WO2019205794A1 - 激光投射器的控制系统及控制方法、激光投射组件和终端 - Google Patents

激光投射器的控制系统及控制方法、激光投射组件和终端 Download PDF

Info

Publication number
WO2019205794A1
WO2019205794A1 PCT/CN2019/076075 CN2019076075W WO2019205794A1 WO 2019205794 A1 WO2019205794 A1 WO 2019205794A1 CN 2019076075 W CN2019076075 W CN 2019076075W WO 2019205794 A1 WO2019205794 A1 WO 2019205794A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
preset
laser module
module
duration
Prior art date
Application number
PCT/CN2019/076075
Other languages
English (en)
French (fr)
Inventor
吕向楠
白剑
陈彪
郭子青
谭国辉
周海涛
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810404507.1A external-priority patent/CN108805025A/zh
Priority claimed from CN201810541431.7A external-priority patent/CN108767654A/zh
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP19793203.1A priority Critical patent/EP3611810B1/en
Publication of WO2019205794A1 publication Critical patent/WO2019205794A1/zh
Priority to US16/688,462 priority patent/US11522338B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0428Electrical excitation ; Circuits therefor for applying pulses to the laser
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1684Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
    • G06F1/1686Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675 the I/O peripheral being an integrated camera
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/303Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means

Definitions

  • the present application relates to the field of consumer electronics, and more particularly to a laser projector control system, a laser projection assembly, a terminal, a laser projector control method, a laser output control method, a laser output control device, and a computer readable Storage medium.
  • the terminal device often projects laser light to the target object through the laser projector, and then the laser image modulated by the target object is collected by the infrared camera to form a depth image for face recognition.
  • Embodiments of the present application provide a laser projector control system, a laser projection assembly, a terminal, a laser projector control method, a laser output control method, a laser output control device, and a computer readable storage medium.
  • a control system for a laser projector of an embodiment of the present application includes a first drive circuit coupled to the laser projector, the first drive circuit for outputting an electrical signal to drive the laser projector to project a laser, and at an output The laser projector is turned off when the duration of the electrical signal is greater than or equal to a predetermined threshold.
  • the laser projection assembly of the embodiment of the present application includes a laser projector and the above control system, and the laser projector is coupled to the first drive circuit.
  • the terminal of the embodiment of the present application includes a laser projector and the above control system, and the first drive circuit is coupled to the laser projector.
  • the control method of the laser projector of the embodiment of the present application is for controlling a laser projector, the laser projector being connected to the first driving circuit, the control method comprising: the first driving circuit outputs an electric signal to drive the laser projector Projecting the laser; and turning off the laser projector when the duration of the output of the electrical signal is greater than or equal to a predetermined threshold.
  • the laser output control method of the embodiment of the present application includes: when detecting that the laser module is turned on, recording a first moment when the laser module is turned on; and acquiring a current time when the laser module is working and the first moment The interval duration is long; when the interval duration satisfies a preset duration, the laser output of the laser module is controlled.
  • the laser output control device of the embodiment of the present application includes a first time recording module, an interval duration acquisition module, and a laser output control module.
  • the first time recording module is configured to record that the laser module is turned on when detecting that the laser module is turned on. a first time;
  • the interval duration acquisition module is configured to acquire an interval between the current time of the operation of the laser module and the first time; and the laser output control module is configured to control when the interval duration meets a preset duration The laser output of the laser module.
  • the terminal of the embodiment of the present application includes a memory and a processor, wherein the memory stores a computer program, and when the computer program is executed by the processor, causes the processor to execute the step of the laser output control method.
  • a computer readable storage medium according to an embodiment of the present application, wherein a computer program is stored thereon, and the computer program is executed by a processor to implement the steps of the laser output control method.
  • FIG. 1 is a schematic structural diagram of a terminal according to some embodiments of the present application.
  • FIG. 2 is a block diagram of a terminal of some embodiments of the present application.
  • FIG. 3 is a schematic diagram of a pulse wave signal output by a first driving circuit of some embodiments of the present application.
  • FIG. 4 is a block diagram of a terminal of some embodiments of the present application.
  • FIG. 8 are schematic flowcharts of a control method of a laser projector according to some embodiments of the present application.
  • FIG. 9 is a schematic structural view of a laser projection assembly according to some embodiments of the present application.
  • 10 to 12 are partial structural views of a laser projector according to some embodiments of the present application.
  • FIG. 13 is an application environment diagram of a laser output control method according to some embodiments of the present application.
  • FIG. 14 is a schematic diagram of an internal structure of a terminal according to some embodiments of the present application.
  • 15 is a flow chart of a laser output control method of some embodiments of the present application.
  • 16 is a flow chart of a method for controlling output of a laser module according to distance values according to some embodiments of the present application
  • 17 is a flow chart of a method for controlling output of a laser module according to a varying frequency according to some embodiments of the present application;
  • FIG. 18 is a block diagram showing the structure of a laser output control device according to some embodiments of the present application.
  • FIG. 19 is a block diagram of a terminal of some embodiments of the present application.
  • 20 is a schematic diagram of an image processing circuit of certain embodiments of the present application.
  • the first feature "on” or “below” the second feature may be the direct contact of the first and second features, or the first and second features are indirectly through the intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.
  • the terminal 100 of the embodiment of the present application includes a laser projector 10 , an infrared camera 20 , and a control system 30 .
  • the terminal 100 can be a mobile phone, a tablet computer, a smart watch, a smart wristband, a smart wearable device, etc.
  • the terminal 100 is a mobile phone as an example for description. It can be understood that the specific form of the terminal 100 is not limited to the mobile phone. .
  • the laser projector 10 is capable of projecting a laser light onto a target object, and the laser light may be infrared light, while the laser light projected by the laser projector 10 may be a pattern with a specific speckle or streak.
  • the infrared camera 20 is capable of acquiring an infrared image of a target object or receiving a laser pattern modulated by the target object. In order to obtain a clearer laser pattern, it is usually necessary to continuously emit a plurality of frames of laser light to a target object with a certain optical power. However, if the laser projector 10 continuously emits laser light, the laser may burn the user, especially to the user's eyes. Therefore, it is necessary to prevent the laser projector 10 from continuously emitting laser light outward.
  • the control system 30 includes a first drive circuit 31, a second drive circuit 32, an application processor 33, a watchdog timer 34, and a microprocessor 36.
  • the first driving circuit 31 is connected to the laser projector 10, and the first driving circuit 31 can be used to output an electrical signal to drive the laser projector 10 to project laser light, specifically the first driving circuit 31 as a current source of the laser projector 10, if the first When the drive circuit 31 is turned off, the laser projector 10 cannot emit laser light outward.
  • the second driving circuit 32 is connected to the first driving circuit 31, and the second driving circuit 32 can be used to supply power to the first driving circuit 31.
  • the first driving circuit 31 can be a DC/DC circuit.
  • the first driving circuit 31 may be separately packaged as a driving chip
  • the second driving circuit 32 may be separately packaged as a driving chip, or the first driving circuit 31 and the second driving circuit 32 may be packaged together in one driving chip, and the driving chip Both may be disposed on the substrate or circuit board of the laser projector 10.
  • the first driving circuit 31 when the first driving circuit 31 operates normally, the first driving circuit 31 outputs a pulse wave signal (for example, a square wave signal) to cause the laser projector 10 to continuously emit a plurality of frames of laser light; 3(b), when the first drive circuit 31 fails, the first drive circuit 31 will keep outputting a high level signal, so that the laser projector 10 continues to emit laser light outward.
  • the laser projector 10 can be turned off by the first driving circuit 31.
  • the first driving circuit 31 can be integrated with a timing function, and the first driving circuit 31 can detect whether the duration of the output electrical signal of the first driving circuit 31 is greater than or equal to a predetermined threshold, and the duration of the output of the electrical signal by the first driving circuit 31 is greater than or equal to When the threshold is predetermined, the first drive circuit 31 stops outputting an electric signal to turn off the laser projector 10.
  • the predetermined threshold may be [3, 10] milliseconds.
  • the predetermined threshold may be set to 3 milliseconds, 4 milliseconds, 5 milliseconds, 6 milliseconds, 7 milliseconds, 8 milliseconds, 9 milliseconds, 10 milliseconds, etc., and any duration within the above interval.
  • the application processor 33 can be used as the system of the terminal 100, the application processor 33 can be connected to the first driving circuit 31, the application processor 33 can also be connected to the infrared camera 20, and the application processor 33 can also be connected to the visible light.
  • the camera 50 is connected.
  • the application processor 33 can also be connected to a plurality of electronic components of the terminal 100 and control the plurality of electronic components to operate in a predetermined mode, for example, the display screen of the control terminal 100 displays a predetermined screen, and the antenna of the control terminal 100 transmits or receives.
  • the predetermined data the visible light camera 50 of the control terminal 100 acquires a color image and processes the color image, controls the opening and closing of the power of the infrared camera 20, turns off (pwdn) the infrared camera 20, or resets the infrared camera 20 and the like.
  • the application processor 33 can also be used to control the operation of the first drive circuit 31 to drive the laser projector 10 to project laser light. Specifically, the application processor 33 transmits a predetermined signal to the watchdog timer 34 at predetermined time intervals to control the operation of the first drive circuit 31 by the watchdog timer 34. For example, the application processor 33 transmits a predetermined signal to the watchdog timer 34 every 50 milliseconds. The watchdog timer 34 receives the predetermined signal transmitted by the application processor 33. In the embodiment of the present application, in order to prevent the laser projector 10 from continuously emitting laser light to the user, the monitoring timer 34 may be controlled by the application processor 33 to turn off the first driving circuit 31 to turn off the laser projector 10.
  • the first driving circuit 31 transmits a timeout signal to the application processor 33.
  • the application processor 33 receives the timeout signal transmitted by the first drive circuit 31, the application processor 33 stops transmitting the predetermined signal to the watchdog timer 34.
  • the watchdog timer 34 is connected to the first drive circuit 31, and the watchdog timer 34 is connected to the application processor 33.
  • the watchdog timer 34 is used to turn off the first drive circuit 31 to turn off the laser projection when the predetermined signal is not received within a predetermined period of time. 10.
  • the predetermined duration may be that the terminal 100 is set at the factory, or may be customized according to the user on the terminal 100.
  • the specific form of the watchdog timer 34 may be a counter. After the watchdog timer 34 receives the predetermined signal, the watchdog timer 34 starts counting down from a number at a certain speed. If the first drive circuit 31 normally outputs the pulse wave signal, the application processor 33 retransmits the predetermined signal before the countdown reaches 0, and the watchdog timer 34 resets the countdown after receiving the predetermined signal; if the first drive circuit 31 outputs The duration of the electrical signal is greater than or equal to a predetermined threshold. When the watchdog timer 34 counts to 0, the application processor 33 does not transmit a predetermined signal. The watchdog timer 34 is deemed to determine that the first drive circuit 31 is malfunctioning. A signal is applied to turn off the first drive circuit 31 to turn off the laser projector 10.
  • the watchdog timer 34 can be external to the application processor 33.
  • the watchdog timer 34 can be an external timer chip.
  • the watchdog timer 34 can be coupled to an I/O pin of the application processor 33.
  • the predetermined signal sent by the application processor 33 is received.
  • the reliability of the external watchdog timer 34 is high.
  • the watchdog timer 34 can be integrated within the application processor 33, and the functionality of the watchdog timer 34 can be implemented by the internal timer of the application processor 33, which simplifies the hardware circuit design of the control system 30.
  • the watchdog timer 34 is further configured to issue a reset signal for restarting the application processor 33 when a predetermined signal is not received within a predetermined length of time. As described above, when the watchdog timer 34 does not receive the predetermined signal for a predetermined period of time, the application processor 33 has failed, and at this time, the watchdog timer 34 issues a reset signal to cause the application processor 33 to reset and operate normally.
  • the reset signal can be directly received by the application processor 33, the reset signal has a higher level in the execution program of the application processor 33, and the application processor 33 can preferentially respond to and reset the reset signal.
  • the reset signal can also be sent to a reset chip external to the application processor 33, which forces the application processor 33 to reset in response to the reset signal.
  • the predetermined duration is [50, 150] milliseconds.
  • the predetermined duration may be set to 50 milliseconds, 62 milliseconds, 75 milliseconds, 97 milliseconds, 125 milliseconds, 150 milliseconds, etc., and any duration within the above interval. It can be understood that if the predetermined duration is set too short, the application processor 33 is required to transmit the predetermined signal too frequently, which may occupy too much processing space of the application processor 33 and cause the terminal 100 to be easily jammed. If the predetermined length of time is set too long, the failure of the first drive circuit 31 cannot be detected in time, that is, the laser projector 10 cannot be turned off in time, which is disadvantageous for the safe use of the laser projector 10. By setting the predetermined duration to [50, 150] milliseconds, it is possible to better balance the fluency and security of the terminal 100.
  • the microprocessor 36 can be a processing chip, and the microprocessor 36 and the application processor 33, the microprocessor 36 and the first driver circuit 31, the microprocessor 36 and the infrared camera 20 are all connected.
  • the microprocessor 36 is coupled to the application processor 33 to enable the application processor 33 to reset the microprocessor 36, wake up the microprocessor 36, debug the microprocessor 36, etc., and the microprocessor 36 can pass A Mobile Industry Processor Interface (MIPI) 361 is connected to the application processor 33. Specifically, the microprocessor 36 passes the mobile industry processor interface 361 and the trusted execution environment of the application processor 33 (Trusted Execution Environment, The TEE) 331 is coupled to transfer data in the microprocessor 36 directly to the trusted execution environment 331. The code and the memory area in the trusted execution environment 331 are both controlled by the access control unit and cannot be accessed by the program in the Rich Execution Environment (REE) 332. The trusted execution environment 331 and the non- Trusted execution environments 332 may all be formed in application processor 33.
  • MPI Mobile Industry Processor Interface
  • the microprocessor 36 can be connected to the first driving circuit 31 through a Pulse Width Modulation (PWM) 362 interface, and the microprocessor 36 and the infrared camera 20 can be connected through an I2C bus (Inter-Integrated Circuit) 70.
  • PWM Pulse Width Modulation
  • the infrared camera 20 can be provided with clock information for acquiring infrared images and laser patterns.
  • the infrared images and laser patterns collected by the infrared camera 20 can be transmitted to the microprocessor 36 through the mobile industry processor interface 361.
  • the infrared template and the depth template for verifying the identity may be stored in the trusted execution environment 331.
  • the infrared template may be a face infrared image input by the user in advance
  • the depth template may be a face depth image input by the user in advance.
  • the infrared template and the depth template are stored in the trusted execution environment 331, and are not easily falsified and stolen, and the information in the terminal 100 is highly secure.
  • the microprocessor 36 controls the infrared camera 20 to collect the infrared image of the user, and acquires the infrared image and transmits it to the trusted execution environment 331 of the application processor 33, and the application processor 33 is in the trusted execution environment.
  • the infrared image is compared with the infrared template in 331, and if the two match, the verification result of the infrared template verification is output. In the process of matching whether the infrared image and the infrared template are not acquired, falsified or stolen by other programs, the information security of the terminal 100 is improved.
  • the microprocessor 36 can control the first driving circuit 31 to drive the laser projector 10 to project laser light outward, and control the infrared camera 20 to collect the laser pattern modulated by the target object, and the microprocessor 36 acquires and processes the laser pattern to obtain Depth image.
  • the depth image is transmitted to the trusted execution environment 331 of the application processor 33.
  • the application processor 33 compares the depth image with the depth template in the trusted execution environment 331, and if the two match, outputs the depth template verification. The verification result passed. In the process of whether the comparison is matched, the depth image and the depth template are not acquired, tampered with or stolen by other programs, and the information security of the terminal 100 is improved.
  • the monitoring timer 34 may be controlled by the microprocessor 36 to turn off the first driving circuit 31 to turn off the laser projector 10.
  • the microprocessor 36 transmits a preset signal to the watchdog timer 34 at predetermined time intervals to control the operation of the first drive circuit 31 by the watchdog timer 34.
  • microprocessor 36 sends a preset signal to watchdog timer 34 every 50 milliseconds.
  • the watchdog timer 34 receives the preset signal transmitted by the microprocessor 36.
  • the first drive circuit 31 sends a timeout signal to the microprocessor 36 when the laser projector 10 continues to emit laser light outwardly, i.e., the duration of the output of the electrical signal by the first drive circuit 31 is greater than or equal to a predetermined threshold.
  • the microprocessor 36 stops transmitting the preset signal to the watchdog timer 34.
  • the watchdog timer 34 is connected to the first drive circuit 31, and the watchdog timer 34 is connected to the microprocessor 36.
  • the watchdog timer 34 is configured to turn off the first drive circuit 31 to close when the preset signal is not received within the preset time period.
  • the preset duration may be set by the terminal 100 at the factory, or may be customized according to the user on the terminal 100.
  • the specific form of the watchdog timer 34 may be a counter. After the watchdog timer 34 receives the preset signal, the watchdog timer 34 starts counting down from a number at a certain speed. If the first driving circuit 31 normally outputs the pulse wave signal, the microprocessor 36 retransmits the preset signal before the countdown reaches 0, and the monitoring timer 34 resets the countdown after receiving the preset signal; if the first driving circuit The duration of the output electrical signal is greater than or equal to the predetermined threshold. When the watchdog timer 34 counts to 0, the microprocessor 36 does not send the preset signal. The watchdog timer 34 is regarded as determining that the first drive circuit 31 is malfunctioning. The timer 34 signals the first drive circuit 31 to turn off the laser projector 10.
  • watchdog timer 34 can be external to microprocessor 36.
  • Watchdog timer 34 can be an external timer chip.
  • Watchdog timer 34 can be coupled to an I/O pin of microprocessor 36. The preset signal from the microprocessor 36 is received. The reliability of the external watchdog timer 34 is high.
  • the watchdog timer 34 can be integrated into the microprocessor 36. The function of the watchdog timer 34 can be implemented by the internal timer of the microprocessor 36, which simplifies the hardware circuit design of the control system 30.
  • the preset duration is [50, 150] milliseconds.
  • the preset duration may be set to 50 milliseconds, 62 milliseconds, 75 milliseconds, 97 milliseconds, 125 milliseconds, 150 milliseconds, etc., and any duration within the above interval. It can be understood that if the preset duration is set too short, the microprocessor 36 is required to send the preset signal too frequently, which may occupy too much processing space of the microprocessor 36 and cause the terminal 100 to run easily. If the preset duration is set too long, the failure of the first drive circuit 31 cannot be detected in time, that is, the laser projector 10 cannot be turned off in time, which is disadvantageous for the safe use of the laser projector 10. Setting the preset duration to [50, 150] milliseconds can better balance the fluency and security of the terminal 100.
  • control system 30 can also include a control circuit 35.
  • the control circuit 35 connects the first drive circuit 31 and the laser projector 10.
  • the control circuit 35 includes a resistance element 351, a detection element 352, and a switching element 353.
  • the detecting element 352 can be an ammeter, and the detecting element 352 is connected in series with the resistive element 351 and the first driving circuit 31 and is used to detect the current flowing through the resistive element 351.
  • the switching element 353 is connected to the laser projector 10, and the switching element 353 is turned off to turn off the laser projector 10 when the current flowing through the resistance element 351 is greater than a preset current value.
  • the current output by the first drive circuit 31 is sequentially increased. For example, the current output from the first drive circuit 31 is increased from 100 mA to 200 mA.
  • the first driving circuit 31 fails, the first driving circuit 31 keeps outputting a high level signal, and the current outputted by the first driving circuit 31 is continuously increased from 100 mA to 200 mA.
  • the preset current value can be set to 220mA.
  • the resistance element 351 is connected in series with the first driving circuit 31, the current flowing through the first driving circuit 31 is the current flowing through the resistance element 351, and the switching element 353 is turned off when the current flowing through the resistance element 351 is greater than 220 mA.
  • the laser projector 10 is turned off.
  • the detecting component 352 can be a voltmeter, and the detecting component 352 is connected in parallel with the resistive component 351 and used to detect the voltage across the resistive component 351.
  • the switching element 353 is turned off to turn off the laser projector 10 when the voltage across the resistive element 351 is greater than a predetermined voltage value, and is not developed in detail here.
  • control method of the laser projector 10 of the embodiment of the present application is used to control the laser projector 10.
  • the laser projector 10 is connected to the first drive circuit 31.
  • the control method includes the steps:
  • the first driving circuit 31 outputs an electrical signal to drive the laser projector 10 to project a laser
  • the laser projector 10 is turned off when the duration of the output electrical signal is greater than or equal to a preset threshold.
  • the step of turning off the laser projector 10 when the duration of the output electrical signal is greater than or equal to the preset threshold includes:
  • control method further includes:
  • the first driving circuit 31 sends a timeout signal to the application processor 33 when the duration is greater than or equal to a predetermined threshold
  • control method further includes:
  • the first driving circuit 31 sends a timeout signal to the microprocessor 36 when the duration is greater than or equal to a predetermined threshold
  • the duration of the output of the electrical signal by the first driving circuit 31 is greater than or equal to the preset threshold, it is determined that the first driving circuit 31 is faulty, and the laser projector 10 is turned off.
