WO2023210351A1 - 発光素子駆動装置、および発光装置 - Google Patents

発光素子駆動装置、および発光装置 Download PDF

Info

Publication number
WO2023210351A1
WO2023210351A1 PCT/JP2023/014716 JP2023014716W WO2023210351A1 WO 2023210351 A1 WO2023210351 A1 WO 2023210351A1 JP 2023014716 W JP2023014716 W JP 2023014716W WO 2023210351 A1 WO2023210351 A1 WO 2023210351A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
light emitting
emitting element
overcurrent
led
Prior art date
Application number
PCT/JP2023/014716
Other languages
English (en)
French (fr)
Inventor
啓 青木
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2023210351A1 publication Critical patent/WO2023210351A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/14Controlling the intensity of the light using electrical feedback from LEDs or from LED modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/325Pulse-width modulation [PWM]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/375Switched mode power supply [SMPS] using buck topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/54Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits in a series array of LEDs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/14Controlling the light source in response to determined parameters by determining electrical parameters of the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection
    • H05B47/25Circuit arrangements for protecting against overcurrent

Definitions

  • the present disclosure relates to a light emitting element driving device.
  • An LED (light emitting diode) is an example of a light emitting element.
  • an LED driving device having an overcurrent protection function has been proposed (for example, Patent Document 1).
  • an object of the present disclosure is to provide a light emitting element driving device that can effectively realize a configuration having an overcurrent protection function.
  • a light emitting element driving device configured to drive a light emitting element, and includes: a switch driving section configured to drive a switch connectable to the negative terminal of the light emitting element whose positive terminal is grounded; an overcurrent detection unit configured to detect an overcurrent based on a voltage generated across a current detection resistor connected to the negative electrode side of the switch; Equipped with The switch driver is configured to turn the switch off when an overcurrent is detected by the overcurrent detector.
  • FIG. 1 is a diagram showing the configuration of a light emitting device including an LED driving device according to an exemplary first embodiment of the present disclosure.
  • FIG. 2 is a diagram showing example waveforms of the inductor current, average LED current, and switching voltage.
  • FIG. 3 is a diagram showing a part of a light emitting device using the LED driving device according to the first comparative example.
  • FIG. 4 is a diagram showing a part of a light emitting device using an LED driving device according to a second comparative example.
  • FIG. 5 is a diagram showing a current path when a short-circuit occurs at the cathode of the LED in the configuration shown in FIG. 1.
  • FIG. 6 is a timing chart showing an example of a protection operation in the configuration according to the first embodiment.
  • FIG. 1 is a diagram showing the configuration of a light emitting device including an LED driving device according to an exemplary first embodiment of the present disclosure.
  • FIG. 2 is a diagram showing example waveforms of the inductor current, average
  • FIG. 7 is a diagram showing the configuration of a light emitting device including an LED driving device according to a second embodiment of the present disclosure.
  • FIG. 8 is a timing chart showing an example of a protection operation in the configuration according to the second embodiment.
  • FIG. 9 is a diagram showing the configuration of a light emitting device including an LED driving device according to a third embodiment of the present disclosure.
  • FIG. 10 is a diagram showing the configuration of a light emitting device including an LED driving device according to a fourth embodiment of the present disclosure.
  • FIG. 1 is a diagram showing the configuration of a light emitting device X1 including an LED driving device 100 according to a first embodiment of the present disclosure.
  • the LED driving device is an example of a light emitting element driving device.
  • the LED driving device 100 is a semiconductor device (IC package) that drives the LED 30, and has a negative voltage buck-boost DC/DC converter function.
  • the LED drive device 100 is, for example, a device for two-wheel/four-wheel exterior lamps (head lamps, rear lamps, turn lamps, etc.).
  • the reason why the negative polarity buck-boost function is adopted in the LED driving device 100 is that when the input power supply voltage Vpin decreases due to a drop in battery voltage, etc., and the forward voltage Vf becomes Vpin ⁇ LED30, and In order to cope with both cases where Vpin>Vf of the LED 30 depending on the number of lights, the voltage step-up/down configuration is adopted. Further, a negative voltage step-up/down configuration is adopted so that a protection circuit is not required when the anode of the LED 30 is short-circuited to the application terminal of Vpin.
  • the LED driving device 100 includes an amplifier 1, an error amplifier 2, an oscillator 3, a slope generator 4, a PWM comparator 5, a flip-flop 6, an upper driver 7, and a lower driver. 8, diode 9, comparator 10, HICCUP control section 11, switch driving section 12, comparator 13, recovery state monitoring section 14, abnormality control section 15, constant current circuit 16, transistor M1, An upper transistor HM and a lower transistor LM are integrated into one chip.
  • the LED driving device 100 also has a PINP terminal (input power supply terminal), a BOOT terminal (bootstrap capacitance connection terminal), and a SW terminal (switching output terminal) as external terminals for establishing electrical connection with the outside.
  • PINN terminal DC/DC negative polarity reference input terminal
  • SNSP terminal LED current detection + connection terminal
  • SINN terminal small signal negative polarity reference input terminal
  • NDRV terminal switch drive terminal
  • It has a PBUS terminal (flag output terminal).
  • the light emitting device X1 includes an LED driving device 10 and each external element as described above.
  • the DC/DC converter includes an upper transistor HM, a lower transistor LM, an inductor L, and an output capacitor Cout, and generates an output voltage Vout based on the input voltage Vin by being switching-controlled by the LED driving device 10.
  • the output voltage Vout is applied to the LED 30 as a load.
  • One end of the inductor L is connected to the SW terminal.
  • the other end of the inductor L is connected to the anode of the LED 30 and one end of the output capacitor Cout, and is also connected to the application end of the ground GND and grounded.
  • the ground GND is the reference potential of the application.
  • the switch Msw is composed of an N-channel MOSFET (metal-oxide-semiconductor field-effect transistor).
  • the switch Msw is also called a load switch.
  • the drain of the switch Msw is connected to the cathode of the LED 30.
  • the source of the switch Msw is connected to one end of the sense resistor Rsns.
  • the other end of the sense resistor Rsns and the other end of the output capacitor Cout are connected to the PINN terminal.
  • the terminal to which the input power supply voltage Vpin is applied is connected to the PINP terminal.
  • the input power supply voltage Vpin is a battery voltage, and is, for example, 12V with respect to ground GND.
  • the upper transistor HM and the lower transistor LM are both constituted by N-channel MOSFETs, and are connected in series between the PINP terminal and the PINN terminal to form a bridge. More specifically, the drain of the upper transistor HM is connected to the PINP terminal. The source of the upper transistor HM and the drain of the lower transistor LM are connected at a node Nsw. The source of the lower transistor LM is connected to the PINN terminal. Node Nsw is connected to the SW terminal.
  • one end of the sense resistor Rsns is connected to the SNSP terminal.
  • the other end of the sense resistor Rsns is connected to the SINN terminal.
  • One input end of the amplifier 1 is connected to the SNSP terminal.
  • the other input terminal of amplifier 1 is connected to the SINN terminal.
  • the current flowing through the LED 30 is converted by the sense resistor Rsns into a sense voltage Vsns generated across the sense resistor Rsns.
  • the amplifier 1 amplifies the input sense voltage Vsns with a predetermined gain. For example, the amplifier 1 amplifies the sense voltage Vsns by 12.5 times.
  • the output of the amplifier 1 is input to one input terminal of the error amplifier 2.
  • a setting voltage Viset is applied to the other input terminal of the error amplifier 2.
  • the error amplifier 2 amplifies errors in signals input to two input terminals to generate an error signal Err.
  • the LED driving device 10 has a PWM dimming function.
  • PWM dimming is a method of dimming by switching the LED on and off at several hundred Hz to several kHz, and the brightness of the LED is determined by the duty in one cycle of the PWM dimming signal ("PWM" in Figure 1). Ru.
  • the PWM dimming signal becomes High level, the operation of the error amplifier 2 can be started with the output of the error amplifier 2 immediately before falling to the Low level. Therefore, the amount of change in LED current can be suppressed as much as possible.
  • the oscillator 3 generates a clock signal CLK with a fixed frequency (for example, 400 kHz).
  • the slope generating section 4 generates the slope signal Slp of the fixed frequency based on the clock signal CLK. Note that the slope signal Slp is generated based on current ripple information of the current flowing through the upper transistor HM.
  • a slope signal Slp is input to the non-inverting input terminal (+) of the PWM comparator 5.
