行う単純換気運転を行ってもよい。例えば、春期や秋期のよう な中間期には室内の湿度調節が不要な場合もある力 室内の換気は 1年を通じて必 要である。そこで、このような湿度調節が不要な時期には、単純換気運転を行うことで 調湿装置(10)の消費電力を抑制できる。
[0112] また、上記各調湿ユニット(11,12)では、湿度は調節せずに温度だけを調節した空 気を室内へ供給する空調運転を行ってもよい。この調湿ユニット(11,12)の空調運転 中には、 2つの吸着熱交換器 (31,32,41,42)のうち蒸発器となって!/、る方を通過した 空気が室内へ、凝縮器となっている方を通過した空気が室外へそれぞれ送られるよ うに各ダンバ(71〜78)の開閉状態を設定すれば、吸着熱交換器 (31,32,41,42)で冷 却された空気が室内へ供給されて冷房が行われる。逆に、 2つの吸着熱交換器( 31,32,41,42)のうち凝縮器となっている方を通過した空気が室内へ、蒸発器となって V、る方を通過した空気が室外へそれぞれ送られるように各ダンバ(71〜78)の開閉状 態を設定すれば、吸着熱交 ^^ (31,32,41,42)で加熱された空気が室内へ供給され て暖房が行われる。
[0113] 《発明の実施形態 2》
本発明の実施形態 2について説明する。本実施形態は、上記実施形態 1の調湿装 置(10)において、室外回路 (20)と各調湿回路 (30,40)の構成を変更したものである。 また、本実施形態の調湿装置(10)では、室外回路 (20)と調湿回路 (30,40)の構成変 更に伴って冷媒回路(15)の構成も上記実施形態 1のものと相違している。ここでは、 上記調湿装置(10)について、上記実施形態 1と異なる点を説明する。
[0114] 図 18に示すように、本実施形態の各調湿回路 (30,40)には、調湿側四方切換弁( 34,44)が 1つずつ追加されている。調湿側四方切換弁(34,44)は、調湿回路(30,40) での冷媒の流通方向を反転させるための反転機構を構成して 、る。
[0115] 各調湿回路 (30,40)にお 、て、第 1閉鎖弁 (35,45)は調湿側四方切換弁 (34,44)の 第 1のポートに接続され、第 2閉鎖弁 (36,46)は調湿側四方切換弁 (34,44)の第 2の ポートに接続されている。また、各調湿回路 (30,40)では、調湿側四方切換弁 (34,44 )の第 3のポートから第 4のポートへ向力つて順に、第 1吸着熱交翻 (31,41)と電動 膨張弁 (33,43)と第 2吸着熱交 (32,42)とが配置されて 、る。
[0116] 各調湿回路 (30,40)の調湿側四方切換弁 (34,44)は、第 1のポートと第 3のポートが 互いに連通して第 2のポートと第 4のポートが互いに連通する第 1状態(図 18(A)に示 す状態)と、第 1のポートと第 4のポートが互いに連通して第 2のポートと第 3ポートが 互いに連通する第 2状態(図 18(B)に示す状態)とに切り換わる。
[0117] 一方、本実施形態の室外回路 (20)には、圧縮機 (21)だけが設けられている。圧縮 機 (21)の吐出側に位置する室外回路 (20)の端部は、連絡配管を介して各調湿回路 (30,40)の第 1閉鎖弁 (35,45)に接続されている。また、圧縮機 (21)の吸入側に位置 する室外回路 (20)の端部は、別の連絡配管を介して各調湿回路 (30,40)の第 2閉鎖 弁 (36,46)に接続されている。
[0118] 運転動作
上記調湿装置(10)では、各調湿ユニット(11,12)において除湿運転と加湿運転を 選択的に行うことができる。
[0119] 具体的には、図 18に示すように、第 1調湿ユニット(11)と第 2調湿ユニット(12)の両 方で除湿運転を行うことができる。また、図 19に示すように、第 1調湿ユニット(11)と 第 2調湿ユニット(12)の両方で加湿運転を行うこともできる。また、図 20に示すように 、第 1調湿ユニット(11)と第 2調湿ユニット(12)の一方で除湿運転を、他方で加湿運 転をそれぞれ行うこともできる。尚、図 20では、第 1調湿ユニット(11)で除湿運転を行 つて第 2調湿ユニット(12)で加湿運転を行う状態を示して!/ヽる。
[0120] 〈調湿装置の動作〉
図 18〜図 20に示すように、各調湿ユニット(11,12)における除湿運転中と加湿運転 中の両方にぉ 、ても、冷媒回路(15)では第 1動作と第 2動作が交互に繰り返される。
[0121] 先ず、冷媒回路(15)の第 1動作について、図 18(A),図 19(A),図 20(A)を参照し ながら説明する。この第 1動作では、各調湿ユニット(11,12)の調湿側四方切換弁( 34,44)がそれぞれ第 1状態に設定される。各調湿ユニット (11,12)の調湿回路 (30,40 )では、第 1吸着熱交翻 (31,41)が凝縮器となって第 2吸着熱交翻 (32,42)が蒸 発器となる。つまり、圧縮機 (21)力 吐出されて各調湿回路 (30,40)へ分配された冷 媒は、第 1吸着熱交 (31,41)で凝縮し、続いて電動膨張弁 (33,43)を通過する際 に減圧されて力ゝら第 2吸着熱交 (32,42)で蒸発し、その後に圧縮機 (21)へ吸入 されて圧縮される。そして、凝縮器となっている各第 1吸着熱交 (31,41)で第 2空 気が加湿され、蒸発器となって!/ヽる各第 2吸着熱交換器 (32,42)で第 1空気が除湿さ れる。
[0122] 次に、冷媒回路(15)の第 2動作について、図 18(B),図 19(B),図 20(B)を参照しな 力 Sら説明する。この第 2動作では、各調湿ユニット(11,12)の調湿側四方切換弁( 34,44)がそれぞれ第 2状態に設定される。各調湿ユニット (11,12)の調湿回路 (30,40 )では、第 2吸着熱交翻 (32,42)が凝縮器となって第 1吸着熱交翻 (31,41)が蒸 発器となる。つまり、圧縮機 (21)力 吐出されて各調湿回路 (30,40)へ分配された冷 媒は、第 2吸着熱交翻 (32,42)で凝縮し、続いて電動膨張弁 (33,43)を通過する際 に減圧されて力ゝら第 1吸着熱交 ^^ (31,41)で蒸発し、その後に圧縮機 (21)へ吸入 されて圧縮される。そして、凝縮器となっている各第 2吸着熱交 (32,42)で第 2空 気が加湿され、蒸発器となっている各第 1吸着熱交 (31,41)で第 1空気が除湿さ れる。