  • the laser projector 10 is prevented from continuously emitting laser light outward to the user.
  • an embodiment of the present application further provides a laser projection assembly 60 including a laser projector 10 , a first driving circuit 31 , a second driving circuit 32 , a watchdog timer 34 , and a control circuit 35 .
  • the first drive circuit 31, the second drive circuit 32, and the watchdog timer 34 may all be integrated on the substrate assembly 11 of the laser projector 10.
  • the laser projector 10 includes a substrate assembly 11 , a lens barrel 12 , a light source 13 , a collimating element 14 , a diffractive optical element (DOE) 15 , and a protective cover 16 .
  • DOE diffractive optical element
  • the substrate assembly 11 includes a substrate 111 and a circuit board 112.
  • the circuit board 112 is disposed on the substrate 111.
  • the circuit board 112 is used to connect the light source 13 and the main board of the terminal 100.
  • the circuit board 112 may be a hard board, a soft board or a soft and hard board.
  • a through hole 1121 is formed in the circuit board 112, and the light source 13 is fixed on the substrate 111 and electrically connected to the circuit board 112.
  • the heat dissipation hole 1111 can be formed on the substrate 111.
  • the heat generated by the operation of the light source 13 or the circuit board 112 can be dissipated by the heat dissipation hole 1111.
  • the heat dissipation hole can also be filled in the heat dissipation hole 1111 to further improve the heat dissipation performance of the substrate assembly 11.
  • the lens barrel 12 is fixedly connected to the substrate assembly 11.
  • the lens barrel 12 is formed with a receiving cavity 121.
  • the lens barrel 12 includes a top wall 122 and an annular peripheral wall 124 extending from the top wall 122.
  • the peripheral wall 124 is disposed on the substrate assembly 11, and the top wall 122 is disposed.
  • a light passing hole 1212 communicating with the receiving cavity 121 is opened.
  • the peripheral wall 124 can be connected to the circuit board 112 by glue.
  • the protective cover 16 is disposed on the top wall 122.
  • the protective cover 16 includes a baffle 162 having an optical through hole 160 and an annular side wall 164 extending from the baffle 162.
  • the light source 13 and the collimating element 14 are both disposed in the housing cavity 121, and the diffractive optical element 15 is mounted on the lens barrel 12.
  • the collimating element 14 and the diffractive optical element 15 are sequentially disposed on the light-emitting path of the light source 13.
  • the collimating element 14 collimates the laser light emitted by the light source 13, and the laser passes through the collimating element 14 and then passes through the diffractive optical element 15 to form a laser pattern.
  • the light source 13 may be a Vertical Cavity Surface Emitting Laser (VCSEL) or an edge-emitting laser (EEL). In the embodiment shown in FIG. 9, the light source 13 is an edge emitting laser.
  • the light source 13 can be a Distributed Feedback Laser (DFB).
  • the light source 13 is for emitting laser light into the housing cavity 112. Referring to FIG. 10 , the light source 13 has a columnar shape as a whole, and the light source 13 forms a light emitting surface 131 away from one end surface of the substrate assembly 11 , and the laser light is emitted from the light emitting surface 131 , and the light emitting surface 131 faces the collimating element 14 .
  • the light source 13 is fixed on the substrate assembly 11.
  • the light source 13 can be adhered to the substrate assembly 11 by a sealant 17, for example, a side of the light source 13 opposite to the light-emitting surface 131 is bonded to the substrate assembly 11.
  • a sealant 17 for example, a side of the light source 13 opposite to the light-emitting surface 131 is bonded to the substrate assembly 11.
  • the side surface 132 of the light source 13 may also be adhered to the substrate assembly 11, the sealing material 17 enclosing the surrounding side surface 132, or only one side of the side surface 132 may be bonded to the substrate assembly 11 or adhered.
  • a plurality of faces and substrate assemblies 11 are bonded.
  • the sealant 17 may be a thermal conductive adhesive to conduct heat generated by the operation of the light source 13 into the substrate assembly 11.
  • the diffractive optical element 15 is carried on the top wall 122 and housed in the protective cover 16.
  • the opposite sides of the diffractive optical element 15 are respectively in contact with the protective cover 16 and the top wall 122.
  • the baffle 162 includes an abutting surface 1622 adjacent to the light passing hole 1212, and the diffractive optical element 15 is in contact with the abutting surface 1622.
  • the diffractive optical element 15 includes opposite diffractive incident faces 152 and diffractive exit faces 154.
  • the diffractive optical element 15 is carried on the top wall 122, and the diffractive exit surface 154 is in contact with the surface of the baffle 162 near the light-passing hole 1212 (the abutting surface 1622), and the diffractive incident surface 152 is in contact with the top wall 162.
  • the light-passing hole 1212 is aligned with the receiving cavity 121, and the light-emitting through-hole 160 is aligned with the light-passing hole 1212.
  • the top wall 122, the annular side wall 164, and the baffle 162 are in contact with the diffractive optical element 15, thereby preventing the diffractive optical element 15 from falling out of the protective cover 16 in the light exiting direction.
  • the protective cover 16 is adhered to the top wall 162 by glue.
  • the light source 13 of the laser projector 10 adopts an edge emitting laser.
  • the temperature of the transmitting laser is smaller than that of the VCSEL array.
  • the edge emitting laser has a single-point light emitting structure, it is not necessary to design an array structure, and the fabrication is simple.
  • the light source of the laser projector 10 is low in cost.
  • the gain of the power is obtained through the feedback of the grating structure.
  • the side emitting laser is placed vertically, and since the edge emitting laser has a slender strip structure, the emitting laser is prone to accidents such as dropping, shifting or shaking, and thus setting
  • the sealant 17 is capable of holding the edge-emitting laser to prevent accidents such as dropping, displacement or shaking of the edge-emitting laser.
  • the light source 13 can also be fixed to the substrate assembly 11 in a fixed manner as shown in FIG.
  • the laser projector 10 includes a plurality of support blocks 18 that can be fixed to the substrate assembly 11, and the plurality of support blocks 18 collectively surround the light source 13, and the light source 13 can be directly mounted on the plurality of support blocks 18 during installation. between.
  • the plurality of support blocks 18 collectively clamp the light source 13 to further prevent the light source 13 from sloshing.
  • the protective cover 16 may be omitted.
  • the diffractive optical element 15 may be disposed in the receiving cavity 121, and the diffraction exit surface 154 of the diffractive optical element 15 may abut against the top wall 122, and the laser passes through the diffractive optical element 15. Then, the light passing hole 1212 is passed through. Thus, the diffractive optical element 15 is less likely to fall off.
  • the substrate 111 can be omitted and the light source 13 can be directly attached to the circuit board 112 to reduce the overall thickness of the laser projector 10.
  • FIG. 13 is a schematic diagram of an application environment of a laser output control method according to an embodiment of the present application.
  • the application environment includes electronic devices (hereinafter collectively referred to as terminals) 200.
  • a camera module can be installed in the terminal 200, and a plurality of applications can also be installed.
  • a laser module can be included in the camera module.
  • the terminal 200 can detect whether the laser module is turned on. When detecting that the laser module is turned on, the terminal 200 can record the first moment when the laser module is turned on, and the terminal 200 can obtain the current time between the laser module and the first moment. The interval length is long. When the interval duration satisfies the preset duration, the terminal 200 can control the laser output of the laser module.
  • the terminal 200 can be a smartphone, a tablet, a personal digital assistant, a wearable device, or the like.
  • Figure 14 is a block diagram showing the internal structure of the terminal.
  • the terminal 200 may include a camera module 210, a first processing unit 220, a second processing unit 230, a security processing unit 240, and the like.
  • the first processing unit 220 is connected to the camera module 210, the second processing unit 230, and the security processing unit 240, respectively.
  • the camera module 210 can include a first image collector, a first projector, a second image collector, and a second projector.
  • the first image collector, the first projector, and the second projector are respectively coupled to the first processing unit 220.
  • the second image collector can be coupled to the first processing unit 220 or the second processor 230.
  • the first image collector can be a laser camera 212 (ie, an infrared camera).
  • the first projector can be a floodlight 214.
  • the second image capture device can be an RGB (Red/Green/Blue, red/green/blue color mode) camera 216.
  • the second projector can be a laser light 218 (ie, a laser projector).
  • the second projector and the first image collector form a laser module.
  • Both the laser camera 212 and the RGB camera 216 may include elements such as lenses and image sensors.
  • the image sensor is generally a Complementary Metal Oxide Semiconductor (CMOS) or a charge coupled device (CCD).
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD charge coupled device
  • the surface of the image sensor in the laser camera 212 is configured to provide intensity extraction of light of different wavelengths by providing filters corresponding to the pixels one by one, so that the laser camera 212 can collect invisible light images of different wavelengths.
  • the filter may allow the wavelength of light to pass to coincide with the wavelength of light emitted by the laser lamp 218, such as infrared light, ultraviolet light, or the like.
  • the RGB camera 216 can use Bayer filters to acquire light intensity information of three channels (R/G/B), and collect color images of the target object.
  • the floodlight 214 can be a laser diode, an LED, or the like.
  • the illuminating wavelength of the floodlight 214 is the same as the wavelength of the laser 218.
  • the second projector may include a light source, a collimating lens, and a structured light pattern generator, wherein the light source may be a surface emitting laser, a Vertical Cavity Surface Emitting Laser (VCSEL) array, and the structured light pattern generator may be Frosted glass, Diffractive Optical Elements (DOE) or a combination of both.
  • VCSEL Vertical Cavity Surface Emitting Laser
  • the first processing unit 220 can be an MCU (Microcontroller Unit).
  • the MCU may include PWM (Pulse Width Modulation) 222, SPI/I2C (Serial Peripheral Interface/Inter-Integrated Circuit) 224, RAM (Random Access Memory, Random access memory) 226 and Depth Engine 228.
  • the MCU can be synchronized by the PWM control floodlight 214 and the laser camera 212.
  • the floodlight 214 emits floodlight to the target object, and the floodlight image is collected by the laser camera 212. If the floodlight 214 emits infrared light, the infrared light is collected. image.
  • the MCU is synchronized with the laser camera 218 by the PWM control laser 218, and the laser lamp 218 projects the structured light pattern to the target object, and the laser camera 212 acquires the target speckle image.
  • the laser light 218 pre-projects a structured light pattern (a pattern with speckle particles) onto a reference plane at a known distance from the terminal, is captured by the laser camera 212 and used as a reference speckle image, and saved to
  • the memory of the first processing unit 220 may be stored in the memory of the second processing unit 230 or may be stored in the memory of the security processing unit 240. This memory is a non-volatile memory.
  • the second processing unit 230 can be a CPU processor.
  • the second processing unit 230 includes a CPU core running under a TEE (Trusted execution environment) and a CPU core running under a REE (Rich Execution Environment).
  • TEE and REE are operating modes of ARM modules (Advanced RISC Machines, Advanced Reduced Instruction Set Processor). Normally, the higher security operation behavior in the terminal needs to be performed under the TEE, and other operation behaviors can be performed under the REE.
  • the CPU running under the TEE The kernel can send a face acquisition command to the SPI/I2C interface 224 of the first processing unit 220 through the SECURE SPI/I2C bus 250, and can acquire the infrared image by using the PWM 222 to transmit the pulse wave control camera module 210 to turn on the floodlight 214.
  • the laser light 218 in the control camera module 210 is turned on to collect the target speckle image.
  • the camera module 210 can transmit the acquired infrared image and depth image to the Depth Engine 238 in the first processing unit 220 for processing.
  • the depth engine 238 may calculate the acquired target speckle image and the reference speckle image to obtain a parallax image with offset information of the corresponding point in the target speckle image and the reference speckle image, and process the parallax image to obtain a depth image.
  • the first processing unit 220 may send the parallax image to the security processing unit 240 through the Mobile Industry Processor Interface (MIPI) for processing to obtain a depth image.
  • MIPI Mobile Industry Processor Interface
  • the first processing unit 220 performs face recognition according to the acquired infrared image, detects whether there is a human face in the infrared image, and whether the detected face matches the stored face; if the face recognition passes, according to the infrared image And the depth image is used for living body detection to detect whether the human face has biological activity.
  • the first processing unit 220 may perform the living body detection and then perform the face recognition, or perform the face recognition and the living body detection at the same time.
  • the first processing unit 220 may transmit the intermediate information of the infrared image and the depth image to the security processing unit 240.
  • the security processing unit 240 calculates the depth information of the face from the intermediate information of the infrared image and the depth image, and transmits the depth information to the CPU core under the TEE.
  • the security processing unit 240 may be a separate processor or a security area formed by using hardware and software isolation in the second processing unit 230.
  • the second processing unit 230 may be a multi-core processor, and one of the cores is processed.
  • the device is defined as a security processing unit for calculating depth information of a face, matching of the acquired infrared image with the stored infrared image, matching of the acquired depth image with the stored depth image, and the like.
  • the security processing unit 240 can perform parallel processing or serial processing on the data.
  • a laser output control method for application to the above terminal as an example. As shown in FIG. 15, the method includes the following steps:
  • Step 302 When detecting that the laser module is turned on, record the first moment when the laser module is turned on.
  • a camera module can be installed on the terminal, and an image is acquired through the installed camera module.
  • the camera module can be divided into a laser module and a visible light module according to different images obtained.
  • the laser module can acquire an image formed by laser irradiation onto an object, and the visible light module can obtain visible light to the object. image.
  • the terminal can detect the working state of the installed camera module. Specifically, the terminal can detect the working state of the laser module and the visible light module in the camera module. The working state of the laser module can be turned on or off, and the laser module can be switched between the two states.
  • the first moment refers to a specific time point when the working state of the laser module is the on state.
  • the terminal can record the first moment when the laser module is turned on.
  • the first processing unit 220 can be configured to record the first moment when the laser module is turned on when detecting that the laser module is turned on.
  • Step 304 Acquire an interval duration between a current time when the laser module works and the first time.
  • the current moment when the laser module works refers to the specific time point when the current working state of the laser module is the on state.
  • the terminal can obtain the specific time point when the laser module is in the current working state, that is, the current moment when the laser module works.
  • the terminal can calculate the time difference between the current time and the first time, and the time difference is the interval time between the current time and the first time when the laser module works.
  • the first processing unit 220 can be configured to obtain an interval between the current time of the laser module operation and the first time.
  • Step 306 when the interval duration meets the preset duration, the laser output of the laser module is controlled.
  • the preset duration refers to a preset period of time.
  • the preset duration can be 5 seconds.
  • the terminal After the terminal calculates the interval duration, the calculated interval duration can be compared with the preset duration. When the interval duration meets the preset duration, the terminal can control the laser output of the laser module.
  • the first processing unit 220 can be configured to control the laser output of the laser module when the interval duration meets the preset duration.
  • the terminal When detecting that the laser module is turned on, recording the first moment when the laser module is turned on, obtaining the interval between the current moment of the working of the laser module and the first moment, and controlling the laser module when the interval duration meets the preset duration Laser output.
  • the terminal obtains the interval between the current moment of the working of the laser module and the first moment, compares the interval duration with the preset duration, and then controls the laser output of the laser module according to the comparison result, thereby avoiding the laser module
  • the laser is output for a long time, which can reduce the damage to the human eye.
  • controlling the laser output of the laser module may include: reducing the working of the laser module when the interval duration meets the preset duration frequency.
  • the terminal can compare the interval duration with the preset duration and obtain a comparison result.
  • the terminal can control the laser module, so that the working frequency of the laser module is lower than the original working frequency.
  • the current working frequency of the laser module is 15 MHz
  • the preset duration is 5 seconds
  • the interval time obtained by the terminal is 6 seconds.
  • the terminal can think that the obtained interval is 6 seconds and the preset duration is 5 seconds.
  • the terminal can The laser module is controlled to reduce the operating frequency of the laser module to 5 MHz. It is possible to control the number of times the laser module emits laser speckles from 30 times per second, and the number of times the laser spots are emitted per second is reduced to one.
  • the terminal can avoid the long-time high-frequency output laser of the laser module by reducing the working frequency of the laser module, which can save resources and reduce damage to the human eye.
  • controlling the laser output of the laser module may include: when the interval duration meets the preset duration, the laser module is lowered. Working current.
  • the terminal can compare the interval duration with the preset duration and obtain a comparison result.
  • the comparison result obtained by the terminal is that the interval duration satisfies the preset duration
  • the terminal can control the laser module, so that the working current of the laser module is lower than the original working current.
  • the current operating current of the laser module is 20 milliamps (mA)
  • the preset duration is 5 seconds
  • the interval obtained by the terminal is 6 seconds.
  • the terminal can consider that the acquired interval is 6 seconds to meet the preset duration.
  • the terminal can control the laser module to reduce the operating current of the laser module to 5 milliamps (mA). It is possible to control the number of times the laser module emits laser speckles from 30 times per second, and the number of times the laser spots are emitted per second is reduced to one.
  • the terminal can prevent the laser module from outputting the laser for a long time by reducing the working current of the laser module, which can save resources and reduce damage to the human eye.
  • a laser output control method provided may further include a process of controlling a laser module output according to a distance value, and the specific steps include:
  • Step 402 Acquire a depth image acquired by the camera module.
  • the terminal can collect the speckle image through the laser camera.
  • the terminal receives the image acquisition instruction sent by the camera module, and the terminal may collect the speckle image through the laser camera according to the received image acquisition instruction, and the processing unit in the terminal calculates the depth image according to the speckle image.
  • the first processing unit 220 specifically, the depth engine 238) or the security processing unit 240 can be used to acquire a depth image acquired by the camera module.
  • Step 404 Calculate a distance value between the target and the camera module in the image according to the depth image.
  • the target in the image refers to a specific object in the depth image.
  • the target in the image is a real face.
  • the terminal can calculate the distance value between the target and the camera module in the image according to the acquired depth image.
  • the terminal can calculate the distance between the real face and the camera module of the terminal according to the depth image to be 20 cm.
  • the first processing unit 220 or the security processing unit 240 can be configured to calculate a distance value between the target and the camera module in the image based on the depth image.
  • Step 406 controlling the output of the laser module according to the distance value.
  • the terminal can control the output of the laser module according to the calculated distance value.
  • the terminal can control the operating frequency of the laser module or control the operating current of the laser module according to the distance value.
  • the first processing unit 220 can be configured to control the output of the laser module based on the distance value.
  • the distance value between the target and the camera module in the image is calculated according to the depth image, and the output of the laser module is controlled according to the distance value.
  • the terminal controls the output of the laser module according to the distance between the target and the camera module in the image.
  • the terminal can reduce the output of the laser module by controlling the output of the laser module. hurt.
  • the specific process of controlling the output of the laser module according to the distance value includes: when the distance value is less than or equal to the first preset distance value, the control laser module is turned off, when the distance value is greater than the first preset distance value and When the value is less than or equal to the second preset distance, the operating frequency or working current of the laser module is reduced.
  • the first preset distance value and the second preset distance value may be preset values, and the first preset distance value is smaller than the second preset distance value.
  • the distance value is less than or equal to the first preset distance value, it indicates that the distance between the target and the camera module in the image is relatively close, and the terminal can control the laser module to be turned off.
  • the target in the image is a human face
  • the first preset value is 20 cm
  • the distance between the face calculated by the terminal and the camera module is 10 cm
  • the terminal can control the laser module to be forcibly closed.
  • the terminal may reduce the working frequency of the laser module or The working current controls the laser output of the laser module.
  • the target in the image is a human face
  • the first preset value is 20 cm
  • the second preset value is 30 cm
  • the laser module emits laser spotted spots 30 times per second
  • the terminal calculates the face and The distance between the camera modules is 25 cm.
  • the terminal can reduce the number of times the laser module emits laser spots by 30 times per second by reducing the working frequency or working current of the laser module. 1 time.
  • the control laser module When the distance value is less than or equal to the first preset distance value, the control laser module is turned off, and when the distance value is greater than the first preset distance value and less than or equal to the second preset distance value, the operating frequency of the laser module is lowered or Working current.
  • the terminal controls the laser output of the laser module according to the distance between the calculated image target and the camera module, which can reduce the damage of the laser to the human eye.
  • a laser output control method provided may further include: acquiring a frequency of change of image content in an image acquired by the camera module, and controlling an output of the laser module according to the change frequency.
  • the frequency of change of the image content refers to the frequency of change of the target motion in the image.
  • the frequency of change of the image content is the frequency at which the face moves in the camera.
  • the terminal can control the output of the laser module according to the changing frequency of the image content.
  • the first processing unit 220 or the security processing unit 240 can be configured to acquire a change frequency of the image content in the image collected by the camera module, and control the output of the laser module according to the change frequency.
