WO2005093877A1 - アルカリ蓄電池 - Google Patents

アルカリ蓄電池 Download PDF

Info

Publication number
WO2005093877A1
WO2005093877A1 PCT/JP2005/006535 JP2005006535W WO2005093877A1 WO 2005093877 A1 WO2005093877 A1 WO 2005093877A1 JP 2005006535 W JP2005006535 W JP 2005006535W WO 2005093877 A1 WO2005093877 A1 WO 2005093877A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
storage battery
alkaline storage
papermaking web
positive electrode
Prior art date
Application number
PCT/JP2005/006535
Other languages
English (en)
French (fr)
Inventor
Hideki Ando
Hiroyuki Sakamoto
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to US10/588,721 priority Critical patent/US20070160902A1/en
Publication of WO2005093877A1 publication Critical patent/WO2005093877A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an alkaline storage battery having an alkaline electrolyte.
  • alkaline storage batteries have attracted attention as a power source for portable field devices and portable devices, and as a power source for electric vehicles and hybrid vehicles.
  • Various types of alkaline storage batteries have been proposed.
  • a positive electrode composed mainly of an active material mainly composed of hydroxide hydroxide, a negative electrode mainly composed of a hydrogen storage alloy, and a hydroxide Nickel-metal hydride secondary batteries equipped with an alkaline electrolyte including a power rim are rapidly spreading as secondary batteries having a high energy density and excellent reliability.
  • the nickel-hydrogen rechargeable battery has a problem that the self-discharge characteristic deteriorates (deteriorates) when charging and discharging are repeated.
  • a nickel hydrogen secondary battery having good self-discharge characteristics even after repeated charge / discharge has been proposed (for example, see Patent Document 1).
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2001-313130
  • Patent Document 1 points out that metal ions eluted from the positive electrode and the negative electrode are deposited on the separator, and a continuous conductive path is formed between the positive electrode and the negative electrode by the conductive precipitate. . In other words, they point out that the conductive path generated between the two electrodes is the cause of the decrease in self-discharge characteristics. In detail, they point out that if the amount of electrolyte retained in the separator decreases (the solution dies), metal ions eluted in the electrolyte tend to precipitate on the separator.
  • the amount of the electrolyte held in the separator is set to 15 mg / cm 2 or more at the time of assembling the battery, so that the electrolyte held in the separator can be repeatedly charged and discharged.
  • the positive and negative electrodes This suppresses the metal ions eluted from the separator from depositing on the separator, thereby improving the self-discharge characteristics.
  • Patent Document 1 0 ⁇ 60 (m 2 / g) specific surface area of the separator to 0. 90 in the range of (m 2 / g), eye ⁇ a 60 (g / m 2) ⁇ 85 (gZm It is disclosed that by setting the range of 2 ), the self-discharge characteristics can be improved. Specifically, in Patent Document 1, self-discharge is performed for a battery that has been charged and discharged at 13 A (2 C) for 30 minutes, and has been subjected to 200 charge / discharge cycles of discharging at 13 A (2 C) until the battery voltage reaches 1 V. Evaluating the characteristics. That is, the battery of Patent Document 1 can maintain good self-discharge characteristics even after 200 cycles of charging and discharging. Disclosure of the invention
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a battery that can maintain good self-discharge characteristics for a long period of time.
  • the solution is an alkaline storage battery comprising a positive electrode, a negative electrode, a separator, and an alkaline electrolyte, wherein the separator is made of a nonwoven fabric having a plurality of papermaking web layers laminated, and has a basis weight of A (gZm 2 ), Where the specific surface area is B (m 2 / g) and the thickness is C (mm), the alkaline storage battery satisfies the relationship of 8.8 ⁇ AXBXC ⁇ 15.2. .
  • the separator is made of a nonwoven fabric in which a plurality of papermaking web layers are laminated.
  • An alkaline storage battery using a nonwoven fabric in which a plurality of papermaking web layers are laminated as a separator has better self-discharge characteristics than a case where a single-layer nonwoven fabric is used. This is considered to be because the use of a nonwoven fabric in which a plurality of papermaking web layers are laminated increases the number of discontinuous surfaces between the papermaking web layers, and makes it difficult to form a conductive path connecting the two electrodes.
  • the separator has a basis weight of A (g / m 2 ), a specific surface area of B (m 2 / g), and a thickness of C (mm), 8.8 ⁇ AXB XC ⁇ The relationship of 15.2 is satisfied.
  • the present inventor has proposed that by extending the path between the positive electrode and the negative electrode formed along the fibers of the separator (hereinafter, also referred to as an inter-electrode path), a conductive path connecting the two electrodes is formed. I thought it would be difficult.
  • the basis weight A (gZm 2 ), the specific surface area B (m 2 / g), and the thickness C (mm) of the separator we focused on three factors: the basis weight A (gZm 2 ), the specific surface area B (m 2 / g), and the thickness C (mm) of the separator, and found that the value AXBXC multiplied by these factors was large. As a result, it was found that the self-discharge characteristics were improved. Specifically, by using a separator satisfying the relationship of AXBXC ⁇ 8.8, the self-discharge characteristics of the alkaline storage battery can be improved. This is considered to be because by setting AXBXC ⁇ 8.8, a sufficient path between the electrodes can be ensured, and the formation of a conductive path connecting the two electrodes can be suppressed.
  • the value of AXBXC may be increased to improve the self-discharge characteristics.
  • the fiber density of the separator becomes too large (the number of voids decreases), the air permeability of the separator decreases, and the internal pressure of the alkaline storage battery increases. There is a possibility that it will end.
  • the alkaline storage battery of the present invention uses a separator that satisfies the relationship of AXBXC ⁇ 15.2, so it is possible to suppress a decrease in the air permeability of the separator, and as a result, the internal pressure of the alkaline storage battery increases. Can be suppressed.
  • the papermaking web layer is an aggregate of fibers made from a slurry by a net, A single-layer sheet.
  • the nonwoven fabric forming the separator of the present invention may be a wet nonwoven fabric or a dry nonwoven fabric.
  • the alkaline storage battery of the present invention includes, for example, a nickel single-layer battery, a nickel-hydrogen battery, and a nickel-zinc battery, and is particularly suitable for electric vehicles and hybrid vehicles. .
  • the nonwoven fabric forming the separator has a plurality of papermaking web layers different in at least one of the basis weight, specific surface area, thickness, and / or sulfonation degree. It is good to use a storage battery.
  • the nonwoven fabric forming the separator has a plurality of papermaking web layers different in at least one of the basis weight, specific surface area, thickness, and / or sulfonation degree. As described above, by forming a separator (nonwoven fabric) by a plurality of papermaking web layers having different properties, the characteristics of the alkaline storage battery can be improved.
  • the nonwoven fabric forming the separator has a negative electrode side papermaking web layer on the positive electrode side papermaking web layer compared to the positive electrode side papermaking web layer
  • the formation of conductive paths can be suppressed efficiently.
  • selectively increasing the basis weight of the papermaking web layer in one separator suppresses an increase in the fiber density of the entire separator as compared with the case where the basis weight of all papermaking web layers is increased. be able to. For this reason, a decrease in the air permeability of the separator can be suppressed, and a rise in the internal pressure of the alkaline storage battery can be suppressed.
  • the degree of sulfonation (the number of s atoms contained in the fiber and the number of c atoms contained in the fiber) of the papermaking web layer constituting one separator (non-woven fabric) is changed, sulfonation occurs.
  • the air permeability can be secured by the papermaking web layer having a small degree of sulfonation while the electrolyte is kept in the separator by the papermaking web layer having a large degree.
  • the alkaline storage battery according to any one of the above, wherein the amount of the electrolytic solution is 3.0 (g) or more and 3.5 (g) or less per 1 Ah of theoretical capacity of the positive electrode. Good.
  • the electrolyte solution is taken into the space between the positive electrode active material crystal lattice and the electrode space generated by the swelling of the electrode due to repeated charge and discharge, and the electrolyte solution in the separator becomes insufficient. If the electrolyte in the separator runs short (liquid withdrawal), metal ions eluted in the electrolyte tend to precipitate on the separator, which may result in the formation of a conductive path connecting the two electrodes.
  • the amount of the electrolytic solution is set to 3.0 (g) or more per 1 Ah of the theoretical capacity of the positive electrode. As a result, it is possible to prevent the liquid of the separator from withering, and to improve the self-discharge characteristics.
  • the separator can be prevented from withering.However, when the amount of the electrolyte is too large, the air permeability of the separator decreases, and the internal pressure of the alkaline storage battery decreases. There is a possibility that it will rise.