[0123] 上述した通り、各調湿ユニット(11,12)では、第 1吸着熱交翻(31,41)と第 2吸着熱 交 (32,42)のうち蒸発器となっている方で第 1空気が除湿され、凝縮器となって いる方で第 2空気が加湿される。そして、調湿ユニット(11,12)は、除湿運転中であれ ば除湿された第 1空気を室内へ供給して加湿された第 2空気を室外へ排出し (図 18 を参照)、加湿運転中であれば加湿された第 2空気を室内へ供給して除湿された第 1 空気を室外へ排出する(図 19を参照)。
[0124] このように、各調湿ユニット(11,12)では、吸着熱交換器 (31,32,41,42)を通過した第 1空気と第 2空気の送り先を変更することによって、除湿運転と加湿運転の切り換えが 可能である。そして、調湿ユニット(11,12)毎に第 1空気と第 2空気の送り先が異なるよ うに設定すれば、図 20に示すように、一方の調湿ユニット(11)で除湿運転を行って、 他方の調湿ユニット (12)で加湿運転を行うことも可能である。
[0125] 一実施形態 2の効果
本実施形態では、それぞれの調湿ユニット(11,12)に調湿側四方切換弁 (34,44)を 設けている。このため、各調湿ユニット(11,12)の調湿回路(30,40)における冷媒の流 通方向を調湿側四方切換弁 (34,44)によって個別に設定することができる。従って、 本実施形態によれば、調湿ユニット(11, 12)毎に第 1動作と第 2動作の切り換えタイミ ングを個別に設定することが可能となる。
[0126] 《発明の実施形態 3》
本発明の実施形態 3について説明する。本実施形態は、上記実施形態 2の調湿装 置(10)において、第 1,第 2調湿ユニット(11,12)の構成を変更したものである。ここで は、第 1調湿ユニット(11)の構造について説明するが、第 1調湿ユニット(11)の構造 と第 2調湿ユニット(12)の構造は同じである。尚、その説明において用いる「上」「下」 「左」「右」「前」「後」「手前」「奥」は、上記調湿ユニット(11,12)を正面側力も見た場合 のものを意味している。
[0127] 図 21に示すように、上記第 1調湿ユニット(11)は、高さの低い扁平な直方体状のケ 一シング(110)を備えている。このケーシング(110)には、 2つの吸着素子(181,182) と調湿回路(30,40)とが収納されて!、る。
[0128] 調湿回路 (30,40)には、再生用熱交換器 (172)と、第 1熱交換器 (173)と、第 2熱交
(174)と、膨張弁とが設けられている。尚、図 21において、膨張弁の図示は省略 する。この調湿回路 (30,40)では、再生用熱交翻 (172)が凝縮器として機能する。 また、調湿回路 (30,40)では、第 1熱交換器 (173)が蒸発器となって第 2熱交換器( 174)が休止する動作と、第 2熱交換器 (174)が蒸発器となって第 1熱交換器 (173)が 休止する動作とが切換可能となっている。この調湿回路 (30,40)は、再生用熱交 (172)側の端部が室外回路 (20)における圧縮機 (21)の吐出側に接続され、第 1及 び第 2熱交換器 (173,174)側の端部が室外回路 (20)における圧縮機 (21)の吸入側 に接続されている。
[0129] 上記吸着素子(181,182)は、やや扁平な直方体状に形成されている。吸着素子( 181,182)では、その長手方向へ調湿側通路(185)と冷却側通路(186)とが交互に複 数ずつ形成されている。調湿側通路(185)は、吸着素子(181,182)の上下面に開口 している。吸着素子(181,182)において、調湿側通路(185)に臨む面には、吸着材が 塗布されている。一方、冷却側通路(186)は、吸着素子(181,182)の前後の側面に 開口している。吸着素子(181,182)において、冷却側通路(186)を流れる空気は、調 湿側通路(185)を流れる空気と熱交換する。
[0130] 図 21に示すように、上記ケーシング(110)では、正面側の第 1パネル(111)に排気 口(114)及び給気口(116)が設けられ、背面側の第 2パネル(112)に外気吸込口( 113)及び内気吸込口(115)が設けられている。第 1パネル(111)では、その右側部分 のやや中央寄りに排気口(114)力 その左側部分のやや中央寄りに給気口(116)が それぞれ開口している。第 2パネル(112)では、その右端寄りの下部に外気吸込口( 113)が、その左端寄りの下部に内気吸込口(115)がそれぞれ開口している。
[0131] ケーシング(110)の内部は、正面側の空間と背面側の空間とに仕切られている。
[0132] ケーシング(110)内の正面側の空間は、左右に仕切られており、右側の空間が第 1 空間(141)を、左側の空間が第 2空間(142)をそれぞれ構成している。第 1空間(141) は、排気口(114)を介して室外に連通しており、その内部に排気ファン(145)と第 1熱 交翻 (173)とが設置されている。第 2空間(142)は、給気口(116)を介して室内に連 通しており、その内部に給気ファン(146)と第 2熱交翻(174)とが設置されている。
[0133] ケーシング(110)内の背面側の空間には、右側仕切板(120)と左側仕切板(130)と が立設されている。この背面側の空間は、右側仕切板(120)及び左側仕切板(130) によって、左右に 3つの空間に仕切られている。
[0134] ケーシング(110)の右側板と右側仕切板(120)の間の空間は、上下に仕切られてい る。この空間は、上側の空間が右上部流路(165)を構成し、下側の空間が右下部流 路(166)を構成している。右上部流路(165)は、第 1空間(141)及び排気口(114)を 介して室外と連通している。右下部流路(166)は、外気吸込口(113)を介して室外と 連通している。
[0135] ケーシング(110)の左側板と左側仕切板(130)の間の空間は、上下に仕切られてい る。この空間は、上側の空間が左上部流路(167)を構成し、下側の空間が左下部流 路(168)を構成している。左上部流路(167)は、第 2空間(142)及び給気口(116)を 介して室内と連通している。左下部流路(168)は、内気吸込口(115)を介して室内と 連通している。