  • An error signal Err is input to the inverting input terminal (-) of the PWM comparator 5.
  • the output Rst of the PWM comparator 5 is input to the reset terminal of the flip-flop 6.
  • a clock signal CLK is input to a set terminal of the flip-flop 6.
  • the upper driver 7 drives the gate of the upper transistor HM based on the Q terminal output of the flip-flop 6, and performs switching driving of the upper transistor HM.
  • the upper driver 7 applies a voltage between the boot voltage Vboot and the switching voltage Vsw of the SW terminal to the gate of the upper transistor HM.
  • boot capacitor Cboot for bootstrap is connected between the BOOT terminal and the SW terminal.
  • the anode of the diode 9 is connected to an application terminal of the internal reference voltage Vdrv5.
  • a BOOT terminal is connected to the cathode of the diode 9.
  • a boot voltage Vboot is generated at the BOOT terminal by charging the boot capacitor Cboot.
  • the boot voltage Vboot enables the upper transistor HM to be turned on.
  • the lower driver 8 drives the gate of the lower transistor LM based on the Q-bar terminal output of the flip-flop 6, thereby switching the lower transistor LM.
  • the lower driver 8 applies a voltage between the internal reference voltage Vdrv5 and the voltage of the PINN terminal to the gate of the lower transistor LM.
  • the LED driving device 10 can supply a stable current to the LED 30 with respect to input power supply voltage Vpin and LED load fluctuation by performing feedback control of the LED average current ILED flowing through the LED 30. Note that during normal times, the switch Msw is controlled to be in the on state.
  • FIG. 2 shows waveform examples of the inductor current IL flowing through the inductor L, the inductor average current IL_AVE, the LED average current ILED, and the switching voltage Vsw.
  • the voltage drop Vdsw shown in FIG. 2 is a voltage drop due to the on-resistance of the upper transistor HM or the on-resistance of the lower transistor LM.
  • an off period Doff (FIG. 2) is started.
  • the excitation energy stored in the inductor L causes current to flow through the lower transistor LM and SW terminals in the on state (current path indicated by "Doff" in FIG. 1), and the inductor current IL decreases.
  • the output capacitor Cout is charged to a negative polarity. As a result, a negative reference voltage Vpinn is generated at the PINN and SINN terminals.
  • Inductor peak current control is performed by turning off the upper transistor HM so that the LED average current ILED becomes the target setting current, and the inductor average current IL_AVE is controlled.
  • the input voltage Vin between the ground GND and the input power supply voltage Vpin is stepped up or down to the output voltage Vout between the negative polarity reference voltage and the ground GND.
  • FIG. 3 is a diagram showing a part of a light emitting device using the LED driving device 101 according to the first comparative example.
  • the LED driving device 101 shown in FIG. 3 is different from the configuration shown in FIG. 1 and is configured to be able to perform feedforward control.
  • the LED driving device 101 includes an upper transistor HM and a lower transistor LM.
  • the LED driving device 101 has an SW terminal and a PINN terminal as external terminals.
  • An inductor L, an output capacitor Cout, a clamp diode Di, a resistor R1, a switch Msw, and an LED 30 are provided outside the LED driving device 101.
  • a node Nsw to which the upper transistor HM and the lower transistor LM are connected is connected to one end of the inductor L via the SW terminal.
  • the other end of the inductor L is connected to one end of the output capacitor Cout and grounded.
  • the anode of the LED 30 is connected to the other end of the inductor L.
  • the cathode of the LED 30 is connected to the PINN terminal via the switch Msw.
  • the gate of switch Msw is connected to the other end of inductor L.
  • a resistor R1 is connected between the gate of the switch Msw and the PINN terminal.
  • the cathode of the clamp diode Di is connected to the other end of the inductor L.
  • the anode of the clamp diode Di is connected to the PINN terminal.
  • the PINN terminal is controlled to a negative polarity voltage by switching the upper transistor HM and the lower transistor LM.
  • the switch Msw is turned on due to the potential difference between the ground potential and the voltage at the PINN terminal.
  • the clamp diode Di clamps the voltage Vpinn of the PINN terminal to Vpinn ⁇ GND+VF (VF: forward voltage of the clamp diode Di).
  • FIG. 4 is a diagram showing a part of a light emitting device using the LED driving device 102 according to the second comparative example.
  • the LED driving device 102 shown in FIG. 4 is configured to be able to perform feedback control, similar to the configuration shown in FIG. 1.
  • a sense resistor Rsns is provided between the switch Msw and the PINN terminal. Feedback control is performed by detecting the current flowing through the LED 30 using the sense resistor Rsns.
  • resistors R11 and R12 and bipolar transistors Tr1 and Tr2 are provided outside the LED driving device 102.
  • One end of the resistor R11 is connected to the application end of the internal voltage Vreg. Internal voltage Vreg is generated inside the LED driving device 102.
  • the other end of the resistor R11 is connected to the gate of the switch Msw.
  • the bipolar transistor Tr1 is composed of an NPN transistor.
  • the collector of bipolar transistor Tr1 is connected to the other end of resistor R11.
  • the emitter of the bipolar transistor Tr1 is connected to the PINN terminal.
  • the base of bipolar transistor Tr1 is connected to one end of resistor R12.
  • the other end of the resistor R12 is connected to one end of the sense resistor Rsns.
  • Bipolar transistor Tr2 is composed of a PNP transistor.
  • the emitter of the bipolar transistor Tr2 is connected to the application terminal of the internal voltage Vreg.
  • the collector of bipolar transistor Tr2 is connected to the base of bipolar transistor Tr1.
  • the base of bipolar transistor Tr2 is connected to the collector of bipolar transistor Tr1.
  • FIG. 5 is a diagram showing a current path when a power short occurs at the cathode of the LED 30 in the configuration shown in FIG. 1.
  • the cathode of the LED 30 is short-circuited to the application terminal of the input power supply voltage Vpin, so that from the application terminal of the input power supply voltage Vpin, the switch Msw, the sense resistor Rsns, the PINN terminal, the body diode of the lower transistor LM, the SW terminal,
  • a current path (broken line in FIG. 5) is generated through the inductor L to the end to which the ground potential is applied, and an overcurrent flows in this current path.
  • the LED drive device 100 according to the present disclosure having the configuration shown in FIG. 1 has a protection function against such overcurrent.
  • the LED current I LED includes a path through which the current does not flow to the LED 30 when a short-circuit occurs at the cathode of the LED 30, as shown in FIG.
  • the PBUS terminal is a terminal for outputting the abnormality flag Vfl.
  • Transistor M1 is constituted by an N-channel type MOSFET. The drain of transistor M1 is connected to the PBUS terminal. A constant current circuit 16 is connected between the PBUS terminal and the end to which internal voltage Vreg is applied. The source of transistor M1 is grounded. Transistor M1 is driven by abnormality control section 15. In a normal state, the abnormality control unit 15 controls the transistor M1 to be in an off state, and the abnormality flag Vfl becomes high level. When an abnormality occurs, the abnormality control unit 15 controls the transistor M1 to turn on, and the abnormality flag Vfl becomes low level.
  • the overcurrent setting value ILED_SCP is expressed as follows.
  • I LED_SCP V SNS_SCP /Rsns
  • VSNS_SCP is an overcurrent setting value of the sense voltage Vsns, which is the voltage across the sense resistor Rsns.
  • Comparator 10 compares the sense voltage Vsns with the overcurrent set point VSNS_SCP . As a result, it is detected that the LED current I LED sharply increased to exceed the overcurrent set value I LED_SCP at timing t1 because the sense voltage Vsns exceeded the overcurrent set value V SNS_SCP . At this time, the comparator 10 outputs a high level detection output Det1.
  • the HICCUP control unit 11 outputs a control output Shcp according to the detection output Det1.
  • the HICCUP control unit 11 When receiving the high-level detection output Det1, the HICCUP control unit 11 outputs, for example, a high-level control output Shcp.
  • the switch driving section 12 drives the switch Msw according to the control output Shcp.
  • the switch driver 12 assumes that an overcurrent has been detected, switches the drive voltage Vndrv from high level to low level, and switches the switch Msw from the on state to the off state (timing t2).
  • the DC/DC converter is switched from the on state to the off state.
  • the HICCUP control unit 11 When the HICCUP control unit 11 receives the high-level detection output Det1, it starts counting a predetermined waiting time. During the standby time, the switch Msw and the DC/DC converter are kept off. Then, when the standby time has elapsed, the HICCUP control unit 11 outputs a low-level control output Shcp. In response to this, the switch driving section 12 switches the drive voltage Vndrv from a low level to a high level, and switches the switch Msw from an off state to an on state (timing t3). At this time, the DC/DC converter is switched from the off state to the on state. This causes recovery from the protected state.
  • the HICCUP control unit 11 switches the switch Msw and the DC/DC converter to the on state, and the return is performed (timing t5).
  • the overcurrent is detected by the comparator 10, and the switch Msw and the DC/DC converter are switched to the off state again (timing t6). Therefore, it is switched back to the protected state.
  • the voltage Vpinn increases toward the positive voltage, and is maintained when reaching the positive voltage, and when the switch Msw is turned off, Vpinn falls to the ground potential.
