WO2005093916A1 - レーザ素子駆動装置 - Google Patents

レーザ素子駆動装置 Download PDF

Info

Publication number
WO2005093916A1
WO2005093916A1 PCT/JP2005/005667 JP2005005667W WO2005093916A1 WO 2005093916 A1 WO2005093916 A1 WO 2005093916A1 JP 2005005667 W JP2005005667 W JP 2005005667W WO 2005093916 A1 WO2005093916 A1 WO 2005093916A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emission
laser element
laser
control switch
emission control
Prior art date
Application number
PCT/JP2005/005667
Other languages
English (en)
French (fr)
Inventor
Yusaku Yoshimatsu
Original Assignee
Rohm Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co., Ltd filed Critical Rohm Co., Ltd
Priority to US10/599,468 priority Critical patent/US20070201521A1/en
Publication of WO2005093916A1 publication Critical patent/WO2005093916A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06825Protecting the laser, e.g. during switch-on/off, detection of malfunctioning or degradation

Definitions

  • the present invention relates to a laser device driving device that controls light emission (lighting) of a laser device, and more particularly, to a laser device driving device that controls light emission of a laser device in consideration of safety for human eyes.
  • a laser device driving device that controls the emission of such a laser device includes a laser device and a photodetector that monitors the light intensity of the laser device and converts the light intensity into an electric signal, and feeds back the electric signal of the photodetector.
  • a device that controls a current supplied to a laser element is generally used (for example, Patent Document 1). Further, the laser device driving device intermittently supplies current to the laser device, and causes the laser device to emit light discontinuously in response thereto.
  • FIG. 2 shows a conventional laser device driving device.
  • the laser element driving device 101 includes a laser element LD whose light intensity changes according to a flowing current, a light detection element PD which receives light emitted from the laser element LD and generates a current according to the light intensity, and a light detection element.
  • a voltage conversion resistor 130 that converts the current of the PD into a voltage, and that voltage is input to the non-inverting input terminal, and the output voltage of the emission intensity setting voltage generator 124 for setting the emission intensity of the laser element LD is inverted.
  • a feedback amplifier 112 for controlling a light emission control switch 111, which will be described later, and an output voltage of the feedback amplifier 112, and a drain is connected to the laser element LD to control a current flowing through the laser element LD.
  • a light emission control switch 111 which is a PMOS transistor, and a collector connected to the power supply Vdd, and an emitter connected to the internal power supply VddlN, responding to an intermittent control signal SIG consisting of low and high levels. Opening and closing Te (nonconductive - become conductive) includes a power switch 125 is an NPN transistor.
  • the source of the light emission control switch 111 and the power supply terminal of the feedback amplifier 112 are connected to the internal power supply VddlN.
  • the operation of the laser element driving device 101 will be described.
  • the power switch 125 When the low level of the intermittent control signal SIG is input to the power switch 125, the power switch 125 is turned off and power is not supplied to the light emission control switch 111 and the like, so that no current flows to the laser element LD. , The laser element LD does not emit light.
  • the power switch 125 when the high level of the intermittent control signal SIG is input to the power switch 125, the power switch 125 is turned on, and the internal power supply VddIN becomes a predetermined power supply voltage.
  • the light emission control switch 111 is turned on, a current flows through the laser element LD, and the laser element LD emits light. Then, when the voltage of the voltage conversion resistor 130 and the output voltage of the light emission intensity setting voltage generator 124 coincide with each other by the feedback loop, a predetermined current stably flows through the laser element LD. This operation is repeated according to the intermittent control signal SIG.
  • Patent Document 1 JP-A-6-326396
  • the laser element LD used for a digital camera, digital video, or the like emits light discontinuously (intermittently) by the laser element driving device 101. This is to prevent adverse effects on the eyes when the subject is a human.
  • the inventor of the present application pays attention to the possibility that the laser element may be in a continuous lighting state when a failure occurs in the intermittent control signal SIG or the like. He said that it was desirable to take measures to prevent the situation. Also, as described above, immediately after the power switch 125 is turned on, the output voltage of the feedback amplifier 112 is at the ground level, so that the light emission control switch 111 is fully turned on so that the maximum current flows. Focusing on whether luminous intensity may be excessively high due to inrush current flowing through the element and light emission may be possible, it is desirable to take measures to prevent light emission with high luminous intensity even in such a case. .
  • the present invention has been made in view of the above-described circumstances, and has as its object the purpose of long-term light emission (continuous lighting) of a laser element that has an adverse effect on human eyes. Prevent flash Another object of the present invention is to provide a laser device driving device that can enhance safety for human eyes.
  • a laser device driving device includes a laser device whose light intensity changes according to a flowing current, and an electric signal which monitors the light intensity of the laser device.
  • a light-detecting element a light-emitting control switch that controls the current flowing through the laser element, a feedback amplifier that feeds back the electric signal of the light-detecting element to control the light-emitting control switch, and a laser element that starts emitting light from the laser element. If the current continues to flow for a predetermined period of time, it is determined that an abnormality has occurred and the emission control switch is turned off, or the emission control switch is controlled so that the current flowing to the laser element gradually increases at the start of the Z and laser element emission.
  • a light emission control switch control circuit A light emission control switch control circuit.
  • the light emission control switch control circuit desirably includes a light emission stop switch to turn off the light emission control switch when it is determined that an abnormality has occurred when a current flows through the laser element for a predetermined time after the light emission start force of the laser element.
  • the light emission control switch control circuit gradually increases the current flowing through the laser element when the laser element starts emitting light!
  • a capacitor and a light emission stop switch are preferably included.
  • the light emission control switch control circuit turns on the light emission control switch and forcibly turns off the light emission control switch when the laser element starts emitting light, charges the capacitor, turns off the light emission stop switch after a predetermined time has elapsed, and turns off the light emission control switch. By discharging the capacitor, the emission control switch is controlled to gradually increase the current flowing through the laser element.
  • the laser device driving device includes an oscillator that outputs a reference clock for counting a predetermined time until it is determined that the laser device has an abnormal light emission starting force. When it is determined that this oscillator is abnormal, the oscillation operation is stopped.
  • the laser device driving device turns off the light emission control switch and activates the laser device LD. Since the light emission is stopped, humans with abnormal continuous lighting Can be prevented from adversely affecting the eyes of the human being, thereby improving the safety for the human eyes. Also, since the current flowing through the laser element is gradually increased at the start of the laser element emission, the emission intensity is high, and the adverse effect on the human eye due to light emission is prevented, and the safety to the human eye is ensured. In addition, the stress on the laser element can be suppressed and the life can be prolonged.
  • FIG. 1 is a circuit diagram of a laser device driving device according to a preferred embodiment of the present invention.
  • FIG. 2 is a circuit diagram of a conventional laser device driving device.
  • FIG. 1 is a circuit diagram of a laser device driving device according to a preferred embodiment of the present invention.
  • the laser device driving device 1 has a laser device LD whose light intensity changes according to a flowing current and a light beam received by the laser device LD and responds to the light intensity similarly to the laser device driving device 101 in the background art.
  • a photodetector PD that generates a current (that is, monitors the light intensity of the laser element and converts it into an electric signal), a voltage conversion resistor 30 that converts the current of the photodetector PD into a voltage, and non-inverts the voltage Input to the input terminal (that is, feed back the electric signal of the photodetector), and input the output voltage of the emission intensity setting voltage generator 24 for setting the emission intensity of the laser device LD to the inverting input terminal.
  • the output voltage of the feedback amplifier 12 and the feedback amplifier 12 that control the light emission control switch 11 is input to the gate, and the drain is connected to the laser element LD to control the current flowing to the laser element LD.
  • a light emission control switch 11 which is a PMOS transistor, a collector power is connected to the power supply Vdd, and an emitter is connected to the internal power supply VddIN.
  • a power switch 25, which is an NPN transistor that opens and closes in response to (non-conduction * conduction).
  • the source of the light emission control switch 11 and the power supply terminal of the feedback amplifier 12 are connected to the internal power supply VddIN.
  • the laser device driving device 1 further receives an oscillator (OSC) 17 that outputs a reference clock (for example, 40 KHz), an internal power supply VddIN, and a reference clock to prevent abnormal continuous lighting.
  • OSC oscillator
  • Circuit a soft-start circuit to input an intermittent control signal SIG and a reference clock to prevent an excessively large current from flowing through the laser diode, and a signal and software from the fail-safe circuit.
  • the fail-safe circuit 13 includes an internal power supply detection circuit 18, a counter 19, and a flip-flop circuit 20.
  • Internal power supply detection circuit 18 includes a capacitor 31 and a resistor 33 forming a differentiating circuit, and a diode 32 for clamping an output voltage thereof. Con One end of the capacitor 31 inputs the internal power supply VddlN as a signal. The other end of the capacitor 31 is connected to one end of the resistor 33 and the power source of the diode 32. The other end of the resistor 31 and the anode of the diode 32 are grounded.
  • the capacitor 31 and the resistor 33 forming the differentiating circuit detect the rise of the internal power supply VddlN, generate a one-shot pulse synchronized with the rise, and output the one-shot pulse to the reset input terminal R of the counter 19 and the flip-flop circuit 20.
  • the diode 32 clamps the negative output voltage generated in synchronization with the fall of the internal power supply VddlN when it falls below the ground potential by the Schottky voltage (VF). This is to avoid pressure.
  • the counter 19 of the fail-safe circuit 13 inputs the one-shot pulse of the internal power supply detection circuit 18 as a count start signal, and counts the number of reference clocks of the oscillator 17. Then, when the count reaches a predetermined count (for example, about 4000 counts), it outputs to the set input terminal S of the flip-flop circuit 20 described below.
  • the flip-flop circuit 20 has a reset input terminal R and a set input terminal S as input terminals, and has a non-inverted output terminal Q and an inverted output terminal QN as output terminals. When a pulse is input to the reset input terminal R, a low level is output from the non-inverted output terminal Q and a high level is output from the inverted output terminal QN.
  • a pulse When a pulse is input to the set input terminal S, a high level is output from the non-inverting output terminal Q and a low level is output from the inverting output terminal QN.
  • the signal at the non-inverting output terminal Q is input to one input terminal of a NOR circuit 28 of the light emission control switch control circuit 16 described later.
  • the signal at the inverted output terminal QN is input to the oscillator 17, and the oscillator 17 oscillates when the signal is at a high level, and stops oscillation when the signal is at a low level.
  • the soft start circuit 14 includes an intermittent control signal detection circuit 21, a counter 22, and a flip-flop circuit 23.
  • the intermittent control signal detection circuit 21 has the same circuit configuration as the internal power supply detection circuit 18. That is, the intermittent control signal detection circuit 21 includes a capacitor 34 and a resistor 36 forming a differentiating circuit, and a diode 35 for clamping an output voltage thereof. Then, the capacitor 34 and the resistor 35 forming the differentiating circuit detect the rising of the intermittent control signal SIG, generate a one-shot pulse synchronized with the rising edge, and output it to the reset input terminal R of the counter 22 and the flip-flop circuit 23.
  • the counter 22 of the soft start circuit 14 inputs the one-shot pulse of the intermittent control signal detection circuit 21 as a count start signal, and counts the number of reference clocks of the oscillator 17. Then, when counting up to a predetermined count number (for example, about 4 counts), it outputs to the set input terminal S of the flip-flop circuit 23 described below.
  • the flip-flop circuit 23 is a circuit that performs the same function as the flip-flop circuit 20 of the fail-safe circuit 13 described above.
  • the signal of the inverting output terminal QN is input to the other input terminal of the NOR circuit 28 of the light emission control switch control circuit 16, and the signal of the non-inverting output terminal Q is not input even if it is shifted.
  • the light emission control switch control circuit 16 includes a NOR circuit 28 to which the signal of the flip-flop circuit 20 of the fail-safe circuit 13 and the signal of the flip-flop circuit 23 of the soft start circuit 14 are input, and a gate connected to the output thereof.
  • a light emission stop switch 29, which is a PMOS transistor having a drain connected to the internal power supply VddIN and a drain connected to the output of the feedback amplifier 12, a soft start capacitor 38 having one end connected to the drain and the other end grounded. , including.
  • the current drive capability of the light emission stop switch 29 is sufficiently higher than the current drive capability of the feedback amplifier 12 on the ground side (that is, on the sink current side).
  • the operation of the laser device driving device 1 will be described.
  • the power switch 25 becomes non-conductive and power is not supplied to the light emission control switch 11 and the like, and therefore, current flows to the laser element LD.
  • the laser element LD does not emit light.
  • the intermittent control signal is supplied to the power switch 25.
  • the power switch 25 becomes conductive, and the internal power supply VddIN becomes the predetermined power supply voltage.
  • the rising edge of the internal power supply VddIN is detected by the internal power supply detection circuit 18 of the feinoresafe circuit 13, and the detection signal causes the flip-flop circuit 20 to be reset and the counter 19 to start counting.
  • the rising edge of the intermittent control signal SIG is detected by the intermittent control signal detection circuit 21, and the detection signal resets the flip-flop circuit 23 and starts counting by the counter 22.
  • the flip-flop circuit 23 of the soft start circuit 14 is reset, a high level is input to the NOR circuit 28 of the light emission control switch control circuit 16 from the inverted output QN of the flip-flop circuit 23.
  • the NOR circuit 28 outputs a low level to the light emission stop switch 29, turns on the light emission stop switch 29, and forcibly sets the gate of the light emission control switch 11 to the power supply voltage level. At this time, the light emission control switch 11 is turned off (disconnected), so that no current flows through the laser element LD.
  • the soft start capacitor 38 is charged to the power supply voltage level. Since the laser element LD does not emit light and no current is generated in the photodetector PD, the input voltage of the non-inverting input terminal of the feedback amplifier 12 is at the ground level, and the feedback amplifier 12 outputs the ground level. Therefore, the sink current of the feedback amplifier 12 (for example, about 100 A) is the power flowing through the light emission stop switch 29 as described above. As described above, the current drive capability of the light emission stop switch 29 is sufficiently high, so the gate voltage of the light emission control switch 11 is Maintained at the level.
  • the counter 22 that has started counting counts (for example, about 0.1 msec) shorter than one cycle of the intermittent control signal SIG (for example, 20 ms ec) (for example, about 4 msec).
  • a high level is input to the set input S of the loop circuit 23.
  • the low level is input from the inverted output QN of the flip-flop circuit 23 to the NOR circuit 28 of the light emission control switch control circuit 16.
  • the other input terminal of the NOR circuit 28 receives a low level from the non-inverted output Q of the reset flip-flop circuit 20 of the fail-safe circuit 13.
  • the NOR circuit 28 outputs a high level and turns off the light emission stop switch 29.
  • the internal power supply VddIN has risen sufficiently during a predetermined time (for example, about 0.1 msec) determined by the counter 22, and the soft start capacitor 38 has been sufficiently charged. Then, the charge charged in the soft-start capacitor 38 (for example, 0.01 ⁇ F) is gradually discharged by the sink current (for example, about 100 mm) of the feedback amplifier 12, and the gate of the light emission control switch 11 is discharged. The voltage drops gradually.
  • the light emission control switch control circuit 16 controls the light emission control switch 11 so as to gradually increase the current flowing through the laser element LD at the start of light emission of the laser element LD.
  • the laser device driving device 1 prevents the rush current from flowing through the laser device LD by gradually increasing the current flowing through the laser device LD when the laser device LD starts emitting light.
  • the life of the laser element can be extended.
  • the feedback amplifier 12 outputs so as to increase the gate voltage of the light emission control switch 11. That is, when the voltage of the voltage conversion resistor 30 matches the output voltage of the light emission intensity setting voltage generator 24 by the feedback loop, a predetermined current stably flows through the laser element LD.
  • the laser element LD emits light discontinuously (intermittently) safely so as to prevent adverse effects on human eyes.
  • the counter 19 of the fail-safe circuit 13 sets It reaches the count number (for example, about 4000 counts). Then, a high level is input to the set input S of the flip-flop circuit 20, and a high level is input to the NOR circuit 28 of the light emission control switch control circuit 16 from the non-inverted output Q. Then, a low level is input to the gate of the NOR circuit 28 light emission stop switch 29, and the light emission stop switch 29 is turned on. As a result, the light emission control switch 11 is turned off, no current flows through the laser element LD, and light emission stops.
  • a current flows for a predetermined time (for example, about 0.1 sec) in the laser element LD for a predetermined time (eg, about 0.1 sec)
  • a predetermined time for example, about 0.1 sec
  • the light emission control switch is determined.
  • the switch 11 is turned off, and the laser element LD stops emitting light.
  • the laser element driving device 1 turns off the light emission control switch 11 and stops the light emission of the laser element LD. By doing so, it is possible to safely drive the laser element LD so as to prevent adverse effects on human eyes even in abnormal situations.
  • the present invention is not limited to the embodiments described above, and various design changes can be made within the scope of the matters described in the claims.
  • the one having both the fail-safe circuit 13 and the soft-start circuit 14 has been described.However, if the intermittent control signal SIG etc. If another measure is taken to prevent inrush current to the laser element LD, the latter may be omitted.
  • the MOS transistor used in the laser device driving device 1 it is possible to replace the MOS transistor used in the laser device driving device 1 with a bipolar transistor, conversely, replace the bipolar transistor with a MOS transistor, increase or decrease the number of inverters or NOR circuits, etc. Of course.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

 レーザ素子を安全に駆動するためのレーザ素子駆動装置を提供する。このレーザ素子駆動装置1は、流れる電流に応じて光強度が変わるレーザ素子LDと、レーザ素子LDの光強度をモニタして電気信号に変換する光検出素子PDと、レーザ素子LDに流れる電流を制御する発光制御スイッチ11と、光検出素子PDの電気信号をフィードバックして発光制御スイッチ11を制御するフィードバック増幅器12と、レーザ素子LDの発光開始時にレーザ素子LDに流れる電流を徐々に増加させるよう発光制御スイッチ11を制御する又は/及びレーザ素子LDの発光開始からレーザ素子LDに所定時間続いて電流が流れると異常と判断して発光制御スイッチ11をオフする発光制御スイッチ制御回路16と、を含む。

Description

明 細 書
レーザ素子駆動装置
技術分野
[0001] 本発明は、レーザ素子の発光 (点灯)制御を行うレーザ素子駆動装置、詳しくは、 人間の目に対する安全性を考慮したレーザ素子の発光制御を行うレーザ素子駆動 装置に関する。
背景技術
[0002] デジタルカメラやデジタルビデオ等は、夜間の被写体に焦点を合わせるためのバッ クライトとしてレーザ素子を用いている。このようなレーザ素子を発光制御するレーザ 素子駆動装置は、レーザ素子と、その光強度をモニタして電気信号に変換する光検 出素子と、を含み、光検出素子の電気信号をフィードバックしてレーザ素子への供給 電流を制御するものが一般的である(例えば特許文献 1)。また、レーザ素子駆動装 置は、レーザ素子への電流供給を間欠的に行い、それに応じてレーザ素子を非連 続に発光させる。
[0003] 図 2は、従来のレーザ素子駆動装置である。このレーザ素子駆動装置 101は、流れ る電流に応じて光強度が変わるレーザ素子 LDと、レーザ素子 LDが発する光を受け て光強度に応じた電流を生成する光検出素子 PDと、光検出素子 PDの電流を電圧 に変換する電圧変換抵抗 130と、その電圧を非反転入力端子に入力し、レーザ素子 LDの発光強度を設定するための発光強度設定電圧発生器 124の出力電圧を反転 入力端子に入力して後述の発光制御スィッチ 111を制御するフィードバック増幅器 1 12と、フィードバック増幅器 112の出力電圧をゲートに入力し、レーザ素子 LDにドレ インが接続され、レーザ素子 LDに流れる電流を制御する PMOSトランジスタである 発光制御スィッチ 111と、電源 Vddにコレクタ力 内部電源 VddlNにェミッタが接続 され、ローレベルとハイレベルよりなる間欠制御信号 SIGに応じて開閉する(非導通- 導通となる) NPNトランジスタである電源スィッチ 125と、を含む。内部電源 VddlNに は、発光制御スィッチ 111のソース及びフィードバック増幅器 112の電源端が接続さ れる。 [0004] 次に、レーザ素子駆動装置 101の動作説明を行う。電源スィッチ 125に間欠制御 信号 SIGのローレベルが入力されている場合、電源スィッチ 125は非導通となって発 光制御スィッチ 111等には電源供給されず、従ってレーザ素子 LDには電流は流れ ず、レーザ素子 LDは発光しない。一方、電源スィッチ 125に間欠制御信号 SIGのハ ィレベルが入力されると、電源スィッチ 125が導通して内部電源 VddINが所定の電 源電圧になる。電源スィッチ 125が導通した直後は、光検出素子 PDに電流は生成さ れな 、のでフィードバック増幅器 112の非反転入力端子の入力電圧は接地レベルで あり、フィードバック増幅器 112の出力電圧も接地レベルである。従って、発光制御ス イッチ 111はオンし、レーザ素子 LDに電流が流れてレーザ素子 LDは発光する。そ して、フィードバックループにより、電圧変換抵抗 130の電圧と発光強度設定電圧発 生器 124の出力電圧が一致するところで、レーザ素子 LDには安定して所定の電流 が流れる。この動作が間欠制御信号 SIGに応じて繰り返される。
[0005] 特許文献 1:特開平 6— 326396
発明の開示
発明が解決しょうとする課題
[0006] このように、デジタルカメラやデジタルビデオ等使用されるレーザ素子 LDは、レー ザ素子駆動装置 101により非連続に(間欠的に)発光する。これは、被写体が人間で ある場合にその目への悪影響を防ぐためである。
[0007] ここで、本願発明者は、間欠制御信号 SIG等に不具合が生じた場合にはレーザ素 子が連続点灯状態となり得るのではないかと着目し、このような場合に対しても連続 点灯状態にならない対策を講じるのが望ましいとした。また、前述のように、電源スィ ツチ 125が導通した直後は、フィードバック増幅器 112の出力電圧は接地レベルであ るため、発光制御スィッチ 111は最大電流を流すようにフルオンし、その結果、レー ザ素子に突入電流が流れて発光強度が過度に大き 、発光があり得るのではな 、か と着目し、このような場合に対しても発光強度が大きい発光にならない対策を講じる のが望ましいとした。
[0008] 本発明は係る事由に鑑みてなされたものであり、その目的は、人間の目に悪影響を 及ぼすレーザ素子の長時間発光 (連続点灯)、ある!/、は発光強度が大き!、発光を防 ぎ、人間の目に対する安全性が高められるレーザ素子駆動装置を提供することにあ る。
課題を解決するための手段
[0009] 上記の課題を解決するために、本発明の望ましい実施形態に係るレーザ素子駆動 装置は、流れる電流に応じて光強度が変わるレーザ素子と、レーザ素子の光強度を モニタして電気信号に変換する光検出素子と、レーザ素子に流れる電流を制御する 発光制御スィッチと、光検出素子の電気信号をフィードバックして発光制御スィッチ を制御するフィードバック増幅器と、レーザ素子の発光開始からレーザ素子に所定時 間続いて電流が流れると異常と判断して発光制御スィッチをオフする又は Z及びレ 一ザ素子の発光開始時にレーザ素子に流れる電流を徐々に増カロさせるよう発光制 御スィッチを制御する発光制御スィッチ制御回路と、を含む。
[0010] 発光制御スィッチ制御回路は、レーザ素子の発光開始力 レーザ素子に所定時間 続いて電流が流れると異常と判断して発光制御スィッチをオフするために、望ましく は、発光停止スィッチを含む。
[0011] また、発光制御スィッチ制御回路は、レーザ素子の発光開始時にレーザ素子に流 れる電流を徐々に増力!]させるよう発光制御スィッチを制御するために、望ましくは、コ ンデンサと発光停止スィッチとを含む。発光制御スィッチ制御回路は、レーザ素子の 発光開始時に、発光停止スィッチをオンして発光制御スィッチを強制的にオフすると 共に前記コンデンサを充電し、所定時間経過後発光停止スィッチをオフして前記コ ンデンサを放電することにより発光制御スィッチを制御してレーザ素子に流れる電流 を徐々に増カロさせる。
[0012] このレーザ素子駆動装置は、更に望ましくは、レーザ素子の発光開始力 異常と判 断されるまでの所定時間をカウントするための基準クロックを出力する発振器を含む 。この発振器は異常と判断されると発振動作が停止させられる。
発明の効果
[0013] 本発明の望ましい実施形態によれば、レーザ素子駆動装置は、間欠制御信号等の 不具合によりレーザ素子が所定時間以上発光し続けた場合、発光制御スィッチをォ フしてレーザ素子 LDの発光を停止するようにしたので、異常な連続点灯による人間 の目への悪影響を防いで人間の目に対する安全性を高めることができる。また、レー ザ素子の発光開始時にレーザ素子に流れる電流を徐々に増力 tlさせるようにしたので 、発光強度が大き!、発光による人間の目への悪影響を防 、で人間の目に対する安 全性を高めることができ、また、レーザ素子へのストレスを抑制して長寿命化を図るこ とがでさる。
図面の簡単な説明
[図 1]本発明の望ましい実施形態に係るレーザ素子駆動装置の回路図である。
[図 2]従来におけるレーザ素子駆動装置の回路図である。
符号の説明
1 レーザ素子駆動装置
11 発光制御スィッチ
12 フィードバック増幅器
13 フェイノレセーフ回路
14 ソフトスタート回路
16 発光制御スィッチ制御回路
17 発振器
18 内部電源検出回路
21 間欠制御信号検出回路
22 カウンタ
23 フリップフロップ回路
24 発光強度設定電圧発生器
25 電源スィッチ
28 NOR回路
29 発光停止スィッチ
30 電圧変換抵抗
38 ソフトスタート用コンデンサ
LD レーザ素子
PD 光検出素子 SIG 間欠制御信号
発明を実施するための最良の形態
[0016] 以下、本発明の最良の実施形態を図面を参照しながら説明する。図 1は、本発明 の望ましい実施形態に係るレーザ素子駆動装置の回路図である。このレーザ素子駆 動装置 1は、背景技術におけるレーザ素子駆動装置 101と同様に、流れる電流に応 じて光強度が変わるレーザ素子 LDと、レーザ素子 LDが発する光を受け光強度に応 じた電流を生成する(すなわちレーザ素子の光強度をモニタして電気信号に変換す る)光検出素子 PDと、光検出素子 PDの電流を電圧に変換する電圧変換抵抗 30と、 その電圧を非反転入力端子に入力し (すなわち光検出素子の電気信号をフィードバ ックし)、レーザ素子 LDの発光強度を設定するための発光強度設定電圧発生器 24 の出力電圧を反転入力端子に入力して後述の発光制御スィッチ 11を制御するフィ ードバック増幅器 12と、フィードバック増幅器 12の出力電圧をゲートに入力し、レー ザ素子 LDにドレインが接続され、レーザ素子 LDに流れる電流を制御する PMOSト ランジスタである発光制御スィッチ 11と、電源 Vddにコレクタ力 内部電源 VddINに ェミッタが接続され、ローレベルとハイレベルよりなる間欠制御信号 SIG (例えば、 50 Hz程度でデューティ 50%の矩形波)に応じて開閉する(非導通 *導通となる) NPNト ランジスタである電源スィッチ 25と、を含む。内部電源 VddINには、発光制御スイツ チ 11のソース及びフィードバック増幅器 12の電源端が接続される。
[0017] このレーザ素子駆動装置 1は、更に、基準クロック (例えば 40KHz)を出力する発 振器 (OSC) 17と、内部電源 VddINと基準クロックとを入力し、異常な連続点灯を防 止するためのフェイルセーフ回路 13と、間欠制御信号 SIGと基準クロックとを入力し、 レーザ素子 LDに過度の大電流が流れるのを防ぐためのソフトスタート回路 14と、フエ ィルセーフ回路 13からの信号とソフトスタート回路 14力もの信号を受け、それらの信 号に基づき発光制御スィッチ 11を制御する発光制御スィッチ制御回路 16と、を含む
[0018] フェイルセーフ回路 13は、内部電源検出回路 18と、カウンタ(counter) 19と、フリ ップフロップ回路 20と、を含む。内部電源検出回路 18は、微分回路を形成するコン デンサ 31及び抵抗 33と、その出力電圧をクランプするダイオード 32と、を含む。コン デンサ 31の一端は内部電源 VddlNを信号として入力する。コンデンサ 31の他端は 抵抗 33の一端とダイオード 32の力ソードに接続されている。抵抗 31の他端とダイォ ード 32のアノードは接地されている。そして、微分回路を形成するコンデンサ 31及び 抵抗 33は、内部電源 VddlNの立ち上がりを検出し、それに同期したワンショットパル スを生成してカウンタ 19とフリップフロップ回路 20のリセット入力端子 Rに出力する。 ダイオード 32は、内部電源 VddlNの立ち下がりに同期して生じる負方向の出力電圧 を接地電位よりショットキーノ リア電圧 (VF)分下がったところでクランプするようにし て、出力電圧を受ける回路に過度の負荷力かからないようにするためのものである。
[0019] フェイルセーフ回路 13のカウンタ 19は、内部電源検出回路 18のワンショットパルス をカウントスタート信号として入力し、発振器 17の基準クロックの数をカウントする。そ して、所定のカウント数 (例えば 4000カウント程度)になると以下に説明するフリップ フロップ回路 20のセット入力端子 Sに出力する。フリップフロップ回路 20は、入力端 子としてリセット入力端子 Rとセット入力端子 Sとを有し、出力端子として非反転出力 端子 Qと反転出力端子 QNを有する。リセット入力端子 Rにパルスが入力されると非 反転出力端子 Qからローレベルを、反転出力端子 QNからハイレベルを出力する。セ ット入力端子 Sにパルスが入力されると非反転出力端子 Qからハイレベルを、反転出 力端子 QN力 ローレベルを出力する。非反転出力端子 Qの信号は、発光制御スィ ツチ制御回路 16の後述する NOR回路 28の一の入力端子に入力される。反転出力 端子 QNの信号は発振器 17に入力され、発振器 17はその信号がハイレベルならば 発振を行い、ローレベルならば発振を止める。
[0020] 次に、ソフトスタート回路 14の回路構成を説明する。ソフトスタート回路 14は、間欠 制御信号検出回路 21と、カウンタ (counter) 22と、フリップフロップ回路 23と、を含 む。間欠制御信号検出回路 21は、内部電源検出回路 18と同様の回路構成になつ ている。すなわち、間欠制御信号検出回路 21は、微分回路を形成するコンデンサ 3 4及び抵抗 36と、その出力電圧をクランプするダイオード 35と、を含む。そして、微分 回路を形成するコンデンサ 34及び抵抗 35は、間欠制御信号 SIGの立ち上がりを検 出し、それに同期したワンショットパルスを生成してカウンタ 22とフリップフロップ回路 23のリセット入力端子 Rに出力する。 [0021] ソフトスタート回路 14のカウンタ 22は、間欠制御信号検出回路 21のワンショットパ ルスをカウントスタート信号として入力し、発振器 17の基準クロックの数をカウントする 。そして、所定のカウント数 (例えば 4カウント程度)までカウントすると以下に説明する フリップフロップ回路 23のセット入力端子 Sに出力する。フリップフロップ回路 23は、 前述のフェイルセーフ回路 13のフリップフロップ回路 20と同様の機能を行う回路であ る。反転出力端子 QNの信号は発光制御スィッチ制御回路 16の NOR回路 28の他 の入力端子に入力され、非反転出力端子 Qの信号は 、ずれにも入力されな 、。
[0022] 次に、発光制御スィッチ制御回路 16の回路構成を説明する。発光制御スィッチ制 御回路 16は、前述のように、フェイルセーフ回路 13のフリップフロップ回路 20の信号 とソフトスタート回路 14のフリップフロップ回路 23の信号が入力される NOR回路 28と 、その出力にゲートが、内部電源 VddINにソース力 フィードバック増幅器 12の出力 にドレインが接続される PMOSトランジスタである発光停止スィッチ 29と、そのドレイ ンに一端が接続され、他端が接地されたソフトスタート用コンデンサ 38と、を含む。こ こで、発光停止スィッチ 29の電流駆動能力は、フィードバック増幅器 12の接地側(す なわちシンク電流側)の電流駆動能力よりも十分に高いものとしている。この構成によ り、 NOR回路 28に入力する 2つの信号の何れかがハイレベル信号であれば、発光 停止スィッチ 29がオンし、フィードバック増幅器 12の出力に係わらず、発光制御スィ ツチ 11のゲートを強制的に電源電圧レベルにする。その結果、レーザ素子 LDに電 流は流れなくなると共にソフトスタート用コンデンサ 38が電源電圧レベルに充電され る。一方、 NOR回路 28に入力する 2つの信号の何れもローレベルであれば発光停 止スィッチ 29はオフするので、発光制御スィッチ 11のゲート電圧はフィードバック増 幅器 12とソフトスタート用コンデンサ 38の状態によって決まることになる。この詳細は 後述する。
[0023] 次に、レーザ素子駆動装置 1の動作について説明する。先ず、電源スィッチ 25に 間欠制御信号 SIGのローレベルが入力されている場合、電源スィッチ 25は非導通と なって発光制御スィッチ 11等には電源供給されず、従ってレーザ素子 LDには電流 は流れず、レーザ素子 LDは発光しない。
[0024] 次いで、レーザ素子 LDの発光開始時、すなわち電源スィッチ 25に間欠制御信号 SIGのハイレベルが入力されると、電源スィッチ 25が導通して内部電源 VddINが所 定の電源電圧になる。そして、内部電源 VddINの立ち上がりエッジは、フェイノレセー フ回路 13の内部電源検出回路 18により検出され、その検出信号によりフリップフロッ プ回路 20がリセットされると共にカウンタ 19がカウントを開始する。
[0025] 一方、ソフトスタート回路 14においては、間欠制御信号 SIGの立ち上がりエッジは 間欠制御信号検出回路 21により検出され、その検出信号によりフリップフロップ回路 23がリセットされると共にカウンタ 22がカウントを開始する。ソフトスタート回路 14のフ リップフロップ回路 23がリセットされると、フリップフロップ回路 23の反転出力 QNから ハイレベルが発光制御スィッチ制御回路 16の NOR回路 28に入力される。 NOR回 路 28は、発光停止スィッチ 29にローレベルを出力し、発光停止スィッチ 29をオンし て発光制御スィッチ 11のゲートを強制的に電源電圧レベルにする。このとき、発光制 御スィッチ 11はオフ(非導通)となるので、レーザ素子 LDには電流は流れない。また 、ソフトスタート用コンデンサ 38は電源電圧レベルに充電される。なお、レーザ素子 L Dは発光せず、光検出素子 PDに電流は生成されないため、フィードバック増幅器 12 の非反転入力端子の入力電圧は接地レベルであり、フィードバック増幅器 12は接地 レベルを出力する。従って、フィードバック増幅器 12のシンク電流(例えば 100 A 程度)はそのまま発光停止スィッチ 29を流れる力 前述のように発光停止スィッチ 29 の電流駆動能力は十分に高いので発光制御スィッチ 11のゲート電圧は電源電圧レ ベルに維持される。
[0026] 次に、カウントを開始したカウンタ 22は、間欠制御信号 SIGの 1周期(例えば 20ms ec)より短い所定時間(例えば 0. 1msec程度)までカウント (例えば 4カウント程度)す ると、フリップフロップ回路 23のセット入力 Sにハイレベルを入力する。フリップフロッ プ回路 23の反転出力 QNからローレベルが発光制御スィッチ制御回路 16の NOR回 路 28に入力される。また、 NOR回路 28の他の入力端子にはフェイルセーフ回路 13 のリセットされたフリップフロップ回路 20の非反転出力 Qからローレベルが入力されて いる。 NOR回路 28はハイレベルを出力し、発光停止スィッチ 29をオフさせる。なお、 カウンタ 22で決まる所定時間(例えば 0. 1msec程度)の間に内部電源 VddINが十 分に立ち上がり、またソフトスタート用コンデンサ 38は十分に充電されている。 [0027] そして、ソフトスタート用コンデンサ 38 (例えば 0. 01 μ F)に充電された電荷はフィ ードバック増幅器 12のシンク電流(例えば 100 Α程度)によって徐々に放電し、発 光制御スィッチ 11のゲート電圧は徐々に降下する。こうして、発光制御スィッチ制御 回路 16は、レーザ素子 LDの発光開始時にレーザ素子 LDに流れる電流を徐々に増 加させるよう発光制御スィッチ 11を制御する。
[0028] このように、レーザ素子駆動装置 1は、レーザ素子 LDの発光開始時にレーザ素子 LDに流れる電流を徐々に増加させるようにしてレーザ素子 LDに突入電流が流れな いようにすることにより、発光強度の大きい発光による人間の目への悪影響を防ぐこと ができる。また、突入電流によるレーザ素子へのストレスを抑制することにより、レーザ 素子の長寿命化を図ることができる。
[0029] 次に、発光制御スィッチ 11のゲート電圧は徐々に降下するに従って、レーザ素子 L Dの発光強度は大きくなる。そして、光検出素子 PDが生成する電流は多くなり、電圧 変換抵抗 30の電圧は徐々に高くなる。もし、この電圧が発光強度設定電圧発生器 2 4の出力電圧以上になると、フィードバック増幅器 12は発光制御スィッチ 11のゲート 電圧を上昇させるように出力する。すなわち、フィードバックループにより、電圧変換 抵抗 30の電圧と発光強度設定電圧発生器 24の出力電圧が一致するところで、レー ザ素子 LDには安定して所定の電流が流れる。
[0030] 以上説明した動作が間欠制御信号 SIGに応じて繰り返される。そして、人間の目へ の悪影響を防ぐよう安全にレーザ素子 LDを非連続に(間欠的に)発光させる。
[0031] ここで、間欠制御信号 SIG等に不具合が生じ、内部電源 VddINが所定時間(例え ば 0. lsec程度)経過しても立ち下がらない場合、フェイルセーフ回路 13のカウンタ 1 9が所定のカウント数 (例えば 4000カウント程度)に達する。そうすると、フリップフロッ プ回路 20のセット入力 Sにハイレベルが入力され、非反転出力 Qからハイレベルが 発光制御スィッチ制御回路 16の NOR回路 28に入力される。そして、 NOR回路 28 力 発光停止スィッチ 29のゲートにローレベルが入力され、発光停止スィッチ 29は オンする。これにより発光制御スィッチ 11はオフし、レーザ素子 LDには電流は流れ ず、発光は停止する。すなわち、レーザ素子 LDの発光開始力 レーザ素子 LDに所 定時間(例えば 0. lsec程度)続 、て電流が流れると異常と判断して発光制御スイツ チ 11をオフし、レーザ素子 LDの発光を停止する。
[0032] このように、レーザ素子駆動装置 1は、間欠制御信号 SIG等の不具合によりレーザ 素子 LDが所定時間以上発光し続けた場合、発光制御スィッチ 11をオフしてレーザ 素子 LDの発光を停止することで、異常時にも人間の目への悪影響を防ぐよう安全に レーザ素子 LDを駆動することができる。
[0033] また、この異常時には、フリップフロップ回路 20の反転出力 QNからローレベルが発 振器 17に入力され、その発振動作を停止する。レーザ素子 LDを発光させない時は
、発振器を動作させる必要がないためである。こうすることで、無駄な電力消費の削 減を図ることができる。
[0034] 本発明は、上述した実施形態に限られることなぐ請求の範囲に記載した事項の範 囲内でのさまざまな設計変更が可能である。例えば、上記実施形態においては、フエ ィルセーフ回路 13とソフトスタート回路 14の両方を有するものを説明したが、間欠制 御信号 SIG等が別の手段により不具合防止対策がとられている場合には前者を、ま た別の手段によりレーザ素子 LDへの突入電流防止対策とられている場合には後者 を、それぞ; ½、略してもよい。また、場合に応じ、レーザ素子駆動装置 1で用いている MOSトランジスタをバイポーラトランジスタに置き換えたり逆にバイポーラトランジスタ を MOSトランジスタに置き換えたりインバータ又は NOR回路等の数を増減したりす ることなどが可能なのは勿論である。

Claims

請求の範囲
[1] 流れる電流に応じて光強度が変わるレーザ素子と、
レーザ素子の光強度をモニタして電気信号に変換する光検出素子と、 レーザ素子に流れる電流を制御する発光制御スィッチと、
光検出素子の電気信号をフィードバックして発光制御スィッチを制御するフィードバ ック増幅器と、
レーザ素子の発光開始力 レーザ素子に所定時間続いて電流が流れると異常と判 断して発光制御スィッチをオフする発光制御スィッチ制御回路と、
を備えることを特徴とするレーザ素子駆動装置。
[2] 流れる電流に応じて光強度が変わるレーザ素子と、
レーザ素子の光強度をモニタして電気信号に変換する光検出素子と、 レーザ素子に流れる電流を制御する発光制御スィッチと、
光検出素子の電気信号をフィードバックして発光制御スィッチを制御するフィードバ ック増幅器と、
レーザ素子の発光開始時にレーザ素子に流れる電流を徐々に増加させるよう発光 制御スィッチを制御する発光制御スィッチ制御回路と、
を備えることを特徴とするレーザ素子駆動装置。
[3] 請求項 2に記載のレーザ素子駆動装置において、
発光制御スィッチ制御回路はレーザ素子の発光開始力 レーザ素子に所定時間 続いて電流が流れると異常と判断して発光制御スィッチをオフすることを特徴とする レーザ素子駆動装置。
[4] 請求項 2又は 3に記載のレーザ素子駆動装置において、
発光制御スィッチ制御回路は、コンデンサと発光停止スィッチとを備え、レーザ素 子の発光開始時に、発光停止スィッチをオンして発光制御スィッチを強制的にオフ すると共に前記コンデンサを充電し、所定時間経過後発光停止スィッチをオフして前 記コンデンサを放電することにより発光制御スィッチを制御してレーザ素子に流れる 電流を徐々に増カロさせることを特徴とするレーザ素子駆動装置。
[5] 請求項 4に記載のレーザ素子駆動装置において、 発光制御スィッチ制御回路は、レーザ素子の発光開始からレーザ素子に所定時間 続 、て電流が流れると異常と判断し、発光停止スィッチをオンして発光制御スィッチ をオフすることを特徴とするレーザ素子駆動装置。
[6] 請求項 1に記載のレーザ素子駆動装置にお 、て、
発光制御スィッチ制御回路は、発光停止スィッチを備え、レーザ素子の発光開始 からレーザ素子に所定時間続いて電流が流れると異常と判断し、発光停止スィッチ をオンして発光制御スィッチをオフすることを特徴とするレーザ素子駆動装置。
[7] 請求項 5又は 6に記載のレーザ素子駆動装置において、
レーザ素子の発光開始力 異常と判断されるまでの所定時間をカウントするための 基準クロックを出力する発振器を備え、この発振器は異常と判断されると発振動作が 停止させられることを特徴とするレーザ素子駆動装置。
[8] 請求項 4乃至 7のいずれかに記載のレーザ素子駆動装置において、
電源と内部電源との間に設けられ、間欠制御信号に応じて開閉する電源スィッチを 更に備え、
発光制御スィッチとフィードバック増幅器と発光停止スィッチとは内部電源により電 源供給され、かつ、発光停止スィッチの電流駆動能力は、フィードバック増幅器のシ ンク電流側の電流駆動能力よりも高いことを特徴とするレーザ素子駆動装置。
[9] 請求項 8に記載のレーザ素子駆動装置において、
内部電源の立ち上がりによりスタートして発振器の基準クロックの数をカウントする力 ゥンタを含むフェイルセーフ回路を更に備え、
フェイルセーフ回路はそのカウンタが所定のカウント数になると、異常と判断して発 光停止スィッチをオンさせる信号を出力することを特徴とするレーザ素子駆動装置。
[10] 請求項 8に記載のレーザ素子駆動装置において、
電源スィッチを導通させるときの間欠制御信号の変化によりスタートして発振器の基 準クロックの数をカウントするカウンタを含むソフトスタート回路を更に備え、
ソフトスタート回路はそのカウンタが所定のカウント数になると、発光制御スィッチ制 御回路の前記コンデンサを放電するように発光停止スィッチをオフさせる信号を出力 することを特徴とするレーザ素子駆動装置。
PCT/JP2005/005667 2004-03-29 2005-03-28 レーザ素子駆動装置 WO2005093916A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/599,468 US20070201521A1 (en) 2004-03-29 2005-03-28 Laser element driving apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-096985 2004-03-29
JP2004096985A JP3949119B2 (ja) 2004-03-29 2004-03-29 レーザ素子駆動装置

Publications (1)

Publication Number Publication Date
WO2005093916A1 true WO2005093916A1 (ja) 2005-10-06

Family

ID=35056512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005667 WO2005093916A1 (ja) 2004-03-29 2005-03-28 レーザ素子駆動装置

Country Status (6)

Country Link
US (1) US20070201521A1 (ja)
JP (1) JP3949119B2 (ja)
KR (1) KR20070001201A (ja)
CN (1) CN1938916A (ja)
TW (1) TW200539539A (ja)
WO (1) WO2005093916A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016103368A (ja) * 2014-11-27 2016-06-02 株式会社小糸製作所 点灯回路、車両用灯具
JP2016103367A (ja) * 2014-11-27 2016-06-02 株式会社小糸製作所 点灯回路および灯具システム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200737066A (en) * 2006-03-22 2007-10-01 Beyond Innovation Tech Co Ltd Driving circuit with protection module for back light module
JP4975797B2 (ja) * 2009-10-14 2012-07-11 シャープ株式会社 照明装置、車両用灯具および車両
CN101777824B (zh) * 2010-03-05 2011-12-28 厦门大学 半导体激光电源防浪涌电路
CN101916959B (zh) * 2010-08-04 2011-12-28 成都优博创技术有限公司 一种激光器关断装置及其关断方法
CN105759280A (zh) * 2016-05-17 2016-07-13 上海酷哇机器人有限公司 对人眼安全的激光三角测量系统
JP2018170367A (ja) * 2017-03-29 2018-11-01 太陽誘電株式会社 レーザ射出装置
WO2019205794A1 (zh) 2018-04-28 2019-10-31 Oppo广东移动通信有限公司 激光投射器的控制系统及控制方法、激光投射组件和终端
CN108767654A (zh) * 2018-05-30 2018-11-06 Oppo广东移动通信有限公司 激光投射器的控制系统及控制方法、激光投射组件和终端

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6083625U (ja) * 1983-11-16 1985-06-10 井上 光治 足底血液循環促進器
JPS6441288A (en) * 1987-08-07 1989-02-13 Nec Corp Laser diode driving device
JPH05136500A (ja) * 1991-11-14 1993-06-01 Brother Ind Ltd 半導体レーザ駆動回路
JPH06227036A (ja) * 1992-11-04 1994-08-16 Eastman Kodak Co レーザダイオード電力制御回路
JPH07221377A (ja) * 1994-01-28 1995-08-18 Canon Inc 発光素子駆動回路
JPH08252940A (ja) * 1995-03-16 1996-10-01 Canon Inc 画像形成装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4785456A (en) * 1986-04-14 1988-11-15 Lasers For Medicine Inc. Self-contained laser system
JPS6387084A (ja) * 1986-09-30 1988-04-18 Pioneer Electronic Corp 情報再生装置における倍速再生方法
US5163063A (en) * 1990-02-07 1992-11-10 Copal Co., Ltd. Semiconductor laser driving circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6083625U (ja) * 1983-11-16 1985-06-10 井上 光治 足底血液循環促進器
JPS6441288A (en) * 1987-08-07 1989-02-13 Nec Corp Laser diode driving device
JPH05136500A (ja) * 1991-11-14 1993-06-01 Brother Ind Ltd 半導体レーザ駆動回路
JPH06227036A (ja) * 1992-11-04 1994-08-16 Eastman Kodak Co レーザダイオード電力制御回路
JPH07221377A (ja) * 1994-01-28 1995-08-18 Canon Inc 発光素子駆動回路
JPH08252940A (ja) * 1995-03-16 1996-10-01 Canon Inc 画像形成装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016103368A (ja) * 2014-11-27 2016-06-02 株式会社小糸製作所 点灯回路、車両用灯具
JP2016103367A (ja) * 2014-11-27 2016-06-02 株式会社小糸製作所 点灯回路および灯具システム
CN109152175A (zh) * 2014-11-27 2019-01-04 株式会社小糸制作所 点灯电路以及灯具系统

Also Published As

Publication number Publication date
CN1938916A (zh) 2007-03-28
KR20070001201A (ko) 2007-01-03
JP2005286060A (ja) 2005-10-13
US20070201521A1 (en) 2007-08-30
TW200539539A (en) 2005-12-01
JP3949119B2 (ja) 2007-07-25

Similar Documents

Publication Publication Date Title
WO2005093916A1 (ja) レーザ素子駆動装置
JP4751108B2 (ja) 他励式dc/dcコンバータの制御回路およびそれを用いた電源装置、発光装置、電子機器
JP5906428B2 (ja) Ledモジュールおよびこれを備えた照明装置
JP4916711B2 (ja) Dc/dcコンバータの制御回路、制御方法、およびそれを用いた発光装置ならびに電子機器
TWI507081B (zh) 光源驅動電路、光源控制電路、以及光源供電控制方法
JP5107656B2 (ja) 自励式のキャパシタ充電回路の制御回路、制御方法およびそれを用いたキャパシタ充電回路、電子機器
EP2608638B1 (en) Lighting device and illumination apparatus including same
JP5340639B2 (ja) キャパシタ充電装置およびその制御回路、制御方法、ならびにそれらを用いた発光装置および電子機器
JP6487809B2 (ja) 発光素子駆動装置
TWI531935B (zh) 具有內建的電荷幫浦的光學導航感測器
JP4851816B2 (ja) キャパシタ充電装置およびその制御回路、制御方法、ならびにそれらを用いた発光装置および電子機器
JP4877755B2 (ja) キャパシタ充電装置およびその制御回路、制御方法、ならびにそれらを用いた発光装置および電子機器
JP2007158083A (ja) Led駆動装置
JP5839222B2 (ja) 定電流電源装置
CN115606873A (zh) 一种系统控制电路、指示组件及电子雾化装置
JP2019087340A (ja) 点灯装置および照明器具
JP4877771B2 (ja) キャパシタ充電装置およびそれを用いた発光装置および電子機器
JP2007109742A (ja) 発光制御装置およびそれを用いた電子機器
KR20080037590A (ko) 리모콘 송신기
WO2023210351A1 (ja) 発光素子駆動装置、および発光装置
JP3915156B2 (ja) 放電ランプ点灯装置及び照明装置
JP2007035529A (ja) 誘導加熱装置
TW202324878A (zh) 用於可攜式電子裝置的充電供電模組及可攜式電子裝置
JP2000066278A (ja) ストロボ装置
JP2002333653A (ja) 発光装置及びカメラ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067019912

Country of ref document: KR

Ref document number: 200580009758.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 1020067019912

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10599468

Country of ref document: US

Ref document number: 2007201521

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10599468

Country of ref document: US