[0136] ケーシング(110)内における右側仕切板(120)と左側仕切板(130)の間の空間には 、 2つの吸着素子(181,182)が設置されている。 2つの吸着素子(181,182)は、前後 に間隔をおいて並べられている。具体的には、ケーシング(110)の正面寄りに第 1吸 着素子(181)が配置され、その背面寄りに第 2吸着素子(182)が配置されている。各 吸着素子(181,182)では、上下の面に調湿側通路(185)が開口し、その前後の面に 冷却側通路(186)が開口して 、る。
[0137] また、ケーシング(110)内における右側仕切板(120)と左側仕切板(130)の間の空 間は、第 1流路(151)、第 2流路(152)、第 1上部流路(153)、第 1下部流路(154)、第 2上部流路(155)、第 2下部流路(156)及び中央流路(157)に区画されて 、る。
[0138] 第 1流路(151)は、第 1吸着素子(181)の手前側に形成され、第 1吸着素子(181)の 冷却側通路(186)に連通している。第 2流路(152)は、第 2吸着素子(182)の奥側に 形成され、第 2吸着素子(182)の冷却側通路(186)に連通している。
[0139] 第 1上部流路(153)は、第 1吸着素子(181)の上側に形成され、第 1吸着素子(181) の調湿側通路(185)に連通している。第 1下部流路(154)は、第 1吸着素子(181)の 下側に形成され、第 1吸着素子(181)の調湿側通路(185)に連通している。第 2上部 流路(155)は、第 2吸着素子(182)の上側に形成され、第 2吸着素子(182)の調湿側 通路(185)に連通している。第 2下部流路(156)は、第 2吸着素子(182)の下側に形 成され、第 2吸着素子(182)の調湿側通路(185)に連通している。
[0140] 中央流路(157)は、第 1吸着素子(181)と第 2吸着素子(182)の間に形成され、両 吸着素子(181,182)の冷却側通路(186)に連通して 、る。この中央流路(157)には、 再生用熱交翻 (172)が立設されている。
[0141] 中央流路(157)と第 1下部流路(154)の間の仕切りには、その下部に第 1中央ダン パ(161)が設けられている。第 1中央ダンバ(161)は、中央流路(157)と第 1下部流路 (154)の間を断続する。中央流路(157)と第 2下部流路(156)の間の仕切りには、そ の下部に第 2中央ダンバ(162)が設けられている。第 2中央ダンバ(162)は、中央流 路(157)と第 2下部流路(156)の間を断続する。
[0142] 右側仕切板(120)には、第 1右側ダンバ(121)、第 2右側ダンバ(122)、第 1右上ダ ンパ(123)、第 1右下ダンバ(124)、第 2右上ダンバ(125)、及び第 2右下ダンバ(126) が設けられている。
[0143] 第 1右側ダンバ (121)は、右側仕切板(120)における最も手前側の下部に設けられ 、第 1流路(151)と右下部流路(166)の間を断続する。第 2右側ダンバ(122)は、右側 仕切板 (120)における最も奥側の下部に設けられ、第 2流路(152)と右下部流路( 166)の間を断続する。
[0144] 第 1右上ダンバ(123)は、右側仕切板(120)のうち第 1吸着素子(181)に隣接する 部分の上部に設けられ、第 1上部流路(153)と右上部流路(165)の間を断続する。第 1右下ダンバ(124)は、右側仕切板 (120)のうち第 1吸着素子(181)に隣接する部分 の下部に設けられ、第 1下部流路(154)と右下部流路(166)の間を断続する。第 2右 上ダンバ(125)は、右側仕切板(120)のうち第 2吸着素子(182)に隣接する部分の上 部に設けられ、第 2上部流路(155)と右上部流路(165)の間を断続する。第 2右下ダ ンパ(126)は、右側仕切板(120)のうち第 2吸着素子(182)に隣接する部分の下部に 設けられ、第 2下部流路(156)と右下部流路(166)の間を断続する。
[0145] 左側仕切板(130)には、第 1左側ダンバ(131)、第 2左側ダンバ(132)、第 1左上ダ ンパ(133)、第 1左下ダンバ (134)、第 2左上ダンバ (135)、及び第 2左下ダンバ (136) が設けられている。
[0146] 第 1左側ダンバ (131)は、左側仕切板(130)における手前側の下部に設けられ、第 1流路(151)と左下部流路(168)の間を断続する。第 2左側ダンバ(132)は、左側仕 切板(130)における奥側の下部に設けられ、第 2流路(152)と左下部流路(168)の間 を断続する。
[0147] 第 1左上ダンバ(133)は、左側仕切板(130)のうち第 1吸着素子(181)に隣接する 部分の上部に設けられ、第 1上部流路(153)と左上部流路(167)の間を断続する。第 1左下ダンバ(134)は、左側仕切板(130)のうち第 1吸着素子(181)に隣接する部分 の下部に設けられ、第 1下部流路(154)と左下部流路(168)の間を断続する。第 2左 上ダンバ(135)は、左側仕切板(130)のうち第 2吸着素子(182)に隣接する部分の上 部に設けられ、第 2上部流路(155)と左上部流路(167)の間を断続する。第 2左下ダ ンパ(136)は、左側仕切板(130)のうち第 2吸着素子(182)に隣接する部分の下部に 設けられ、第 2下部流路(156)と左下部流路(168)の間を断続する。
[0148] 運転動作
上記実施形態 1, 2と同様に、本実施形態においても、第 1調湿ユニット(11)と第 2 調湿ユニット(12)は構造が共通しており、両者の運転動作も共通する。ここでは、第 1 調湿ユニット(11)の動作について説明し、第 2調湿ユニット(12)の動作についての説 明は省略する。
[0149] 〈除湿運転〉