  • a laser output control method provided may further include a process of controlling a laser module output according to a change frequency, and the specific steps include:
  • step 502 the change frequency is compared with the preset frequency to obtain a comparison result.
  • the preset frequency refers to the number of times the preset target changes its position over a period of time.
  • the terminal can compare the frequency of change of the image content in the acquired image with a preset frequency, and obtain a comparison result.
  • the preset frequency is 1 time per second
  • the image content in the image is a human face
  • the variation frequency of the face is 2 times per second
  • the terminal can compare the change frequency with the preset frequency to obtain a change frequency greater than the preset frequency. Comparing results.
  • the first processing unit 220 or the security processing unit 240 can be used to compare the varying frequency with a preset frequency to obtain a comparison result.
  • Step 504 When the comparison result is that the change frequency is greater than the preset frequency, the operating frequency of the laser module is increased.
  • the terminal can control the laser module to increase the working frequency.
  • the frequency of change obtained by the terminal is 2 times per second
  • the preset frequency is 1 time per second
  • the change frequency is greater than the preset frequency, indicating that the position of the face changes frequently
  • the terminal can control the laser module to increase the working frequency to adapt.
  • the position of the face changes frequently.
  • the first processing unit 220 can be configured to increase the operating frequency of the laser module when the comparison result is that the change frequency is greater than the preset frequency.
  • Step 506 when the comparison result is that the change frequency is less than or equal to the preset frequency, reduce the operating frequency of the laser module.
  • the terminal can control the laser module to lower the working frequency.
  • the frequency of change obtained by the terminal is 2 times per second
  • the preset frequency is 3 times per second
  • the frequency of change is less than the preset frequency, indicating that the position change of the face is relatively rare
  • the terminal can control the laser module to reduce the working frequency to save Resources.
  • the first processing unit 220 can be configured to reduce the operating frequency of the laser module when the comparison result is that the change frequency is less than or equal to the preset frequency.
  • the comparison result is obtained by comparing the change frequency with the preset frequency.
  • the comparison result is that the change frequency is greater than the preset frequency
  • the operating frequency of the laser module is increased.
  • the comparison result is that the change frequency is less than or equal to the preset frequency
  • the laser is lowered.
  • the operating frequency of the module The terminal controls the laser output of the laser module according to the frequency of change of the image content in the image, so that the laser module can be maximized, and the damage to the human eye can be reduced in the case of saving resources.
  • a laser output control method is provided that can be applied in a video call.
  • the laser module in the camera module needs to be turned on.
  • the terminal detects that the laser module is turned on, the terminal can record the first moment when the laser module is turned on.
  • the laser module is always on, and the terminal can obtain the interval between the current time and the first time when the laser module works during the video call.
  • the terminal can reduce the operating frequency or working state of the laser module.
  • the terminal may also acquire a depth image acquired by the camera during the video call by the user, and calculate a distance value between the user and the camera module according to the depth image.
  • the terminal can control the laser module to be turned off to reduce the damage of the laser module user's human eye.
  • the terminal can reduce the working frequency or working current of the laser module to reduce the human eye of the laser module user. s damage.
  • the terminal can also obtain the change frequency of the position of the user in the image captured by the camera module during the video call by the user.
  • the terminal can improve the work of the laser module. Frequency or operating current.
  • the terminal can reduce the working frequency or working current of the laser module to reduce the damage to the user's human eye.
  • a laser output control method provided can also be applied in live broadcast.
  • the laser module in the camera module needs to be turned on.
  • the terminal detects that the laser module is turned on, the terminal can record the first moment when the laser module is turned on.
  • the laser module is always on, and the terminal can obtain the interval between the current moment of the laser module operation and the first moment during the live broadcast of the user.
  • the terminal can reduce the operating frequency or working state of the laser module.
  • the terminal may also acquire a depth image collected by the camera during the live broadcast of the user, and calculate a distance value between the user and the camera module according to the depth image.
  • the terminal can control the laser module to be turned off to reduce the damage of the laser module user's human eye.
  • the terminal can reduce the working frequency or working current of the laser module to reduce the human eye of the laser module user. s damage.
  • the terminal can also obtain the change frequency of the position of the user in the image collected by the camera module during the live broadcast of the user.
  • the terminal can improve the working frequency of the laser module. Or working current.
  • the terminal can reduce the working frequency or working current of the laser module to reduce the damage to the user's human eye.
  • a laser output control method is provided, the specific steps of implementing the method are as follows:
  • the terminal when detecting that the laser module is turned on, the terminal can record the first moment when the laser module is turned on.
  • the terminal can detect the working state of the installed camera module. Specifically, the terminal can detect the working state of the laser module and the visible light module in the camera module.
  • the working state of the laser module can be turned on or off, and the laser module can be switched between the two states.
  • the first moment refers to a specific time point when the working state of the laser module is the on state.
  • the terminal detects that the working state of the laser module is the on state, the terminal can record the first moment when the laser module is turned on.
  • the terminal can obtain the interval between the current time and the first time when the laser module works.
  • the current moment when the laser module works refers to the specific time point when the current working state of the laser module is the on state.
  • the terminal can obtain the specific time point when the laser module is in the current working state, that is, the current moment when the laser module works.
  • the terminal can calculate the time difference between the current time and the first time, and the time difference is the interval time between the current time and the first time when the laser module works.
  • the preset duration refers to a preset period of time.
  • the preset duration can be 5 seconds.
  • the calculated interval duration can be compared with the preset duration. When the interval duration meets the preset duration, the terminal can control the laser output of the laser module.
  • the laser output of the terminal control laser module can reduce the operating frequency of the laser module.
  • the terminal can control the laser module, so that the working frequency of the laser module is lower than the original working frequency.
  • the laser output of the terminal control laser module can also reduce the operating current of the laser module.
  • the terminal can control the laser module, so that the operating current of the laser module is lower than the original operating current. For example, it is possible to control the number of times the laser module emits laser speckles from 30 times per second, and the number of times the laser spots are emitted per second is reduced to one.
  • the laser output of the terminal control laser module can also obtain the depth image acquired by the camera module, and the terminal can calculate the distance value between the target and the camera module in the image according to the depth image, and the terminal can control the laser mode according to the distance value.
  • the output of the group When the laser light in the camera module is turned on, the terminal can collect the speckle image through the laser camera.
  • the terminal receives the image acquisition instruction sent by the camera module, and the terminal may collect the speckle image through the laser camera according to the received image acquisition instruction, and the processing unit in the terminal calculates the depth image according to the speckle image.
  • the target in the image refers to a specific object in the depth image.
  • the target in the image is a real face.
  • the terminal can calculate the distance value between the target and the camera module in the image according to the acquired depth image.
  • the terminal can control the output of the laser module according to the calculated distance value.
  • the terminal can control the operating frequency of the laser module or control the operating current of the laser module according to the distance value.
  • the terminal when the distance value is less than or equal to the first preset distance value, the terminal may control the laser module to be turned off, and when the distance value is greater than the first preset distance value and less than or equal to the second preset distance value, the terminal may reduce the laser The operating frequency or operating current of the module.
  • the distance value is less than or equal to the first preset distance value, it indicates that the distance between the target and the camera module in the image is relatively close, and the terminal can control the laser module to be turned off.
  • the terminal may reduce the working frequency of the laser module or The working current controls the laser output of the laser module.
  • the laser output of the terminal control laser module may also be a frequency of changing the image content in the image acquired by the camera module, and the terminal may control the output of the laser module according to the changing frequency.
  • the frequency of change of the image content refers to the frequency of change of the target motion in the image.
  • the frequency of change of the image content is the frequency at which the face moves in the camera.
  • the terminal can control the output of the laser module according to the changing frequency of the image content.
  • the terminal can compare the change frequency with the preset frequency to obtain a comparison result.
  • the comparison result is that the change frequency is greater than the preset frequency
  • the terminal can improve the working frequency of the laser module, and when the comparison result is the change frequency is less than or equal to the preset At the frequency, the terminal can reduce the operating frequency of the laser module.
  • the preset frequency refers to the number of times the preset target changes its position over a period of time.
  • the terminal can compare the frequency of change of the image content in the acquired image with a preset frequency, and obtain a comparison result.
  • the comparison result obtained by the terminal is that the change frequency is greater than the preset frequency, it indicates that the position of the image content in the image changes more frequently, and the terminal can control the laser module to increase the working frequency.
  • the comparison result obtained by the terminal is that the change frequency is less than or equal to the preset frequency
  • the number of times the image content position changes in the image is less, and the terminal can control the laser module to lower the working frequency.
  • a laser output control device including: a first time recording module 610, an interval duration acquisition module 620, and a laser output control module 630, wherein:
  • the first time recording module 610 is configured to record the first moment when the laser module is turned on when detecting that the laser module is turned on.
  • the interval duration acquisition module 620 is configured to acquire an interval duration between a current moment of operation of the laser module and the first moment.
  • the laser output control module 630 is configured to control the laser output of the laser module when the interval duration meets the preset duration.
  • the laser output control module 630 can also be configured to reduce the operating frequency of the laser module when the interval duration meets the preset duration.
  • the laser output control module 630 can also be configured to reduce the operating current of the laser module when the interval duration meets the preset duration.
  • the interval duration acquisition module 620 can also be configured to acquire a depth image acquired by the camera module, calculate a distance value between the target and the camera module in the image according to the depth image, and control the laser module according to the distance value. Output.
  • the interval duration acquisition module 620 is further configured to: when the distance value is less than or equal to the first preset distance value, control the laser module to be turned off, when the distance value is greater than the first preset distance value and less than or equal to the first When the distance value is preset, the operating frequency or working current of the laser module is reduced.
  • the laser output control module 630 can also be configured to acquire a change frequency of the image content in the image captured by the camera module, and control the output of the laser module according to the change frequency.
  • the laser output control module 630 can also be configured to compare the change frequency with the preset frequency to obtain a comparison result.
  • the comparison result is that the change frequency is greater than the preset frequency
  • the operating frequency of the laser module is improved.
  • the result is that the operating frequency of the laser module is reduced when the frequency of change is less than or equal to the preset frequency.
  • each module in the above laser output control device is for illustrative purposes only. In other embodiments, the laser output control device may be divided into different modules as needed to perform all or part of the functions of the above-described laser output control device.
  • each of the above-described laser output control devices may be implemented in whole or in part by software, hardware, and combinations thereof.
  • Each of the above modules may be embedded in or independent of the processor in the computer device, or may be stored in a memory in the computer device in a software form, so that the processor invokes the operations corresponding to the above modules.
  • the first time recording module 610 can be the first processing unit 220
  • the interval duration acquisition module 620 can be the first processing unit 220 and/or the security processing unit 240
  • the laser output control module 630 can be the first processing unit. 220 and/or security processing unit 240 and the like.
  • each module in the laser output control device may be in the form of a computer program.
  • the computer program can run on a terminal or server.
  • the program modules of the computer program can be stored on the memory of the terminal or server.
  • the terminal 200 provided in the embodiment of the present application includes a memory 202 and a processor 201.
  • the memory 202 stores a computer program.
  • the processor 201 executes the following laser output control method. Step: when detecting that the laser module is turned on, recording the first moment when the laser module is turned on; obtaining the interval between the current moment of the working of the laser module and the first moment; and controlling the laser when the interval duration meets the preset duration The laser output of the module.
  • controlling the laser output of the laser module includes: reducing the operating frequency of the laser module when the interval duration meets the preset duration.
  • controlling the laser output of the laser module further includes: reducing the operating current of the laser module when the interval duration meets the preset duration.
  • the method before controlling the output of the laser module, the method further includes: acquiring a depth image acquired by the camera module; calculating a distance value between the target and the camera module in the image according to the depth image; and controlling according to the distance value The output of the laser module.
  • controlling the output of the laser module according to the distance value comprises: controlling the laser module to be turned off when the distance value is less than or equal to the first preset distance value; and when the distance value is greater than the first preset distance value and less than When the value is equal to the second preset distance, the operating frequency or working current of the laser module is reduced.
  • the method further includes: obtaining a change frequency of the image content in the image captured by the camera module; and controlling the output of the laser module according to the change frequency.
  • controlling the output of the laser module according to the changing frequency comprises: comparing the changing frequency with the preset frequency to obtain a comparison result; and when the comparison result is that the changing frequency is greater than the preset frequency, increasing the working frequency of the laser module When the comparison result is that the change frequency is less than or equal to the preset frequency, the operating frequency of the laser module is lowered.
  • the embodiment of the present application also provides a computer readable storage medium.
  • One or more non-transitory computer readable storage media containing computer executable instructions that, when executed by one or more processors, cause the processor to perform the steps of the laser output control method described above .
  • the embodiment of the present application further provides a computer readable storage medium, where a computer program is stored thereon, and when the computer program is executed by the processor, the following laser output control method is implemented: when detecting that the laser module is turned on, recording the laser mode The first moment when the group is turned on; the interval between the current moment of the working of the laser module and the first moment is obtained; and when the interval duration satisfies the preset duration, the laser output of the laser module is controlled.
  • controlling the laser output of the laser module includes: reducing the operating frequency of the laser module when the interval duration meets the preset duration.
  • controlling the laser output of the laser module further includes: reducing the operating current of the laser module when the interval duration meets the preset duration.
  • the method before controlling the output of the laser module, the method further includes: acquiring a depth image acquired by the camera module; calculating a distance value between the target and the camera module in the image according to the depth image; and controlling according to the distance value The output of the laser module.
  • controlling the output of the laser module according to the distance value comprises: controlling the laser module to be turned off when the distance value is less than or equal to the first preset distance value; and when the distance value is greater than the first preset distance value and less than When the value is equal to the second preset distance, the operating frequency or working current of the laser module is reduced.
  • the method further includes: obtaining a change frequency of the image content in the image captured by the camera module; and controlling the output of the laser module according to the change frequency.
  • controlling the output of the laser module according to the changing frequency comprises: comparing the changing frequency with the preset frequency to obtain a comparison result; and when the comparison result is that the changing frequency is greater than the preset frequency, increasing the working frequency of the laser module When the comparison result is that the change frequency is less than or equal to the preset frequency, the operating frequency of the laser module is lowered.
  • a computer program product comprising instructions that, when run on a computer, cause the computer to perform the laser output control method described above.
  • the embodiment of the present application further provides a terminal.
  • the above terminal includes an image processing circuit, and the image processing circuit can be implemented by using hardware and/or software components, and can include various processing units defining an ISP (Image Signal Processing) pipeline.
  • Figure 20 is a schematic illustration of an image processing circuit in one embodiment. As shown in FIG. 20, for convenience of explanation, only various aspects of the image processing technique related to the embodiment of the present application are shown.
  • the image processing circuit includes an ISP processor 740 (which may be the aforementioned first processing unit 220 and/or second processing unit 230) and control logic 750.
  • Image data captured by imaging device 710 (which may include laser camera 212 and RGB camera 216 as previously described) is first processed by ISP processor 740, which analyzes the image data to capture one or both of imaging device 710 that may be used to determine and/or image device 710. Image statistics for multiple control parameters.
  • Imaging device 710 can include a laser camera 212 and an RGB camera 216 having one or more lenses 712 and image sensors 714.
  • Image sensor 714 can include a color filter array (such as a Bayer filter) that can capture light intensity and wavelength information captured with each imaging pixel of image sensor 714 and provide a set of primitives that can be processed by ISP processor 740 Image data.
  • a sensor 720 such as a gyroscope, can provide acquired image processing parameters (such as anti-shake parameters) to the ISP processor 740 based on the sensor 720 interface type.
  • the sensor 720 interface may utilize a SMIA (Standard Mobile Imaging Architecture) interface, other serial or parallel camera interfaces, or a combination of the above.
  • SMIA Standard Mobile Imaging Architecture
  • image sensor 714 can also transmit raw image data to sensor 720, sensor 720 can provide raw image data to ISP processor 740 based on sensor 720 interface type, or sensor 720 stores raw image data to image memory 730 (may be In the aforementioned random access memory 226).
  • the ISP processor 740 processes the raw image data pixel by pixel in a variety of formats.
  • each image pixel can have a bit depth of 8, 10, 12, or 14 bits, and the ISP processor 740 can perform one or more image processing operations on the raw image data, collecting statistical information about the image data. Among them, image processing operations can be performed with the same or different bit depth precision.
  • the ISP processor 740 can also receive image data from the image memory 730.
  • sensor 720 interface transmits raw image data to image memory 730, which is then provided to ISP processor 740 for processing.
  • Image memory 730 can be part of a memory device, a storage device, or a separate dedicated memory within a terminal, and can include DMA (Direct Memory Access) features.
  • DMA Direct Memory Access
  • the ISP processor 740 can perform one or more image processing operations, such as time domain filtering.
  • the processed image data can be sent to image memory 730 for additional processing before being displayed.
  • the ISP processor 740 receives the processed data from the image memory 730 and performs image data processing in the original domain and in the RGB and YCbCr color spaces.
  • the image data processed by the ISP processor 740 can be output to the display 770 for viewing by the user and/or further processed by a graphics engine or a GPU (Graphics Processing Unit). Additionally, the output of ISP processor 740 can also be sent to image memory 730, and display 770 can read image data from image memory 730.
  • image memory 730 can be configured to implement one or more frame buffers. Additionally, the output of ISP processor 740 can be sent to encoder/decoder 760 to encode/decode image data. The encoded image data can be saved and decompressed before being displayed on the display 770 device. Encoder/decoder 760 can be implemented by a CPU or GPU or coprocessor.
  • the statistics determined by the ISP processor 740 can be sent to the control logic 750 unit.
  • the statistics may include image sensor 714 statistics such as auto exposure, auto white balance, auto focus, flicker detection, black level compensation, lens 712 shading correction, and the like.
  • Control logic 750 can include a processor and/or a microcontroller that executes one or more routines, such as firmware, and one or more routines can determine control parameters and ISP processing of imaging device 710 based on received statistical data.
  • Control parameters of the 740 may include sensor 720 control parameters (eg, gain, integration time of exposure control, anti-shake parameters, etc.), camera flash control parameters, lens 712 control parameters (eg, focus or zoom focal length), or these A combination of parameters.
  • the ISP control parameters may include gain levels and color correction matrices for automatic white balance and color adjustment (eg, during RGB processing), and lens 712 shading correction parameters.
  • Non-volatile memory can include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory can include random access memory (RAM), which acts as an external cache.
  • RAM is available in a variety of forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), dual data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), synchronization.
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDR SDRAM dual data rate SDRAM
  • ESDRAM enhanced SDRAM
  • synchronization Link (Synchlink) DRAM (SLDRAM), Memory Bus (Rambus) Direct RAM (RDRAM), Direct Memory Bus Dynamic RAM (DRDRAM), and Memory Bus Dynamic RAM (RDRAM).
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, for example two, three, unless specifically defined otherwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Semiconductor Lasers (AREA)
  • Projection Apparatus (AREA)