  • the amount of the electrolytic solution is set to 3.5 (g) or less per 1 Ah of the theoretical capacity of the positive electrode. As a result, an increase in the internal pressure of the alkaline storage battery can be suppressed.
  • the theoretical capacity of the positive electrode is, for example, when nickel hydroxide is used as the positive electrode active material, the capacity is calculated as 289 mAh per gram of nickel hydroxide.
  • the separator may be an alkaline storage battery that has been subjected to a sulfonation-hydrophilic treatment with sulfuric anhydride.
  • the separator since the separator is subjected to the sulfonated hydrophilic treatment, the liquid retention property is improved and the liquid can be prevented from withering.
  • the sulfonated hydrophilic treatment using sulfuric anhydride since it is used, it can be sulfonated to the inside of the fiber constituting the separator, and the liquid retaining property can be improved.
  • the sulfonated hydrophilic treatment with sulfuric anhydride is preferable in that the unreacted sulfuric acid does not need to be washed after the treatment, so that the treatment step can be simplified.
  • the papermaking web layer is an alkaline storage battery including at least two types of fibers having different degrees of sulfonation.
  • the papermaking web layer constituting the separator has at least two types of fibers having different degrees of sulfonation. That is, fibers with different hydrophilicity
  • the electrolyte solution can be unevenly distributed in the papermaking web layer and thus in the separator.
  • an air passage can be formed around the fibers having a low degree of sulfonation. Therefore, both the liquid retention property and the air permeability can be improved.
  • the degree of sulfonation is a value obtained by (number of S atoms contained in fiber) / (number of C atoms contained in fiber). Further, the degree of sulfonation of the fibers forming the separator can be calculated from the intensity ratio of the S element, for example, by measuring the intensity ratio of the S element using a known X-ray fluorescence analyzer.
  • the plurality of papermaking web layers may each include a splittable conjugate fiber in an amount of 30% by weight or more and 50% by weight or less. .
  • each of the plurality of papermaking web layers constituting the separator contains 30% by weight or more and 50% by weight or less of the splittable conjugate fiber.
  • the path between the electrodes can be increased, and the formation of the conductive path connecting the electrodes can be suppressed.
  • the fiber density of the separator is prevented from becoming too large. Thereby, a decrease in the air permeability of the separator can be suppressed, and an increase in the internal pressure of the alkaline storage battery can be suppressed.
  • the splittable conjugate fiber refers to an ultrafine fiber obtained by conjugate spinning two or more different components, forming a cloth, and then splitting.
  • the splittable conjugate fiber is an alkaline storage battery including at least two kinds of fibers selected from polypropylene, polyethylene, polystyrene, polymethylpentene, and polybutylene.
  • the splittable conjugate fiber contained in each papermaking web layer is composed of at least two types of fibers selected from polypropylene, polyethylene, polystyrene, polymethyl / repentene, and polybutylene. Since the splittable conjugate fiber composed of these fibers has a high melting point, the heat is applied during the process of making the nonwoven fabric. In addition, the crystal form of the splittable conjugate fiber is hard to collapse, and the formation can be maintained well. Therefore, by including such a splittable conjugate fiber in an amount of 30% by weight or more and 50% by weight or less, the path between the electrodes can be made sufficiently large, and the formation of a conductive path connecting the electrodes can be suppressed. can do.
  • a splittable conjugate fiber in an amount of 30% by weight or more and 50% by weight or less, the path between the electrodes can be made sufficiently large, and the formation of a conductive path connecting the electrodes can be suppressed. can do.
  • FIG. 1 is a perspective cutaway view of a rechargeable battery 10 according to Examples 1 and 2.
  • FIG. 2 is a diagram showing a configuration of an electrode group 12 of the battery 10 according to the first and second embodiments, and is a cross-sectional view taken along a direction along the upper surface 11 c of the lid 11 b. It is.
  • FIG. 3 is a graph showing the relationship between the basis weight A of the separator 12 d and the residual SOC after the test for the alkaline storage battery 10 according to the first embodiment.
  • FIG. 4 is a graph showing the relationship between the specific surface area B of the separator 12 d and the residual SOC after the test for the alkaline storage battery 10 according to Example 1.
  • FIG. 5 shows the relationship between '(weight per unit area AX specific surface area BX thickness C) and residual SOC after the test, and the relation between (weight per unit area AX specific surface area BX thickness C) and internal pressure for the alkaline storage battery 10 according to Example 1. Is a Dalaf showing the relationship.
  • Figure 6 shows the relationship between the amount of electrolyte per 1 Ah of the theoretical capacity of the positive electrode and the SOC remaining after the test, and the electrolysis per 1 Ah of the theoretical capacity of the positive electrode for the alkaline storage battery 10 according to Example 2.
  • 4 is a graph showing a relationship between a liquid amount and an internal pressure.
  • the alkaline storage battery 10 includes a case 11 having a lid lib, an electrode group 12 disposed in the case 11, and an electrolyte (not shown). And a safety valve 13 fixed to the lid lib, a positive electrode terminal 14 and a negative electrode terminal 15.
  • the electrode group 12 includes a bag-shaped separator 12 d (hatching is omitted), a positive electrode 12 b, and a negative electrode 12 c.
  • the positive electrode 12b is inserted into the bag-shaped separator 12d, and the positive electrode 12b inserted into the separator 12d and the negative electrode 12c are alternately laminated. .
  • the positive electrode 12b includes an active material support and a positive electrode active material supported on the active material support.
  • the active material support also functions as a current collector, and for example, a porous metal such as foamed nickel or a punching metal can be used.
  • a porous metal such as foamed nickel or a punching metal can be used.
  • an active material containing nickel hydroxide and cobalt can be used as the positive electrode active material.
  • Example 1 a positive electrode 12b was prepared by filling an active material paste containing hydroxide-nickel into a foam nickel (active material support) ', followed by drying, pressing, and cutting.
  • a material containing a hydrogen storage alloy, a hydridizing alloy, or the like as a negative electrode constituent material can be used.
  • a negative electrode 12c was prepared by applying a paste containing a hydrogen storage alloy to a conductive support, drying, pressing, and cutting the paste.
  • an electrolyte commonly used for alkaline storage batteries can be used.
  • an alkaline aqueous solution containing KOH and having a specific gravity of 1.2 to 1.4 can be used.
  • an alkaline aqueous solution containing KOH as a main component of the solute and having a specific gravity of 1.3 was used as the electrolytic solution.
  • the amount of such an electrolytic solution was set to 3.2 g per 1 Ah of the theoretical capacity of the positive electrode.
  • the theoretical capacity of the positive electrode was 289 mAh per gram of nickel hydroxide in the positive electrode active material. I'm calculating.
  • a nonwoven fabric made of a synthetic fiber subjected to a hydrophilic treatment can be used.
  • a polyolefin-based nonwoven fabric or an ethylene-vinyl alcohol copolymer nonwoven fabric which has been rendered hydrophilic by sulfonation or application of a surfactant can be used as the separator 12d.
  • the separator 12d is made of a nonwoven fabric in which a first papermaking web layer 12f and a second papermaking web layer 12g are laminated, as shown in an enlarged manner in FIG.
  • the first papermaking paper layer 12 f and the second papermaking web layer 12 g are the same papermaking paper layer and contain 30% by weight of a splittable conjugate fiber composed of polypropylene and polyethylene.
  • the separator 12 d is subjected to a sulfonated hydrophilic treatment, and as described later, the sulfonation of the polypropylene fiber and the polyethylene fiber contained in the first and second papermaking web layers 12 f and 12 g is performed. Chemical degree (number of 3 atoms ⁇ number of atoms) 1S Each differs.
  • Such a separator 1 2d was manufactured as follows. First, a splittable conjugate fiber and a non-splittable fiber composed of polypropylene and polyethylene are mixed at a weight ratio of 3: 7, and then mixed with water so that the weight ratio becomes 0.01 to 0.6 mass%. Disperse to prepare slurry. Next, a first papermaking web is prepared from the slurry using a wet paper machine. Next, the first papermaking web is subjected to a heat treatment or the like to form a first papermaking web layer 12 f. Further, in the same manner, a second papermaking web layer 12 g is prepared.
  • the nonwoven fabric forming the separator 12d is made of fibers having different sulfonation reaction rates, such as polypropylene fibers and polyethylene fibers.
  • the sulfonated separator 12 d could be composed of a plurality of fibers having different sulfonation degrees.
  • the degree of sulfonation of the polypropylene and polyethylene contained in the first and second papermaking web layers 12 f and 12 g (the number of S atoms contained in the fiber Z and the C content contained in the fiber) number of atoms), respectively, 3. 6 X 1 0- 3 and 1.9 I met X 10- 3.
  • the degree of sulfonation was calculated based on the intensity ratio of the S element measured using a known X-ray fluorescence analyzer.
  • the specific surface area of the separator 12d was measured using a BET method (JISZ 8830) using nitrogen adsorption.
  • the thickness of the separator 12d was measured using a micrometer (JISB7502 0-25mm) at two measurement points at a total of 16 points, 8 points on each of two 20cm x 20cm test pieces. The average of the measured values is used.
  • one type is selected from the six types of bag-shaped separators 12d, and the positive electrode 12b is inserted into each of the selected multiple types of separators 12d.
  • a plurality of separators 12 d into which the positive electrodes 12 b are inserted and a plurality of negative electrodes 12 c are alternately laminated to form the electrode group 12.
  • an aqueous solution of Al-galli having a specific gravity of 1.3 is injected.
  • the positive electrode terminal 14 and the positive electrode 12b are connected by a lead wire, and the negative electrode terminal 15 and the negative electrode 12c are connected by a lead wire.
  • the case 11 was sealed with a lid 11 b provided with a safety valve 13 to produce an alkaline storage battery 10.
  • a self-discharge characteristic evaluation test was performed on each of the six types of alkaline storage batteries 10.
  • each of the six types of alkaline storage batteries 10 was charged and discharged for 1000 cycles.
  • One cycle consists of charging at 2C (13 A) for 30 minutes and discharging at 2C (13 A) until the battery voltage reaches IV.
  • each of the alkaline storage batteries was charged to a SOC (State Of Charge) of 60% with a current of 0.6 C (3.9 A) for one week in an atmosphere of 45 ° C. I left it.
  • 1 C 6.5 A
  • SOC 100% 6.5 Ah.
  • Example 1 a very large number of charge / discharge cycles of 1000 cycles were performed to investigate whether good self-discharge characteristics could be obtained over a long period of time. is there.
  • Example 1 the alkaline storage battery 10 having a residual SOC of 25% or more after the test was evaluated as an alkaline storage battery having good self-discharge characteristics.
  • the internal storage battery 10 having an internal pressure of 0.6 MPa or less was evaluated as an internal storage battery having good internal pressure characteristics.
  • Table 1 a separator 12d with a basis weight of 84 (g / m 2 ), a specific surface area of 0.42 (m 2 / g), and a thickness of 0.18 (mm) was obtained.
  • the residual SOC after the test was reduced to 18%.
  • the self-discharge characteristics were unfavorable, resulting in a result.
  • alkaline storage battery 10 (Table 2 ) using a separator 12 d with a basis weight of 87 (g / m 2 ), a specific surface area of 0.28 (m 2 / g) and a thickness of 0.21 (mm).
  • the internal pressure increased significantly to 0.85 MPa, and the internal pressure characteristics were not favorable.
  • FIG. 3 is a graph showing the relationship between the basis weight A of the separator 12d and the remaining SOC after the test based on the test results in Table 1. As can be seen from FIG. 3, it cannot be said that the self-discharge characteristics are necessarily improved by increasing the basis weight of the separator 12d.
  • FIG. 4 is a graph showing the relationship between the specific surface area B of the separator 12d and the residual SOC after the test based on the test results in Table 1. As can be seen from FIG. 4, the self-discharge characteristics are not necessarily improved by increasing the specific surface area of the separator 12d.
  • Figure 5 shows the relationship between the (area weight AX specific surface area BX thickness C) of the separator 1 2d and the residual SOC after the test, and the (area weight AX specific surface area BX thickness C) and the internal pressure based on the test results in Table 1. It is a graph showing the relationship. The relationship between (the specific AX specific surface area BX thickness C) and the residual SOC after the test is shown by a black circle (parable) in FIG. From Fig. 5, it can be said that the self-discharge characteristics become better as the value of '(basis AX specific surface area BX thickness C) is increased.
  • the residual SOC after the test was reduced to 13%, and the self-discharge characteristics were not favorable. 'This is probably because in this comparative example, a single-layer nonwoven fabric was used as the separator. In other words, it is considered that a separator composed of a single papermaking web layer is more likely to form a conductive path that connects between the positive electrode and the negative electrode than a separator composed of a plurality of papermaking web layers. .
  • the internal pressure was 0.33 MPa, and the internal pressure characteristics were good.
  • the alkaline storage battery 20 of the second embodiment has the same structure as the alkaline storage battery 10 of the first embodiment.
  • the five types of alkaline storage batteries 20 according to the second embodiment differ only in the amount of injected electrolyte (g), and are otherwise the same.
  • Example 2 the amount of electrolyte (g) was changed to 2.5 g, 3.0 g, 3.3 g, and 3.3 g per 1 Ah of the theoretical capacity of the positive electrode, respectively.
  • Five kinds of alkaline storage batteries 20 different from 3.5 g and 3.8 g were produced.
  • all of these five types of alkaline storage batteries 20 are manufactured so that the battery capacity is 6.5 Ah. [Table 3]
  • a self-discharge characteristic evaluation test was performed on each of the five types of alkaline storage batteries 20 under the same conditions as in Example 1. Thereafter, the residual SOC (%) and the internal pressure (MPa) of each alkaline storage battery 20 were measured. Table 3 shows the results. Also, based on the test results in Table 3, the relationship between the amount of electrolyte per 1 Ah of theoretical capacity of the positive electrode 12b and the SOC remaining after the test, and the amount of electrolyte per 1 Ah of theoretical capacity of the positive electrode 12b The relationship with the internal pressure is shown in the graph of FIG.
  • Example 2 as in Example 1, the alkaline storage battery 20 having a residual SOC of 25% or more after the test was evaluated as an alkaline storage battery having good self-discharge characteristics.
  • an internal storage battery 20 having an internal pressure of 0.6 MPa or less was evaluated as an internal storage battery having good internal pressure characteristics.
  • the amount of electrolyte per 1 Ah of theoretical capacity of the positive electrode was 3.0 g, 3.3 g, 3.5 g.
  • the residual SOC after the test was 25% or more, and the self-discharge characteristics were good.
  • the internal pressure of each of the four types of alkaline storage batteries 20 was 2.5 g, 3.0 g, 3.3 g, and 3.5 g, and the internal pressure was 0.6 MPa or less. The internal pressure characteristics were good.
  • the internal pressure of the alkaline storage battery 10 (bottom row in the table), in which the amount of electrolyte per 1 Ah of theoretical capacity of the positive electrode was 3.8 g, increased significantly to 0.95 MPa, and the internal pressure characteristics were reduced. Not preferred. This is presumably because the electrolyte volume per 1 Ah of theoretical capacity of the positive electrode was too large, and the air permeability of the separator 12d was greatly reduced.
  • the separator was subjected to sulfonation with sulfuric anhydride, but the same effect can be obtained by performing sulfonation with fuming sulfuric acid.
  • the separator was made using two types of fibers having different degrees of sulfonation (specifically, polypropylene and polyethylene).
  • the fibers constituting the separator are not limited thereto. is not.
  • a separator may be formed using only one type of fiber subjected to a sulfonation treatment.
  • sulfone The separator may be composed of three or more types of fibers having different degrees of conversion.
  • the separator used was a nonwoven fabric containing 30% by weight of a splittable conjugate fiber composed of polypropylene and polyethylene.
  • the rates are not limited to this.
  • at least two types may be selected from polypropylene, polyethylene, polystyrene, polymethylpentene, and polybutylene to form splittable composite fibers.
  • the separator 12 d was formed in a bag shape, and the positive electrode 12 b was disposed inside the bag.
  • the present invention is not limited to such a form, and the separator 12 d is simply made into a sheet shape and laminated so that the separator 12 d is interposed between the positive electrode 12 b and the negative electrode 12 c. May be.
  • Example 1 and 2 the same papermaking web layer (first papermaking web layer 12f and second papermaking web layer 12g) was laminated to form a separator 12d.
  • the papermaking web layers to be laminated need not be the same, and different papermaking web layers (for example, having different basis weights) may be laminated. Rather, laminating different papermaking web layers is preferable because the characteristics of the alkaline storage battery can be improved.
  • selectively increasing the basis weight of the papermaking web layer (the second papermaking web layer 12 g) for the separator 1 2 d can be achieved by increasing all the papermaking web layers (the first papermaking web layer 12 f
  • the increase in the fiber density of the entire separator 12 d can be suppressed as compared with the case where the basis weight of the second papermaking web layer 12 g) is increased. For this reason, a decrease in the air permeability of the separator 12d can be suppressed, and a rise in the internal pressure of the alkaline storage battery 10 can be suppressed.
  • Examples 1 and 2 two layers of the first and second papermaking web layers 12 f and 12 g were laminated. Layered to create separator 12d.
  • the number of papermaking web layers to be laminated is not limited to two, but may be any as long as it is a plurality of layers. Rather, it is preferable to increase the number of papermaking web layers to be laminated, since a conductive path connecting the two electrodes becomes less likely to be formed, and the self-discharge characteristic of the alkaline storage battery can be improved.
  • Examples 1 and 2 a wet nonwoven fabric was used as the separator 12d, but a dry nonwoven fabric may be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