図 21及び図 22に示すように、除湿運転時において、給気ファン(146)を駆動すると 、室外空気(OA)が外気吸込口(113)からケーシング(110)内へ第 1空気として取り込 まれる。一方、排気ファン(145)を駆動すると、室内空気 (RA)が内気吸込口(115)か らケーシング(110)内へ第 2空気として取り込まれる。また、除湿運転時において、調 湿回路 (30,40)では、再生用熱交翻 (172)が凝縮器となり、第 2熱交翻 (174)が 蒸発器となる一方、第 1熱交翻 (173)が休止する。この状態で、第 1調湿ユニット( 11)は、第 1動作と第 2動作を交互に繰り返す。
[0150] 除湿運転中の第 1動作について、図 21を参照しながら説明する。この第 1動作では 、第 1吸着素子(181)についての吸着動作と、第 2吸着素子(182)についての再生動 作とが行われる。
[0151] この第 1動作において、右側仕切板(120)では、第 1右下ダンバ(124)と第 2右上ダ ンパ(125)とが開状態となり、残りのダンバ (121,122,123,126)が閉状態となる。左側 仕切板 (130)では、第 1左側ダンバ(131)と第 1左上ダンバ(133)とが開状態となり、 残りのダンバ(132,134,135,136)が閉状態となる。第 1中央ダンバ(161)は閉状態とな り、第 2中央ダンバ(162)は開状態となる。
[0152] ケーシング(110)内へ取り込まれた第 1空気は、右下部流路(166)から第 1右下ダン パ(124)を通って第 1下部流路(154)へ流入する。第 1下部流路(154)の第 1空気は 、第 1吸着素子(181)の調湿側通路(185)へ流入する。この調湿側通路(185)では、 第 1空気中の水蒸気が吸着材に吸着される。第 1吸着素子(181)で除湿された第 1 空気は、第 1上部流路(153)へ流入し、その後に第 1左上ダンバ(133)と左上部流路 (167)とを順に通過して第 2空間(142)へ流入する。第 2空間(142)において、第 1空 気は、第 2熱交 (174)を通過する間に冷媒と熱交換して冷却される。そして、除 湿されて冷却された第 1空気は、給気口(116)を通って室内へ供給される。
[0153] 一方、ケーシング(110)内へ取り込まれた第 2空気は、左下部流路(168)から第 1左 側ダンバ (131)を通って第 1流路(151)へ流入し、その後に第 1吸着素子(181)の冷 却側通路(186)へ流入する。この冷却側通路(186)を流れる間に、第 2空気は、調湿 側通路(185)で生じた吸着熱を吸熱する。吸着熱を奪った第 2空気は、中央流路( 157)へ流入して再生用熱交 (172)を通過し、その際に冷媒と熱交換して更に加 熱される。
[0154] 加熱された第 2空気は、中央流路(157)力 第 2下部流路(156)へ流入し、その後 に第 2吸着素子(182)の調湿側通路(185)へ流入する。この調湿側通路(185)では、 第 2空気によって吸着材が加熱され、吸着材から水蒸気が脱離する。吸着材から脱 離した水蒸気は、第 2空気に付与される。調湿側通路(185)で加湿された第 2空気は 、第 2上部流路(155)へ流入し、その後に第 2右上ダンバ(125)と右上部流路(165)と を順に通過して第 1空間(141)へ流入する。その後、第 2空気は、休止中の第 1熱交 換器(173)を通過し、排気口(114)を通って室外へ排出される。
[0155] 除湿運転の第 2動作について、図 22を参照しながら説明する。この第 2動作では、 第 2吸着素子(182)についての吸着動作と、第 1吸着素子(181)についての再生動 作とが行われる。
[0156] この第 2動作において、右側仕切板(120)では、第 1右上ダンバ(123)と第 2右下ダ ンパ(126)とが開状態となり、残りのダンバ (121,122,124,125)が閉状態となる。左側 仕切板(130)では、第 2左側ダンバ(132)と第 2左上ダンバ(135)とが開状態となり、 残りのダンバ(131,133,134,136)が閉状態となる。第 1中央ダンバ(161)は開状態とな り、第 2中央ダンバ(162)は閉状態となる。
[0157] ケーシング(110)内へ取り込まれた第 1空気は、右下部流路(166)から第 2右下ダン パ(126)を通って第 2下部流路(156)へ流入する。第 2下部流路(156)の第 1空気は 、第 2吸着素子(182)の調湿側通路(185)へ流入する。この調湿側通路(185)では、 第 1空気中の水蒸気が吸着材に吸着される。第 2吸着素子(182)で除湿された第 1 空気は、第 2上部流路(155)へ流入し、その後に第 2左上ダンバ(135)と左上部流路 (167)とを順に通過して第 2空間(142)へ流入する。第 2空間(142)において、第 1空 気は、第 2熱交 (174)を通過する間に冷媒と熱交換して冷却される。そして、除 湿されて冷却された第 1空気は、給気口(116)を通って室内へ供給される。 [0158] 一方、ケーシング(110)内へ取り込まれた第 2空気は、左下部流路(168)から第 2左 側ダンバ (132)を通って第 2流路(152)へ流入し、その後に第 2吸着素子(182)の冷 却側通路(186)へ流入する。この冷却側通路(186)を流れる間に、第 2空気は、調湿 側通路(185)で生じた吸着熱を吸熱する。吸着熱を奪った第 2空気は、中央流路( 157)へ流入して再生用熱交 (172)を通過し、その際に冷媒と熱交換して更に加 熱される。
[0159] 加熱された第 2空気は、中央流路(157)から第 1下部流路(154)へ流入し、その後 に第 1吸着素子(181)の調湿側通路(185)へ流入する。この調湿側通路(185)では、 第 2空気によって吸着材が加熱され、吸着材から水蒸気が脱離する。吸着材から脱 離した水蒸気は、第 2空気に付与される。調湿側通路(185)で加湿された第 2空気は 、第 1上部流路(153)へ流入し、その後に第 1右上ダンバ(123)と右上部流路(165)と を順に通過して第 1空間(141)へ流入する。その後、第 2空気は、休止中の第 1熱交 換器(173)を通過し、排気口(114)を通って室外へ排出される。
[0160] 〈加湿運転〉
図 23及び図 24に示すように、加湿運転時において、給気ファン(146)を駆動すると 、室外空気(OA)が外気吸込口(113)からケーシング(110)へ第 2空気として取り込ま れる。一方、排気ファン(145)を駆動すると、室内空気 (RA)が内気吸込口(115)から ケーシング(110)内へ第 1空気として取り込まれる。また、加湿運転時において、調湿 回路 (30,40)では、再生用熱交翻 (172)が凝縮器となり、第 1熱交翻 (173)が蒸 発器となる一方、第 2熱交翻 (174)が休止する。この状態で、第 1調湿ユニット(11) は、第 1動作と第 2動作を交互に繰り返す。
[0161] 加湿運転の第 1動作について、図 23を参照しながら説明する。この第 1動作では、 第 1吸着素子(181)についての吸着動作と、第 2吸着素子(182)についての再生動 作とが行われる。
[0162] この第 1動作において、右側仕切板(120)では、第 1右側ダンバ(121)と第 1右上ダ ンパ(123)とが開状態となり、残りのダンバ (122,124,125,126)が閉状態となる。左側 仕切板(130)では、第 1左下ダンバ (134)と第 2左上ダンバ(135)とが開状態となり、 残りのダンバ(131,132,133,136)が閉状態となる。第 1中央ダンバ(161)は閉状態とな り、第 2中央ダンバ(162)は開状態となる。
[0163] ケーシング(110)内へ取り込まれた第 1空気は、左下部流路(168)から第 1左下ダン パ(134)を通って第 1下部流路(154)へ流入する。第 1下部流路(154)の第 1空気は 、第 1吸着素子(181)の調湿側通路(185)へ流入する。この調湿側通路(185)では、 第 1空気中の水蒸気が吸着材に吸着される。第 1吸着素子(181)で水分を奪われた 第 1空気は、第 1上部流路(153)へ流入し、その後に第 1右上ダンバ(123)と右上部 流路(165)とを順に通過して第 1空間(141)へ流入する。第 1空間(141)において、第 1空気は、第 1熱交 (173)を通過する間に冷媒と熱交換して冷却される。そして、 水分と熱を奪われた第 1空気は、排気口(114)を通って室外へ排出される。
[0164] 一方、ケーシング(110)内へ取り込まれた第 2空気は、右下部流路(166)から第 1右 側ダンバ (121)を通って第 1流路(151)へ流入し、その後に第 1吸着素子(181)の冷 却側通路(186)へ流入する。この冷却側通路(186)を流れる間に、第 2空気は、調湿 側通路(185)で生じた吸着熱を吸熱する。吸着熱を奪った第 2空気は、中央流路( 157)へ流入して再生用熱交 (172)を通過し、その際に冷媒と熱交換して加熱さ れる。
[0165] 加熱された第 2空気は、中央流路(157)力 第 2下部流路(156)へ流入し、その後 に第 2吸着素子(182)の調湿側通路(185)へ流入する。この調湿側通路(185)では、 第 2空気によって吸着材が加熱され、吸着材から水蒸気が脱離する。吸着材から脱 離した水蒸気は、第 2空気に付与される。第 2吸着素子(182)で加湿された第 2空気 は、その後に第 2上部流路(155)へ流入し、第 2左上ダンバ(135)と左上部流路(167 )とを順に通過して第 2空間(142)へ流入する。その後、第 2空気は、休止中の第 2熱 交換器(174)を通過し、給気口(116)を通って室内へ供給される。
[0166] 加湿運転の第 2動作について、図 24を参照しながら説明する。この第 2動作では、 第 2吸着素子(182)についての吸着動作と、第 1吸着素子(181)についての再生動 作とが行われる。
[0167] この第 2動作において、右側仕切板(120)では、第 2右側ダンバ(122)と第 2右上ダ ンパ(125)とが開状態となり、残りのダンバ (121,123,124,126)が閉状態となる。左側 仕切板(130)では、第 1左上ダンバ (133)と第 2左下ダンバ(136)とが開状態となり、 残りのダンバ(131, 132,134,135)が閉状態となる。第 1中央ダンバ(161)は開状態とな り、第 2中央ダンバ(162)は閉状態となる。
[0168] ケーシング(110)内へ取り込まれた第 1空気は、左下部流路(168)から第 2左下ダン パ(136)を通って第 2下部流路(156)へ流入する。第 2下部流路(156)の第 1空気は 、第 2吸着素子(182)の調湿側通路(185)へ流入する。この調湿側通路(185)では、 第 1空気中の水蒸気が吸着材に吸着される。第 2吸着素子(182)で水分を奪われた 第 1空気は、第 2上部流路(155)へ流入し、その後に第 2右上ダンバ(125)と右上部 流路(165)とを順に通過して第 1空間(141)へ流入する。第 1空間(141)において、第 1空気は、第 1熱交 (173)を通過する間に冷媒と熱交換して冷却される。そして、 水分と熱を奪われた第 1空気は、排気口(114)を通って室外へ排出される。
[0169] 一方、ケーシング(110)内へ取り込まれた第 2空気は、右下部流路(166)から第 2右 側ダンバ (122)を通って第 2流路(152)へ流入し、その後に第 2吸着素子(182)の冷 却側通路(186)へ流入する。この冷却側通路(186)を流れる間に、第 2空気は、調湿 側通路(185)で生じた吸着熱を吸熱する。吸着熱を奪った第 2空気は、中央流路( 157)へ流入して再生用熱交 (172)を通過し、その際に冷媒と熱交換して加熱さ れる。
[0170] 加熱された第 2空気は、中央流路(157)から第 1下部流路(154)へ流入し、その後 に第 1吸着素子(181)の調湿側通路(185)へ流入する。この調湿側通路(185)では、 第 2空気によって吸着材が加熱され、吸着材から水蒸気が脱離する。吸着材から脱 離した水蒸気は、第 2空気に付与される。調湿側通路(185)で加湿された第 2空気は 、第 1上部流路(153)へ流入し、その後に第 1吸着素子(181)で加湿された第 2空気 は、第 1上部流路(153)へ流入し、その後に第 1左上ダンバ(133)と左上部流路(167 )とを順に通過して第 2空間(142)へ流入する。その後、第 2空気は、休止中の第 2熱 交換器(174)を通過し、給気口(116)を通って室内へ供給される。
産業上の利用可能性
[0171] 以上説明したように、本発明は、除湿し又は加湿した空気を室内へ供給する調湿 装置について有用である。