  • the short circuit is canceled before the standby time elapses (timing t7). Thereafter, when the standby time has elapsed, the HICCUP control unit 11 switches the switch Msw and the DC/DC converter to the on state, and the recovery is performed (timing t8).
  • Vpinn decreases toward a negative polarity voltage
  • the LED current I LED begins to flow while Vpinn is decreasing.
  • LED current I The LED does not overcurrent and becomes constant once it increases to a steady state. Therefore, the overcurrent is not detected by the comparator 10, and the switch Msw is maintained in the on state by the switch driver 12.
  • the protection operation and recovery can be realized by the control inside the LED drive device 10 by the comparator 10, the HICCUP control section 11, and the switch drive section 12. Further, as in the second comparative example, an increase in the number of external elements of the LED driving device can be suppressed.
  • the recovery state monitoring unit 14 monitors whether the LED current I LED exceeds the overcurrent setting value I LED_SCP before the predetermined monitoring time Tr elapses.
  • the recovery state monitoring section 14 causes the abnormality control section 15 to maintain the on state of the transistor M1, and the abnormality flag Vfl is maintained at a low level. Therefore, at timings t4 and t6 in FIG. 6, the LED current ILED exceeds the overcurrent setting value ILED_SCP before the predetermined monitoring time Tr elapses, so the abnormality flag Vfl is maintained at a low level.
  • the recovery state monitoring unit 14 causes the abnormality control unit 15 to control the transistor M1. is switched to an off state, and the abnormality flag Vfl is switched to a high level.
  • the LED current I LED does not exceed the overcurrent set value I LED_SCP before the predetermined monitoring time Tr has elapsed from timing t9 (the timing at which the LED current I LED exceeds the threshold I LED_SG ) after the power short is released. Therefore, the abnormality flag Vfl is switched to high level.
  • the comparator 10 that detects overcurrent may be configured to compare the output of the amplifier 1 with a reference voltage. However, since the configuration shown in FIG. 1 directly compares the sense voltage Vsns with the reference voltage, it is possible to suppress the delay in overcurrent detection.
  • FIG. 7 is a diagram showing the configuration of a light emitting device X2 including an LED driving device 200 according to a second embodiment of the present disclosure.
  • the difference between the LED driving device 200 and the first embodiment (FIG. 1) described above is that it includes a comparator 17, a pull-down resistor 18, and an NLED terminal (cathode connection terminal).
  • One input end of the comparator 17 is connected to the cathode of the LED 30 via the NLED terminal. Thereby, the comparator 17 compares the cathode voltage Vnled of the LED 30 with the short-to-power detection threshold V LED_SH . If the cathode voltage Vnled exceeds the short-to-power supply detection threshold V LED_SH , the comparator 17 detects a short-to-power supply and outputs a high-level detection output Det3.
  • the detection output Det1 of the comparator 10 and the detection output Det3 of the comparator 17 are input to the switch driving section 12.
  • the NLED terminal is pulled down to the ground potential by the pull-down resistor 18. This can prevent the voltage at the NLED terminal (cathode voltage Vnled) from becoming unstable when the switch Msw is in the off state.
  • the protection function of the LED driving device 200 having such a configuration will be explained using the timing chart shown in FIG. 8.
  • waveform examples of the voltage Vpinn, the cathode voltage Vnled, the drive voltage Vndrv, the LED current ILED , the on/off state of the DC/DC converter in the configuration shown in FIG. 7, and the abnormality flag Vfl are shown in order from the top.
  • the switch driver 12 switches the switch Msw from the on state to the off state, and also switches the DC/DC converter from the on state to the off state (timing t12). As a result, the LED current I LED falls to zero. At this time, the voltage Vpinn of the PINN terminal and the cathode voltage Vnled rise from the negative polarity voltage, and the voltage Vpinn is maintained by turning off the switch Msw, and the cathode voltage Vnled instantly rises to the input power supply voltage Vpin.
  • the cathode voltage Vnled exceeds the short-to-power detection threshold V LED_SH , so the detection output Det3 of the comparator 17 switches from low level to high level.
  • the short-to-power detection threshold V LED_SH is set to a voltage higher than the ground potential.
  • the switch driver 12 maintains the switch Msw in the off state.
  • the short-to-power circuit is maintained from timing t12 to t13, so the switch Msw is maintained in the off state. Therefore, the protected state is maintained. Then, when the short-to-power circuit is released at timing t13, the cathode voltage Vnled is lowered toward the ground potential by the pull-down resistor 18.
  • the switch driver 12 switches the switch Msw from the off state to the on state (timing t14). At this time, the DC/DC converter is also switched from the off state to the on state. Therefore, a return is performed.
  • the cathode voltage Vnled matches Vpinn and decreases toward a negative polarity voltage.
  • the LED current I LED rises from 0 and becomes constant when it reaches a steady value.
  • the protected state can be maintained during the period when the short circuit occurs without recovering as in the first embodiment. Then, when the short circuit is released, it is possible to automatically recover.
  • the state is switched to the protective state, but since no short-circuit has occurred, the cathode voltage Vnled is at the ground potential, and the detection output Det3 of the comparator 17 is at a low level. Therefore, the switch driving unit 12 immediately switches the switch Msw to the on state. Therefore, it becomes possible to return immediately.
  • FIG. 9 is a diagram showing the configuration of a light emitting device X3 including an LED driving device 300 according to a third embodiment of the present disclosure.
  • the LED driving device 300 includes a communication section 19 as a difference from the first embodiment (FIG. 1).
  • the communication unit 19 communicates with a microcomputer 35 provided outside the LED driving device 300. In the example of FIG. 9, communication is performed using I2C. Additionally, the microcomputer 35 is notified of the abnormality flag Vfl.
  • the microcomputer 35 can enable or disable the function of returning from the protected state in a register in the communication unit 19 through communication. As a result, when invalidation of recovery is selected, after the overcurrent is detected by the comparator 10 during normal operation and the switch Msw and the DC/DC converter are switched to the OFF state, the switch driving section 12 The switch Msw is maintained in the off state regardless of the current state.
  • FIG. 10 is a diagram showing the configuration of a light emitting device X4 including an LED driving device 400 according to a fourth embodiment of the present disclosure.
  • the LED driving device 400 has a built-in switch Msw as a difference from the first embodiment (FIG. 1). Accordingly, the LED driving device 400 includes an LSP terminal to which the drain of the switch Msw is connected, and an LSN terminal to which the source of the switch Msw is connected.
  • the switch Msw may be incorporated.
  • the light emitting element driving device (100) includes: A light emitting element driving device configured to drive a light emitting element (30), a switch driving section (12) configured to drive a switch (Msw) connectable to the negative end (cathode) of the light emitting element whose positive end (anode) is grounded; an overcurrent detection unit (10) configured to detect an overcurrent based on a voltage generated across a current detection resistor (Rsns) connected to the negative electrode side of the switch; Equipped with The switch driving section is configured to turn the switch off when an overcurrent is detected by the overcurrent detection section (first configuration).
  • the switch driving unit switches the switch (Msw) to the on state after a predetermined standby time has elapsed.
  • the configuration may further include a return control section (11) configured to control (second configuration).
  • the switch driving section (12) maintains the switch (Msw) in an off state while the power supply fault is detected by the power supply fault detection section after the overcurrent detection section (10) detects the overcurrent. (Third configuration).
  • the negative terminal of the light emitting element (30) is pulled down to a ground potential
  • the switch driving section (12) switches the switch (Msw) to an on state when the voltage at the negative terminal is detected by the power supply fault detection section (17) to have decreased to the power supply fault detection threshold.
  • any one of the first to fourth configurations further comprising a communication unit (19) configured to communicate with the microcomputer (35)
  • a configuration may be adopted in which whether or not to return from the protection state after the overcurrent is detected is switched depending on information set in the communication unit by the microcomputer (fifth configuration).
  • the overcurrent detection section (10) may be configured as a comparator connected to the front stage side of the amplifier (sixth configuration).
  • a light emitting device (X1) includes a light emitting element driving device (100) having any of the above configurations, a light emitting element (30) driven by the light emitting element driving device; a switch (Msw) connected to the negative terminal of the light emitting element; A current detection resistor (Rsns) connected to the negative electrode side of the switch is provided.
  • the present disclosure can be used, for example, to drive an LED.

