WO2005090476A1 - 熱可塑性樹脂組成物 - Google Patents

熱可塑性樹脂組成物 Download PDF

Info

Publication number
WO2005090476A1
WO2005090476A1 PCT/JP2005/004756 JP2005004756W WO2005090476A1 WO 2005090476 A1 WO2005090476 A1 WO 2005090476A1 JP 2005004756 W JP2005004756 W JP 2005004756W WO 2005090476 A1 WO2005090476 A1 WO 2005090476A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
mass
rubber
polymer
parts
Prior art date
Application number
PCT/JP2005/004756
Other languages
English (en)
French (fr)
Inventor
Kunio Matsusaka
Hideyuki Kurimoto
Original Assignee
Techno Polymer Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techno Polymer Co., Ltd. filed Critical Techno Polymer Co., Ltd.
Publication of WO2005090476A1 publication Critical patent/WO2005090476A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a thermoplastic resin composition and a flame-retardant resin composition which are excellent in mechanical strength such as rigidity and impact strength, appearance such as gloss, and heat resistance, and which give molded articles with less warpage. It is about an adult.
  • Rubber-reinforced styrenic resins such as ABS resin, AES resin, ASA resin, and HIPS, and compositions of these and polycarbonate resin, etc., have mechanical properties, physical properties, and electrical properties. Because of its excellent properties, it is widely used in the fields of electricity and electronics, electronics and home appliances, vehicles, and sanitary. In order to increase the mechanical strength of these resin compositions, it is common to add a filler such as glass fiber.
  • Patent Document 1 Japanese Patent Publication No. 2-60494
  • Patent Document 2 JP-A-61-174141
  • Patent Document 3 JP-A-61-219732
  • An object of the present invention is to provide a thermoplastic resin composition and a flame-retardant resin that are excellent in rigidity, mechanical strength such as impact resistance, appearance such as gloss, heat resistance, and low warpage! It is to provide a composition.
  • thermoplastic resin made of a rubber-reinforced resin using a specific rubber component, or another polymer such as polycarbonate. It has been found that the above-mentioned object can be achieved by adding a filler having a specific shape to a thermoplastic resin blended with the first resin, and the present invention has been completed.
  • thermoplastic resin (I) 0.5 to 200 parts by mass of a filler (11) having a cocoon-shaped cross section is blended with 100 parts by mass of the thermoplastic resin (I).
  • the present invention provides a thermoplastic resin composition characterized in that the fat (I) contains the following component (A) or the following components (A) and (B): a rubber-reinforced resin which also has a strength.
  • Component (B) (co) polymer of vinyl monomer (b-2).
  • the thermoplastic resin (I) may be, for example, one comprising the rubber-reinforced resin, a blend of the rubber-reinforced resin and another polymer, or the like.
  • the thermoplastic resin composition may have an improved flame retardancy, containing from 110 parts by mass of the flame retardant to 100 parts by mass of the thermoplastic resin (I).
  • a specific amount of a filler (II) having a cocoon-shaped cross section is blended with a thermoplastic resin (I) containing a rubber-reinforced resin using a specific rubber component as an essential component.
  • a specific rubber component as an essential component.
  • (co) polymerization” and “(co) polymer” are “homopolymer” and Z or “copolymer”, respectively, and “homopolymer” and Z or “copolymer”.
  • “(Meth) acryl” and “(meth) atalylate” mean “acryl” and "Z”, respectively. Means “methacrylic”, as well as “atalylate” and z or "metharylate”.
  • thermoplastic resin (I) used in the present invention contains a rubber-reinforced resin as an essential component, and may contain another polymer if desired.
  • the rubber-reinforced resin may be composed of the rubber-reinforced vinyl resin of the above component (A), or the (co) It may be a so-called graft-blend type rubber-reinforced vinyl resin obtained by blending a polymer!
  • the component (A) may be at least one selected from the group consisting of the component (A-1) and the component (A-2).
  • the rubber-reinforced vinyl resin (A-1) is obtained by polymerizing a vinyl monomer (b-1) containing an aromatic vinyl compound in the presence of a non-gen rubber polymer (a-1). Obtained.
  • non-gen-based rubbery polymer (a-1) examples include rubbers having substantially no double bond in the main chain! Specifically, ethylene-a-one-year-old olefin-based copolymer rubbers such as ethylene ⁇ -year-old olefin copolymer rubber and ethylene ⁇ -olefin conjugated non-conjugated copolymer rubber; acrylate (co) polymer rubber Acrylate acrylate crosslinkable monomer copolymer rubber, acrylate ester-aromatic vinyl copolymer rubber, acrylate ester conjugated compound copolymer rubber, acrylate ester conjugated conjugated conjugated conjugated rubber Acrylic rubbers such as aromatic bi-conjugated copolymer rubbers, which have no substantial double bond in the main chain by applying a technique such as hydrogenation if necessary; such as SEBS Hydrogenated gasoline-based rubber of gen-based rubber; silicone rubber.
  • These non-gen-based rubbery polymers (a-1) have high stability even when exposed to light, heat, moisture, oxygen, and other contaminants, and have excellent weather resistance.
  • the one-year-old olefin with 3-20 carbon atoms here is propylene, 1-butene, 1-pentene, 1-hexene, 4-methylinole 1-pentene, 1-heptene, 1-otaten, 1-decene, 1-dodecene And the like.
  • ⁇ -refins can be used alone or in combination of two or more.
  • ⁇ -olefin has a carbon number of 3-20, preferably 3-12, more preferably 3-8. If the carbon number is too large, the copolymerizability will be extremely reduced.
  • the ratio of ethylene to ⁇ -olefin is preferably 5-95 ⁇ 95-5, more preferably 50-90 / 50-10, and particularly preferably 40-85 ⁇ 60-15.
  • non-conjugated conjugate examples include alkenyl norbornenes, cyclic genes, and aliphatic genes, and are preferably dicyclopentadiene and 5-ethylidene-2 norbornene. is there.
  • One or more of these non-conjugated genes can be used in combination.
  • the content of the non-conjugated diene in the ethylene ⁇ -olefin copolymer rubber is 0 to 30% by mass, preferably 0 to 15% by mass.
  • the unsaturated amount of the copolymer rubber is preferably in the range of 0 to 40 in terms of iodine value. If the amount of unsaturation is too large, the weather resistance (light) and the hue may be incompatible.
  • a homogeneous or heterogeneous catalyst may be used.
  • the homogeneous catalyst include a metamouth catalyst.
  • the heterogeneous catalyst include a vanadium-based catalyst obtained by combining a vanadium compound and an organoaluminum compound.
  • the glass transition temperature of the ethylene a one-year-old olefin copolymer rubber is preferably 110-140 ° C, more preferably 170-45 ° C.
  • the acrylic rubber is a polymer of alkyl acrylate having 2 to 8 carbon atoms in the alkyl group or a copolymer thereof.
  • Specific examples of the acrylate include ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, hexyl acrylate, n-octyl acrylate, and 2-ethylhexyl acrylate. . These can be used alone or in combination of two or more.
  • Preferred acrylate esters are n-butyl acrylate, isobutyl acrylate, and 2-ethyl hexyl acrylate.
  • a part of the acrylate used in the acrylic rubber can be replaced with another copolymerizable monomer.
  • other powerful monomers include aromatic vinyl compounds, methacrylic acid ester compounds, and conjugated diene compounds.
  • aromatic vinyl conjugates and among them, styrene is preferred.
  • butadiene is used as the conjugated diene compound, it is desirable to use it in a range of 40% by mass or less of the total rubber amount in consideration of the weather resistance. What is necessary is just to make a layer become a core part.
  • the acrylic rubber has a glass transition temperature of 10 ° C. or lower. Further, it is preferable that the acrylic rubber is appropriately copolymerized with a crosslinkable monomer.
  • the amount of the crosslinkable monomer used in the acrylic rubber is preferably 0 to 10% by mass, more preferably 0.01 to 10% by mass, and still more preferably 0.1 to 5% by mass.
  • Suitable crosslinking monomers include mono- or polyethylene glycol diatalylates such as ethylene glycol diatalylate, diethylene glycol diatalylate, triethylene glycol diatalylate, tetraethylene glycol diatalylate; ethylene glycol dimethalate Mono- or polyethylene-dalichol dimetharate such as diethylene glycol dimetharate, triethylene glycol dimetharate, tetraethylene glycol dimetharate; polybutyl aromatic compounds such as dibutyl benzene; diaryl phthalate, diaryl maleate, Polyants such as diaryl succinate and triallyl triazine And conjugated gen compounds such as 1,3-butadiene and isoprene.
  • mono- or polyethylene glycol diatalylates such as ethylene glycol diatalylate, diethylene glycol diatalylate, triethylene glycol diatalylate, tetraethylene glycol diatalylate
  • the acrylic rubber is preferably produced by a known polymerization method, and is preferably a force emulsion polymerization method or a suspension polymerization method.
  • the silicone rubber is preferably a polyorganosiloxane rubber polymer obtained in the form of a latex by emulsion polymerization because of the ease of graft polymerization.
  • the latex of the polyorganosiloxane-based rubbery polymer can be obtained by a known method, for example, a method described in US Pat. No. 3,294,725.
  • a preferred method is to condense the organosiloxane by shear mixing with water using a homomixer or an ultrasonic mixer in the presence of a sulfonic acid emulsifier such as alkylbenzenesulfonic acid or alkylsulfonic acid. Can be manufactured.
  • alkylbenzenesulfonic acid and the like are preferably used because they act as an emulsifier for the organosiloxane and also act as a polymerization initiator.
  • metal salts of alkyl benzene sulfonic acid and metal salts of alkyl sulfonic acid are preferred because they are effective in maintaining the polymer stably during graft polymerization.
  • the graft cross-linking agent and the cross-linking agent may be co-condensed within a range that does not impair the performance of the object of the present invention.
  • the organosiloxane has, for example, a structural unit represented by the following general formula (1), and is an organosiloxane having a linear, branched, or cyclic structure, preferably a cyclic structure.
  • R is a substituted or unsubstituted monovalent hydrocarbon group
  • m represents an integer of 0 to 3.
  • Examples of the substituted or unsubstituted monovalent hydrocarbon group of the organosiloxane include: Examples include a methyl group, an ethyl group, a propyl group, a phenyl group, and a substituted hydrocarbon group obtained by substituting them with a cyano group.
  • organosiloxane examples include hexamethylcyclotrisiloxane, otamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexyl.
  • cyclic organosiloxane such as sasiloxane and trimethyltriphenylcyclotrisiloxane
  • linear organosiloxane branched organosiloxane and the like can be mentioned. These organosiloxanes are used alone or in combination of two or more.
  • the organosiloxane may be a polyorganosiloxane that has been condensed in advance, for example, having a weight average molecular weight of about 500 to 10,000 in terms of polystyrene.
  • the organosiloxane is a polyorganosiloxane, the molecular end thereof may be blocked with, for example, a hydroxyl group, an alkoxy group, a trimethylsilyl group, a dimethylvinylsilyl group, a methylvinylsilyl group, a methyldiphenylsilyl group, or the like.
  • the organosiloxane can be used alone or in combination of two or more.
  • a graft crossing agent can be used in a range that does not impair the achievement of the object of the present invention.
  • R 1 represents a hydrogen atom or an alkyl group having 16 carbon atoms, and Ph represents a phenylene group
  • a graft crosslinking agent having both an unsaturated group represented by the formula: and an alkoxysilyl group.
  • butylmethyldimethoxysilane tetrabutyltetramethylcyclosiloxane
  • arylmethyldimethoxysilane arylmethyldimethoxysilane
  • q (3—q) / 2 is an 18 divalent or trivalent saturated aliphatic hydrocarbon group
  • R 4 is a monovalent hydrocarbon group containing no aliphatic unsaturated group having 16 carbon atoms
  • q represents an integer of 0-2.
  • R 5 represents a hydrogen atom, a methyl group, an ethyl group, a propyl group or a phenyl group, r represents an integer of 16 and s represents an integer of 0 to 2.
  • graft-crossing agents particularly preferred are compounds having both the unsaturated group represented by the above (a) and an alkoxysilyl group.
  • Specific examples of the compound of the above (a) include p-butylmethyldimethoxysilane,
  • graft-linking agents p-butylphenylmethyldimethoxysilane, [1- (4butylphenyl) ethyl] methyldimethoxysilane, and [2- (4-butylphenyl) ethylsilane are preferable.
  • Preferred are p-butylphenylmethyldimethoxysilane, [1- (4-biphenyl) ethyl] methyldimethoxysilane, and [2- (4-butylphenyl) ethyl] methyldimethoxysilane.
  • the amount used is preferably 0.1 to 30% by mass, more preferably 0.2 to 20% by mass, and particularly preferably, the total amount of the organosiloxane and the cross-linking agent. Or 0.5 to 5% by mass. If the amount of the graft-linking agent is too large, the molecular weight of the grafted polymer may decrease, and sufficient impact resistance may not be obtained. When the amount is less than 0.1% by mass, the molded product is delaminated, and it is difficult to obtain sufficient surface appearance and strength of the molded product immediately.
  • the particle size of the polyorganosiloxane rubbery polymer is preferably 500 nm or less, more preferably 400 nm or less, and particularly preferably 100-400 nm.
  • the particle size can be controlled by the amount of an emulsifier, water, the degree of dispersion when mixed using a homomixer or an ultrasonic mixer, or the method of adding an organosiloxane. If the particle diameter is larger than 500 nm, the gloss may be reduced and the appearance may be deteriorated.
  • the polyorganosiloxane-based rubbery polymer thus obtained has a polystyrene-equivalent weight average molecular weight, measured by gel permeation chromatography, of 31,100,000, preferably 50,000 to 300,000. is there. If the average molecular weight is too low, the impact resistance of the obtained graft copolymer and the resin composition of the present invention using the same may be poor, and if the average molecular weight is too large, the entanglement of the polymer chains is strong. Therefore, the rubber elasticity of the rubber particles may be reduced, and the impact resistance may be reduced.
  • the weight average molecular weight can be easily adjusted by changing the condensation polymerization temperature and time during the preparation of the polyorganosiloxane rubbery polymer. That is, the lower the condensation polymerization temperature, the longer the cooling time, and the higher the molecular weight. In addition, by adding a small amount of a crosslinking agent, high molecular weight can be obtained.
  • the crosslinking agent used as necessary can be added at the time of producing the organosiloxane-based rubbery polymer. Thereby, the impact strength of the graft copolymer obtained by using the organosiloxane rubbery polymer as the rubbery polymer can be improved.
  • the crosslinking agent include a trifunctional crosslinking agent such as methyltrimethoxysilane, phenyltrimethoxysilane, and ethyltriethoxysilane, and a tetrafunctional crosslinking agent such as tetraethoxysilane. These crosslinking agents can be used alone or in combination of two or more. Further, a crosslinked prepolymer obtained by condensation polymerization of these crosslinking agents in advance may be used as a crosslinking agent.
  • the amount added is preferably 0.01 to 20% by mass, more preferably 0.02 to 5% by mass, based on the total amount of the organosiloxane, the grafting agent and the crosslinking agent. If it exceeds 20% by mass, the flexibility of the polyorganosiloxane-based rubbery polymer is impaired, so that the slidability and impact resistance may be reduced.
  • the hydrogenated rubber is a hydride of a conjugated rubber-based polymer.
  • the hydride of the conjugated gen-rubber polymer include a hydride of a conjugated gen polymer, and a hydrogenated product of a copolymer of a conjugated gen and an aromatic vinyl conjugate. It includes random copolymers, block copolymers, and the like of conjugated conjugates and aromatic vinyl conjugates.
  • the block structure of the hydrogenated product of the block copolymer includes an aromatic vinyl alcohol polymer block, an aromatic vinyl alcohol-conjugated conjugated random copolymer block, and when the conjugated compound is butadiene, 1
  • a block with a content of 2, 2 bul of 20% by mass or less a polybutadiene block with a content of 1, 2 bule of more than 20% by mass, or a copolymer of polybutadiene and an aromatic vinyl compound
  • each component other than the random block Includes the hydrogenation structure of each block such as a taper block in which the number gradually increases.
  • Examples of the form of the block copolymer include those having structures such as AB type, ABA type, (AB) n type, (AB) nA taper type, and radial teleblock type.
  • the hydrogenation rate of the conjugated moiety in the block copolymer is preferably at least 95 mol%, more preferably at least 97 mol%. If the hydrogenation rate is too low, a molded article having sufficient weather resistance and discoloration resistance may not be obtained.
  • Examples of the conjugated gen used in the production of the block copolymer include 1,3-butadiene, isoprene, 1,3-pentadiene, and chloroprene.
  • 1,3-butadiene and isoprene are preferred.
  • Aromatic vinyl monomers used in the production of the block copolymer include styrene, OC-methylstyrene, methylstyrene, vinylxylene, monochlorostyrene, dichlorostyrene, monobromostyrene, dibromostyrene, and phenololero. There are styrene, p-tert-butylstyrene, ethylstyrene, vinylnaphthalene, etc. These are used alone or in combination of two or more.
  • Preferred aromatic vinyl monomers include styrene or aromatic butyl monomers containing 50% by mass or more of styrene.
  • the ratio of the aromatic vinyl conjugate and the conjugated genie conjugate in the block copolymer can be changed depending on the required performance of the final resin, but the ratio of the aromatic vinyl conjugate in the copolymer is Preferably it is 10 to 50% by mass, more preferably 13 to 40% by mass. If the unit of the aromatic vinyl monomer is too small, the surface appearance of the molded article is deteriorated. If the unit is too large, sufficient impact resistance may not be obtained.
  • the block polymer chain having an active terminal obtained by the above method is coupled with a polyfunctional conjugate such as silicon tetrachloride or tin tetrachloride to form a branched block polymer. can get.
  • a polyfunctional conjugate such as silicon tetrachloride or tin tetrachloride.
  • These block polymers can be used alone or as a mixture with other block copolymers.
  • the rubber-reinforced vinyl resin (A-2) is a vinyl monomer containing an aromatic vinyl compound in the presence of a gen-based rubber polymer (a-2) having a gel content of 70% by mass or more. It is obtained by polymerizing (b-1).
  • Examples of the gen-based rubbery polymer ( a -2) include polybutadiene, butadiene-styrene copolymer (styrene content is preferably 5 to 60% by mass), styrene isoprene copolymer, butadiene acrylonitrile copolymer, and butadiene acryl copolymer. And a styrene-butane block copolymer, a styrene isoprene block copolymer, an isobutylene isoprene copolymer, and the like.
  • the styrene-butadiene block copolymer and the styrene-isoprene block copolymer include those having an AB-type, ABA-type, taper-type, or radial teleblock-type structure.
  • the rubbery polymer (a-2) is preferably one obtained by emulsion polymerization.
  • Gel content of the rubber polymer (a- 2) is required to be 70 mass 0/0 or more, is preferred instrument more preferably 70 to 9 8 mass%, 70 to 95 weight %, Particularly preferably 70 to 90% by mass.
  • the filler is well dispersed, warpage is prevented, and the mechanical strength is improved.
  • a skin layer is easily formed on the surface of the molded article during molding, and a molded article having excellent gloss can be obtained.
  • the above gel content was determined by charging the rubbery polymer (a-2) lg into 100 ml of toluene, leaving the mixture at room temperature for 48 hours, and then filtering through a 100-mesh wire mesh (mass W). The insoluble matter and the wire mesh are vacuum-dried at 80 ° C for 6 hours, weighed (mass W), and calculated by the following formula.
  • the molecular weight distribution of the rubbery polymer (a-1), that is, the weight average molecular weight Z number average molecular weight (MwZMn) is preferably 1.1-13, more preferably 1.15-2.5. . If M wZMn exceeds 3, flow marks may be generated on the surface of the molded product, which may cause deterioration of the appearance of the molded product.
  • the molecular weight distribution of the rubbery polymer (a-2) is not particularly limited as long as it can be obtained by a usual polymerization method!
  • These rubbery polymers (a-1) and (a-2) may be used alone in the polymerization step of the rubber-reinforced bur resin, or two or more of them may be used depending on the purpose. May be used in combination. By using two or more types, a high-performance rubber-reinforced vinyl resin that can take advantage of the respective rubbery polymers can be obtained.
  • a strong rubbery polymer can be carried out in an appropriate manner depending on the purpose. For example, they can be used together in the polymerization step of producing a rubber-reinforced vinyl resin, or a rubber-reinforced vinyl resin obtained by separately polymerizing each rubber is blended, and an extruder or the like is used. Mixing can also be performed with a kneading machine such as a Banbury mixer.
  • the rubbery polymers (a-1) and (a-2) have an average rubber particle diameter in the range of 500 to 30000 A, and preferably have a force S, more preferably 1000 to 20000 A, and particularly preferably 1500-80 00 A.
  • the average rubber particle diameter generally relates to the particle diameter of the rubbery polymer dispersed in the rubber-reinforced vinyl resin.
  • the amount of the rubbery polymers (a-1) and (a-2) used is 3 to 90 parts by mass relative to the whole component (A). %, Preferably from 3 to 70% by mass, more preferably from 5 to 60% by mass, particularly preferably from 10 to 60% by mass from the viewpoint of impact resistance. Further, the ratio of the amount of the rubbery polymer (a-1) and (a-2) to the entire thermoplastic resin composition of the present invention is preferably from 110 to 30% by mass from the viewpoint of impact resistance, More preferably, it is about 3 to 20% by mass.
  • the bullet-based monomer (b-1) contains an aromatic vinyl compound as an essential component, and may contain other vinyl-based monomers copolymerizable therewith, if necessary.
  • aromatic vinyl compound examples include styrene, ⁇ -methylstyrene, methylstyrene, bi-xylene, monochlorostyrene, dichlorostyrene, monobromostyrene, dibromostyrene, ⁇ -t-butylstyrene, ethylstyrene, vinylnaphthalene, o-methylstyrene, Dimethylstyrene and the like, which can be used alone or in combination of two or more.
  • the aromatic vinyl conjugates preferably used are styrene and Z or ⁇ -methylstyrene, and when two or more aromatic vinyl conjugates are used in combination, the aromatic vinyl conjugates may be used.
  • the styrene content in the ligature is preferably 20% by mass or more.
  • vinyl monomers copolymerizable with the aromatic vinyl conjugate include cyanide vinyl compounds, alkyl (meth) acrylates, maleimide group-containing unsaturated compounds, and And various other functional group-containing unsaturated compounds.
  • Cyanidani-Ruidani products examples include acrylonitrile, metatali-tol-tolyl, etc., and preferably acrylonitrile. These can be used alone or in combination of two or more.
  • the use of the Cyanidani Biruidani conjugate provides chemical resistance.
  • the amount used is preferably 1 to 60% by mass, more preferably 5 to 50% by mass in the component (b-1).
  • alkyl (meth) acrylate examples include methyl acrylate, ethyl acrylate, propyl acrylate, butynoleate arylate, amino acrylate, hexyl acrylate, octyl acrylate, and 2-ethyl.
  • Alkyl acrylates such as xyl acrylate and cyclohexyl acrylate
  • alkyl methacrylates such as methyl methacrylate, ethyl methacrylate and 2-ethyl hexyl methacrylate, cyclohexyl methacrylate, etc. Is mentioned. These can be used alone or in combination of two or more.
  • maleimide group-containing unsaturated compound examples include maleimide compounds such as maleimide, N-methylmaleimide, N-ethylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide. These can be used alone or in combination of two or more. Further, this maleimide compound may be introduced by a method of copolymerizing maleic anhydride and then imidizing. When a maleimide group-containing unsaturated compound is used, heat resistance is imparted. When a maleimide group-containing unsaturated compound is used, the amount used is preferably 1 to 60% by mass, more preferably 5 to 50% by mass in the component (b-1).
  • Other various functional group-containing unsaturated compounds include a carboxyl group-containing unsaturated compound, an acid anhydride group-containing unsaturated compound, an epoxy group-containing unsaturated compound, a hydroxyl group-containing unsaturated compound, a substituent or a non-functional group.
  • Substituted amino group-containing unsaturated compounds, oxazoline group-containing unsaturated compounds and the like can be mentioned.
  • These unsaturated compounds having a functional group can be used alone or in combination of two or more.
  • Examples of the unsaturated compound having a carboxyl group include acrylic acid, methacrylic acid, ethacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, and cinnamic acid. These can be used alone or in combination of two or more.
  • unsaturated compound containing an acid anhydride group examples include unsaturated carboxylic anhydrides such as maleic anhydride, itaconic anhydride and citraconic anhydride. These can be used alone or in combination of two or more.
  • epoxy group-containing unsaturated compound examples include glycidyl acrylate, glycidyl methacrylate, and aryl glycidyl ether. These can be used alone or in combination of two or more.
  • hydroxyl-containing unsaturated compound examples include 3-hydroxy-1-propene, 4-hydroxy-1-butene, cis 4-hydroxy-2-butene, trans-4-hydroxy-2-butene, 3-hydroxy-2-methyl-1-propene, and 2-hydroxyethylatari. And 2-hydroxyethyl methacrylate, N- (4-hydroxyphenyl) maleimide, and the like. These are one kind alone Or a combination of two or more.
  • Examples of the substituted or unsubstituted unsaturated compound containing an amino group include aminoethyl acrylate, aminoethyl methacrylate, aminopropyl methacrylate, propylaminoethyl acrylate, dimethylaminoethyl methacrylate, and phenylaminoethyl methacrylate.
  • N-vinylethylamine, N-acetylvinylamine, acrylamine, methacrylamine, N-methylacrylamine, acrylamide, N-methylacrylamide, p-aminostyrene and the like can be used alone or in combination of two or more.
  • oxazoline group-containing unsaturated compound examples include buroxazoline and the like. These can be used alone or in combination of two or more.
  • the compatibility between the rubber-reinforced resin and another polymer can be improved when blended.
  • Preferred monomers for achieving the powerful effect are unsaturated compounds containing an epoxy group, unsaturated compounds containing a carboxyl group, and unsaturated compounds containing a hydroxyl group, and more preferably unsaturated compounds containing a hydroxyl group.
  • Preferred is 2-hydroxyethyl (meth) acrylate.
  • the amount of the functional group-containing unsaturated compound used is preferably 0.01 to 20% by mass based on the total amount of the functional group-containing unsaturated compound used in the rubber-reinforced resin. 0.01 to 10% by mass is preferable for the entire thermoplastic resin composition of the present invention, and 0.05 to 5% by mass is more preferable.
  • a method for producing the rubber-reinforced vinyl resin a method of radically polymerizing a vinyl monomer (b-1) in the presence of the rubbery polymer (a-1) and Z or (a-2) is adopted. It can.
  • a polymerization method include methods such as emulsion polymerization, solution polymerization, and suspension polymerization.
  • a preferable polymerization operation is to use a rubbery polymer latex or a rubbery polymer obtained by an emulsion polymerization method after dissolving the rubbery polymer in an organic solvent and then adding an emulsifier or the like while stirring at high speed to re-emulsify. And performing general emulsion polymerization.
  • Other preferable polymerization operations include solution polymerization in which a rubbery polymer is dissolved in an organic solvent followed by radical polymerization, bulk polymerization in which a rubbery polymer is dissolved in a monomer and radical polymerization is performed, and rubbery polymer is dissolved in an monomer. After the polymer is dissolved, a suspension agent is added, and a radical polymerization is performed by radical polymerization.
  • a polymerization initiator, a chain transfer agent, an emulsifier, and water are used. All of these can be used.
  • the rubbery polymer and vinyl monomer used are divided or continuously added in such a way that the above-mentioned vinyl monomer can be added at once and polymerized in the presence of the whole amount of the rubbery polymer. It may be polymerized. Further, polymerization may be carried out by a method combining these. Further, the whole or a part of the rubbery polymer may be added during the polymerization to carry out the polymerization.
  • Examples of the polymerization initiator include, for example, peroxide of perforated tamenopenide, peroxide of diisopropylbenzene, potassium persulfate, azobisisobutyric-tolyl, benzoyl peroxide, lauroyl peroxide, and t-butylperoxylaurate. And t-butyl peroxymonocarbonate.
  • chain transfer agent examples include octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, n-hexyl mercaptan, tetraethylthiuram sulfide, acrolein, methacrolein, aryl alcohol, and 2-ethylhexyl thioglycol. And the like.
  • Examples of the emulsifier used in the emulsion polymerization include ester sulfates of higher alcohols, alkylbenzene sulfonates of sodium dodecylbenzenesulfonate, aliphatic sulfonates such as sodium lauryl sulfate, and higher aliphatic carboxylic acids.
  • Aron-based surfactants such as acid salts, rosinates and phosphates, as well as known noon-based surfactants, can be used.
  • a powder obtained by coagulating with a coagulant is washed with water and dried to obtain a rubber-reinforced vulcan-based resin powder.
  • a coagulant inorganic salts such as calcium chloride, magnesium sulfate and magnesium chloride, or acids such as sulfuric acid, hydrochloric acid and acetic acid can be used.
  • Graft copolymers obtained by force usually include, in addition to a rubbery polymer (a-1) or (a-2) a vinyl monomer (b-1) graft copolymerized, It is graphed into rubbery polymer (b-1)! /, Which includes (co) polymer of bull monomer (bl).
  • the graft ratio of the rubber-reinforced bullet resin (A-1) and (A-2) is preferably 10 to 200% by mass, more preferably 20 to 150% by mass, and particularly preferably 30 to 120% by mass. %.
  • the graft ratio (% by mass) is determined by the following equation.
  • T is the above rubber-reinforced butyl resin lg in 20 ml of acetone (acetonitrile if the rubbery polymer (a-1) is an acrylic rubber), and the mixture is shaken for 2 hours by a shaker. After shaking, it is centrifuged for 60 minutes with a centrifuge (rotation speed: 23, OOOrpm), and the mass (g) of the insoluble matter obtained by separating the insoluble matter from the soluble matter, and S is the above rubber The mass (g) of the rubbery polymers (a-1) and (a-2) contained in the reinforced resin-based resin lg.
  • Intrinsic viscosity of rubber-reinforced vinyl resins (A-1) and (A-2) soluble in acetone (but soluble in acetonitrile when rubbery polymer (a-1) is acrylic rubber) is usually 0.3 to 1.5, preferably 0.3 to 1.3 dl / g, more preferably 0.3 to 1 Odl / g, especially Preferably it is 0.4-0.8dlZg. If the intrinsic viscosity is less than 0.3 dlZg, the fatigue resistance is poor, while if it exceeds 1.5 dlZg, the fatigue resistance is poor. This intrinsic viscosity can be controlled by a chain transfer agent, polymerization time, polymerization temperature, and the like.
  • Each of the rubber-reinforced vinyl resins (A-1) and (A-2) can be used alone or in combination of two or more.
  • Examples of the vinyl monomer (b-2) constituting the (co) polymer of the component (B) include the aromatic vinyl conjugates listed as the vinyl monomer (b-1) and vinyl cyanide. All compounds, alkyl (meth) acrylates, maleimide group-containing unsaturated compounds, and various other functional group-containing unsaturated compounds can be used. These compounds can be used alone or in combination of two or more. Usually, an aromatic vinyl compound is used as an essential monomer component, and if necessary, may be selected from the group consisting of a vinyl cyanide compound, an alkyl (meth) acrylate and an unsaturated compound containing a maleimide group.
  • Species or two or more can be used in combination as a monomer component, and if necessary, at least one of various other functional group-containing unsaturated compounds can be used in combination as a monomer component.
  • the epoxy group-containing unsaturated compound, the carboxyl group-containing unsaturated compound or the hydroxyl group-containing unsaturated compound is used as a functional group-containing unsaturated compound in order to improve the compatibility between the two. It is more preferable to use a saturated compound, more preferably a hydroxyl group-containing unsaturated compound, and particularly preferably 2-hydroxyethyl (meth) acrylate.
  • the preferred amounts of the aromatic vinyl compound, vinyl cyanide compound, alkyl (meth) acrylate and unsaturated compound containing a maleimide group in the component (b-2) are the amounts used in the component (b1). Same as quantity.
  • the combination of the monomers of the (co) polymer (B) includes (a) an aromatic vinyl compound Z (cyanide), (b) an aromatic vinyl compound Z (meth) acryl Alkyl acid esters, (c) aromatic vinyl conjugates Z cyanide vinyl conjugates Z alkyl (meth) acrylates, (d) aromatic vinyl conjugates Z maleimide conjugates Z-Cyanidani vinyl conjugate, and (e) an aromatic butyl compound Z2-hydroxylethyl (meth) atalylate Z-cyanidani vinyl compound.
  • the (co) polymer (B) is different from the rubber-reinforced vinyl resin (A) in that the polymerization of the vinyl monomer (b-1) is carried out in the absence of a rubbery polymer. It can be manufactured by a similar method.
  • the (co) polymer (B) may be a (co) polymer having a single composition! / Or a blend of two or more (co) polymers having different compositions. .
  • the intrinsic viscosity (measured at 30 ° C. in methyl ethyl ketone) of the (co) polymer (B) is usually from 0.3 to 1.5, preferably from 0.3 to 1.3 dlZg, more preferably 0.4-1. OdlZg, particularly preferably 0.4-0. 8dlZg.
  • This intrinsic viscosity can be controlled by a chain transfer agent, polymerization time, polymerization temperature and the like.
  • the (co) polymer (B) can be mixed with the rubber-reinforced vinyl resin (A) by an appropriate method.
  • thermoplastic resin (I) of the present invention may be obtained by blending the above-mentioned rubber-reinforced resin with another polymer by a method such as melt kneading! /.
  • Examples of other powerful polymers (C) include, for example, ABS resin other than the above rubber-reinforced resin ES resin 'Styrene resin such as ASA resin, AS resin, HIPS, PS; olefin resin such as polyethylene and polypropylene; polyamide resin such as PA6, PA66, PA46, PA12; polybutylene terephthalate, Thermoplastic polyester resin such as polyethylene terephthalate and polyarylate; polycarbonate resin, polyphenylene ether or polyphenylene ether, and polyphenylene ether resin such as Z-styrene resin; polyacetal, vinyl chloride resin, There are polysulfone, PPS, polyethersulfone, ethylene butyl acetate copolymer, EVOH and the like, and these can be used alone or in combination of two or more.
  • ABS resin other than the above rubber-reinforced resin ES resin 'Styrene resin such as ASA resin, AS resin, HIPS, PS
  • thermoplastic ⁇ (I) are, with the rubber-reinforced ⁇ 1 one 99 mass 0/0, strengthening the polymers (C) 99 one 1 mass 0/0 and a comprising at it is preferable instrument the rubber and ⁇ 5 9 5% by weight, these polymers (C) 95- 5 mass% and further to comprise a preferred (wherein the total of the rubber-reinforced resin and a polymer (C) 100 weight 0 / 0 ).
  • polycarbonate resin in order to improve appearance such as glossiness and heat resistance, one or more kinds selected from the group consisting of polycarbonate resin, thermoplastic polyester resin and polyamide resin are used. It is preferred to use.
  • polyamide resin and thermoplastic polyester resin are preferred for improving both heat resistance and appearance, especially appearance such as glossiness.
  • Polyamide resin or thermoplastic polyester resin is a crystalline polymer, which is unevenly distributed on the surface of the molded product during molding and suppresses the appearance of the filler on the molded product surface, thereby improving the appearance of the molded product. it is conceivable that.
  • the polyamide resin those having a relative viscosity of 1.5-5.0 measured at a temperature of 25 ° C and a concentration of 1% by mass in 98% sulfuric acid according to JIS K6810 are preferred. 2.0-4.0 Is more preferable.
  • the melt flow rate measured at 230 ° C. and under a load of 2.16 kg according to IS01133 is 10-60 g / 10 min, more preferably 20-50 gZ10 min. If it is less than the above range, the mechanical strength may decrease, and if it exceeds the above range, the moldability may be insufficient.
  • thermoplastic polyester resin the intrinsic viscosity measured at 25 ° C using a mixed solvent of phenol and 1,1,2,2-tetrachloroethane at a mass ratio of 6: 4 is 0.5-1. Preference is given in the range of 5dlZg 0. 5-1. Preference is given in the range of 2dlZg 0.6-1 Those in the range of odiZg are more preferred. Further, as thermoplastic polyester resin, 250 according to IS01133. C, 2. Those having a melt flow rate measured under a load of 16 kg of 10-5 OgZlOmin are preferred, and those having a melt flow rate of 15-40 gZl0min are more preferred. If it is less than the above range, the mechanical strength may be reduced, and if it exceeds the above range, the moldability may be insufficient.
  • the addition amount of the polyamide resin or the thermoplastic polyester resin is preferably 1 to 70% by mass, more preferably 2 to 60% by mass, based on 100% by mass of the entire thermoplastic resin (I). Particularly preferably, it is 3 to 40% by mass. If the amount of the polyamide resin or thermoplastic polyester resin is less than 1% by mass, the appearance of the molded product may not be sufficiently improved. If the amount exceeds 70% by mass, burrs may occur during molding. In some cases, the molded product may shrink.
  • a thermoplastic polyester resin it is preferable to use it in combination with a polycarbonate resin because the polycarbonate resin functions as a compatibilizer.
  • the addition amount of the polycarbonate resin is preferably 1 to 70% by mass, more preferably 2 to 60% by mass, and particularly preferably 3 to 70% by mass, based on 100% by mass of the entire thermoplastic resin (I). 40% by mass.
  • Polycarbonate resin can be preferably used to improve heat resistance, and when it is necessary to further improve the appearance, it is used in combination with the above-mentioned thermoplastic polyester resin, particularly, polybutylene terephthalate. be able to. If necessary to improve the appearance there Ru, thermoplastic ⁇ (I) a rubber-reinforced ⁇ 5- 39 weight 0/0, polycarbonate ⁇ 60 one 90 wt%, and a thermoplastic polyester ⁇ 1 one 10 % By mass (total of rubber-reinforced resin, polycarbonate resin and thermoplastic polyester resin is 100% by mass).
  • thermoplastic resin (I) is composed of rubber-reinforced resin 5 to 55% by mass, polycarbonate resin 2 to 10% by mass, and thermoplastic polyester resin 30 to 90%. % By mass (total of rubber-reinforced resin, polycarbonate resin and thermoplastic polyester resin is 100% by mass).
  • the molecular weight of the polycarbonate resin is preferably from 12,000 to 30,000, more preferably from 14,000 to 26,000, as a viscosity average molecular weight calculated from the solution viscosity measured at a temperature of 20 ° C. using methylene chloride as a solvent. If the viscosity average molecular weight is less than the above range, impact The strength, toughness or chemical resistance may be insufficient, and if it exceeds the above range, the fluidity may decrease and the formability may become insufficient. 300 according to ISO 1133 for polycarbonate resin.
  • the melt flow rate measured under a 1.2 kg load is preferably 5 to 50 gZ10 min, more preferably 10 to 40 gZ10 min.
  • thermoplastic resin (I) of the present invention may further contain the following component (D) as a compatibilizer in order to improve the compatibility between the rubber-reinforced resin and the other polymer (C). .
  • the component (D) contains an aromatic vinyl compound as an essential monomer component in the presence or absence of the rubbery polymer (a-1) and Z or (a-2). At least one selected from the group consisting of a vinyl cyanide compound, an alkyl (meth) acrylate and a maleimide group-containing unsaturated compound, and a group consisting of Z or other various functional group-containing unsaturated compounds. It is a polymer obtained by polymerizing a vinyl monomer containing at least one selected as a monomer component.
  • polymers overlapping with the above-mentioned component (A) or (B) belong to the above-mentioned components (A) and (B), and include aromatic vinyl compounds, vinyl cyanide compounds,
  • the alkyl (meth) acrylate the maleimide group-containing unsaturated compound and other various functional group-containing unsaturated compounds, all those described above for the rubber-reinforced vinyl resin (A) can be used.
  • the monomer component an epoxy group-containing unsaturated compound, a carboxyl group-containing unsaturated compound, or a polymer having a hydroxyl group-containing unsaturated compound is preferable, and a hydroxyl group-containing unsaturated compound is more preferable.
  • 2-hydroxyethyl (meth) acrylate is 2-hydroxyethyl (meth) acrylate.
  • the content of the functional group-containing unsaturated compound in the component (D) is preferably 0.01 to 50% by mass, more preferably 0.1 to 30% by mass, and particularly preferably 0.1 to 20% by mass. is there.
  • the amount of the component (D) used is 0.1 to 20 parts by mass, more preferably 0.1 to 15 parts by mass, based on 100 parts by mass of the rubber-reinforced resin and the other polymer (C) in total. If the amount is less than 0.1 part by mass, sufficient compatibility may not be obtained, and if the amount is more than 20 parts by mass, moldability may be poor.
  • the component (D) can be produced by the same production method as the above component (A) or (B).
  • thermoplastic resin composition of the present invention contains a flame retardant in order to improve flame retardancy.
  • inorganic flame retardants such as magnesium hydroxide, alumina, calcium borate, and low-melting glass
  • inorganic phosphorus such as red phosphorus
  • organic halogen-based flame retardants organic flame retardants
  • Organic flame retardants such as daggers, organometallic compounds, and hindered amine flame retardants.
  • organic halogen-based flame retardant a compound containing bromine, Z or chlorine is preferred, and a bisphenol compound which is a halide of bisphenol, a halogenated bisphenol compound and epihalohydrin, or a halogenated bisphenol compound Particularly preferred are a halogenated epoxide conjugate, a halogenated triazine conjugate, and the like, which are reaction products of a bisphenol compound and a bisphenol diglycidyl ether halide.
  • organic phosphorus-based flame retardant phosphate conjugates and phosphazene compounds are preferable because the flame retardancy of a molded article can be increased.
  • Examples of the phosphate conjugate include those having structures represented by the following general formulas (1) and (2).
  • R 5 , R 6 , R ′ and R 8 are an alkyl group, a phenyl group or a xylyl group, which may be the same or different.
  • X is a divalent resorcinol residue; It is an idroquinone residue or a bisphenol A residue.
  • n is 0-5 on average.
  • R 9 and R 1C are a hydrogen atom, a halogen atom or a lower alkyl group, and are a hydrogen atom, a phenyl group or a group represented by the following formula:
  • phenyl group may be substituted with at least one selected from a halogen atom, a hydroxyl group and a lower alkyl group.
  • y and z are integers of 1 to 4, and may be the same or different.
  • R 9 and R 10 may be the same or different.
  • Examples of the phosphazene compound include propoxy phosphazene, phenoxy phosphazene, methyl phenoxy phosphazene, amino phosphazene, and fluoroalkyl phosphazene. Of these, phenoxyphosphazene is preferred.
  • the addition amount of the flame retardant is 1 to 30 parts by mass, preferably 3 to 25 parts by mass, and more preferably 5 to 20 parts by mass with respect to 100 parts by mass of the thermoplastic resin (I). It is. If the amount is less than 1 part by mass, the flame retardancy of the obtained molded product is not sufficient. If the amount exceeds 30 parts by mass, the impact resistance is poor.
  • a combustion aid may be blended.
  • the flame retardant aid include antimony conjugates such as antimony trioxide, antimony tetraoxide, antimony pentoxide, zinc borate, zinc stannate, iron oxide, polytetrafluoride And ethylene (PTFE).
  • PTFE polytetrafluoride And ethylene
  • a halogen-based flame retardant is used, PTFE is preferred as the flame retardant auxiliary when a phosphorus-based flame retardant, which is preferred by antimony conjugates, is used.
  • the PTFE has the effect of preventing dripping (drip of the melt) during combustion and achieving a higher combustion level.
  • the weight average molecular weight of PTFE is usually 500,000 or more, preferably 1,000,000 or more.
  • the average particle size of PTFE when kneaded with other polymer components and the like is usually 90 to 600 ⁇ m, preferably 100 to 500 ⁇ m, and more preferably 120 to 400 ⁇ m. After being kneaded with other polymer components and the like, PTFE is dispersed as granules having an average particle size of 0.1 to 100 m or finer fibrous materials.
  • the specific gravity of PTFE is usually 1.5-2.5, preferably 2.1-2.3.
  • the bulk density is usually 0.5-lg / ml, and preferably 0.6-0.9 gZml.
  • As the PTFE a disposable PTFE dispersed with a lubricant in a medium such as water can be used.
  • the amount of the flame retardant aid to be added depends on the type of the flame retardant, but is usually 0.1 to 50 parts by mass, preferably 1 to 40 parts by mass, per 100 parts by mass of the flame retardant.
  • a cocoon-shaped fibrous filler particularly glass fiber
  • the “cross section is a cocoon shape” means that when the fibrous filler is cut in a direction perpendicular to the longitudinal direction, the cross section is a longitudinal shape, and the center of the shape in the longitudinal direction is It means that the thickness of the portion is smaller than the maximum thickness of the both end regions, that is, a so-called weight shape in which the central portion is narrowed.
  • a glass fiber having such a shape is described in Japanese Patent Publication No. 60494/1990, and a method for producing the same is described in Japanese Patent Application Laid-Open Nos. 61-174141 and 61-219732.
  • Chopped strand FRTP mayu type HIS type (brand name): manufactured by Nitto Bo) It is commercially available.
  • ratio (aZb) of major axis a to minor axis b in FIG. 1 (aZb)) of 1.3 to 6 are used. Preferred 1. Those of 5 ⁇ 3 are more preferred. If the deformed ratio is out of the above range, the molded product will be warped, and the filler will appear on the surface of the molded product, resulting in poor appearance.
  • the major axis a of the cocoon-shaped filler is preferably 16 to 22 m, and the average fiber length is preferably 2.7 to 3.3 mm.
  • the amount of the filler to be compounded depends on the type thereof, but is usually 0.5 to 200 parts by mass, preferably 5 to 150 parts by mass, per 100 parts by mass of the thermoplastic resin (I). If the compounding amount is too large, the fillers come into contact with each other, and the fillers are cut and shortened, and as a result, rigidity decreases. If the amount is too large, the appearance is poor. On the other hand, if the amount is too small, sufficient rigidity cannot be obtained.
  • thermoplastic resin composition of the present invention may contain, in addition to the above components, known weathering (light) agents, antistatic agents, antioxidants, lubricants, silicone compounds, plasticizers, coloring agents, dyes, antibacterial agents, and antibacterial agents.
  • known weathering (light) agents such as, but not limited to, stannous chloride, stannous chloride, stannous chloride, stannous chloride, stannous chloride, stannous chloride, sodium sulfate, sodium sulfate, sodium bicarbonate, sodium sulfate, sodium sulfate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium sulfate, sodium bicarbonate, sodium bicarbonate, sodium sulfate, sodium bicarbonate, sodium sulfate, sodium bicarbonate, sodium sulfate, sodium bicarbonate, sodium sulfate, sodium bicarbonate, sodium sulfate, sodium bicarbonate, sodium sulfate, sodium sulfate, sodium
  • thermoplastic resin composition of the present invention can be prepared by kneading the components with various extruders, Banbury mixers, kneaders, jars, feeder ruders and the like.
  • a preferable production method is a method using an extruder, and it is particularly preferable to use a twin-screw extruder.
  • thermoplastic resin composition of the present invention using a twin-screw extruder, the respective components may be kneaded all at once, or may be kneaded in a multi-stage, divided blend.
  • thermoplastic resin composition of the present invention can be formed into a molded product by a known molding method such as injection molding, press molding, sheet extrusion molding, profile extrusion molding, foam molding, and vacuum molding. Further, various molded articles obtained from the thermoplastic resin composition of the present invention can be used after being subjected to secondary processing such as painting, plating, spottering, welding, and laser marking.
  • the molded articles molded by these molding methods are used in the case of electric and electronic equipment such as computers, electric and electronic parts, household and office electric product parts, houses, housing-related parts, and vehicle parts. , And various other uses.
  • the appearance of the molded article was evaluated by glossiness under the following conditions.
  • test piece was molded under the following molding conditions.
  • ASTM D523 was performed at a measurement angle of 60 °.
  • test piece thickness was 2. Omm.
  • a test piece similar to the one used for the measurement of the glossiness was molded, the test piece was left under the following heat cycle, and the surface of the test piece was visually evaluated according to the following criteria. ; Room temperature (23 ° C) ⁇ High temperature (85 ° C, 20 minutes) ⁇ Room temperature (23 ° C, 15 minutes) ⁇ Low temperature (45 ° C, 20 minutes) ⁇ Room temperature (23 ° C, 15 minutes) Hold) ⁇ High temperature (Hold at 85 ° C for 20 minutes) ⁇ Room temperature (Hold at 23 ° C for 15 minutes).
  • Heating rate 10 ° CZmin.
  • Cooling rate 10 ° CZmin.
  • Production Example 1 1; Preparation of ethylene propylene rubber reinforced resin (AES) In a 20-liter stainless steel autoclave equipped with a ribbon-type stirring blade, a continuous additive additive device, and a thermometer, 20 parts of ethylene propylene rubbery polymer (manufactured by JSR, trade name "EP84") and styrene 56 Parts, 24 parts of acrylonitrile and 110 parts of toluene, the internal temperature was raised to 75 ° C., and the contents of the autoclave were stirred for 1 hour to form a homogeneous solution.
  • AES ethylene propylene rubber reinforced resin
  • Emulsion polymerization of 99 parts of n-butyl acrylate and 1 part of aryl methacrylate was carried out at a polymerization temperature of 80 ° C. using disproportionated potassium rosinate as a milking agent and potassium persulfate as a polymerization initiator.
  • An acrylic rubbery polymer latex was obtained.
  • the weight average particle diameter of the obtained acrylic rubbery polymer particles was 284 nm.
  • a monomer mixture was prepared by mixing 74 parts of styrene and 26 parts of acrylonitrile. 100 parts of the above-mentioned acrylic rubbery polymer latex (in terms of solid content) and 110 parts of water were charged into a glass reaction vessel, and the temperature was raised to 40 ° C under a nitrogen stream while stirring.
  • CAT aqueous solution an aqueous solution in which 0.3 part of glucose, 1.2 parts of sodium pyrophosphate and 0.01 part of ferrous sulfate are dissolved, and 30 parts of water 30% of an aqueous solution (hereinafter, abbreviated as “CAT aqueous solution”) in which 0.4 part of a peroxide solution of butyl-noid peroxide and 2.4 parts of disproportionated potassium rosinate were charged into a reactor, and immediately thereafter, The remaining CAT aqueous solution was continuously added over 3 hours and 3 hours and 30 minutes to initiate polymerization.
  • the temperature was raised to 75 ° C from the start of the polymerization, and after that, the temperature was maintained at 75 ° C, and then the polymerization was terminated.
  • the polymerization conversion ratio was 98%.
  • This copolymer latex was coagulated, washed with water and dried to obtain a powdery acrylic rubber-reinforced vinyl resin (ASA).
  • ASA powdery acrylic rubber-reinforced vinyl resin
  • the reaction product latex was coagulated with a sulfuric acid aqueous solution, washed with water, and dried to obtain ABS resin (ABS-1).
  • ABS resin ABS resin
  • the graft ratio of this resin was 68%, and the intrinsic viscosity [r?] Of the acetone-soluble component was 0.45 dlZg.
  • the process was performed in the same manner as in ABS-1 except that a polybutadiene latex having a gel content of 15% and an average particle diameter of 3450 A was used in the production method of ABS-1.
  • the graft ratio of the obtained ABS-2 was 65%, and the intrinsic viscosity [7?] Of the acetone-soluble component was 0.43 dl / g.
  • the obtained polymer solution was continuously supplied to the same amount as the supply amounts of styrene, acrylo-tolyl, toluene, molecular weight regulator, and polymerization initiator by a pump provided outside the first reaction vessel. And supplied to the second reaction vessel.
  • the polymerization temperature in the second reactor was 130 ° C., and the polymerization conversion rate was 75%.
  • the copolymer solution obtained in the second reaction vessel was devolatilized directly with the unreacted monomer and solvent using an extruder with a twin-screw, three-stage vent, and the combined atari mouth nitrile content was 25%.
  • An AS resin (AS-1) having an intrinsic viscosity of [7?] 0.48 was obtained.
  • PC Polycarbonate
  • PC-1 Panlite L 1225WP (trade name: Teijin Chemicals Ltd.), viscosity average molecular weight 22000, melt flow rate 14gZl0min (300.C, 1.2kg load),
  • PC-2 NOVAREX 7020A (trade name: manufactured by Mitsubishi Engineering-Plastics), viscosity average molecular weight 15,000, melt flow rate 30gZlOmin (300.C, 1.2kg load),
  • PC-3 NOVAREX 7022A (trade name: manufactured by Mitsubishi Engineering-Plastics), viscosity average molecular weight 18000, melt flow rate 24gZl0min (300 ° C, 1.2kg load).
  • PBT Polybutylene terephthalate
  • Novaduran 5007 (trade name: manufactured by Mitsubishi Engineering Plastics) Intrinsic viscosity 0.71dl / go
  • Polyamide (PA) resin MC100 (trade name, manufactured by Kanebo), relative viscosity 2.5.
  • Glass filler 2 CS03MA51A (trade name: made by Asahi High Bar Glass), coupling agent (aminosilane type), sizing agent (AS. Epoxy type) 13 micron diameter, 3mm chopper.
  • Flame retardant-1 Condensed phosphate ester oligomer PX200 (trade name, manufactured by Daihachi Chemical).
  • Flame retardant-2 Epoxy Br-based flame retardant Prasam EC-20 (trade name: manufactured by Dainippon Ink). Flame retardant-3: Sanshidani Antimony PATOX-M (trade name: manufactured by Nippon Seimitsu).
  • Flame retardant 4 Teflon (registered trademark) HOSTAFLON TH1620 (trade name: Hekist Japan).
  • PA ⁇ ⁇ ⁇ ⁇ ⁇ 20 1 ⁇ ⁇ ⁇ 20 Compatibilizer AS-2 ⁇ ⁇ ⁇ ⁇ ⁇ 5 ⁇ 1 ⁇ ⁇ 5 units al 100 100 100 100 100 100 100 100 100 100 100 Flame retardant-1 ⁇ ⁇ ⁇ 30 ⁇ ⁇ ⁇ 30 1 Flame retardant-2 ⁇ 1 30 ⁇ ⁇ ⁇ ⁇ 30 ⁇ ⁇ Flame retardant
  • Examples 1-1 1-6 are examples using the thermoplastic resin composition of the present invention and are shown in Table 1. As described above, it is excellent in mechanical strength (impact strength and flexural modulus) and appearance (glossiness) with little warpage, heat resistance is well maintained, and desired physical properties are obtained. Comparative Examples 1-1 to 1-5 are examples in which fillers outside the scope of the present invention were used. As shown in Table 1, all of them exhibited mechanical strength with high warpage (impact strength and bending strength). Modulus) and appearance (glossiness) are also inferior.
  • Examples I-1 to I-8 are examples using the thermoplastic resin composition of the present invention. As shown in Table 2, the mechanical strength (impact strength and It has excellent flexural modulus and appearance (glossiness), good heat resistance, and the desired physical properties without burr. Among them, the compositions of Examples IV-4 to VI-8 containing polyamide resin or thermoplastic polyester resin are particularly excellent in appearance (glossiness). Examples ⁇ -9 and ⁇ -10 are the thermoplastic resin compositions of the present invention containing polycarbonate resin, but not only under deflection temperature under load but also in appearance (glossiness) and heat cycle test. It is excellent and is useful in fields where mechanical strength is not required. Further, Examples 11-11 are examples using the thermoplastic resin composition of the present invention, and are excellent in mechanical strength and heat resistance, and are useful in fields where mechanical strength and heat resistance are required. It is.
  • Comparative Example II-1 is an example using a rubber-reinforced resin outside the scope of the present invention. As shown in Table 2, the mechanical strength (impact strength and flexural modulus) and the appearance ( It is also inferior in terms of luminosity.
  • Comparative Examples ⁇ -2— ⁇ -4 are examples using fillers outside the scope of the present invention, and as shown in Table 2, all of them exhibited mechanical strength with high warpage (impact strength and flexural modulus). ) And appearance (glossiness).
  • Comparative Example No.-5 is an example using a thermoplastic resin outside the scope of the present invention, and as shown in Table 2, has a problem of burr generation.
  • thermoplastic resin composition of the present invention is excellent in mechanical strength (impact strength and flexural modulus) and appearance (glossiness) with less warpage, and excellent heat resistance. Since this property can be obtained even with a resin composition to which a flame retardant has been added, it is useful as a molding material in various fields.
  • FIG. 1 is a schematic view showing a cross section of a filler used in the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、機械的強度、光沢および耐熱性に優れ、かつ反りの少ない成形品を与える熱可塑性樹脂組成物および難燃性樹脂組成物に関し、熱可塑性樹脂(I)100質量部に対して、断面が繭型形状のフィラー(II)0.5~200質量部を配合してなり、前記熱可塑性樹脂(I)は、下記成分(A)または下記成分(A)及び(B)からなるゴム強化樹脂を含有してなることを特徴とする熱可塑性樹脂組成物を提供する。成分(A)は、非ジエン系ゴム質重合体(a−1)またはゲル含率が70質量%以上のジエン系ゴム質重合体(a−2)の存在下に、芳香族ビニル化合物を含むビニル系単量体を重合して得られるゴム強化ビニル系樹脂であり、成分(B)は、ビニル系単量体の(共)重合体である。熱可塑性樹脂(I)は、ポリカーボネート樹脂、熱可塑性ポリエステル樹脂、ポリアミド樹脂などの他のポリマーとのブレンドであってもよい。

Description

明 細 書
熱可塑性樹脂組成物
技術分野
[0001] 本発明は、剛性、耐衝撃強度などの機械的強度、光沢などの外観および耐熱性に 優れ、かつ、反りの少ない成形品を与える熱可塑性榭脂組成物及び難燃性榭脂組 成物に関するものである。
[0002] ABS榭脂、 AES榭脂、 ASA榭脂、 HIPS等のゴム強化スチレン系榭脂、さらにこ れらとポリカーボネート榭脂等との組成物は、機械的特性、物理的特性、電気的特性 等に優れることから、電気 ·電子分野、 ΟΑ·家電分野、車両分野、サニタリー分野等 で幅広く使用されている。また、これらの榭脂組成物の機械的強度を高めるために、 グラスファイバー等のフィラーを添加することが一般的に行われて 、る。
[0003] 特許文献 1:特公平 2— 60494号公報
特許文献 2 :特開昭 61— 174141号公報
特許文献 3 :特開昭 61— 219732号公報
発明の開示
発明が解決しょうとする課題
[0004] しかし、カゝかるフィラーが添加された榭脂組成物を押出成形、射出成形などにより 成形した場合、成形時の樹脂の流れ方向 (MD方向)には成形品の反りは発生しにく いが、その横断方向(CD方向)に反りが発生するという問題があった。また、成形品 の表面にフィラーが露出して、成形品の外観を損ない、特に、成形品の光沢を損なう という問題があった。
本発明の目的は、剛性ゃ耐衝撃性などの機械的強度、光沢などの外観および耐 熱性に優れ、かつ反りの少な!/、成形品を与える熱可塑性榭脂組成物および難燃性 榭脂組成物を提供することにある。
課題を解決するための手段
[0005] 本発明者は、上記目的を達成すべく鋭意検討した結果、特定のゴム成分を用いた ゴム強化榭脂からなる熱可塑性榭脂、またはこれにポリカーボネート等の他のポリマ 一をブレンドした熱可塑性榭脂に特定形状のフィラーを添加することにより、上記目 的を達成し得ることを見いだし本発明を完成するに至った。
すなわち、本発明によれば、熱可塑性榭脂 (I) 100質量部に対して、断面が繭型形 状のフィラー(11) 0. 5— 200質量部を配合してなり、前記熱可塑性榭脂 (I)は、下記 成分 (A)または下記成分 (A)及び (B)力もなるゴム強化榭脂を含有してなることを特 徴とする熱可塑性榭脂組成物が提供される。
成分 (A):非ジェン系ゴム質重合体 (a - 1)の存在下に、芳香族ビュル化合物を含む ビュル系単量体 (b— 1)を重合して得られるゴム強化ビニル系榭脂 (A— 1)、または、 ゲル含率が 70質量%以上のジェン系ゴム質重合体 (a— 2)の存在下に、芳香族ビ- ル化合物を含むビニル系単量体 (b— 1)を重合して得られるゴム強化ビニル系榭脂( A— 2)、
成分 (B):ビニル系単量体 (b-2)の (共)重合体。
本発明において、前記熱可塑性榭脂 (I)としては、例えば、前記ゴム強化樹脂から なるもの、該ゴム強化樹脂と他のポリマーとをブレンドしたものなどとすることができる 更に、本発明の熱可塑性榭脂組成物は、前記熱可塑性榭脂 (I) 100質量部に対し て、難燃剤 1一 30質量部を含有してなる難燃性の高められたものであってもよい。 発明の効果
[0006] 本発明によれば、特定のゴム成分を用いたゴム強化榭脂を必須成分として含有す る熱可塑性榭脂 (I)に、断面が繭型形状のフィラー (II)を特定量配合することとしたた め、機械的強度及び耐熱性に優れるだけでなぐ MD方向および CD方向の両方向 に反りの発生が抑制され、かつ、表面の光沢性にも優れた成形品が得られる。この効 果は、難燃剤が添加された熱可塑性榭脂組成物においても同様に達成される。 発明を実施するための最良の形態
[0007] 以下、本発明を詳しく説明する。
なお、本明細書において、「(共)重合」および「(共)重合体」は、夫々、「単独重合」 および Zまたは「共重合」、並びに、「単独重合体」および Zまたは「共重合体」を意 味し、「(メタ)アクリル」および「(メタ)アタリレート」は、夫々、「アクリル」および Zまた は「メタクリル」、並びに、「アタリレート」および zまたは「メタタリレート」を意味する。
[0008] (1)熱可塑性榭脂
本発明に用いられる熱可塑性榭脂 (I)は、ゴム強化榭脂を必須成分として含有して なり、所望により他のポリマーを含有してもよい。
(2)ゴム強化榭脂
該ゴム強化榭脂は、上記成分 (A)のゴム強化ビニル系榭脂から構成されてもよぐ または、上記成分 (A)のゴム強化ビニル系榭脂に上記成分 (B)の (共)重合体をブレ ンドしてなる所謂グラフト -ブレンド型のゴム強化ビニル系榭脂であってもよ!/、。上記 成分 (A)は、上記成分 (A - 1)及び上記成分 (A - 2)からなる群より選択された少なく とも 1種であってよい。
(3)ゴム強化ビニル系榭脂 (A— 1)
上記ゴム強化ビニル系榭脂 (A— 1)は、非ジェン系ゴム質重合体 (a— 1)の存在下 に、芳香族ビニル化合物を含むビニル系単量体 (b— 1)を重合して得られる。
[0009] 非ジェン系ゴム質重合体 (a— 1)としては、主鎖に実質上二重結合を持たな!、ゴム が挙げられる。具体的には、エチレン α—才レフイン共重合ゴム、エチレン α—ォレ フィン 非共役ジェンィ匕合物共重合ゴムなどのエチレン a一才レフイン系共重合ゴ ム;アクリル酸エステル (共)重合ゴム、アクリル酸エステル 架橋性単量体共重合ゴム 、アクリル酸エステル一芳香族ビュル共重合ゴム、アクリル酸エステル一共役ジェン化 合物共重合ゴム、アクリル酸エステルイ匕合物一共役ジェンィ匕合物一芳香族ビ-ルイ匕 合物共重合ゴムなどのアクリル系ゴムであって、必要に応じて水素添加などの手法を 適用した主鎖に実質上二重結合を持たないアクリル系ゴム; SEBSなどのジェン系ゴ ムの水素添カ卩系ゴム;シリコーンゴムなどが挙げられる。
[0010] これらの非ジェン系ゴム質重合体 (a— 1)は、光、熱、水分、酸素、その他汚染物質 などにさらされても安定性が高ぐ耐候性に優れている。
なお、上記した「主鎖に実質上二重結合を持たない」とは、二重結合を有したとして も耐候性を損なわない程度にしか主鎖に二重結合を有さないとの意味である。許容 される二重結合の量の上限はゴム質重合体の種類によって異なり一義的には決めら れないが、種類毎に適宜実験を行うことにより決めることができる。 [0011] これらの非ジェン系ゴム質重合体 (a— 1)は、 1種単独又は 2種以上をブレンドして 組み合わせて使用できる。さらにこれらの非ジェン系ゴム質重合体 (a— 1)に関して詳 細に述べる。
[0012] (3— 1)エチレン α—ォレフイン系共重合ゴム
エチレン ひーォレフイン系共重合ゴムとしては、例えばエチレン Ζ炭素数 3— 20の α—ォレフィン Ζ非共役ジェン = 5— 95Ζ95— 5ΖΟ— 30質量0 /0の混合比からなる 単量体を共重合して得られる共重合ゴムが挙げられる。ここで言う炭素数 3— 20の a 一才レフインとしては、プロピレン、 1ーブテン、 1 ペンテン、 1一へキセン、 4ーメチノレー 1 -ペンテン、 1-ヘプテン、 1-オタテン、 1-デセン、 1—ドデセンなどが挙げられる。好 ましくはプロピレン、 1ーブテン、 1 オタテン、更に好ましくはプロピレンと 1—ブテンで ある。これらの α—才レフインは 1種単独で、または 2種以上で併用することもできる。 α—ォレフィンの炭素数は 3— 20である力 好ましくは 3— 12、更に好ましくは 3— 8で ある。炭素数が多すぎると、共重合性が極端に低下する。エチレンと α—才レフインの 比率(エチレン Ζ α—ォレフィン)は、好ましくは 5— 95Ζ95— 5、更に好ましくは 50 —90/50—10,特に好ましくは 40— 85Ζ60— 15である。
[0013] また、併用されることがある非共役ジェンィ匕合物は、アルケニルノルボルネン類、環 状ジェン類、脂肪族ジェン類などが挙げられ、好ましくはジシクロペンタジェンおよび 5—ェチリデンー 2 ノルボルネンである。これらの非共役ジェンは 1種または 2種以上 を併用することができる。エチレン α—ォレフィン系共重合ゴム中の非共役ジェンの 含有量は、 0— 30質量%であり、好ましくは 0— 15質量%である。なお、この共重合 ゴムの不飽和量はヨウ素価に換算して 0— 40の範囲が好ま U、。不飽和量が多すぎ ると、耐候 (光)性、色相が不適合になる場合がある。
[0014] これらエチレン α—ォレフイン系共重合ゴムを得るには、均一系、不均一系いずれ の触媒を用いても良い。均一系触媒としてはメタ口セン系触媒を挙げることができる。 不均一系触媒としては、例えばバナジウム化合物と有機アルミニウム化合物を組み 合わせたバナジウム系触媒を挙げることができる。
[0015] なお、エチレン α—ォレフイン系共重合ゴムのム一-一粘度(ML , 100°C)は
1+ 4
好ましくは 60以下、さらに好ましくは 50以下であり、特に好ましくは 20— 40である。 エチレン a一才レフイン系共重合ゴムのガラス転移温度は好ましくは 110一一 40°C 、さらに好ましくは一 70—一 45°Cである。
[0016] (3— 2)アクリル系ゴム
アクリル系ゴムとしては、アルキル基の炭素数が 2— 8のアクリル酸アルキルエステ ルの重合体またはこれらの共重合体である。アクリル酸エステルの具体例としては、 アクリル酸ェチル、アクリル酸プロピル、アクリル酸 n—ブチル、アクリル酸イソブチル、 アクリル酸へキシル、アクリル酸 n—ォクチル、アクリル酸 2—ェチルへキシルなどが挙 げられる。これらは 1種または 2種以上を併用することができる。好ましいアクリル酸ェ ステルとしては、アクリル酸 n—ブチル、アクリル酸イソブチル、アクリル酸 2—ェチルへ キシノレである。
[0017] このアクリル系ゴムに使用されるアクリル酸エステルのうち一部を共重合可能な他の モノマーに置き換えることができる。力かる他のモノマーとしては、芳香族ビュル化合 物、メタクリル酸エステル化合物、共役ジェン系化合物などが挙げられる力 好ましく は芳香族ビ-ルイ匕合物であり、その中でもスチレンが好ましい。また、共役ジェン系 化合物としてブタジエンを用いる場合、耐候性を考慮すると全ゴム量の 40質量%以 下の範囲で用いることが望ましいが、これ以上多く使用する場合は、層状構造をとら せてポリブタジエン層がコア部となるようすればよい。
[0018] 上記アクリル系ゴムは、そのガラス転移温度カ 10°C以下になるように単量体の種 類と量を選ぶことが好ましい。また、アクリル系ゴムは、適宜、架橋性単量体と共重合 させることが好ましい。架橋性単量体の使用量はアクリル系ゴム中に、好ましくは 0— 10質量%、より好ましくは 0. 01— 10質量%、さらに好ましくは 0. 1— 5質量%である 。好適な架橋性単量体としては、エチレングリコールジアタリレート、ジエチレングリコ ールジアタリレート、トリエチレングリコールジアタリレート、テトラエチレングリコールジ アタリレートなどのモノまたはポリエチレングリコールジアタリレート;エチレングリコー ルジメタタリレート、ジエチレングリコールジメタタリレート、トリエチレングリコールジメタ タリレート、テトラエチレングリコールジメタタリレートなどのモノまたはポリエチレンダリ コールジメタタリレート;ジビュルベンゼンなどのポリビュル芳香族化合物;ジァリルフ タレート、ジァリルマレエート、ジァリルサクシネート、トリアリルトリァジンなどのポリアリ ル化合物;ァリルメタクリレ—ト、ァリルアタリレートなどのァリル (メタ)アタリレート; 1,3— ブタジエン、イソプレンなどの共役ジェン化合物などが挙げられる。
上記アクリル系ゴムは公知の重合法で製造される力 乳化重合法、懸濁重合法が 好ましい。
[0019] (3— 3)シリコーン系ゴム
シリコーン系ゴムは、グラフト重合の容易さから乳化重合でラテックスの状態で得ら れるポリオルガノシロキサン系ゴム質重合体が好まし 、。上記ポリオルガノシロキサン 系ゴム質重合体のラテックスは、公知の方法、例えば米国特許第 3,294,725号明細 書などに記載された方法で得ることができる。好ましい方法としては、オルガノシロキ サンをアルキルベンゼンスルホン酸、アルキルスルホン酸などのスルホン酸系乳化剤 の存在下にホモミキサーまたは超音波混合機などを用いて水と剪断混合して縮合さ せること〖こよって製造することができる。
このとき、アルキルベンゼンスルホン酸などは、オルガノシロキサンの乳化剤として 作用すると同時に、重合開始剤ともなるので好適に用いられる。なかでも、アルキル ベンゼンスルホン酸金属塩、アルキルスルホン酸金属塩は、グラフト重合する際にポ リマーを安定に維持するのに効果があるので好ま 、。
また、必要に応じて、グラフト交叉剤および架橋剤を本発明の目的の性能を損なわ な!、範囲で共縮合させても良 、。
[0020] オルガノシロキサンは、例えば、下記一般式(1)で表される構造単位を有するもの であり、直鎖状、分岐状または環状構造、好ましくは環状構造を有するオルガノシロ キサンである。
一般式(1) :R SiO
m (4-m)/2
(式中、 Rは置換または非置換の 1価の炭化水素基であり、 mは 0— 3の整数を示す) このオルガノシロキサンの置換または非置換の 1価の炭化水素基としては、例えば 、メチル基、ェチル基、プロピル基、フエニル基、およびそれらをシァノ基などで置換 した置換炭化水素基などを挙げることができる。
[0021] オルガノシロキサンの具体例としては、へキサメチルシクロトリシロキサン、オタタメチ ルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロへキ サシロキサン、トリメチルトリフエ-ルシクロトリシロキサンなどの環状オルガノシロキサ ンのほかに、直鎖状オルガノシロキサン、分岐状オルガノシロキサンなどを挙げること ができる。これらのオルガノシロキサンは、単独であるいは 2種以上を組み合わせて 用いることちでさる。
また、このオルガノシロキサンは、予め縮合された、例えばポリスチレン換算の重量 平均分子量が 500— 10, 000程度のポリオルガノシロキサンであってもよい。オルガ ノシロキサンがポリオルガノシロキサンの場合、その分子末端には、例えば水酸基、 アルコキシ基、トリメチルシリル基、ジメチルビ-ルシリル基、メチルフヱ-ルビ-ルシリ ル基、メチルジフエ-ルシリル基などで封鎖されていてもよい。上記オルガノシロキサ ンは、単独でまたは 2種以上を組み合わせて用いることもできる。
[0022] また、本発明の目的の達成を損なわない範囲でグラフト交叉剤を使用することがで きる。用いられるグラフト交叉剤としては、例えば次のものを挙げることができる。 (ィ) CH =じ )— (Ph)—
2
(式中、 R1は水素原子または炭素数 1一 6のアルキル基を示し、 Phはフエ-レン基を 示す)で表される不飽和基と、アルコキシシリル基とを併せ持つグラフト交叉剤。
(口) R2 SiO (式中、 R2はビュル基またはァリル基、 pは 0— 2の整数を示す。 )
P (3-p) /2
具体例;ビュルメチルジメトキシシラン、テトラビ-ルテトラメチルシクロシロキサン、ァ リルメチルジメトキシシラン。
(ハ) HSR3SiR4 O (式中、 R3は炭素数 1
q (3— q)/2 一 18の 2価または 3価の飽和脂肪族 炭化水素基、 R4は炭素数 1一 6の脂肪族不飽和基を含有しない 1価の炭化水素基で あり、 qは 0— 2の整数を示す。 )
(二) CH =C (CH )— COO— (CH ) SiR5 0
2 3 2 r s (3— s)/2
(式中、 R5は水素原子、メチル基、ェチル基、プロピル基またはフエニル基、 rは 1一 6 の整数、 sは 0— 2の整数を示す。 )
具体例; Ίーメタクリロキシプロピルメチルジメトキシシラン。
[0023] これらのグラフト交叉剤のうち、特に好ましくは前記 (ィ)で表される不飽和基とアル コキシシリル基とを併せ持つ化合物である。 上記 (ィ)の化合物としては、具体的には p ビュルフエ-ルメチルジメトキシシラン、 [
1 4 ビニルフエニル)ェチル]メチルジメトキシシラン、 [2—(4 ビニルフエニル)ェチ ル]メチルジメトキシシラン、 1— (m ビュルフエ-ル)メチルジメチルイソプロポキシシ ラン、 3— (p—ビュルフエノキシ)プロピルメチルジェトキシシラン、 3— (p—ビュルべンゾ イロキシ)プロピルメチルジメトキシシラン、 1— (o ビュルフエ-ル)— 1, 1, 2—トリメチ ルー 2, 2—ジメトキシジシラン、 1— (p—ビュルフエ-ル)— 1, 1ージフエ-ルー 3 ェチル —3, 3—ジエトキシジシロキサン、 m ビュルフエ-ルー〔3— (トリエトキシシリル)プロピ ル〕ジフエ-ルシラン、 〔3— (p イソプロべ-ルペンゾィルァミノ)プロピル〕フエ-ルジ プロボキシシランなどが挙げられる。これらのうちの 1種又は 2種以上を併用すること ができる。
これらのグラフト交叉剤のうち、好ましくは p—ビュルフエ-ルメチルジメトキシシラン、 [1— (4 ビュルフエ-ル)ェチル]メチルジメトキシシラン、 [2— (4—ビュルフエ-ル)ェ シランであり、さらに好ましくは p—ビュルフエ-ルメチルジメトキシシラン、 [1— (4ービ- ルフエ-ル)ェチル]メチルジメトキシシラン、 [2— (4—ビュルフエ-ル)ェチル]メチルジ メトキシシラン、である。この (ィ)グラフト交叉剤を用いたものは、グラフト率の高いもの が得られ、従って一段と優れた本発明の目的とする組成物が得られる。
[0024] このグラフト交叉剤を使用する場合の使用量は、オルガノシロキサンと交叉剤の合 計量中、好ましくは 0. 1— 30質量%、さらに好ましくは 0. 2— 20質量%、特に好まし くは 0. 5— 5質量%である。グラフト交叉剤量が多いとグラフトしたポリマーの分子量 が低下し、十分な耐衝撃性が得られないことがある。 0. 1質量%未満であると、その 成形品に層状剥離が生じやすぐ十分な成形品の表面外観性、成形品の強度が得 られにくい。
[0025] ポリオルガノシロキサン系ゴム質重合体の粒子径は、好ましくは 500nm以下であり 、更に好ましくは 400nm以下、特に好ましくは 100— 400nmである。この粒子径は 乳化剤、水の量、ホモミキサーもしくは超音波混合機などを用いて混合したときの分 散の程度、または、オルガノシロキサンの添加方法によって制御することができる。粒 子径が 500nmより大きくなると光沢が低下し外観が悪くなる場合がある。 [0026] また、このようにして得られるポリオルガノシロキサン系ゴム質重合体のゲルパーミエ ーシヨンクロマトグラフィーで測定されたポリスチレン換算重量平均分子量は、 3万一 100万、好ましくは 5万一 30万である。平均分子量が低すぎると、得られるグラフト共 重合体およびこれを用いた本発明の榭脂組成物の耐衝撃性が劣る場合があり、平 均分子量が大きすぎると、高分子鎖の絡み合いが強いため、ゴム粒子のゴム弾性が 低下し、耐衝撃性が低下する場合がある。この重量平均分子量の調整はポリオルガ ノシロキサン系ゴム質重合体調製時の縮合重合温度と時間を変更することにより、容 易に調整することができる。すなわち、縮合重合温度が低いほど、冷却時間が長いほ ど、高分子量化する。また、架橋剤を少量添加することで、高分子量ィ匕することがで きる。
[0027] 必要に応じて使用する架橋剤は、オルガノシロキサン系ゴム質重合体の製造の際 に添加することができる。これにより、オルガノシロキサン系ゴム質重合体をゴム質重 合体として用いて得られるグラフト共重合体の耐衝撃強度を改良することができる。こ の架橋剤としては例えば、メチルトリメトキシシラン、フエニルトリメトキシシラン、ェチル トリエトキシシランなどの 3官能性架橋剤、テトラエトキシシランなどの 4官能性架橋剤 を挙げることができる。これらの架橋剤は、単独でまたは 2種以上を組み合わせて使 用することができる。また、これら架橋剤を予め縮合重合させた架橋プレボリマーを架 橋剤として用いてもよい。
架橋剤を使用する場合の添加量は、オルガノシロキサン、グラフト交叉剤および架 橋剤の合計量中、好ましくは 0. 01— 20質量%、更に好ましくは 0. 02— 5質量%で ある。 20質量%を越えると、ポリオルガノシロキサン系ゴム質重合体の柔軟性が損な われるため、摺動性、耐衝撃性が低下する場合がある。
[0028] (3— 4)水素添カ卩系ゴム
水素添加系ゴムは、共役ジェン系ゴム質重合体の水素化物である。この共役ジェ ンゴム質重合体の水素化物としては、共役ジェン重合体の水素添加物、共役ジェン と芳香族ビニルイ匕合物との共重合体の水素添加物などが挙げられ、後者の中には 共役ジェンィ匕合物と芳香族ビニルイ匕合物のランダム共重合体、ブロック共重合体な どが含まれる。 ブロック共重合体の水素添加物のブロック構造には、芳香族ビニルイヒ合物重合体 ブロック、芳香族ビニルイ匕合物—共役ジェンランダム共重合体ブロック、共役ジェン 化合物がブタジエンの場合、ポリブタジエン中の 1, 2ビュルの含量が 20質量%以下 のブロック、 1, 2ビュルの含量が 20質量%を越えるポリブタジエンブロック、ポリブタ ジェンと芳香族ビニル化合物との共重合体の場合、ランダムブロック以外にそれぞれ の成分が徐々に多くなるテーパーブロックなどの各ブロックの水素添加構造が含まれ る。
ブロック共重合体の形としては、 AB型、 ABA型、(AB) n型、(AB) nAテーパー型 、ラジアルテレブロック型などの構造を有するものが含まれる。
ブロック共重合体のうち共役ジェン部分の水素添加率は、好ましくは 95モル%以 上、より好ましくは 97モル%以上である。水素添加率が少な過ぎると、十分な耐候性 、耐変色性の成形品が得られない場合がある。
[0029] ブロック共重合体の製造に使用される共役ジェンとしては、 1、 3—ブタジエン、イソ プレン、 1, 3—ペンタジェン、クロ口プレンなどが挙げられる力 工業的に利用でき、 物性の優れた水添ジェン系ゴム質重合体を得るには、 1、 3—ブタジエン、イソプレン が好ましい。
ブロック共重合体の製造に使用される芳香族ビュル単量体としては、スチレン、 OC— メチルスチレン、メチルスチレン、ビニルキシレン、モノクロロスチレン、ジクロロスチレ ン、モノブロムスチレン、ジブロムスチレン、フノレオロスチレン、 p— tert—ブチルスチレ ン、ェチルスチレン、ビニルナフタレンなどがあり、これらは一種または二種以上で使 用される。好ましい芳香族ビニル単量体は、スチレンまたは芳香族ビュル単量体中 にスチレンを 50質量%以上含んだものである。
このブロック共重合体の芳香族ビ-ルイ匕合物と共役ジェンィ匕合物の割合は、最終 的な樹脂の要求性能によって変更出来るが、芳香族ビニルイ匕合物の共重合体中の 割合は好ましくは 10— 50質量%であり、さらに好ましくは、 13— 40質量%である。芳 香族ビニル単量体の単位が少なすぎると、成形品表面外観が低下し好ましくなぐ多 すぎると、十分な耐衝撃性が得られな 、場合がある。
[0030] 本発明で使用されるブロック共重合体の代表的な製造方法として以下の方法が挙 げられる。すなわち、シクロへキサンなどの不活性溶媒中において、重合触媒として、 n ブチルリチウムなどの有機リチウムないし他のアルカリ金属化合物を用い、必要に 応じてビュル結合含量を調節するために、テトラヒドロフラン、へキサメチルホスホリル トリアミド、チォエーテル、その他の三級ァミンなどの極性有機化合物が用いられる。 ビュル結合含量は、重合温度によっても制御できる。
上記方法で得られた活性末端を有するブロック重合体鎖を、四塩化珪素、四塩ィ匕 スズなどの多官能性ィ匕合物によって、カップリングするなどして、分岐状のブロック重 合体が得られる。これらのブロック重合体は、単独であるいは他のブロック共重合体 に混合して用いることができる。
[0031] (4)ゴム強化ビニル系榭脂 (A— 2)
上記ゴム強化ビニル系榭脂 (A— 2)は、ゲル含率が 70質量%以上のジェン系ゴム 質重合体 (a - 2)の存在下に、芳香族ビニル化合物を含むビニル系単量体 (b - 1)を 重合して得られる。
ジェン系ゴム質重合体(a— 2)としては、ポリブタジエン、ブタジエン スチレン共重 合体 (スチレン含量 5— 60質量%が好ましい)、スチレン イソプレン共重合体、ブタ ジェン アクリロニトリル共重合体、ブタジエン アクリル共重合体、スチレンーブタジェ ンブロック共重合体、スチレン イソプレンブロック共重合体、イソブチレン イソプレン 共重合体等などが挙げられる。上記スチレン ブタジエンブロック共重合体およびス チレン イソプレンブロック共重合体には、 AB型、 ABA型、テーパー型、またはラジ アルテレブロック型の構造を有するものが含まれる。
[0032] 本発明にお 、ては、上記ゴム質重合体 (a— 2)としては、乳化重合で得たものが好 ましい。
ゴム質重合体 (a— 2)のゲル含率は、 70質量0 /0以上であることが必要であり、 70— 9 8質量%であることが好ましぐ更に好ましくは、 70— 95質量%、特に好ましくは、 70 一 90質量%である。ゲル含率 70質量%以上のゴム質重合体 (a— 2)を使用すること により、フィラーが良好に分散されて反りの発生が防止され、機械的強度も向上する 。また、成形時に成形品の表面にスキン層が形成されやすくなり、光沢度に優れた成 形品が得られる。 [0033] 尚、上記ゲル含率は、トルエン 100mlにゴム質重合体(a— 2) lgを投入し、室温で 4 8時間静置した後、 100メッシュ金網(質量 W )で濾過してトルエン不溶分と金網を 8 0°Cで 6時間真空乾燥して秤量 (質量 W )し、次式により算出される値である。
2
ゲル含率 (%) = [{W (g)-W (g) }/l (g) ] X 100
2 1
[0034] (5)ゴム質重合体 (a— 1)及び (a— 2)の物性等
上記ゴム質重合体 (a - 1)の分子量分布、すなわち重量平均分子量 Z数平均分子 量(MwZMn)は、好ましくは 1. 1一 3であり、より好ましくは 1. 15-2. 5である。 M wZMnが 3を超えると、成形品表面にフローマークが発生することなどにより、成形 品外観悪ィ匕の原因となる場合がある。
上記ゴム質重合体 (a— 2)の分子量分布にっ ヽては、通常の重合法で得られるもの であれば特に限定されな!、。
[0035] これらのゴム質重合体 (a— 1)及び (a— 2)は、ゴム強化ビュル系榭脂の重合工程時 に単独で使用してもよいし、あるいは目的に応じて 2種以上の異なるゴム質重合体を 混合して併用しても良い。 2種以上使用することで、それぞれのゴム質重合体の長所 を生力した高性能なゴム強化ビニル系榭脂が得られる。
[0036] 力かるゴム質重合体の併用は、 目的に応じて適宜の態様で行なうことができる。例 えば、ゴム強化ビュル系榭脂を製造する重合工程で併用することもできるし、それぞ れのゴムを別々に用いて重合して得たゴム強化ビニル系榭脂をブレンドし、押出機 やバンバリ一ミキサーなどの混練り機で混合することもできる。
[0037] ゴム質重合体(a— 1)及び(a— 2)の平均ゴム粒子径は、 500— 30000 Aの範囲に あること力 S好ましく、更に好ましくは、 1000— 20000A、特に好ましくは、 1500— 80 00 Aである。この平均ゴム粒子径は、通常、ゴム強化ビニル系榭脂中に分散するゴ ム質重合体の粒子径に関するものである。なお、ゴム強化ビニル系榭脂を製造する 際に、ゴム質重合体として乳化重合法で得られたゴム質重合体ラテックス又は再乳 ィ匕されたゴム質重合体ラテックスを使用する場合、ゴム強化ビニル系榭脂中に分散 するゴム質重合体の粒子径は、ゴム質重合体ラテックスの粒子径にほぼそのまま対 応する。
[0038] 前記ゴム質重合体 (a— 1)及び (a— 2)の使用量は、成分 (A)全体に対して 3— 90質 量%、耐衝撃性の面からは好ましくは 3— 70質量%、さらに好ましくは 5— 60質量% 、特に好ましくは 10— 60質量%である。また、前記ゴム質重合体 (a-1)及び (a-2) の使用量の本発明の熱可塑性榭脂組成物全体に対する割合は、耐衝撃性の面から 好ましくは 1一 30質量%、さらに好ましくは 3— 20質量%程度である。
[0039] (6)ビニル系単量体(b— 1)
ビュル系単量体 (b - 1)は、芳香族ビニル化合物を必須成分として含有するとともに 、必要に応じてこれと共重合可能な他のビニル系単量体を含有してもよ 、。
芳香族ビュル化合物としては、スチレン、 α—メチルスチレン、メチルスチレン、ビ- ルキシレン、モノクロルスチレン、ジクロルスチレン、モノブロムスチレン、ジブロムスチ レン、 ρ— tーブチルスチレン、ェチルスチレン、ビニルナフタレン、 o—メチルスチレン、 ジメチルスチレンなどであり、これらは 1種単独でまたは 2種以上組み合わせて使用 できる。これらのうち、好ましく用いられる芳香族ビ-ルイ匕合物はスチレン及び Z又は α—メチルスチレンであり、 2種以上の芳香族ビ-ルイ匕合物を併用する場合も、芳香 族ビ-ルイ匕合物中のスチレン含有量は 20質量%以上であることが好ましい。
[0040] 芳香族ビ-ルイ匕合物と共重合可能な他のビュル系単量体としては、シアン化ビ- ル化合物、(メタ)アクリル酸アルキルエステル、マレイミド基含有不飽和化合物、およ び、その他各種の官能基含有不飽和化合物などが挙げられる。
シアンィ匕ビ-ルイ匕合物としては、アクリロニトリル、メタタリ口-トリルなどが挙げられ、 好ましくはアクリロニトリルである。これらは 1種単独で、または 2種以上組合わせて使 用できる。シアンィ匕ビ-ルイ匕合物を使用すると、耐薬品性が付与される。シアン化ビ -ル化合物を使用する場合、その使用量は、(b— 1)成分中、好ましくは 1一 60質量 %、さらに好ましくは 5— 50質量%である。
[0041] (メタ)アクリル酸アルキルエステルとしては、メチルアタリレート、ェチルアタリレート、 プロピルアタリレート、ブチノレアタリレート、アミノレアタリレート、へキシルアタリレート、ォ クチルアタリレート、 2—ェチルへキシルアタリレート、シクロへキシルアタリレートなどの アクリル酸アルキルエステル、メチルメタタリレート、ェチルメタタリレート、 2—ェチルへ キシルメタタリレート、シクロへキシルメタタリレートなどのメタクリル酸アルキルエステ ル等が挙げられる。これらは 1種単独で、または 2種以上組合わせて使用できる。 (メ タ)アクリル酸アルキルエステルを使用すると、透明性または透明感が付与される。(メ タ)アクリル酸アルキルエステルを使用する場合、その使用量は、(b— 1)成分中、好 ましくは 1一 80質量%、さらに好ましくは 5— 80質量%である。
[0042] マレイミド基含有不飽和化合物としては、マレイミド、 N メチルマレイミド、 N—ェチ ルマレイミド、 N—フエ-ルマレイミド、 N—シクロへキシルマレイミドなどのマレイミド化 合物が挙げられる。これらは 1種単独で、または 2種以上組合わせて使用できる。また 、このマレイミド化合物は、無水マレイン酸を共重合させ、その後イミドィ匕する方法で 導入してもよい。マレイミド基含有不飽和化合物を使用すると、耐熱性が付与される。 マレイミド基含有不飽和化合物を使用する場合、その使用量は、(b— 1)成分中、好 ましくは 1一 60質量%、さらに好ましくは 5— 50質量%である。
[0043] その他各種の官能基含有不飽和化合物としては、カルボキシル基含有不飽和化 合物、酸無水物基含有不飽和化合物、エポキシ基含有不飽和化合物、水酸基含有 不飽和化合物、置換基または非置換のアミノ基含有不飽和化合物、ォキサゾリン基 含有不飽和化合物等が挙げられる。これらの官能基含有不飽和化合物は 1種単独 で、または 2種以上組合わせて使用できる。
[0044] カルボキシル基含有不飽和化合物としては、アクリル酸、メタクリル酸、ェタクリル酸 、マレイン酸、フマル酸、ィタコン酸、クロトン酸、桂皮酸等が挙げられる。これらは 1種 単独で、または 2種以上組合わせて使用できる。
酸無水物基含有不飽和化合物としては、無水マレイン酸、無水ィタコン酸、無水シ トラコン酸などの不飽和カルボン酸無水物が挙げられる。これらは 1種単独で、または 2種以上組合わせて使用できる。
エポキシ基含有不飽和化合物としては、グリシジルアタリレート、グリシジルメタクリレ ート、ァリルグリシジルエーテルなどが挙げられる。これらは 1種単独で、または 2種以 上組合わせて使用できる。
水酸基含有不飽和化合物としては、 3—ヒドロキシー 1 プロペン、 4ーヒドロキシー 1 ブテン、シス 4ーヒドロキシー 2—ブテン、トランス 4ーヒドロキシー 2—ブテン、 3—ヒドロキ シ— 2—メチルー 1 プロペン、 2—ヒドロキシェチルアタリレート、 2—ヒドロキシェチルメタ タリレート、 N— (4ーヒドロキシフエ-ル)マレイミドなどが挙げられる。これらは 1種単独 で、または 2種以上組合わせて使用できる。
[0045] 置換または非置換のアミノ基含有不飽和化合物としては、アクリル酸アミノエチル、 メタクリル酸アミノエチル、メタクリル酸アミノプロピル、アクリル酸プロピルアミノエチル 、メタクリル酸ジメチルアミノエチル、メタクリル酸フエニルアミノエチル、 N—ビニルジェ チルァミン、 N—ァセチルビニルァミン、アクリルァミン、メタクリルァミン、 N—メチルァク リルァミン、アクリルアミド、 N—メチルアクリルアミド、 p—アミノスチレン等が挙げられる 。これらは 1種単独で、または 2種以上組合わせて使用できる。
ォキサゾリン基含有不飽和化合物としては、ビュルォキサゾリン等が挙げられる。こ れらは 1種単独で、または 2種以上組合わせて使用できる。
[0046] 力かる官能基含有不飽和化合物を使用した場合、ゴム強化樹脂と他のポリマーとを ブレンドした時、両者の相溶性を向上させることができる。力かる効果を達成するため に好ましい単量体は、エポキシ基含有不飽和化合物、カルボキシル基含有不飽和 化合物、および水酸基含有不飽和化合物であり、さらに好ましくは水酸基含有不飽 和化合物であり、特に好ましくは 2—ヒドロキシルェチル (メタ)アタリレートである。 官能基含有不飽和化合物の使用量は、ゴム強化榭脂中で使用される官能基含有 不飽和化合物の合計量で、ゴム強化榭脂全体に対して 0. 01— 20質量%が好ましく 、本発明の熱可塑性榭脂組成物全体に対して 0. 01— 10質量%が好ましぐ 0. 05 一 5質量%がさらに好ま U、。
[0047] (7)ゴム強化ビニル系榭脂の製法
ゴム強化ビニル系榭脂の製法としては、上記ゴム質重合体 (a— 1)及び Z又は (a— 2 )の存在下、ビニル系単量体 (b— 1)をラジカル重合する方法を採用できる。かかる重 合方法としては、乳化重合、溶液重合、懸濁重合などの方法が挙げられる。好ましい 重合操作としては、ゴム質重合体を有機溶媒に溶解後、高速攪拌しながら乳化剤な どを添加して再乳化したゴム質重合体ラテックスまたは乳化重合法で得られたゴム質 重合体を用いて、一般的な乳化重合を行うことが挙げられる。また、他の好ましい重 合操作としては、ゴム質重合体を有機溶媒に溶解後ラジカル重合する溶液重合、単 量体にゴム質重合体を溶解後ラジカル重合する塊状重合、単量体にゴム質重合体 を溶解後懸濁剤を添加してラジカル重合する塊状懸濁重合などが挙げられる。 [0048] 乳化重合で製造する際、重合開始剤、連鎖移動剤、乳化剤及び水が用いられる。 これらは、公知のものが全て使用できる。尚、使用するゴム質重合体及びビニル系単 量体は、上記ゴム質重合体全量の存在下に、上記ビニル系単量体を一括添加して 重合してもよぐ分割もしくは連続添加して重合してもよい。又、これらを組合わせた 方法で重合してもよい。更に、上記ゴム質重合体の全量又は一部を、重合途中で添 加して重合しても良い。
[0049] 重合開始剤としては、例えば、タメンノヽイド口パーオキサイド、ジイソプロピルべンゼ ンハイド口パーオキサイド、過硫酸カリウム、ァゾビスイソブチ口-トリル、ベンゾィルパ 一オキサイド、ラウロイルパーオキサイド、 t ブチルパーォキシラウレート、 t ブチル パーォキシモノカーボネート等が挙げられる。
連鎖移動剤としては、例えば、ォクチルメルカプタン、 n—ドデシルメルカプタン、 t ドデシルメルカプタン、 n—へキシルメルカプタン、テトラエチルチウラムスルフイド、ァ クロレイン、メタクロレイン、ァリルアルコール、 2—ェチルへキシルチオグリコール等が 挙げられる。
[0050] 乳化重合の際に使用する乳化剤としては、例えば、高級アルコールの硫酸エステ ル、ドデシルベンゼンスルホン酸ナトリウムのアルキルベンゼンスルホン酸塩、ラウリ ル硫酸ナトリウム等の脂肪族スルホン酸塩、高級脂肪族カルボン酸塩、ロジン酸塩、 リン酸塩等のァ-オン系界面活性剤、さらに、公知のノ-オン系界面活性剤も使用で きる。
乳化重合では、通常、凝固剤により凝固して得られる粉末を水洗後、乾燥すること によって、ゴム強化ビュル系榭脂の粉末が得られる。この際の凝固剤としては、塩ィ匕 カルシウム、硫酸マグネシウム、塩ィ匕マグネシウム等の無機塩、または硫酸、塩酸、 酢酸等の酸を用いることができる。
又、塊状重合、溶液重合、懸濁重合において、各種溶媒、懸濁剤、重合開始剤、 連鎖移動剤等が使用されるが、何れも公知のものが使用される。
力べして得られるグラフト共重合体には、通常、ゴム質重合体 (a— 1)または (a— 2)に ビニル系単量体 (b— 1)がグラフト重合した共重合体の他、ゴム質重合体 (b— 1)にグ ラフトして!/、な 、ビュル系単量体 (b—l)の(共)重合体が含まれる。 [0051] ゴム強化ビュル系榭脂 (A-1)及び (A-2)のグラフト率は、好ましくは 10— 200質 量%、更に好ましくは 20— 150質量%、特に好ましくは 30— 120質量%である。尚、 グラフト率 (質量%)は、次式により求められる。
グラフト率 (質量%) = { (T-S) /S} X 100
上記式中、 Tは上記ゴム強化ビュル系榭脂 lgをアセトン (ただし、ゴム質重合体 (a -1)がアクリル系ゴムである場合はァセトニトリル) 20mlに投入し、振とう機により 2時 間振とうした後、遠心分離機(回転数; 23, OOOrpm)で 60分遠心分離し、不溶分と 可溶分とを分離して得られる不溶分の質量 (g)であり、 Sは上記ゴム強化ビュル系榭 脂 lgに含まれるゴム質重合体 (a— 1)及び (a— 2)の質量 (g)である。
ゴム強化ビニル系榭脂 (A— 1)及び (A— 2)のアセトン可溶分 (ただし、ゴム質重合 体 (a— 1)がアクリル系ゴムである場合はァセトニトリル可溶分)の固有粘度 (メチルェ チノレケトン中、 30°Cで測定)は、通常 0. 3-1. 5であり、好ましくは 0. 3-1. 3dl/g 、より好ましくは 0. 4-1. Odl/g,特に好ましくは 0. 4-0. 8dlZgである。この固有 粘度が 0. 3dlZg未満では耐疲労性が劣り、一方 1. 5dlZgを超えると耐疲労性が 劣る。この固有粘度は、連鎖移動剤、重合時間、重合温度などによって制御すること ができる。
ゴム強化ビニル系榭脂 (A— 1)及び (A— 2)はそれぞれ、 1種単独でまたは 2種以上 を組み合わせて用いることができる。
[0052] (8)ビニル系単量体の(共)重合体 (B)
成分 (B)の(共)重合体を構成するビニル系単量体 (b— 2)としては、上記ビニル系 単量体 (b—1)として列挙した芳香族ビニルイ匕合物、シアン化ビニル化合物、(メタ)ァ クリル酸アルキルエステル、マレイミド基含有不飽和化合物、および、その他各種の 官能基含有不飽和化合物などをすベて使用できる。これらの化合物は 1種単独でま たは 2種以上を組み合わせて用いることができる。通常は、芳香族ビニル化合物を必 須単量体成分とし、これに、必要に応じて、シアン化ビニル化合物、(メタ)アクリル酸 アルキルエステル及びマレイミド基含有不飽和化合物からなる群より選ばれる 1種又 は 2種以上を単量体成分として併用でき、更に必要に応じて、その他各種の官能基 含有不飽和化合物の少なくとも 1種を単量体成分として併用できる。 ゴム強化樹脂と他のポリマーとをブレンドした場合は、両者の相溶性を向上させる ために、官能基含有不飽和化合物として、エポキシ基含有不飽和化合物、カルボキ シル基含有不飽和化合物または水酸基含有不飽和化合物を用いるのが好ましぐさ らに好ましくは水酸基含有不飽和化合物であり、特に好ましくは 2—ヒドロキシルェチ ル (メタ)アタリレートである。
[0053] 芳香族ビニル化合物、シアン化ビニル化合物、(メタ)アクリル酸アルキルエステル およびマレイミド基含有不飽和化合物の(b— 2)成分中の好ましい使用量は、前記 (b 1)成分中の使用量と同じである。
好ま 、(共)重合体 (B)の単量体の組み合わせとしては、(a)芳香族ビニル化合物 Zシアンィ匕ビ二ルイ匕合物、(b)芳香族ビニルイ匕合物 Z (メタ)アクリル酸アルキルエス テル、(c)芳香族ビ-ルイ匕合物 Zシアンィ匕ビ-ルイ匕合物 Z (メタ)アクリル酸アルキル エステル、(d)芳香族ビ-ルイ匕合物 Zマレイミドィ匕合物 Zシアンィ匕ビ-ルイ匕合物、およ び、(e)芳香族ビュル化合物 Z2-ヒドロキシルェチル (メタ)アタリレート Zシアンィ匕ビ ニル化合物が挙げられる。
[0054] (共)重合体 (B)は、前記ビニル系単量体 (b— 1)の重合をゴム質重合体の非存在 下に行なう以外、前記ゴム強化ビニル系榭脂 (A)と同様の方法により製造できる。
(共)重合体 (B)は、単一組成の(共)重合体であってもよ!/、し、組成の異なる 2種以 上の(共)重合体のブレンドであってもよ 、。
(共)重合体 (B)の固有粘度 (メチルェチルケトン中、 30°Cで測定)は、通常 0. 3— 1. 5であり、好ましくは 0. 3-1. 3dlZg、より好ましくは 0. 4-1. OdlZg、特に好ま しくは 0. 4-0. 8dlZgである。この固有粘度は、連鎖移動剤、重合時間、重合温度 などによって制御することができる。
(共)重合体 (B)は、上記ゴム強化ビニル系榭脂 (A)に適宜の方法で混合すること ができる。
[0055] (9)他のポリマー(C)
本発明の熱可塑性榭脂 (I)は、上記ゴム強化樹脂と他のポリマーとを溶融混練など の方法でブレンドしたものであってもよ!/、。
力かる他のポリマー(C)としては、例えば、上記ゴム強化榭脂以外の ABS榭脂 · A ES榭脂 'ASA榭脂、 AS榭脂、 HIPS, PSなどのスチレン系榭脂;ポリエチレン、ポリ プロピレンなどのォレフィン系榭脂; PA6、 PA66、 PA46、 PA12などのポリアミド榭 脂;ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリアリレートなどの熱可 塑性ポリエステル榭脂;ポリカーボネート榭脂、ポリフエ二レンエーテルまたはポリフエ 二レンエーテル Zスチレン系榭脂などのポリフエ二レンエーテル系榭脂;ポリアセター ル、塩化ビュル榭脂、ポリスルフォン、 PPS、ポリエーテルスルフォン、エチレン 酢酸 ビュル共重合体、 EVOHなどがあり、これらは 1種単独でまたは 2種以上組み合わせ て使用できる。前記熱可塑性榭脂 (I)は、前記ゴム強化榭脂 1一 99質量0 /0と、これら のポリマー(C) 99一 1質量0 /0とを含んでなることが好ましぐ前記ゴム強化榭脂 5— 9 5質量%と、これらのポリマー(C) 95— 5質量%とを含んでなることがさらに好ましい( ここにおいて、前記ゴム強化樹脂とポリマー(C)との合計は 100質量0 /0)。
これらのポリマー(C)うち、光沢性などの外観および耐熱性を向上させるためには、 ポリカーボネート榭脂、熱可塑性ポリエステル榭脂およびポリアミド榭脂からなる群よ り選ばれる 1種又は 2種以上を使用することが好ましい。
とりわけ、ポリアミド榭脂および熱可塑性ポリエステル榭脂は耐熱性と外観の両者、 特に光沢性などの外観を向上させるために好まし 、。ポリアミド榭脂または熱可塑性 ポリエステル榭脂は、結晶性のポリマーであるため、成形時に成形品の表面に偏在 しフイラ一が成形品表面に現れるのを抑制するため、成形品の外観を改良するものと 考えられる。
ポリアミド榭脂としては、 JIS K6810に従って 98%硫酸中、濃度 1質量%、温度 25 °Cで測定した相対粘度が 1. 5-5. 0であるものが好ましぐ 2. 0-4. 0であるものが 更に好ましい。さらに、ポリアミド榭月旨としては、 IS01133に従って 230°C、 2. 16kg 荷重で測定したメルトフローレートが 10— 60g/10minであるものが好ましぐ 20— 50gZl0minであるものが更に好ま 、。上記範囲未満では機械的強度が低下する 場合があり、上記範囲を超えると成形性が不十分な場合がある。
熱可塑性ポリエステル榭脂としては、フエノールと 1, 1, 2, 2—テトラクロロェタンとの 質量比 6 :4の混合溶媒を用いて 25°Cで測定した極限粘度が 0. 5-1. 5dlZgの範 囲にあるものが好ましぐ 0. 5-1. 2dlZgの範囲にあるものがより好ましぐ 0. 6— 1 . odiZgの範囲にあるものが更に好ましい。さらに、熱可塑性ポリエステル榭脂として は、 IS01133に従って 250。C、 2. 16kg荷重で測定したメルトフローレートが 10— 5 OgZlOminであるものが好ましぐ 15— 40gZl0minであるものが更に好ましい。上 記範囲未満では機械的強度が低下する場合があり、上記範囲を超えると成形性が 不十分な場合がある。
[0057] ポリアミド榭脂または熱可塑性ポリエステル榭脂の添加量は、熱可塑性榭脂 (I)全 体を 100質量%として、 1一 70質量%が好ましぐ更に好ましくは 2— 60質量%、特 に好ましくは 3— 40質量%である。ポリアミド榭脂または熱可塑性ポリエステル榭脂の 添加量が 1質量%未満の場合、成形品の外観の改良が不十分となることがあり、 70 質量%を越えた場合、成形時にバリが発生したり、成形品に収縮が発生する場合が ある。なお、熱可塑性ポリエステル榭脂を添加する場合、ポリカーボネート榭脂と併用 すると、ポリカーボネート榭脂が相溶化剤として機能するので好ましい。この場合、ポ リカーボネート榭脂の添加量は、熱可塑性榭脂 (I)全体を 100質量%として、 1一 70 質量%が好ましぐ更に好ましくは 2— 60質量%、特に好ましくは 3— 40質量%であ る。
[0058] また、ポリカーボネート榭脂は耐熱性を向上させるために好ましく使用することがで き、更に外観を向上させる必要がある場合は、上述した熱可塑性ポリエステル榭脂、 特にポリブチレンテレフタレートと併用することができる。外観を向上させる必要があ る場合、熱可塑性榭脂 (I)は、ゴム強化榭脂 5— 39質量0 /0、ポリカーボネート榭脂 60 一 90質量%、及び、熱可塑性ポリエステル榭脂 1一 10質量%(ゴム強化榭脂、ポリ力 ーボネート榭脂及び熱可塑性ポリエステル榭脂の合計は 100質量%)を含んでなる ことが好ましい。また、機械的強度が要求される場合には、熱可塑性榭脂 (I)は、ゴム 強化榭脂 5— 55質量%、ポリカーボネート榭脂 2— 10質量%、熱可塑性ポリエステ ル榭脂 30— 90質量% (ゴム強化榭脂、ポリカーボネート榭脂及び熱可塑性ポリエス テル樹脂の合計は 100質量%)を含んでなることが好ま 、。
ポリカーボネート榭脂の分子量は、溶媒としてメチレンクロライドを用い、温度 20°C で測定された溶液粘度より換算した粘度平均分子量で、 12000— 30000が好ましく 、 14000— 26000が更に好ましい。粘度平均分子量が上記範囲未満の場合、衝撃 強度、靭性または耐薬品性が不十分となる場合があり、上記範囲を超える場合、流 動性が低下し、成形性が不十分になることがある。ポリカーボネート榭脂の ISO 1133 に従って 300。C、 1. 2kg荷重で測定したメルトフローレートは、 5— 50gZl0minで あることが好ましぐ 10— 40gZl0minであることが更に好ましい。
(10)相溶化剤(D)
本発明の熱可塑性榭脂 (I)は、ゴム強化樹脂と上記他のポリマー (C)との相溶性を 向上させるために、さらに、相溶化剤として下記成分 (D)を含有してもよい。
当該成分 (D)は、上記ゴム質重合体 (a— 1)及び Z又は (a— 2)の存在下又は非存 在下に、芳香族ビニル化合物を必須単量体成分として含み、これに加えてシアン化 ビニル化合物、(メタ)アクリル酸アルキルエステルおよびマレイミド基含有不飽和化 合物からなる群より選ばれる少なくとも 1種、および Zまたは、その他各種の官能基含 有不飽和化合物からなる群より選ばれる少なくとも 1種を単量体成分として含むビ- ル系単量体を重合して得られる重合体である。なお、これらの相溶化剤のうち、上記 成分 (A)または(B)と重複する重合体は、上記成分 (A)及び (B)に属するものとする 芳香族ビニル化合物、シアン化ビニル化合物、(メタ)アクリル酸アルキルエステル、 マレイミド基含有不飽和化合物およびその他各種の官能基含有不飽和化合物として は、ゴム強化ビニル系榭脂 (A)に関して上記したものを全て使用できる。これらのうち 、単量体成分として、エポキシ基含有不飽和化合物、カルボキシル基含有不飽和化 合物、または水酸基含有不飽和化合物を備えた重合体が好ましぐさらに好ましくは 水酸基含有不飽和化合物であり、特に好ましくは 2—ヒドロキシルェチル (メタ)アタリレ ートである。
成分 (D)中の官能基含有不飽和化合物の含有量は、好ましくは、 0. 01— 50質量 %、より好ましくは 0. 1— 30質量%、特に好ましくは 0. 1— 20質量%である。
成分 (D)の使用量は、ゴム強化樹脂と他のポリマー(C)の合計 100質量部に対し て、 0. 1— 20質量部、より好ましくは 0. 1— 15質量部である。 0. 1質量部未満では 十分な相溶性が得られないことがあり、 20質量部を超えると成形加工性が劣る場合 がある。 成分 (D)は上記成分 (A)又は (B)と同様の製造方法で製造することができる。
[0060] (11)難燃剤
本発明の熱可塑性榭脂組成物は、難燃性を向上させるために、難燃剤を含有して ちょい。
難燃剤としては特に限定されないが、水酸化マグネシウム、アルミナ、硼酸カルシゥ ム、低融点ガラス等の無機系難燃剤、赤リン等の無機リン、有機ハロゲン系難燃剤、 有機リン系難燃剤、シリコーンィ匕合物、有機金属化合物、ヒンダードアミン系難燃剤 等の有機系難燃剤等が挙げられる。これらは、 1種単独で、または 2種以上を組み合 わせて用いることができる。
他のポリマー (C)としてポリカーボネート榭脂を使用する場合は、有機リン系難燃剤 を用いることが好ましい。
[0061] 上記有機ハロゲン系難燃剤としては、臭素及び Z又は塩素を含有する化合物が好 ましぐビスフエノールのハロゲン化物であるハロゲン化ビスフエノール化合物、ハロゲ ン化ビスフエノール化合物とェピハロヒドリンと、又はハロゲン化ビスフエノール化合物 とハロゲン化ビスフエノールジグリシジルエーテルとの反応生成物であるハロゲン化 エポキシィ匕合物、及びハロゲンィ匕トリアジンィ匕合物等が特に好まし 、。
[0062] また、上記有機リン系難燃剤としては、ホスフェートィ匕合物、ホスファゼン化合物が、 成形品の難燃性を高くすることができるので好ましい。
上記ホスフェートィ匕合物としては、例えば、下記一般式(1)及び(2)に示される構造 を有するものが挙げられる。
[0063] [化 1] )
Figure imgf000023_0001
[0064] (式中、 R5、 R6、 R'及び R8は、アルキル基、フエ-ル基又はキシリル基であり、それ ぞれ同一であってもよいし、異なっていてもよい。 Xは 2価のレゾルシノール残基、ハ イドロキノン残基又はビスフエノール A残基である。 nは平均値で 0— 5である。 ) [0065] [化 2]
Figure imgf000024_0001
[0066] (式中、 R9及び R1C)は、水素原子、ハロゲン原子又は低級アルキル基であり、 R 水素原子、フエニル基又は下記式で表される基
[0067] [化 3]
—— CH2— CH—— CH2— COOCH2CH2OH
COOCH2CH2OH
[0068] であり、上記フエニル基は、ハロゲン原子、ヒドロキシル基又は低級アルキル基から選 ばれた少なくとも 1種で置換されていてもよい。 y及び zは 1一 4の整数であり、同一で あってもよいし、異なっていてもよい。また、 R9と R10は同一であってもよいし、異なつ ていてもよい。 )
[0069] 上記ホスファゼン化合物としては、例えば、プロポキシホスファゼン、フエノキシホス ファゼン、メチルフエノキシホスファゼン、ァミノホスファゼン、フルォロアルキルホスフ ァゼン等が挙げられる。これらのうち、フヱノキシホスファゼンが好ましい。
[0070] 難燃剤の添加量は、熱可塑性榭脂 (I) 100質量部に対して、 1一 30質量部であり、 好ましくは 3— 25質量部であり、更に好ましくは 5— 20質量部である。 1質量部未満 では、得られる成形品の難燃性が十分でなぐ 30質量部を超えて添加した場合、耐 衝撃性が劣る。
[0071] 本発明の熱可塑性榭脂組成物に上記のような難燃剤を用いる場合には、更に、難 燃助剤を配合してもよい。上記難燃助剤としては、三酸ィ匕アンチモン、四酸ィ匕アンチ モン、五酸ィ匕アンチモン等のアンチモンィ匕合物、ホウ酸亜鉛、錫酸亜鉛、酸化鉄、ポ リテトラフルォロエチレン (PTFE)等が挙げられる。ハロゲン系難燃剤を使用する場 合の難燃助剤は、アンチモンィ匕合物が好ましぐリン系難燃剤を使用する場合、 PTF Eが好ましい。
上記 PTFEは、燃焼時のドリツビング (溶融液だれ)を防止し、より高い燃焼レベルを 達成する効果がある。 PTFEの重量平均分子量は、通常、 50万以上であり、好ましく は 100万以上である。他の重合体成分等と混練する際の PTFEの平均粒径は、通常 、 90— 600 μ mであり、好ましくは 100— 500 μ m、更に好ましくは 120— 400 μ mで ある。他の重合体成分等と混練された後、 PTFEは、平均粒径が 0. 1— 100 mの 粒状物又はそれよりも微細な繊維状物として分散される。 PTFEの比重は、通常、 1. 5-2. 5であり、好ましくは 2. 1-2. 3である。また、嵩密度は、通常、 0. 5— lg/ml であり、好ましくは 0. 6-0. 9gZmlである。 PTFEとしては、水等の媒体に滑剤と共 に分散させたデイスパージヨン型の PTFEを用いることもできる。
[0072] 上記難燃助剤の配合量は、難燃剤の種類によるが、難燃剤 100質量部に対して、 通常、 0. 1— 50質量部、好ましくは 1一 40質量部である。
[0073] (12)フィラー
本発明では、フィラー (II)として断面が繭型形状の繊維状フイラ一、とりわけガラス 繊維が用いられる。「断面が繭型形状」とは、図 1に示されるように、繊維状フイラ一を 、その長手方向に直交する方向に切断した時、断面が長手形状であって、該形状の 長手方向中央部の厚みが両端領域の最大厚みよりも薄い形状、すなわち、中央部 力 Sくびれた所謂分銅形状をとるものを意味する。力かる形状のフィラーを用いることに より、他の形状のフィラーを同じ配合量で用いた場合に比べ、成形品の反りの発生が 低減され、機械的強度および光沢も良好に維持され、配合量が増えるほど、他の形 状のフィラーとの効果の差異は一層顕著に現れる。
かかる形状のガラス繊維は、特公平 2— 60494号公報に記載されており、その製造 方法は特開昭 61— 174141号公報、特開昭 61— 219732号公報等に記載されてお り、例えば、チョップドストランド (FRTP マユ型 HISタイプ(商品名):日東紡製)とし て市販されている。
[0074] 本発明では、これらの断面が繭型形状のフィラーのうち、異形比(図 1における短径 bに対する長径 aの比(aZb) )が 1. 3— 6のものを使用するのが好ましぐ 1. 5— 3の ものがより好ましい。異形比が上記の範囲外の場合、成形品に反りが発生し、また、 成形品の表面にフィラーが浮き出て外観が悪ィ匕する。
また、繭型形状のフィラーの長径 aは 16— 22 mが好ましぐ繊維の長さは平均で 2. 7—3. 3mmが好ましい。
上記フィラーの配合量は、その種類によるが、熱可塑性榭脂 (I) 100質量部に対し て、通常、 0. 5— 200質量部、好ましくは 5— 150質量部である。配合量が多すぎる と、フィラー同士が接触して、フィラーが切断され短くなり、その結果、剛性が低下す る。また、配合量が多すぎると、外観性も劣る。他方、配合量が少なすぎると、十分な 剛'性が得られない。
[0075] (13)その他
本発明の熱可塑性榭脂組成物には、上記成分以外に、公知の耐候 (光)剤、帯電 防止剤、酸化防止剤、滑剤、シリコーン化合物、可塑剤、着色剤、染料、抗菌剤、防 黴剤等を適宜配合できる。
[0076] 本発明の熱可塑性榭脂組成物は、各種押出機、バンバリ一ミキサー、ニーダー、口 ール、フエ一ダールーダ一等により、各成分を混練することにより調製することができ る。好ましい製造方法は、押出機を用いる方法で、二軸押出機を用いることが特に好 ましい。
二軸押出機を用いて本発明の熱可塑性榭脂組成物を得るに当たり、各々の成分を 一括して混練してもよく多段、分割配合して混練してもょ ヽ。
[0077] 本発明の熱可塑性榭脂組成物は、射出成形、プレス成形、シート押出成形、異形 押出成形、発泡成形、真空成形等の公知の成形法により、成形品とすることができる 。また、本発明の熱可塑性榭脂組成物から得られる各種成形品は、塗装、メツキ、ス ノ ッタリング、溶着、レーザーマーキング等の二次加工を施して使用できる。
[0078] これらの成形法で成形された成形品は、コンピュータ一等の電気'電子機器のケー シング、電気,電子部品、家庭,事務電気製品部品、住宅,住設関連部品、車両部材 、その他各種用途に使用できる。
実施例
[0079] 以下、実施例を挙げて本発明をさらに具体的に説明する。なお、実施例中、部およ び%は、特に断らない限り質量基準である。また、実施例中の各種評価は、次のよう にして測定した値である。
[0080] 〔評価方法〕
(1)試験片の光沢度評価
下記の条件で成形品の外観性を光沢度により評価した。
(1 1)試験片の作製
下記の成形条件にて試験片を成形した。
成形機;ニイガタ鉄工製 NN30B射出成形機、
金型; 1. 6 X 55 X 80mmプレート、
ゲート種;フィルムゲート、
シリンダー温度; 240°C、
射出速度; 30%、
金型温度; 70°C。
(1 2)光沢度の測定
ASTM D523 測定角度 60° で実施した。
[0081] (2)燃焼試験 (難燃性)
UL94に従って試験した。試験片の厚みは 2. Ommで行った。
(3)衝撃強度、曲げモジュラスの測定
ISO 178に準拠して測定した。
(4)反り試験
80 X 80 X lmmの正方形の平板成形品を作製し、それぞれの 4角の一方を指で押 さえ、対角線上のもう一方の反り量を測定 (4点)し、最も反り量の大きい数値をその試 験片の反り量とした。このようにして、 5枚の平板を測定し、その平均値を算出した。 尚、 80mmの一辺の中央に lmm角のゲートを設けた。平板成形品の成形条件は下 記のとおりとした。 成形機; IS25EP東芝成形機、
シリンダー温度; 240°C、
金型温度; 50°C。
(5)荷重たわみ温度の測定
IS075に準じて測定した。単位は〔で〕である。
[0082] (6)バリの評価
上記光沢度の測定に用いた成形品におけるバリの発生を以下の基準で評価した。 〇:バリの発生が認められない、
△:ゲート側だけにバリの発生が認められた、
X:ゲート側だけでなく他の個所でもバリの発生が認められた。
(7)ヒートサイクルテスト
上記光沢度の測定に用いたものと同様の試験片を成形し、該試験片を下記のヒー トサイクル下に放置した後、該試験片の表面を下記の基準に従い目視にて評価した ヒートサイクル;室温(23°C)→高温 (85°C、 20分保持)→室温(23°C、 15分保持)→ 低温 (一 45°C、 20分保持)→室温(23°C、 15分保持)→高温 (85°C、 20分保持)→ 室温(23°C、 15分保持)。
回数; 100回。
昇温速度; 10°CZmin。
降温速度; 10°CZmin。
判定基準;
〇:試験片表面にほとんど変化が認められず、該表面にガラスフイラ一は現れていな い、
△:試験片表面の一部に、ガラスフィラーが現れる、
X:試験片表面のほぼ全面に、ガラスフィラーが現れ、表面平滑性が損なわれる。
[0083] 〔1〕熱可塑性榭脂 (I)成分
(1) (A)成分
製造例 1 1;エチレン 'プロピレン系ゴム強化ビュル系榭脂 (AES)の調製 リボン型攪拌翼、助剤連続添加装置、温度計を装備した容積 20リットルのステンレ ス製オートクレーブに、エチレン 'プロピレン系ゴム質重合体 (JSR製、商品名「EP84 」)を 20部、スチレン 56部、アクリロニトリル 24部、トルエン 110部を仕込み、内温を 7 5°Cに昇温して、オートクレープ内容物を 1時間攪拌して均一溶液とした。この後、 t ブチルパーォキシイソプロピルカーボネート 0. 45部を添加し、内温を更に昇温し、 1 00°Cに達した後は、この温度を保持しながら、攪拌回転数 lOOrpmとして重合反応 を行った。重合反応が開始して力も 4時間目から、内温を 120°Cに昇温し、この温度 に保持しながら更に 2時間反応を行って終了した。重合転ィ匕率は 80%であった。内 温を 100°Cまで冷却した後、ォクタデシルー 3— ( 3 , 5—ジー tーブチルー 4ーヒドロキシフ ェノール) プロピオネート 0. 2部添加した後、反応混合物をオートクレープより抜き 出し、水蒸気蒸留により未反応物と溶媒を留去し、 40mm φベント付押出機でシリン ダー温度 220°C、真空度を 700mmHgとして、揮発分を実質的に脱揮させ、ペレット 化し、エチレン 'プロピレン系ゴム強化ビニル系榭脂 (AES)を得た。グラフト率は 55 %であった。
製造例 1 2;アクリル系ゴム強化ビュル系榭脂 (ASA)の調製
アクリル酸 n ブチル 99部及びァリルメタタリレート 1部を、乳ィ匕剤として不均化ロジ ン酸カリウム、重合開始剤として過硫酸カリウムを用い、重合温度 80°Cで乳化重合を 行 、アクリル系ゴム質重合体ラテックスを得た。得られたアクリル系ゴム質重合体粒子 の重量平均粒子径は 284nmであった。
スチレン 74部、及びアクリロニトリル 26部を混合して、単量体混合物を調製した。ガ ラス製反応容器に上記のアクリル系ゴム質重合体ラテックス 100部(固形分換算)と 水 110部を仕込み、攪拌しつつ、窒素気流下、 40°Cに昇温した。 40°Cに達した時点 で、 20部の水に、ブドウ糖 0. 3部とピロリン酸ナトリウム 1. 2部、硫酸第一鉄 0. 01部 を溶解した水溶液、及び、 30部の水に tーブチルノヽイド口パーオキサイド 0. 4部、不 均化ロジン酸カリウム 2. 4部を溶解した水溶液 (以下、「CAT水溶液」と略記する)の 30%分を反応器に仕込み、その直後に単量体混合物 Z残りの CAT水溶液を、 3時 間 Z3時間 30分にわたって連続添加し、重合を開始した。重合開始から 75°Cまで昇 温し、その後、 75°Cで保持した後に重合を終了した。重合転ィ匕率は 98%であった。 この共重合ラテックスを凝固、水洗、乾燥し、粉末状のアクリル系ゴム強化ビニル系榭 脂 (ASA)を得た。
[0085] 製造例 1 3; ABS榭脂(ABS—1)の調製
攪拌機を備えた内容積 7Lのガラス製フラスコに窒素気流中で、イオン交換水 75部 、ロジン酸カリウム 0. 5部、 tert—ドデシルメルカプタン 0. 1部、ポリブタジエンラテック ス(平均粒子径; 3500 A、ゲル含率; 85%) 40部(固形分)、スチレン 15部、アタリ口 二トリル 5部をカ卩え、攪拌しながら昇温した。内温が 45°Cに達した時点で、ピロリン酸 ナトリウム 0. 2部、硫酸第一鉄 7水和物 0. 01部、及びブドウ糖 0. 2部をイオン交換 水 20部に溶解した溶液を加えた。その後、タメンノヽイド口パーオキサイド 0. 07部をカロ えて重合を開始した。 1時間重合させた後、更にイオン交換水 50部、ロジン酸力リウ ム 0. 7部、スチレン 30部、アクリロニトリル 10部、 tert—ドデシルメルカプタン 0. 05部 及びクメンハイド口パーオキサイド 0. 01部を 3時間かけて連続的に添加し、更に、 1 時間重合を継続させた後、 2、 2 メチレン ビス(4ーェチルー 6 tert—ブチルフエノ ール) 0. 2部を添加し重合を完結させた。反応生成物のラテックスを硫酸水溶液で凝 固、水洗した後、乾燥して ABS榭脂 (ABS— 1)を得た。この樹脂のグラフト率は 68% 、アセトン可溶分の極限粘度〔 r?〕は、 0. 45dlZgであった。
[0086] 製造例 1-4 ;ABS榭脂 (ABS—2) (対照)の調製
ABS— 1の製法において、ポリブタジエンラテックスとして、ゲル含率 15%、平均粒 子径 3450 Aのポリブタジエンラテックスを使用した以外は、 ABS— 1と同様に行った 。得られた ABS— 2のグラフト率は 65%、アセトン可溶分の極限粘度〔 7?〕は 0. 43dl / gであつ 7こ。
[0087] (2) (B)成分
製造例 2 - 1; AS榭脂 (AS - 1)の調製
内容積 30Lのリボン翼を備えたジャケット付重合反応容器を 2基連結し、窒素置換 した後、 1基目の反応容器にスチレン 75部、アクリロニトリル 25部、トルエン 20部を連 続的に添カ卩した。分子量調節剤として tert—ドデシルメルカプタン 0. 12部及びトルェ ン 5部の溶液、及び重合開始剤として、 1、 Γーァゾビス(シクロへキサン 1 カーボ- トリル) 0. 1部、及びトルエン 5部の溶液を連続的に供給した。 1基目の重合温度は、 110°Cにコントロールし、平均滞留時間 2. 0時間、重合転ィ匕率 57%であった。得ら れた重合体溶液は、 1基目の反応容器の外部に設けたポンプにより、スチレン、ァク リロ-トリル、トルエン、分子量調節剤、及び重合開始剤の供給量と同量を連続的に 取り出し 2基目の反応容器に供給した。 2基目の反応容器の重合温度は、 130°Cで 行い、重合転ィ匕率は 75%であった。 2基目の反応容器で得られた共重合体溶液は、 2軸 3段ベント付き押出機を用いて、直接未反応単量体と溶剤を脱揮し、結合アタリ口 二トリル含量 25%、極限粘度〔 7?〕 0. 48の AS榭脂 (AS— 1)を得た。
[0088] (3) (C)成分
ポリカーボネート(PC)榭脂;
PC— 1:パンライト L 1225WP (商品名:帝人化成製)、粘度平均分子量 22000、メ ル卜フローレ一卜 14gZl0min (300。C、 1. 2kg荷重)、
PC— 2 :ノバレックス 7020A (商品名:三菱エンジニアリングプラスチックス製)、粘度 平均分子量 15000、メル卜フローレ一卜 30gZlOmin (300。C、 1. 2kg荷重)、
PC— 3 :ノバレックス 7022A (商品名:三菱エンジニアリングプラスチックス製)、粘度 平均分子量 18000、メルトフローレート 24gZl0min (300°C、 1. 2kg荷重)。
ポリブチレンテレフタレート(PBT)榭脂;ノバデュラン 5007 (商品名:三菱ェンジ二 ァリングプラスチックス製)極限粘度 0. 71dl/go
ポリアミド (PA)榭脂; MC100 (商品名:カネボウ製)、相対粘度 2. 5。
[0089] (4) (D)成分
製造例; HEMA変性 AS榭脂 (AS - 2)の調製
攪拌機を備えた内容積 7リットルのガラス製フラスコに、ドデシルベンゼンスルホン酸 ナトリウム 1. 5部、 t-ドデシルメルカプタン 0. 1部、およびイオン交換水 150部を混合 し、スチレン 70部、アクリロニトリル 20部、ヒドロキシェチルメタクリレー HHEMA) 10 部を加えた。攪拌しながら、 45°Cまで昇温し、過硫酸カリウム 0. 2部をイオン交換水 2 0部に溶解した水溶液を加え 70— 80°Cで 2時間反応させた。反応後、得られたラテ ックスを塩ィ匕カルシウムを用いて凝固し、変性 AS榭脂 (AS-2)を得た。
[0090] 〔2〕フィラー(II)
ガラスフィラー 1 :繭型 GF CSH3PA— 850 (商品名:日東紡製)、長径 Z短径 = 20 ZlOミクロン、 3mmチョッパー。
ガラスフィラー 2 : CS03MA51A (商品名:旭ハイバーグラス製)、カップリング剤(アミ ノシラン系)、収束剤(AS.エポキシ系) 13ミクロン径、 3mmチョッパー。
[0091] 〔3〕難燃剤
難燃剤— 1 :縮合燐酸エステルのオリゴマー PX200 (商品名:大八化学製)。
難燃剤— 2:エポキシ系 Br化難燃剤 プラサ一ム EC— 20 (商品名:大日本インキ製)。 難燃剤—3 :三酸ィ匕アンチモン PATOX— M (商品名:日本精鉱製)。
難燃剤 4 :テフロン (登録商標) HOSTAFLON TH1620 (商品名:へキストジャ パン製)。
[0092] 実施例 1-1一 1-6及び 11-1—11-10、並びに、比較例 1-1一 1-5及び 11-1—11-4
表 1及び 2記載の成分 (フイラ一以外)を十分に乾燥したのち、表 1及び 2記載の配 合割合でヘンシェルミキサーにより混合した後、二軸押出機 (シリンダー設定温度 27 0°C)で溶融混練しペレツトイ匕した。またフイラ一は、押出機途中から添加混練しペレ ット化した。除湿乾燥機で、十分に乾燥し、射出成形機で評価用試験片を成形した。 各成形品を用い、前記の方法で評価し評価結果を表 1及び 2に示した。
[0093] [表 1]
実施例 比較例
卜 1 1-2 1-3 1-4 [-5 1-6 1-1 1-2 1-3 1-4 1-5
AES 30 30
(A)成分 ― 30 30 ― 30 30 30 ― ―
ASA 一 20 ― ― 20 一 ― ― 20 20
(B)成分 AS-1 70 80 10 48 5 45 70 10 20 5 45 熱可塑性 PC-1 ― ― 60 2 55 ― ― 60 60 55 一 樹脂 (I) (C)成分 PBT ― ― ― 20 20 ― ― ― ― 20 一
PA ― ― ― ― ― 20 一 ― ― ― 20 相溶化剤 AS-2 ― ― ― ― ― 5 ― 一 ― ― 5 口 al 100 100 100 100 100 100 100 100 100 100 100 難燃剤- 1 一 ― ― ― 30 ― ― ― 30 一 難燃剤- 2 ― 一 30 ― ― ― ― 30 ― ― 難燃剤
難燃剤- 3 ― ― 12 ― 一 ― 一 ― 12 ― ― 難燃剤- 4 ― 一 0.8 ― 0.8 ― ― ― 0.8 0.8 一 フイラ一 ガラスフィラー 1 43 43 60 43 55 43
(H) ガラスフィラー 2 43 43 55 90 43
43 43 102.8 43 85.8 43 43 43 97.8 120.8 43 衝擊強度 10 12 10 1 1 13 1 1 6 8 7 7 7 光沢度 92 92 93 97 97 97 30 30 35 40 40 曲げモジュラス 6900 6800 6700 6900 6500 6700 6000 6000 6200 6100 6200 評価項目
荷重たわみ温度 90 88 1 10 108 1 15 97 90 1 10 102 100 95 反り 0.8 0.8 0.9 0.9 0.8 0.9 8 7 8 8 7 難燃性 ― ― V-0 一 V-0 ― ― 一 V- 0 V- 0 ―
Figure imgf000034_0001
実施例 1-1 1-6は、本発明の熱可塑性榭脂組成物を用いた例であり、表 1に示した とおり、反りの発生が少なぐ機械的強度 (衝撃強度及び曲げモジュラス)および外観 (光沢度)にも優れ、耐熱性も良好に維持されており、目的の物性が得られている。 比較例 1-1一 1-5は、本発明の範囲外のフィラーを用いた例であり、表 1に示したとお り、何れも、反りの発生が多ぐ機械的強度 (衝撃強度及び曲げモジュラス)および外 観 (光沢度)の点でも劣る。
[0096] 実施例 Π-1— Π-8は、本発明の熱可塑性榭脂組成物を用いた例であり、表 2に示し たとおり、反りの発生が少なぐ機械的強度 (衝撃強度及び曲げモジュラス)および外 観 (光沢度)にも優れ、耐熱性も良好に維持されており、バリの発生もなぐ目的の物 性が得られている。このうち、ポリアミド榭脂または熱可塑性ポリエステル榭脂を含有 する実施例 Π-4— Π-8の組成物は外観 (光沢度)において特に優れている。また、実 施例 Π-9— Π-10は、ポリカーボネート榭脂を含有する本発明の熱可塑性榭脂組成物 であるが、荷重たわみ温度のみならず外観 (光沢度)、ヒートサイクルテストにも優れ ており、機械的強度を要求されない分野において有用である。さらに、実施例 11-11は 、本発明の熱可塑性榭脂組成物を用いた例であり、機械的強度、耐熱性に優れてお り、機械的強度、耐熱性を要求される分野において有用である。
比較例 II-1は、本発明の範囲外のゴム強化榭脂を用いた例であり、表 2に示したと おり、反りの発生が多ぐ機械的強度 (衝撃強度及び曲げモジュラス)および外観 (光 沢度)の点でも劣る。
比較例 Π-2— Π-4は、本発明の範囲外のフィラーを用いた例であり、表 2に示したと おり、何れも、反りの発生が多ぐ機械的強度 (衝撃強度及び曲げモジュラス)および 外観 (光沢度)の点でも劣る。
比較例 Π-5は、本発明の範囲外の熱可塑性榭脂を用いた例であり、表 2に示したと おり、バリの発生の問題を有する。
産業上の利用可能性
[0097] 本発明の熱可塑性榭脂組成物は、反りの発生が少なぐ機械的強度 (衝撃強度及 び曲げモジュラス)および外観 (光沢度)にも優れ、耐熱性も良好に維持され、これら の性質は、難燃剤を添加した榭脂組成物でも得られるので、各種分野において成形 材料として有用である。 図面の簡単な説明
[図 1]図 1は、本発明で使用するフイラ一の断面を示す模式図。