Claims

請求の範囲
[1] 除湿した空気を室内へ供給する除湿運転と加湿した空気を室内へ供給する加湿 運転とを選択的に行う複数の調湿ユニット(11,12)と、
圧縮機 (21)が設置される 1つの圧縮機ユニット (13)とを備え、
上記調湿ユニット(11,12)は、上記圧縮機ユニット(13)に接続されて冷媒回路(15) を形成し、該冷媒回路(15)の冷媒によって吸着材の加熱と冷却の少なくとも一方を 行って該吸着材との接触により空気を調湿するように構成されており、
何れの上記調湿ユニット(11,12)においても、他の調湿ユニット(11,12)が除湿運転 中か加湿運転中かに拘わらず除湿運転と加湿運転のどちらも選択可能となっている 調湿装置。
[2] 請求項 1に記載の調湿装置において、
調湿ユニット(11,12)は、吸着材を担持すると共に冷媒回路(15)に接続される吸着 熱交翻 (31,32,41,42)を備え、取り込んだ空気を上記吸着熱交翻 (31,32,41,42) へ送って吸着材と接触させる調湿装置。
[3] 請求項 2に記載の調湿装置において、
調湿ユニット(11,12)は、
第 1空気と第 2空気とを取り込み、
蒸発器となっている第 1の吸着熱交 (31,41)で第 1空気を除湿して凝縮器と なって 、る第 2の吸着熱交換器 (32,42)で第 2空気を加湿する動作と、蒸発器となつ ている第 2の吸着熱交 (32,42)で第 1空気を除湿して凝縮器となっている第 1の 吸着熱交換器 (31,41)で第 2空気を加湿する動作とを交互に行い、
除湿運転時には除湿された第 1空気を室内へ供給して加湿された第 2空気を室 外へ排出し、加湿運転時には加湿された第 2空気を室内へ供給して除湿された第 1 空気を室外へ排出する調湿装置。
[4] 請求項 3に記載の調湿装置において、
調湿ユニット(11, 12)では、第 iの吸着熱交翻 (31,41)と膨張機構 (33,43)と第 2の 吸着熱交 (32,42)とが順に直列接続されて冷媒回路 (15)の一部を構成する調 湿回路 (30,40)が形成される一方、 圧縮機ユニット(13)には、上記冷媒回路(15)に接続されて全ての上記調湿回路( 30,40)における冷媒の流通方向を反転可能とするための反転機構 (22)が設置され ている調湿装置。
請求項 3に記載の調湿装置にぉ 、て、
調湿ユニット(11, 12)では、第 iの吸着熱交翻 (31,41)と膨張機構 (33,43)と第 2の 吸着熱交 (32,42)とが順に直列接続されて冷媒回路 (15)の一部を構成する調 湿回路 (30,40)が形成される一方、
上記調湿回路 (30,40)には、該調湿回路 (30,40)おける冷媒の流通方向を反転可 能とするための反転機構 (34,44)が接続されて!ヽる調湿装置。
PCT/JP2005/006106 2004-03-31 2005-03-30 調湿装置 WO2005095866A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2005227461A AU2005227461B2 (en) 2004-03-31 2005-03-30 Humidity control system
ES05727744T ES2424144T3 (es) 2004-03-31 2005-03-30 Sistema de control de la humedad
EP05727744.4A EP1736711B1 (en) 2004-03-31 2005-03-30 Humidity controller
US11/547,188 US20080265045A1 (en) 2004-03-31 2005-03-30 Humidity Control System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-101744 2004-03-31
JP2004101744A JP3711999B2 (ja) 2004-03-31 2004-03-31 調湿装置

Publications (1)

Publication Number Publication Date
WO2005095866A1 true WO2005095866A1 (ja) 2005-10-13

Family

ID=35063863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006106 WO2005095866A1 (ja) 2004-03-31 2005-03-30 調湿装置

Country Status (8)

Country Link
US (1) US20080265045A1 (ja)
EP (1) EP1736711B1 (ja)
JP (1) JP3711999B2 (ja)
KR (1) KR100742074B1 (ja)
CN (1) CN100507378C (ja)
AU (1) AU2005227461B2 (ja)
ES (1) ES2424144T3 (ja)
WO (1) WO2005095866A1 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2602737A1 (en) * 2007-09-14 2009-03-14 Air Tech Equipment Ltd. Dehumidifying system
JP4985322B2 (ja) * 2007-10-31 2012-07-25 ダイキン工業株式会社 換気装置
JP2009109124A (ja) * 2007-10-31 2009-05-21 Daikin Ind Ltd 調湿装置
JP5396705B2 (ja) * 2007-10-31 2014-01-22 ダイキン工業株式会社 調湿装置
WO2009107452A1 (ja) * 2008-02-27 2009-09-03 ダイキン工業株式会社 空気調和機
JP5120045B2 (ja) * 2008-04-21 2013-01-16 ダイキン工業株式会社 調湿システム
US20100269521A1 (en) * 2009-04-28 2010-10-28 Steven Clay Moore Air-conditioning with dehumidification
CN103717976B (zh) * 2011-07-27 2017-04-12 三菱电机株式会社 调湿装置以及空气调节系统
JP5447705B2 (ja) * 2012-03-14 2014-03-19 ダイキン工業株式会社 調湿装置
CN104603546B (zh) * 2012-09-04 2017-09-19 大金工业株式会社 调湿装置
WO2014167660A1 (ja) * 2013-04-10 2014-10-16 三菱電機株式会社 除湿装置
CN104515218B (zh) * 2013-09-27 2017-12-19 北京清华索兰环能技术研究所 空气源热泵固体吸附除湿的空调系统
UA110199U (uk) * 2016-04-12 2016-09-26 Приватне Акціонерне Товариство "Вентиляційні Системи" Спосіб роботи припливно-витяжної вентиляційної установки
CN106016514A (zh) * 2016-05-12 2016-10-12 上海交通大学 温湿度弱关联控制单元式空调系统及使用方法
CN106322538A (zh) * 2016-10-31 2017-01-11 广东美的制冷设备有限公司 一种无水加湿空调及加湿方法
CN106322537A (zh) * 2016-10-31 2017-01-11 广东美的制冷设备有限公司 一种无水加湿空调及加湿方法
CN107166583A (zh) * 2017-05-12 2017-09-15 上海交通大学 半解耦式降温除湿与分级冷却的除湿热泵系统和方法
CN110260552A (zh) * 2019-06-04 2019-09-20 珠海格力电器股份有限公司 空调系统
CN110529931A (zh) * 2019-07-25 2019-12-03 珠海格力电器股份有限公司 一种空调系统
CN112361639B (zh) * 2019-07-26 2022-04-19 青岛海尔空调器有限总公司 空调
CN110687251B (zh) * 2019-09-19 2022-06-10 广东电网有限责任公司广州供电局 控制柜及其湿度预警方法和装置
CN114151940A (zh) * 2020-09-08 2022-03-08 广东美的制冷设备有限公司 空调器及其控制方法、控制装置和可读存储介质
JP7372554B2 (ja) * 2021-03-10 2023-11-01 ダイキン工業株式会社 調湿装置
EP4357686A4 (en) * 2021-06-17 2024-07-10 Mitsubishi Electric Corp VENTILATION SYSTEM
KR102631139B1 (ko) * 2022-09-30 2024-01-31 엔트 주식회사 히트펌프를 이용한 액체식 조습 환기 전열 회수장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4430864A (en) 1981-12-31 1984-02-14 Midwest Research Institute Hybrid vapor compression and desiccant air conditioning system
JP2003161465A (ja) 2001-11-26 2003-06-06 Daikin Ind Ltd 調湿装置
JP2003232539A (ja) 2002-02-07 2003-08-22 Daikin Ind Ltd 調湿装置
JP2003232538A (ja) 2002-02-07 2003-08-22 Daikin Ind Ltd 調湿装置
JP2003279189A (ja) 2002-03-26 2003-10-02 Sanyo Electric Co Ltd 空気調和装置及びこれに用いられる電磁弁ユニット

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2008407A (en) * 1932-04-28 1935-07-16 Westinghouse Electric & Mfg Co Inverted-refrigeration plant
US2672734A (en) * 1950-11-07 1954-03-23 Westinghouse Electric Corp Air conditioning apparatus
US2758447A (en) * 1952-01-19 1956-08-14 Whirlpool Seeger Corp Four way reversing valve
US4157649A (en) * 1978-03-24 1979-06-12 Carrier Corporation Multiple compressor heat pump with coordinated defrost
US5243825A (en) * 1992-05-05 1993-09-14 Industrial Technology Research Institute Multi-purpose engine-driven heat pump system
KR0129641Y1 (ko) * 1995-03-30 1999-01-15 김광호 공기조화기의 실내기
JP2968232B2 (ja) * 1997-04-11 1999-10-25 株式会社荏原製作所 空調システム及びその運転方法
CN1161580C (zh) * 1997-09-11 2004-08-11 大金工业株式会社 制冷装置的管道清洗装置及管道清洗方法
JP4221780B2 (ja) * 1998-07-24 2009-02-12 ダイキン工業株式会社 冷凍装置
US6244057B1 (en) * 1998-09-08 2001-06-12 Hitachi, Ltd. Air conditioner
US6394210B2 (en) * 1999-06-07 2002-05-28 Mitsubishi Heavy Industries, Ltd. Temperature controller for vehicular battery
US6332497B1 (en) * 1999-06-07 2001-12-25 Mitsubishi Heavy Industries, Ltd. Vehicular air conditioner
KR100357989B1 (ko) * 2000-05-24 2002-10-25 진금수 히트 펌프 시스템
ATE489590T1 (de) * 2002-08-02 2010-12-15 Daikin Ind Ltd Kühleinrichtung
CN100412470C (zh) * 2003-04-02 2008-08-20 大金工业株式会社 冷冻装置
DE602004024048D1 (de) * 2003-04-11 2009-12-24 Daikin Ind Ltd Klimaanlage
JP3668785B2 (ja) * 2003-10-09 2005-07-06 ダイキン工業株式会社 空気調和装置
ES2636539T3 (es) * 2004-03-31 2017-10-06 Daikin Industries, Ltd. Sistema de acondicionamiento de aire
EP1775528A1 (en) * 2004-08-02 2007-04-18 Daikin Industries, Ltd. Refrigeration unit
JP5336039B2 (ja) * 2006-07-21 2013-11-06 ダイキン工業株式会社 二酸化炭素を冷媒として用いる冷凍装置における冷媒充填方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4430864A (en) 1981-12-31 1984-02-14 Midwest Research Institute Hybrid vapor compression and desiccant air conditioning system
JP2003161465A (ja) 2001-11-26 2003-06-06 Daikin Ind Ltd 調湿装置
JP2003232539A (ja) 2002-02-07 2003-08-22 Daikin Ind Ltd 調湿装置
JP2003232538A (ja) 2002-02-07 2003-08-22 Daikin Ind Ltd 調湿装置
JP2003279189A (ja) 2002-03-26 2003-10-02 Sanyo Electric Co Ltd 空気調和装置及びこれに用いられる電磁弁ユニット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1736711A4 *

Also Published As

Publication number Publication date
EP1736711A1 (en) 2006-12-27
EP1736711B1 (en) 2013-05-15
KR100742074B1 (ko) 2007-07-23
CN100507378C (zh) 2009-07-01
AU2005227461A1 (en) 2005-10-13
US20080265045A1 (en) 2008-10-30
JP3711999B2 (ja) 2005-11-02
EP1736711A4 (en) 2011-12-21
ES2424144T3 (es) 2013-09-27
KR20060133065A (ko) 2006-12-22
JP2005283053A (ja) 2005-10-13
CN1934393A (zh) 2007-03-21
AU2005227461B2 (en) 2008-10-02

Similar Documents

Publication Publication Date Title
WO2005095866A1 (ja) 調湿装置
AU2004295536B2 (en) Air conditioning system
JP3668785B2 (ja) 空気調和装置
KR100790258B1 (ko) 공기조화장치
AU2006253462B2 (en) Air conditioning system
JP2003314856A (ja) 調湿装置
WO2005095868A1 (ja) 調湿装置
JP4590901B2 (ja) 空気調和装置
US7874174B2 (en) Humidity control system
WO2005017417A1 (ja) 調湿装置
JP2005164148A (ja) 調湿装置
JP2005106353A (ja) 空気調和装置
JP4752429B2 (ja) 調湿装置及びそれを備えた空気調和システム
JP2005164220A (ja) 空気調和装置
JP2005283075A (ja) 調湿装置
JP4311110B2 (ja) 空気調和装置
JP2022189334A (ja) 空調システム
JP4483376B2 (ja) 調湿装置
JP2006078100A (ja) 調湿装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580008485.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11547188

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005227461

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005727744

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067022477

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2005227461

Country of ref document: AU

Date of ref document: 20050330

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005227461

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1020067022477

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005727744

Country of ref document: EP