Abstract

発光素子駆動装置(100)は、発光素子(30)を駆動するように構成される発光素子駆動装置であって、正極端(アノード)が接地される前記発光素子の負極端(カソード)に接続可能なスイッチ(Msw)を駆動するように構成されるスイッチ駆動部(12)と、前記スイッチの負極側に接続される電流検出抵抗(Rsns)の両端に発生する電圧に基づき過電流を検出するように構成される過電流検出部(10)と、を備え、前記スイッチ駆動部は、前記過電流検出部により過電流が検出された場合に、前記スイッチをオフ状態に切り替えるように構成される。

Description

発光素子駆動装置、および発光装置
 本開示は、発光素子駆動装置に関する。
 LED(発光ダイオード)は、発光素子の一例である。従来、過電流保護機能を有するLED駆動装置が提案されている(例えば特許文献1)。
特開2005-206074号公報
 ここで、LED駆動装置には、アノードがグランド電位の印加端に接続されるLEDのカソードを負極性の電圧に制御するLED駆動装置が存在し、このようなLED駆動装置において過電流保護機能を設けるにあたり、改善の余地があった。
 上記状況に鑑み、本開示は、過電流保護機能を有する構成を効果的に実現できる発光素子駆動装置を提供することを目的とする。
 例えば、本開示の一側面に係る発光素子駆動装置は、発光素子を駆動するように構成される発光素子駆動装置であって、
 正極端が接地される前記発光素子の負極端に接続可能なスイッチを駆動するように構成されるスイッチ駆動部と、
 前記スイッチの負極側に接続される電流検出抵抗の両端に発生する電圧に基づき過電流を検出するように構成される過電流検出部と、
 を備え、
 前記スイッチ駆動部は、前記過電流検出部により過電流が検出された場合に、前記スイッチをオフ状態に切り替えるように構成される。
 本開示の例示的な発光素子駆動装置によれば、過電流保護機能を有する構成を効果的に実現できる。
図1は、本開示の例示的な第1実施形態に係るLED駆動装置を含む発光装置の構成を示す図である。 図2は、インダクタ電流、平均LED電流、およびスイッチング電圧の波形例を示す図である。 図3は、第1比較例に係るLED駆動装置を用いた発光装置の一部を示す図である。 図4は、第2比較例に係るLED駆動装置を用いた発光装置の一部を示す図である。 図5は、図1に示す構成において、LEDのカソードに天絡が発生した場合の電流経路を示す図である。 図6は、第1実施形態に係る構成における保護動作の一例を示すタイミングチャートである。 図7は、本開示の第2実施形態に係るLED駆動装置を含む発光装置の構成を示す図である。 図8は、第2実施形態に係る構成における保護動作の一例を示すタイミングチャートである。 図9は、本開示の第3実施形態に係るLED駆動装置を含む発光装置の構成を示す図である。 図10は、本開示の第4実施形態に係るLED駆動装置を含む発光装置の構成を示す図である。
 以下、本開示の例示的な実施形態について、図面を参照して説明する。
<1.第1実施形態>
<負極性昇降圧DC/DCコンバータ>
 図1は、本開示の第1実施形態に係るLED駆動装置100を含む発光装置X1の構成を示す図である。LED駆動装置は、発光素子駆動装置の一例である。LED駆動装置100は、LED30を駆動する半導体装置(ICパッケージ)であり、負極性の昇降圧DC/DCコンバータ機能を有する。LED駆動装置100は、例えば、2輪/4輪の外装ランプ(ヘッドランプ、リアランプ、ターンランプなど)用の装置である。
 LED駆動装置100に負極性の昇降圧機能を採用している理由としては、バッテリの電圧低下などにより入力電源電圧Vpinが低下して、Vpin<LED30の順電圧Vfとなった場合、および、LED30の灯数によりVpin>LED30のVfとなった場合の両方に対応するために昇降圧構成としている。さらに、LED30のアノードがVpinの印加端に短絡した場合の保護回路が不要となるように負極性の昇降圧構成としている。
 図1に示すように、LED駆動装置100は、アンプ1と、エラーアンプ2と、発振器3と、スロープ生成部4と、PWMコンパレータ5と、フリップフロップ6と、上側ドライバ7と、下側ドライバ8と、ダイオード9と、コンパレータ10と、HICCUP制御部11と、スイッチ駆動部12と、コンパレータ13と、復帰状態監視部14と、異常制御部15と、定電流回路16と、トランジスタM1と、上側トランジスタHMと、下側トランジスタLMと、を1チップに集積化して有する。
 また、LED駆動装置100は、外部との電気的接続を確立するための外部端子として、PINP端子(入力電源端子)と、BOOT端子(ブートストラップ容量接続端子)と、SW端子(スイッチング出力端子)と、PINN端子(DC/DC負極性基準入力端子)と、SNSP端子(LED電流検出+接続端子)と、SINN端子(小信号負極性基準入力端子)と、NDRV端子(スイッチ駆動端子)と、PBUS端子(フラグ出力端子)と、を有する。
 LED駆動装置100の外部には、インダクタL、出力コンデンサCout、LED30、スイッチMsw、センス抵抗Rsns、およびブートコンデンサCbootが配置される。発光装置X1は、LED駆動装置10と、上記のような各外部素子と、を備える。
 DC/DCコンバータは、上側トランジスタHM、下側トランジスタLM、インダクタL、および出力コンデンサCoutを有し、LED駆動装置10によりスイッチング制御されることにより入力電圧Vinに基づき出力電圧Voutを生成する。出力電圧Voutは、負荷としてのLED30に印加される。
 インダクタLの一端は、SW端子に接続される。インダクタLの他端は、LED30のアノード、および出力コンデンサCoutの一端に接続されるとともに、グランドGNDの印加端に接続されて接地される。グランドGNDは、アプリケーションの基準電位である。
 スイッチMswは、Nチャネル型MOSFET(metal-oxide-semiconductor field-effect transistor)により構成される。スイッチMswは、ロードスイッチ(Load switch)とも呼ばれる。スイッチMswのドレインは、LED30のカソードに接続される。スイッチMswのソースは、センス抵抗Rsnsの一端に接続される。センス抵抗Rsnsの他端および出力コンデンサCoutの他端は、PINN端子に接続される。
 PINP端子には、入力電源電圧Vpinの印加端が接続される。入力電源電圧Vpinは、バッテリ電圧であり、グランドGND基準で例えば12Vである。
 上側トランジスタHMと下側トランジスタLMは、ともにNチャネル型MOSFETにより構成され、PINP端子とPINN端子との間に直列接続されてブリッジを形成する。より具体的には、上側トランジスタHMのドレインは、PINP端子に接続される。上側トランジスタHMのソースと下側トランジスタLMのドレインとは、ノードNswにて接続される。下側トランジスタLMのソースは、PINN端子に接続される。ノードNswは、SW端子に接続される。
 また、センス抵抗Rsnsの一端は、SNSP端子に接続される。センス抵抗Rsnsの他端は、SINN端子に接続される。
 アンプ1の一方の入力端は、SNSP端子に接続される。アンプ1の他方の入力端は、SINN端子に接続される。LED30を流れる電流は、センス抵抗Rsnsにより、センス抵抗Rsnsの両端間に発生するセンス電圧Vsnsに変換される。アンプ1は、入力されるセンス電圧Vsnsを所定ゲインで増幅する。例えば、アンプ1は、センス電圧Vsnsを12.5倍して増幅する。
 アンプ1の出力は、エラーアンプ2の一方の入力端に入力される。エラーアンプ2の他方の入力端には、設定用電圧Visetが印加される。エラーアンプ2は、2つの入力端に入力される信号の誤差を増幅して誤差信号Errを生成する。
 ここで、LED駆動装置10は、PWM調光機能を有している。PWM調光は、数百Hz~数kHzでLEDのオンオフを切り替えて調光する方法であり、LEDの明るさはPWM調光信号(図1の「PWM」)の1周期におけるデューティで決定される。PWM調光信号=Highレベルの場合、エラーアンプ2は通常の動作を行い、PWM調光信号=Lowレベルの場合、エラーアンプ2の通常動作を停止して出力維持動作を行う。これにより、PWM調光信号=Highレベルとなったとき、その直前のLowレベルに立ち下がる直前のエラーアンプ2の出力でエラーアンプ2の動作を開始することができる。従って、LED電流の変化量をなるべく抑えることができる。
 発振器3は、固定周波数(例えば400kHz)のクロック信号CLKを生成する。スロープ生成部4は、クロック信号CLKに基づき上記固定周波数のスロープ信号Slpを生成する。なお、スロープ信号Slpは、上側トランジスタHMを流れる電流の電流リップル情報に基づき生成される。
 PWMコンパレータ5の非反転入力端(+)には、スロープ信号Slpが入力される。PWMコンパレータ5の反転入力端(-)には、誤差信号Errが入力される。PWMコンパレータ5の出力Rstは、フリップフロップ6のリセット端子に入力される。フリップフロップ6のセット端子には、クロック信号CLKが入力される。
 上側ドライバ7は、フリップフロップ6のQ端子出力に基づいて上側トランジスタHMのゲートを駆動して、上側トランジスタHMをスイッチング駆動する。上側ドライバ7は、ブート電圧VbootとSW端子のスイッチング電圧Vswとの間で上側トランジスタHMのゲートに電圧を印加させる。
 なお、ブートストラップ用のブートコンデンサCbootは、BOOT端子とSW端子との間に接続される。ダイオード9のアノードには、内部基準電圧Vdrv5の印加端が接続される。ダイオード9のカソードには、BOOT端子が接続される。ブートコンデンサCbootへのチャージによりブート電圧VbootがBOOT端子に発生する。ブート電圧Vbootによって上側トランジスタHMをオン状態にすることが可能となる。
 下側ドライバ8は、フリップフロップ6のQバー端子出力に基づいて下側トランジスタLMのゲートを駆動して、下側トランジスタLMをスイッチング駆動する。下側ドライバ8は、内部基準電圧Vdrv5とPINN端子の電圧との間で下側トランジスタLMのゲートに電圧を印加させる。
 このような構成により、LED駆動装置10は、LED30を流れるLED平均電流ILEDのフィードバック制御を行うことで、入力電源電圧VpinおよびLED負荷変動に対して安定した電流をLED30に供給することができる。なお、通常時には、スイッチMswは、オン状態に制御される。
 ここで、図2には、インダクタLに流れるインダクタ電流IL、インダクタ平均電流IL_AVE、LED平均電流ILED、およびスイッチング電圧Vswの波形例を示す。なお、図2に示す電圧降下Vdswは、上側トランジスタHMのオン抵抗、または下側トランジスタLMのオン抵抗による電圧降下である。クロック信号CLKによりフリップフロップ6がセットされて上側トランジスタHMがターンオン、下側トランジスタLMがターンオフされると、オン期間Don(図2)が開始される。オン期間Donでは、オン状態の上側トランジスタHMおよびSW端子を介して電流が流れ(図1の「Don」で示す電流経路)、インダクタ電流ILは増加する。このとき、インダクタLには、励磁エネルギーが蓄えられる。
 そして、PWMコンパレータ5の出力によりフリップフロップ6がリセットされて上側トランジスタHMがターンオフ、下側トランジスタLMがターンオンされると、オフ期間Doff(図2)が開始される。オフ期間Doffでは、インダクタLに蓄えられた励磁エネルギーにより、オン状態の下側トランジスタLMおよびSW端子を介して電流が流れ(図1の「Doff」で示す電流経路)、インダクタ電流ILは減少する。このとき、インダクタLの他端をグランドGNDの印加端に接続して接地しているので、出力コンデンサCoutは負極性にチャージされる。これにより、PINN端子およびSINN端子に、負極性の基準電圧Vpinnが生じる。
 そして、クロック信号CLKの固定周波数によりフリップフロップ6が再びセットされると、上側トランジスタHMがターンオンされて、再びオン期間Donが開始される。
 LED平均電流ILEDが目標設定電流になるように、上側トランジスタHMのターンオフによりインダクタピーク電流制御が行われ、インダクタ平均電流IL_AVEが制御される。
 図1に示すように、グランドGNDと入力電源電圧Vpinとの間の入力電圧Vinは、負極性基準電圧とグランドGNDとの間の出力電圧Voutに昇降圧される。
<過電流保護>
 図1に示す構成において、LED30のカソードが入力電源電圧Vpinと短絡する可能性がある。すなわち、LED30のカソードの天絡が発生する可能性がある。このような天絡が発生した場合、過電流が発生するため、保護機能を設ける必要がある。
 ここで、図3は、第1比較例に係るLED駆動装置101を用いた発光装置の一部を示す図である。図3に示すLED駆動装置101は、図1に示す構成とは異なり、フィードフォワード制御を実行可能に構成される。LED駆動装置101は、上側トランジスタHMおよび下側トランジスタLMを備える。LED駆動装置101は、外部端子として、SW端子およびPINN端子を有する。LED駆動装置101の外部には、インダクタL、出力コンデンサCout、クランプダイオードDi、抵抗R1、スイッチMsw、およびLED30が設けられる。
 上側トランジスタHMと下側トランジスタLMが接続されるノードNswは、SW端子を介してインダクタLの一端に接続される。インダクタLの他端は、出力コンデンサCoutの一端に接続されるとともに、接地される。LED30のアノードは、インダクタLの他端に接続される。LED30のカソードは、スイッチMswを介してPINN端子に接続される。スイッチMswのゲートは、インダクタLの他端に接続される。スイッチMswのゲートとPINN端子との間には、抵抗R1が接続される。クランプダイオードDiのカソードは、インダクタLの他端に接続される。クランプダイオードDiのアノードは、PINN端子に接続される。
 このような構成において、上側トランジスタHMおよび下側トランジスタLMがスイッチングされることにより、PINN端子が負極性の電圧に制御される。グランド電位とPINN端子の電圧との電位差により、スイッチMswはオン状態とされる。クランプダイオードDiは、PINN端子の電圧VpinnをVpinn<GND+VF(VF:クランプダイオードDiの順電圧)にクランプする。
 しかしながら、図3に示す構成では、LED30のカソードに天絡が発生した場合、スイッチMswおよびクランプダイオードDiを通ってGNDへ向けて過電流が流れるが、当該過電流を検出することができない。従って、過電流に対する保護(天絡保護)を行うことができない。
 図4は、第2比較例に係るLED駆動装置102を用いた発光装置の一部を示す図である。図4に示すLED駆動装置102は、図1に示す構成と同様、フィードバック制御を実行可能に構成される。図4に示す構成において、スイッチMswとPINN端子との間にセンス抵抗Rsnsが設けられる。センス抵抗RsnsによりLED30に流れる電流を検出することでフィードバック制御が行われる。
 また、図4に示す構成の図3との相違点として、LED駆動装置102の外部において、抵抗R11,R12と、バイポーラトランジスタTr1,Tr2が設けられる。抵抗R11の一端は、内部電圧Vregの印加端に接続される。内部電圧Vregは、LED駆動装置102の内部で生成される。抵抗R11の他端は、スイッチMswのゲートに接続される。
 バイポーラトランジスタTr1は、NPNトランジスタにより構成される。バイポーラトランジスタTr1のコレクタは、抵抗R11の他端に接続される。バイポーラトランジスタTr1のエミッタは、PINN端子に接続される。バイポーラトランジスタTr1のベースは、抵抗R12の一端に接続される。抵抗R12の他端は、センス抵抗Rsnsの一端に接続される。バイポーラトランジスタTr2は、PNPトランジスタにより構成される。バイポーラトランジスタTr2のエミッタは、内部電圧Vregの印加端に接続される。バイポーラトランジスタTr2のコレクタは、バイポーラトランジスタTr1のベースに接続される。バイポーラトランジスタTr2のベースは、バイポーラトランジスタTr1のコレクタに接続される。
 このような構成により、LED30のカソードに天絡が発生した場合、センス抵抗Rsnsに過電流が流れる。このとき、過電流Iocpによりセンス抵抗Rsnsの両端間に発生する電圧がバイポーラトランジスタTr1のVfpnpを上回る。すなわち、Iocp>Vfpnp/Rsnsとなる。これにより、バイポーラトランジスタTr1がターンオンされ、スイッチMswのゲートがPINN端子の電圧となり、スイッチMswがターンオフされる。このとき、バイポーラトランジスタTr2がターンオンされるため、バイポーラトランジスタTr1,Tr2の状態がラッチされる。従って、スイッチMswは、オフ状態でラッチされる。仮に、バイポーラトランジスタをTr1のみ設けてスイッチMswをラッチしないようにすると、バイポーラトランジスタTr1によりVfpnp/Rsnsの値に制限された電流が流れ続け、発熱が発生してしまう。
 しかしながら、図4に示す構成では、ノイズが発生したことによりセンス抵抗Rsnsの両端間電圧が上昇してバイポーラトランジスタTr1のVfpnpを上回った場合でも、バイポーラトランジスタTr1,Tr2およびスイッチMswがラッチされてしまう課題がある。また、ラッチされると、自動復帰できない課題もある。また、抵抗R11,R12およびバイポーラトランジスタTr1,Tr2が必要であり、LED駆動装置102外部における素子数が増える課題もある。
 図5は、図1に示す構成において、LED30のカソードに天絡が発生した場合の電流経路を示す図である。図5では、LED30のカソードが入力電源電圧Vpinの印加端と短絡されるため、入力電源電圧Vpinの印加端からスイッチMsw、センス抵抗Rsns、PINN端子、下側トランジスタLMのボディダイオード、SW端子、およびインダクタLを介してグランド電位の印加端に至る電流経路(図5の破線)が発生し、当該電流経路に過電流が流れる。しかしながら、図1に示す構成の本開示に係るLED駆動装置100では、このような過電流に対する保護機能を有している。
 このような保護機能について図6に示すタイミングチャートを用いて説明する。図6において、上段から順に、PINN端子の電圧Vpinn、スイッチ駆動部12によりスイッチMswのゲートに印加される駆動電圧Vndrv、センス抵抗Rsnsに流れるLED電流ILED、図1に示す構成におけるDC/DCコンバータのオンオフ状態、および異常フラグVflの各波形例を示す。
 なお、LED電流ILEDには、LED30のカソードの天絡発生時には図5に示すようにLED30には流れない経路が含まれる。
 また、図1に示すように、PBUS端子は、異常フラグVflを出力するための端子である。トランジスタM1は、Nチャネル型MOSFETにより構成される。トランジスタM1のドレインは、PBUS端子に接続される。PBUS端子と内部電圧Vregの印加端との間には定電流回路16が接続される。トランジスタM1のソースは、接地される。トランジスタM1は、異常制御部15により駆動される。正常状態では、異常制御部15はトランジスタM1をオフ状態に制御し、異常フラグVflはハイレベルとなる。異常発生時には、異常制御部15はトランジスタM1をオン状態に制御し、異常フラグVflはローレベルとなる。
 図6において、まず通常時にはDC/DCコンバータがオン状態であり、スイッチ駆動部12により駆動電圧Vndrvはハイレベルのため、スイッチMswはオン状態である。このとき、PINN端子の電圧Vpinnは負極性の電圧であり、LED電流ILEDは所定の電流値に制御される。また、異常フラグVflは、ハイレベルである。
 そして、タイミングt1でLED30のカソードに天絡が発生すると、過電流が発生し、LED電流ILEDが急峻に増加する。このとき、PINN端子の電圧Vpinnは、入力電源電圧Vpinに近い正極性の電圧に向かって上昇する。
 ここで、過電流設定値ILED_SCPは、次のように表される。
 ILED_SCP=VSNS_SCP/Rsns
 VSNS_SCPは、センス抵抗Rsnsの両端間電圧であるセンス電圧Vsnsの過電流設定値である。
 コンパレータ10(図1)は、センス電圧Vsnsを過電流設定値VSNS_SCPと比較する。これにより、タイミングt1でLED電流ILEDが急峻に増加して過電流設定値ILED_SCPを上回ったことが、センス電圧Vsnsが過電流設定値VSNS_SCPを上回ったことで検出される。このとき、コンパレータ10は、ハイレベルの検出出力Det1を出力する。
 HICCUP制御部11は、検出出力Det1に応じて制御出力Shcpを出力する。HICCUP制御部11は、ハイレベルの検出出力Det1を入力された場合、例えばハイレベルの制御出力Shcpを出力する。スイッチ駆動部12は、制御出力Shcpに応じてスイッチMswを駆動する。スイッチ駆動部12は、ハイレベルの制御出力Shcpが入力された場合、過電流が検出されたとして、駆動電圧Vndrvをハイレベルからローレベルに切り替え、スイッチMswをオン状態からオフ状態へ切り替える(タイミングt2)。このとき、DC/DCコンバータは、オン状態からオフ状態へ切り替えられる。これにより、LED電流ILEDは流れなくなる(ILED=0)。従って、保護状態へ移行する。
 HICCUP制御部11は、ハイレベルの検出出力Det1を入力されると所定の待機時間のカウントを開始する。待機時間の間、スイッチMswおよびDC/DCコンバータは、オフ状態を維持される。そして、待機時間が経過すると、HICCUP制御部11は、ローレベルの制御出力Shcpを出力する。スイッチ駆動部12は、これを受けて駆動電圧Vndrvをローレベルからハイレベルに切り替え、スイッチMswをオフ状態からオン状態に切り替える(タイミングt3)。このとき、DC/DCコンバータは、オフ状態からオン状態へ切り替えられる。これにより、保護状態からの復帰が行われる。
 ここでは、天絡が解除されていないため、再び過電流が発生し、LED電流ILEDが急峻に増加する。従って、先述と同様に、コンパレータ10により過電流が検出され、スイッチMswおよびDC/DCコンバータは、再びオフ状態へ切り替えられる(タイミングt4)。従って、再び保護状態に切り替えられる。このとき、電圧Vpinnは、上記正極性の電圧に向かって上昇し、グランド電位を上回った後にスイッチMswがオフ状態になると、Vpinnはグランド電位まで立ち下がる。
 そして、先述と同様に、上記待機時間が経過すると、HICCUP制御部11により、スイッチMswおよびDC/DCコンバータがオン状態へ切り替えられ、復帰が行われる(タイミングt5)。ここで天絡が未だ解除されていないため、再び過電流が発生し、LED電流ILEDが急峻に増加する。従って、先述と同様に、コンパレータ10により過電流が検出され、スイッチMswおよびDC/DCコンバータは、再びオフ状態へ切り替えられる(タイミングt6)。従って、再び保護状態に切り替えられる。このとき、電圧Vpinnは、上記正極性の電圧に向かって上昇し、上記正極性の電圧に達すると維持され、スイッチMswがオフ状態になると、Vpinnはグランド電位まで立ち下がる。
 そして、図6では、上記待機時間が経過する前に天絡が解除される(タイミングt7)。その後、上記待機時間が経過すると、HICCUP制御部11により、スイッチMswおよびDC/DCコンバータがオン状態へ切り替えられ、復帰が行われる(タイミングt8)。ここでは天絡が解除されているため、Vpinnが負極性の電圧に向かって低下し、LED電流ILEDがVpinnの低下の途中で流れ出す。LED電流ILEDは過電流とはならず、定常状態まで増加すると一定となる。従って、コンパレータ10により過電流が検出されず、スイッチ駆動部12によりスイッチMswはオン状態を維持される。
 このように、LED30のカソードに天絡が発生した場合、保護状態と復帰を繰り返し、天絡が解除されると、復帰して通常状態へ戻ることができる。すなわち、過電流に対する保護を行いつつ、天絡が解除された場合に自動復帰が可能となる。
 また、仮にノイズによって過電流が検出された場合でも、天絡されているのではないため、次に復帰する場合に過電流は検出されず、通常状態へ自動復帰される。
 このように、コンパレータ10、HICCUP制御部11、およびスイッチ駆動部12によるLED駆動装置10内部での制御により、保護動作および復帰を実現できる。また、上記第2比較例のように、LED駆動装置の外部の素子数が増加することを抑制できる。
 なお、異常フラグVflについて説明すると、通常時において過電流が検出されると、異常制御部15によりトランジスタM1がターンオンされ、異常フラグVflは異常を示すローレベルに切り替えられる(タイミングt2)。その後、復帰状態監視部14は、コンパレータ13の検出出力Det2に基づきLED電流ILEDが0から増加して所定の閾値ILED_SGを上回ったことを検出すると、コンパレータ10の検出出力Det1を監視する。ここで、コンパレータ13は、アンプ1の出力を閾値VSNS_SGと比較する。閾値VSNS_SG=ILED_SG×Rsnsである。
 復帰状態監視部14は、所定の監視時間Trの経過前にLED電流ILEDが過電流設定値ILED_SCPを上回るかを監視する。LED電流ILEDが過電流設定値ILED_SCPを上回った場合は、復帰状態監視部14により異常制御部15は、トランジスタM1のオン状態を維持し、異常フラグVflはローレベルを維持される。従って、図6のタイミングt4およびt6では、所定の監視時間Trの経過前にLED電流ILEDが過電流設定値ILED_SCPを上回るため、異常フラグVflはローレベルを維持される。
 一方、復帰状態監視部14は、所定の監視時間Trの経過前にLED電流ILEDが過電流設定値ILED_SCPを上回らなかった場合は、復帰状態監視部14により異常制御部15は、トランジスタM1をオフ状態に切り替え、異常フラグVflはハイレベルに切り替えられる。これにより、天絡が解除された後のタイミングt9(LED電流ILEDが閾値ILED_SGを上回ったタイミング)から所定の監視時間Trの経過前にLED電流ILEDが過電流設定値ILED_SCPを上回らないため、異常フラグVflがハイレベルに切り替えられる。
 なお、過電流を検出するコンパレータ10は、アンプ1の出力を基準電圧と比較する構成としてもよい。ただし、図1に示す構成のほうが、センス電圧Vsnsを直接、基準電圧と比較するため、過電流検出の遅延を抑制できる。
<2.第2実施形態>
 図7は、本開示の第2実施形態に係るLED駆動装置200を含む発光装置X2の構成を示す図である。LED駆動装置200の先述した第1実施形態(図1)との相違点は、コンパレータ17と、プルダウン抵抗18と、NLED端子(カソード接続端子)を備えることである。
 コンパレータ17の一方の入力端は、NLED端子を介してLED30のカソードに接続される。これにより、コンパレータ17は、LED30のカソード電圧Vnledを天絡検出閾値VLED_SHと比較する。カソード電圧Vnledが天絡検出閾値VLED_SHを上回れば、コンパレータ17は、天絡を検出してハイレベルの検出出力Det3を出力する。スイッチ駆動部12には、コンパレータ10の検出出力Det1と、コンパレータ17の検出出力Det3が入力される。