Claims

請求の範囲
[1] 熱可塑性榭脂 (I) 100質量部に対して、断面が繭型形状のフィラー (11) 0. 5— 200 質量部を配合してなり、前記熱可塑性榭脂 (I)は、下記成分 (A)または下記成分 (A )及び (B)カゝらなるゴム強化榭脂を含有してなることを特徴とする熱可塑性榭脂組成 物。
成分 (A):非ジェン系ゴム質重合体 (a - 1)の存在下に、芳香族ビュル化合物を含む ビュル系単量体 (b— 1)を重合して得られるゴム強化ビニル系榭脂 (A— 1)、または、 ゲル含率が 70質量%以上のジェン系ゴム質重合体 (a— 2)の存在下に、芳香族ビ- ル化合物を含むビニル系単量体 (b— 1)を重合して得られるゴム強化ビニル系榭脂( A— 2)、
成分 (B):ビニル系単量体 (b-2)の (共)重合体。
[2] 前記熱可塑性榭脂 (I)は、前記ゴム強化榭脂 1一 99質量%と、ポリカーボネート榭 脂、熱可塑性ポリエステル榭脂およびポリアミド榭脂からなる群より選ばれる 1種又は 2種以上のポリマー(C) 99一 1質量0 /0とを含んでなる(前記ゴム強化樹脂とポリマー( C)との合計は 100質量%)請求項 1に記載の熱可塑性榭脂組成物。
[3] 前記ポリマー(C)は、熱可塑性ポリエステル榭脂及び Z又はポリアミド榭脂からなる 請求項 1又は 2に記載の熱可塑性榭脂組成物。
[4] 更に、難燃剤 1一 30質量部を含有してなる請求項 1乃至 3の何れか 1項に記載の 熱可塑性榭脂組成物。
PCT/JP2005/004756 2004-03-23 2005-03-17 熱可塑性樹脂組成物 WO2005090476A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-085088 2004-03-23
JP2004085088 2004-03-23
JP2004090701 2004-03-25
JP2004-090701 2004-03-25

Publications (1)

Publication Number Publication Date
WO2005090476A1 true WO2005090476A1 (ja) 2005-09-29

Family

ID=34993665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004756 WO2005090476A1 (ja) 2004-03-23 2005-03-17 熱可塑性樹脂組成物

Country Status (1)

Country Link
WO (1) WO2005090476A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110114414A (zh) * 2016-12-30 2019-08-09 乐天尖端材料株式会社 用于激光直接成型工艺的热塑性树脂组合物和由其生产的模制品

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10219026A (ja) * 1997-01-31 1998-08-18 Nitto Boseki Co Ltd ガラス繊維強化樹脂組成物
JP2002129027A (ja) * 2000-10-25 2002-05-09 Teijin Chem Ltd 熱可塑性樹脂組成物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10219026A (ja) * 1997-01-31 1998-08-18 Nitto Boseki Co Ltd ガラス繊維強化樹脂組成物
JP2002129027A (ja) * 2000-10-25 2002-05-09 Teijin Chem Ltd 熱可塑性樹脂組成物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110114414A (zh) * 2016-12-30 2019-08-09 乐天尖端材料株式会社 用于激光直接成型工艺的热塑性树脂组合物和由其生产的模制品
CN110114414B (zh) * 2016-12-30 2021-11-12 乐天尖端材料株式会社 用于激光直接成型工艺的热塑性树脂组合物和由其生产的模制品
US11208555B2 (en) 2016-12-30 2021-12-28 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition for laser direct structuring process and molded article produced therefrom

Similar Documents

Publication Publication Date Title
JP2005307180A (ja) 熱可塑性樹脂組成物
JP5490402B2 (ja) 樹脂ブレンド用芳香族ビニル系グラフト共重合体及びそれを用いた熱可塑性樹脂組成物
JP2000119477A (ja) ゴム変性スチレン系熱可塑性樹脂組成物
CN111615538B (zh) 热塑性树脂组合物和由其形成的模制品
JP3655979B2 (ja) 熱可塑性樹脂組成物
JP2023115193A (ja) ポリオルガノシロキサン含有グラフト共重合体粉体、およびそれを用いた樹脂組成物ならびにそれからなる成形体
JP2012036384A (ja) 耐熱・耐塗装性熱可塑性樹脂組成物
JP2015004051A (ja) 熱可塑性樹脂組成物及び成形品
KR20070102245A (ko) 웰드강도가 우수한 폴리카보네이트계 열가소성 수지 조성물
JPH09328617A (ja) 熱可塑性樹脂組成物
JP4398826B2 (ja) 帯電防止性熱可塑性樹脂組成物及びそれを用いた成形品
JP2004002897A (ja) トレー用熱可塑性樹脂組成物
WO2005090476A1 (ja) 熱可塑性樹脂組成物
JP2008174683A (ja) ゴム質含有樹脂組成物
JP6352051B2 (ja) 熱可塑性樹脂組成物及び成形品
JP2006008815A (ja) 熱可塑性樹脂組成物および成形品
JP2016199729A (ja) 熱可塑性樹脂組成物及び成形品
JPH09221522A (ja) 熱可塑性共重合体及びそれを用いた熱可塑性樹脂組成物
JP2015168814A (ja) 熱可塑性樹脂組成物およびその成形品
JP5784409B2 (ja) 熱可塑性樹脂組成物及び成形品
KR102416300B1 (ko) 폴리카르보네이트 수지 조성물 및 그의 성형체
JP2012077275A (ja) 軋み音を低減した熱可塑性樹脂組成物製接触用部品
JP4163033B2 (ja) 難燃性樹脂組成物及び成形品
WO2004111125A1 (ja) ゴム変性スチレン系樹脂組成物
WO2022195973A1 (ja) 熱可塑性樹脂組成物およびその成形品

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase