WO2005095487A1 - ポリブチレンテレフタレート - Google Patents

ポリブチレンテレフタレート Download PDF

Info

Publication number
WO2005095487A1
WO2005095487A1 PCT/JP2005/005905 JP2005005905W WO2005095487A1 WO 2005095487 A1 WO2005095487 A1 WO 2005095487A1 JP 2005005905 W JP2005005905 W JP 2005005905W WO 2005095487 A1 WO2005095487 A1 WO 2005095487A1
Authority
WO
WIPO (PCT)
Prior art keywords
polybutylene terephthalate
less
ppm
pbt
reaction
Prior art date
Application number
PCT/JP2005/005905
Other languages
English (en)
French (fr)
Inventor
Toshiyuki Hamano
Masanori Yamamoto
Shinichiro Matsuzono
Kenji Noda
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to EP05727839A priority Critical patent/EP1731546A4/en
Priority to US10/594,668 priority patent/US20090264611A1/en
Priority to CN200580009848XA priority patent/CN1938361B/zh
Publication of WO2005095487A1 publication Critical patent/WO2005095487A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids

Definitions

  • the present invention relates to polybutylene terephthalate, and more particularly, to a film or monofilament having excellent color tone, hydrolysis resistance, heat stability, transparency, and moldability, and having reduced foreign matter.
  • the present invention relates to polybutylene terephthalate which can be suitably used for fibers, electric and electronic parts, automobile parts and the like.
  • Polybutylene terephthalate which is a representative engineering plastic among thermoplastic polyester resins, is easy to mold, has mechanical properties, heat resistance, chemical resistance, fragrance retention, and other physical properties. Because of its excellent chemical properties, it is widely used in injection molded products such as automotive parts, electric and electronic parts, and precision equipment parts. In recent years, it has become widely used in the fields of films, sheets, monofilaments, and fibers, taking advantage of its excellent properties.
  • polybutylene terephthalate does not always have sufficient hydrolysis resistance, and particularly when used under moist heat, there is a problem of a decrease in mechanical properties due to a decrease in molecular weight.
  • the higher the terminal carboxyl group concentration the worse the hydrolysis resistance of polyester becomes (see, for example, Non-Patent Document 1).
  • the higher the terminal carboxyl group concentration the higher the concentration of terminal carboxyl groups. It is a serious problem that the hydrolysis reaction rate under wet heat is high and the molecular weight is reduced due to the hydrolysis, leading to a reduction in mechanical properties and the like.
  • Non-patent document 1 Saturated polyester resin handbook (December 22, 1989, published by Nikkan Kogyo Shimbun, pages 192 to 193, page 304)
  • Patent Document 1 JP-A-9-316183
  • Patent Document 2 JP-A-8-20638
  • Patent Document 3 JP-A-8-41182
  • the present invention has been made in view of the above circumstances, and has as its object to improve color tone, hydrolysis resistance, heat stability, transparency, and moldability, and to reduce foreign matter.
  • Film, monofilament It is an object of the present invention to provide a polybutylene terephthalate which can be suitably used for materials, fibers, electric and electronic parts, automobile parts and the like. Means for solving the problem
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, it is surprising that the polymerization reaction is carried out in a specific mode using a titanium compound and a metal compound of Group 2A in the periodic table as a catalyst. What should be considered is that the increase in terminal carboxyl groups due to the thermal decomposition reaction is suppressed, the terminal carboxyl group concentration can be significantly reduced even in the low molecular weight region, and the increase in terminal carboxyl group concentration during melt molding can also be suppressed. Not only that, but also the fact that the reaction at the time of polycondensation was greatly accelerated, it was found that the polymerization temperature could be lowered, and the present invention was completed.
  • the present invention has been completed based on the above findings, and the gist of the present invention is to obtain a titanium compound and a metal compound of Group 2A of the periodic table as a catalyst, and to have an intrinsic viscosity of 0.7 to 1 OdL Zg with terminal carboxyl group concentration of 0.1-18 / ⁇
  • films, monofilaments, fibers, electric and electronic parts, automobile parts, and the like which are excellent in color tone, hydrolysis resistance, heat stability, transparency, and moldability, and have reduced foreign matter.
  • a polybutylene terephthalate that can be suitably used for
  • FIG. 1 is an explanatory view of an example of an esterification reaction step or a transesterification reaction step employed in the present invention.
  • FIG. 2 is an explanatory diagram of an example of a polycondensation step employed in the present invention.
  • the polybutylene terephthalate (hereinafter abbreviated as PBT) of the present invention refers to terephthalic acid monohydrate. Position and 1, 4 have butanediol units is ester bond structure, 50 mole 0/0 or more dicarboxylic acid units composed of terephthalic acid units, 50 mol 0/0 or 1, 4-butanediol unit of the diol component A macromolecule consisting of The proportion of terephthalic acid units in all dicarboxylic acid units is preferably at least 70 mol%, more preferably at least 80 mol%, particularly preferably at least 95 mol%, and 1,4-butanediol unit in all diol units is preferred.
  • dicarboxylic acid components other than terephthalic acid are not particularly limited. Examples thereof include phthalic acid, isophthalic acid, 4,4′-diphenyldicarboxylic acid, and 4,4′-diphenylditerdicarboxylic acid.
  • Aromacyclic dicarboxylic acids such as aromatic dicarboxylic acids, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, malonic acid, succinic acid, and glutaric acid
  • aliphatic dicarboxylic acids such as adipic acid, pimelic acid, suberic acid, azelaic acid and sebacic acid.
  • dicarboxylic acid components can be introduced into a polymer skeleton as a dicarboxylic acid or using a dicarboxylic acid derivative such as a dicarboxylic acid ester, a dicarboxylic acid, or a ride as a raw material.
  • diol components other than 1,4 butanediol are not particularly limited, and examples thereof include ethylene glycol, diethylene glycol, polyethylene glycol, 1,2 propanediol, 1,3 propanediol, polypropylene glycol, and polytetramethylene.
  • Glycol dibutylene glycol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, aliphatic diols such as 1,8-octanediol, 1,2-cyclohexanediol, 1,4-cyclohexanediol, 1 Alicyclic diols such as 1,1-cyclohexandimethylol and 1,4-cyclohexanedimethylol, xylylene glycol, 4,4′-dihydroxybiphenyl, 2,2bis (4hydroxyphenyl) propyl Aromatic geo such as mouth bread, bis (4-hydroxyphenyl) sulfone It can be mentioned Le like.
  • hydroxycarboxylic acids such as lactic acid, glycolic acid, m-hydroxybenzoic acid, p-hydroxybenzoic acid, 6-hydroxy-2-naphthalenecarboxylic acid, and p-j8-hydroxyethoxybenzoic acid , Alkoxycarboxylic acid, stearyl alcohol, benzyl alcohol, stearic acid, benzoic acid, t-butyl benzoic acid, benzoyl benzoic acid, etc., monofunctional components such as tricarboxylic acid, trimellitic acid, trimesic acid, trimesic acid, pyromellitic acid, and gallic acid
  • trifunctional or higher polyfunctional components such as trimethylolethane, trimethylolpropane, glycerol, and pentaerythritol can be used as copolymer components.
  • the PBT of the present invention is used as a catalyst when the oligomer obtained by the esterification reaction (or transesterification reaction) of 1,4-butanediol with terephthalic acid (or dialkyl terephthalate) is used as a catalyst. It is obtained by using compounds and Group 2A metal compounds of the periodic table. These catalysts may be used during the esterification reaction (or transesterification reaction) and brought directly into the polycondensation reaction, or may not be used in the esterification reaction (or ester exchange reaction), or may be used either. May be used, and the other catalyst may be added in the polycondensation step.
  • a part of the catalyst amount finally used may be used, and may be appropriately added as the polycondensation reaction proceeds.
  • the force and the amount of titanium and the metal in the periodic table 2A inevitably contained in the finally obtained PBT will be described later.
  • a titanium compound may be referred to as a titanium catalyst
  • a group 2A metal compound of the periodic table may be referred to as a group 2A metal catalyst.
  • titanium conjugate examples include inorganic oxides such as titanium oxide and titanium tetrachloride, titanium alcoholates such as tetramethyl titanate, tetraisopropyl titanate and tetrabutyl titanate, and tetraphenyl titanate. Titanium phenolate and the like. Of these, tetraalkyl titanates are preferred, and among them, tetrabutyl titanate is preferred.
  • tin may be used as a catalyst.
  • Tin is generally used as a tin compound, and specific examples thereof include dibutyltin oxide, methylphenylsulfoxide, tetraethyltin, hexethylditin oxide, and cyclohexahexyldioxide.
  • Tin oxide didodecyltin oxide, triethyltin oxide, oxide at mouth, oxide at triphenyltin oxide, oxide at tributyltin acetate, dibutyltin diacetate, diphenyltin dilaurate, monobutyltin trichloride, tributyltin chloride, dibutyltin sulfide, butylhydroxytin Oxides, methylstannoic acid, ethylstannoic acid, butylstannoic acid and the like can be mentioned.
  • the added amount of tin is usually 200 ppm or less, preferably 100 ppm or less, more preferably 100 ppm or less, and particularly preferably not added. .
  • Specific examples of the Group 2A metal compound of the periodic table in the present invention include various compounds of beryllium, magnesium, calcium, strontium, and norium. From the viewpoint of force handling, ease of access, and catalytic effect, Magnesium compounds or calcium compounds are preferred, and magnesium having an excellent catalytic effect is particularly preferred.
  • Specific examples of the magnesium compound include magnesium acetate, magnesium hydroxide, magnesium carbonate, magnesium oxide, magnesium alkoxide, magnesium hydrogen phosphate, and the like.
  • Specific examples of the calcium compound include calcium acetate and water. Examples thereof include calcium oxide, calcium carbonate, calcium oxide, calcium alkoxide, and calcium hydrogen phosphate. Of these, magnesium acetate is preferred.
  • an antimony compound such as antimony trioxide, a germanium compound such as germanium dioxide and germanium tetroxide, a manganese fluoride compound, a zinc compound
  • a zirconium compound a cobalt compound, a phosphoric acid such as orthophosphorous acid, phosphorous acid, hypophosphorous acid, polyphosphoric acid, an ester or a metal salt thereof, a reaction aid such as sodium hydroxide, sodium benzoate or the like. Is also good.
  • the content of titanium in the PBT of the present invention is not particularly limited, but is preferably 150 ppm or less by weight as titanium atoms with respect to PBT.
  • the lower limit of the titanium content is more preferably in the order of 10 ppm, 20 ppm, and 25 ppm, which are usually 5 ppm, and the upper limit is 80 ppm, 60 ppm, 50 ppm, and 40 ppm, which are usually 100 ppm. The order is even more favorable. If the content of titanium is too large, the color tone and hydrolysis resistance deteriorate, and if it is too small, the polymerizability deteriorates. [0027]
  • the content of Group 2A metal in the periodic table in the PBT of the present invention is not particularly limited, but is preferably 150 ppm or less as a Group 2A metal atom in the periodic table by weight relative to PBT.
  • the lower limit of the content of the Group 2A metal in the periodic table is more preferably in the order of 5 ppm and 10 ppm, which are usually 3 ppm, and the upper limit is 50 ppm, 40 ppm, 30 ppm, and 15 ppm, which are usually 100 ppm. It becomes more preferable in the order of If the content of Group 2A metal in the periodic table is too large, the color tone and hydrolysis resistance will be poor, and if too small, the polymerizability will be poor.
  • the molar ratio of the titanium atom to the periodic table 2A metal atom (periodic table 2A metal Z titanium) contained in the PBT of the present invention is usually 0.01 to 100, preferably 0.1 to 10; It is more preferably from 0.3 to 3, particularly preferably from 0.3 to 1.5.
  • the content of metals such as titanium atoms should be measured using a method such as atomic emission, atomic absorption, and inductively coupled plasma (ICP) after recovering the metals in the polymer by a method such as wet ashing. Can be done.
  • a method such as atomic emission, atomic absorption, and inductively coupled plasma (ICP) after recovering the metals in the polymer by a method such as wet ashing.
  • ICP inductively coupled plasma
  • the PBT of the present invention needs to have a terminal carboxyl group concentration of 0.1 to 18 ⁇ eqZg. If the terminal carboxyl group concentration is too high, the hydrolysis resistance of PBT deteriorates, and the object of the present invention cannot be achieved.
  • the terminal carboxyl group concentration is preferably 0.5 to 15 eq / g, more preferably 1 to 12 eq / g, and particularly preferably 1 to 10 eq Zg.
  • the increase in the terminal carboxyl group concentration excluding the hydrolysis reaction when heat-treated at 245 ° C. for 40 minutes in an inert gas atmosphere is usually 0.1 to 20 eqZg, preferably, It is 0.1 to 15 eq / g, more preferably 0.1 to 10 ⁇ eqZg, particularly preferably 0.1 to 8 ⁇ eqZg.
  • the hydrolysis reaction can be prevented by an operation of reducing the water content in the PBT, specifically, by performing drying sufficiently, and does not involve the generation of THF, which is a problem during molding.
  • an increase in the terminal carboxyl group concentration due to a decomposition reaction other than hydrolysis cannot be prevented by the drying operation.
  • the temperature and the time are defined as follows: if the temperature is too low or the time is too short, the rate of increase in the terminal carboxyl group concentration is too low; This is because the evaluation becomes too inaccurate. Another reason is that if the evaluation is performed at an extremely high temperature, side reactions other than the generation of a terminal carboxyl group occur at the same time, and the evaluation becomes inaccurate. Under the heat treatment conditions, the decrease in the number average molecular weight due to a reaction other than the hydrolysis reaction caused by the moisture contained in the PBT can be ignored, and the increase in the terminal carboxyl group concentration due to the hydrolysis reaction is the amount of the terminal carboxyl group before and after the heat treatment.
  • ⁇ AV (h) represents the change in the terminal carboxyl group concentration due to the hydrolysis reaction
  • ⁇ ⁇ represents the change in the terminal glycol group concentration before and after the heat treatment.
  • the amount of the hydrolysis reaction is small! It is more preferable that the water content of ⁇ used for the heat treatment is usually 300 ppm or less.
  • the terminal glycol group concentration before and after the heat treatment can be quantified by 1H-NMR.
  • the terminal carboxyl group concentration of the PBT of the present invention can be determined by dissolving the PBT in an organic solvent or the like and titrating it using an alkali solution such as a sodium hydroxide solution.
  • the terminal vinyl group concentration of the PBT of the present invention is usually 15 eqZg or less, preferably 10 ⁇ eqZg or less, more preferably 8 eqZg or less. If the terminal butyl group concentration is too high, it may cause deterioration in color tone and solid-state polymerization. When manufacturing PBT with a large molecular weight without lowering the productivity or PBT with a low catalyst concentration, it is generally necessary to raise the polymerization temperature or lengthen the reaction time. Concentration rises Tend to.
  • a methoxycarbonyl group derived from a raw material may remain in addition to a hydroxyl group, a carboxyl group, and a vinyl group, particularly when dimethyl terephthalate is used as a raw material.
  • the methoxycarbonyl terminal generates methanol, formaldehyde, and formic acid by heat due to solid-phase polymerization, kneading, molding, and the like, and particularly when used for food, the toxicity thereof becomes a problem. Formic acid also damages metal forming equipment and vacuum equipment.
  • the concentration of the terminal methoxycarboxy group in the present invention is usually 0.5 eqZg or less, preferably 0.3 eqZg or less, more preferably 0.2 / ⁇ 8 or less, and particularly preferably 0.:LeqZg or less. is there.
  • the intrinsic viscosity of the PBT of the present invention needs to be 0.7 to 1. OdLZg. When the intrinsic viscosity is less than 0.7 dLZg, the mechanical strength of the molded product becomes insufficient. 1. When it exceeds OdLZg, the melt viscosity becomes high, the fluidity is poor, and the moldability is poor. Tend to.
  • the intrinsic viscosity is preferably from 0.7 to 0.9 dLZg, more preferably from 0.8 to 0.9 dLZg.
  • the above intrinsic viscosity is a value measured at 30 ° C using a mixed solvent of phenol Z tetrachloroethane (weight ratio 1Z1).
  • the cooling crystallization temperature of the PBT of the present invention is usually 160 to 200 ° C, preferably 170 to 195 ° C, and more preferably 175 to 190 ° C.
  • the cooling crystallization temperature in the present invention is the temperature of an exothermic peak due to crystallization that appears when the resin is cooled from a molten state using a differential scanning calorimeter at a cooling rate of 20 ° CZmin.
  • the cooling crystallization temperature corresponds to the crystallization speed. The higher the cooling crystallization temperature, the faster the crystallization speed, so that the cooling time during injection molding can be shortened and the productivity can be increased. If the cooling crystallization temperature is low, crystallization takes a long time during injection molding, and the cooling time after injection molding must be lengthened, and the molding cycle tends to elongate and productivity tends to decrease.
  • the solution haze of the PBT of the present invention is not particularly limited.
  • the solution haze is high, the transparency is poor and the amount of foreign substances tends to increase.Therefore, in applications where transparency is required, such as films, monofilaments, and fibers, the commercial value is significantly reduced. . Solution haze tends to increase when the deactivation of the titanium catalyst is large.
  • the content of the cyclic dimer in the PBT of the present invention is usually not more than 1500 ppm, preferably not more than 1200 ppm, more preferably not more than 100 ppm, especially not more than 600 ppm, as a weight ratio to PBT.
  • the lower limit is usually 10 ppm.
  • the content of the cyclic trimer is usually 100 ppm or less, preferably 800 ppm or less, more preferably 600 ppm or less, particularly preferably 300 ppm or less, and the lower limit is usually 10 ppm. If the content of the cyclic dimer and the cyclic trimer exceeds the above range, mold stains and roll stains are caused, bleed out to the film surface, and there is a problem of dissolution in applications such as food packaging. Become.
  • PBT production methods are roughly classified into a so-called direct polymerization method using dicarboxylic acid as a main material and a transesterification method using dialkyl dicarboxylate as a main material.
  • the former has a difference in that water is mainly generated in the initial esteridia reaction, and the latter is mainly in the form of alcohol generated in the initial transesterification reaction.
  • the method of producing PBT is roughly classified into a batch supply method and a continuous method in which the raw material is supplied or the polymer is discharged.
  • the initial esterification reaction or transesterification reaction is performed in a continuous operation, and the subsequent polycondensation is performed in a batch operation, or conversely, the initial esterification reaction or transesterification reaction is performed in a batch operation and the subsequent polycondensation is performed.
  • the method of performing the condensation by a continuous operation is also mentioned.
  • the direct polymerization method is preferred from the viewpoints of the availability of the raw materials, the ease of processing the distillate, the height of the raw material unit, and the improvement effect of the present invention. Further, in the present invention, from the viewpoint of productivity, stability of product quality, and the effect of improvement by the present invention, a method of continuously supplying raw materials and performing a continuous Esterich reaction or transesterification reaction is proposed. adopt. In the present invention, a so-called continuous method is preferred, in which the polycondensation reaction following the esterification reaction or the transesterification reaction is also performed continuously.
  • At least a part of 1,4-butanediol is converted into terephthalic acid (or terephthalic acid) in an esterification reactor (or transesterification reactor), preferably in the presence of a titanium catalyst.
  • a step of continuously esterifying (or transesterifying) terephthalic acid (or dialkyl terephthalate) with 1,4-butanediol while supplying the esterification reaction tank (or transesterification reaction tank) independently of the dialkyl). is preferably adopted.
  • 1,4-butanediol supplied to the esterification reactor (or ester exchange reactor) independently of terephthalic acid (or dialkyl terephthalate) may be referred to as “separately supplied 1,4-butanediol”. is there.
  • the above-mentioned "separately supplied 1,4-butanediol” can be applied to fresh 1,4-butanediol that is unrelated to the process.
  • the “separately supplied 1,4-butanediol” collects the 1,4-butanediol distilled from the esteri reactor or transesterification reactor with a capacitor, etc., and transfers it to a temporary tank or the like. It can be held and refluxed to the reaction tank, or the impurities can be separated and purified and supplied as 1,4-butanediol with increased purity.
  • the “separately supplied 1,4 butanediol”, which also comprises the 1,4 butanediol power collected by the condenser, etc., may be referred to as “recycled 1,4 butanediol”. From the viewpoint of effective use of resources and simplicity of equipment, it is preferable to assign “recycled 1,4-butanediol” to “separately supplied 1,4-butanediol”.
  • 1,4-butanediol which is distilled from the esterification reactor or the transesterification reactor contains, in addition to the 1,4-butanediole component, components such as water, ananolone, THF, and dihydrofuran.
  • the 1,4 butanediol distilled out above should be separated and purified from water, alcohol, tetrahydrofuran and other components after being collected by a condenser or while collecting, and then returned to the reaction tank. Is preferred.
  • 10% by weight or more of the titanium catalyst used in the esterification reaction is terephthalic acid (or terephthalic acid). It is preferred to supply directly to the liquid phase of the reaction liquid independently of the dialkyl acid).
  • the liquid part of the reaction liquid refers to the gas-liquid interface in the esterification reaction tank or the transesterification reaction tank. Indicating the liquid phase side and directly supplying to the liquid phase of the reaction liquid means that the titanium catalyst is supplied to the liquid phase directly without passing through the gas phase of the reactor using piping.
  • the proportion of the titanium catalyst directly added to the liquid phase of the reaction solution is preferably at least 30% by weight, more preferably at least 50% by weight, particularly preferably at least 80% by weight, most preferably at least 90% by weight.
  • the above titanium catalyst can be supplied directly to the liquid phase portion of the reaction liquid in the esterification reaction tank or the transesterification reaction tank with or without dissolving it in a solvent or the like.
  • a solvent such as 1,4 butanediol.
  • the concentration at this time is usually 0.01 to 20% by weight, preferably 0.05 to 10% by weight, more preferably 0.08 to 8% by weight, as the concentration of the titanium catalyst based on the whole solution. From the viewpoint of reducing foreign matter, the water concentration in the solution is usually 0.05 to: 0% by weight.
  • the temperature at the time of preparing the solution is usually from 20 to 150 ° C, preferably from 30 to 100 ° C, and more preferably from 40 to 80 ° C, from the viewpoint of preventing deactivation and aggregation. Further, from the viewpoint of preventing deterioration, precipitation and deactivation, the catalyst solution is preferably mixed with a separately supplied 1,4-butanediol via a pipe or the like and supplied to the esterification reaction tank or the transesterification reaction tank. .
  • a Group 2A metal catalyst may also be supplied to the esterification reaction tank or the transesterification reaction tank.
  • the supply position of the Group 2A metal catalyst is not particularly limited.
  • the catalyst may be supplied from the gas phase of the reaction solution to the upper surface of the reaction solution or may be directly supplied to the liquid phase of the reaction solution.
  • the terephthalic acid or the titanium compound may be supplied together with the terephthalic acid or the titanium conjugate, or may be supplied independently.
  • the reaction liquid is preferably supplied from the gas phase to the upper surface of the reaction liquid.
  • the group 2A metal catalyst is usually a solid, and can be supplied as it is. However, in order to stabilize the supply amount and reduce adverse effects such as denaturation due to heat, the catalyst is diluted with a solvent such as 1,4 butanediol. It is preferable to supply them.
  • the concentration at this time is usually 0.01 to 20% by weight, preferably 0.05 to 10% by weight, and more preferably 0.08 to 8% by weight as the concentration of the Group 2A metal catalyst based on the whole solution. A small amount of water may be added to this solution for the purpose of preventing precipitation and improving thermal stability.
  • the Group 2A metal catalyst can also be added to an oligomer pipe or a polycondensation reaction tank following the esterification or transesterification reaction tank to the polycondensation reaction tank.
  • the Group 2A metal catalyst is diluted with a solvent such as 1,4-butanediol or a copolymer component such as polytetramethylene ether glycol to stabilize the supply amount and reduce adverse effects such as denaturation due to heat. Is preferred.
  • the concentration at this time is usually 0.01 to 20% by weight, preferably 0.05 to: 0% by weight, more preferably 0.08 to 8% by weight as the concentration of the group 2A metal catalyst based on the whole solution. .
  • a small amount of water may be added to this solution for the purpose of preventing precipitation and improving thermal stability!
  • An example of a continuous esterification method employing a direct polymerization method is as follows. That is, the dicarboxylic acid component having terephthalic acid as a main component and the diol component having 1,4 butanediol as a main component are mixed in a raw material mixing tank to form a slurry, and the slurry is mixed in one or more esterification reaction tanks. And preferably in the presence of a titanium catalyst and a Group 2A metal catalyst, usually from 180 to 260. C, preferably 200-245. C, more preferably 210-235.
  • the molar ratio between terephthalic acid and 1,4-butanediol preferably satisfies the following formula (2).
  • BM is the number of moles of 1,4-butanediol externally supplied to the esterification reactor per unit time
  • TM is the number of moles of terephthalic acid externally supplied to the esterification reactor per unit time
  • 1,4-butanediol supplied to the esterification reaction tank from the outside refers to 1,4-butanediol supplied together with terephthalic acid or terephthalic acid dialkylester as a raw material slurry or solution.
  • 1,4 butanediol (separately supplied 1,4 butanediol), which is supplied independently, and 1,4 butanediol used as a solvent for the catalyst, etc. 4 Sum of butanediol.
  • BMZTM is smaller than 1.1, the conversion rate is reduced or the catalyst is deactivated.
  • BMZTM is preferably from 1.5 to 4.5, more preferably from 2.5 to 4.0, particularly preferably from 3.1 to 3.8.
  • An example of a continuous method employing the transesterification method is as follows. That is, in one or more transesterification reactors, in the presence of a titanium catalyst and a Group 2A metal catalyst, usually 110 to 260 ° C, preferably 140 to 245 ° C, and more preferably 180 to 245 ° C. At a temperature of 220220 ° C. and usually at a pressure of 10 to 133 kPa, preferably 13 to 120 kPa, more preferably 60 to: L01 kPa, usually for 0.5 to 5 hours, preferably 1 to 3 hours, continuously. The ester exchange reaction is carried out.
  • the molar ratio between dialkyl terephthalate and 1,4 butanediol preferably satisfies the following formula (3).
  • BM is the number of moles of 1,4-butanediol externally supplied to the transesterification reactor per unit time
  • DM is the dialkyl terephthalate externally supplied to the transesterification reactor per unit time.
  • BMZDM When the BMZDM value is less than 1.1, the conversion ratio and the catalyst activity are reduced, and when the BMZDM value is more than 2.5, the thermal efficiency is not only reduced, but the secondary efficiency of tetrahydrofuran or the like is reduced. Organisms tend to increase.
  • the value of BMZDM is preferably 1.1 to 1.8, more preferably 1.2 to 1.5.
  • the esterification reaction or the transesterification reaction is preferably performed at a temperature equal to or higher than the boiling point of 1,4 butanediol in order to shorten the reaction time.
  • the boiling point of 1,4-butanediol depends on the pressure of the reaction, but it is 230 ° C at 101.lkPa (atmospheric pressure) and 205 ° C at 50kPa.
  • the esterification reaction tank or transesterification reaction tank known ones can be used, and any type such as a vertical stirring complete mixing tank, a vertical thermal convection mixing tank, and a tower-type continuous reaction tank can be used.
  • the same or different tanks can be used in series or in parallel. It may be several tanks.
  • the stirring device preferred by a reaction vessel having a stirring device is a conventional type having a power unit, a bearing, a shaft, and a stirring blade force, a turbine stator type high-speed rotary stirrer, a disk mill type stirrer, and a rotor mill.
  • a high-speed rotating type such as a mold stirrer can also be used.
  • the form of the stirring is not particularly limited.
  • one part of the reaction solution is connected by piping or the like. It is also possible to take out the reactor outside the reactor, stir the mixture with a line mixer or the like, and circulate the reaction solution.
  • the type of the stirring blade can be selected from known types, and specific examples include a propeller blade, a screw blade, a turbine blade, a fan turbine blade, a disk turbine blade, a faudler blade, a full zone blade, and a max blend blade.
  • a propeller blade a screw blade, a turbine blade, a fan turbine blade, a disk turbine blade, a faudler blade, a full zone blade, and a max blend blade.
  • the obtained oligomer as an esterification reaction product or a transesterification reaction product is transferred to a polycondensation reaction tank.
  • the number average molecular weight of the oligomer at this time is usually from 300 to 3000, and preferably ⁇ 500 to 1500.
  • a polycondensation reaction tank having different reaction conditions is usually used in a plurality of stages, preferably 2 to 5 stages, particularly preferably 2 to 3 stages, and the molecular weight is gradually increased.
  • the form of the polycondensation reaction tank may be any type such as a vertical stirring complete mixing tank, a vertical thermal convection type mixing tank, and a tower-type continuous reaction tank. I can do it.
  • at least one polycondensation reaction tank is preferably a type having a stirrer.
  • stirrer a general type including a power unit, a bearing, a shaft, and a stirring blade force, and a turbine stator type high speed High-speed rotating types such as a rotary type stirrer, disk mill type stirrer, and rotor mill type stirrer can also be used.
  • the form of stirring is not particularly limited.
  • one part of the reaction solution is connected by piping or the like. It is also possible to take out the reactor outside the reactor, stir the mixture with a line mixer or the like, and circulate the reaction solution.
  • at least one of the polycondensation reactors be a horizontal reactor with a horizontal axis of rotation and excellent surface renewal and self-cleaning properties.
  • the polycondensation reaction is carried out usually at 210 to 280 ° C, preferably 220 to 250 ° C, in the presence of a catalyst.
  • a temperature of 230 to 245 ° C Preferably at a temperature of 230 to 240 ° C in at least one reaction vessel, preferably with stirring, usually for 1 to 12 hours, preferably 3 to 10 hours. It is performed under reduced pressure of usually 27 kPa or less, preferably 20 kPa or less, particularly preferably 13 kPa or less.
  • the reaction may be a batch method or a continuous method, but a continuous method is preferred from the viewpoint of stability of polymer quality and reduction of terminal carboxyl groups.
  • At least one reaction tank in at least one reaction tank, usually 1.3 kPa or less, preferably 0.5 kPa or less, more preferably 0.3 kPa or less. It is better to perform under high vacuum.
  • the polymer obtained by the polycondensation reaction is usually transferred from the bottom of the polycondensation reaction tank to a polymer extraction die, extracted in a strand shape, and cut with a cutter while or after cooling with water. , Pellets, chips and the like.
  • the polycondensation reaction step of PBT is carried out by producing a PBT having a relatively small molecular weight by melt polycondensation, for example, an intrinsic viscosity of about 0.1 to 0.9.
  • Solid-state polycondensation solid-state polymerization
  • PBT polycondensation
  • the PBT of the present invention can be made into a polymer of even higher quality by installing a filter in the flow path of the polymer precursor or polymer.
  • the filter If the filter is installed too upstream in the manufacturing process, foreign substances generated on the downstream side cannot be removed, and the pressure loss of the filter will be large where viscosity is high on the downstream side, and the flow rate will be reduced.
  • it is necessary to increase the size of the filter, to increase the size of the filter and the facilities such as the piping, and to subject the PBT to high shear when the fluid passes. Deterioration is inevitable. Therefore, the filter should be installed at a position where the intrinsic viscosity of PBT or its precursor is usually 0.1 to 0.9.
  • the filter material constituting the filter may be any of a metal wind, a laminated metal mesh, a metal nonwoven fabric, and a porous metal plate. From the viewpoint of filtration accuracy, a laminated metal mesh or a metal nonwoven fabric is particularly preferable. It is preferable that the openings are fixed by sintering.
  • the shape of the filter can be any of basket type, disk type, leaf disk type, tube type, flat cylindrical type, pleated cylindrical type, etc. It may be. Further, in order to prevent the operation of the plant from being affected, it is preferable to install a plurality of filters so that the structure can be switched and used, or to install an automatic screen changer.
  • the absolute filtration accuracy of the filter is not particularly limited, it is usually 0.5 to 200 / zm, preferably 1 to: LOO m, more preferably 5 to 50 m, and particularly preferably 10 to 30 m. is there. If the absolute filtration accuracy is too high, the effect of reducing foreign substances in the product will be lost, and if it is too low, productivity will decrease and the frequency of filter replacement will increase.
  • the absolute filtration accuracy refers to the minimum particle size when completely filtered and removed when a filtration test is performed using standard particle sizes such as glass beads with a known and uniform particle size. .
  • FIG. 1 is an explanatory view of an example of an esterification reaction step or a transesterification reaction step employed in the present invention
  • FIG. 2 is an explanatory view of an example of a polycondensation step employed in the present invention.
  • terephthalic acid as a raw material is usually mixed with 1,4-butanediol in a raw material mixing tank (not shown), and is supplied from a raw material supply line (1) in the form of a slurry or liquid into a reaction tank (A). ).
  • the raw material is dialkyl terephthalate, it is usually supplied to the reaction tank (A) as a molten liquid independently of 1,4-butanediol.
  • the titanium catalyst is preferably supplied from a titanium catalyst supply line (3) after being made into a solution of 1,4-butanediol in a catalyst preparation tank (not shown).
  • the Group 2A metal catalyst is preferably supplied as a solution of 1,4 butanediol in a catalyst preparation tank (not shown), and then supplied from a Group 2A metal catalyst supply line (15).
  • the gas which is also distilled from the reaction tank (A) is separated into a high-boiling component and a low-boiling component in the rectification column (C) via the distillation line (5).
  • the main components of the high-boiling component are 1,4 butanediol
  • the main components of the low-boiling component are water and THF in the case of the direct polymerization method, and anorecone, THF , and water in the case of the transesterification method.
  • the high-boiling components separated in the rectification column (C) are withdrawn from the extraction line (6), through a pump (D), and partly from the recirculation line (2) to the reaction tank (A). (7) power ⁇ To the rectification tower (C). The surplus is extracted outside through the extraction line (8).
  • the light-boiling components separated in the rectification column (C) are withdrawn from the gas extraction line (9), condensed in the capacitor (G), passed through the condensate line (10), and stored in the tank (F). Is temporarily stored.
  • Part of the light-boiling components collected in the tank (F) is returned to the rectification column (C) via the extraction line (11), the pump (E) and the circulation line (12), and the remainder is extracted. It is extracted outside through the exit line (13).
  • the condenser is connected to an exhaust device (not shown) via a vent line (14).
  • the oligomer produced in the reaction tank (A) is withdrawn through a withdrawal pump (B) and a withdrawal line (4).
  • the catalyst supply line (3) is connected to the recirculation line (2), but both may be independent. Further, the raw material supply line (1) may be connected to a liquid phase part of the reaction tank (A).
  • the oligomer supplied from the above-mentioned extraction line (4) shown in FIG. 1 is polycondensed under reduced pressure in the first polycondensation reaction tank (a) to form a prepolymer, and then is discharged. It is supplied to the second polycondensation reaction tank (d) via the output gear pump (c) and the extraction line (L1). In the second polycondensation reaction tank (d), the polycondensation usually proceeds further at a lower pressure than in the first polycondensation reaction tank (a) to form a polymer.
  • the obtained polymer is withdrawn from the die head (g) in the form of a melted strand through a withdrawal gear pump (e) and a withdrawal line (L3), cooled with water or the like, and then rotated with a rotary cutter ( The pellets are cut in step h).
  • the symbol (L2) is the vent line of the first polycondensation reaction tank (a)
  • the symbol (L4) is the vent line of the second polycondensation reaction tank (d).
  • the PBT of the present invention includes phenols such as 2,6-di-tert-butyl-4-octylphenol and pentaerythrityl-tetrakis [3- (3 ', 5,1-tert-butyl-4, -hydroxyphenyl) propionate].
  • the PBT of the present invention may contain a reinforcing filler.
  • the reinforcing filler is not particularly limited, but examples thereof include inorganic fibers such as glass fiber, carbon fiber, silica'alumina fiber, zirconia fiber, boron fiber, boron nitride fiber, potassium silicon titanate fiber, and metal fiber. Fibers, aromatic polyamide fibers, and organic fibers such as fluororesin fibers. These reinforcing fillers can be used in combination of two or more. Among the above reinforcing fillers, inorganic fillers, particularly glass fibers, are preferably used.
  • the average fiber diameter is not particularly limited, but is usually 1 to: LOO ⁇ m, preferably 2 to 50 ⁇ m, more preferably 3 to 30 ⁇ m. ⁇ m, particularly preferably 5 to 20 / ⁇ .
  • the average fiber length is not particularly limited, but is usually 0.1 to 20 mm, preferably 1 to LOmm.
  • the reinforcing filler is preferably used after surface treatment with a sizing agent or a surface treatment agent in order to improve the interfacial adhesion with PBT.
  • a sizing agent or a surface treatment agent include functional compounds such as epoxy compounds, acrylic compounds, isocyanate compounds, silane compounds, and titanate compounds.
  • the reinforcing filler can be surface-treated in advance with a sizing agent or a surface treatment agent, or can be surface-treated by adding a sizing agent or a surface treatment agent when preparing the PBT composition. .
  • the amount of the reinforcing filler to be added is usually 150 parts by weight or less, preferably 5 to 100 parts by weight, based on 100 parts by weight of the PBT resin.
  • the PBT of the present invention may contain other fillers together with the reinforcing filler.
  • Other fillers to be blended include, for example, plate-like inorganic fillers, ceramic beads, asbestos, perlastonite, talc, clay, my strength, zeolite, kaolin, potassium titanate, barium sulfate, titanium oxide, and titanium oxide. Examples include silicon, aluminum oxide, magnesium hydroxide, and the like.
  • the plate-like inorganic filler include glass flakes, mica, and metal foil. Among these, glass flake is preferably used.
  • a flame retardant can be added to the PBT of the present invention in order to impart flame retardancy.
  • the flame retardant is not particularly restricted but includes, for example, organic halogenated compounds, antimony bonded compounds, phosphorus compounds, other organic flame retardants, inorganic flame retardants and the like.
  • Organic halogen compounds examples of the product include brominated polycarbonate, brominated epoxy resin, brominated phenol resin, brominated polyphenylene ether resin, brominated polystyrene resin, brominated bisphenol A, and polypentabromobenzyl acrylate. And the like.
  • the antimony compound include antimony trioxide, antimony pentoxide, sodium antimonate, and the like.
  • Examples of the phosphorus conjugate include phosphoric acid ester, polyphosphoric acid, ammonium polyphosphate, red phosphorus and the like.
  • Other organic flame retardants include, for example, nitrogen compounds such as melamine and cyanuric acid.
  • Other inorganic flame retardants include, for example, aluminum hydroxide, magnesium hydroxide, silicon compounds, boron compounds and the like.
  • the PBT of the present invention may contain conventional additives and the like, if necessary.
  • additives are not particularly restricted but include, for example, stabilizers such as antioxidants and heat stabilizers, as well as lubricants, release agents, catalyst deactivators, nucleating agents, crystallization accelerators and the like. No. These additives can be added during or after the polymerization.
  • PBT is blended with UV absorbers, stabilizers such as weathering stabilizers, coloring agents such as dyes and pigments, antistatic agents, foaming agents, plasticizers, impact modifiers, etc. to provide the desired performance. Come out.
  • the PBT of the present invention may contain polyethylene, polypropylene, polystyrene, polyacrylonitrile, polymethacrylic acid ester, ABS resin, polycarbonate, polyamide, polyphenylene sulfide, polyethylene terephthalate, liquid crystal polyester, polyacetate, if necessary.
  • Thermosetting resins such as tar and polyphenol oxide, and thermosetting resins such as phenol resin, melamine resin, silicone resin and epoxy resin can be blended. These thermoplastic resins and thermosetting resins may be used in combination of two or more.
  • the method of blending the above various additives and resins is not particularly limited! However, a method using a single-screw or twin-screw extruder having equipment capable of devolatilizing a vent opening force is used as a kneading machine. I like it. Each component, including additional components, can be supplied to the kneader at once, or can be supplied sequentially. It is also possible to premix two or more types of components, each having a selected component strength, including additional components. [0094]
  • the molding method of the PBT of the present invention is not particularly limited, and molding methods generally used for thermoplastic resins, that is, molding methods such as injection molding, hollow molding, extrusion molding, and press molding. Can be applied.
  • the PBT of the present invention is excellent in color tone, hydrolysis resistance, thermal stability, transparency, and moldability, and thus is suitable for injection molded parts such as electric, electronic parts, and automobile parts.
  • injection molded parts such as electric, electronic parts, and automobile parts.
  • the improvement effect is remarkable in applications such as films, monofilaments and fibers.
  • the acid value and the Kenny's value were also calculated by the following formula (4).
  • the acid value was determined by dissolving the oligomer in dimethylformamide and titrating with a 0.1N methanolic KOHZ solution.
  • the saponification value was determined by hydrolyzing the oligomer with a 0.5N KOH / ethanol solution and titrating with 0.5N hydrochloric acid.
  • PBT was wet-decomposed with high-purity sulfuric acid and nitric acid for the electronics industry, and measured using a high-resolution ICP (Inductively Coupled Plasma) -MS (MassSpectrometer) (manufactured by ThermoQuest).
  • ICP Inductively Coupled Plasma
  • MS MassSpectrometer
  • the temperature was raised from room temperature to 300 ° C at a temperature rising rate of 20 ° CZ min, then the temperature was lowered to 80 ° C at a rate of 20 ° CZmin, and the temperature was raised.
  • the temperature at the heat peak was defined as the temperature-down crystallization temperature. The higher the Tc, the shorter the molding stadium where the crystallization speed increases.
  • IV ′ intrinsic viscosity
  • IV retention rate (%) (IV '/ IV) X 10 0 ⁇ ⁇ ⁇ (6)
  • PBT was produced in the following manner.
  • a slurry prepared at 60 ° C. mixed with 1.80 moles of terephthalic acid and 1.80 moles of 1,4-butanediol was passed through the raw material supply line (1) in advance to prepare a slurry.
  • the reactor was continuously supplied at a pressure of 41 kgZh to a reaction tank (A) for esterification having a screw-type stirrer filled with a 99% PBT oligomer.
  • the bottom component of the rectification column (C) at 185 ° C (98% by weight or more was 1,4-b) from the recirculation line (2).
  • the butanediol was fed at 20 kg / h, 6. 0 weight 0/0 1 tetrabutyl titanate 65 ° C as a catalyst a titanium catalyst feed line (3), were fed 4-butanediol solution 99GZh (theoretical polymer 30 ppm based on the yield).
  • the water content in the catalyst solution was 0.2% by weight.
  • Group 2A metal catalyst feed line (15) force was also fed the 6.0 weight 0/0 1, 4-butanediol solution of magnesium acetate salt of 65 ° C as catalyst in 62GZh (15 ppm relative to theoretical polymer yield amount) .
  • the water content in the catalyst solution was 10.0% by weight.
  • the internal temperature of the reaction tank (A) was 230 ° C, the pressure was 78 kPa, and the generated water, tetrahydrofuran and excess 1,4-butanediol were distilled from the distillation line (5), and rectification was performed. Separated into high-boiling components and low-boiling components in column (C). After the system is stabilized, the high-boiling components at the bottom of the column are 1,4 butanediol at 98% by weight or more and the extraction line (8) so that the liquid level in the rectification column (C) is constant. Part of it was extracted to the outside. On the other hand, low-boiling components were withdrawn in the form of gas from the top of the column, condensed in a condenser (G), and withdrawn from the extraction line (13) so that the liquid level in the tank (F) was constant.
  • a certain amount of the oligomer produced in the reaction tank (A) was extracted from the extraction line (4) using the pump (B), and the average residence time of the liquid in the reaction tank (A) was reduced to 2.5 hours.
  • the liquid level was controlled as follows. Withdrawal line 4 force
  • the extracted oligomer was continuously supplied to the first polycondensation reaction tank (a). After the system was stabilized, the esterification ratio of the oligomer collected at the outlet of the reaction vessel (A) was 96.5%.
  • the internal temperature of the first polycondensation reaction tank (a) was 240 ° C, the pressure was 2. IkPa, and the liquid level was controlled so that the residence time was 120 minutes.
  • the initial polycondensation reaction was performed while extracting water, tetrahydrofuran, and 1,4-butanediol from a vent line (L2) connected to a pressure reducer (not shown). The withdrawn reaction liquid was continuously supplied to the second polycondensation reaction tank (d).
  • the internal temperature of the second polycondensation reaction tank (d) was 240 ° C, the pressure was 130 Pa, the liquid level was controlled so that the residence time was 60 minutes, and the apparatus was connected to a pressure reducer (not shown).
  • the polycondensation reaction was further advanced while extracting water, tetrahydrofuran and 1,4-butanediol from the vent line (L4).
  • the obtained polymer was continuously extracted in a strand form from the die head (g) via the extraction line (L3) by the extraction gear pump (e), and cut by the rotary cutter (h).
  • the intrinsic viscosity of the obtained polymer was 0.70 dLZg, and the terminal carboxyl group concentration was 10.5 ⁇ eq, g.
  • the above-mentioned polymer chip was subjected to a solid-state polymerization treatment for 5 hours at 195 ° C. under a reduced pressure (0.133 kPa or less) with a double cocol-type blender (contents: 100 L).
  • the intrinsic viscosity of the polymer subjected to the solid phase polymerization treatment was 0.85 dLZg, and the terminal carboxyl group concentration was 5. 1 ⁇ eq g.
  • Other analytical values are summarized in Table 1. PBT with excellent color tone and good transparency with few foreign substances was obtained.
  • Example 1 was carried out in the same manner as in Example 1 except that the residence time in the second polycondensation reaction tank (d) was set to 90 minutes and the solid-state polymerization step was omitted.
  • the obtained PBT analysis values are summarized in Table 1.
  • Example 2 the supply amounts of tetrabutyl titanate and magnesium acetate tetrahydrate were adjusted so that the contents of titanium and magnesium in the polymer were as shown in Table 1, and the amounts were set in the second polycondensation reaction tank (d). The procedure was as in Example 2, except that the residence time was 75 minutes. The obtained PBT analysis values are summarized in Table 1.
  • Example 2 the supply amounts of tetrabutyl titanate and magnesium acetate tetrahydrate were adjusted so that the contents of titanium and magnesium in the polymer were as shown in Table 1, and the temperature of the second polycondensation reaction tank (d) was adjusted.
  • Example 2 the supply amounts of tetrabutyl titanate and magnesium acetate tetrahydrate were adjusted so that the contents of titanium and magnesium in the polymer were as shown in Table 1, and the temperature of the second polycondensation reaction tank (d) was adjusted.
  • Example 2 the temperature of the second polycondensation reaction tank (d) was adjusted.
  • the obtained PBT analysis values are summarized in Table 1.
  • Example 2 the supply amounts of tetrabutyl titanate and magnesium acetate tetrahydrate were adjusted such that the contents of titanium and magnesium in the polymer were as shown in Table 1, and the retention in the second polycondensation reaction tank (d) was performed. The procedure was performed in the same manner as in Example 2 except that the time was changed to 75 minutes. The obtained PBT analysis values are summarized in Table 1.
  • Example 2 the content of titanium and calcium in the polymer was as shown in Table 1.
  • Example 2 the content of titanium and calcium in the polymer was as shown in Table 1.
  • the temperature of the second polycondensation reaction tank (d) was 245 ° C, and the residence time was 75 minutes. I went.
  • the obtained PBT analysis values are summarized in Table 1.
  • Example 2 except that the supply amount of tetrabutyl titanate was adjusted so that the titanium content in the polymer was as shown in Table 2, and the residence time in the second polycondensation reaction tank (d) was 105 minutes, Performed in the same manner as in Example 2.
  • the obtained PBT analysis values are summarized in Table 2. As shown in Table 2, the terminal carboxyl group concentration, color tone, and polymerizability also deteriorated.
  • Example 2 was repeated except that the supply amount of tetrabutyl titanate was adjusted so that the titanium content in the polymer was as shown in Table 2 and the residence time in the second polycondensation reaction tank (d) was 90 minutes. Performed as in Example 2.
  • the obtained PBT analysis values are summarized in Table 2. As shown in Table 2, the terminal carboxyl group concentration, color tone and haze were deteriorated, and the amount of foreign substances was large, and the polymerizability was also deteriorated.
  • the oligomer obtained above was transferred to a 200-L stainless steel reaction tank having a vent tube and a double helical stirring blade, and then a polycondensation reaction was performed.
  • the atmospheric pressure was gradually reduced to 0.133 kPa over 85 minutes, and at the same time, the temperature was raised to a predetermined polymerization temperature of 240 ° C.
  • the reaction was terminated, and the polymer was extracted.
  • the obtained PBT analysis values are summarized in Table 2. As shown in Table 2, the terminal carboxyl group concentration was significantly poor.
  • Comparative Example 4 In Example 2, the supply amounts of tetrabutyl titanate and sodium hydroxide were adjusted so that the contents of titanium and sodium in the polymer were as shown in Table 2, and the residence time of the second polycondensation reaction (d) was reduced. The procedure was performed in the same manner as in Example 2 except that the time was changed to 100 minutes. Table 2 summarizes the analysis values of the obtained PBT. As shown in Table 2, the color tone deteriorated and many fish eyes were observed.o
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Titanium content ppm 30 30
  • 45 90 90
  • Terminal carboxy 'xyl group concentration A eq / g 5.1 10.3 14.2 17.3 17.1 17.8
  • Cooling crystallization temperature (Tc) ° C 178.6 178.5 178.9 178.5 178.8 178.5
  • 8.3 4.6

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Artificial Filaments (AREA)

Abstract

 色調、耐加水分解性、熱安定性、透明性、成形性に優れ、しかも、異物の低減された、フィルム、モノフィラメント、繊維、電気電子部品、自動車部品などに好適に使用することが出来るポリブチレンテレフタレートを提供する。  触媒としてチタン化合物と周期表2A族金属化合物を使用して得られ、固有粘度が0.7~1.0dL/gであり、末端カルボキシル基濃度が0.1~18μeq/gであるポリブチレンテレフタレート。本発明の好ましい態様においては、示差走査熱量計で降温速度20°C/minにて測定した降温結晶化温度が170~195°C、末端ビニル基濃度が10μeq/g以下、フェノール/テトラクロロエタン混合溶媒(重量比3/2)20mLにポリブチレンテレフタレート2.7gを溶解させて測定した際の溶液ヘイズが10%以下である。

Description

明 細 書 技術分野
[0001] 本発明は、ポリブチレンテレフタレートに関し、詳しくは、色調、耐加水分解性、熱 安定性、透明性、成形性に優れ、しカゝも、異物が低減された、フィルム、モノフィラメン ト、繊維、電気電子部品、 自動車部品などに好適に使用することが出来るポリブチレ ンテレフタレートに関する。
背景技術
[0002] 熱可塑性ポリエステル榭脂の中で代表的なエンジニアリンブプラスチックであるポリ ブチレンテレフタレートは、成形加工の容易さ、機械的物性、耐熱性、耐薬品性、保 香性、その他の物理的、化学的特性に優れていることから、 自動車部品、電気'電子 部品、精密機器部品などの射出成型品に広く使用されている。近年は、その優れた 性質を活かし、フィルム、シート、モノフィラメント、繊維などの分野でも広く使用される 様になつてきた。
[0003] し力しながら、ポリブチレンテレフタレートは、耐加水分解性が必ずしも十分ではなく 、特に湿熱下の使用においては、分子量の低下に伴う機械的物性の低下が問題に なっている。一般に、ポリエステルは末端カルボキシル基濃度が高いほど耐加水分 解性が悪ィ匕することが知られており(例えば非特許文献 1)、ポリブチレンテレフタレー トにおいても、末端カルボキシル基濃度が高いほど湿熱下での加水分解反応速度が 大きぐ加水分解による分子量低下、ひいては機械的物性などの低下を招くことが大 きな問題である。
[0004] 上記の問題を解決するため、溶融重合で得られたポリブチレンテレフタレートを一 且固化させ、その融点以下の温度で固相重合させることにより、末端カルボキシル基 濃度を低減させることが広く行われている (例えば特許文献 1参照)。ところが、通常 の溶融成形はポリブチレンテレフタレートの融点以上で行われるため、従来のポリブ チレンテレフタレートでは、固相重合によって末端カルボキシル基濃度を低減させて も、成型時に再び末端カルボキシル基濃度の上昇が起こるという問題がある。この末 端カルボキシル基濃度の上昇は、ブタジエンゃテトラヒドロフランを発生する反応と表 裏一体である (例えば非特許文献 1参照)。そのため、結果的に成型時のガスの発生 が多くなるという問題も惹起する。
[0005] また、溶融時の末端カルボキシル基濃度の上昇速度は、チタンィ匕合物の存在によ つて促進されることが知られて 、るが、これを抑制するためにチタンィ匕合物を減らそう とすると、重合速度が遅くなり、実用的な重合速度でポリブチレンテレフタレートを製 造する場合は重合温度を上げざるを得なくなる。そのため、結果として、末端カルボ キシル基濃度が上昇する分解反応を促進し、意図した様には末端カルボキシル基濃 度が低下しない。また、高温の反応は色調の悪化を招き、商品価値を落とすという問 題もある。
[0006] 上記の様な問題を解決するため、触媒として特定のモル比のチタン化合物とマグネ シゥム化合物を使用することにより重合温度を低く設定する方法が試みている (例え ば特許文献 2参照)。しカゝしながら、末端カルボキシル基濃度の低減は十分とは言え ず、ポリブチレンテレフタレートへの耐加水分解性要求が高まる中で、満足できる方 法とは言えない。一方、ポリブチレンテレフタレートの耐加水分解性を向上を図るた め、特定状態のチタンの使用が提案されている(例えば特許文献 3参照)。しかしな がら、特に分子量低下による機械的物性の影響が大きい低分子量領域においては、 末端カルボキシル基濃度が十分に低減されて ヽるは言えず、その一層の低減が求 められている。
[0007] 非特許文献 1:飽和ポリエステル榭脂ハンドブック(1989年 12月 22日、 日刊工業新 聞社発行、第 192〜193頁、 304頁)
特許文献 1 :特開平 9— 316183号公報
特許文献 2:特開平 8 - 20638号公報
特許文献 3:特開平 8—41182号公報
発明の開示
発明が解決しょうとする課題
[0008] 本発明は、上記実情に鑑みなされたものであり、その目的は、色調、耐加水分解性 、熱安定性、透明性、成形性に優れ、しカゝも、異物の低減された、フィルム、モノフイラ メント、繊維、電気電子部品、自動車部品などに好適に使用することが出来るポリブ チレンテレフタレートを提供することにある。 課題を解決するための手段
[0009] 本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、触媒としてチタン 化合物および周期表 2A族金属化合物を使用して特定の態様で重合反応を行うなら ば、驚くべきことに、熱分解反応に起因する末端カルボキシル基の上昇が抑制され、 低分子量領域においても末端カルボキシル基濃度を著しく低減でき、更には、溶融 成型時における末端カルボキシル基濃度の上昇も抑制可能であるだけでなく、重縮 合時反応が大幅に促進されるために、結果的に重合温度を下げることが可能である との知見を得、本発明の完成に至った。
[0010] 本発明は、上記の知見に基づき完成されたものであり、その要旨は、触媒としてチ タン化合物と周期表 2A族金属化合物を使用して得られ、固有粘度が 0. 7〜1. OdL Zgであり、末端カルボキシル基濃度が 0. 1〜18 /Ζ
Figure imgf000004_0001
ブチレンテレフタレートに存する。
発明の効果
[0011] 本発明によれば、色調、耐加水分解性、熱安定性、透明性、成形性に優れ、しかも 、異物の低減された、フィルム、モノフィラメント、繊維、電気電子部品、自動車部品な どに好適に使用することが出来るポリブチレンテレフタレートが提供される。
図面の簡単な説明
[0012] [図 1]本発明で採用するエステルイ匕反応工程またはエステル交換ィ匕反応工程の一例 の説明図
[図 2]本発明で採用する重縮合工程の一例の説明図
符号の説明
[0013] 1 :原料供給ライン
2 :再循環ライン
3 :チタン触媒供給ライン
4 :抜出ライン 5:留出ライン
6:抜出ライン
7:循環ライン
8:抜出ライン
9:ガス抜出ライン
10:凝縮液ライン
11:抜出ライン
12:循環ライン
13:抜出ライン
14:ベントライン
15: 2A族金属触媒供給ライン
A:反応槽
B:抜出ポンプ
C:精留塔
D、 E:ポンプ
F:タンク
G:コンデンサ
L1、L3:抜出ライン
L2、 L4:ベントライン
a:第 1重縮合反応槽
d:第 2重縮合反応槽
c、e:抜出用ギヤポンプ
g:タイスヘッド
h:回転式カッター
発明を実施するための最良の形態
[0014] 以下、本発明を詳細に説明するが、以下に記載する構成要件の説明は、本発明 の実施態様の代表例であり、これらの内容に本発明は限定されるものではない。
[0015] 本発明のポリブチレンテレフタレート(以下、 PBTと略記する)とは、テレフタル酸単 位および 1, 4 ブタンジオール単位がエステル結合した構造を有し、ジカルボン酸 単位の 50モル0 /0以上がテレフタル酸単位から成り、ジオール成分の 50モル0 /0以上 が 1, 4 ブタンジオール単位から成る高分子を言う。全ジカルボン酸単位中のテレ フタル酸単位の割合は、好ましくは 70モル%以上、更に好ましくは 80モル%以上、 特に好ましくは 95モル%以上であり、全ジオール単位中の 1, 4ブタンジオール単位 の割合は、好ましくは 70モル%以上、更に好ましくは 80モル%以上、特に好ましくは 95モル%以上である。テレフタル酸単位または 1, 4 ブタンジオール単位が 50モル %より少ない場合は、 PBTの結晶化速度が低下し、成形性の悪化を招く。
[0016] 本発明において、テレフタル酸以外のジカルボン酸成分には特に制限はなぐ例え ば、フタル酸、イソフタル酸、 4, 4'—ジフエ-ルジカルボン酸、 4, 4'—ジフエニルェ 一テルジカルボン酸、 4, 4'一べンゾフエノンジカルボン酸、 4, 4'ージフエノキシエタ ンジカノレボン酸、 4, 4'ージフエニノレスノレホンジカノレボン酸、 2, 6 ナフタレンジ力ノレ ボン酸などの芳香族ジカルボン酸、 1, 2 シクロへキサンジカルボン酸、 1, 3 シク 口へキサンジカルボン酸、 1, 4ーシクロへキサンジカルボン酸などの脂環式ジカルボ ン酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、ァゼライ ン酸、セバシン酸などの脂肪族ジカルボン酸などを挙げることが出来る。これらのジカ ルボン酸成分は、ジカルボン酸として、または、ジカルボン酸エステル、ジカルボン酸 ノ、ライド等のジカルボン酸誘導体を原料として、ポリマー骨格に導入できる。
[0017] 本発明において、 1, 4 ブタンジオール以外のジオール成分には特に制限はなく 、例えば、エチレングリコール、ジエチレングリコール、ポリエチレングリコール、 1, 2 プロパンジオール、 1, 3 プロパンジオール、ポリプロピレングリコール、ポリテトラ メチレングリコール、ジブチレングリコール、 1, 5 ペンタンジオール、ネオペンチル グリコール、 1, 6 へキサンジオール、 1, 8 オクタンジオール等の脂肪族ジオール 、 1, 2 シクロへキサンジオール、 1, 4ーシクロへキサンジオール、 1, 1ーシクロへキ サンジメチロール、 1, 4ーシクロへキサンジメチロール等の脂環式ジオール、キシリレ ングリコール、 4, 4'—ジヒドロキシビフエ-ル、 2, 2 ビス(4 ヒドロキシフエ-ル)プ 口パン、ビス(4ーヒドロキシフエ-ル)スルホン等の芳香族ジオール等を挙げることが 出来る。 [0018] 本発明においては、更に、乳酸、グリコール酸、 m—ヒドロキシ安息香酸、 p ヒドロ キシ安息香酸、 6—ヒドロキシ 2—ナフタレンカルボン酸、 p— j8—ヒドロキシェトキ シ安息香酸などのヒドロキシカルボン酸、アルコキシカルボン酸、ステアリルアルコー ル、ベンジルアルコール、ステアリン酸、安息香酸、 t ブチル安息香酸、ベンゾィル 安息香酸などの単官能成分、トリ力ルバリル酸、トリメリット酸、トリメシン酸、ピロメリット 酸、没食子酸、トリメチロールェタン、トリメチロールプロパン、グリセロール、ペンタエ リスリトール等の三官能以上の多官能成分などを共重合成分として使用することが出 来る。
[0019] 本発明の PBTは、 1, 4 ブタンジオールとテレフタル酸(又はテレフタル酸ジアル キル)とのエステルイ匕反応 (又はエステル交換反応)で得られたオリゴマーを重縮合 する際に触媒としてチタンィ匕合物および周期表 2A族金属化合物を使用することによ つて得られる。これらの触媒は、エステルイ匕反応 (又はエステル交換反応)時に使用 して、そのまま重縮合反応に持ち込んでもよいし、エステルイ匕反応 (又はエステル交 換反応)では使用せずに、または、どちらか一方の触媒のみ使用し、他方の触媒は 重縮合段階で追加してもよい。更には、エステルイ匕反応 (又はエステル交換反応)で 、最終的に使用する触媒量の一部を使用し、重縮合反応の進行と共に適宜追加す ることも出来る。何れにしても、本発明においては、最終的に得られる PBT中に、必 然的にチタン及び周期表 2A族金属が含有される力 その量については後述する。 なお、以下において、チタン化合物をチタン触媒、周期表 2A族金属化合物を 2A族 金属触媒ということがある。
[0020] チタンィ匕合物の具体例としては、酸化チタン、四塩ィ匕チタン等の無機チタンィ匕合物 、テトラメチルチタネート、テトライソプロピルチタネート、テトラブチルチタネート等の チタンアルコラート、テトラフェニルチタネート等のチタンフエノラート等が挙げられる。 これらの中ではテトラアルキルチタネートが好ましぐその中ではテトラブチルチタネ ートが好ましい。
[0021] チタンの他に、スズが触媒として使用されていてもよい。スズは、通常、スズ化合物 として使用され、その具体例としては、ジブチルスズオキサイド、メチルフエ-ルスズォ キサイド、テトラエチルスズ、へキサェチルジスズオキサイド、シクロへキサへキシルジ スズオキサイド、ジドデシルスズオキサイド、トリェチルスズノ、イド口オキサイド、トリフエ ニルスズノヽイド口オキサイド、トリイソブチルスズアセテート、ジブチルスズジアセテート 、ジフエ-ルスズジラウレート、モノブチルスズトリクロライド、トリブチルスズクロライド、 ジブチルスズサルファイド、ブチルヒドロキシスズオキサイド、メチルスタンノン酸、ェチ ルスタンノン酸、ブチルスタンノン酸などが挙げられる。
[0022] スズはポリブチレンテレフタレートの色調を悪化させるため、その添カ卩量はスズ原子 として、通常 200ppm以下、好ましくは lOOppm以下、更に好ましくは lOppm以下、 中でも添加しな 、ことが好ま U、。
[0023] 本発明における周期表 2A族金属化合物の具体例としては、ベリリウム、マグネシゥ ム、カルシウム、ストロンチウム、ノ リウムの各種化合物が挙げられる力 取り扱いや入 手の容易さ、触媒効果の点から、マグネシウム化合物またはカルシウム化合物が好ま しぐ特に、触媒効果に優れるマグネシウムが好ましい。マグネシウム化合物の具体 例としては、酢酸マグネシウム、水酸化マグネシウム、炭酸マグネシウム、酸ィ匕マグネ シゥム、マグネシウムアルコキサイド、燐酸水素マグネシウム等が挙げられ、カルシゥ ム化合物の具体例としては、酢酸カルシウム、水酸ィ匕カルシウム、炭酸カルシウム、 酸化カルシウム、カルシウムアルコキサイド、燐酸水素カルシウム等が挙げられる。こ れらの中では酢酸マグネシウムが好まし 、。
[0024] また、前記のチタンィ匕合物や周期表 2A族金属化合物とは別に、三酸化アンチモン 等のアンチモン化合物、二酸化ゲルマニウム、四酸化ゲルマニウム等のゲルマニウ ム化合物、マンガンィ匕合物、亜鉛化合物、ジルコニウム化合物、コバルトィ匕合物、正 燐酸、亜燐酸、次亜燐酸、ポリ燐酸、それらのエステルや金属塩などの燐化合物、水 酸ィ匕ナトリウム、安息香酸ナトリウム等の反応助剤を使用してもよい。
[0025] 本発明の PBTにおけるチタンの含有量は、特に制限されないが、チタン原子として PBTに対する重量比で 150ppm以下であることが好ましい。
[0026] 本発明において、上記のチタン含有量の下限は、通常 5ppmである力 10ppm、 2 Oppm、 25ppmの順序で一層好ましくなり、上限は、通常 lOOppmである力 80ppm 、 60ppm、 50ppm、 40ppmの順序で一層好ましくなる。チタンの含有量が多過ぎる 場合は、色調、耐加水分解性などが悪ィ匕し、少な過ぎる場合は重合性が悪化する。 [0027] 本発明の PBTにおける周期表 2A族金属の含有量は、特に制限されないが、周期 表 2A族金属原子として PBTに対する重量比で 150ppm以下であることが好ましい。
[0028] 本発明において、上記の周期表 2A族金属含有量の下限は、通常 3ppmである力 5ppm、 lOppmの順序で一層好ましくなり、上限は、通常 lOOppmである力 50ppm 、 40ppm、 30ppm、 15ppmの順序で一層好ましくなる。周期表 2A族金属の含有量 が多過ぎる場合は、色調、耐加水分解性などが悪ィ匕し、少な過ぎる場合は重合性が 悪化する。
[0029] また、本発明の PBTに含まれるチタン原子と周期表 2A族金属原子のモル比 (周期 表 2A族金属 Zチタン)は、通常 0. 01〜100、好ましくは 0. 1〜10、更に好ましくは 0. 3〜3、特に好ましくは 0. 3〜1. 5である。
[0030] チタン原子などの金属含有量は、湿式灰化などの方法でポリマー中の金属を回収 した後、原子発光、原子吸光、 Inductively Coupled Plasma (ICP)等の方法を 使用して測定することが出来る。
[0031] 本発明の PBTは、その末端カルボキシル基濃度が 0. 1〜18 μ eqZgであることが 必要である。末端カルボキシル基濃度が高すぎる場合は PBTの耐加水分解性が悪 化し、本発明の目的を達成することが出来ない。末端カルボキシル基濃度は、好まし く ίま 0. 5〜15 eq/g、更に好ましく ίま 1〜12 eq/g、特に好ましく ίま 1〜10 eq Zgである。
[0032] ところで、 PBTの末端カルボキシル基濃度を下げても、混練時や成型時の熱により 上昇すると、結果的に製品の耐加水分解性を悪ィ匕させるだけでなぐ THF等のガス の発生を招くことがある。従って、本発明の PBTにおいて、不活性ガス雰囲気下、 24 5°Cで 40分間、熱処理した際の加水分解反応を除く末端カルボキシル基濃度の上 昇は、通常 0. 1〜20 eqZg、好ましくは 0. 1〜15 eq/g、更に好ましくは 0. 1〜 10 μ eqZg、特に好ましくは 0. 1〜8 μ eqZgである。
[0033] 加水分解反応は、 PBT中に含まれる水分を減少させる操作、具体的には乾燥を十 分行えば防止することが可能であり、成形時などに問題となる THFの発生も伴わな いが、加水分解以外の分解反応による末端カルボキシル基濃度の上昇は、乾燥操 作で防ぐことが不可能である。一般的には、分子量が低い方が、また、 PBT中のチタ ン濃度が高 、方が、加水分解以外の熱分解による末端カルボキシル基濃度の上昇 が大きい傾向がある。
[0034] 上記の評価法にお!、て温度と時間を規定したのは、温度が低すぎたり時間が短す ぎたりすると末端カルボキシル基濃度の上昇の速度が小さすぎ、逆の場合は大きす ぎて評価が不正確になるためである。また、極端に高い温度で評価すると、末端カル ボキシル基が生成する以外の副反応が併発し、評価が不正確になることも理由の一 つである。当該熱処理条件では、 PBTに含まれる水分が引き起こす加水分解反応 以外の反応による数平均分子量の低下は無視することが可能であり、加水分解反応 による末端カルボキシル基濃度の上昇分は、熱処理前後の末端ダリコール基濃度の 上昇分と略同じと見做すことが出来るため、混練時や成型時に問題となる加水分解 反応以外の熱分解反応による末端カルボキシル基濃度の上昇分は以下の式(1)で 求めることが出来る。
[0035] [数 1]
△ AV ( d ) = A AV ( t ) 一 A AV ( h ) = A AV ( t ) - Δ Ο Η - ' ( 1 ) (ここで、 A AV ( d ) は加水分解反応以外の熱分解反応による末端力ルポキシル 基濃度の変化量、 Δ Αν ( t ) は熱処理前後の末端カルボキシル基濃度の全変化量、
△ AV ( h ) は加水分解反応による末端カルボキシル基濃度の変化量、 Δ Ο Ηは熱 処理前後の末端グリコール基濃度の変化量を表す。 )
[0036] 熱分解反応評価の信頼性の観点からは、加水分解反応が少な!、方が好ま 、た め、熱処理に用いる ΡΒΤの含水量は、通常 300ppm以下が推奨される。熱処理前 後の末端グリコール基濃度は、 1H— NMRによって定量することが出来る。
[0037] 本発明の PBTの末端カルボキシル基濃度は、 PBTを有機溶媒などに溶解し、水酸 化ナトリウム溶液などのアルカリ溶液を使用して滴定することにより求めることが出来 る。
[0038] また、本発明の PBTの末端ビニル基濃度は、通常 15 eqZg以下、好ましくは 10 μ eqZg以下、更に好ましくは 8 eqZg以下である。末端ビュル基濃度が高すぎる 場合は、色調悪化や固相重合性悪化の原因となる。生産性を低下させることなぐ分 子量の大きい PBTや触媒濃度の低い PBTを製造する場合、一般的には重合温度を 上げたり、反応時間を長くしたりすることが求められるため、末端ビニル基濃度は上昇 する傾向にある。
[0039] PBTの末端には、水酸基、カルボキシル基、ビニル基の他に、原料由来のメトキシ カルボニル基が残存していることがあり、特に、テレフタル酸ジメチルを原料とする場 合には多く残存することがある。ところで、メトキシカルボニル末端は、固相重合、混 練、成型などによる熱により、メタノール、ホルムアルデヒド、蟻酸を発生し、特に、食 品用途に使用される場合には、これらの毒性が問題になる。また、蟻酸は金属製の 成形機器や真空関連機器などを痛める。そこで、本発明における末端メトキシカルボ -ル基濃度は、通常 0. 5 eqZg以下、好ましくは 0. 3 eqZg以下、更に好ましく は 0. 2 /^ 8以下、特に好ましくは0. : L eqZg以下である。
[0040] 上記の各末端基濃度は、重クロ口ホルム Zへキサフルォロイソプロパノール = 7Z3
(体積比)の混合溶媒に PBTを溶解させ、 1H— NMRを測定することによって定量す ることが出来る。この際、溶媒シグナルとの重なりを防ぐため、重ピリジン等の塩基性 成分などを極少量添加してもよ ヽ。
[0041] 本発明の PBTの固有粘度は 0. 7〜1. OdLZgであることが必要である。固有粘度 が 0. 7dLZg未満の場合は成形品の機械的強度が不十分となり、 1. OdLZgを超え る場合は溶融粘度が高くなり、流動性が悪ィ匕して、成形性が悪ィ匕する傾向にある。固 有粘度は、好ましくは 0. 7〜0. 9dLZg、更に好ましくは 0. 8〜0. 9dLZgである。 上記の固有粘度は、フエノール Zテトラクロルェタン (重量比 1Z1)の混合溶媒を使 用し、 30°Cで測定した値である。
[0042] 本発明の PBTの降温結晶化温度は、通常 160〜200°C、好ましくは 170〜195°C 、更に好ましくは 175〜190°Cである。本発明における降温結晶化温度とは、示差走 查熱量計を使用して榭脂が溶融した状態から降温速度 20°CZminで冷却した際に 現れる結晶化による発熱ピークの温度である。降温結晶化温度は、結晶化速度と対 応し、降温結晶化温度が高いほど結晶化速度が速いため、射出成形に際して冷却 時間を短縮し、生産性を高めることが出来る。降温結晶化温度が低い場合は、射出 成形に際して結晶化に時間が掛かり、射出成形後の冷却時間を長くせざるを得なく なり、成形サイクルが伸びて生産性が低下する傾向にある。
[0043] 本発明の PBTの溶液ヘイズは、特に制限されないが、フ ノール Zテトラクロ口エタ ン混合溶媒 (重量比 3Z2) 20mL〖こ PBT2. 7gを溶解させて測定した際の溶液ヘイ ズとして、通常 10%以下、好ましくは 5%以下、更に好ましくは 3%以下、特に好まし くは 1%以下である。溶液ヘイズが高い場合は、透明性が悪ィ匕し、異物も増加する傾 向があるため、フィルム、モノフィラメント、繊維など、特に透明性が要求される用途に おいては、商品価値を著しく落とす。溶液ヘイズは、チタン触媒の失活が大きい場合 に上昇する傾向がある。
[0044] 本発明の PBTにおける環状 2量体の含有量は、 PBTに対する重量比として、通常 1500ppm以下、好ましく ίま 1200ppm以下、更【こ好ましく ίま lOOOppm以下、特【こ好 ましくは 600ppm以下であり、その下限値は通常 lOppmである。また、環状 3量体の 含有量は、通常 lOOOppm以下、好ましくは 800ppm以下、更に好ましくは 600ppm 以下、特に好ましくは 300ppm以下であり、その下限値は通常 lOppmである。環状 2 量体および環状 3量体の含有量が上記の範囲を超える場合は、金型汚れやロール 汚れが惹起され、フィルム表面にブリードアウトし、食品包装などの用途ではその溶 出が問題となる。
[0045] 次に、本発明の PBTの製造方法について説明する。 PBTの製造方法は、原料面 から、ジカルボン酸を主原料として使用するいわゆる直接重合法と、ジカルボン酸ジ アルキルを主原料として使用するエステル交換法とに大別される。前者は初期のエス テルィ匕反応で主に水が生成し、後者は初期のエステル交換反応で主にアルコール が生成するという違いがある。
[0046] また、 PBTの製造方法は、原料供給またはポリマーの払い出し形態力 回分法と 連続法に大別される。初期のエステル化反応またはエステル交換反応を連続操作で 行って、それに続く重縮合を回分操作で行ったり、逆に、初期のエステル化反応また はエステル交換反応を回分操作で行って、それに続く重縮合を連続操作で行う方法 もめる。
[0047] 本発明においては、原料の入手安定性、留出物の処理の容易さ、原料原単位の 高さ、本発明による改良効果という観点から、直接重合法が好ましい。また、本発明 においては、生産性や製品品質の安定性、本発明による改良効果の観点から、連続 的に原料を供給し、連続的にエステルィヒ反応またはエステル交換反応を行う方法を 採用する。そして、本発明においては、エステルイ匕反応またはエステル交換反応に 続く重縮合反応も連続的に行う 、わゆる連続法が好まし 、。
[0048] 本発明にお ヽては、エステル化反応槽 (又はエステル交換反応槽)にて、好ましく はチタン触媒の存在下、少なくとも一部の 1, 4 ブタンジオールをテレフタル酸(又 はテレフタル酸ジアルキル)とは独立にエステルイ匕反応槽 (又はエステル交換反応槽 )に供給しながら、テレフタル酸(又はテレフタル酸ジアルキル)と 1, 4 ブタンジォー ルとを連続的にエステル化 (又はエステル交換)する工程が好ましく採用される。以後 、テレフタル酸 (又はテレフタル酸ジアルキル)とは独立にエステルイ匕反応槽 (又はェ ステル交換反応槽)に供給される 1, 4 ブタンジオールを「別供給 1, 4 ブタンジォ ール」と称することがある。
[0049] 上記の「別供給 1, 4 ブタンジオール」には、プロセスとは無関係の新鮮な 1, 4 ブタンジオールを当てることが出来る。また、「別供給 1, 4 ブタンジオール」は、エス テルィ匕反応槽またはエステル交換反応槽力 留出した 1 , 4 -ブタンジオールをコン デンサ等で捕集し、そのまま、または、一時タンク等へ保持して反応槽に還流させた り、不純物を分離、精製して純度を高めた 1, 4 ブタンジオールとして供給することも 出来る。以後、コンデンサ等で捕集された 1, 4 ブタンジオール力も構成される「別 供給 1, 4 ブタンジオール」を「再循環 1, 4 ブタンジオール」と称することがある。 資源の有効活用、設備の単純さの観点からは、「再循環 1, 4 ブタンジオール」を「 別供給 1, 4 ブタンジオール」に当てることが好ましい。
[0050] また、通常、エステルイ匕反応槽またはエステル交換反応槽より留出した 1, 4ーブタ ンジォ一ノレは、 1, 4 ブタンジォーノレ成分以外に、水、ァノレコーノレ、 THF、ジヒドロ フラン等の成分を含んでいる。従って、上記の留出物した 1, 4 ブタンジオールは、 コンデンサ等で捕集した後、または、捕集しながら、水、アルコール、テトラヒドロフラ ン等の成分と分離、精製し、反応槽に戻すことが好ましい。
[0051] また、本発明にお ヽては、触媒の失活を防ぐため、エステルイ匕反応 (又はエステル 交換反応)に使用されるチタン触媒の内、 10重量%以上をテレフタル酸 (又はテレフ タル酸ジアルキル)とは独立に反応液液相部に直接供給することが好ましい。ここで 、反応液液相部とは、エステルイ匕反応槽またはエステル交換反応槽中の気液界面の 液相側を示し、反応液液相部に直接供給するとは、配管などを使用し、チタン触媒 が反応器の気相部を経由せずに直接液相部分に供給されることを表す。反応液液 相部に直接添加するチタン触媒の割合は、好ましくは 30重量%以上、更に好ましく は 50重量%以上、特に好ましくは 80重量%以上、最も好ましくは 90重量%以上で ある。
[0052] 上記のチタン触媒は、溶媒などに溶解させたり又は溶解させずに直接エステルイ匕 反応槽またはエステル交換反応槽の反応液液相部に供給することも出来るが、供給 量を安定化させ、反応器の熱媒ジャケット等力もの熱による変性などの悪影響を軽減 するためには、 1, 4 ブタンジオール等の溶媒で希釈することが好ましい。この際の 濃度は、溶液全体に対するチタン触媒の濃度として、通常 0. 01〜20重量%、好ま しくは 0. 05〜10重量%、更に好ましくは 0. 08〜8重量%である。また、異物低減の 観点から、溶液中の水分濃度は、通常 0. 05〜: L 0重量%である。溶液調製の際の 温度は、失活ゃ凝集を防ぐ観点から、通常 20〜150°C、好ましくは 30〜100°C、更 に好ましくは 40〜80°Cである。また、触媒溶液は、劣化防止、析出防止、失活防止 の点から、別供給 1, 4 ブタンジオールと配管などで混合してエステルイ匕反応槽ま たはエステル交換反応槽に供給することが好ましい。
[0053] また、 2A族金属触媒もエステル化反応槽またはエステル交換反応槽に供給しても よい。 2A族金属触媒の供給位置に特に制限はなぐこれら反応槽の反応液気相部 から反応液上面へ供給してもよいし、反応液液相部に直接供給してもよい。また、こ の場合、テレフタル酸やチタンィ匕合物と共に供給してもよいし、独立して供給してもよ いが、触媒の安定性の観点からはテレフタル酸やチタン化合物とは独立に、反応液 気相部から反応液上面に供給することが好ましい。
[0054] 2A族金属触媒は、通常固体であり、そのまま供給することも出来るが、供給量を安 定化させ、熱による変性などの悪影響を軽減するため、 1, 4 ブタンジォール等の 溶媒で希釈して供給することが好ましい。この際の濃度は、溶液全体に対する 2A族 金属触媒の濃度として、通常 0. 01〜20重量%、好ましくは 0. 05〜10重量%、更 に好ましくは 0. 08〜8重量%である。この溶液には、析出防止、熱安定性の向上な どの目的で水を少量添カ卩してもよい。 [0055] 一方、 2A族金属触媒は、エステル化反応槽またはエステル交換反応槽に続く重 縮合反応槽へのオリゴマー配管や重縮合反応槽に添加することも出来る。この場合 も、供給量を安定化させ、熱による変性などの悪影響を軽減するため、 1, 4 ブタン ジオール等の溶媒やポリテトラメチレンエーテルグリコール等の共重合成分で 2A族 金属触媒を希釈することが好ましい。この際の濃度は、溶液全体に対する 2A族金属 触媒の濃度として、通常 0. 01〜20重量%、好ましくは 0. 05〜: L0重量%、更に好ま しくは 0. 08〜8重量%である。この溶液には、析出防止、熱安定性の向上などの目 的で水を少量添加してもよ!/ヽ。
[0056] 直接重合法を採用した連続エステル化法の一例は、次の通りである。すなわち、テ レフタル酸を主成分とする前記ジカルボン酸成分と 1 , 4 ブタンジオールを主成分と する前記ジオール成分とを原料混合槽で混合してスラリーとし、単数または複数のェ ステル化反応槽内で、好ましくはチタン触媒および 2A族金属触媒の存在下に、通常 180〜260。C、好ましくは 200〜245。C、更に好ましくは 210〜235。Cの温度、また、 通常 10〜133kPa、好ましくは 13〜: L01kPa、更に好ましくは 60〜90kPaの圧力( 絶対圧力、以下同じ)下で、通常 0. 5〜: L0時間、好ましくは 1〜6時間で、連続的に エステルイ匕反応させる。
[0057] 直接重合法の場合は、テレフタル酸と 1, 4 ブタンジオールとのモル比は、以下の 式 (2)を満たすことが好ま 、。
[0058] [数 2]
B M/TM= 1 . 1〜5 . 0 (m o 1 /m o 1 ) · · . ( 2 )
(但し、 B Mは単位時間当たりにエステル化反応槽に外部から供給される 1, 4 ブタンジオールのモル数、 TMは単位時間当たりにエステル化反 応槽に外部から供給されるテレフタル酸のモル数を示す)
[0059] 上記の「エステル化反応槽に外部から供給される 1, 4 ブタンジオール」とは、原 料スラリー又は溶液として、テレフタル酸またはテレフタル酸ジアルキルエステルと共 に供給される 1, 4 ブタンジオールの他、これらとは独立に供給する 1, 4 ブタンジ オール (別供給 1, 4 ブタンジオール)、触媒の溶媒として使用される 1, 4 ブタン ジオール等、反応槽外部から反応槽内に入る 1, 4 ブタンジオールの総和である。 [0060] 上記の BMZTMの値が 1. 1より小さい場合は、転化率の低下や触媒失活を招き、 5. 0より大きい場合は、熱効率が低下するだけでなぐテトラヒドロフラン等の副生物 が増大する傾向にある。 BMZTMの値は、好ましくは 1. 5〜4. 5、更に好ましくは 2 . 5〜4. 0、特に好ましくは 3. 1〜3. 8である。
[0061] また、エステル交換法を採用した連続法の一例は、次の通りである。すなわち、単 数または複数のエステル交換反応槽内で、チタン触媒および 2A族金属触媒の存在 下【こ、通常 110〜260oC、好ましく ίま 140〜245oC、更【こ好ましく ίま 180〜220oCの 温度、また、通常 10〜133kPa、好ましくは 13〜120kPa、更に好ましくは 60〜: L01 kPaの圧力下で、通常 0. 5〜5時間、好ましくは 1〜3時間で、連続的にエステル交 換反応させる。
[0062] エステル交換法の場合、テレフタル酸ジアルキルと 1, 4 ブタンジオールとのモル 比は、次の式(3)を満たすことが好ましい。
[0063] [数 3]
B M/D M = 1 . 1〜2 . 5 (m o 1 /m o 1 ) · · · ( 3 )
(但し、 B Mは単位時間当たりにエステル交換反応槽に外部から供給される 1, 4—ブタンジオールのモル数、 D Mは単位時間当たりにエステル交換反 応槽に外部から供給されるテレフタル酸ジアルキルのモル数を示す。 )
[0064] 上記の BMZDMの値が 1. 1より小さい場合は、転ィ匕率の低下や触媒活性の低下 を招き、 2. 5より大きい場合は、熱効率が低下するだけでなぐテトラヒドロフラン等の 副生物が増大する傾向にある。 BMZDMの値は、好ましくは 1. 1〜1. 8、更に好ま しくは 1. 2〜1. 5である。
[0065] 本発明にお 、て、エステルイ匕反応またはエステル交換反応は、反応時間短縮のた め、 1, 4 ブタンジオールの沸点以上の温度で行うことが好ましい。 1, 4 ブタンジ オールの沸点は反応の圧力に依存するが、 101. lkPa (大気圧)では 230°C、 50k Paでは 205°Cである。
[0066] エステルイ匕反応槽またはエステル交換反応槽としては、公知のものが使用でき、縦 型攪拌完全混合槽、縦型熱対流式混合槽、塔型連続反応槽などの何れの型式であ つてもよく、また、単数槽としても、同種もしくは異種の槽を直列または並列させた複 数槽としてもよい。中でも、攪拌装置を有する反応槽が好ましぐ攪拌装置としては、 動力部、軸受、軸、攪拌翼力 成る通常のタイプの他、タービンステーター型高速回 転式攪拌機、ディスクミル型攪拌機、ローターミル型攪拌機などの高速回転するタイ プも使用することが出来る。
[0067] 攪拌の形態は、特に制限されず、反応槽中の反応液を反応槽の上部、下部、横部 などカゝら直接攪拌する通常の攪拌方法の他、配管などで反応液の一部を反応器の 外部に持ち出してラインミキサー等で攪拌し、反応液を循環させる方法も採ることが 出来る。
[0068] 攪拌翼の種類は、公知のものが選択でき、具体的には、プロペラ翼、スクリュー翼、 タービン翼、ファンタービン翼、ディスクタービン翼、ファウドラー翼、フルゾーン翼、マ ックスブレンド翼などが挙げられる。
[0069] 次に、得られたエステル化反応生成物またはエステル交換反応生成物としてのオリ ゴマ一は、重縮合反応槽に移される。この際のオリゴマーの数平均分子量は、通常 3 00〜3000であり、好まし <は 500〜 1500である。
[0070] PBTの製造においては、通常、複数段、好ましくは 2〜5段、特に好ましくは 2〜3 段の反応条件の異なる重縮合反応槽を使用し、順次分子量を上昇させていく。重縮 合反応槽の形態は、縦型攪拌完全混合槽、縦型熱対流式混合槽、塔型連続反応槽 などの何れの型式であってもよぐまた、これらを糸且み合わせることも出来る。中でも、 少なくとも 1つの重縮合反応槽においては攪拌装置を有するタイプであることが好ま しぐ攪拌装置としては、動力部、軸受、軸、攪拌翼力 成る通常のタイプの他、ター ビンステーター型高速回転式攪拌機、ディスクミル型攪拌機、ローターミル型攪拌機 などの高速回転するタイプも使用することが出来る。
[0071] 攪拌の形態は、特に制限されず、反応槽中の反応液を反応槽の上部、下部、横部 などカゝら直接攪拌する通常の攪拌方法の他、配管などで反応液の一部を反応器の 外部に持ち出してラインミキサー等で攪拌し、反応液を循環させる方法も採ることが 出来る。中でも、少なくとも重縮合反応槽の 1つは、水平方向に回転軸を有する表面 更新とセルフクリーニング性に優れた横型の反応器を使用することが推奨される。
[0072] 重縮合反応は、触媒の存在下に、通常 210〜280°C、好ましくは 220〜250°C、更 に好ましくは 230〜245°C、特に好ましくは少なくとも一つの反応槽においては 230 〜240°Cの温度で、好ましくは攪拌を行いながら、通常 1〜12時間、好ましくは 3〜1 0時間で、通常 27kPa以下、好ましくは 20kPa以下、特に好ましくは 13kPa以下の減 圧状態で行う。反応は、回分法でも連続法でも構わないが、ポリマーの品質の安定 性や末端カルボキシル基低減等の観点からは、連続法が好ましい。また、着色や劣 化を抑え、ビニル基などの末端の増加を抑制するため、少なくとも 1つの反応槽にお いて、通常 1. 3kPa以下、好ましくは 0. 5kPa以下、更に好ましくは 0. 3kPa以下の 高真空下で行うのがよい。
[0073] 重縮合反応により得られたポリマーは、通常、重縮合反応槽の底部からポリマー抜 き出しダイに移送されてストランド状に抜き出され、水冷されながら又は水冷後、カツ ターで切断され、ペレット状、チップ状などの粒状体とされる。
[0074] 更に、 PBTの重縮合反応工程は、ー且、溶融重縮合で比較的分子量の小さ!、、例 えば、固有粘度 0. 1〜0. 9程度の PBTを製造した後、引き続き、 PBTの融点以下の 温度で固相重縮合(固相重合)させることも出来る。
[0075] 本発明の PBTは、ポリマー前駆体やポリマーの流路にフィルターを設置することに より、更に品質の優れたポリマーとすることが出来る。
[0076] フィルターの設置位置が製造プロセスの余りにも上流側の場合は、下流側で発生 する異物の除去が行えず、下流側の粘度が高い所ではフィルターの圧力損失が大 きくなり、流量を維持するためには、フィルターの目開きを大きくしたり、フィルターの 濾過面積や配管などの設備を過大にする必要があったり、また、流体通過時に高剪 断を受けるため、剪断発熱による PBTの劣化が不可避となる。従って、フィルターの 設置位置は、 PBT又はその前駆体の固有粘度が通常 0. 1〜0. 9の位置が選択され る。
[0077] フィルターを構成する濾材としては、金属ワインド、積層金属メッシュ、金属不織布、 多孔質金属板などの何れでもよいが、濾過精度の観点から、積層金属メッシュ又は 金属不織布が好ましぐ特に、その目開きが焼結処理により固定されているものが好 ましい。フィルターの形状としては、バスケットタイプ、ディスクタイプ、リーフディスクタ イブ、チューブタイプ、フラット型円筒タイプ、プリーツ型円筒タイプ等の何れの型式 であってもよい。また、プラントの運転に影響を与えない様にするため、複数のフィル ターを設置し、切り替えて使用できる構造にしたり、オートスクリーンチェンジャーを設 置することが好ましい。
[0078] フィルターの絶対濾過精度は、特に制限されないが、通常 0. 5〜200 /z m、好まし くは 1〜: LOO m、更に好ましくは 5〜50 m、特に好ましくは 10〜30 mである。 絶対濾過精度が大きすぎる場合は製品中の異物低減効果がなくなり、小さすぎる場 合は生産性の低下やフィルター交換頻度の増大を招く。ここに、絶対濾過精度とは、 粒径が既知でかつ揃ったガラスビーズ等の標準粒径品を使用し濾過テストを行った 場合に、完全に濾別除去される場合の最低粒径を示す。
[0079] 以下、添付図面に基づき、 PBTの製造方法の好ましい実施態様を説明する。図 1 は、本発明で採用するエステルイ匕反応工程またはエステル交換ィ匕反応工程の一例 の説明図、図 2は、本発明で採用する重縮合工程の一例の説明図である。
[0080] 図 1において、原料のテレフタル酸は、通常、原料混合槽(図示せず)で 1, 4ーブタ ンジオールと混合され、原料供給ライン(1)からスラリー又は液体の形態で反応槽 (A )に供給される。一方、原料がテレフタル酸ジアルキルの場合は通常溶融した液体と して 1,4 ブタンジオールと独立に反応槽 (A)に供給される。また、チタン触媒は、好 ましくは触媒調整槽(図示せず)で 1, 4 ブタンジォールの溶液とした後、チタン触 媒供給ライン (3)から供給される。図 1では再循環 1, 4 ブタンジオールの再循環ラ イン (2)に触媒供給ライン (3)を連結し、両者を混合した後、反応槽 (A)の液相部に 供給する態様を示した。また、 2A族金属触媒は、好ましくは触媒調製槽 (図示せず) で 1, 4 ブタンジオールの溶液とした後、 2A族金属触媒供給ライン(15)から供給さ れる。
[0081] 反応槽 (A)カも留出するガスは、留出ライン (5)を経て精留塔 (C)で高沸成分と低 沸成分とに分離される。通常、高沸成分の主成分は 1, 4 ブタンジオールであり、低 沸成分の主成分は、直接重合法の場合は水および THF、エステル交換法の場合は 、ァノレコーノレ、 THF、水である。
[0082] 精留塔 (C)で分離された高沸成分は抜出ライン (6)力 抜き出され、ポンプ (D)を 経て、一部は再循環ライン(2)から反応槽 (A)に循環され、一部は循環ライン (7)力ゝ ら精留塔 (C)に戻される。また、余剰分は抜出ライン (8)から外部に抜き出される。一 方、精留塔 (C)で分離された軽沸成分はガス抜出ライン (9)から抜き出され、コンデ ンサ (G)で凝縮され、凝縮液ライン(10)を経てタンク (F)に一時溜められる。タンク( F)に集められた軽沸成分の一部は、抜出ライン(11)、ポンプ (E)及び循環ライン(1 2)を経て精留塔 (C)に戻され、残部は、抜出ライン(13)を経て外部に抜き出される。 コンデンサに)はベントライン(14)を経て排気装置(図示せず)に接続されている。 反応槽 (A)内で生成したオリゴマーは、抜出ポンプ (B)及び抜出ライン (4)を経て抜 さ出される。
[0083] 図 1に示す工程においては、再循環ライン (2)に触媒供給ライン (3)が連結されて いるが、両者は独立していてもよい。また、原料供給ライン(1)は反応槽 (A)の液相 部に接続されていてもよい。
[0084] 図 2において、前述の図 1に示す抜出ライン (4)から供給されたオリゴマーは、第 1 重縮合反応槽 (a)で減圧下に重縮合されてプレボリマーとなった後、抜出用ギヤボン プ (c)及び抜出ライン (L1)を経て第 2重縮合反応槽 (d)に供給される。第 2重縮合反 応槽 (d)では、通常、第 1重縮合反応槽 (a)よりも低い圧力で更に重縮合が進みポリ マーとなる。得られたポリマーは、抜出用ギヤポンプ (e)及び抜出ライン (L3)を経て ダイスヘッド (g)から溶融したストランドの形態で抜き出され、水などで冷却された後、 回転式カッター (h)で切断されてペレットとなる。符号 (L2)は第 1重縮合反応槽 (a) のベントライン、符号 (L4)は第 2重縮合反応槽 (d)のベントラインである。
[0085] 本発明の PBTには、 2, 6 ジ tーブチルー 4ーォクチルフエノール、ペンタエリス リチルーテトラキス〔3— (3 ' , 5,一 tーブチルー 4,ーヒドロキシフエ-ル)プロピオネー ト〕等のフエノール化合物、ジラウリル一 3, 3,一チォジプロピオネート、ペンタエリスリ チル—テトラキス(3—ラウリルチォジプロピオネート)等のチォエーテルィ匕合物、トリフ 工-ルホスファイト、トリス(ノ -ルフエ-ル)ホスファイト、トリス(2, 4 ジ一 t—ブチル フエ-ル)ホスファイト等の燐ィ匕合物などの抗酸化剤、ノ《ラフィンワックス、マイクロタリ スタリンワックス、ポリエチレンワックス、モンタン酸やモンタン酸エステノレに代表される 長鎖脂肪酸およびそのエステル、シリコーンオイル等の離型剤などを添加してもよ ヽ [0086] 本発明の PBTには、強化充填材を配合することが出来る。強化充填材としては、特 に制限されないが、例えば、ガラス繊維、カーボン繊維、シリカ'アルミナ繊維、ジルコ ユア繊維、ホウ素繊維、窒化ホウ素繊維、窒化ケィ素チタン酸カリウム繊維、金属繊 維などの無機繊維、芳香族ポリアミド繊維、フッ素榭脂繊維などの有機繊維などが挙 げられる。これらの強化充填材は、 2種以上を組み合わせて使用することが出来る。 上記の強化充填材の中では、無機充填材、特にガラス繊維が好適に使用される。
[0087] 強化充填材が無機繊維または有機繊維である場合、その平均繊維径は、特に制 限されないが、通常 1〜: LOO μ m、好ましくは 2〜50 μ m、更に好ましくは 3〜30 μ m 、特に好ましくは 5〜20 /ζ πιである。また、平均繊維長は、特に制限されないが、通 常 0. l〜20mm、好ましくは 1〜: LOmmである。
[0088] 強化充填材は、 PBTとの界面密着性を向上させるため、収束剤または表面処理剤 で表面処理して使用することが好ましい。収束剤または表面処理剤としては、例えば 、エポキシ系化合物、アクリル系化合物、イソシァネート系化合物、シラン系化合物、 チタネート系化合物などの官能性ィ匕合物が挙げられる。強化充填材は、収束剤また は表面処理剤により予め表面処理しておくことが出来、または、 PBT組成物の調製 の際に、収束剤または表面処理剤を添加して表面処理することも出来る。強化充填 材の添加量は、 PBT榭脂 100重量部に対し、通常 150重量部以下、好ましくは 5〜1 00重量部である。
[0089] 本発明の PBTには、強化充填材と共に他の充填材を配合することが出来る。配合 する他の充填材としては、例えば、板状無機充填材、セラミックビーズ、アスベスト、ヮ ラストナイト、タルク、クレー、マイ力、ゼォライト、カオリン、チタン酸カリウム、硫酸バリ ゥム、酸化チタン、酸化ケィ素、酸ィ匕アルミニウム、水酸ィ匕マグネシウム等が挙げられ る。板状無機充填材を配合することにより、成形品の異方性およびソリを低減すること が出来る。板状無機充填材としては、例えば、ガラスフレーク、雲母、金属箔どを挙げ ることが出来る。これらの中ではガラスフレークが好適に使用される。
[0090] 本発明の PBTには、難燃性を付与するために難燃剤を配合することが出来る。難 燃剤としては、特に制限されず、例えば、有機ハロゲンィ匕合物、アンチモンィ匕合物、リ ン化合物、その他の有機難燃剤、無機難燃剤などが挙げられる。有機ハロゲン化合 物としては、例えば、臭素化ポリカーボネート、臭素化エポキシ榭脂、臭素化フエノキ シ榭脂、臭素化ポリフ 二レンエーテル榭脂、臭素化ポリスチレン榭脂、臭素化ビス フエノール A、ポリペンタブロモベンジルアタリレート等が挙げられる。アンチモン化合 物としては、例えば、三酸ィ匕アンチモン、五酸ィ匕アンチモン、アンチモン酸ソーダ等 が挙げられる。リンィ匕合物としては、例えば、リン酸エステル、ポリリン酸、ポリリン酸ァ ンモ-ゥム、赤リン等が挙げられる。その他の有機難燃剤としては、例えば、メラミン、 シァヌール酸などの窒素化合物などが挙げられる。その他の無機難燃剤としては、 例えば、水酸ィ匕アルミニウム、水酸化マグネシウム、ケィ素化合物、ホウ素化合物な どが挙げられる。
[0091] 本発明の PBTには、必要に応じ、慣用の添加剤などを配合することが出来る。斯か る添加剤としては、特に制限されず、例えば、酸化防止剤、耐熱安定剤などの安定 剤の他、滑剤、離型剤、触媒失活剤、結晶核剤、結晶化促進剤などが挙げられる。こ れらの添加剤は、重合途中または重合後に添加することが出来る。更に、 PBTに、 所望の性能を付与するため、紫外線吸収剤、耐候安定剤などの安定剤、染顔料など の着色剤、帯電防止剤、発泡剤、可塑剤、耐衝撃性改良剤などを配合することが出 来る。
[0092] 本発明の PBTには、必要に応じて、ポリエチレン、ポリプロピレン、ポリスチレン、ポ リアクリロニトリル、ポリメタクリル酸エステル、 ABS榭脂、ポリカーボネート、ポリアミド、 ポリフエ-レンサルファイド、ポリエチレンテレフタレート、液晶ポリエステル、ポリアセ タール、ポリフエ-レンオキサイド等の熱可塑性榭脂、フエノール榭脂、メラミン榭脂、 シリコーン榭脂、エポキシ榭脂などの熱硬化性榭脂を配合することが出来る。これら の熱可塑性榭脂および熱硬化性榭脂は、 2種以上を組み合わせて使用することも出 来る。
[0093] 前記の種々の添加剤ゃ榭脂の配合方法は、特に制限されな!、が、ベント口力 脱 揮できる設備を有する 1軸または 2軸の押出機を混練機として使用する方法が好まし い。各成分は、付加的成分を含めて、混練機に一括して供給することが出来、あるい は、順次供給することも出来る。また、付加的成分を含めて、各成分力も選ばれた 2 種以上の成分を予め混合しておくことも出来る。 [0094] 本発明の PBTの成形加工方法は、特に制限されず、熱可塑性榭脂について一般 に使用されている成形法、すなわち、射出成形、中空成形、押し出し成形、プレス成 形などの成形法を適用することが出来る。
[0095] 本発明の PBTは、色調、耐加水分解性、熱安定性、透明性、成形性に優れて ヽる ため、電気、電子部品、自動車用部品などの射出成形部品として好適であるが、特 に、異物が少なぐ透明性に優れているため、フィルム、モノフィラメント、繊維などの 用途において改良効果が顕著である。
実施例
[0096] 以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を超え ない限り、以下の実施例に何ら限定されるものではない。なお、以下の諸例で採用し た物性および評価項目の測定方法は次の通りである。
[0097] (1)エステル化率:
以下の計算式 (4)によって酸価およびケンィ匕価力も算出した。酸価は、ジメチルホ ルムアミドにオリゴマーを溶解させ、 0. 1Nの KOHZメタノール溶液を使用して滴定 により求めた。ケン化価は 0. 5Nの KOH/エタノール溶液でオリゴマーを加水分解 し、 0. 5Nの塩酸で滴定し求めた。
[0098] [数 4] エステル化率 = ( (ケン化価一酸価) /ケン化価) X 1 0 0 · · ( 4 )
[0099] (2)末端カルボキシル基濃度:
ベンジルアルコール 25mLに PBT又はオリゴマー 0. 5gを溶解し、水酸化ナトリウム (DO. 01モル ZLベンジルアルコール溶液を使用して滴定した。
[0100] (3)固有粘度 (IV) :
ウベローデ型粘度計を使用し次の要領で求めた。すなわち、フエノール Zテトラクロ ロェタン (重量比 1Z1)の混合溶媒を使用し、 30°Cにおいて、濃度 1. OgZdLのポリ マー溶液および溶媒のみの落下秒数を測定し、以下の式(5)より求めた。
[0101] [数 5] I V = ( ( 1 + 4 KH 7 sp) O.5— 1 ) / ( 2 KH C ) · · ( 5 )
(但し、 7:^= ?? 77 ()— 1でぁり、 7はポリマー溶液落下秒数、 7] Qは溶媒の 落下秒数、 Cはポリマ一溶液濃度 (g Z d L ) 、 KHはハギンズの定数である。
KHは 0 . 3 3を採用した。 )
[0102] (4) PBT中のチタン及び周期表 2A族金属濃度:
電子工業用高純度硫酸および硝酸で PBTを湿式分解し、高分解能 ICP ( Inductively Coupled Plasma)— MS (MassSpectrometer ) (サーモクエスト社製)を使 用して測定した。
[0103] (5)末端メトキシカルボ-ル基濃度および末端ビュル基濃度:
重クロ口ホルム Zへキサフルォロイソプロパノール = 7Z3 (体積比)の混合溶媒 lm Lに PBT約 lOOmgを溶解させ、重ピリジン 36 Lを添加し、 50°Cで 1H— NMRを測 定し求めた。 NMR装置には日本電子 (株)製「 α— 400」又は「 AL— 400」を使用し た
[0104] (6)降温結晶化温度 (Tc):
示差走査熱量計 [パーキンエルマ一社、型式 DSC7]を使用し、昇温速度 20°CZ minで室温から 300°Cまで昇温した後、降温速度 20°CZminで 80°Cまで降温し、発 熱ピークの温度を降温結晶化温度とした。 Tcが高いほど結晶化速度が速ぐ成形サ イタルが短くなる。
[0105] (7)溶液ヘイズ:
フエノール Zテトラクロロェタン = 3Z2 (重量比)の混合溶媒 20mLに PBT2. 70g を 110°Cで 30分間溶解させた後、 30°Cの恒温水槽で 15分間冷却し、 日本電色 (株 )製濁度計 (NDH— 300A)を使用し、セル長 10mmで測定した。値が低いほど透明 性が良好であることを示す。
[0106] (8)加水分解反応以外の反応による末端カルボキシル基濃度の上昇(AAV(d) ): 内径 5mmのキヤピラリーに PBTペレットを粉砕後に乾燥して充填して窒素置換し、 窒素下で 245°Cにコントロールしたオイルバスに浸漬し、 40分後に取り出し、液体窒 素で急冷させた。内容物の温度が十分下がった後、内容物を取り出し、末端カルボ キシル基濃度および末端水酸基濃度を測定し、前述の式(1)より求めた。
[0107] (9) PBT中の環状 2量体および環状 3量体含量: へキサフルォロイソプロパノール Zクロ口ホルム = 2Z3 (体積比) 3mLに PBTO. lg を溶解させた後、クロ口ホルム 20mL、メタノール 10mLをカ卩えてポリマーを沈殿させ る。続いて濾別した上澄み液を乾固した後、ジメチルホルムアミド 2mLに溶解させ、 2 重量%の酢酸水 Zァセトニトリルの混合溶媒を溶離液とし、高速液体クロマトグラフィ 一(カラム:三菱ィ匕学 (株)製「MCI— GEL ODS— 1LU」)で測定して求めた。環状 2量体や環状 3量体が少な 、方が成形時の金型汚染などが少な!/、。
[0108] (10)ペレット色調:
日本電色 (株)製色差計 (Z— 300A型)を使用し、 L、 a、 b表色系における b値で評 価した。値が低いほど黄ばみが少なく色調が良好であることを示す。
[0109] (11)耐加水分解性 (加水分解試験後の IV保持率):
PBTペレットを純水を張った圧力容器に直接水に触れない様に入れ、密閉した後 、 121°Cの飽和水蒸気下で 50時間処理し、固有粘度 (IV ')の測定を行う。上述の I V及び IV'の値から以下の式 (6)により IV保持率を算出する。 IV保持率が大きいほど 耐加水分解性が良好なことを示す。
[0110] 園
I V保持率 (%) = ( I V'/ I V) X 1 0 0 · · · ( 6 )
[0111] (12)フィシュアィ数:
Film Quality Testing System [オプティカルコントロールシステムズ社 形式
FS— 5]を使用し、厚さ 50 μ mのフィルムを成形し、 lm2当たりの 25 μ m以上のフィ ッシュアィ数を測定した。
[0112] 実施例 1 :
図 1に示すエステルイ匕工程と図 2に示す重縮合工程を通し、次の要領で PBTの製 造を行った。先ず、テレフタル酸 1. 00モルに対して、 1, 4—ブタンジオール 1. 80モ ルの割合で混合した 60°Cのスラリーをスラリー調製槽カも原料供給ライン(1)を通じ 、予め、エステルイ匕率 99%の PBTオリゴマーを充填したスクリュー型攪拌機を有する エステルイ匕のための反応槽 (A)に、 41kgZhとなる様に連続的に供給した。同時に 、再循環ライン (2)から 185°Cの精留塔 (C)の塔底成分 (98重量%以上が 1, 4—ブ タンジオール)を 20kg/hで供給し、チタン触媒供給ライン (3)から触媒として 65°C のテトラブチルチタネートの 6. 0重量0 /01, 4—ブタンジオール溶液を 99gZhで供給 した (理論ポリマー収量に対し 30ppm)。この触媒溶液中の水分は 0. 2重量%であ つた。 2A族金属触媒供給ライン( 15)力も触媒として 65°Cの酢酸マグネシウム · 4水 塩の 6. 0重量0 /01, 4 ブタンジオール溶液を 62gZhで供給した (理論ポリマー収 量に対し 15ppm)。この触媒溶液中の水分は 10. 0重量%であった。
[0113] 反応槽 (A)の内温は 230°C、圧力は 78kPaとし、生成する水とテトラヒドロフラン及 び余剰の 1, 4 ブタンジオールを、留出ライン (5)から留出させ、精留塔 (C)で高沸 成分と低沸成分とに分離した。系が安定した後の塔底の高沸成分は、 98重量%以 上が 1, 4 ブタンジオールであり、精留塔 (C)の液面が一定になる様に、抜出ライン (8)を通じてその一部を外部に抜き出した。一方、低沸成分は塔頂よりガスの形態で 抜き出し、コンデンサ(G)で凝縮させ、タンク (F)の液面が一定になる様に、抜出ライ ン(13)より外部に抜き出した。
[0114] 反応槽 (A)で生成したオリゴマーの一定量は、ポンプ (B)を使用し、抜出ライン (4) から抜き出し、反応槽 (A)内液の平均滞留時間が 2. 5hrになる様に液面を制御した 。抜出ライン 4力 抜き出したオリゴマーは、第 1重縮合反応槽 (a)に連続的に供給し た。系が安定した後、反応槽 (A)の出口で採取したオリゴマーのエステルイ匕率は 96 . 5%であった。
[0115] 第 1重縮合反応槽 (a)の内温は 240°C、圧力 2. IkPaとし、滞留時間が 120分にな る様に液面制御を行った。減圧機(図示せず)に接続されたベントライン (L2)から、 水、テトラヒドロフラン、 1, 4 ブタンジオールを抜き出しながら、初期重縮合反応を 行った。抜き出した反応液は第 2重縮合反応槽 (d)に連続的に供給した。
[0116] 第 2重縮合反応槽 (d)の内温は 240°C、圧力 130Paとし、滞留時間が 60分になる 様に液面制御を行い、減圧機(図示せず)に接続されたベントライン (L4)から、水、 テトラヒドロフラン、 1, 4 ブタンジォールを抜き出しながら、更に重縮合反応を進め た。得られたポリマーは、抜出用ギヤポンプ (e)により抜出ライン (L3)を経由し、ダイ スヘッド (g)からストランド状に連続的に抜き出し、回転式カッター (h)でカッティング した。 [0117] 得られたポリマーの固有粘度は 0. 70dLZg、末端カルボキシル基濃度は 10. 5 μ eq, gであつ 7こ o
[0118] 更に、上記のポリマーチップをダブルコ-カル型ブレンダー(内容量 100L)〖こて 19 5°C、減圧下 (0. 133kPa以下)、 5時間の固相重合処理を実施した。固相重合処理 されたポリマーの固有粘度は 0. 85dLZg、末端カルボキシル基濃度は 5. l μ eq gであった。他の分析値はまとめて表 1に示した。異物が少なぐ色調に優れ、透明性 が良好な PBTが得られた。
[0119] 実施例 2 :
実施例 1において、第 2重縮合反応槽 (d)の滞留時間を 90分にし、固相重合工程 を省略した以外は、実施例 1と同様に行った。得られた PBTの分析値はまとめて表 1 に示した。
[0120] 実施例 3 :
実施例 2において、ポリマー中のチタン及びマグネシウム含有量が表 1の通りとなる 様にテトラブチルチタネート及び酢酸マグネシウム · 4水塩の供給量を調節し、第 2重 縮合反応槽 (d)での滞留時間を 75分にした以外は、実施例 2と同様に行った。得ら れた PBTの分析値はまとめて表 1に示した。
[0121] 実施例 4 :
実施例 2において、ポリマー中のチタン及びマグネシウム含有量が表 1の通りとなる 様にテトラブチルチタネート及び酢酸マグネシウム · 4水塩の供給量を調節し、第 2重 縮合反応槽 (d)の温度を 243°C、滞留時間を 75分にした以外は、実施例 2と同様に 行った。得られた PBTの分析値はまとめて表 1に示した。
[0122] 実施例 5 :
実施例 2において、ポリマー中のチタン及びマグネシウム含有量が表 1の通りとなる 様にテトラブチルチタネート及び酢酸マグネシウム · 4水塩の供給量を調節し、第 2重 縮合反応槽 (d)の滞留時間を 75分にした以外は、実施例 2と同様に行った。得られ た PBTの分析値はまとめて表 1に示した。
[0123] 実施例 6 :
実施例 2において、ポリマー中のチタン及びカルシウム含有量が表 1の通りとなる様 にテトラブチルチタネート及び酢酸カルシウム · 1水塩の供給量を調節し、第 2重縮合 反応槽 (d)の温度を 245°C、滞留時間を 75分にした以外は、実施例 2と同様に行つ た。得られた PBTの分析値はまとめて表 1に示した。
[0124] 比較例 1
実施例 2において、ポリマー中のチタン含有量が表 2の通りとなる様にテトラブチル チタネートの供給量を調節し、第 2重縮合反応槽 (d)の滞留時間を 105分にした以 外は、実施例 2と同様に行った。得られた PBTの分析値はまとめて表 2に示した。表 2 に示す様に、末端カルボキシル基濃度、色調、重合性も悪化した。
[0125] 比較例 2 :
実施例 2において、ポリマー中のチタン含有量が表 2の通りとなる様にテトラブチル チタネートの供給量を調節し、第 2重縮合反応槽 (d)の滞留時間を 90分にした以外 は、実施例 2と同様に行った。得られた PBTの分析値はまとめて表 2に示した。表 2に 示す様に、末端カルボキシル基濃度、色調、ヘイズが悪化し、異物も多ぐ重合性も 悪化した。
[0126] 比較例 3 :
タービン型撹拌翼を具備した内容積 200Lのステンレス製反応槽に、テレフタル酸 ジメチル 397. 2重量部、 1, 4—ブタンジオール 213. 8重量部にテトラブチルチタネ ート 0. 144重量部(理論ポリマー収量に対し 45ppm)をカ卩え、 150〜215°Cで 3時間 エステル交換反応を行った後、酢酸マグネシウム · 4水塩 0. 178重量部(理論ポリマ 一収量に対し 45ppm)を 1, 4—ブタンンジオールに溶解して添カ卩し、更に、テトラブ チルチタネート 0. 144重量部(理論ポリマー収量に対し 45ppm)を添カ卩した。続!、て 、ベント管およびダブルヘリカル型撹拌翼を有する内容積 200Lのステンレス反応槽 に、上記で得られたオリゴマーを移送した後、重縮合反応を行った。重縮合反応は 常圧力も 0. 133kPaまで 85分かけて徐徐に減圧し、同時に所定の重合温度 240°C まで昇温し、以降、所定重合温度、 0. 133kPaで継続し、所定の撹拌トルクに到達し た時点で反応を終了し、ポリマーを抜き出した。得られた PBTの分析値はまとめて表 2に示した。表 2に示す様に、末端カルボキシル基濃度が大幅に悪ィ匕した。
[0127] 比較例 4 : 実施例 2において、ポリマー中のチタン及びナトリウム含有量が表 2の通りになる様 にテトラブチルチタネート及び水酸ィ匕ナトリウムの供給量を調節し、第 2重縮合反応( d)の滞留時間を 100分とした以外は、実施例 2と同様に行った。得られた PBTの分 析値はまとめて表 2に示した。表 2に示すように、色調が悪化し、フィッシュアイも多か つた o
[表 1]
項目 単位 実施例 1 実施例 2 実施例 3 実施例 4 実施例 5 実施例 6 チタン含量 ppm 30 30 45 45 90 90 マグネシウム含量 ppm 15 15 25 45 45 - カルシウム含量 ppm - - - - - 45 ナトリウム含量 ppm - - - 一 - - 固有粘度 (I V) dL/g 0.85 0.86 0.85 0.84 0.85 0.84 末端カルホ'キシル基濃度 A e q/g 5.1 10.3 14.2 17.3 17.1 17.8 降温結晶化温度 (Tc) °C 178.6 178.5 178.9 178.5 178.8 178.5 末 ビニル基濃度 / e q/g 3.5 3.5 4.5 8.3 4.6 11.4 末端メトキ'ンカルホ'ニル基濃度 ^ e qZg 0.1以下 0.1以下 0.1以下 0.1以下 0.1以下 0.1以下 溶液ヘイズ % 0.1 0.1 0.1 0.1 3.5 5.5
△ AV (d) e q/g (40分) 3.7 3.5 5.5 6.3 7.4 8.8 環状 2量体 ppm 500 3530 3300 3800 3650 3800 環状 3量体 PPm 150 2550 2400 2700 2500 2700 ペレツト色調 (b値) - 1.7 -2.5 -2.2 -2.2 - 1.8 -1.6 耐加水分解性 % 90 86 81 77 77 76 フィシュアィ数 個 Zm2 330 230 300 330 450 500
[表 2]
Figure imgf000031_0001
なお、本出願は、 2004年 4月 1日付で出願された日本特許出願 (特願 2004 8918)に基づいており、その全体が引用により援用される。

Claims

請求の範囲
[I] 触媒としてチタン化合物と周期表 2A族金属化合物を使用して得られ、固有粘度が 0. 7〜1. OdL/gであり、末端カルボキシル基濃度が 0. 1〜18 eq/gであること を特徴とするポリブチレンテレフタレート。
[2] 示差走査熱量計で降温速度 20°CZminにて測定した降温結晶化温度が 170〜1
95°Cである請求項 1に記載のポリブチレンテレフタレート。
[3] 末端ビュル基濃度が 10 μ eqZg以下である請求項 1又は 2に記載のポリプチレン テレフタレート。
[4] フエノール/テトラクロロェタン混合溶媒 (重量比 3/2) 20mLにポリブチレンテレフ タレート 2. 7gを溶解させて測定した際の溶液ヘイズが 10%以下である請求項 1〜3 の何れかに記載のポリブチレンテレフタレート。
[5] 環状 2量体の含有量が 1500ppm以下である請求項 1〜4の何れかに記載のポリブ チレンテレフタレー卜。
[6] 環状 3量体の含有量が lOOOppm以下である請求項 1〜5の何れかに記載のポリブ チレンテレフタレー卜。
[7] 末端メトキシカルボ-ル基濃度が 0. 5 μ eqZg以下である請求項 1〜6の何れかに 記載のポリブチレンテレフタレート。
[8] チタンの含有量がチタン原子として 80ppm以下である請求項 1〜7の何れかに記 載のポリブチレンテレフタレート。
[9] 周期表 2A族金属の含有量が周期表 2A族金属原子として 50ppm以下である請求 項 1〜8の何れかに記載のポリブチレンテレフタレート。
[10] 周期表 2A族金属がマグネシウムである請求項 1〜9の何れかに記載のポリブチレ ンテレフタレート。
[II] 末端カルボキシル基濃度が 1〜: LO /z eqZgである請求項 1〜: L0の何れかに記載の ポリブチレンテレフタレート。
[12] 固有粘度が 0. 8〜0. 9dLZgである請求項 1〜11の何れかに記載のポリブチレン テレフタレート。
[13] 不活性ガス雰囲気下に 245°Cで 40分間熱処理した際の加水分解反応を除く末端 カルボキシル基濃度の上昇が 0.:!〜 30 eqZgである請求項 1〜: 12の何れかに記 載のポリブチレンテレフタレート。
直接重合法を採用した連続エステル化工程を含む製造方法で得られる請求項 1〜 13の何れかに記載のポリブチレンテレフタレート。
PCT/JP2005/005905 2004-04-01 2005-03-29 ポリブチレンテレフタレート WO2005095487A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05727839A EP1731546A4 (en) 2004-04-01 2005-03-29 polybutylene terephthalate
US10/594,668 US20090264611A1 (en) 2004-04-01 2005-03-29 Polybutylene terephthalate
CN200580009848XA CN1938361B (zh) 2004-04-01 2005-03-29 聚对苯二甲酸丁二醇酯

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-108918 2004-04-01
JP2004108918 2004-04-01

Publications (1)

Publication Number Publication Date
WO2005095487A1 true WO2005095487A1 (ja) 2005-10-13

Family

ID=35063736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005905 WO2005095487A1 (ja) 2004-04-01 2005-03-29 ポリブチレンテレフタレート

Country Status (6)

Country Link
US (1) US20090264611A1 (ja)
EP (1) EP1731546A4 (ja)
CN (1) CN1938361B (ja)
MY (1) MY140595A (ja)
TW (1) TWI366578B (ja)
WO (1) WO2005095487A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5079226B2 (ja) * 2005-08-29 2012-11-21 三菱化学株式会社 ポリブチレンテレフタレート
JP5284606B2 (ja) * 2006-07-31 2013-09-11 三菱エンジニアリングプラスチックス株式会社 ポリエステル樹脂組成物、および光反射体
ATE542858T1 (de) * 2007-10-17 2012-02-15 Wintech Polymer Ltd Polybutylen-terephthalat-harz-zusammensetzung und dünner geformter artikel daraus
CN109535668A (zh) * 2012-03-30 2019-03-29 胜技高分子株式会社 聚对苯二甲酸丁二醇酯树脂组合物以及成型体
US9670313B2 (en) * 2012-07-30 2017-06-06 Sabic Global Technologies B.V. Hydrostability of polyester composition
WO2017110917A1 (ja) 2015-12-25 2017-06-29 東洋紡株式会社 ポリエステル樹脂組成物、これを含む光反射体用部品および光反射体、ならびにポリエステル樹脂組成物の製造方法
WO2017199989A1 (ja) * 2016-05-19 2017-11-23 三菱エンジニアリングプラスチックス株式会社 ポリブチレンテレフタレート系樹脂組成物及び成形品
CN110234706B (zh) 2017-02-02 2022-01-11 东洋纺株式会社 聚酯树脂组合物、含该聚酯树脂组合物的光反射体用部件和光反射体
JP6642701B2 (ja) 2017-02-02 2020-02-12 東洋紡株式会社 ポリエステル樹脂組成物、これを含む光反射体用部品および光反射体
US11795298B2 (en) 2018-03-26 2023-10-24 Toyobo Mc Corporation Polyester resin composition, light-reflector component containing same, and light reflector
CN113881023B (zh) * 2020-07-01 2023-06-06 中国石油化工股份有限公司 一种固相缩聚制备聚酯的方法和所得聚酯
CN112794997B (zh) * 2020-12-30 2022-09-23 浙江联盛化学股份有限公司 一种多孔复合催化剂、其制备方法及聚对苯二甲酸己二酸丁二醇酯的制备方法
CN113999379B (zh) 2021-12-31 2022-03-15 江苏新视界先进功能纤维创新中心有限公司 一种聚酯合成用钛系复合催化剂及其制备和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083428A (ja) * 1994-04-21 1996-01-09 Teijin Ltd 耐加水分解性芳香族ポリエステルおよび繊維
JPH10310638A (ja) * 1997-05-09 1998-11-24 Polyplastics Co 熱可塑性ポリエステルの製造方法
US20030069339A1 (en) * 2001-04-24 2003-04-10 Mitsubishi Engineering-Plastics Corporation Polybutylene terephthalate resin and compositions and molded articles comprising the resin

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4824930A (en) * 1987-12-18 1989-04-25 Celanese Fibers, Inc. Polymerization process for the preparation of poly(butylene terephthalate)
JP3024030B2 (ja) * 1992-12-07 2000-03-21 ポリプラスチックス株式会社 加水分解安定性の優れたポリブチレンテレフタレート重合体の製造方法
JPH0820638A (ja) * 1994-07-06 1996-01-23 Mitsubishi Chem Corp ポリエステルの製造方法
JP3353474B2 (ja) * 1994-07-27 2002-12-03 三菱化学株式会社 ポリブチレンテレフタレート及びポリブチレンテレフタレートの製造方法
JP3210250B2 (ja) * 1996-06-03 2001-09-17 帝人株式会社 ポリブチレンテレフタレート及びその製造方法
JP4783961B2 (ja) * 1999-10-15 2011-09-28 東レ株式会社 ポリエステルの製造法
US6359106B1 (en) * 2000-03-09 2002-03-19 Hitachi, Ltd. Production process and production apparatus for polybutylene terephthalate
DE10127146A1 (de) * 2001-06-02 2002-12-05 Zimmer Ag Verfahren zur Herstellung von Polybutylenterephthalat
JP2003026824A (ja) * 2001-07-16 2003-01-29 Unitika Ltd 金属板ラミネート用ポリエステルフィルム
CN100424113C (zh) * 2003-07-31 2008-10-08 三菱化学株式会社 聚对苯二甲酸丁二醇酯
US20070265382A1 (en) * 2004-03-09 2007-11-15 Mitsubishi Chemical Corporation Polybutylene Terephthalate Pellet, Compound Product and Molded Product Using the Same, and Processes for Producing the Compound Product and Molded Product

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083428A (ja) * 1994-04-21 1996-01-09 Teijin Ltd 耐加水分解性芳香族ポリエステルおよび繊維
JPH10310638A (ja) * 1997-05-09 1998-11-24 Polyplastics Co 熱可塑性ポリエステルの製造方法
US20030069339A1 (en) * 2001-04-24 2003-04-10 Mitsubishi Engineering-Plastics Corporation Polybutylene terephthalate resin and compositions and molded articles comprising the resin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1731546A4 *

Also Published As

Publication number Publication date
EP1731546A1 (en) 2006-12-13
CN1938361B (zh) 2010-11-10
TW200604242A (en) 2006-02-01
TWI366578B (en) 2012-06-21
CN1938361A (zh) 2007-03-28
EP1731546A4 (en) 2008-04-09
US20090264611A1 (en) 2009-10-22
MY140595A (en) 2009-12-31

Similar Documents

Publication Publication Date Title
JP5121125B2 (ja) ポリブチレンテレフタレート
WO2005095487A1 (ja) ポリブチレンテレフタレート
KR100869538B1 (ko) 폴리부틸렌 테레프탈레이트 펠릿, 그의 컴파운드 제품,그의 성형품 및 이들의 제조방법
JP5079226B2 (ja) ポリブチレンテレフタレート
WO2005108462A1 (ja) ポリブチレンテレフタレートの製造方法
JP3911251B2 (ja) ポリブチレンテレフタレート樹脂の製造方法
TWI424000B (zh) 聚對苯二甲酸丁二酯之製造方法
JP4725028B2 (ja) ポリブチレンテレフタレート
WO2005012391A1 (ja) ポリブチレンテレフタレート
JP5127118B2 (ja) ポリブチレンテレフタレート製フィルム及びシート並びにそれらの製造方法
JP4591187B2 (ja) ポリブチレンテレフタレートの製造方法
JP4626343B2 (ja) ポリブチレンテレフタレートペレット、そのコンパウンド製品および成形品ならびにそれらの製造方法
WO2005095488A1 (ja) ポリブチレンテレフタレート製フィルム及びシート並びにそれらの製造方法
JP5691832B2 (ja) ポリブチレンテレフタレートの製造方法
JP4725027B2 (ja) ポリブチレンテレフタレート
JP4725029B2 (ja) ポリブチレンテレフタレート
JP4635481B2 (ja) ポリブチレンテレフタレート
JP3904536B2 (ja) ポリブチレンテレフタレートの製造方法
JP7559786B2 (ja) ジブチレングリコール共重合ポリブチレンテレフタレート及びその製造方法、コンパウンド製品及びその製造方法、並びに成形品及びその製造方法
JP4544127B2 (ja) ポリブチレンテレフタレート及びその製造方法
JP2005105262A (ja) ポリブチレンテレフタレート及びその製造方法
JP4525411B2 (ja) ポリブチレンテレフタレートペレット
JP3911277B2 (ja) ポリエステルの製造方法
JP4544228B2 (ja) ポリブチレンテレフタレートの製造方法
JP7559785B2 (ja) ジブチレングリコール共重合ポリブチレンテレフタレートペレット及びその製造方法、並びに成形品及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005727839

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580009848.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005727839

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10594668

Country of ref document: US