 また、NLED端子は、プルダウン抵抗18によりグランド電位にプルダウンされる。これにより、スイッチMswがオフ状態のときにNLED端子の電圧(カソード電圧Vnled)が不定になることを回避できる。
 このような構成のLED駆動装置200における保護機能について図8に示すタイミングチャートを用いて説明する。図8において、上段から順に、電圧Vpinn、カソード電圧Vnled、駆動電圧Vndrv、LED電流ILED、図7に示す構成におけるDC/DCコンバータのオンオフ状態、および異常フラグVflの各波形例を示す。
 通常状態においてタイミングt11で天絡が発生すると、過電流が発生し、LED電流ILEDが急峻に増加する。そして、コンパレータ10により過電流が検出されると、スイッチ駆動部12によってスイッチMswがオン状態からオフ状態に切り替えられるとともに、DC/DCコンバータもオン状態からオフ状態へ切り替えられる(タイミングt12)。これにより、LED電流ILEDは0まで立ち下がる。このとき、PINN端子の電圧Vpinnおよびカソード電圧Vnledは、負極性の電圧から上昇し、スイッチMswがオフ状態になることで電圧Vpinnは維持され、カソード電圧Vnledは入力電源電圧Vpinまで瞬時に立ち上がる。
 これにより、カソード電圧Vnledは、天絡検出閾値VLED_SHを上回るため、コンパレータ17の検出出力Det3は、ローレベルからハイレベルに切り替わる。なお、天絡検出閾値VLED_SHは、グランド電位よりも高い電圧に設定される。
 スイッチ駆動部12は、検出閾値Det3がハイレベルの場合、スイッチMswのオフ状態を維持する。図8では、タイミングt12からt13まで天絡が維持されるため、スイッチMswのオフ状態が維持される。従って、保護状態が維持される。そして、タイミングt13で天絡が解除されると、カソード電圧Vnledは、プルダウン抵抗18によりグランド電位へ向けて低下する。
 そして、カソード電圧Vnledが天絡検出閾値VLED_SHまで低下したことがコンパレータ17により検出されると、スイッチ駆動部12は、スイッチMswをオフ状態からオン状態へ切り替える(タイミングt14)。このとき、DC/DCコンバータもオフ状態からオン状態へ切り替えられる。従って、復帰が行われる。
 すると、カソード電圧VnledはVpinnと一致し、負極性の電圧に向けて低下する。このとき、LED電流ILEDは0から立ち上がり、定常値に達すると一定となる。
 このように、本実施形態であれば、天絡が発生している期間は第1実施形態のように復帰することなく保護状態を維持できる。そして、天絡が解除されると、自動的に復帰することが可能である。なお、ノイズによってコンパレータ10により過電流が検出された場合は、保護状態に切り替わるが、天絡が発生していないため、カソード電圧Vnledはグランド電位であり、コンパレータ17の検出出力Det3はローレベルのため、スイッチ駆動部12は、スイッチMswを即時にオン状態に切り替える。従って、即時に復帰することが可能となる。
<3.第3実施形態>
 図9は、本開示の第3実施形態に係るLED駆動装置300を含む発光装置X3の構成を示す図である。LED駆動装置300は、第1実施形態(図1)との相違点として、通信部19を備える。通信部19は、LED駆動装置300の外部に設けられるマイコン35との間で通信を行う。図9の例では、I2Cによる通信を行う。また、異常フラグVflは、マイコン35に通知される。
 マイコン35は、通信によって通信部19におけるレジスタに保護状態からの復帰を行う機能の有効・無効を設定可能である。これにより、復帰の無効が選択されている場合は、通常時にコンパレータ10により過電流が検出されてスイッチMswおよびDC/DCコンバータがオフ状態に切り替えられた後、スイッチ駆動部12はHICCUP制御部11に依らずにスイッチMswのオフ状態を維持する。
 なお、第2実施形態に通信部およびマイコンを適用することも可能である。
<4.第4実施形態>
 図10は、本開示の第4実施形態に係るLED駆動装置400を含む発光装置X4の構成を示す図である。LED駆動装置400は、第1実施形態(図1)との相違点として、スイッチMswを内蔵している。これにより、LED駆動装置400は、スイッチMswのドレインが接続されるLSP端子と、スイッチMswのソースが接続されるLSN端子と、を備える。
 このように、スイッチMswを内蔵することで、過電流が検出されてスイッチ駆動部12により駆動電圧Vndrvがローレベルに切り替えられたときのスイッチMswのターンオフの遅延を抑制できる。なお、第2および第3実施形態において、スイッチMswを内蔵してもよい。
<5.その他>
 なお、本明細書中に開示されている種々の技術的特徴は、上記実施形態のほか、その技術的創作の主旨を逸脱しない範囲で種々の変更を加えることが可能である。すなわち、上記実施形態は、全ての点で例示であって制限的なものではないと考えられるべきであり、本発明の技術的範囲は、上記実施形態に限定されるものではなく、特許請求の範囲と均等の意味および範囲内に属する全ての変更が含まれると理解されるべきである。
<6.付記>
 以上のように、本開示の一側面に係る発光素子駆動装置(100)は、
 発光素子(30)を駆動するように構成される発光素子駆動装置であって、
 正極端(アノード)が接地される前記発光素子の負極端(カソード)に接続可能なスイッチ(Msw)を駆動するように構成されるスイッチ駆動部(12)と、
 前記スイッチの負極側に接続される電流検出抵抗(Rsns)の両端に発生する電圧に基づき過電流を検出するように構成される過電流検出部(10)と、
 を備え、
 前記スイッチ駆動部は、前記過電流検出部により過電流が検出された場合に、前記スイッチをオフ状態に切り替えるように構成される(第1の構成)。
 また、上記第1の構成において、前記過電流検出部(10)により過電流が検出された場合に、所定の待機時間の経過後に前記スイッチ(Msw)をオン状態に切り替えるように前記スイッチ駆動部(12)を制御するように構成される復帰制御部(11)をさらに備える構成としてもよい(第2の構成)。
 また、上記第1または第2の構成において、前記発光素子(30)の負極端の電圧を天絡検出閾値と比較するように構成される天絡検出部(17)をさらに備え、
 前記スイッチ駆動部(12)は、前記過電流検出部(10)による過電流検出の後、前記天絡検出部により天絡が検出される間は前記スイッチ(Msw)をオフ状態に維持するように構成される構成としてもよい(第3の構成)。
 また、上記第3の構成において、前記発光素子(30)の負極端は、グランド電位にプルダウンされ、
 前記スイッチ駆動部(12)は、前記天絡検出部(17)により前記負極端の電圧が前記天絡検出閾値まで低下したことが検出されると、前記スイッチ(Msw)をオン状態に切り替えるように構成される構成としてもよい(第4の構成)。
 また、上記第1から第4のいずれかの構成において、マイコン(35)と通信するように構成される通信部(19)をさらに備え、
 前記マイコンにより前記通信部に設定される情報に応じて、前記過電流が検出された後に保護状態から復帰するか否かが切り替えられる構成としてもよい(第5の構成)。
 また、上記第1から第5のいずれかの構成において、前記電流検出抵抗(Rsns)の両端間電圧を増幅するように構成されるアンプ(1)をさらに備え、
 前記過電流検出部(10)は、前記アンプの前段側に接続されるコンパレータである構成としてもよい(第6の構成)。
 また、本開示の一側面に係る発光装置(X1)は、上記いずれかの構成の発光素子駆動装置(100)と、
 前記発光素子駆動装置により駆動される発光素子(30)と、
 前記発光素子の負極端に接続されるスイッチ(Msw)と、
 前記スイッチの負極側に接続される電流検出抵抗(Rsns)と、を備える。
 本開示は、例えば、LEDの駆動に利用することが可能である。
   1   アンプ
   2   エラーアンプ
   3   発振器
   4   スロープ生成部
   5   PWMコンパレータ
   6   フリップフロップ
   7   上側ドライバ
   8   下側ドライバ
   9   ダイオード
  10   コンパレータ
  11   HICCUP制御部
  12   スイッチ駆動部
  13   コンパレータ
  14   復帰状態監視部
  15   異常制御部
  16   定電流回路
  17   コンパレータ
  18   プルダウン抵抗
  19   通信部
  30   LED
  35   マイコン
  100,200,300,400   LED駆動装置
  101,102 LED駆動装置
  Cboot  ブートコンデンサ
  Cout   出力コンデンサ
  Di   クランプダイオード
  HM   上側トランジスタ
   L   インダクタ
  LM   下側トランジスタ
  M1   トランジスタ
  R1   抵抗
  R11,R12 抵抗
  Rsns   センス抵抗
  Msw   スイッチ
  Tr1,Tr2 バイポーラトランジスタ
  X1~X4   発光装置

Claims (7)

  1.  発光素子を駆動するように構成される発光素子駆動装置であって、
     正極端が接地される前記発光素子の負極端に接続可能なスイッチを駆動するように構成されるスイッチ駆動部と、
     前記スイッチの負極側に接続される電流検出抵抗の両端に発生する電圧に基づき過電流を検出するように構成される過電流検出部と、
     を備え、
     前記スイッチ駆動部は、前記過電流検出部により過電流が検出された場合に、前記スイッチをオフ状態に切り替えるように構成される、発光素子駆動装置。
  2.  前記過電流検出部により過電流が検出された場合に、所定の待機時間の経過後に前記スイッチをオン状態に切り替えるように前記スイッチ駆動部を制御するように構成される復帰制御部をさらに備える、請求項1に記載の発光素子駆動装置。
  3.  前記発光素子の負極端の電圧を天絡検出閾値と比較するように構成される天絡検出部をさらに備え、
     前記スイッチ駆動部は、前記過電流検出部による過電流検出の後、前記天絡検出部により天絡が検出される間は前記スイッチをオフ状態に維持するように構成される、請求項1または請求項2に記載の発光素子駆動装置。
  4.  前記発光素子の負極端は、グランド電位にプルダウンされ、
     前記スイッチ駆動部は、前記天絡検出部により前記負極端の電圧が前記天絡検出閾値まで低下したことが検出されると、前記スイッチをオン状態に切り替えるように構成される、請求項3に記載の発光素子駆動装置。
  5.  マイコンと通信するように構成される通信部をさらに備え、
     前記マイコンにより前記通信部に設定される情報に応じて、前記過電流が検出された後に保護状態から復帰するか否かが切り替えられる、請求項1から請求項4のいずれか1項に記載の発光素子駆動装置。
  6.  前記電流検出抵抗の両端間電圧を増幅するように構成されるアンプをさらに備え、
     前記過電流検出部は、前記アンプの前段側に接続されるコンパレータである、請求項1から請求項5のいずれか1項に記載の発光素子駆動装置。
  7.  請求項1から請求項6のいずれか1項に記載の発光素子駆動装置と、
     前記発光素子駆動装置により駆動される発光素子と、
     前記発光素子の負極端に接続されるスイッチと、
     前記スイッチの負極側に接続される電流検出抵抗と、を備える発光装置。
PCT/JP2023/014716 2022-04-27 2023-04-11 発光素子駆動装置、および発光装置 WO2023210351A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022073052 2022-04-27
JP2022-073052 2022-04-27

Publications (1)

Publication Number Publication Date
WO2023210351A1 true WO2023210351A1 (ja) 2023-11-02

Family

ID=88518450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014716 WO2023210351A1 (ja) 2022-04-27 2023-04-11 発光素子駆動装置、および発光装置

Country Status (1)

Country Link
WO (1) WO2023210351A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008186668A (ja) * 2007-01-29 2008-08-14 Sharp Corp Led駆動回路およびそれを用いた映像表示装置
JP2010141137A (ja) * 2008-12-11 2010-06-24 Koito Mfg Co Ltd 車両用灯具の制御装置
JP2012160436A (ja) * 2011-01-13 2012-08-23 Rohm Co Ltd Ledショート検出回路、led駆動装置、led照明装置、車両
JP2014103002A (ja) * 2012-11-20 2014-06-05 Rohm Co Ltd 発光装置の制御回路、それを用いた発光装置および電子機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008186668A (ja) * 2007-01-29 2008-08-14 Sharp Corp Led駆動回路およびそれを用いた映像表示装置
JP2010141137A (ja) * 2008-12-11 2010-06-24 Koito Mfg Co Ltd 車両用灯具の制御装置
JP2012160436A (ja) * 2011-01-13 2012-08-23 Rohm Co Ltd Ledショート検出回路、led駆動装置、led照明装置、車両
JP2014103002A (ja) * 2012-11-20 2014-06-05 Rohm Co Ltd 発光装置の制御回路、それを用いた発光装置および電子機器

Similar Documents

Publication Publication Date Title
US11764683B2 (en) Light-emitting element driving control device
US9177508B2 (en) Light emitting apparatus
US8890440B2 (en) Circuits and methods for driving light sources
KR100718522B1 (ko) Dc-dc 컨버터, dc-dc 컨버터의 제어 회로, 및dc-dc 컨버터의 제어 방법
US9333914B2 (en) LED short-circuit detection circuit, LED drive device, LED lighting device, and vehicle
JP4810283B2 (ja) スイッチング制御回路
US20160165688A1 (en) Semiconductor device and power supply device
US11831245B2 (en) Switching control device, driving device, isolated DC-DC converter, AC-DC converter, power adapter, and electric appliance
US20100157629A1 (en) Semiconductor laser apparatus
US20100181914A1 (en) Lighting control device of lighting device for vehicle
KR20080019197A (ko) Dc/dc 컨버터의 제어 회로 및 그것을 이용한 전원장치, 발광 장치, 전자 기기
US7301786B2 (en) Quasi resonant type switching power supply apparatus with overcurrent limiting
KR20100000667A (ko) 스위치 제어 장치 및 이를 포함하는 컨버터
US20070132404A1 (en) DC/DC converter
JP5107656B2 (ja) 自励式のキャパシタ充電回路の制御回路、制御方法およびそれを用いたキャパシタ充電回路、電子機器
US8619439B2 (en) Flyback boost circuit with current supplied to secondary side of transformer circuit prior to boost operation and strobe device using the same
JP4753729B2 (ja) スイッチング制御回路
US8237382B2 (en) LED module and method for operating at least one LED
WO2023210351A1 (ja) 発光素子駆動装置、および発光装置
JP6922550B2 (ja) Led点灯装置及びled照明装置
CN111953209B (zh) 开关型变换器及其控制电路和控制方法
CN112702815B (zh) 开关降压型led恒流控制电路、系统及方法
WO2022138540A1 (ja) 電源制御装置
CN110831285B (zh) 恒流源负载驱动装置与照明灯具
JP6792027B2 (ja) スイッチングコンバータの制御回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796095

Country of ref document: EP

Kind code of ref document: A1