長期間にわたって、良好な自己放電特性を維持することができるアルカリ蓄電池を提供する。本発明のアルカリ蓄電池10は、正極12b、負極12c、セパレータ12d、及びアルカリ性の電解液を備える。セパレータ12dは、第1抄紙ウェブ層12fと第2抄紙ウェブ層12gとが積層された不織布からなり、その目付をA(g/m2)、比表面積をB(m2/g)、厚みをC(mm)としたとき、8.8≦A×B×C≦15.2の関係を満たしている。

Description

アル力リ蓄電池 技術分野
本発明は、 アル力リ電解液を有するアル力リ蓄電池に関する。 背景技術 明
近年、 アルカリ蓄電池は、 ポータブル田機器や携帯機器などの電源として、 また、 電気自動車やハイブリッド自動車などの電源として注目されている。 このようなァ ルカリ蓄電池としては、 様々のものが提案されているが、 このうち、 水酸化エッケ ルを主体とした活物質からなる正極と、 水素吸蔵合金を主成分とした負極と、 水酸 化力リゥムなどを含むアル力リ電解液とを備えるニッケル水素二次電池は、 ェネル ギー密度が高く、 信頼性に優れた二次電池として急速に普及している。
ところで、 ニッケル水素二次電池では、 従来より、 充放電を繰り返すと自己放. 電特性が低下 (悪化) してしまう問題がある。 これに対し、 近年、 充放電を繰り返 した後にぉレ、ても、 自己放電特性が良好な-ッケル水素二次電池が提案されている (例えば、' 特許文献 1参照)。
特許文献 1 :特開 2 0 0 1— 3 1 3 0 6 6号公報
特許文献 1では、 正極及び負極から溶出した金属イオンがセパレータ上に析出 し、 この導電性析出物によつて正極と負極との間に連続した導電パスが形成されて しまうことを指摘している。 すなわち、 両電極間に生じる導電パスが、 自己放電特 性の低下の要因であると指摘している。 詳細には、 セパレータに保持される電解液 の量が減少 (液枯れ) すると、 電解液に溶出した金属イオンがセパレータ上に析出 し易くなることを指摘している。 そこで、 特許文献 1では、 電池組立時において、 セパレータに保持される電解液の量を 1 5 m g / c m2以上とすることで、充放電を 繰り返し行っても、 セパレータに保持される電解液の液枯れが発生しないようにし ている。 このように、 セパレータの液枯れを防止することにより、 正極及び負極か ら溶出した金属イオンがセパレータ上に析出するのを抑制し、 ひいては自己放電特 性を良好にするものである。
さらに、 特許文献 1には、 セパレータの比表面積を 0· 60 (m2/ g ) 〜0. 90 (m2/g) の範囲とし、 目^を 60 ( g /m2) 〜85 (gZm2) の範囲とす ることにより、 自己放電特性を良好にできることが開示されている。 具体的には、 特許文献 1では、 13A (2 C) で 30分充電し、 13A (2 C) で電池電圧が 1 Vになるまで放電する充放電サイクルを 200サイクル行った電池について、 自己 放電特性を評価している。 すなわち、 特許文献 1の電池は、 200サイクルの充放 電を行った後でも、 良好な自己放電特性を維持することができる。 発明の開示
発明が解決しようとする課題
しかしながら、近年、ニッケル水素二次電池などのアルカリ蓄電池について(特 に、電気自動車やハイプリッド自動車などの電源に用いる場合)'、電池寿命の長期化 の要求が高まっている。 これに対し、 特許文献 1の電池について、 上記の充放電条 件で 1000サイクルの充放電を行った後、 自己放電特性を評価した場合には、 良 好な自己放電特性を得ることができないものがあった。 すなわち、 特許文献 1の電 池では、 長期間にわたって充放電を行った後には、 良好な自己放電特性を維持する ことができないものがあった。
本発明は、 かかる現状に鑑みてなされたも であって、 長期間にわたって、 良 好な自己放電特性を維持することができるアル力リ蓄電池を提供することを目的と する。
課題を解決するための手段 .
その解決手段は、 正極、 負極、 セパレータ、 及びアルカリ性の電解液を備える アルカリ蓄電池であって、 上記セパレータは、 複数の抄紙ウェブ層が積層された不 織布からなり、 その目付を A (gZm2)、 比表面積を B (m2/g)、 厚みを C (m m) としたとき、 8. 8≤AXBXC≤15. 2の関係を満たしてなるアルカリ蓄 電池である。 . 本発明のアルカリ蓄電池では、 セパレータが、 複数の抄紙ウェブ層を積層した 不織布からなる。 セパレータとして、 複数の抄紙ウェブ層を積層した不織布を用い たアルカリ蓄電池は、 単層の不織布を用いた場合に比して、 自己放電特性が良好と なる。 これは、 複数の抄紙ウェブ層を積層した不織布を用いることで、 抄紙ウェブ 層の層間において不連続面が多くなるため、 両極間を連結する導電パスが形成され 難くなるためであると考えられる。
さらに、 本発明のアルカリ蓄電池では、 セパレータが、 目付を A (g/m2)、 比表面積を B (m2/g)、 厚みを C (mm) としたとき、 8. 8≤AXB XC≤ 1 5. 2の関係を満たしている。 本発明者は、 セパレータの繊維に沿って形成される 正極と負極との間のパス (以下、 これを電極間パスともいう) を長くすることによ つて、 両極間を連結する導電パスが形成され難くなると考えた。 そこで、 セパレー タの目付 A (gZm2)、 比表面積 B (m2/g)、 及ぴ厚み C (mm) の 3つの要素 に注目して調査した結果、 これらを掛け合わせた値 AXBXCが大きくなるにした がって、 自己放電特性が良好となることを見出した。 詳細には、 AXBXC≥8. 8の関係を満たすセパレータを用いることにより、 アルカリ蓄電池の自己放電特性 を良好とすることができる。 これは、 AXBXC≥8. 8とすることで、 電極間パ スを十分に確保することができ、 両極間を連結する導電パスの形成を抑制できるた めと考えられる。
従って、 本発明のアルカリ蓄電池は、 両極間を連結する導電パスが極めて形成 され難く、 長期間にわたって、 良好な自己放電特性を維持することができる。
また、 上述のように、 自己放電特性を良好にするためには AXBXCの値を大 きくすれば良い。 し力、しながら、 AXBXCの値を大きくし過ぎると、 セパレータ の繊維密度が大きくなり過ぎて(空隙部が少なくなる)、セパレータの通気度が低下 してしまい、 アルカリ蓄電池の内圧が上昇してしまう虞がある。 これに対し、 本発 明のアルカリ蓄電池では、 AXBXC≤15. 2の関係を満たすセパレータを用い ているため、 セパレータの通気度の低下を抑制することができ、 ひいては、 アル力 リ蓄電池の内圧上昇を抑制することができる。
なお、 抄紙ゥヱブ層とは、 スラリーから網で抄紙した繊維の集合体であって、 1層のシート状になっているものをいう。 また、 本発明のセパレータをなす不織布 は、 湿式不織布及び乾式不織布のレ、ずれであっても良い。
本発明のアルカリ蓄電池としては、 例えば、 ニッケル一力ドミゥム電池、 ニッ . ケルー水素電池、 ニッケル—亜鉛電池等が挙げられ、 特に、 電気自動車やハイプリ ッド自動車に好適である。 .
さらに、上記のアルカリ蓄電池であって、前記セパレータをなす前記不織布は、 目付、 比表面積、 厚み、 及ぴスルホン化度のうち少なくともいずれかについて異な る抄紙ウェブ層を複数有してなるアル力リ蓄電池とすると良い。
本発明のアルカリ蓄電池では、 セパレータをなす不織布が、 目付、 比表面積、 厚み、 及ぴスルホン化度のうち少なくともいずれかについて異なる抄紙ウェブ層を 複数有している。 このように、 性質の異なる複数の抄紙ゥヱブ層によってセパレー タ (不織布) を構成することにより、 アルカリ蓄電池の特性を向上させることがで さる。
例えば、 正極側に比して負極側から多くの導電析出物が析出する場合には、 セ パレータをなす不織布のうち、 正極側の抄紙ゥ工ブ層に比して負極側の抄紙ゥェブ 層の目付を大きくすることにより、 効率良く導電パスの形成を抑制することができ る。 このように、 1つのセパレータにおいて、 選択的に抄紙ウェブ層の目付を大き くすることは、 全ての抄紙ゥヱブ層の目付を大きくする場合に比して、 セパレータ 全体の繊維密度の上昇を抑制することができる。 このため、 セパレータの通気度の 低下を抑制でき、 ひいては、 アルカリ蓄電池の内.圧上昇を抑制することができる。
また、 1つのセパレータ (不織布) を構成する抄紙ウェブ層について、 スルホ ン化度 (繊維中に含まれる sの原子数 Z繊維中に含まれる cの原子数) を異ならせ た場合は、 スルホン化度の大きレ、抄紙ウェブ層によつてセパレータ内に電解液を確 保しつつ、 スルホン化度の小さい抄紙ウェブ層によって通気を確保することができ る。
さらに、 上記いずれかのアルカリ蓄電池であって、 前記電解液の液量を、 前記 正極の理論容量 1 A hあたり 3 . 0 ( g ) 以上 3 . 5 ( g ) 以下としてなるアル力 リ蓄電池とすると良い。 アルカリ蓄電池では、 充放電の繰り返しにより、 電解液が、 正極活物質結晶格 子間や電極の膨潤により生じた電極空間に取り込まれ、 セパレータ中の電解液が不 足してしまう問題がある。 セパレータ中の電解液が不足 (液枯れ) すると、 電解液. に溶出した金属イオンがセパレータ上に析出し易くなり、 ひいては、 両電極間を連 結する導電パスが形成されてしまう虞がある。 これに対し、 本発明のアルカリ蓄電 池では、 電解液の液量を、 正極の理論容量 1 A hあたり 3 . 0 ( g ) 以上としてい る。 これにより、 セパレータの液枯れを防止することができ、 ひいては、 自己放電 特性を良好にすることができる。
また、 電解液の量を多くするほど、 セパレータの液枯れを抑制することができ るが、 電解液の量を多くし過ぎると、 セパレータの通気度が低下してしまい、 アル カリ蓄電池の内圧が上昇してしまう虞がある。 これに対し、 本発明のアルカリ蓄電 池では、 電解液の液量を、 正極の理論容量 1 A hあたり 3 . 5 ( g ) 以下としてい るので、 セパレータの通気度の低下を抑制することができ、 ひいては、 アルカリ蓄 電池の内圧上昇を抑制することができる。 なお、 正極の理論容量は、 例えば、 正極 活物質として水酸化ニッケルを用いた場合は、 水酸化ニッケル 1 gあたり 2 8 9 m A hとして計算した容量となる。
さらに、 上記いずれかのアルカリ蓄電池であって、 前記セパレータは、 無水硫 酸によるスルホン化親水処理が施されてなるアル力リ蓄電池とすると良い。
本発明のアル力リ蓄電池では、 セパレータにスルホン化親水処理が施されてい るため、 保液性が良好となり、 液枯れを防止することができる。 特に、 無水硫酸に よるスルホン化親水処理を用いているため、 セパレータを構成する繊維の内部にま でスルホン化させることができ、 保液性を高めることができる。 さらに、 無水硫酸 によるスルホン化親水処理は、 処理後、 未反応硫酸を洗浄する必要がないため、 処 理工程を簡略できる点においても好ましい。
さらに、 上記のアルカリ蓄電池であって、 前記抄紙ウェブ層は、 少なくともス ルホン化度の異なる 2種類の繊維を有してなるアル力リ蓄電池とすると良い。
本発明のアルカリ蓄電池では、 セパレータをなす抄紙ウェブ層は、 少なくとも スルホン化度の異なる 2種類の繊維を有している。 すなわち、 親水性の異なる繊維 によって抄紙ウェブ層を構成しているため、 抄紙ウェブ層内、 ひいてはセパレータ 内において、 電解液を偏在させることができる。 具体的には、 スルホン化度が高い 繊維に電解液を集中して保持させることにより、 スルホン化度が低い繊維の周りに 通気路を形成することができる。 従って、 保液性及ぴ通気性を共に良好とすること ができる。
なお、 スルホン化度は、 (繊維中に含まれる S原子の数) / (繊維中に含まれる C原子の数) によって得られる値である。 また、 セパレータをなす繊維のスルホン 化度は、 例えば、 公知の蛍光 X線測定装置を用いて S元素の強度比を測定し、 この 強度比から算出することができる。
さらに、上記いずれかのアル力リ蓄電池であって、前記複数の抄紙ウェブ層は、 それぞれ、 分割型複合繊維を 3 0重量%以上 5 0重量%以下含有してなるアル力リ 蓄電池とすると良い。
本発明のアルカリ蓄電池では、 セパレータをなす複数の抄紙ウェブ層が、 それ ぞれ、 分割型複合繊維を 3 0重量%以上 5 0重量%以下含有している。 分割型複合 繊維を 3 0重量%以上含有させることにより、電極間パスを大きくすることができ、 電極間を連結する導電パスの形成を抑制することができる。 さらに、 5 0重量%以 下とすることにより、セパレータの繊維密度が大きくなり過ぎないようにしている。 これにより、 セパレータの通気度の低下を抑制し、 アルカリ蓄電池の内圧の上昇を 抑制することができる。
なお、 分割型複合繊維とは、 2種以上の異なる成分を複合紡糸し、 布状にした 後、 分割して得られる極細繊維をいう。
さらに、 上記のアルカリ蓄電池であって、 前記分割型複合繊維は、 ポリプロピ レン、 ポリエチレン、 ポリスチレン、 ポリメチルペンテン、 及ぴポリプチレンから 選択した少なくとも 2種類の繊維からなるアル力リ蓄電池とすると良い。
本発明のアルカリ蓄電池では、 各抄紙ウェブ層に含まれる分割型複合繊維は、 ポリプロピレン、 ポリエチレン、 ポリスチレン、. ポリメチ/レペンテン、 及びポリブ チレンから選択した少なくとも 2種類の繊維からなる。 これらの繊維からなる分割 型複合繊維は高融点であるため、 不織布を作成する過程において熱を加えた場合で も、 分割型複合繊維の結晶形態が崩れにくく、 地合を良好に保つことができる。 従 つて、 このような分割型複合繊維を 3 0重量%以上 5 0重量%以下含有させること により、 電極間パスを十分に大きくすることができ、 電極間を連結する導電パスの. 形成を抑制することができる。 図面の簡単な説明
第 1図は、 実施例 1, 2にかかるアル力リ蓄電池 1 0の斜視破断図である。 第 2図は、 実施例 1, 2にかかるアル力リ蓄電池 1 0の極板群 1 2の構成を示 す図であり、 蓋 1 1 bの上面 1 1 cに沿う方向に切断した断面図である。
第 3図は、 実施例 1にかかるアルカリ蓄電池 1 0について、 セパレータ 1 2 d の目付 Aと試験後残存 S O Cとの関係を示すグラフである。
第 4図は、 実施例 1にかかるアルカリ蓄電池 1 0について、 セパレータ 1 2 d の比表面積 Bと試験後残存 S O Cとの関係を示すグラフである。
第 5図は、実施例 1にかかるアルカリ蓄電池 1 0について、'(目付 A X比表面積 B X厚み C) と試験後残存 S O Cとの関係、 及ぴ (目付 A X比表面積 B X厚み C ) . と内圧との関係を示すダラフである。
第 6図は、 実施例 2にかかるアルカリ蓄電池 1 0について、 正極の理論容量 1 A hあたりの電解液量と試験後残存 S O Cとの関係、 及ぴ正極の理論容量 1 A hあ たりの電解液量と内圧との関係を示すグラフである。
符号の説明
1 0 , 2 0 アル力リ蓄電池
1 1 ケース
1 2 極板群
1 2 b 正極
1 2 c 負極
1 2 d セパレータ
1 2 f 第 1抄紙ウェブ層
1 2 g 第 2抄紙ウェブ層 . 発明を実施するための最良の形態
次に、 本発明の実施例について、 図面を参照しつつ説明する。
実施例 1
本実施例 1のアルカリ蓄電池 1 0は、 図 1に示すように、 蓋 l i bを備えるケ ース 1 1と、 ケース 1 1内に配置された極板群 1 2及び電解液 (図示せず) と、 蓋 l i bに固設された安全弁 1 3と、 正極端子 1 4及び負極端子 1 5とを備える角形 密閉式アル力リ蓄電池である。
極板群 1 2は、 図 2に示すように、 袋状のセパレータ 1 2 d (ハツチングは省 略する) と正極 1 2 bと負極 1 2 cとを備える。 このうち、 正極 1 2 bは袋状のセ パレータ 1 2 d内に挿入されており、 セパレータ 1 2 d内に挿入された正極 1 2 b と、 負極 1 2 cとが交互に積層されている。
正極 1 2 bは、 活物質支持体と、 活物質支持体に支持された正極活物質とを備 える。 活物質支持体は、 集電体としても機能し、 例えば、 発泡ニッケルなどの金属 多孔体や、パンチングメタルなどを用いることができる。正極活物質には、例えば、 水酸ィ匕ニッケルとコバルトとを含む活物質を用いることができる。
本実施例 1では、 水酸化-ッケルを含む活物質ペーストを発泡二ッケル (活物 質支持体)' に充填し、 乾燥、加圧、 切断することによって、 正極 1 2 bを作成した。
負極 1 2 cには、 水素吸蔵合金や水酸化力ドミゥムなどを負極構成材として含 むものを用いることができる。 本実施例 1では、 .水素吸蔵合金を含むペーストを導 電性の支持体に塗布し、 乾燥、 加圧、 切断することによって、 負極 1 2 cを作成し た。
電解液には、 アルカリ蓄電池に一般的に用いられている電解液を使用できる。 具体的には、 例えば、 K O Hを含む比重 1 . 2〜1 . 4のアルカリ水溶液を用いる ことができる。 本実施例 1では、 電解液として、 K O Hを溶質の主成分とする比重 1 . 3のアルカリ水溶液を用いた。 さらに、 本実施例 1では、 このような電解液の 液量を、 正極の理論容量 l A hあたり 3 . 2 gとしている。 なお、本実施例 1では、 正極の理論容量は、 正極活物質中の水酸化ニッケル 1 gあたり 2 8 9 mA hとして 計算している。
セパレータ 1 2 dには、 親水化処理された合成繊維からなる不織布を用いるこ とができる。 具体的には、 セパレータ 1 2 dとして、 スルホン化や界面活性剤の塗 布などによって親水性を付与したポリオレフィン系不織布やエチレンビニルアルコ ール共重合体不織布などを用いることができる。
本実施例 1では、 セパレータ 1 2 dは、 図 2に拡大して示すように、 第 1抄紙 ウェブ層 1 2 f と第 2抄紙ウェブ層 1 2 gとが積層された不織布からなる。 第 1抄 紙ウェブ層 1 2 f と第 2抄紙ウェブ層 1 2 gとは、 同一の抄紙ゥヱプ層であり、 ポ リプロピレンとポリエチレンとからなる分割型複合繊維を 3 0重量%含有している。 さらに、 セパレータ 1 2 dは、 スルホン化親水処理が施されており、 後述するよう に、 第 1, 第 2抄紙ウェブ層 1 2 f, 1 2 gに含まれるポリプロピレン繊維とポリ エチレン繊維とのスルホン化度 (3の原子数 〇の原子数) 1S それぞれ異なって いる。
このようなセパレータ 1 2 dは、 次のようにして製造した。 まず、 ポリプロピ レンとポリエチレンとからなる、 分割型複合繊維と非分割型繊維とを、 重量比 3 : 7の割合で混合した後、 0 . 0 1〜0 . 6 m a s s %となるように水に分散させて、 スラリーを調整する。 次いで、 湿式抄紙機を用いて、 スラリーから第 1抄紙ウェブ を作成する。 次いで、 この第 1抄紙ウェブについて加熱処理等を施し、 第 1抄紙ゥ エブ層 1 2 f を作成する。 さらに、 これと同様にして、 第 2抄紙ウェブ層 1 2 gを 作成する。 次いで、 第 1抄紙ウェブ層 1 2 f と第 2抄紙ゥヱブ層 1 2 gとを積層し た後、 脱水処理、 熱処理等を行って、 湿式不織布を製造した。 その後、 この湿式不 織布について、無水硫酸によってスルホン化処理を行い、セパレータ 1 2 dを得た。
なお、 セパレータ 1 2 dをなす不織布は、 ポリプロピレン繊;維やポリエチレン 繊維など、 スルホン化反応速度の異なる繊維によって構成されている。 このため、 スルホン化処理を施したセパレータ 1 2 dは、 スルホン度の異なる複数の繊維によ つて構成することができた。 具体的には、 第 1,.第 2抄紙ウェブ層 1 2 f, 1 2 g に含まれるポリプロピレンとポリエチレンとのスルホン化度 (繊維中に含まれる S の原子数 Z繊維中に含まれる Cの原子数) は、 それぞれ、 3 . 6 X 1 0— 3と 1 . 9 X 10— 3とであった。 なお、 スルホン化度は、 公知の蛍光 X線測定装置を用いて S 元素の強度比を測定し、 この強度比に基づいて算出した。
本実施例 1では、 上述のような製造方法により、 目付、 比表面積、 及び厚みを. それぞれ異ならせた 6種類のセパレータ 12 dを作成した(表 1参照)。具体的には、 目付を A (gZm2)、 比表面積を B (m2/g)、 厚みを C (mm) としたとき、 (A, B, C) = (84, 0. 4.2, 0. 18), (64, 0. 72, 0. 19), (55, 1. 03, 0. 21), (81, 0. 74, 0. 20), (77, 0. 99, 0. 20), (87, 0. 88, 0. 21) とした 6種類のセパレータ 12 dを作成した。 そし て、 これら 6種類のセパレータ 12 dを、 それぞれ袋状とした。 なお、 セパレータ 12 dの比表面積は、 窒素吸着による BET法 (J I S Z 8830) を用いて測 定したものである。 また、 セパレータ 12 dの厚みは、 20 cmX 20 cmの試験 片 2枚につき、 各 8点ずつ、 計 16点の測定位置について、 マイクロメータ (J I S B 7502 0〜25mm) を用いて測定し、 これらの測定値の平均値を用い ている。
[表 1 ]
Figure imgf000012_0001
(アル力リ蓄電池 10の作製)
まず、 袋状とした 6種類のセパレータ 12 dから 1種類を選択し、 選択した複 数のセパレータ 12 d内に、 それぞれ正極 12 bを挿入する。 次いで、 正極 12 b が挿入された複数のセパレータ 12 dと複数の負極 1 2 cとを交互に積層し、 極板 群 12を作成する。 次いで、 この極板群 12をケース 1 1内に挿入した後、比重 1. 3のアル力リ水溶液を注液する。 次いで、 正極端子 14と正極 12 bとをリード線 で接続すると共に、 負極端子 15と負極 12 cとをリード線で接続する。 その後、 安全弁 13を備える蓋 11 bによって、 ケース 1 1を封口して、 アルカリ蓄電池 1 0を作製した。
さらに、残りの 5種類のセパレータ 12 dをそれぞれ用い、上述のようにして、 セパレータ 12 dのみが異なる 5種類のアルカリ蓄電池 10を作製した。 このよう にして、 セパレータ 12 dのみが異なる 6種類のアルカリ蓄電池 10を作製した。 なお、 6種類のアルカリ蓄電池 10は、 いずれも電池容量が 6. 5Ahになるよう に作製している。
(自己放電特性評価試験)
このような 6種類のアルカリ蓄電池 10について、 それぞれ、 自己放電特性評 価試験を行った。 まず、 6種類のアルカリ蓄電池 10について、 それぞれ、 充放電 を 1000サイクル行った。 なお、 2C (13 A) で 30分充電し、 2C ( 13 A) で電池電圧が IVになるまで放電する充放電を 1サイクルとしている。 その後、 そ れぞれの: Γルカリ蓄電池について、 0. 6 C (3. 9 A) の電流で SOC (S t a t e O f Ch a r g e) 60%まで充電し、 45°Cの雰囲気下に 1週間放置し た。 ここで、 1 C=6. 5 A, SOC 100%= 6. 5 Ahである。
次いで、 0. 3C (1. 95 A) で電池電圧が 1. 0Vになるまで放電した後、 それぞれのアルカリ蓄電池 10の残存 SO C (%) を測定した。 また、 それぞれの アルカリ蓄電池 10について、 2 Aで 4時間充電したときの最大の内圧 (MP a) を測定 (以下、 この値を単に内圧という) した。 この結果を表 1に示す。
特に、 本実施例 1では、 長期間にわたって良.好な自己放電特性を得られるか否 かを調査するために、 1000サイクルという極めて多数サイクルの充放電を行つ ていることに注目すべきである。
本実施例 1では、 試験後の残存 S O Cが 25 %以上のアル力リ蓄電池 10を、 自己放電特性が良好なアルカリ蓄電池と評価した。 また、 内圧が 0. 6MP a以下 のアル力リ蓄電池 10を、 内圧特性が良好なアル力リ蓄電池と評価した。 このよう な評価基準に基づいて、 表 1の結果について考察すると、 目付 84 (g/m2), 比 表面積 0. 42 (m2/g)、 厚み 0. 18 (mm) のセパレータ 12 dを用いたァ ルカリ蓄電池 10 (表中最上段) では、 試験後の残存 S O Cが 18 %にまで低下し てしまい、 自已放電特性が好ましくなレ、結果となつた。
これに対し、 その他のセパレータ 12 dを用いた 5種類のアルカリ蓄電池 10 では、 試験後の残存 SOCが 25%以上となり、 自己放電特性が良好であった。 し. かしながら、 このうち、 目付 87 (g/m2)、 比表面積 0. ' 88 (m2/ g )、 厚み 0. 21 (mm) のセパレータ 12 dを用いたアルカリ蓄電池 10 (表中最下段) では、 内圧が 0. 85MP aと大きく上昇してしまい、 内圧特性が好ましくなかつ た。
ここで、 セパレータの目付 A (g/m2)、 比表面積 B (m g), 及び厚み C (mm) の 3つの要素に注目し、 これらと自己放電特性 (試験後残存 SO C) との 関係について調查する。
まず、 セパレータ 12 dの目付 Aと試験後残存 SO Cとの関係について調査す る。 図 3は、 表 1の試験結果に基づいて、 セパレータ 12 dの目付 Aと試験後残存 SOCとの関係を示したグラフである。 図 3からわかるように、 必ずしも、 セパレ ータ 12 dの目付を大きくすることによって、 自己放電特性が良好になるとは言え ない。
次に、 セパレータ 12 dの比表面積 Bと試験後残存 SOCとの関係について調 査する。 図 4は、 表 1の試験結果に基づいて、 セパレータ 12 dの比表面積 Bと試 験後残存 S O Cとの関係を示したグラフである。図 4からわかるように、必ずしも、 セパレータ 12 dの比表面積を大きくすることによって、 自己放電特性が良好にな るとは言えない。
次に、 セパレータ 12 の (目付 AX比表面積 B X厚み C) と試験後残存 SO Cとの関係について調査する。 図 5は、 表 1の試験結果に基づいて、 セパレータ 1 2 dの (目付 AX比表面積 BX厚み C) と試験後残存 SOCとの関係、 及び (目付 AX比表面積 BX厚み C) と内圧との関係を示したグラフである。 (目付 AX比表面 積 BX厚み C) と試験後残存 SO Cとの関係については、 図 5において、 黒丸 (譬) で表示している。図 5より、'(目付 AX比表面積 BX厚み C)の値を大きくするにし たがって、 自己放電特性が良好になると言える。 さらには、 (目付 AX比表面積 BX 厚み C) の値を 8. 8以上とすることで、 良好な自己放電特性 (試験後残存 SO C が 25%以上) を得ることができると言える。 これは、 AXBXC≥ 8. 8とする ことで、 電極間パスを十分に確保することができ、 両極間を連結する導電パスの形 成を抑制できたためと考えられる。
—方、 (目付 AX比表面積 BX厚み C) と内圧との関係について調査すると、図 5に白抜き三角 (△) で示すように、 (目付 AX比表面積 BX厚み C) の値を大きく するにしたがって、 内圧が上昇してしまう'ことがわかる。 この結果より、 内圧の上 昇を抑制するためには、 目付 AX比表面積 B X厚み C) の値を 1 5. 2以下としな ければならないと言える。
以上の結果より、 8. 8≤ (目付 AX比表面積 B X厚み C) ≤ 1 5. 2の関係 を満たすセパレータを用いることで、 長期間にわたって、 良好な自己放電特性を維 持することができると共に、 内圧特性をも良好にすることができると言える。
比較例
上記の実施例 1と比較して、 セパレータのみが異なるアルカリ蓄電池を、 比較 例として作製した。 具体的には、 実施例 1では、 セパレータとして、 第 1抄紙ゥェ ブ層 1 2 f と第 2抄紙ウェブ層 1 2 gとが積層された不織布を用いたが、 本比較例 では、 単層構造 (第 1抄紙ウェブ層のみ) の不織布を用いた点が異なる。 なお、 本 比較例のセパレータでは、 目付 A=75 (§ 1112)、 比表面積8 = 0. 75 (m2/ g)、 厚み C=0. 2 (mm)、 すなわち、 AXBXC= 1 1. 3としている。 この ような、本比較例にかかるアル力リ蓄電池について、実施例 1と同様に試験を行い、 残存 SOCと内圧とを評価した。 この結果を表 2に示す。
2]
Figure imgf000015_0001
前述のように、 実施例 1では、 8. 8≤ (目付 ΑΧ比表面積 Β X厚み C) ≤ 1 5. 2の関係を満たすセパレータを用いることで、 長期間にわたって、 良好な自己 放電特性を維持することができた。 ところが、 本比較例では、 表 2に示すように、 ΑΧΒ X Cが上記の関係を満たす パレータ (具体的には、 AXB XC= 1 1. 3) 5006535
14 を用いたにも拘わらず、 試験後の残存 SOCが 1 3%にまで低下してしまい、 自己 放電特性が好ましくなかった。 'これは、 本比較例では、 セパレータとして単層構造 の不織布を用いたためと考えられる。 すなわち、 単層の抄紙ウェブ層か なるセパ. レータは、 複数の抄紙ウェブ層からなるセパレータに比して、 正極と負極との電極 間を連結してしまう導電パスが形成され易いためと考えられる。 なお、 内圧は 0. 33MP aとなり、 内圧特性は良好であった。
以上の結果 (実施例 1及び比較例) より、 セパレータとして、 複数の抄紙ゥヱ ブ層を積層した不織布を用いたアル力リ蓄電池は、 単層の不織布を用いた場合に比 して、 自己放電特性が良好となるといえる。 これは、 複数の抄紙ウェブ層を積層し た不織布を用いることで、 抄紙ウェブ層の層間において不連続面が多くなるため、 両極間を連結する導電パスが形成され難くなるためであると考えられる。
実施例 2
次に、正極の理論容量 1 Ahあたりの適切な電解液量(g) を調査するために、 5種類のアル力リ蓄電池 20を用意した。 本実施例 2のアル力リ蓄電池 20は、 図 1に示すように、 実施例 1のアルカリ蓄電池 10と同一の構造を有している。
本実施例 2にかかる 5種類のアル力リ蓄電池 20は、 注入した電解液量 ( g ) のみが異なり、 その他についてはいずれも同一としている。
具体的には、本実施例 2では、 表 3に示すように、 電解液量 (g) をそれぞれ、 正極の理論容量 1 Ahあたり、 2. 5 g、 3. 0 g、 3. 3 g、 3. 5 g、 3. 8 gと異ならせた、 5種類のアルカリ蓄電池 20を作製した。 なお、 5種類のアル力 リ蓄電池 20では、 いずれも、 目付 A=70 (g/m2)、 比表面積 B = 0. 8 (m2 /g), 厚み C = 0. 2 (mm) のセパレータ 12 d、 すなわち、 AXBXC=1 1. 2のセパレータ 12 dを共通して用いている。 また、 これら 5種類のアルカリ蓄電 池 20は、 実施例 1と同様に、 いずれも電池容量が 6. 5 Ahになるように作製し ている。 [表 3]
Figure imgf000017_0001
(自己放電特性評価試験)
このような 5種類のアルカリ蓄電池 20について、 それぞれ、 実施例 1と同一 の条件で、 自己放電特性評価試験を行った。 その後、 それぞれのアルカリ蓄電池 2 0について、 残存 SOC (%) と内圧 (MP a) を測定した。 この結果を表 3に示 す。 また、 表 3の試験結果に基づいて、 正極 12 bの理論容量 1 A hあたりの電解 液量と試験後残存 S O Cとの関係、 及び正極 12 bの理論容量 1 A hあたりの電解 液量と内圧との関係を図 6のグラフに示す。
本実施例 2でも、 実施例 1と同様に、 試験後の残存 S O Cが 25 %以上のアル カリ蓄電池 20を、 自己放電特性が良好なアルカリ蓄電池と評価した。 また、 内圧 が 0. 6 MP a以下のアル力リ蓄電池 20を、 内圧特性が良好なアル力リ蓄電池と 評価した。
このような評価基準に基づいて、 表 3, 図 6に示す結果について考察すると、 正極の理論容量 1 A hあたりの電解液量を、 3. 0 g、 3. 3 g、 3. 5 g、 3. 8 gとした 4種類のアルカリ蓄電池 20 (表中 2〜5段目) では、 いずれも、 試験 後の残存 SOCが 25%以上となり、 自己放電特性が良好であった。
これに対し、 正極の理論容量 1 Ahあたりの電解液量を 2. 5 gとしたアル力 リ蓄電池 20 (表中最上段) では、 試験後の残存 S O Cが 23 %となり、 自己放電 特性があまり好ましくなかった。 これは、 正極の理論容量 1 Ahあたりの電解液量 が 2. 5 gでは、 充放電の繰り返しにより、 電解液が正極活物質結晶格子間や電極 の膨潤により生じた電極空間に取り込まれ、 セパレータ 12 d中の電解液が不足し てしまったためと考えられる。 すなわち、 セパレータ 12 d中の電解液が不足 (液 枯れ) したために、 電解液に溶出した金属イオンがセパレータ 12上に析出し易く なり、 両電極間を連結する導電パスが多数形成されてしまったと考えられる。 これらの結果より、 正極の理論容量 1 A hあたりの電解液量を 3. 0 g以上と することにより、 長期間にわたって、 良好な自己放電特性を維持することができる と言える。
一方、 内圧について髑查すると、 正極の理論容量 1 Ahあたりの電解液量を、
2. 5 g、 3. 0 g、 3. 3 g、 3. 5 gとした 4種類のアルカリ蓄電池 20 (表 中 1〜4段目) では、 いずれも、 内圧が 0. 6MP a以下となり、 内圧特性が良好 'であった。 これに対し、 正極の理論容量 1 Ahあたりの電解液量を 3. 8 gとした アルカリ蓄電池 10 (表中最下段) では、 内圧が 0. 95 MP aと大きく上昇して しまい、 内圧特性が好ましくなかった。 これは、 正極の理論容量 1 Ahあたりの電 解液量を多くし過ぎたことにより、 セパレータ 12 dの通気度が大きく低下してし まったためと考えられる。
これらの結果より、 正極の理論容量 1 A hあたりの電解液量を 3. 5 g以下と することにより、 長期間にわたって、 良好な内圧特性を維持することができると言 える。
以上より、 正極の理論容量 1 Ahあたりの電解液量を 3. O g以上 3. 5 g以 下とすることにより、 長期間にわたって、 良好な自己放電特性を維持することがで きると共 (こ、 内圧特性をも良好にすることができると言える。
以上において、 本発 ¾を実施例 1, 2に即して説明したが、 本発明は上記実施 例等に限定されるものではなく、 その要旨を逸 mしない範囲で、 適宜変更して適用 できることはいうまでもない。
例えば、 実施例 1, 2では、 セパレータについて、 無水硫酸によるスルホン化 処理を行つたが、 発煙硫酸によるスルホン化処理を行っても同様な効果を得ること ができる。
また、 実施例 1, 2では、 スルホン化度の異なる 2種類の繊維 (具体的には、 ポリプロピレンとポリエチレン) を用いてセパレータを作成したが、 セパレータを 構成する繊維は、 これに限定されるものではない。 例えば、 スルホン化処理をした 1種類の繊維のみでセパレータを作成するようにしても良い。 あるいは、 スルホン 化度の異なる 3種類以上の繊維で、 セパレータを構成するようにしても良い。
また、 実施例 1 , 2では、 セパレータとして、 ポリプロピレンとポリエチレン とからなる分割型複合繊維を 3 0重量%含有した不織布を用いている力 '分割型複. 合繊維を構成する繊維の種類、 含有率は、 これに限定されるものではない。 具体的 には、 ポリプロピレン、 ポリエチレン、 ポリスチレン、 ポリメチルペンテン、 及ぴ ポリプチレンから少なくとも 2種類を選択して分割型複合繊維を作成すれば良い。 また、このような分割型複合繊維の含有率を 3 0〜 5 0重量%の範囲とすることで、 実施例 1, 2と同等の効果を得ることができる。
また、 実施例 1 , 2では、 セパレータ 1 2 dを袋状として、 その内部に正極 1 2 bを配置させた。 しかしながら、 このような形態に限定されるものではなく、 セ パレータ 1 2 dを単にシート状として、 正極 1 2 bと負極 1 2 cとの間にセパレー タ 1 2 dが介在するように積層しても良い。
また、 実施例 1, 2では、 同一の抄紙ゥェブ層 (第 1抄紙ウェブ層 1 2 f と第 2抄紙ウェブ層 1 2 g ) を積層して、セパレータ 1 2 dを作成した。 し力 しながら、 積層する抄紙ウェブ層は同一である必要はなく、 異質の抄紙ゥヱブ層 (例えば、 目 付が異なる) を積層するようにしても良い。 むしろ、 異質の抄紙ウェブ層を積層し たほうが、 アルカリ蓄電池の特性を向上させることができるので好ましい。
具体的には、 実施例 1, 2のアル力リ蓄電池 1 0 , 2 0では、 正極 1 2 b側に 比して負極 1 2 c側から多くの導電析出物が析出するため、 正極 1 2 b側に配置さ れる第 1抄紙ゥヱプ層 1 2 f に比して負極 1 2 c側に配置される第 2抄紙ゥヱブ層 1 2 gの目付を大きくすることにより、 効率良く導電パスの形成を抑制することが できる。 このように、 セパレータ 1 2 dについて、 選択的に抄紙ウェブ層 (第 2抄 紙ウェブ層 1 2 g ) の目付を大きくすることは、 全ての抄紙ウェブ層 (第 1抄紙ゥ エブ層 1 2 f と第 2抄紙ウェブ層 1 2 g ) の目付を大きくする場合に比して、 セパ レータ 1 2 d全体の繊維密度の上昇を抑制することができる。 このため、 セパレー タ 1 2 dの通気度の低下を抑制でき、 ひいては、 アルカリ蓄電池 1 0の内圧上昇を 抑制することができる。
また、 実施例 1 , 2では、 第 1, 第 2抄紙ウェブ層 1 2 f , 1 2 gの 2層を積 層して、 セパレータ 1 2 dを作成した。 し力 しながら、 積層する抄紙ウェブ層は 2 層に限定されるものではなく、 複数層であればいずれでも良い。 むしろ、 積層する 抄紙ゥェブ層の数を増やすほど、両極間を連結する導電パスが形成されに くなり、 アルカリ蓄電池の自己放電特 1·生を向上させることができるので好ましい。
また、 実施例 1 , 2では、 セパレータ 1 2 dとして湿式不織布を用いたが、 乾 式不織布を用いても良い。

Claims

請 求 の 範 囲
1. 正極、 負極、 セパレータ、 及びアルカリ性の電解液を備えるアルカリ蓄電池で あって、
上記セパレータは、
複数の抄紙ゥェブ層が積層された不織布からなり、
その目付を A (gZm2)、 比表面積を B (m2/g)、 厚みを C (mm) とした とき、 8. 8≤AXBXC≤ 15. 2の関係を満たしてなる
アル力リ蓄電池。
2. 請求項 1に記載のアル力リ蓄電池であって、
前記セパレータをなす前記不織布は、
目付、 比表面積、 厚み、 及びスルホン化度のうち少なくともいずれかについて 異なる抄紙ゥ ブ層を複数有してなる
アル力リ蓄電池。
3. 請求項 1または請求項 2に記載のアルカリ蓄電池であって、
前記電解液の液量を、 前記正極の理論容量 1 Ahあたり 3. 0 (g) 以上 3. 5 (g) 以下としてなる
アル力リ蓄電池。
4. 請求項 1〜請求項 3のいずれか一項に記載のアル力リ蓄電池であって、 前記セパレータは、 無水硫酸によるスルホン化親水処理が施されてなる アル力リ蓄電池。
5. 請求項 4に記載のアルカリ蓄電池であって、
前記抄紙ウェブ層は、 少なくともスルホン化度の異なる 2種類の繊維を有してな る
アル力リ蓄電池。
6. 請求項 1〜請求項 5のいずれか一項に記載のアルカリ蓄電池であって、 前記複数の抄紙ウェブ層は、 それぞれ、 分割型複合繊維を 30重量%以上 50重 量%以下含有してなる
アル力リ蓄電池。
7 . 請求項 6に記載のアルカリ蓄電池であって、
前記分割型複合繊維は、
ポリプロピレン、 ポリエチレン、 ポリスチレン、 ポリメチルペンテジ、 及ぴポ リブチレンから選択した少なくとも 2種類の繊維からなる
アル力リ蓄電池。 ·
PCT/JP2005/006535 2004-03-29 2005-03-28 アルカリ蓄電池 WO2005093877A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/588,721 US20070160902A1 (en) 2004-03-29 2005-03-28 Alkaline storage battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-096655 2004-03-29
JP2004096655A JP4639620B2 (ja) 2004-03-29 2004-03-29 アルカリ蓄電池

Publications (1)

Publication Number Publication Date
WO2005093877A1 true WO2005093877A1 (ja) 2005-10-06

Family

ID=35056498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006535 WO2005093877A1 (ja) 2004-03-29 2005-03-28 アルカリ蓄電池

Country Status (3)

Country Link
US (1) US20070160902A1 (ja)
JP (1) JP4639620B2 (ja)
WO (1) WO2005093877A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101800685B1 (ko) * 2009-06-19 2017-11-23 도레이 카부시키가이샤 미다공막, 이러한 막의 제조 방법 및 전지 세퍼레이터막으로서 이러한 막의 사용
KR101812535B1 (ko) * 2009-06-19 2017-12-27 도레이 카부시키가이샤 다층 미다공막
WO2014050074A1 (ja) * 2012-09-25 2014-04-03 三洋電機株式会社 アルカリ蓄電池及びそれを用いた蓄電池システム。
JPWO2014068868A1 (ja) * 2012-10-30 2016-09-08 三洋電機株式会社 ニッケル水素蓄電池及び蓄電池システム
JP6200897B2 (ja) * 2012-10-30 2017-09-20 三洋電機株式会社 蓄電池モジュール及び蓄電池システム
KR20210024209A (ko) * 2012-11-14 2021-03-04 이 아이 듀폰 디 네모아 앤드 캄파니 전기화학 전지용 분리막 매체
CN109244343B (zh) * 2017-07-10 2021-11-30 宁德新能源科技有限公司 电芯及电化学装置
US20200381690A1 (en) * 2017-08-31 2020-12-03 Research Foundation Of The City University Of New York Ion selective membrane for selective ion penetration in alkaline batteries

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07134979A (ja) * 1993-11-11 1995-05-23 Matsushita Electric Ind Co Ltd 電 池
JPH11135096A (ja) * 1997-10-31 1999-05-21 Toshiba Battery Co Ltd ニッケル水素二次電池
JPH11144698A (ja) * 1997-11-05 1999-05-28 Miki Tokushu Seishi Kk 二次電池用セパレ−タ−
JPH11315472A (ja) * 1997-11-11 1999-11-16 Nippon Sheet Glass Co Ltd 不織布およびその製造方法、並びにそれを用いたアルカリ2次電池
JP2000100410A (ja) * 1998-09-25 2000-04-07 Oji Paper Co Ltd アルカリ電池用セパレータ
JP2000268875A (ja) * 1999-03-15 2000-09-29 Toshiba Corp 非水電解液二次電池及びその製造方法
JP2001089967A (ja) * 1999-09-20 2001-04-03 Nippon Sheet Glass Co Ltd 不織布およびその製造方法、ならびにそれを用いた電池セパレータおよびアルカリ二次電池
JP2001273879A (ja) * 2000-03-27 2001-10-05 Toshiba Battery Co Ltd ニッケル・水素二次電池
JP2001319682A (ja) * 2000-05-08 2001-11-16 Matsushita Electric Ind Co Ltd 角形アルカリ蓄電池、並びにこれを用いた単位電池及び組電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU665575B2 (en) * 1991-09-30 1996-01-11 Wilson Greatbatch Ltd. Autoclavable electrochemical cell
JP3499930B2 (ja) * 1994-10-07 2004-02-23 三洋電機株式会社 アルカリ蓄電池
JP4799776B2 (ja) * 2000-08-22 2011-10-26 富士フイルム株式会社 電解質組成物及びそれを用いた電気化学電池
US7063917B2 (en) * 2001-02-21 2006-06-20 Ahlstrom Mount Holly Springs, Llc Laminated battery separator material
JP2003142063A (ja) * 2001-11-07 2003-05-16 Matsushita Electric Ind Co Ltd アルカリ蓄電池用セパレータおよびそれを用いたアルカリ蓄電池
US7008722B2 (en) * 2002-04-10 2006-03-07 Sui-Yang Huang Polymer-gel lithium ion battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07134979A (ja) * 1993-11-11 1995-05-23 Matsushita Electric Ind Co Ltd 電 池
JPH11135096A (ja) * 1997-10-31 1999-05-21 Toshiba Battery Co Ltd ニッケル水素二次電池
JPH11144698A (ja) * 1997-11-05 1999-05-28 Miki Tokushu Seishi Kk 二次電池用セパレ−タ−
JPH11315472A (ja) * 1997-11-11 1999-11-16 Nippon Sheet Glass Co Ltd 不織布およびその製造方法、並びにそれを用いたアルカリ2次電池
JP2000100410A (ja) * 1998-09-25 2000-04-07 Oji Paper Co Ltd アルカリ電池用セパレータ
JP2000268875A (ja) * 1999-03-15 2000-09-29 Toshiba Corp 非水電解液二次電池及びその製造方法
JP2001089967A (ja) * 1999-09-20 2001-04-03 Nippon Sheet Glass Co Ltd 不織布およびその製造方法、ならびにそれを用いた電池セパレータおよびアルカリ二次電池
JP2001273879A (ja) * 2000-03-27 2001-10-05 Toshiba Battery Co Ltd ニッケル・水素二次電池
JP2001319682A (ja) * 2000-05-08 2001-11-16 Matsushita Electric Ind Co Ltd 角形アルカリ蓄電池、並びにこれを用いた単位電池及び組電池

Also Published As

Publication number Publication date
JP2005285499A (ja) 2005-10-13
US20070160902A1 (en) 2007-07-12
JP4639620B2 (ja) 2011-02-23

Similar Documents

Publication Publication Date Title
WO2005093877A1 (ja) アルカリ蓄電池
CN101043091B (zh) 镍氢蓄电池
EP1150372B1 (en) Alkaline storage battery
JP3221337B2 (ja) アルカリ蓄電池用セパレータ
KR100193375B1 (ko) 니켈-수소 2차전지 및 그 제조방법
US6994935B2 (en) Process for producing separator for batteries, the separator for batteries, and alkaline storage batteries using the same
JP2005285499A5 (ja)
KR100634227B1 (ko) 알칼리 축전지
JP5100718B2 (ja) 角型ニッケル水素蓄電池
EP1022790A2 (en) Alkaline storage battery and manufacturing method of the same
JP3523775B2 (ja) アルカリ二次電池の製造方法
JP3842339B2 (ja) ニッケル水素二次電池
JPH11135096A (ja) ニッケル水素二次電池
JP2003142063A (ja) アルカリ蓄電池用セパレータおよびそれを用いたアルカリ蓄電池
JP4765263B2 (ja) 制御弁式鉛蓄電池
JP3436058B2 (ja) アルカリ蓄電池
JP2023101148A (ja) 鉛蓄電池
JP4997529B2 (ja) アルカリ電池用ニッケル極及びその製造方法
JP7152831B2 (ja) 鉛蓄電池
JP2022152914A (ja) 鉛蓄電池
JP4235805B2 (ja) 円筒形ニッケル水素蓄電池およびそれを用いた電池モジュール
JP2022152913A (ja) 鉛蓄電池
JP2022152916A (ja) 鉛蓄電池
JP2022152915A (ja) 鉛蓄電池
JPH04286863A (ja) アルカリ蓄電池用セパレータ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007160902

Country of ref document: US

Ref document number: 10588721

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 10588721

Country of ref document: US

122 Ep: pct application non-entry in european phase