Abstract

一种激光投射器(10)的控制系统(30)、激光投射组件(60)、终端(100)、激光投射器(10)的控制方法、激光输出控制方法、激光输出控制装置和计算机可读存储介质。控制系统(30)包括与激光投射器(10)连接的第一驱动电路(31)。第一驱动电路(31)用于输出电信号以驱动激光投射器(10)投射激光、及在输出电信号的持续时长大于或等于预设阈值时关闭激光投射器(10)。

Description

激光投射器的控制系统及控制方法、激光投射组件和终端
优先权信息
本申请请求2018年5月30日向中国国家知识产权局提交的、专利申请号为201810541431.7的专利申请的优先权和权益,以及2018年4月28日向中国国家知识产权局提交的、专利申请号为201810404507.1的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及消费性电子技术领域,更具体而言,涉及一种激光投射器的控制系统、激光投射组件、终端、激光投射器的控制方法、激光输出控制方法、激光输出控制装置和计算机可读存储介质。
背景技术
随着人脸识别技术的发展,越来越多的终端设备可以通过人脸识别进行解锁、支付等。在人脸识别的过程中,终端设备往往通过激光投射器向目标物体投射激光,再由红外摄像头采集由目标物体调制后的激光图案,从而形成深度图像以进行人脸识别。
发明内容
本申请实施方式提供一种激光投射器的控制系统、激光投射组件、终端、激光投射器的控制方法、激光输出控制方法、激光输出控制装置和计算机可读存储介质。
本申请实施方式的激光投射器的控制系统包括与所述激光投射器连接的第一驱动电路,所述第一驱动电路用于输出电信号以驱动所述激光投射器投射激光、及在输出所述电信号的持续时长大于或等于预设阈值时关闭所述激光投射器。
本申请实施方式的激光投射组件包括激光投射器和上述控制系统,所述激光投射器与所述第一驱动电路连接。
本申请实施方式的终端包括激光投射器和上述控制系统,所述第一驱动电路与所述激光投射器连接。
本申请实施方式的激光投射器的控制方法用于控制激光投射器,所述激光投射器与第一驱动电路连接,所述控制方法包括:第一驱动电路输出电信号以驱动所述激光投射器投射激光;及在输出所述电信号的持续时长大于或等于预设阈值时关闭所述激光投射器。
本申请实施方式的激光输出控制方法包括:当检测到激光模组开启时,记录所述激光模组开启的第一时刻;获取所述激光模组工作的当前时刻与所述第一时刻之间的间隔时长;当所述间隔时长满足预设时长时,控制所述激光模组的激光输出。
本申请实施方式的激光输出控制装置包括第一时刻记录模块、间隔时长获取模块和激光输出控制模块;第一时刻记录模块用于当检测到激光模组开启时,记录所述激光模组开启的第一时刻;间隔时长获取模块用于获取所述激光模组工作的当前时刻与所述第一时刻之间的间隔时长;激光输出控制模块用于当所述间隔时长满足预设时长时,控制所述激光模组的激光输出。
本申请实施方式的终端包括存储器及处理器,所述存储器中储存有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行上述激光输出控制方法的步骤。
本申请实施方式的计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述激光输出控制方法的步骤。
本申请的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实施方式的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请某些实施方式的终端的结构示意图;
图2是本申请某些实施方式的终端的模块示意图;
图3是本申请某些实施方式的第一驱动电路输出的脉冲波信号的示意图;
图4是本申请某些实施方式的终端的模块示意图;
图5至图8是本申请某些实施方式的激光投射器的控制方法的流程示意图;
图9是本申请某些实施方式的激光投射组件的结构示意图;
图10至图12是本申请某些实施方式的激光投射器的部分结构示意图。
图13是本申请某些实施方式的激光输出控制方法的应用环境图;
图14是本申请某些实施方式的终端的内部结构示意图;
图15是本申请某些实施方式的激光输出控制方法的流程图;
图16是本申请某些实施方式的根据距离数值控制激光模组输出的方法流程图;
图17是本申请某些实施方式的根据变化频率控制激光模组输出的方法流程图;
图18是本申请某些实施方式的激光输出控制装置的结构框图;
图19是本申请某些实施方式的终端的模块示意图;
图20是本申请某些实施方式的图像处理电路的示意图。
具体实施方式
以下结合附图对本申请的实施方式作进一步说明。附图中相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。另外,下面结合附图描述的本申请的实施方式是示例性的,仅用于解释本申请的实施方式,而不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
请参阅图1和图2,本申请实施方式的终端100包括激光投射器10、红外摄像头20和控制系统30。终端100可以是手机、平板电脑、智能手表、智能手环、智能穿戴设备等,在本申请实施例中,以终端100是手机为例进行说明,可以理解,终端100的具体形式并不限于手机。
激光投射器10能够向目标物体投射激光,激光可以是红外光,同时激光投射器10投射的激光可以是带有特定的散斑或条纹等图案。红外摄像头20能够采集目标物体的红外图像,或接收由目标物体调制后的激光图案。为了能够得到较为清晰的激光图案,通常需要以一定的光功率向目标物体连续发射多帧激光,然而,激光投射器10如果持续向外发射激光,则激光可能灼伤用户,尤其容易伤害用户的眼睛,因此需要避免激光投射器10持续向外发射激光。
控制系统30包括第一驱动电路31、第二驱动电路32、应用处理器(Application Processor)33、监视定时器34和微处理器36。
第一驱动电路31与激光投射器10连接,第一驱动电路31可用于输出电信号以驱动激光投射器10投射激光,具体地第一驱动电路31作为激光投射器10的电流源,如果第一驱动电路31被关闭,则激光投射器10无法向外发射激光。第二驱动电路32与第一驱动电路31连接,第二驱动电路32可用于给第一驱动电路31供电,例如第一驱动电路31可以是DC/DC电路。第一驱动电路31可以单独封装成驱动芯片,第二驱动电路32也可以单独封装成驱动芯片,也可以是第一驱动电路31和第二驱动电路32共同封装在一个驱动芯片内,而驱动芯片均可以设置在激光投射器10的基板或电路板上。
请结合图3(a),当第一驱动电路31正常工作时,第一驱动电路31输出脉冲波信号(例如,方波信号),以使得激光投射器10连续发射多帧激光;请结合图3(b),当第一驱动电路31发生故障时,第一驱动电路31将保持输出高电平信号,使得激光投射器10持续向外发射激光。为了防止激光投射器10持续向外发射激光伤害到用户,在本申请实施例中,可以通过第一驱动电路31关闭激光投射器10。
具体地,第一驱动电路31可集成有计时功能,第一驱动电路31可检测自身输出电信号的持续时长是否大于或等于预定阈值,当第一驱动电路31输出电信号的持续时长大于或等于预定阈值时,第一 驱动电路31停止输出电信号以关闭激光投射器10。其中,预定阈值可以为[3,10]毫秒。例如,预定阈值可以设置为3毫秒、4毫秒、5毫秒、6毫秒、7毫秒、8毫秒、9毫秒、10毫秒等及任意在上述区间内的时长。
请再次参阅图2,应用处理器33可以作为终端100的系统,应用处理器33可以与第一驱动电路31连接、应用处理器33还可以与红外摄像头20连接、应用处理器33还可以与可见光摄像头50连接。应用处理器33还可以与终端100的多个电子元器件连接并控制该多个电子元器件按照预定的模式运行,例如控制终端100的显示屏显示预定的画面、控制终端100的天线发送或接收预定的数据、控制终端100的可见光摄像头50获取彩色图像并处理该彩色图像、控制红外摄像头20的电源的启闭、关闭(pwdn)红外摄像头20或重置(reset)红外摄像头20等。
应用处理器33还可用于控制第一驱动电路31工作以驱动激光投射器10投射激光。具体地,应用处理器33以预定时间间隔向监视定时器34发送预定信号,以通过监视定时器34控制第一驱动电路31工作。例如应用处理器33每隔50毫秒向监视定时器34发送预定信号。监视定时器34接收应用处理器33发送的预定信号。在本申请实施例中,为了防止激光投射器10持续向外发射激光伤害到用户,可以通过应用处理器33控制监视定时器34关闭第一驱动电路31以关闭激光投射器10。
具体地,当激光投射器10持续向外发射激光,即第一驱动电路31输出电信号的持续时长大于或等于预定阈值时,第一驱动电路31向应用处理器33发送超时信号。当应用处理器33接收到第一驱动电路31发送的超时信号时,应用处理器33停止向监视定时器34发送上述预定信号。监视定时器34与第一驱动电路31连接,监视定时器34与应用处理器33连接,监视定时器34用于在预定时长内未接收到预定信号时,关闭第一驱动电路31以关闭激光投射器10。其中预定时长可以是终端100在出厂时设定好的,也可以依据用户在终端100上进行自定义设置。
本申请实施例中,监视定时器34的具体形式可以是计数器,监视定时器34接收到预定信号后,监视定时器34从一个数字开始以一定的速度开始倒计数。如果第一驱动电路31正常输出脉冲波信号,在倒计数到0之前,应用处理器33会再发送预定信号,监视定时器34接收到预定信号后将倒计数复位;如果第一驱动电路31输出电信号的持续时长大于或等于预定阈值,监视定时器34计数到0时,应用处理器33未发送预定信号,监视定时器34视为判断第一驱动电路31运行故障,此时监视定时器34发出信号关闭第一驱动电路31以使激光投射器10关闭。
在一个例子中,监视定时器34可以设置在应用处理器33外,监视定时器34可以是一个外挂的定时器芯片,监视定时器34可以与应用处理器33的一个I/O引脚相连接而接收应用处理器33发出的预定信号。外挂的监视定时器34工作的可靠性较高。在另一个例子中,监视定时器34可以集成在应用处理器33内,监视定时器34的功能可以由应用处理器33的内部定时器实现,如此可以简化控制系统30的硬件电路设计。
在某些实施方式中,监视定时器34还用于在预定时长内未接收到预定信号时,发出用于重启应用处理器33的复位信号。如前述,当监视定时器34在预定时长内未接收到预定信号时,应用处理器33已经发生故障,此时,监视定时器34发出复位信号以使应用处理器33复位并正常工作。
具体地,在一个例子中,复位信号可以直接由应用处理器33接收,复位信号在应用处理器33的执行程序中拥有较高的级别,应用处理器33能够优先对复位信号产生响应并进行复位。在另一个例子中,复位信号也可以发送到外挂在应用处理器33上的复位芯片上,复位芯片响应复位信号后强制应用处理器33进行复位。
在某些实施方式中,预定时长为[50,150]毫秒。具体地,预定时长可以设置为50毫秒、62毫秒、75毫秒、97毫秒、125毫秒、150毫秒等及任意在上述区间内的时长。可以理解,如果预定时长设置的过短,则要求应用处理器33过于频繁地发送预定信号,会占用应用处理器33过多的处理空间而造成终端100运行容易发生卡顿。如果预定时长设置的过长,则第一驱动电路31的故障不能及时地被检测到,也就是不能及时地将激光投射器10关闭,不利于安全使用激光投射器10。将预定时长设置为[50,150]毫秒,能够较好地兼顾终端100的流畅度和安全性。
微处理器36可以是处理芯片,微处理器36与应用处理器33、微处理器36与第一驱动电路31、微处理器36与红外摄像头20均连接。
微处理器36与应用处理器33连接以使应用处理器33可以重置微处理器36、唤醒(wake)微处 理器36、纠错(debug)微处理器36等,微处理器36可通过移动产业处理器接口(Mobile Industry Processor Interface,MIPI)361与应用处理器33连接,具体地,微处理器36通过移动产业处理器接口361与应用处理器33的可信执行环境(Trusted Execution Environment,TEE)331连接,以将微处理器36中的数据直接传输到可信执行环境331中。其中,可信执行环境331中的代码和内存区域都是受访问控制单元控制的,不能被非可信执行环境(Rich Execution Environment,REE)332中的程序所访问,可信执行环境331和非可信执行环境332均可以形成在应用处理器33中。
微处理器36可以通过脉冲宽度调制(Pulse Width Modulation,PWM)362接口与第一驱动电路31连接,微处理器36与红外摄像头20可以通过I2C总线(Inter-Integrated Circuit)70连接,微处理器36可以给红外摄像头20提供采集红外图像和激光图案的时钟信息,红外摄像头20采集的红外图像和激光图案可以通过移动产业处理器接口361传输到微处理器36中。
在一个实施例中,可信执行环境331中可以存储有用于验证身份的红外模板和深度模板,红外模板可以是用户预先输入的人脸红外图像,深度模板可以是用户预先输入的人脸深度图像。红外模板与深度模板存储在可信执行环境331中,不容易被篡改和盗用,终端100内的信息的安全性较高。
当用户需要验证身份时,微处理器36控制红外摄像头20采集用户的红外图像,并获取该红外图像后传输至应用处理器33的可信执行环境331中,应用处理器33在可信执行环境331中将该红外图像与红外模板进行比对,如果二者相匹配,则输出红外模板验证通过的验证结果。在比对是否匹配的过程中,红外图像和红外模板不会被其他程序获取、篡改或盗用,提高终端100的信息安全性。
进一步地,微处理器36可以控制第一驱动电路31驱动激光投射器10向外投射激光,且控制红外摄像头20采集由目标物体调制的激光图案,微处理器36获取并处理该激光图案以得到深度图像。该深度图像传输至应用处理器33的可信执行环境331中,应用处理器33在可信执行环境331中将该深度图像与深度模板进行比对,如果二者相匹配,则输出深度模板验证通过的验证结果。在比对是否匹配的过程中,深度图像和深度模板不会被其他程序获取、篡改或盗用,提高终端100的信息安全性。在本申请实施例中,为了防止激光投射器10持续向外发射激光伤害到用户,可以通过微处理器36控制监视定时器34关闭第一驱动电路31以关闭激光投射器10。
请参阅图4,微处理器36以预设时间间隔向监视定时器34发送预设信号,以通过监视定时器34控制第一驱动电路31工作。例如微处理器36每隔50毫秒向监视定时器34发送预设信号。监视定时器34接收微处理器36发送的预设信号。
当激光投射器10持续向外发射激光,即第一驱动电路31输出电信号的持续时长大于或等于预定阈值时,第一驱动电路31向微处理器36发送超时信号。当微处理器36接收到第一驱动电路31发送的超时信号时,微处理器36停止向监视定时器34发送上述预设信号。监视定时器34与第一驱动电路31连接,监视定时器34与微处理器36连接,监视定时器34用于在预设时长内未接收到预设信号时,关闭第一驱动电路31以关闭激光投射器10。其中预设时长可以是终端100在出厂时设定好的,也可以依据用户在终端100上进行自定义设置。
本申请实施例中,监视定时器34的具体形式可以是计数器,监视定时器34接收到预设信号后,监视定时器34从一个数字开始以一定的速度开始倒计数。如果第一驱动电路31正常输出脉冲波信号,在倒计数到0之前,微处理器36会再发送预设信号,监视定时器34接收到预设信号后将倒计数复位;如果第一驱动电路31输出电信号的持续时长大于或等于预定阈值,监视定时器34计数到0时,微处理器36未发送预设信号,监视定时器34视为判断第一驱动电路31运行故障,此时监视定时器34发出信号关闭第一驱动电路31以使激光投射器10关闭。
在一个例子中,监视定时器34可以设置在微处理器36外,监视定时器34可以是一个外挂的定时器芯片,监视定时器34可以与微处理器36的一个I/O引脚相连接而接收微处理器36发出的预设信号。外挂的监视定时器34工作的可靠性较高。在另一个例子中,监视定时器34可以集成在微处理器36内,监视定时器34的功能可由微处理器36的内部定时器实现,如此可以简化控制系统30的硬件电路设计。
在某些实施方式中,预设时长为[50,150]毫秒。具体地,预设时长可以设置为50毫秒、62毫秒、75毫秒、97毫秒、125毫秒、150毫秒等及任意在上述区间内的时长。可以理解,如果预设时长设置的过短,则要求微处理器36过于频繁地发送预设信号,会占用微处理器36过多的处理空间而造成终端100运行容易发生卡顿。如果预设时长设置的过长,则第一驱动电路31的故障不能及时地被检测到, 也就是不能及时地将激光投射器10关闭,不利于安全使用激光投射器10。将预设时长设置为[50,150]毫秒,能够较好地兼顾终端100的流畅度和安全性。
请参阅图2和图4,控制系统30还可包括控制电路35。
控制电路35连接第一驱动电路31和激光投射器10。控制电路35包括电阻元件351、检测元件352和开关元件353。检测元件352可以为电流表,检测元件352与电阻元件351及第一驱动电路31串联并用于检测流过电阻元件351的电流。开关元件353与激光投射器10连接,开关元件353在流过电阻元件351的电流大于预设电流值时断开以关闭激光投射器10。
在一个例子中,第一驱动电路31输出电信号以驱动激光投射器10投射每帧激光时,第一驱动电路31输出的电流是依次增大的。例如,第一驱动电路31输出的电流由100mA增大至200mA。而当第一驱动电路31发生故障时,第一驱动电路31保持输出高电平信号,第一驱动电路31输出的电流由100mA增大至200mA后还会持续增加。此时,预设电流值可以设置为220mA。由于电阻元件351与第一驱动电路31串联,因此,流过第一驱动电路31的电流即是流过电阻元件351的电流,开关元件353在流过电阻元件351的电流大于220mA时断开以关闭激光投射器10。
当然,在其他实施方式中,检测元件352可以为电压表,检测元件352与电阻元件351并联并用于检测电阻元件351两端的电压。开关元件353在电阻元件351两端的电压大于预设电压值时断开以关闭激光投射器10,在此不再详细展开。
请参阅图5,本申请实施方式的激光投射器10的控制方法用于控制激光投射器10。激光投射器10与第一驱动电路31连接。控制方法包括步骤:
01:第一驱动电路31输出电信号以驱动激光投射器10投射激光;及
02:在输出电信号的持续时长大于或等于预设阈值时关闭激光投射器10。
请参阅图6,在某些实施方式中,在输出电信号的持续时长大于或等于预设阈值时关闭激光投射器10的步骤(即步骤02)包括:
022:在持续时长大于或等于预定阈值时,停止输出电信号。
请参阅图7,在某些实施方式中,控制方法还包括:
03:接收应用处理器33发送的预定信号;
04:在预定时长内未接收到预定信号时,第一驱动电路31关闭;
05:在持续时长大于或等于预定阈值时,第一驱动电路31向应用处理器33发送超时信号;及
06:在应用处理器33接收到超时信号时,应用处理器33停止向监视定时器34发送预定信号。
请参阅图8,在某些实施方式中,控制方法还包括:
07:接收微处理器36发送的预设信号;
08:在预设时长内未接收到预设信号时,第一驱动电路31关闭;
09:在持续时长大于或等于预定阈值时,第一驱动电路31向微处理器36发送超时信号;及
10:在微处理器36接收到超时信号时,微处理器36停止向监视定时器34发送预设信号。
本申请实施方式的激光投射器10的控制方法中,若第一驱动电路31输出电信号的持续时长大于或等于预设阈值,则判断第一驱动电路31发生故障,并关闭激光投射器10,防止激光投射器10持续向外发射激光而伤害到用户。控制方法的实施细节可以参考上述对终端100的具体描述,在此不再赘述。
请参阅图9,本申请实施方式还提供一种激光投射组件60,激光投射组件60包括激光投射器10、第一驱动电路31、第二驱动电路32、监视定时器34和控制电路35。此时,第一驱动电路31、第二驱动电路32和监视定时器34均可以集成到激光投射器10的基板组件11上。
请参阅图9,在某些实施方式中,激光投射器10包括基板组件11、镜筒12、光源13、准直元件14、衍射光学元件(diffractive optical elements,DOE)15、及保护盖16。
基板组件11包括基板111和电路板112。电路板112设置在基板111上,电路板112用于连接光源13与终端100的主板,电路板112可以是硬板、软板或软硬结合板。在如图9所示的实施例中,电路板112上开设有通孔1121,光源13固定在基板111上并与电路板112电连接。基板111上可以开设有散热孔1111,光源13或电路板112工作产生的热量可以由散热孔1111散出,散热孔1111内还可以填充导热胶,以进一步提高基板组件11的散热性能。
镜筒12与基板组件11固定连接,镜筒12形成有收容腔121,镜筒12包括顶壁122及自顶壁122延伸的环形的周壁124,周壁124设置在基板组件11上,顶壁122开设有与收容腔121连通的通光孔1212。周壁124可以与电路板112通过粘胶连接。
保护盖16设置在顶壁122上。保护盖16包括开设有出光通孔160的挡板162及自挡板162延伸的环形侧壁164。
光源13与准直元件14均设置在收容腔121内,衍射光学元件15安装在镜筒12上,准直元件14与衍射光学元件15依次设置在光源13的发光光路上。准直元件14对光源13发出的激光进行准直,激光穿过准直元件14后再穿过衍射光学元件15以形成激光图案。
光源13可以是垂直腔面发射激光器(Vertical Cavity Surface Emitting Laser,VCSEL)或者边发射激光器(edge-emitting laser,EEL),在如图9所示的实施例中,光源13为边发射激光器,具体地,光源13可以为分布反馈式激光器(Distributed Feedback Laser,DFB)。光源13用于向收容腔112内发射激光。请结合图10,光源13整体呈柱状,光源13远离基板组件11的一个端面形成发光面131,激光从发光面131发出,发光面131朝向准直元件14。光源13固定在基板组件11上,具体地,光源13可以通过封胶17粘结在基板组件11上,例如光源13的与发光面131相背的一面粘接在基板组件11上。请结合图9和图11,光源13的侧面132也可以粘接在基板组件11上,封胶17包裹住四周的侧面132,也可以仅粘结侧面132的某一个面与基板组件11或粘结某几个面与基板组件11。此时封胶17可以为导热胶,以将光源13工作产生的热量传导至基板组件11中。
请参阅图9,衍射光学元件15承载在顶壁122上并收容在保护盖16内。衍射光学元件15的相背两侧分别与保护盖16及顶壁122抵触,挡板162包括靠近通光孔1212的抵触面1622,衍射光学元件15与抵触面1622抵触。
具体地,衍射光学元件15包括相背的衍射入射面152和衍射出射面154。衍射光学元件15承载在顶壁122上,衍射出射面154与挡板162的靠近通光孔1212的表面(抵触面1622)抵触,衍射入射面152与顶壁162抵触。通光孔1212与收容腔121对准,出光通孔160与通光孔1212对准。顶壁122、环形侧壁164及挡板162与衍射光学元件15抵触,从而防止衍射光学元件15沿出光方向从保护盖16内脱落。在某些实施方式中,保护盖16通过胶水粘贴在顶壁162上。
上述的激光投射器10的光源13采用边发射激光器,一方面边发射激光器较VCSEL阵列的温漂较小,另一方面,由于边发射激光器为单点发光结构,无需设计阵列结构,制作简单,激光投射器10的光源成本较低。
分布反馈式激光器的激光在传播时,经过光栅结构的反馈获得功率的增益。要提高分布反馈式激光器的功率,需要通过增大注入电流和/或增加分布反馈式激光器的长度,由于增大注入电流会使得分布反馈式激光器的功耗增大并且出现发热严重的问题,因此,为了保证分布反馈式激光器能够正常工作,需要增加分布反馈式激光器的长度,导致分布反馈式激光器一般呈细长条结构。当边发射激光器的发光面131朝向准直元件14时,边发射激光器呈竖直放置,由于边发射激光器呈细长条结构,边发射激光器容易出现跌落、移位或晃动等意外,因此通过设置封胶17能够将边发射激光器固定住,防止边发射激光器发生跌落、位移或晃动等意外。
请参阅图9和图12,在某些实施方式中,光源13也可以采用如图12所示的固定方式固定在基板组件11上。具体地,激光投射器10包括多个支撑块18,支撑块18可以固定在基板组件11上,多个支撑块18共同包围光源13,在安装时可以将光源13直接安装在多个支撑块18之间。在一个例子中,多个支撑块18共同夹持光源13,以进一步防止光源13发生晃动。
在某些实施方式中,保护盖16可以省略,此时衍射光学元件15可以设置在收容腔121内,衍射光学元件15的衍射出射面154可以与顶壁122相抵,激光穿过衍射光学元件15后再穿出通光孔1212。如此,衍射光学元件15不易脱落。
在某些实施方式中,基板111可以省去,光源13可以直接固定在电路板112上以减小激光投射器10的整体厚度。
图13为本申请实施方式的激光输出控制方法的应用环境示意图。如图13所示,该应用环境中包括电子设备(下文统称为终端)200。终端200中可安装摄像头模组,还可以安装若干个应用程序。摄像头模组中可以包含有激光模组。终端200可以检测激光模组是否开启,当检测到激光模组开启时, 终端200可以记录激光模组开启的第一时刻,终端200可以获取激光模组工作的当前时刻与第一时刻之间的间隔时长,当间隔时长满足预设时长时,终端200可以控制激光模组的激光输出。终端200可为智能手机、平板电脑、个人数字助理、穿戴式设备等。
图14为终端的内部结构框图。如图14所示,终端200可包括摄像头模组210、第一处理单元220、第二处理单元230和安全处理单元240等。第一处理单元220与摄像头模组210、第二处理单元230和安全处理单元240分别相连。
摄像头模组210可包括第一图像采集器、第一投射器、第二图像采集器和第二投射器。第一图像采集器、第一投射器和第二投射器分别与第一处理单元220相连。第二图像采集器可与第一处理单元220或第二处理器230相连。第一图像采集器可为激光摄像头212(即红外摄像头)。第一投射器可为泛光灯214。第二图像采集器可为RGB(Red/Green/Blue,红/绿/蓝色彩模式)摄像头216。第二投射器可为镭射灯218(即激光投射器)。第二投射器和第一图像采集器组成激光模组。激光摄像头212和RGB摄像头216均可包括透镜和图像传感器等元件。图像传感器一般为互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,简称CMOS)或电荷耦合器件(charge coupled device,简称CCD)。激光摄像头212中的图像传感器的表面通过设置与各像素一一对应的滤光片以实现对不同波长光线的强度提取,从而使得激光摄像头212可以采集到不同波长的不可见光图像。该滤波片可允许通过的光波长与镭射灯218发出的光的波长一致,例如可为红外光、紫外光等。RGB摄像头216可以采用拜耳滤光片来获取分别三个通道(R/G/B)的光强信息,采集目标物体的彩色图像。泛光灯214可为激光二极管、LED等。泛光灯214的发光波长与镭射灯218的波长相同。第二投射器可包括光源、准直透镜以及结构光图案生成器,其中,光源可以为面发射激光、垂直腔面激光(Vertical Cavity Surface Emitting Laser,简称VCSEL)阵列,结构光图案生成器可为毛玻璃、衍射光学元件(Diffractive Optical Elements,简称DOE)或者两者组合。
第一处理单元220可为MCU(Microcontroller Unit,微控制单元)。MCU可包括PWM(Pulse Width Modulation,脉冲宽度调制)222、SPI/I2C(Serial Peripheral Interface/Inter-Integrated Circuit,串行外设接口/双向二线制同步串行接口)224、RAM(Random Access Memory,随机存取存储器)226和Depth Engine(深度引擎)228。MCU可通过PWM控制泛光灯214和激光摄像头212同步,泛光灯214发出泛光照射到目标物体,通过激光摄像头212采集得到泛光图像,若泛光灯214发出红外光,则采集得到红外图像。MCU通过PWM控制镭射灯218和激光摄像头212同步,镭射灯218投射结构光图案到目标物体,被激光摄像头212采集得到目标散斑图像。
在一个实施例中,镭射灯218会预先向距终端已知距离的参考平面上投射结构光图案(带有散斑颗粒的图案),被激光摄像头212采集后作为参考散斑图像,并保存到第一处理单元220的存储器中,也可以保存到第二处理单元230的存储器中,也可以保存到安全处理单元240的存储器中。该存储器为非易失性存储器。
第二处理单元230可为CPU处理器。第二处理单元230中包括在TEE(Trusted execution environment,可信运行环境)下运行的CPU内核和在REE(Rich Execution Environment,自然运行环境)下运行的CPU内核。TEE和REE均为ARM模块(Advanced RISC Machines,高级精简指令集处理器)的运行模式。通常情况下,终端中安全性较高的操作行为需要在TEE下执行,其他操作行为则可在REE下执行。本申请实施例中,当第二处理单元230接收到应用程序的人脸信息获取请求,例如当应用程序需要人脸信息进行解锁、应用程序需要人脸信息进行支付时,在TEE下运行的CPU内核可通过SECURE SPI/I2C总线250向第一处理单元220中SPI/I2C接口224发送人脸采集指令,并可通过PWM222发射脉冲波控制摄像头模组210中泛光灯214开启来采集红外图像、控制摄像头模组210中镭射灯218开启来采集目标散斑图像。摄像头模组210可将采集到的红外图像和深度图像传送给第一处理单元220中Depth Engine238进行处理。深度引擎238可将采集的目标散斑图像与参考散斑图像进行计算得到带有目标散斑图像与参考散斑图像中对应点的偏移量信息的视差图像,对视差图像进行处理得到深度图像。第一处理单元220可将视差图像通过移动产业处理器接口(Mobile Industry Processor Interface,简称MIPI)发送给安全处理单元240进行处理得到深度图像。
第一处理单元220根据获取到的红外图像进行人脸识别,检测上述红外图像中是否存在人脸以及检测到的人脸与存储的人脸是否匹配;若人脸识别通过,再根据上述红外图像和深度图像来进行活体 检测,检测上述人脸是否存在生物活性。在一个实施例中,第一处理单元220在获取到红外图像和深度图像后,可先进行活体检测再进行人脸识别,或同时进行人脸识别和活体检测。在人脸识别通过且检测到的人脸具有生物活性,第一处理单元220可将对上述红外图像和深度图像的中间信息发送给安全处理单元240。安全处理单元240将红外图像和深度图像的中间信息计算得到人脸的深度信息,将深度信息发送给TEE下的CPU内核。
安全处理单元240可为独立的处理器,也可为在第二处理单元230中采用硬件和软件隔离的方式形成的安全区域,例如第二处理单元230可为多核处理器,将其中一核处理器划定为安全处理单元,用于计算人脸的深度信息、采集的红外图像与已存储的红外图像的匹配、采集的深度图像与已存储的深度图像的匹配等。安全处理单元240可对数据进行并行处理或串行处理。
在一个实施例中,提供了一种激光输出控制方法,以应用于上述终端来举例说明,如图15所示,包括如下步骤:
步骤302,当检测到激光模组开启时,记录激光模组开启的第一时刻。
终端上可以安装摄像头模组,并且通过安装的摄像头模组获取图像。摄像头模组可以根据获取的图像的不同分为激光模组、可见光模组等类型,激光模组可以获取激光照射到物体上所形成的图像,可见光模组可以获取可见光照射到物体上所形成的图像。
终端可以对安装的摄像头模组的工作状态进行检测。具体的,终端可以对摄像头模组中的激光模组以及可见光模组的工作状态进行检测。激光模组的工作状态可以为开启状态或者关闭状态,激光模组可以在这两种状态中切换。第一时刻是指激光模组的工作状态为开启状态时的一个具体的时间点。当终端检测到激光模组的工作状态为开启状态时,终端可以记录该激光模组开启的第一时刻。在一个例子中,第一处理单元220可用于在检测到激光模组开启时,记录激光模组开启的第一时刻。
步骤304,获取激光模组工作的当前时刻与第一时刻之间的间隔时长。
激光模组工作的当前时刻是指激光模组的当前工作状态为开启状态时的具体的时间点。终端可以获取到激光模组在当前工作状态为开启状态时的具体的时间点,即激光模组工作的当前时刻。终端可以计算出当前时刻与第一时刻之间的时间差值,该时间差值就是激光模组工作的当前时刻与第一时刻之间的间隔时长。在一个例子中,第一处理单元220可用于获取激光模组工作的当前时刻与第一时刻之间的间隔时长。
步骤306,当间隔时长满足预设时长时,控制激光模组的激光输出。
预设时长是指预先设置好的一段时间。例如,预设时长可以是5秒。终端计算出间隔时长后,可以将计算出的间隔时长与预设时长进行比较,当间隔时长满足预设时长时,终端可以控制激光模组的激光输出。在一个例子中,第一处理单元220可用于在间隔时长满足预设时长时,控制激光模组的激光输出。
当检测到激光模组开启时,记录激光模组开启的第一时刻,获取激光模组工作的当前时刻与第一时刻之间的间隔时长,当间隔时长满足预设时长时,控制激光模组的激光输出。终端通过获取激光模组工作的当前时刻与第一时刻之间的间隔时长,并将间隔时长与预设时长进行比较,再根据比较结果对激光模组的激光输出进行控制,可以避免激光模组长时间输出激光,从而可以降低对人眼的伤害。
在一个实施例中,提供的一种激光输出控制方法中,当间隔时长满足预设时长时,控制激光模组的激光输出可以包括:当间隔时长满足预设时长时,降低激光模组的工作频率。
终端可以将间隔时长与预设时长进行比较,并得出比较结果。当终端得到的比较结果是间隔时长满足预设时长时,终端可以对激光模组进行控制,使得激光模组工作频率与原来的工作频率相比有降低。例如,激光模组当前的工作频率为15MHz,预设时长为5秒,终端获取到的间隔时长为6秒,终端可以认为获取到的间隔时长6秒是满足预设时长5秒的,终端可以对激光模组进行控制,使激光模组的工作频率降低到5MHz。可以控制激光模组从每秒发射激光散斑点的次数为30次,降低到每秒发射激光散斑点的次数为1次。
当间隔时长满足预设时长时,终端通过降低激光模组的工作频率,可以避免激光模组长时间高频率的输出激光,可以节约资源,还能降低对人眼的伤害。
在另一个实施例中,提供的一种激光输出控制方法中,当间隔时长满足预设时长时,控制激光模组的激光输出可以包括:当间隔时长满足预设时长时,降低激光模组的工作电流。
终端可以将间隔时长与预设时长进行比较,并得出比较结果。当终端得到的比较结果是间隔时长满足预设时长时,终端可以对激光模组进行控制,使得激光模组工作电流与原来的工作电流相比有降低。例如,激光模组当前的工作电流为20毫安(mA),预设时长为5秒,终端获取到的间隔时长为6秒,终端可以认为获取到的间隔时长6秒是满足预设时长5秒的,终端可以对激光模组进行控制,使激光模组的工作电流降低到5毫安(mA)。可以控制激光模组从每秒发射激光散斑点的次数为30次,降低到每秒发射激光散斑点的次数为1次。
当间隔时长满足预设时长时,终端通过降低激光模组的工作电流,可以避免激光模组长时间输出激光,可以节约资源,还能降低对人眼的伤害。
如图16所示,在一个实施例中,提供的一种激光输出控制方法还可以包括根据距离数值控制激光模组输出的过程,具体步骤包括:
步骤402,获取摄像头模组采集的深度图像。
当摄像头模组中的镭射灯开启时,终端可以通过激光摄像头采集散斑图像。终端接收通过摄像头模组发送的图像采集指令,终端可以根据接收的图像采集指令通过激光摄像头采集散斑图像,终端中的处理单元会根据散斑图像计算出深度图像。在一个例子中,第一处理单元220(具体为深度引擎238)或安全处理单元240可用于获取摄像头模组采集的深度图像。
步骤404,根据深度图像计算图像中的目标与摄像头模组之间的距离数值。
图像中的目标是指深度图像中具体的物体。例如,终端获取到的深度图像中包含有人脸时,图像中的目标就是真实存在的人脸。终端可以根据获取到的深度图像计算出图像中的目标与摄像头模组之间的距离数值。例如,终端获取到的深度图像中包含有人脸时,终端可以根据深度图像计算出真实存在的人脸与终端的摄像头模组之间的距离数值为20厘米。在一个例子中,第一处理单元220或安全处理单元240可用于根据深度图像计算图像中的目标与摄像头模组之间的距离数值。
步骤406,根据距离数值控制激光模组的输出。
终端可以根据计算出的距离数值对激光模组的输出进行控制。例如,终端可以根据距离数值控制激光模组的工作频率或者控制激光模组的工作电流。在一个例子中,第一处理单元220可用于根据距离数值控制激光模组的输出。
通过获取摄像头模组采集的深度图像,根据深度图像计算图像中的目标与摄像头模组之间的距离数值,根据距离数值控制激光模组的输出。终端根据图像中目标与摄像头模组之间的距离数值对激光模组的输出进行控制,当图像中的目标是人脸时,终端通过对激光模组的输出进行控制,可以降低对人眼的伤害。
在一个实施例中,根据距离数值控制激光模组的输出具体过程包括:当距离数值小于或等于第一预设距离数值时,控制激光模组关闭,当距离数值大于第一预设距离数值且小于或等于第二预设距离数值时,降低激光模组的工作频率或工作电流。
其中,第一预设距离数值和第二预设距离数值可以是预先设置好的数值,且第一预设距离数值小于第二预设距离数值。当距离数值小于或等于第一预设距离数值时,表示图像中的目标与摄像头模组之间的距离较近,终端可以控制激光模组关闭。例如,图像中的目标为人脸,第一预设数值为20厘米,而终端计算出的人脸与摄像头模组之间的距离数值为10厘米时,终端可以控制激光模组强制关闭。
当距离数值大于第一预设距离数值且小于或等于第二预设距离数值时,表示图像中的目标与摄像头模组之间的距离还是较近,终端可以通过降低激光模组的工作频率或工作电流控制激光模组的激光输出。例如,图像中的目标为人脸,第一预设数值为20厘米,第二预设数值为30厘米,激光模组发射激光散斑点的次数为每秒30次,而终端计算出的人脸与摄像头模组之间的距离数值为25厘米,此时,终端可以通过降低激光模组的工作频率或工作电流的方式,使激光模组发射激光散斑点的次数从每秒30次降低到每秒1次。
当距离数值小于或等于第一预设距离数值时,控制激光模组关闭,当距离数值大于第一预设距离数值且小于或等于第二预设距离数值时,降低激光模组的工作频率或工作电流。终端根据计算的图像目标与摄像头模组之间的距离数值控制激光模组的激光输出,可以降低激光对人眼的伤害。
在一个实施例中,提供的一种激光输出控制方法还可以包括:获取摄像头模组采集的图像中图像内容的变化频率,根据变化频率控制激光模组的输出。
其中,图像内容的变化频率是指图像中目标运动的变化频率。例如,当图像内容为人脸时,图像内容的变化频率就是人脸在摄像头中位置移动的频率。终端可以根据图像内容的变化频率对激光模组的输出进行控制。在一个例子中,第一处理单元220或安全处理单元240可用于获取摄像头模组采集的图像中图像内容的变化频率,根据变化频率控制激光模组的输出。
在一个实施例中,如图17所示,提供的一种激光输出控制方法还可以包括根据变化频率控制激光模组输出的过程,具体步骤包括:
步骤502,将变化频率与预设频率比较,得到比较结果。
预设频率是指预先设置好的目标在一段时间内位置发生变化的次数。终端可以将获取的图像中图像内容的变化频率与预设的频率进行比较,并得到比较结果。例如,预设频率为每秒1次,图像中图像内容是人脸,人脸的变化频率是每秒2次,终端可以将变化频率与预设频率进行比较,得到变化频率大于预设频率的比较结果。在一个例子中,第一处理单元220或安全处理单元240可用于将变化频率与预设频率比较,得到比较结果。
步骤504,当比较结果为变化频率大于预设频率时,提高激光模组的工作频率。
终端得到的比较结果为变化频率大于预设频率时,表示图像中图像内容位置发生变化的次数较多,终端可以控制激光模组提高工作频率。例如,终端获取的变化频率是每秒2次,预设频率是每秒1次,变化频率大于预设频率,表明人脸的位置变化比较频繁,终端可以控制激光模组提高工作频率,以适应人脸频繁的位置变化。在一个例子中,第一处理单元220可用于在比较结果为变化频率大于预设频率时,提高激光模组的工作频率。
步骤506,当比较结果为变化频率小于或等于预设频率时,降低激光模组的工作频率。
终端得到的比较结果为变化频率小于或者等于预设频率时,表示图像中图像内容位置发生变化的次数较少,终端可以控制激光模组降低工作频率。例如,终端获取的变化频率是每秒2次,预设频率是每秒3次,变化频率小于预设频率,表明人脸的位置变化比较稀少,终端可以控制激光模组降低工作频率,以节约资源。在一个例子中,第一处理单元220可用于在比较结果为变化频率小于或等于预设频率时,降低激光模组的工作频率。
通过将变化频率与预设频率比较,得到比较结果,当比较结果为变化频率大于预设频率时,提高激光模组的工作频率,当比较结果为变化频率小于或等于预设频率时,降低激光模组的工作频率。终端根据图像中图像内容的变化频率,对激光模组的激光输出进行控制,可以最大化的利用激光模组,在节约资源的情况下还可以降低对人眼的伤害。
在一个实施例中,提供的一种激光输出控制方法可以应用在视频通话中。用户在使用终端进行视频通话时,需要开启摄像头模组中的激光模组。当终端检测到激光模组开启时,终端可以记录激光模组开启的第一时刻。用户进行视频通话时,激光模组一直处于开启的状态,终端可以在用户进行视频通话的过程中获取激光模组工作的当前时刻与第一时刻之间的间隔时长。当间隔时长满足预设时长时,终端可以降低激光模组的工作频率或者工作状态。
终端还可以在用户进行视频通话的过程中获取通过摄像头采集的深度图像,并根据深度图像计算用户与摄像头模组之间的距离数值。当用户与摄像头模组之间的距离小于或者等于第一预设距离数值时,终端可以控制激光模组关闭,以降低激光模组用户人眼的伤害。当用户与摄像头模组之间的距离大于第一预设距离数值且小于或等于第二预设距离数值时,终端可以降低激光模组的工作频率或工作电流,以降低激光模组用户人眼的伤害。
终端还可以在用户进行视频通话的过程中获取摄像头模组采集的图像中用户的位置的变化频率,当用户的位置变化比较频繁,变化频率大于预设频率时,终端可以提高激光模组的工作频率或者工作电流。当用户的位置变化次数较少,变化频率小于或等于预设频率时,终端可以降低激光模组的工作频率或者工作电流,以降低对用户人眼的伤害。
在一个实施例中,提供的一种激光输出控制方法还可以应用在直播中。用户在通过终端进行直播时,需要开启摄像头模组中的激光模组。当终端检测到激光模组开启时,终端可以记录激光模组开启的第一时刻。用户进行直播时,激光模组一直处于开启的状态,终端可以在用户进行直播的过程中获取激光模组工作的当前时刻与第一时刻之间的间隔时长。当间隔时长满足预设时长时,终端可以降低激光模组的工作频率或者工作状态。
终端还可以在用户进行直播的过程中获取通过摄像头采集的深度图像,并根据深度图像计算用户与摄像头模组之间的距离数值。当用户与摄像头模组之间的距离小于或者等于第一预设距离数值时,终端可以控制激光模组关闭,以降低激光模组用户人眼的伤害。当用户与摄像头模组之间的距离大于第一预设距离数值且小于或等于第二预设距离数值时,终端可以降低激光模组的工作频率或工作电流,以降低激光模组用户人眼的伤害。
终端还可以在用户进行直播的过程中获取摄像头模组采集的图像中用户的位置的变化频率,当用户的位置变化比较频繁,变化频率大于预设频率时,终端可以提高激光模组的工作频率或者工作电流。当用户的位置变化次数较少,变化频率小于或等于预设频率时,终端可以降低激光模组的工作频率或者工作电流,以降低对用户人眼的伤害。
在一个实施例中,提供了一种激光输出控制方法,实现该方法的具体步骤如下所述:
首先,当检测到激光模组开启时,终端可以记录激光模组开启的第一时刻。终端可以对安装的摄像头模组的工作状态进行检测。具体的,终端可以对摄像头模组中的激光模组以及可见光模组的工作状态进行检测。激光模组的工作状态可以为开启状态或者关闭状态,激光模组可以在这两种状态中切换。第一时刻是指激光模组的工作状态为开启状态时的一个具体的时间点。当终端检测到激光模组的工作状态为开启状态时,终端可以记录该激光模组开启的第一时刻。
接着,终端可以获取激光模组工作的当前时刻与第一时刻之间的间隔时长。激光模组工作的当前时刻是指激光模组的当前工作状态为开启状态时的具体的时间点。终端可以获取到激光模组在当前工作状态为开启状态时的具体的时间点,即激光模组工作的当前时刻。终端可以计算出当前时刻与第一时刻之间的时间差值,该时间差值就是激光模组工作的当前时刻与第一时刻之间的间隔时长。
接着,当间隔时长满足预设时长时,终端可以控制激光模组的激光输出。预设时长是指预先设置好的一段时间。例如,预设时长可以是5秒。终端计算出间隔时长后,可以将计算出的间隔时长与预设时长进行比较,当间隔时长满足预设时长时,终端可以控制激光模组的激光输出。
其中,终端控制激光模组的激光输出可以是降低激光模组的工作频率。当间隔时长满足预设时长时,终端可以对激光模组进行控制,使得激光模组工作频率与原来的工作频率相比有降低。终端控制激光模组的激光输出还可以是降低激光模组的工作电流。当间隔时长满足预设时长时,终端可以对激光模组进行控制,使得激光模组工作电流与原来的工作电流相比有降低。例如,可以控制激光模组从每秒发射激光散斑点的次数为30次,降低到每秒发射激光散斑点的次数为1次。
接着,终端控制激光模组的激光输出还可以是获取摄像头模组采集的深度图像,终端可以根据深度图像计算图像中的目标与摄像头模组之间的距离数值,终端可以根据距离数值控制激光模组的输出。当摄像头模组中的镭射灯开启时,终端可以通过激光摄像头采集散斑图像。终端接收通过摄像头模组发送的图像采集指令,终端可以根据接收的图像采集指令通过激光摄像头采集散斑图像,终端中的处理单元会根据散斑图像计算出深度图像。图像中的目标是指深度图像中具体的物体。例如,终端获取到的深度图像中包含有人脸时,图像中的目标就是真实存在的人脸。终端可以根据获取到的深度图像计算出图像中的目标与摄像头模组之间的距离数值。终端可以根据计算出的距离数值对激光模组的输出进行控制。例如,终端可以根据距离数值控制激光模组的工作频率或者控制激光模组的工作电流。
其中,当距离数值小于或等于第一预设距离数值时,终端可以控制激光模组关闭,当距离数值大于第一预设距离数值且小于或等于第二预设距离数值时,终端可以降低激光模组的工作频率或工作电流。当距离数值小于或等于第一预设距离数值时,表示图像中的目标与摄像头模组之间的距离较近,终端可以控制激光模组关闭。当距离数值大于第一预设距离数值且小于或等于第二预设距离数值时,表示图像中的目标与摄像头模组之间的距离还是较近,终端可以通过降低激光模组的工作频率或工作电流控制激光模组的激光输出。
最后,终端控制激光模组的激光输出还可以是获取摄像头模组采集的图像中图像内容的变化频率,终端可以根据变化频率控制激光模组的输出。图像内容的变化频率是指图像中目标运动的变化频率。例如,当图像内容为人脸时,图像内容的变化频率就是人脸在摄像头中位置移动的频率。终端可以根据图像内容的变化频率对激光模组的输出进行控制。
其中,终端可以将变化频率与预设频率比较,得到比较结果,当比较结果为变化频率大于预设频率时,终端可以提高激光模组的工作频率,当比较结果为变化频率小于或等于预设频率时,终端可以 降低激光模组的工作频率。预设频率是指预先设置好的目标在一段时间内位置发生变化的次数。终端可以将获取的图像中图像内容的变化频率与预设的频率进行比较,并得到比较结果。终端得到的比较结果为变化频率大于预设频率时,表示图像中图像内容位置发生变化的次数较多,终端可以控制激光模组提高工作频率。终端得到的比较结果为变化频率小于或者等于预设频率时,表示图像中图像内容位置发生变化的次数较少,终端可以控制激光模组降低工作频率。
应该理解的是,虽然上述流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,上述流程图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,如图18所示,提供了一种激光输出控制装置,包括:第一时刻记录模块610、间隔时长获取模块620以及激光输出控制模块630,其中:
第一时刻记录模块610,用于当检测到激光模组开启时,记录激光模组开启的第一时刻。
间隔时长获取模块620,用于获取激光模组工作的当前时刻与第一时刻之间的间隔时长。
激光输出控制模块630,用于当间隔时长满足预设时长时,控制激光模组的激光输出。
在一个实施例中,激光输出控制模块630还可以用于当间隔时长满足预设时长时,降低激光模组的工作频率。
在一个实施例中,激光输出控制模块630还可以用于当间隔时长满足预设时长时,降低激光模组的工作电流。
在一个实施例中,间隔时长获取模块620还可以用于获取摄像头模组采集的深度图像,根据深度图像计算图像中的目标与摄像头模组之间的距离数值,根据距离数值控制激光模组的输出。
在一个实施例中,间隔时长获取模块620还可以用于当距离数值小于或等于第一预设距离数值时,控制激光模组关闭,当距离数值大于第一预设距离数值且小于或等于第二预设距离数值时,降低激光模组的工作频率或工作电流。
在一个实施例中,激光输出控制模块630还可以用于获取摄像头模组采集的图像中图像内容的变化频率,根据变化频率控制激光模组的输出。
在一个实施例中,激光输出控制模块630还可以用于将变化频率与预设频率比较,得到比较结果,当比较结果为变化频率大于预设频率时,提高激光模组的工作频率,当比较结果为变化频率小于或等于预设频率时,降低激光模组的工作频率。
上述激光输出控制装置中各个模块的划分仅用于举例说明,在其他实施例中,可将激光输出控制装置按照需要划分为不同的模块,以完成上述激光输出控制装置的全部或部分功能。
关于激光输出控制装置的具体限定可以参见上文中对于激光输出控制方法的限定,在此不再赘述。上述激光输出控制装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。在一个例子中,第一时刻记录模块610可以为第一处理单元220,间隔时长获取模块620可以为第一处理单元220和/或安全处理单元240,激光输出控制模块630可以为第一处理单元220和/或安全处理单元240等。
本申请实施例中提供的激光输出控制装置中的各个模块的实现可为计算机程序的形式。该计算机程序可在终端或服务器上运行。该计算机程序构成的程序模块可存储在终端或服务器的存储器上。该计算机程序被处理器执行时,实现本申请实施例中所描述方法的步骤。
请参阅图19,本申请实施例中提供的终端200包括存储器202及处理器201,存储器202中储存有计算机程序,计算机程序被处理器201执行时,使得处理器201执行以下激光输出控制方法的步骤:当检测到激光模组开启时,记录激光模组开启的第一时刻;获取激光模组工作的当前时刻与第一时刻之间的间隔时长;当间隔时长满足预设时长时,控制激光模组的激光输出。
在一个实施例中,当间隔时长满足预设时长时,控制激光模组的激光输出,包括:当间隔时长满足预设时长时,降低激光模组的工作频率。
在一个实施例中,当间隔时长满足预设时长时,控制激光模组的激光输出,还包括:当间隔时长满足预设时长时,降低激光模组的工作电流。
在一个实施例中,在控制激光模组的输出之前,方法还包括:获取摄像头模组采集的深度图像;根据深度图像计算图像中的目标与摄像头模组之间的距离数值;根据距离数值控制激光模组的输出。
在一个实施例中,根据距离数值控制激光模组的输出,包括:当距离数值小于或等于第一预设距离数值时,控制激光模组关闭;当距离数值大于第一预设距离数值且小于或等于第二预设距离数值时,降低激光模组的工作频率或工作电流。
在一个实施例中,方法还包括:获取摄像头模组采集的图像中图像内容的变化频率;根据变化频率控制激光模组的输出。
在一个实施例中,根据变化频率控制激光模组的输出,包括:将变化频率与预设频率比较,得到比较结果;当比较结果为变化频率大于预设频率时,提高激光模组的工作频率;当比较结果为变化频率小于或等于预设频率时,降低激光模组的工作频率。
本申请实施例还提供了一种计算机可读存储介质。一个或多个包含计算机可执行指令的非易失性计算机可读存储介质,当所述计算机可执行指令被一个或多个处理器执行时,使得所述处理器执行上述激光输出控制方法的步骤。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下激光输出控制方法的步骤:当检测到激光模组开启时,记录激光模组开启的第一时刻;获取激光模组工作的当前时刻与第一时刻之间的间隔时长;当间隔时长满足预设时长时,控制激光模组的激光输出。
在一个实施例中,当间隔时长满足预设时长时,控制激光模组的激光输出,包括:当间隔时长满足预设时长时,降低激光模组的工作频率。
在一个实施例中,当间隔时长满足预设时长时,控制激光模组的激光输出,还包括:当间隔时长满足预设时长时,降低激光模组的工作电流。
在一个实施例中,在控制激光模组的输出之前,方法还包括:获取摄像头模组采集的深度图像;根据深度图像计算图像中的目标与摄像头模组之间的距离数值;根据距离数值控制激光模组的输出。
在一个实施例中,根据距离数值控制激光模组的输出,包括:当距离数值小于或等于第一预设距离数值时,控制激光模组关闭;当距离数值大于第一预设距离数值且小于或等于第二预设距离数值时,降低激光模组的工作频率或工作电流。
在一个实施例中,方法还包括:获取摄像头模组采集的图像中图像内容的变化频率;根据变化频率控制激光模组的输出。
在一个实施例中,根据变化频率控制激光模组的输出,包括:将变化频率与预设频率比较,得到比较结果;当比较结果为变化频率大于预设频率时,提高激光模组的工作频率;当比较结果为变化频率小于或等于预设频率时,降低激光模组的工作频率。
一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述激光输出控制方法。
本申请实施例还提供一种终端。上述终端中包括图像处理电路,图像处理电路可以利用硬件和/或软件组件实现,可包括定义ISP(Image Signal Processing,图像信号处理)管线的各种处理单元。图20为一个实施例中图像处理电路的示意图。如图20所示,为便于说明,仅示出与本申请实施例相关的图像处理技术的各个方面。
如图20所示,图像处理电路包括ISP处理器740(可为前述第一处理单元220和/或第二处理单元230)和控制逻辑器750。成像设备710(可包括前述激光摄像头212和RGB摄像头216)捕捉的图像数据首先由ISP处理器740处理,ISP处理器740对图像数据进行分析以捕捉可用于确定和/或成像设备710的一个或多个控制参数的图像统计信息。成像设备710可包括具有一个或多个透镜712和图像传感器714的激光摄像头212和RGB摄像头216。图像传感器714可包括色彩滤镜阵列(如Bayer滤镜),图像传感器714可获取用图像传感器714的每个成像像素捕捉的光强度和波长信息,并提供可由ISP处理器740处理的一组原始图像数据。传感器720(如陀螺仪)可基于传感器720接口类型把采集的图像处理的参数(如防抖参数)提供给ISP处理器740。传感器720接口可以利用SMIA(Standard Mobile  Imaging Architecture,标准移动成像架构)接口、其它串行或并行摄像头接口或上述接口的组合。
此外,图像传感器714也可将原始图像数据发送给传感器720,传感器720可基于传感器720接口类型把原始图像数据提供给ISP处理器740,或者传感器720将原始图像数据存储到图像存储器730(可为前述随机存取存储器226)中。
ISP处理器740按多种格式逐个像素地处理原始图像数据。例如,每个图像像素可具有8、10、12或14比特的位深度,ISP处理器740可对原始图像数据进行一个或多个图像处理操作、收集关于图像数据的统计信息。其中,图像处理操作可按相同或不同的位深度精度进行。
ISP处理器740还可从图像存储器730接收图像数据。例如,传感器720接口将原始图像数据发送给图像存储器730,图像存储器730中的原始图像数据再提供给ISP处理器740以供处理。图像存储器730可为存储器装置的一部分、存储设备、或终端内的独立的专用存储器,并可包括DMA(Direct Memory Access,直接直接存储器存取)特征。
当接收到来自图像传感器714接口或来自传感器720接口或来自图像存储器730的原始图像数据时,ISP处理器740可进行一个或多个图像处理操作,如时域滤波。处理后的图像数据可发送给图像存储器730,以便在被显示之前进行另外的处理。ISP处理器740从图像存储器730接收处理数据,并对所述处理数据进行原始域中以及RGB和YCbCr颜色空间中的图像数据处理。ISP处理器740处理后的图像数据可输出给显示器770,以供用户观看和/或由图形引擎或GPU(Graphics Processing Unit,图形处理器)进一步处理。此外,ISP处理器740的输出还可发送给图像存储器730,且显示器770可从图像存储器730读取图像数据。在一个实施例中,图像存储器730可被配置为实现一个或多个帧缓冲器。此外,ISP处理器740的输出可发送给编码器/解码器760,以便编码/解码图像数据。编码的图像数据可被保存,并在显示于显示器770设备上之前解压缩。编码器/解码器760可由CPU或GPU或协处理器实现。
ISP处理器740确定的统计数据可发送给控制逻辑器750单元。例如,统计数据可包括自动曝光、自动白平衡、自动聚焦、闪烁检测、黑电平补偿、透镜712阴影校正等图像传感器714统计信息。控制逻辑器750可包括执行一个或多个例程(如固件)的处理器和/或微控制器,一个或多个例程可根据接收的统计数据,确定成像设备710的控制参数及ISP处理器740的控制参数。例如,成像设备710的控制参数可包括传感器720控制参数(例如增益、曝光控制的积分时间、防抖参数等)、摄像头闪光控制参数、透镜712控制参数(例如聚焦或变焦用焦距)、或这些参数的组合。ISP控制参数可包括用于自动白平衡和颜色调整(例如,在RGB处理期间)的增益水平和色彩校正矩阵,以及透镜712阴影校正参数。
本申请所使用的对存储器、存储、数据库或其它介质的任何引用可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM),它用作外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDR SDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个所述特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个,除非另有明确具体的限定。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (30)

  1. 一种激光投射器的控制系统,其特征在于,所述控制系统包括:
    与所述激光投射器连接的第一驱动电路,所述第一驱动电路用于输出电信号以驱动所述激光投射器投射激光、及在输出所述电信号的持续时长大于或等于预设阈值时关闭所述激光投射器。
  2. 根据权利要求1所述的控制系统,其特征在于,所述第一驱动电路用于在所述持续时长大于或等于所述预定阈值时,停止输出所述电信号。
  3. 根据权利要求1所述的控制系统,其特征在于,所述控制系统还包括:
    应用处理器,所述应用处理器与所述第一驱动电路连接;和
    监视定时器,所述监视定时器连接所述应用处理器与所述第一驱动电路,所述监视定时器用于接收所述应用处理器发送的预定信号,所述监视定时器在预定时长内未接收到所述预定信号时,关闭所述第一驱动电路;
    所述第一驱动电路用于在所述持续时长大于或等于所述预定阈值时,向所述应用处理器发送超时信号;
    所述应用处理器用于在接收到所述超时信号时,停止向所述监视定时器发送所述预定信号。
  4. 根据权利要求1所述的控制系统,其特征在于,所述控制系统还包括:
    微处理器,所述微处理器与所述第一驱动电路连接;和
    监视定时器,所述监视定时器连接所述微处理器与所述第一驱动电路,所述监视定时器用于接收所述微处理器发送的预设信号,所述监视定时器在预设时长内未接收到所述预设信号时,关闭所述第一驱动电路;
    所述第一驱动电路用于在所述持续时长大于或等于所述预定阈值时,向所述微处理器发送超时信号;
    所述微处理器用于在接收到所述超时信号时,停止向所述监视定时器发送所述预设信号。
  5. 根据权利要求1所述的控制系统,其特征在于,所述控制系统还包括:
    第二驱动电路,所述第二驱动电路与所述第一驱动电路连接并用于给所述第一驱动电路供电。
  6. 根据权利要求1所述的控制系统,其特征在于,所述控制系统还包括:
    控制电路,所述控制电路连接所述第一驱动电路和所述激光投射器,所述控制电路包括电阻元件、检测元件和开关元件,所述检测元件用于检测流过所述电阻元件的电流,所述开关元件在所述电流大于预设电流值时断开以关闭所述激光投射器。
  7. 根据权利要求3所述的控制系统,其特征在于,所述监视定时器还用于在预定时长内未接收到所述预定信号时,发出用于重启所述应用处理器的复位信号。
  8. 一种激光投射组件,其特征在于,所述激光投射组件包括:
    激光投射器;和
    权利要求1或2所述的控制系统,所述激光投射器与所述第一驱动电路连接。
  9. 一种终端,其特征在于,所述终端包括:
    激光投射器;和
    权利要求1至7任意一项所述的控制系统,所述第一驱动电路与所述激光投射器连接。
  10. 根据权利要求9所述的终端,其特征在于,所述激光投射器能够向目标物体投射激光,所述终端还包括:
    红外摄像头,所述红外摄像头能够接收由所述目标物体调制后的激光图案。
  11. 一种激光投射器的控制方法,其特征在于,所述激光投射器与第一驱动电路连接,所述控制方法包括:
    第一驱动电路输出电信号以驱动所述激光投射器投射激光;及
    在输出所述电信号的持续时长大于或等于预设阈值时关闭所述激光投射器。
  12. 根据权利要求11所述的控制方法,其特征在于,所述在输出所述电信号的持续时长大于或等于预设阈值时关闭所述激光投射器的步骤包括:
    在所述持续时长大于或等于所述预定阈值时,停止输出所述电信号。
  13. 根据权利要求11所述的控制方法,其特征在于,所述控制方法还包括:
    接收应用处理器发送的预定信号;
    在预定时长内未接收到所述预定信号时,所述第一驱动电路关闭;
    在所述持续时长大于或等于所述预定阈值时,所述第一驱动电路向所述应用处理器发送超时信号;及
    在所述应用处理器接收到所述超时信号时,所述应用处理器停止向所述监视定时器发送所述预定信号。
  14. 根据权利要求11所述的控制方法,其特征在于,所述控制方法还包括:
    接收微处理器发送的预设信号;
    在预设时长内未接收到所述预设信号时,所述第一驱动电路关闭;
    在所述持续时长大于或等于所述预定阈值时,所述第一驱动电路向所述微处理器发送超时信号;及
    在所述微处理器接收到所述超时信号时,所述微处理器停止向所述监视定时器发送所述预设信号。
  15. 一种激光输出控制方法,其特征在于,包括:
    当检测到激光模组开启时,记录所述激光模组开启的第一时刻;
    获取所述激光模组工作的当前时刻与所述第一时刻之间的间隔时长;
    当所述间隔时长满足预设时长时,控制所述激光模组的激光输出。
  16. 根据权利要求15所述的方法,其特征在于,所述当所述间隔时长满足预设时长时,控制所述激光模组的激光输出,包括:
    当所述间隔时长满足预设时长时,降低所述激光模组的工作频率。
  17. 根据权利要求15所述的方法,其特征在于,所述当所述间隔时长满足预设时长时,控制所述激光模组的激光输出,还包括:
    当所述间隔时长满足预设时长时,降低所述激光模组的工作电流。
  18. 根据权利要求15所述的方法,其特征在于,在控制所述激光模组的输出之前,所述方法还包括:
    获取摄像头模组采集的深度图像;
    根据所述深度图像计算图像中的目标与所述摄像头模组之间的距离数值;
    根据所述距离数值控制所述激光模组的输出。
  19. 根据权利要求18所述的方法,其特征在于,所述根据所述距离数值控制所述激光模组的输出,包括:
    当所述距离数值小于或等于第一预设距离数值时,控制所述激光模组关闭;
    当所述距离数值大于第一预设距离数值且小于或等于第二预设距离数值时,降低所述激光模组的工作频率或工作电流。
  20. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    获取摄像头模组采集的图像中图像内容的变化频率;
    根据所述变化频率控制所述激光模组的输出。
  21. 根据权利要求20所述的方法,其特征在于,所述根据所述变化频率控制所述激光模组的输出,包括:
    将所述变化频率与预设频率比较,得到比较结果;
    当所述比较结果为所述变化频率大于所述预设频率时,提高所述激光模组的工作频率;
    当所述比较结果为所述变化频率小于或等于所述预设频率时,降低所述激光模组的工作频率。
  22. 一种激光输出控制装置,其特征在于,包括:
    第一时刻记录模块,用于当检测到激光模组开启时,记录所述激光模组开启的第一时刻;
    间隔时长获取模块,用于获取所述激光模组工作的当前时刻与所述第一时刻之间的间隔时长;
    激光输出控制模块,用于当所述间隔时长满足预设时长时,控制所述激光模组的激光输出。
  23. 一种终端,包括存储器及处理器,所述存储器中储存有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行以下激光输出控制方法的步骤:
    当检测到激光模组开启时,记录所述激光模组开启的第一时刻;
    获取所述激光模组工作的当前时刻与所述第一时刻之间的间隔时长;
    当所述间隔时长满足预设时长时,控制所述激光模组的激光输出。
  24. 根据权利要求23所述的终端,其特征在于,所述当所述间隔时长满足预设时长时,控制所述激光模组的激光输出,包括:
    当所述间隔时长满足预设时长时,降低所述激光模组的工作频率。
  25. 根据权利要求23所述的终端,其特征在于,所述当所述间隔时长满足预设时长时,控制所述激光模组的激光输出,还包括:
    当所述间隔时长满足预设时长时,降低所述激光模组的工作电流。
  26. 根据权利要求23所述的终端,其特征在于,在控制所述激光模组的输出之前,所述方法还包括:
    获取摄像头模组采集的深度图像;
    根据所述深度图像计算图像中的目标与所述摄像头模组之间的距离数值;
    根据所述距离数值控制所述激光模组的输出。
  27. 根据权利要求26所述的终端,其特征在于,所述根据所述距离数值控制所述激光模组的输出,包括:
    当所述距离数值小于或等于第一预设距离数值时,控制所述激光模组关闭;
    当所述距离数值大于第一预设距离数值且小于或等于第二预设距离数值时,降低所述激光模组的工作频率或工作电流。
  28. 根据权利要求23所述的终端,其特征在于,所述方法还包括:
    获取摄像头模组采集的图像中图像内容的变化频率;
    根据所述变化频率控制所述激光模组的输出。
  29. 根据权利要求28所述的终端,其特征在于,所述根据所述变化频率控制所述激光模组的输出,包括:
    将所述变化频率与预设频率比较,得到比较结果;
    当所述比较结果为所述变化频率大于所述预设频率时,提高所述激光模组的工作频率;
    当所述比较结果为所述变化频率小于或等于所述预设频率时,降低所述激光模组的工作频率。
  30. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求15至21中任一项所述的激光输出控制方法的步骤。
PCT/CN2019/076075 2018-04-28 2019-02-25 激光投射器的控制系统及控制方法、激光投射组件和终端 WO2019205794A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19793203.1A EP3611810B1 (en) 2018-04-28 2019-02-25 Control system and control method for laser projector, laser projection assembly and terminal
US16/688,462 US11522338B2 (en) 2018-04-28 2019-11-19 System and method for controlling laser projector, laser projector assembly and terminal

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810404507.1A CN108805025A (zh) 2018-04-28 2018-04-28 激光输出控制方法和装置、电子设备、存储介质
CN201810404507.1 2018-04-28
CN201810541431.7A CN108767654A (zh) 2018-05-30 2018-05-30 激光投射器的控制系统及控制方法、激光投射组件和终端
CN201810541431.7 2018-05-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/688,462 Continuation US11522338B2 (en) 2018-04-28 2019-11-19 System and method for controlling laser projector, laser projector assembly and terminal

Publications (1)

Publication Number Publication Date
WO2019205794A1 true WO2019205794A1 (zh) 2019-10-31

Family

ID=68294847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076075 WO2019205794A1 (zh) 2018-04-28 2019-02-25 激光投射器的控制系统及控制方法、激光投射组件和终端

Country Status (3)

Country Link
US (1) US11522338B2 (zh)
EP (1) EP3611810B1 (zh)
WO (1) WO2019205794A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7206393B2 (ja) * 2019-01-04 2023-01-17 華為技術有限公司 半導体レーザ、光伝送部品、光回線端末および光ネットワークユニット

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050213622A1 (en) * 2004-03-25 2005-09-29 Infineon Technologies North America Corp. Optical system laser driver with built in output inductor for improved frequency response
CN1938916A (zh) * 2004-03-29 2007-03-28 罗姆股份有限公司 激光元件驱动装置
CN101916959A (zh) * 2010-08-04 2010-12-15 成都优博创技术有限公司 一种激光器关断装置及其关断方法
CN105373223A (zh) * 2015-10-10 2016-03-02 惠州Tcl移动通信有限公司 一种自动调节发光强度的发光设备及方法
CN105425661A (zh) * 2015-11-06 2016-03-23 厦门市智联信通物联网科技有限公司 激光定位灯的智能驱动控制方法、装置及补光灯控制器
CN108767654A (zh) * 2018-05-30 2018-11-06 Oppo广东移动通信有限公司 激光投射器的控制系统及控制方法、激光投射组件和终端
CN108805025A (zh) * 2018-04-28 2018-11-13 Oppo广东移动通信有限公司 激光输出控制方法和装置、电子设备、存储介质

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61290786A (ja) * 1985-06-18 1986-12-20 Sharp Corp 半導体レ−ザの特性測定装置
TW473705B (en) * 2000-01-28 2002-01-21 Via Tech Inc Method and device to prevent overcurrent of pickup head
CN101409589B (zh) 2007-10-08 2011-04-20 深圳新飞通光电子技术有限公司 一种激光器驱动电路
US20130215394A1 (en) * 2012-02-18 2013-08-22 Rakesh Reddy Underwater Image Projection Display System and Lighting Control System And Device
CN203366017U (zh) 2013-05-24 2013-12-25 海尔集团公司 一种楼宇对讲智能终端及其死机重启系统
CN103825185B (zh) 2014-03-25 2019-07-26 深圳市杰普特光电股份有限公司 一种激光输出装置的控制方法
CN104505702A (zh) 2014-11-26 2015-04-08 江苏中科四象激光科技有限公司 一种实现激光输出功率缓升缓降控制的方法
US9753060B2 (en) * 2015-08-28 2017-09-05 Stmicroelectronics (Research & Development) Limited Apparatus with device with fault detection protection
CN107122032B (zh) 2016-02-25 2022-03-22 西安中兴新软件有限责任公司 终端、死机复位控制电路及方法
DE102017207957A1 (de) * 2016-05-11 2017-11-16 pmdtechnologies ag Sicherheitsschaltung für eine Lichtquelle
CN106572340B (zh) 2016-10-27 2019-05-10 深圳奥比中光科技有限公司 摄像系统、移动终端及图像处理方法
CN107424187B (zh) 2017-04-17 2023-10-24 奥比中光科技集团股份有限公司 深度计算处理器、数据处理方法以及3d图像设备
CN107105217B (zh) 2017-04-17 2018-11-30 深圳奥比中光科技有限公司 多模式深度计算处理器以及3d图像设备
WO2019228020A1 (zh) * 2018-05-30 2019-12-05 Oppo广东移动通信有限公司 激光投射器的控制系统和移动终端
CN108539576B (zh) * 2018-05-30 2020-06-12 Oppo广东移动通信有限公司 激光投射器的控制系统和移动终端

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050213622A1 (en) * 2004-03-25 2005-09-29 Infineon Technologies North America Corp. Optical system laser driver with built in output inductor for improved frequency response
CN1938916A (zh) * 2004-03-29 2007-03-28 罗姆股份有限公司 激光元件驱动装置
CN101916959A (zh) * 2010-08-04 2010-12-15 成都优博创技术有限公司 一种激光器关断装置及其关断方法
CN105373223A (zh) * 2015-10-10 2016-03-02 惠州Tcl移动通信有限公司 一种自动调节发光强度的发光设备及方法
CN105425661A (zh) * 2015-11-06 2016-03-23 厦门市智联信通物联网科技有限公司 激光定位灯的智能驱动控制方法、装置及补光灯控制器
CN108805025A (zh) * 2018-04-28 2018-11-13 Oppo广东移动通信有限公司 激光输出控制方法和装置、电子设备、存储介质
CN108767654A (zh) * 2018-05-30 2018-11-06 Oppo广东移动通信有限公司 激光投射器的控制系统及控制方法、激光投射组件和终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3611810A4

Also Published As

Publication number Publication date
EP3611810A1 (en) 2020-02-19
EP3611810A4 (en) 2020-07-15
US20200091680A1 (en) 2020-03-19
US11522338B2 (en) 2022-12-06
EP3611810B1 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
US11348217B2 (en) Projector, detection method thereof, and electronic device
WO2019165956A1 (zh) 控制方法、控制装置、终端、计算机设备和存储介质
AU2019277762B2 (en) Control system for laser projector and mobile terminal
CN108539575B (zh) 激光投射器的控制系统和移动终端
US11184513B2 (en) System, method and device for controlling electronic device and its target camera and laser projector
TWI708451B (zh) 雷射投射器的控制系統、終端和雷射投射器的控制方法
WO2020052282A1 (zh) 电子装置及其控制方法、控制装置和计算机可读存储介质
WO2019228097A1 (zh) 验证系统、电子装置、验证方法、计算机可读存储介质及计算机设备
TWI739096B (zh) 資料處理方法和電子設備
WO2017092445A1 (zh) 视频监控设备的工作模式的切换
WO2019205794A1 (zh) 激光投射器的控制系统及控制方法、激光投射组件和终端
CN108805025A (zh) 激光输出控制方法和装置、电子设备、存储介质
CN108760245A (zh) 光学元件检测方法和装置、电子设备、可读存储介质
US11300865B2 (en) Systems for controlling laser projector and mobile terminals
CN108717280B (zh) 激光投射器的控制系统和移动终端
CN108848207B (zh) 光电投射模组的控制系统及控制方法和终端
CN108736312B (zh) 结构光投射器的控制系统、结构光投射组件和电子装置
CN108804900B (zh) 验证模板的生成方法和生成系统、终端和计算机设备
CN118154829B (zh) 一种集成猫眼功能的成像系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019793203

Country of ref document: EP

Effective date: 20191111

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE