WO2005087410A1 - 合金粉体原料およびその製造方法 - Google Patents

合金粉体原料およびその製造方法 Download PDF

Info

Publication number
WO2005087410A1
WO2005087410A1 PCT/JP2004/006967 JP2004006967W WO2005087410A1 WO 2005087410 A1 WO2005087410 A1 WO 2005087410A1 JP 2004006967 W JP2004006967 W JP 2004006967W WO 2005087410 A1 WO2005087410 A1 WO 2005087410A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
raw material
alloy
less
alloy powder
Prior art date
Application number
PCT/JP2004/006967
Other languages
English (en)
French (fr)
Inventor
Katsuyoshi Kondoh
Mitsuhiro Goto
Hideaki Fukui
Shuji Shiozaki
Hajime Agata
Katsuhito Itakura
Kazunori Fukumoto
Original Assignee
Gohsyu Co., Ltd.
Kurimoto, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gohsyu Co., Ltd., Kurimoto, Ltd. filed Critical Gohsyu Co., Ltd.
Priority to EP04745278A priority Critical patent/EP1726385A4/en
Priority to US10/592,877 priority patent/US7909948B2/en
Publication of WO2005087410A1 publication Critical patent/WO2005087410A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/045Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by other means than ball or jet milling
    • B22F2009/047Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by other means than ball or jet milling by rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles

Definitions

  • the present invention relates to an alloy powder material having fine crystal grains and a method for producing the same.
  • it in order to create a magnesium alloy having both high strength and high toughness, it is intended to miniaturize magnesium crystal grains constituting the base of magnesium base alloy powder as a raw material.
  • Magnesium alloys are expected to be light in weight due to their low specific gravity, so they are widely used in automotive parts, mechanical parts, structural materials, etc., as well as cases for mobile phones and portable audio equipment. There is. The development of further light weight effect requires high strength and high toughness of magnesium alloy. In order to improve such characteristics, optimization of the composition 'component of the magnesium alloy and refinement of magnesium crystal grains constituting the base are effective. In particular, with regard to grain refinement of magnesium alloy materials, it has been based on plastic caustic processes such as rolling, extrusion, forging, drawing, ECAE (Equal Channel Angular Extrusion), and so on. Method is used! /.
  • Patent Document 1 discloses "a magnesium alloy thin plate, a method for producing the same, and a molded article using the same".
  • a molten magnesium alloy is made into a plate-like material by injection molding, the plate-like material is compressed and deformed by rolling, and the material is heat-treated to obtain recrystallization. Refinement of magnesium crystal grains by
  • Patent Document 2 discloses "a method of producing a rolled magnesium alloy material, a method of pressing magnesium alloy, and a pressed product".
  • the magnesium alloy sheet is cold-rolled at a predetermined rolling reduction, and then the sheet is subjected to a heat treatment in a predetermined temperature range to refine magnesium crystal grains by recrystallization.
  • Patent Document 3 discloses "magnesium alloy member and method for producing the same".
  • the magnesium alloy material is subjected to solution treatment, and then the first forging, the aging heat treatment, and the second forging are performed to refine the magnesium crystal grains.
  • the first forging process it is essential to apply a predetermined process pre-strain to the material, resulting in a restriction on the product shape.
  • the method disclosed in this publication is not suitable for the production of long products such as rod-like and pipe-like materials.
  • Patent Document 4 discloses “Magnesium-based composite material”. According to the method disclosed in this publication, a magnesium alloy powder or magnesium alloy chip is used as a starting material, and this material is put into a die, and after compression molding and extrusion are repeated, the powder or chip solidified. Make a billet and further
  • Patent Document 5 discloses "a method of manufacturing a member made of a magnesium alloy". According to the method disclosed in this publication, plastic chips are solidified by compressing and solidifying chips, scraps, wastes, etc. discharged during cutting of magnesium alloy members and extruding or forging them. Create a magnesium alloy member with a history of completion Ru. At this time, the strength of the magnesium alloy is improved by promoting refinement of the magnesium crystal grains by plastic working.
  • the crystal grain size of the magnesium base which controls the strength characteristics of the magnesium alloy after extrusion or forging is not only the amount of strain given to the raw material at the time of plastic working, but also used as a starting material.
  • grain refinement of magnesium, which constitutes the base material of the starting material is extremely effective in increasing the strength of the magnesium alloy material to be the final product.
  • the grain size of magnesium is coarser than several hundred microns. Therefore, in the case of ordinary magnesium alloy chips, scraps, wastes, and magnesium alloys obtained when using as a starting material, significantly high strength and high toughness are obtained. I can not hope.
  • Cooling ⁇ Solidification speed is governed by heat removal at the droplet surface. That is, depending on the specific surface area of the magnesium alloy droplet, the finer the droplet is, the solidification speed can be solidified in a short time, and therefore, it has fine magnesium crystal grains. Therefore, although a magnesium-based alloy powder having fine crystal grains can be produced by the rapid solidification method, on the other hand, the powder particle diameter is small, and the powder particles are easily suspended in the production process, and dust Explosives and other hazards increase rapidly. Also, when considering compression and solidification by die press molding, the fine powder particles are low in fluidity, and therefore, the filling rate to the die is reduced, local air gaps are formed, and the frictional force between the powders is further reduced. The problem is that it becomes difficult to set up because
  • the magnesium crystal grains in the base As described above, in the high toughness and toughness of magnesium alloys, it is effective to refine the magnesium crystal grains in the base. For this purpose, first of all, it is necessary to use a manufacturing method that does not go through the melting and solidification processes that accompany grain growth, such as the forging method and die casting method. Specifically, powder or The problem is the construction of a solid phase process in which a raw material having a similar geometrical shape is formed and compacted in a temperature range below its melting point.
  • the object of the present invention is to use gold, which has a large particle size of the powder itself, but which forms a matrix of the powder.
  • the inventors of the present invention intensively examined the above-mentioned problems, and found many means for solving the problems described below by repeating many experiments.
  • the maximum crystal grain size of the metal or alloy particles constituting the base is as small as 30 m or less, and the relatively coarse alloy powder raw material without danger such as dust explosion, etc. Found out.
  • the present inventors conducted experiments on magnesium-based alloy powder raw materials, but the present invention is also applicable to other material powders such as aluminum-based alloy powder raw materials.
  • the magnesium alloy strength obtained by forming and solidifying the above magnesium base alloy powder raw material has both excellent strength and toughness.
  • metal and “alloy” are not strictly used in distinction between the two types of force. As used herein, the terms “metal” or “alloy” should be understood as including both pure metals and alloys.
  • the present invention for achieving the above object is as follows.
  • the alloy powder material according to the present invention has a maximum size of 10 mm or less and a minimum size of 0.1 mm or more of the powder, and the maximum solidification of the metal or alloy particles constituting the base of the powder.
  • the grain size is less than 30 ⁇ m.
  • the metal or alloy constituting the powder base is, for example, magnesium or magnesium alloy.
  • the maximum size force S6 mm or less of the powder, the minimum size of the powder is 0.
  • Nesium alloy particles The maximum grain size of Nesium alloy particles is 15 m or less.
  • the powder raw material is obtained by subjecting a starting raw material powder having a relatively large grain size to a plastic caustic so as to obtain a relatively small grain size. is there.
  • the powder raw material is collected from a metal or alloy material having a base having a maximum crystal grain size of 30 m or less by machining any one of cutting, cutting and grinding. It is
  • the method for producing an alloy powder raw material according to the present invention comprises metal or alloy particles constituting a base of the starting raw material powder by subjecting the starting raw material powder to plastic processing. To refine the crystal grain size of
  • the plastic caustic is preferably a powder having a maximum size of 10 mm or less and a minimum size of 0.1 mm or more, and a maximum crystal grain size of metal or alloy particles constituting a powder base of 30 m or less. Do it until it is down.
  • the plastic working is the maximum crystal grain of metal or alloy particles constituting the base of the powder after processing. Perform until the diameter is less than 20%.
  • the plastic causation is preferably performed at a temperature of 300 ° C. or less. Also, preferably, the starting material powder is heated in an inert gas atmosphere, a non-oxidizing gas atmosphere, or a vacuum atmosphere.
  • the starting material powder is, for example, magnesium or a magnesium alloy powder.
  • the plastic working is performed by compressively deforming the starting material powder between a pair of rolls. More specifically, one pair of rolls is placed in the case.
  • the above method further includes the step of feeding the starting material powder continuously between the pair of rolls in the case, and the powder plastically processed between the pair of rolls to the outside of the case. And a powder discharging step of continuously feeding.
  • Case force The powder fed out may be further processed by at least one machine of a crusher, a crusher, and a coarse-graining machine to provide a granular powder.
  • a plurality of sets of one pair of rolls may be provided, and the starting material powder may be plastically processed between the plurality of sets of rolls.
  • the clearance between a pair of rolls is, for example, 2 mm or less.
  • the surface temperature of the roll in contact with the starting material powder is 300 ° C. or less.
  • the plastic working area including one pair of rolls is made an inert gas atmosphere, a non-acidic gas atmosphere, or a vacuum atmosphere.
  • the roll has, for example, a recess on its surface.
  • the plastic working is performed by kneading the starting material powder. More specifically, the plastic working is carried out by charging the starting raw material powder in a case in which a pair of rotating paddles are arranged and kneading.
  • the above method comprises: a raw material charging step of continuously charging the starting raw material powder in the case; a kneading step of kneading the starting raw material powder in the case; And a powder discharge process for continuously feeding
  • the powder discharged from the case may be further processed by a machine including at least one of a crusher, a crusher, and a coarse-grained machine to obtain a granular powder. .
  • a plurality of pairs of paddles may be provided, and the starting material powder may be kneaded and processed by the plurality of paddles.
  • the clearance between the pair of paddles is, for example, 2% or less of the paddle diameter, or 20% or less of the size of the starting material powder, or 2 mm or less.
  • the clearance between the paddle and the case is, for example, 2% or less of the paddle diameter, or 20% or less of the size of the starting material powder, or 2 mm or less.
  • the surface temperature of the paddle with which the starting material powder comes in contact is 300 ° C. or less.
  • the temperature of the inner wall surface of the case where the starting material powder contacts is set to 300 ° C. or less.
  • the inside of the case is inert gas atmosphere, non-oxidizing gas atmosphere, vacuum atmosphere! Make it feel like it is.
  • the method for producing an alloy powder raw material according to the present invention has a plate-like, rod-like, column-like, or massive shape, and is the largest of the metal or alloy particles constituting the substrate.
  • a process of preparing a material having a crystal grain size of 30 m or less, and mechanical force such as cutting, cutting, grinding, etc. are performed on this material, and from this material, the maximum size is 10 mm or less.
  • FIG. 1 shows various shapes of powder raw materials.
  • FIG. 2 shows, in order, the manufacturing steps of the method according to the present invention.
  • FIG. 3 is an illustrative view of a roller compactor as an example of a continuous powder plastic molding apparatus.
  • FIG. 4 is a view showing a third-stage roll pair and a crushing device in the continuous powder plasticity processing device shown in FIG.
  • FIG. 5 is a view showing a kneading and processing machine as another example of the continuous powder plasticity processing apparatus.
  • FIG. 6 is a view showing another example of a pair of paddles in the continuous powder plasticity processing device shown in FIG. 5.
  • FIG. 7 is a view showing still another example of a pair of paddles in the continuous powder plastic molding apparatus shown in FIG. 5;
  • FIG. 8 shows optical micrographs of the samples of sample numbers 1 and 4 in Table 1 and Table 2 and optical micrographs of an input raw material AM60 chip.
  • FIG. 9 It is an optical micrograph of the sample of sample numbers 23 and 24 of Table 5 and Table 6. BEST MODE FOR CARRYING OUT THE INVENTION
  • the starting material powder to be used has a particulate, powdery, massive, curled, strip, cut powder, cut IJ curled, or chip-like shape. It is desirable to have These shapes are shown in Figure 1.
  • the powder obtained after processing is a powder similar to the powder used as the starting material or the powder thereof. It is an aggregate, and by crushing as necessary, the next step of compression molding / solidification becomes easy.
  • the magnesium-based alloy powder after plastic working is required to have an appropriate compression formability and solidification property, and when forming and solidifying the magnesium-based alloy powder in a mold die, It is necessary to improve the flowability of the powder and the fillability in the mold.
  • magnesium-based alloy powder having any of particulate, powder, lump, curl, strip, cut powder, cut curl and chip shapes is used as a starting material. Hope to be! /.
  • the maximum size of the powder is 10 mm or less.
  • the maximum size indicates the largest size of the powder, and if it is in the form of particles, powders, lumps, chips, it corresponds to the maximum particle size. If it is in the form of a strip, it means the dimension in the largest length direction in terms of width, length, and thickness. In the case of a curl, it corresponds to the diameter when it is regarded as a circle.
  • the maximum size of the magnesium-based alloy powder of the present invention is 10 mm or less, there is no problem in the above-mentioned compression moldability, solidification property, fluidity, and mold filling property.
  • a more preferable maximum size is 6 mm or less.
  • the maximum size of the powder exceeds 10 mm, these properties are deteriorated, and in particular, the compression moldability is deteriorated, which causes a problem such as generation of a crack or a crack in the solidified billet.
  • the minimum size of the powder is 0.1 mm or more.
  • the minimum size indicates the smallest size of the powder, and if it is in the form of particles, powders, lumps, chips, it corresponds to the minimum particle size. If it is band-like, it means the dimension in the smallest thickness direction in the case of width, length and thickness. In the case of a curl, use the smaller dimension of the width or thickness of the material constituting the curl.
  • the minimum size of the magnesium-based alloy powder of the present invention is 0.1 mm or more, there is no problem in the above-mentioned compression moldability, solidification property, fluidity, and mold filling property.
  • a more preferable minimum size is 0.5 mm or more. If the minimum size of the powder is less than 0.1 mm, the powder characteristics related to compression and solidification decrease, and at the same time, the probability of causing dust explosion due to the floating of the powder increases!
  • FIG. 1 shows the maximum size portion and the minimum size portion for each powder shape.
  • the maximum crystal grain size of magnesium particles constituting the base is 30 m or less.
  • the maximum crystal grain size is the diameter of the circumscribed circle of crystal grains.
  • the powder is wet-polished with abrasive grains and then subjected to chemical corrosion (etching) to clarify crystal grain boundaries, and the crystal grains observed with an optical microscope or the like are most suitable. Means of size, size.
  • the obtained magnesium-based alloy never has balanced strength and toughness. Deterioration occurs in one or both mechanical properties. More preferably, the maximum grain size of magnesium particles in the magnesium-based alloy powder raw material is 15 m or less.
  • the magnesium-based alloy powder material having the above-described configuration can be obtained by plastic working or machining of a starting material powder. Specifically, in one method, the powder raw material is formed into a small crystal grain size by subjecting a starting material powder having a relatively large crystal grain size to plastic processing. In another method, the powder raw material is obtained by subjecting a metal or alloy material having a base having a maximum crystal grain size of 30 m or less to mechanical processing of any of cutting, cutting, and grinding. It was collected.
  • the magnesium-based alloy powder material is one embodiment of the alloy powder material according to the present invention.
  • the present invention is also applicable to other materials such as aluminum base alloy powder raw materials. This point is the same in the method described later.
  • Fig. 2 sequentially shows the manufacturing process of the magnesium base alloy powder material by plastic working!
  • the temperature of the raw material at the time of processing is closely related to the fine grain size of the magnesium crystal grains, and it is necessary to control in a proper temperature range. Therefore, it is important to heat and hold the raw material powder at a predetermined temperature in advance before plastic working.
  • the heating and holding temperature of the powder is 300 ° C. or less, more preferably 100 to 200 ° C., for the reason described later.
  • the starting material powder is heated in an inert gas atmosphere such as nitrogen or argon, a nonoxidizing gas atmosphere, or a vacuum atmosphere. It is desirable to do.
  • an inert gas atmosphere such as nitrogen or argon, a nonoxidizing gas atmosphere, or a vacuum atmosphere. It is desirable to do.
  • oxides are present in the magnesium base alloy after hot extrusion processing and forging processing, which is a post process, due to the acidity of the powder surface, which causes fatigue. It causes problems such as deterioration of properties such as strength.
  • FIGS. 3 and 4 show a roller compactor which is an example of a continuous powder plastic molding apparatus
  • FIGS. 5 to 7 show another example of a continuous powder plastic working apparatus. Processing machine) is shown.
  • the continuous powder plastic forming apparatus shown in FIG. 3 includes a case 1, a multistage roll rotating body 2 disposed in the case 1, a crushing apparatus 3, a powder temperature and supply amount control system 4 , And the pedestal 5.
  • Multi-stage roll rotating body 2 performs rolling processing on starting material powder 3 sets The pair of rolls 2a, 2b, 2c. The starting material powder is compressed and deformed as it passes between the paired rolls.
  • the starting material powder is introduced into Case 1 with the powder temperature 'supply amount control system 4 adjusted to a predetermined temperature and a predetermined amount.
  • the interior of Case 1 is maintained in an inert gas atmosphere, a non-oxidative gas atmosphere, or a vacuum atmosphere from the viewpoint of preventing oxidation of the powder surface.
  • FIG. 4 shows the third stage roll pair 2c and the crushing apparatus 3! /.
  • the powder delivered from the roll pair 2c is subsequently crushed by the crushing device 3 to form granular powder.
  • the granular powder may be returned to the powder temperature and supply amount control system 4 again, and the plastic working by the multistage roll rotating body 2 may be repeated.
  • the granular powder after processing is accommodated in the pedestal 5.
  • the continuous powder plastic forming apparatus shown in FIG. 5 has a kneading chamber 12 maintained in an inert gas atmosphere, a non-oxidative gas atmosphere, or a vacuum atmosphere, and a supply port 13 for receiving starting material powder. And a case 11 having a discharge port 14 for feeding out the powder after the kneading process.
  • a case 11 having a discharge port 14 for feeding out the powder after the kneading process.
  • two rotary shafts 15 rotatably supported by bearings 16 and rotationally driven by a drive unit 19 are disposed.
  • a screw 17 for feeding the starting material powder charged into the case 11 forward and a paddle 18 for subjecting the starting material powder to kneading processing are fixed to each rotating shaft 15.
  • the case 11 may be provided with a jacket capable of supplying a heater or a heating medium. Also, in order to be able to heat the rotary shaft 15, a device capable of supplying a heater or a heating medium to the rotary shaft 15 may be provided.
  • the starting material powder fed into the kneading chamber 12 by the screw 17 is kneaded when passing through the gap between the pair of rotating paddles 18 and the gap between each paddle 18 and the inner wall surface of the case 11 It is processed.
  • compressive force, shear force, dispersion force, impact force, deformation force, pulverizing force and the like are given to the starting material powder.
  • a plurality of pairs of rotating paddles 18 are provided.
  • each paddle 18 rotate in the same direction.
  • each paddle 18 has a shape having three pointed apexes.
  • 6 and 7 show a pair of paddles of different shape than the paddle 18 of FIG.
  • the pair of paddles 21 and 22 shown in FIG. 6 both have a shape having two pointed apexes and rotate in the same direction. 1 shown in Figure 7 Twin
  • the paddles 31, 32 have different shapes from each other, and the directions of rotation are also opposite. There are various paddles in this way, but any paddle may be used to carry out the kneading process.
  • the continuous powder plastic forming apparatus shown in FIGS. 3 and 5 both have a pair of rotating bodies, and are supplied between the rotating bodies or between the rotating body and the case.
  • the starting raw material powder is subjected to plastic processing such as compression processing, shear processing, grinding processing, etc., and in that case, refinement of crystal grains by strong strain processing as described above is promoted.
  • the temperature range is preferably 100 to 200 ° C., which is preferably 300 ° C. or less as in the heating and holding temperature of the raw material powder described above, and the reason is also the same as described above.
  • the continuous powder plasticity processing apparatus by arranging a plurality of pairs of rotating bodies, it is possible to impart strong strain processing to the raw material powder. It is also effective to repeat the process of plastic working a plurality of times by again feeding the raw material powder to a predetermined temperature after plastic working and then reinjecting it into a plastic working apparatus.
  • the clearances between a pair of rotating bodies and the clearances between the rotating bodies and the case in the continuous powder plasticity processing apparatus be set to appropriate values.
  • the clearance between the paddle and the case is also preferably 2% or less of the paddle diameter, or 20% or less of the maximum size of the starting material powder, or 2 mm or less.
  • the size of the force clearance is such that the raw material powder is continuously supplied to the gap between the pair of rotating bodies or the gap between each rotating body and the case to be subjected to plastic processing.
  • the value exceeds the preferable value sufficient strong strain processing can not be applied, and as a result, magnesium crystal grains of 30 m or less can not be obtained.
  • Size of raw material powder to be charged By setting the above-mentioned clearance to 1 Z5 or less of the maximum size of the raw material powder, it is possible to achieve continuous fine-graining of magnesium crystal grains by setting the above-mentioned clearance to 1 Z5 or less of the maximum size of the raw material powder.
  • the surface properties of the pair of roll rotating bodies in contact with the raw material powder may be improved. Specifically, a recess is formed on the surface of the roll rotating body.
  • One or more concave grooves or concave slits can be considered as concave parts. Forces may extend in a direction perpendicular to, parallel to or perpendicular to the rotational direction.
  • the alloy powder after processing is processed.
  • the maximum crystal grain size of the alloy particles constituting the powder base is 30 m or less.
  • the plastic working is carried out when the maximum crystal grain size of the alloy particles constituting the base powder after processing is 20% or less. Do it till If such grain refinement can not be realized, it is difficult to achieve both excellent strength and toughness for a magnesium base alloy material produced by compacting and solidifying the obtained powder.
  • the magnesium-based alloy powder material according to the present invention is to be compression-formed and solidified later. Therefore, appropriate compression moldability, solidification property, flowability, mold filling property are required. Since these characteristics are caused by the size and shape of the powder, it is preferable that a crusher, a crusher, and a coarse-graining machine be applied to the powder discharged after being subjected to continuous plastic processing. Apply crushing treatment, coarse granulation treatment, granulation treatment using a carbon fiber, etc. to make the size (particle diameter) and shape uniform. From the viewpoint of grinding processability, the temperature of the powder at that time is preferably at normal temperature.
  • the alloy powder material finally obtained has a maximum size of 10 mm or less and a minimum size of 0.1 mm or more.
  • the shape of the powder is, for example, granular powder.
  • the magnesium-based alloy powder material according to the present invention can also be manufactured by machining instead of the above-described plastic processing.
  • a material having a plate-like, rod-like, columnar, or lump-like shape, and having a maximum crystal grain diameter of 30 ⁇ m or less of magnesium alloy particles constituting the substrate is prepared.
  • Such a material is subjected to hot or warm plastic working such as rolling, extrusion, forging, etc. on a plate-like, rod-like, plate-like or massive magnesium-based alloy material which is a starting material, It is obtained by granting it.
  • the maximum crystal grain size of the magnesium alloy particles constituting the base of the material is reduced to 30 m or less.
  • the maximum crystal grain size of the magnesium alloy particles is reduced to 15 m or less.
  • the maximum size of the powder is 10 mm or less, Collect a powder material whose minimum size is 0.1 mm or more.
  • the maximum crystal grain size of magnesium alloy particles constituting the base of the collected powder is 30 m or less, preferably 15 / z m or less.
  • the size of the powder can be adjusted by adjusting the above-mentioned machining conditions, for example, adjusting the cutting speed, selecting the shape of the material of the tool, adjusting the processing time in the case of grinding with a ball mill, and the like.
  • Example 1 Starting material AM60 (Nominal composition: Mg-6% Al-0.5% MnZ weight basis) alloy chip (length 3.5 mm, width 1.5 mm, thickness 1.2 mm, maximum of base magnesium) The grain size was 350 ⁇ m, and the average Vickers hardness was 65.4 Hv.
  • a roller compactor with one pair of roll rotating bodies (roll diameter 66 mm ⁇ , roll width 60 mm, clearance between rolls 0.4 mm) was used as a continuous powder plasticity processing device. After holding the AM 60 chip at each temperature shown in Table 1 in a heating furnace controlled in a nitrogen gas atmosphere, the chip was supplied to a processing device to give a compressive deformation to the chip. After the sample discharged from the apparatus was crushed and granulated by a batch apparatus, as shown in Table 1, after being heated and held again at a predetermined temperature, compressive deformation was continuously applied by the same processing apparatus.
  • the number of passes indicates the number of times the roller compactor supplied the AM60 chip.
  • Table 1 shows the measurement results of the shape and dimensions of the obtained powder sample, and Table 2 shows the measurement results of the maximum grain size and Vickers hardness by optical microscope observation after polishing and chemical corrosion.
  • the maximum crystal grain size of the base is refined to 30 m or less as compared with the AM60 chip which is the input raw material, and the temperature conditions are optimized. By doing this, it is possible to make finer grains of up to 15 m or less. In addition, it is recognized that Vickers hardness is also increased by strong strain processing.
  • the temperature of the input sample AM60 chip exceeded the appropriate range of 330 ° C., and therefore, the sample chip adhered to the roll surface during the plastic molding process. A problem arose.
  • FIG. 8 (a) shows a sample of sample No. 1.
  • the maximum crystal grain size of magnesium particles constituting the base is 26 ⁇ m, and according to the result of image analysis, the average crystal grain size is It has a fine grain size of 14.3 m.
  • FIG. 8 (b) shows a sample of sample No. 4.
  • the maximum crystal grain size of magnesium particles constituting the base is as small as 11 m, and according to the result of image analysis, the average crystal grain size is 7 It has a fine grain of 8 m.
  • FIG. 8 (c) shows the AM60 chip which is the input material, and the maximum crystal grain size of magnesium particles constituting the base is 350 m, the minimum crystal grain size is 123 m, and the average crystal grain size Is 218 m (, as well is the result of image analysis).
  • Starting material AM60 Nominal composition: Mg-6% Al-0.5% MnZ weight basis alloy chip (length 3.5 mm, width 1.5 mm, thickness 1.2 mm, maximum of base magnesium) The grain size was 350 ⁇ m, and the average Vickers hardness was 65.4 Hv.
  • a roller compactor with one pair of roll rotating bodies (roll diameter 100 mm ⁇ , roll width 80 mm, clearance between rolls 0.5 mm) was used as a continuous powder plasticity processing device. After heating and holding the AM 60 chip at 200 ° C. in a heating furnace controlled in a nitrogen gas atmosphere, it was supplied to a processing device to give compression deformation to the chip. The sample discharged from the device is crushed and granulated with a batch device Then, after holding at a predetermined temperature again, compression deformation was continuously applied by the same processing apparatus.
  • the number of passes indicates the number of times the AM 60 chip is supplied to the roller compactor.
  • Table 3 shows the results of measurement of the maximum crystal grain size and Vickers hardness of the obtained powder sample by optical microscope observation after polishing and chemical corrosion.
  • the maximum crystal grain size of the base is miniaturized to 30 / z m or less as compared with the AM60 chip which is the input material, and It is recognized that the maximum grain size decreases with the increase of caro, and it is possible to make finer grains up to 15 m or less. At the same time, the Vickers hardness also increases due to the accumulation of strong strain force. Samples subjected to batch processing after being subjected to continuous plastic working are all mixed powders of plate-like samples and granular samples, and the size thereof is 0.3-4. 5 mm. It meets the appropriate dimensional range specified.
  • sample numbers 12 and 16 shown in Table 3 and the input raw material AM60 chip were used as starting materials, and each powder was solidified at normal temperature to produce a powder compact having a diameter of 35 mm and a height of 18 mm.
  • hot extrusion is performed to obtain a dense magnesium-based alloy rod (diameter 7 mm ⁇ ).
  • the resulting extruded material was subjected to tensile strength test (parallel part 15 mm, diameter 3.5 mm) to obtain tensile strength characteristics (tensile strength, yield stress, elongation at break) at normal temperature. The results are shown in Table 4.
  • the maximum grain size of magnesium produced by continuous powder plastic working of the present invention is 15 ⁇ m or less
  • the tensile strength, yield stress and elongation at break of the extruded material produced using the AM60 magnesium base alloy powder having the fine structure below are not subjected to plastic processing. Compared to the case, it is significantly improved. As is clear from this result, it is recognized that by the refinement of magnesium crystal grains using the plastic working method proposed by the present invention, it is possible to achieve both high strength and high toughness of a magnesium-based alloy.
  • Starting material AM60 Nominal composition: Mg-6% Al-0.5% MnZ weight basis alloy chip (length 3.5 mm, width 1.5 mm, thickness 1.2 mm, maximum of base magnesium) The grain size was 350 ⁇ m, and the average Vickers hardness was 65.4 Hv.
  • a pair of rotating paddles (a clearance of 0.3 mm between the pair of paddles and a clearance of 0.3 mm between the paddle and the case) was used as a continuous powder plasticity processing apparatus. After holding the AM 60 chip at each temperature shown in Table 5 in a heating furnace controlled in a nitrogen gas atmosphere, it was supplied to the processing apparatus to subject the chip to compressive deformation and shear processing. Equipment force The discharged sample was crushed and granulated with a batch device. Table 5 shows the measurement results of the shape and dimensions of the obtained powder sample, and Table 6 shows the measurement results of the maximum crystal grain diameter and Vickers hardness by optical microscope observation after polishing 'chemical corrosion.
  • the maximum crystal grain size of the base is refined to 30 m or less as compared with the AM60 chip which is the input raw material, and the temperature condition is appropriate. It is recognized that fine graining is possible to 15 m or less by correcting. In addition, it is recognized that Vickers hardness also increases due to strong strain caul.
  • the temperature of the input sample AM60 chip exceeded the appropriate range of 350 ° C., so the sample was placed on the paddle and the inner wall of the case during the plastic molding process. There was a problem when the chip attached.
  • Starting material AM60 Nominal composition: Mg-6% Al-0.5% MnZ weight basis alloy chip (length 3.5 mm, width 1.5 mm, thickness 1.2 mm, maximum of base magnesium)
  • the grain size was 350 ⁇ m, and the average Vickers hardness was 65.4 Hv.
  • a roller compactor a roller shaft is of a cantilever type having one pair of roll rotating bodies (roll diameter 66 mm ⁇ , roll width 60 mm, clearance between rolls O mm) was used as a continuous powder plasticity working apparatus.
  • the temperature of the sample supply port was set to 170 ° C., and the AM60 chip was maintained at 200 ° C. in a heating furnace controlled in a nitrogen gas atmosphere, and was then supplied to the processing apparatus to give compression deformation to the chip. .
  • the sample discharged from the apparatus is crushed and granulated in a batch apparatus, and heated again at 200 ° C. After holding, compression deformation was continuously applied by the same processing device.
  • the number of passes indicates the number of times the AM 60 chip is supplied to the roller compactor.
  • the maximum crystal grain size is refined to 15 m or less as compared with the AM60 chip which is the input material, and the temperature conditions are appropriate. It is recognized that fine graining of the AM60 chip is possible without the adhesion of the material to the roll surface by the correction. In addition, it is recognized that Vickers hardness also increases due to strong strain causation.
  • the present invention can be advantageously used as an alloy powder raw material for obtaining an alloy having both high strength and high toughness and a method for producing the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

 出発原料粉末を1対のロール2a間に通すことにより、この出発原料粉末に対して塑性加工を施し、加工後の粉体の素地を構成する金属または合金粒子の結晶粒径を微細化する。こうして得られた合金粉体原料は、その粉体の最大サイズが10mm以下、粉体の最小サイズが0.1mm以上であり、粉体の素地を構成する金属または合金粒子の最大結晶粒径が30μm以下である。

Description

合金粉体原料およびその製造方法
技術分野
[0001] 本発明は、微細な結晶粒を有する合金粉体原料およびその製造方法に関するもの である。特に、本発明は、高強度と高靭性とを併せ持つマグネシウム合金を創製する ために、原料となるマグネシウム基合金粉体の素地を構成するマグネシウム結晶粒を 微細化しようとするものである。
背景技術
[0002] マグネシウム合金は、低比重による軽量ィ匕効果が期待されるので、携帯電話ゃ携 帯音響機器の筐体をはじめ、自動車用部品、機械部品、構造用材料等に広く活用さ れている。更なる軽量ィ匕効果の発現には、マグネシウム合金の高強度化と高靭性ィ匕 が必要である。このような特性向上には、マグネシウム合金の組成'成分の最適化や 、素地を構成するマグネシウム結晶粒の微細化が有効である。特に、マグネシウム合 金素材の結晶粒微細化に関しては、これまで圧延法、押出加工法、鍛造加工法、引 き抜き加工法、 ECAE (Equal Channel Angular Extrusion)法など、塑性カ卩ェプロセス を基調とした方法が用いられて!/、た。
[0003] 特開 2001— 294966号公報 (特許文献 1)は、「マグネシウム合金薄板およびその 製造方法ならびにそれを用いた成形品」を開示して 、る。この公報に開示された方 法では、溶融したマグネシウム合金を射出成形によって板状素材とし、その板状素材 をロール圧延によって圧縮変形し、さらにこの素材に対して熱処理を施すことにより、 再結晶化によるマグネシウム結晶粒の微細化を行なっている。
[0004] 特開 2000-087199号公報 (特許文献 2)は、「マグネシウム合金圧延材の製造方 法、マグネシウム合金のプレスカ卩ェ方法、ならびにプレスカ卩ェ品」を開示している。こ の公報に開示された方法では、マグネシウム合金板材を所定の圧下率で冷間圧延し 、その後この板材に対して所定の温度域で熱処理を施すことにより、再結晶化による マグネシウム結晶粒の微細化を行なって 、る。
[0005] 特開 2001— 294966号公報および特開 2000-087199号公報に開示された方法 では、いずれも、被加工物は板状素材であり、最終的に得られるものも板材である。 そのため、これらの公報に開示された方法によって、パイプ状素材、棒状素材、異形 状断面を有する素材などを製作するのは、極めて困難である。また圧延加工の後に 熱処理工程が必要であり、経済性の面においても素材のコストアップを招くという問 題点がある。
[0006] 特開 2003— 277899号公報 (特許文献 3)は、「マグネシウム合金部材とその製造 方法」を開示している。この公報に開示された方法では、マグネシウム合金素材を溶 体化処理した後、第 1次鍛造加工、時効熱処理、第 2次鍛造加工を行なうことにより、 マグネシウム結晶粒の微細化を行なっている。この方法においても、複数回の鍛造 加工と熱処理の繰り返しが必要であり、素材のコストアップを招く。また、第 1次鍛造 加工において、素材に対して所定の加工予歪を与えることが不可欠であるので、製 品形状に制約が生まれる。さらに、この公報に開示された方法は、棒状素材やパイプ 状素材といった長尺製品の作製には不適である。
[0007] 国際公開公報 WO03Z027342A1 (特許文献 4)は、「マグネシウム基複合材料」 を開示している。この公報に開示された方法では、マグネシウム合金粉末あるいはマ グネシゥム合金チップを出発原料とし、この原料を金型臼内に投入して圧縮成形と押 出加工を繰返し行なった後に粉末あるいはチップの固化体ビレットを作り、さらにその ビレツ
トに対して熱間塑性加工を施すことにより、微細なマグネシウム結晶粒を有する高強 度マグネシウム合金を得るものである。この公報に開示された方法によれば、大きな 固化体ビレットを製造する場合、結晶粒の微細粒ィ匕をビレット内部で均一に行ない難 くなるといった問題が生じる。また、微細粒ィ匕を進行させるには、上記の圧縮'押出の 加工回数を著しく増加する必要があるために、素材コストが上昇するといつた問題も 生じる。
[0008] 特開平 5— 320715公報 (特許文献 5)は、「マグネシウム合金製部材の製造方法」 を開示している。この公報に開示された方法では、マグネシウム合金製部材の切削 加工時に排出される切粉、スクラップ、廃棄物等を圧縮固化し、それを押出加工ある いは鍛造カ卩ェすることにより、塑性カ卩工歴のあるマグネシウム合金部材を創製して ヽ る。その際、塑性加工によってマグネシウム結晶粒の微細化を促すことでマグネシゥ ム合金の強度を向上させて 、る。
[0009] 上記の方法の場合、押出加工あるいは鍛造加工後のマグネシウム合金の強度特 性を支配するマグネシウム素地の結晶粒径は、塑性加工時に原料に与える歪量だ けでなく、出発原料として用いる切粉、スクラップ、廃棄物、あるいは铸造材のマグネ シゥム素地の結晶粒径との関連性も強い。つまり、出発原料の素地を構成するマグ ネシゥムの結晶粒微細化は、最終製品となるマグネシウム合金素材の高強度化に極 めて有効である。し力しながら、ここで用いられる切粉、スクラップ、廃棄物、さらには 铸造材ではマグネシウムの結晶粒径は数百ミクロンを超える粗大なものである。よつ て、通常のマグネシウム合金の切粉、スクラップ、廃棄物、また铸造材を出発原料とし て用いた場合に得られるマグネシウム合金にぉ ヽては、著 ヽ高強度化 ·高靭性ィ匕 は望めない。
[0010] 一方、出発原料の一つであるマグネシウム合金粉体粒子におけるマグネシウム結 晶粒の微細粒ィヒ手法に着目すると、噴霧法や単ロール法などによる急冷凝固プロセ スがある。これらの方法では、溶融状態のマグネシウム合金液滴が極めて短い時間 で冷却 ·凝固する過程で結晶粒の成長を抑制し、微細な結晶粒を有するマグネシゥ ム基合金粉末粒子を製造することが可能である。
[0011] 冷却 ·凝固速度は液滴表面での抜熱量に支配される。つまりマグネシウム合金液滴 の比表面積に依存し、微細な液滴であるほど凝固速度は大きぐ短時間で凝固でき るために微細なマグネシウム結晶粒を有する。よって、急冷凝固法によって微細な結 晶粒を有するマグネシウム基合金粉末を作製することができるが、その反面、粉末粒 子径は小さくなるため、製造過程において粉体粒子が浮遊し易くなり、粉塵爆発など の危険性が急増する。また金型プレス成形による圧縮固化を考えた場合、細かい粉 末粒子では流動性が低 、ために、金型への充填率の低下や局部的な空隙の形成、 さらには粉末間での摩擦力が大きくなるために固まり難くなるといった問題が生じる。
[0012] 上記の通り、マグネシウム合金の高強靭'性ィ匕においては、素地のマグネシウム結晶 粒の微細化が有効である。そのためには先ず、铸造法やダイカスト法といった粒成長 を伴う溶解 ·凝固過程を経由しない製造方法が必要である。具体的には、粉体あるい はそれに類似した幾何学的形状を有する原料をその融点以下の温度域で成形'緻 密固化する固相プロセスの構築が課題である。
[0013] 次に、その際に原料として用いるマグネシウム基合金粉体の結晶粒の微細化を行う 必要がある。同時に、粉塵爆発を引き起こさないような比較的粗大な粉体であり、ま たプレス成形の観点力 も適切な大きさを有することが望まれる。
発明の開示
[0014] 本発明の目的は、粉末自体の粒径は大きいが、粉末の素地 (マトリクス)を構成する 金
属または合金の結晶粒が微細である合金粉体原料およびその製造方法を提供する ことである。
[0015] 本件発明者らは、上記の課題を精力的に検討し、多くの実験を繰り返すことにより、 以下に記載する課題解決手段を見出した。具体的には、素地を構成する金属または 合金粒子の最大結晶粒径が 30 m以下と微細であり、し力も粉塵爆発などの危険 性を伴わない比較的粗大な合金粉体原料およびその製造方法を見出した。
[0016] 本件発明者らはマグネシウム基合金粉体原料について実験を行なったが、本発明 は、他の材料粉末、例えばアルミニウム基合金粉体原料等にも適用可能である。な お、実験では、上記のようなマグネシウム基合金粉体原料を成形 '固化して得られる マグネシウム合金力 優れた強度と靭性とを兼ね備えることを確認した。
[0017] 本明細書中において、「金属」および「合金」という用語を使用している力 両者を厳 格に区別して使い分けているのではない。本明細書においては、「金属」または「合 金」という用語は、純金属および合金の両者を含むものとして理解すべきである。
[0018] 上記の目的を達成する本発明は、以下の通りである。
[0019] 本発明に従った合金粉体原料は、粉体の最大サイズが 10mm以下、粉体の最小 サイズが 0. 1mm以上であり、粉体の素地を構成する金属または合金粒子の最大結 晶粒径が 30 μ m以下である。
[0020] 粉体の素地を構成する金属または合金は、例えば、マグネシウムまたはマグネシゥ ム合金である。好ましくは、粉体の最大サイズ力 S6mm以下、粉体の最小サイズが 0.
5mm以上である。さらに好ましくは、粉体の素地を構成するマグネシウムまたはマグ ネシゥム合金粒子の最大結晶粒径が 15 m以下である。
[0021] 一つの実施形態では、当該粉体原料は、相対的に大きな結晶粒径を持つ出発原 料粉末に対して、塑性カ卩ェを施して相対的に小さな結晶粒径としたものである。他の 実施形態では、当該粉体原料は、最大結晶粒径が 30 m以下である素地を有する 金属または合金素材から、切削加工、切断加工、粉砕加工のいずれかの機械加工 を施すことによって採取したものである。
[0022] 一つの局面において、本発明に従った合金粉体原料の製造方法は、出発原料粉 末に対して塑性加工を施すことによって、該出発原料粉末の素地を構成する金属又 は合金粒子の結晶粒径を微細化することを特徴とする。
[0023] 塑性カ卩ェは、好ましくは、粉体の最大サイズが 10mm以下で最小サイズが 0. lmm 以上、かつ粉体の素地を構成する金属または合金粒子の最大結晶粒径が 30 m以 下になるまで行なう。あるいは、出発原料粉末の素地を構成する金属または合金粒 子の最大結晶粒径を 100%としたとき、塑性加工は、加工後の粉体の素地を構成す る金属又は合金粒子の最大結晶粒径が 20%以下となるまで行なう。
[0024] 塑性カ卩ェは、好ましくは、 300°C以下の温度で行なう。また、好ましくは、出発原料 粉末を不活性ガス雰囲気、非酸化性ガス雰囲気、真空雰囲気のいずれかの雰囲気 下で加熱する。出発原料粉末は、例えば、マグネシウムまたはマグネシウム合金粉末 である。
[0025] 一つの実施形態では、塑性加工は、出発原料粉末を 1対のロール間に通して圧縮 変形させることによって行なう。より具体的な形態として、 1対のロールは、ケース内に 配置さ
れており、上記の方法は、さらに、出発原料粉末をケース内の 1対のロール間に連続 的に投入する原料投入工程と、 1対のロール間で塑性加工された粉体をケース外へ 連続的に送り出す粉体排出工程とを備える。ケース力 送り出された粉体に対して、 引き続いて破砕機、粉砕機、粗粒機のうちの少なくとも一つの機械で処理して顆粒 状粉体とする工程をさらに備えるようにしてもょ 、。
[0026] 1対のロールを複数組設け、出発原料粉末を複数組のロール間に通して塑性加工 するようにしてもよい。 1対のロール間のクリアランスは、例えば、 2mm以下である。 [0027] 好ましくは、出発原料粉末が接触するロールの表面温度を 300°C以下とする。また 、好ましくは、 1対のロールを含む塑性加工付与領域を不活性ガス雰囲気、非酸ィ匕 性ガス雰囲気、真空雰囲気のいずれかの雰囲気にする。ロールは、例えば、その表 面に凹部を有する。
[0028] 他の実施形態では、塑性加工は、出発原料粉末を混練することによって行なう。よ り具体的な形態として、塑性加工は、 1対の回転パドルを配置したケース内に出発原 料粉末を投入して混練することによって行なう。この場合、上記の方法は、好ましくは 、出発原料粉末をケース内に連続的に投入する原料投入工程と、ケース内で出発原 料粉末を混練する混練工程と、混練後の粉体をケース外へ連続的に送り出す粉体 排出工程とを備える。ケースカゝら送り出された粉体に対して、引き続いて破砕機、粉 砕機、粗粒機のうちの少なくとも一つの機械で処理して顆粒状粉体とする工程をさら に備えるようにしてもよい。
[0029] 1対のパドルを複数組設け、出発原料粉末を複数組のパドルによって混練加工す るようにしてもよい。 1対のパドル間のクリアランスは、例えば、パドル径の 2%以下、ま たは出発原料粉末のサイズの 20%以下、または 2mm以下である。また、パドルとケ ースとの間のクリアランスは、例えば、パドル径の 2%以下、または出発原料粉末のサ ィズの 20%以下、または 2mm以下である。
[0030] 好ましくは、出発原料粉末が接触するパドルの表面温度を 300°C以下とする。また 、好ましくは、出発原料粉末が接触するケースの内壁面の温度を 300°C以下とする。 さら〖こ好ましくは、ケース内を不活性ガス雰囲気、非酸化性ガス雰囲気、真空雰囲気 の!、ずれかの雰囲気にする。
[0031] 他の局面において、本発明に従った合金粉体原料の製造方法は、板状、棒状、柱 状、塊状のいずれかの形状を有し、素地を構成する金属または合金粒子の最大結 晶粒径が 30 m以下である素材を用意する工程と、この素材に対して切削加工、切 断加工、粉砕加工等の機械力卩ェを行なって、この素材から、最大サイズが 10mm以 下で、最小サイズが 0. 1mm以上である粉体原料を採取する工程とを備える。
図面の簡単な説明
[0032] [図 1]粉体原料の種々の形状を示す図である。 [図 2]本発明に従った方法の製造工程を順に示す図である。
[図 3]連続式粉体塑性カ卩ェ装置の一例としてのローラーコンパクタ一の図解図である
[図 4]図 3に示した連続式粉体塑性加工装置における 3段目のロール対と破砕装置と を示す図である。
[図 5]連続式粉体塑性加工装置の他の例としての混練加工機を示す図である。
[図 6]図 5に示した連続式粉体塑性加工装置における 1対のパドルの他の例を示す 図である。
[図 7]図 5に示した連続式粉体塑性カ卩ェ装置における 1対のパドルのさらに他の例を 示す図である。
[図 8]表 1および表 2の試料番号 1および 4の試料の光学顕微鏡写真、および投入原 料 AM60チップの光学顕微鏡写真である。
[図 9]表 5および表 6の試料番号 23および 24の試料の光学顕微鏡写真である。 発明を実施するための最良の形態
[0033] 以下に、本発明の実施形態および作用効果を説明する。
[0034] (1)マグネシウム基合金粉体原料
(A)粉体原料の形状
マグネシウム基合金粉体原料に対して、連続的な塑性加工を施して効率的にマグ ネシゥム素地の結晶粒の微細化を促進する。このような微細化を促進するために、使 用する出発原料粉末は、粒子状,粉末状,塊状,カール状,帯状,切削粉末状,切 肖 IJカール状,切粉状のいずれかの形状を有することが望ましい。これらの形状を図 1 に示している。
[0035] 塑性カ卩ェとして、圧縮加工、せん断加工、粉砕加工、混練加工などが施されるが、 加工後に得られる粉体は、出発原料として用いた粉体に類似した粉体またはそれら の集合体であり、必要に応じて破砕加工を施すことにより次工程である圧縮成形'固 化が容易となる。
[0036] 具体的には、塑性加工後のマグネシウム基合金粉体には適切な圧縮成形性や固 化性が要求され、また金型臼内でマグネシウム基合金粉体を成形固化する場合には 、粉体の流動性や金型内での充填性を向上させる必要がある。これらの特性を向上 させるためにも、出発原料として粒子状、粉末状、塊状、カール状、帯状、切削粉末 状、切削カール状、切粉状のいずれかの形状を有するマグネシウム基合金粉体を用 、ることが望まし!/、。
[0037] (B)粉体原料の大きさ
本発明の方法によって得られるマグネシウム基合金粉体原料は、粉体の最大サイ ズが 10mm以下である。ここで最大サイズとは、その粉体の最も大きい寸法を示して おり、粒子状、粉末状、塊状、切粉であれば、最大粒子径に相当する。帯状であれ ば、幅、長さ、厚さとした場合に最も大きい長さ方向での寸法を意味する。カール状 の場合には、それを円と見立てた場合の直径に相当する。
[0038] 本発明のマグネシウム基合金粉体の最大サイズが 10mm以下の場合には、上記の 圧縮成形性、固化性、流動性、金型充填性に問題がない。より好ましい最大サイズと しては 6mm以下である。粉体の最大サイズが 10mmを超えると、これらの特性が低 下し、特に圧縮成形性が低下するために、固化体ビレットに亀裂や割れが発生する といった問題が生じる。
[0039] 他方、本発明の方法によって得られるマグネシウム基合金粉体原料は、粉体の最 小サイズが 0. 1mm以上である。ここで最小サイズとは、その粉体の最も小さい寸法 を示しており、粒子状、粉末状、塊状、切粉であれば、最小粒子径に相当する。帯状 であれば、幅、長さ、厚さとした場合に最も小さい厚さ方向での寸法を意味する。カー ル状の場合には、そのカールを構成する素材の幅あるいは厚さの小さい方の寸法と する。
[0040] 本発明のマグネシウム基合金粉体の最小サイズが 0. 1mm以上の場合には、上記 の圧縮成形性、固化性、流動性、金型充填性に問題がない。より好ましい最小サイ ズとしては 0. 5mm以上である。粉体の最小サイズが 0. 1mmを下回ると、圧縮成形 固化に関する粉体特性が低下すると同時に、粉体の浮遊による粉塵爆発を引き起こ す確率が増加すると!/、つた危険性を伴う。
[0041] 図 1に、各粉末形状に対する最大サイズ部分および最小サイズ部分を示して 、る。
[0042] (C)粉体の素地を構成するマグネシウム粒子の最大結晶粒径 本発明の方法によって得られるマグネシウム基合金粉体にぉ 、て、素地を構成す るマグネシウム粒子の最大結晶粒径は 30 m以下である。ここで最大結晶粒径とは 、結晶粒の外接円の直径である。具体的には、粉体を砥粒にて湿式研磨した後、化 学腐食 (エッチング)を行って結晶粒界を明瞭にした状態で、光学顕微鏡等によって 観察される結晶粒にぉ 、て最も大き 、寸法のものを意味する。
[0043] 粉体の強さや硬さなどの機械的特性の向上には、素地を構成する粒子の平均的な 結晶粒径を小さくするだけでなぐ最大結晶粒径を小さくすることが求められる。そこ で、本発明では、マグネシウム粒子の最大結晶粒径を適正な範囲に管理すること〖こ より、優れた強度と靭性とを兼ね備えたマグネシウム基合金素材を創製できることを 明らかにした。
[0044] 他方、素地を構成するマグネシウム粒子の最大結晶粒径が 30 μ mを超えるような 粉体原料を用いた場合、得られるマグネシウム基合金はバランスがとれた強度と靭性 を有することはなく、どちらか一方、あるいは両方の機械的特性の低下が生じる。より 好ましくは、マグネシウム基合金粉体原料におけるマグネシウム粒子の最大結晶粒 径は 15 m以下である。
[0045] 上記のような構成のマグネシウム基合金粉体原料は、出発原料粉末に対する塑性 加工または機械カ卩ェによって得られる。具体的には、一つの方法では、粉体原料は 、相対的に大きな結晶粒径を持つ出発原料粉末に対して、塑性加工を施して小さな 結晶粒径としたものである。他の方法では、粉体原料は、最大結晶粒径が 30 m以 下である素地を有する金属または合金素材から、切削加工、切断加工、粉砕加工の いずれかの機械力卩ェを施すことによって採取したものである。
[0046] マグネシウム基合金粉体原料は、本発明に従った合金粉体原料の一つの実施形 態である。本発明は、アルミニウム基合金粉体原料等の他の材質のものにも適用可 能である。この点は、後述する方法においても同様である。
[0047] (2)塑性加工によるマグネシウム基合金粉体原料の製造方法
図 2は、塑性加工によるマグネシウム基合金粉体原料の製造工程を順に示して!/、る
[0048] (A)原料の加熱工程 出発原料の連続式塑性加工にぉ 、て、加工時の原料の温度はマグネシウム結晶 粒の微細粒ィ匕と密接な関係があり、適正な温度範囲で管理する必要がある。そのた め、塑性加工前に原料粉末を事前に所定の温度で加熱保持することは重要である。 後述するような理由により、粉体の加熱保持温度は 300°C以下であることが望ましぐ より好ましくは 100— 200°Cである。
[0049] 上記のような温度範囲で投入原料に対して所定の塑性変形を付与することにより、 結晶粒の微細粒化の駆動源である強ひずみカ卩ェによる結晶粒の分断および再結晶 が顕著に進行する。常温においても連続的塑性加工は可能である力 強ひずみカロ ェによって原料に導入される転位などの欠陥が増大し、原料粉体が脆くなつて加工 過程で粉砕'微粉ィ匕するため、粉塵爆発を引き起こす確率が高くなる。
[0050] 出発原料粉末に対して 100— 200°Cの温度範囲で塑性加工を施せば、加工後の 粉体原料に延性を与えた状態で粉砕'微粉化を抑制し、同時にマグネシウム結晶粒 の微細化を
進行させることができる。他方、 300°Cを越える温度で塑性カ卩ェを行なえば、塑性加 工過程において、塑性加工用回転体と原料との焼付き'凝着現象が生じる。
[0051] 出発原料の加熱過程において、粉体表面の酸ィ匕を阻止する観点から、出発原料 粉末を、窒素やアルゴンなどの不活性ガス雰囲気、非酸化性ガス雰囲気、あるいは 真空雰囲気中で加熱するのが望ましい。例えば大気中で出発原料粉末を加熱した 場合には、粉末表面の酸ィ匕により後工程である熱間押出加工や鍛造加工後のマグ ネシゥム基合金中に酸化物が存在し、それによつて疲労強度などの特性低下を招く といった問題を生じる。
[0052] (B)原料の連続式塑性加工工程
図 3および図 4は、連続式粉体塑性カ卩ェ装置の一例であるローラーコンパクタ を 示し、図 5—図 7は、連続式粉体塑性加工装置の他の例である-一ダー(混練加工 機)を示している。まず、これらの装置構成について簡単に説明する。
[0053] 図 3に示す連続式粉体塑性加工装置は、ケース 1と、このケース 1内に配置された 多段式ロール回転体 2と、破砕装置 3と、粉末温度 ·供給量制御システム 4と、受台 5 とを備える。多段式ロール回転体 2は、出発原料粉末に対して圧延加工を施す 3組 のロール対 2a, 2b, 2cを有する。出発原料粉末は、対となったロール間を通過する 際に、圧縮変形する。
[0054] 出発原料粉末は、粉末温度'供給量制御システム 4で所定の温度および所定の量 に調整されてケース 1内に投入される。ケース 1の内部は、粉末表面の酸化防止の観 点から、不活性ガス雰囲気、非酸化性ガス雰囲気、または真空雰囲気に保たれる。
[0055] 図 4は、 3段目のロール対 2cと破砕装置 3とを示して!/、る。ロール対 2cから送り出さ れた粉体は、引き続いて破砕装置 3によって破砕されて顆粒状粉体となる。この顆粒 状粉体を再度粉末温度 ·供給量制御システム 4に戻して、多段式ロール回転体 2によ る塑性加工を繰り返してもよい。加工後の顆粒状粉体は、受台 5に収容される。
[0056] 図 5に示す連続式粉体塑性加工装置は、不活性ガス雰囲気、非酸化性ガス雰囲 気、または真空雰囲気に保たれる混練室 12と、出発原料粉末を受入れる供給口 13 と、混練加工後の粉体を送り出す排出口 14とを有するケース 11を備える。ケース 11 内には、軸受 16によって回転自在に支持され、駆動部 19によって回転駆動される 2 本の回転軸 15が配置されている。各回転軸 15には、ケース 11内に投入された出発 原料粉末を前方に送り込むスクリュー 17と、出発原料粉末に対して混練加工を施す ためのパドル 18が固定されている。ケース 11を加熱できるようにするために、ケース 11に対して、ヒータまたは加熱媒体を供給することのできるジャケットを設けてもょ ヽ 。また、回転軸 15を加熱できるようにするために、回転軸 15に対して、ヒータまたは 加熱媒体を供給できる装置を設けてもょ ヽ。
[0057] スクリュー 17によって混練室 12に送り込まれた出発原料粉末は、 1対の回転パドル 18間の隙間、および各パドル 18とケース 11の内壁面との間の隙間を通過する際に 、混練加工される。この混練加工は、出発原料粉末に対して、圧縮力、せん断力、分 散力、衝撃力、変形力、粉砕力等を与えるものである。なお、対となった回転パドル 1 8は、複数組設けられている。
[0058] 図 5に示す実施形態では、 1対のパドル 18は同じ方向に回転する。また、各パドル 18は、 3個の尖った頂点を有する形状を有している。図 6および図 7は、図 5のパドル 18とは異なった形状のパドル対を示している。図 6に示す 1対のパドル 21, 22は共 に、 2個の尖った頂点を有する形状を有しており、同じ方向に回転する。図 7に示す 1 対の
パドル 31, 32は互いに異なった形状を有するものであり、回転方向も逆向きである。 このように種々のパドルがあるが、どのようなパドルを用いて混練力卩ェを行なってもよ い。
[0059] 図 3および図 5に示す連続式粉体塑性加工装置は、いずれも、 1対の回転体を有し ており、その回転体同士の間、または回転体とケースとの間に供給される出発原料粉 体に対して圧縮加工、せん断加工、粉砕加工などの塑性加工を与え、その際に前述 したような強ひずみ加工による結晶粒の微細化を促進する。
[0060] 前述したように、塑性加工時の原料粉末の温度管理が重要であるので、原料粉末 と接触する 1対の回転体表面の温度、および Zまたはケース内壁面の温度について 適正範囲に管理する必要がある。その温度範囲は、上記の原料粉体の加熱保持温 度と同じく 300°C以下が望ましぐ 100— 200°Cがより好ましい範囲であってその理由 も前述したのと同様である。
[0061] 連続式粉体塑性加工装置において、 1対の回転体を複数組配置することにより、原 料粉体に対して強ひずみ加工を付与することが可能となる。また、塑性加工後に再 度、原料粉体を所定の温度に加熱した後、塑性加工装置に再投入して塑性加工を 施すことを複数回繰り返す方法も有効である。
[0062] 連続式粉体塑性加工装置における 1対の回転体間のクリアランス、および回転体と ケースと間のクリアランスを適正な値にすることが望ましい。図 3に示す装置の場合、 1対のロール間のクリアランスを 2mm以下にすることが好ましい。図 5に示す装置の 場合、 1対のパドル間のクリアランスを、パドル径の 2%以下、または出発原料粉末の サイズの 20%以下、または 2mm以下にすることが好ましい。さらに、パドルとケースと の間のクリアランスも、パドル径の 2%以下、または出発原料粉末の最大サイズの 20 %以下、または 2mm以下にすることが好ましい。
[0063] 1対の回転体の隙間部分、または各回転体とケースとの間の隙間部分に原料粉体 が連続的に供給されて塑性加工が施される力 クリアランスの大きさが上記のような 好ましい値を超える場合には、十分な強ひずみ加工を付与することができず、その結 果、 30 m以下のマグネシウム結晶粒が得られなくなる。投入する原料粉体の大きさ や形状によって加工度が異なる力 上記のクリアランスを原料粉体の最大サイズの 1 Z5以下に設定することで安定したマグネシウム結晶粒の連続式微細化が可能とな る。
[0064] 連続式粉体塑性加工装置にお!、て、原料粉体と接触する 1対のロール回転体の表 面性状に改良をカ卩えるようにしてもよい。具体的には、ロール回転体の表面に、凹部 を形成する。凹部として、 1つまたは複数の凹状の溝や、凹状のスリットが考えられる 力 それらを回転方向に対して垂直な方向、または平行な方向、または斜めに角度 をもって交差する方向に延在するように設けることにより、楔効果によって原料粉体を 効率的にロール回転体間に引き込むことができると同時に、強制的に強ひずみ加工 を施すことができるようになる。しかしながら、凹部を設けることは必須ではなぐこのよ うな凹状溝あるいは凹状スリットを付与しない表面を有するロール回転体であっても 塑性加工による結晶粒の微細化は可能である。
[0065] 塑性加工時における原料粉体の酸化を抑制するため、連続式粉体塑性加工装置 にお 、て回転体を含む一部あるいは全体をグロ一ボックスなどで覆 、、その雰囲気 を不活性ガス雰囲気、非酸化性ガス雰囲気、真空雰囲気などに管理する。
[0066] 出発原料粉末に対して上記のような塑性加工を施すことにより、加工後の合金粉体 原料
は、次のような特徴を有するものとなる。すなわち、合金粉体原料は、粉体の素地を 構成する合金粒子の最大結晶粒径が 30 m以下である。あるいは、出発原料粉末 の素地を構成する合金粒子の最大結晶粒径を 100%としたとき、塑性加工は、加工 後の粉体の素地を構成する合金粒子の最大結晶粒径が 20%以下となるまで行なう 。このような結晶粒微細化を実現できなければ、得られた粉体を成形固化して作製す るマグネシウム基合金素材にぉ 、て、優れた強度と靭性の両立は困難である。
[0067] (C)粉体の搬送 '排出工程
塑性加工を施した粉体は、連続的にケースカゝら排出される。複数回の塑性加工が 必要な場合には、再度、粉体を加熱工程に供給し、連続式塑性加工を行なう。排出 された粉体が大きい場合には、適当な寸法 '形状に破砕あるいは顆粒ィ匕した後に加 熱工程へ供給する。 [0068] (D)破砕 ·粗粒ィ匕 .顆粒化工程
上述の通り、本発明によるマグネシウム基合金粉体原料は、後に圧縮成形固化さ れるものである。そのため、適切な圧縮成形性、固化性、流動性、金型充填性が必 要である。これらの特性は粉体の寸法や形状に起因するので、好ましくは、連続式塑 性加工を施した後に、装置カゝら排出された粉体に対して、破砕機、粉砕機、粗粒機 などを用いて破砕処理、粗粒化処理、顆粒化処理を施して寸法 (粒子径)や形状を 均一化する。粉砕加工性の観点から、そのときの粉体の温度は常温であることが望ま しい。最終的に得られる合金粉体原料は、その粉体の最大サイズが 10mm以下で、 粉体の最小サイズが 0. 1mm以上である。粉体の形状は、例えば、顆粒状粉体であ る。
[0069] (3)機械加工によるマグネシウム基合金粉体原料の製造方法
本発明に従ったマグネシウム基合金粉体原料を、上述したような塑性加工ではなく 、機械加工によって製造することもできる。
[0070] この方法では、まず、板状、棒状、柱状、塊状の 、ずれかの形状を有し、素地を構 成するマグネシウム合金粒子の最大結晶粒径が 30 μ m以下である素材を準備する 。このような素材は、出発材料である板状、棒状、板状、塊状のマグネシウム基合金 素材に対して、圧延、押出加工、鍛造加工などの熱間あるいは温間塑性加工を施し 、強ひずみ力卩ェを付与することによって得られる。こうして素材の素地を構成するマグ ネシゥム合金粒子の最大結晶粒径を 30 m以下に微細化するのである力 好ましく はマグネシウム合金粒子の最大結晶粒径が 15 m以下になるまで微細化する。
[0071] 次に結晶粒を微細化したマグネシウム合金素材に対して、切削加工、切断加工、 粉砕加工等の機械力卩ェを行なって、この素材から、粉体の最大サイズが 10mm以下 で、粉体の最小サイズが 0. 1mm以上である粉体原料を採取する。採取した粉体の 素地を構成するマグネシウム合金粒子の最大結晶粒径は 30 m以下、好ましくは 1 5 /z m以下である。粉体のサイズに関しては、上記の機械加工条件の調整、例えば、 切削速度の調整、工具の材質'形状の選択、ボールミルで粉砕する場合の処理時間 の調整等で対応できる。
[実施例 1] 出発原料として AM60 (公称組成: Mg-6%Al-0. 5%MnZ重量基準)合金製チ ップ(長さ 3. 5mm、幅 1. 5mm、厚さ 1. 2mm、素地のマグネシウムの最大結晶粒径 350 ^ m,平均ビッカース硬さ 65. 4Hv)を準備した。また 1対のロール回転体(ロー ル直径 66mm φ、ロール幅 60mm、ロール間のクリアランス 0. 4mm)を有するローラ 一コンパクタ一を連続式粉体塑性加工装置として用いた。窒素ガス雰囲気で管理し た加熱炉で AM60チップを表 1に示す各温度で保持した後、加工装置に供給してチ ップに対して圧縮変形を与えた。装置から排出された試料を回分装置で粉砕'顆粒 化した後、同表 1に示すように再度、所定の温度で加熱保持した後に同加工装置に よって連続的に圧縮変形を付与した。
[0072] 表 1において、パス回数とは、ローラーコンパクタ一に AM60チップを供給した回数 を示す。得られた粉体試料の形状および寸法測定結果を同表 1に、研磨 ·化学腐食 後の光学顕微鏡観察による最大結晶粒径、ビッカース硬さの測定結果を表 2に示す
[0073] 本発明例である試料番号 1一 5においては、投入原料である AM60チップと比較し て、素地の最大結晶粒径は 30 m以下にまで微細化されており、温度条件を適正 化することで 15 m以下にまで更に微細粒ィ匕が可能である。また強ひずみ加工によ つてビッカース硬さも増加することが認められる。
[0074] 比較例である試料番号 6においては、投入試料 AM60チップの温度が 330°Cと適 正範囲を超えたため、塑性カ卩工過程にぉ 、てロール表面に試料チップが付着すると いった問題が生じた。
[0075] [表 1]
Figure imgf000017_0001
[0076] [表 2]
Figure imgf000018_0001
[0077] 表 1および表 2に示した本発明例である試料番号 1および 4の試料の光学顕微鏡に よる組織観察結果、および投入原料 AM60チップの光学顕微鏡による組織観察結 果を図 8に示す。
[0078] 図 8の(a)は、試料番号 1の試料を示しており、素地を構成するマグネシウム粒子の 最大結晶粒径が 26 μ mであり、画像解析の結果によると平均結晶粒径は 14. 3 m と微細粒ィ匕している。
[0079] 図 8の(b)は、試料番号 4の試料を示しており、素地を構成するマグネシウム粒子の 最大結晶粒径が 11 mと小さく、画像解析の結果によると平均結晶粒径は 7. 8 m と微細粒ィ匕している。
[0080] 図 8の(c)は、投入原料である AM60チップを示しており、素地を構成するマグネ シゥム粒子の最大結晶粒径は 350 m、最小結晶粒径は 123 m、平均結晶粒径 は 218 m ( 、ずれも画像解析の結果)である。
[0081] 上記の結果から明らかなように、本発明による連続式粉体塑性加工によって 30 m以下の微細なマグネシウム結晶粒を有する粗大なマグネシウム基合金粉体を作製 することが可能である。
[実施例 2]
出発原料として AM60 (公称組成: Mg-6%Al-0. 5%MnZ重量基準)合金製チ ップ(長さ 3. 5mm、幅 1. 5mm、厚さ 1. 2mm、素地のマグネシウムの最大結晶粒径 350 ^ m,平均ビッカース硬さ 65. 4Hv)を準備した。また 1対のロール回転体(ロー ル直径 100mm φ、ロール幅 80mm、ロール間のクリアランス 0. 5mm)を有するロー ラーコンパクタ一を連続式粉体塑性加工装置として用いた。窒素ガス雰囲気で管理 した加熱炉で AM60チップを 200°Cで加熱保持した後、加工装置に供給してチップ に対して圧縮変形を与えた。装置から排出された試料を回分装置で粉砕'顆粒化し た後、再度、所定の温度で加熱保持した後に同加工装置によって連続的に圧縮変 形を付与した。
[0082] ここでパス回数とは、ローラーコンパクタ一に AM60チップを供給した回数を示す。
得られた粉体試料について、研磨 ·化学腐食後の光学顕微鏡観察による最大結晶 粒径、ビッカース硬さの測定結果を表 3に示す。
[0083] 本発明例である試料番号 11一 16においては、投入原料である AM60チップと比 較して、素地の最大結晶粒径は 30 /z m以下にまで微細化されており、パス回数の増 カロと共に最大結晶粒径は減少し、 15 m以下にまで更に微細粒ィ匕が可能であること が認められる。同時に、強ひずみ力卩ェの蓄積によってビッカース硬さも増加する。連 続塑性加工を施した後に回分処理を行なった試料は、いずれも板状試料と顆粒状 試料との混合粉体であり、その大きさは 0. 3-4. 5mmであり、本発明が規定する適 正な寸法範囲を満足するものである。
[0084] [表 3]
Figure imgf000019_0001
[0085] [実施例 3]
表 3に示した試料番号 12および 16の試料、さらに投入原料 AM60チップを出発原 料とし、各粉体を常温で固化して直径 35mm φ、高さ 18mmの圧粉成形体を作製し た。窒素ガス雰囲気で温度 400°C、保持時間 5分の加熱の後、直ちに熱間押出(押 出比 25、ダイス温度 400°C)を行なって緻密なマグネシウム基合金棒材 (直径 7mm Φ )を作製した。得られた各押出素材力ゝら引張試験片 (平行部 15mm、直径 3. 5mm Φ )を作製し、常温において引張強度特性 (引張強さ、降伏応力、破断伸び)を評価 した。その結果を表 4に示す。
[0086] 本発明の連続式粉体塑性加工によって作製したマグネシウム最大結晶粒径が 15 μ m以
下の微細な組織構造を有する AM60マグネシウム基合金粉体を用 、て作製した押 出素材の引張強さ、降伏応力および破断伸びは、いずれも塑性加工処理を施さない 投入原料 AM60チップを用いた場合に比べて、著しく向上している。この結果から明 らかなように、本発明が提案する塑性加工法を用いたマグネシウム結晶粒の微細化 によりマグネシウム基合金の高強度化'高靭性ィ匕が両立できることが認められる。
[0087] [表 4]
Figure imgf000020_0001
[0088] [実施例 4]
出発原料として AM60 (公称組成: Mg-6%Al-0. 5%MnZ重量基準)合金製チ ップ(長さ 3. 5mm、幅 1. 5mm、厚さ 1. 2mm、素地のマグネシウムの最大結晶粒径 350 ^ m,平均ビッカース硬さ 65. 4Hv)を準備した。また 1対の回転パドル(1対の パドル間のクリアランス 0. 3mm、パドルとケースとのクリアランス 0. 3mm)を有する- ーダー (混鍊加工機)を連続式粉体塑性加工装置として用いた。窒素ガス雰囲気で 管理した加熱炉で AM60チップを表 5に示す各温度で保持した後、加工装置に供 給してチップに対して圧縮変形およびせん断加工を与えた。装置力 排出された試 料を回分装置で粉砕'顆粒化した。得られた粉体試料の形状および寸法測定結果を 同表 5に、研磨'化学腐食後の光学顕微鏡観察による最大結晶粒径、ビッカース硬さ の測定結果を表 6に示す。
[0089] 本発明例である試料番号 21— 25においては、投入原料である AM60チップと比 較して、素地の最大結晶粒径は 30 m以下にまで微細化されており、温度条件を適 正化することで 15 m以下にまで更に微細粒ィ匕が可能であることが認められる。また 強ひずみカ卩ェによってビッカース硬さも増加することが認められる。
[0090] 比較例である試料番号 26においては、投入試料 AM60チップの温度が 350°Cと 適正範囲を超えたため、塑性カ卩工過程にぉ 、てパドルおよびケース内壁面に試料 チップが付着するといつた問題が生じた。
[0091] [表 5]
Figure imgf000021_0001
[0092] [表 6]
Figure imgf000021_0002
[0093] 表 5および表 6に示した本発明例である試料番号 23および 24の試料の光学顕微 鏡による組織観察結果を図 9に示す。 V、ずれのマグネシウム基合金粉体にぉ ヽても 、マグネシウムの最大結晶粒径は 15 m以下と小さぐ本発明による連続式粉体塑 性加工によって微細なマグネシウム結晶粒を有する粗大なマグネシウム基合金粉体 を作製することが可能であることが認められる。
[実施例 5]
出発原料として AM60 (公称組成: Mg-6%Al-0. 5%MnZ重量基準)合金製チ ップ(長さ 3. 5mm、幅 1. 5mm、厚さ 1. 2mm、素地のマグネシウムの最大結晶粒径 350 ^ m,平均ビッカース硬さ 65. 4Hv)を準備した。また 1対のロール回転体(ロー ル直径 66mm φ、ロール幅 60mm、ロール間のクリアランス Omm)を有するローラー コンパクタ一(ローラー軸は片持ち式)を連続式粉体塑性加工装置として用いた。
[0094] 試料供給口の温度は 170°Cとし、窒素ガス雰囲気で管理した加熱炉で AM60チッ プを 200°Cで保持した後、加工装置に供給してチップに対して圧縮変形を与えた。 装置カゝら排出された試料を回分装置で粉砕 ·顆粒ィ匕した後、再度、 200°Cで加熱保 持した後に同加工装置によって連続的に圧縮変形を付与した。
[0095] ここでパス回数とは、ローラーコンパクタ一に AM60チップを供給した回数を示す。
得られた粉体試料の形状および寸法測定結果を表 7に、研磨'化学腐食後の光学顕 微鏡観察による最大結晶粒径、ピッカース硬さの測定結果を表 8に示す。
[0096] 本発明例である試料番号 31— 36の試料においては、投入原料である AM60チッ プと比較して、最大結晶粒径は 15 m以下にまで微細化されており、温度条件を適 正化することでロール表面への材料の付着を伴うことなく AM60チップの微細粒ィ匕が 可能であることが認められる。また強ひずみカ卩ェによってビッカース硬さも増加するこ とが認められる。
[0097] [表 7]
Figure imgf000022_0001
[0098] [表 8]
Figure imgf000022_0002
産業上の利用可能性
この発明は、高強度と高靭性とを併せ持つ合金を得るための合金粉体原料および その製造方法として有利に利用され得る。

Claims

請求の範囲
[1] 粉体の最大サイズが 10mm以下、粉体の最小サイズが 0. 1mm以上であり、粉体の 素地を構成する金属または合金粒子の最大結晶粒径が 30 μ m以下であることを特 徴とする、合金粉体原料。
[2] 前記粉体の素地を構成する金属または合金は、マグネシウムまたはマグネシウム合 金である、請求項 1に記載の合金粉体原料。
[3] 前記粉体の最大サイズが 6mm以下、粉体の最小サイズが 0. 5mm以上である、請 求項 2に記載の合金粉体原料。
[4] 前記粉体の素地を構成するマグネシウムまたはマグネシウム合金粒子の最大結晶粒 径が 15 m以下である、請求項 2または 3に記載の合金粉体原料。
[5] 当該粉体原料は、相対的に大きな結晶粒径を持つ出発原料粉末に対して、塑性カロ ェを施して相対的に小さな結晶粒径としたものである、請求項 1一 4のいずれかに記 載の合金粉体原料。
[6] 当該粉体原料は、最大結晶粒径が 30 μ m以下である素地を有する金属または合金 素材から、切削加工、切断加工、粉砕加工のいずれかの機械加工を施すことによつ て採取したものである、請求項 1一 4の 、ずれかに記載の合金粉体原料。
[7] 出発原料粉末に対して塑性加工を施すことによって、該出発原料粉末の素地を構成 する金属又は合金粒子の結晶粒径を微細化することを特徴とする、合金粉体原料の 製造方法。
[8] 前記塑性カ卩ェは、粉体の最大サイズが 10mm以下で最小サイズが 0. 1mm以上、か つ粉体の素地を構成する金属または合金粒子の最大結晶粒径が 30 μ m以下になる まで行なう、請求項 7に記載の合金粉体原料の製造方法。
[9] 出発原料粉末の素地を構成する金属または合金粒子の最大結晶粒径を 100%とし たとき、前記塑性加工は、加工後の粉体の素地を構成する金属又は合金粒子の最 大結晶粒径が 20%以下となるまで行なう、請求項 7または 8に記載の合金粉体原料 の製造方法。
[10] 前記塑性加工は、 300°C以下の温度で行なう、請求項 7— 9のいずれかに記載の合 金粉体原料の製造方法。
[11] 前記出発原料粉末を不活性ガス雰囲気、非酸化性ガス雰囲気、真空雰囲気のいず れかの雰囲気下で加熱する、請求項 7— 10のいずれかに記載の合金粉体原料の製 造方法。
[12] 前記出発原料粉末は、マグネシウムまたはマグネシウム合金粉末である、請求項 7—
11の、、ずれかに記載の合金粉体原料の製造方法。
[13] 前記塑性加工は、出発原料粉末を 1対のロール間に通して圧縮変形させることによ つて行なう、請求項 7— 12のいずれかに記載の合金粉体原料の製造方法。
[14] 前記 1対のロールは、ケース内に配置されており、前記方法は、さらに、出発原料粉 末を前記ケース内の 1対のロール間に連続的に投入する原料投入工程と、前記 1対 のロール間で塑性加工された粉体を前記ケース外へ連続的に送り出す粉体排出ェ 程とを備える、請求項 13に記載の合金粉体原料の製造方法。
[15] 前記ケースカゝら送り出された粉体に対して、引き続いて破砕機、粉砕機、粗粒機のう ちの少なくとも一つの機械で処理して顆粒状粉体とする工程をさらに備える、請求項
14に記載の合金粉体原料の製造方法。
[16] 前記 1対のロールが複数組設けられ、前記出発原料粉末は前記複数組の
ロール間を通って塑性カ卩ェされる、請求項 13— 15のいずれかに記載の合金粉体原 料の製造方法。
[17] 前記 1対のロール間のクリアランスは、 2mm以下である、請求項 13— 16のいずれか に記載の合金粉体原料の製造方法。
[18] 前記出発原料粉末が接触する前記ロールの表面温度を 300°C以下とする、請求項 1
3— 17の 、ずれかに記載の合金粉体原料の製造方法。
[19] 前記 1対のロールを含む塑性加工付与領域を不活性ガス雰囲気、非酸化性ガス雰 囲気、真空雰囲気のいずれかの雰囲気にする、請求項 13— 18のいずれかに記載 の合金粉体原料の製造方法。
[20] 前記ロールは、その表面に凹部を有する、請求項 13— 19のいずれかに記載の合金 粉体原料の製造方法。
[21] 前記塑性加工は、出発原料粉末を混練することによって行なう、請求項 7— 12のい ずれかに記載の合金粉体原料の製造方法。
[22] 前記塑性加工は、 1対の回転パドルを配置したケース内に出発原料粉末を投入して 混練することによって行なう、請求項 21に記載の合金粉体原料の製造方法。
[23] 出発原料粉末を前記ケース内に連続的に投入する原料投入工程と、前記ケース内 で出発原料粉末を混練する混練工程と、混練後の粉体をケース外へ連続的に送り 出す粉体排出工程とを備える、請求項 22に記載の合金粉体原料の製造方法。
[24] 前記ケースカゝら送り出された粉体に対して、引き続いて破砕機、粉砕機、粗粒機のう ちの少なくとも一つの機械で処理して顆粒状粉体とする工程をさらに備える、請求項
23に記載の合金粉体原料の製造方法。
[25] 前記 1対のパドルが複数組設けられ、前記出発原料粉末は前記複数組のパドルによ つて混練加工される、請求項 22— 24の 、ずれかに記載の合金粉体原料の製造方 法。
[26] 前記 1対のパドル間のクリアランスは、パドル径の 2%以下、または出発原料粉末の サイズの 20%以下、または 2mm以下である、請求項 22— 25のいずれかに記載の 合金粉体原料の製造方法。
[27] 前記パドルと前記ケースとの間のクリアランスは、パドル径の 2%以下、または出発原 料粉末のサイズの 20%以下、または 2mm以下である、請求項 22— 26のいずれか に記載の合金粉体原料の製造方法。
[28] 出発原料粉末が接触する前記パドルの表面温度を 300°C以下とする、請求項 22—
27の 、ずれかに記載の合金粉体原料の製造方法。
[29] 出発原料粉末が接触する前記ケースの内壁面の温度を 300°C以下とする、請求項 2
2— 28のいずれかに記載の合金粉体原料の製造方法。
[30] 前記ケース内を不活性ガス雰囲気、非酸化性ガス雰囲気、真空雰囲気の!/ヽずれカゝ の雰囲気にする、請求項 22— 29のいずれかに記載の合金粉体原料の製造方法。
[31] 板状、棒状、柱状、塊状のいずれかの形状を有し、素地を構成する金属または合金 粒子の最大結晶粒径が 30 μ m以下である素材を用意する工程と、
前記素材に対して切削加工、切断加工、粉砕加工等の機械加工を行なって、この 素材から、最大サイズが 10mm以下で、最小サイズが 0. 1mm以上である粉体原料 を採取する工程とを備える、合金粉体原料の製造方法。
PCT/JP2004/006967 2004-03-15 2004-05-21 合金粉体原料およびその製造方法 WO2005087410A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04745278A EP1726385A4 (en) 2004-03-15 2004-05-21 ALLOY POWDER MATERIAL AND METHOD FOR THE PRODUCTION THEREOF
US10/592,877 US7909948B2 (en) 2004-03-15 2004-05-21 Alloy powder raw material and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004072411A JP3884741B2 (ja) 2004-03-15 2004-03-15 マグネシウム合金顆粒状粉体原料の製造方法
JP2004-072411 2004-03-15

Publications (1)

Publication Number Publication Date
WO2005087410A1 true WO2005087410A1 (ja) 2005-09-22

Family

ID=34975398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006967 WO2005087410A1 (ja) 2004-03-15 2004-05-21 合金粉体原料およびその製造方法

Country Status (6)

Country Link
US (1) US7909948B2 (ja)
EP (1) EP1726385A4 (ja)
JP (1) JP3884741B2 (ja)
KR (1) KR20060135813A (ja)
CN (1) CN100553826C (ja)
WO (1) WO2005087410A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348349A (ja) * 2005-06-16 2006-12-28 Katsuyoshi Kondo マグネシウム合金粉体原料、高耐力マグネシウム合金、マグネシウム合金粉体原料の製造方法および高耐力マグネシウム合金の製造方法
JP4185549B1 (ja) * 2007-07-31 2008-11-26 株式会社栗本鐵工所 押出用ビレットの製造方法およびマグネシウム合金素材の製造方法
JP4372827B1 (ja) 2008-06-20 2009-11-25 株式会社栗本鐵工所 マグネシウム合金素材の製造方法
BRPI0803956B1 (pt) * 2008-09-12 2018-11-21 Whirlpool S.A. composição metalúrgica de materiais particulados e processo de obtenção de produtos sinterizados autolubrificantes
CN103014184B (zh) * 2012-12-11 2016-06-29 天津市金星空气压缩机制造股份有限公司 一种红糖破碎滚压成型机
CN105345016B (zh) * 2015-12-08 2017-08-01 南京中锗科技有限责任公司 一种镁合金粉碎系统及方法
CN106925770A (zh) * 2015-12-30 2017-07-07 西门子公司 3d打印用粉末及3d打印方法
JP6858371B2 (ja) * 2017-04-27 2021-04-14 国立研究開発法人産業技術総合研究所 粉体とその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0390530A (ja) * 1989-08-24 1991-04-16 Pechiney Electrometall 機械的強度の高いマグネシウム合金及び該合金の急速凝固による製造方法
JPH04231435A (ja) * 1990-06-01 1992-08-20 Pechiney Electrometall 機械的強度の高いストロンチウム含有マグネシウム合金及び急速凝固によるその製造方法
JPH10195502A (ja) * 1997-01-09 1998-07-28 Ritsumeikan ステンレス鋼粉末、ステンレス鋼部材及び該ステンレス鋼部材の製造方法
JP2002129208A (ja) * 2000-10-19 2002-05-09 Nagoya Industrial Science Research Inst 微細結晶材料の製造方法
JP2002249801A (ja) * 2001-02-26 2002-09-06 National Institute Of Advanced Industrial & Technology 高耐食性マグネシウム合金および高耐食性マグネシウム材料の作製方法
JP2002256307A (ja) * 2001-02-27 2002-09-11 National Institute Of Advanced Industrial & Technology 急冷凝固を利用したマグネシウム合金粉末の作製およびその成形方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2791498A (en) * 1955-12-09 1957-05-07 Hoganasmetoder Ab Method of improving metal powders
US2873225A (en) * 1957-05-20 1959-02-10 Adams Edmond Magnetic flake core
US3179516A (en) * 1962-04-27 1965-04-20 Dow Chemical Co Direct powder rolling
GB1032482A (en) 1965-01-26 1966-06-08 Dow Chemical Co Method of preparing spheroidal, atomized pellets of magnesium-base alloy for direct powder rolling
US3407062A (en) * 1967-01-05 1968-10-22 Dow Chemical Co Method of impact extruding
DE3031369C2 (de) * 1980-08-20 1987-01-02 Pyrotechnische Fabrik F. Feistel GmbH + Co KG, 6719 Göllheim Pyrotechnische Ladung aus Nebelsatz und Anzündsatz und Verfahren zur Herstellung der Nebelmischung und des Anzündsatzes
JP3221064B2 (ja) 1992-05-26 2001-10-22 マツダ株式会社 マグネシウム合金製部材の製造方法
JP2676466B2 (ja) 1992-09-30 1997-11-17 マツダ株式会社 マグネシウム合金製部材およびその製造方法
US5292186A (en) * 1993-06-09 1994-03-08 Kurimoto, Ltd. Continuous kneading machine
JPH08269589A (ja) 1995-03-30 1996-10-15 Agency Of Ind Science & Technol 超塑性az91マグネシウム合金の製造方法
JP3523500B2 (ja) 1998-09-11 2004-04-26 シャープ株式会社 マグネシウム合金のプレス部品及びその製造方法
JP4776751B2 (ja) 2000-04-14 2011-09-21 パナソニック株式会社 マグネシウム合金薄板の製造方法
JP2001303150A (ja) 2000-04-21 2001-10-31 Toyota Motor Corp 鋳造用金属粒子およびその製造方法並びに金属射出成形法
JP2002317236A (ja) 2001-04-17 2002-10-31 Colcoat Kk マグネシウム合金成形材料、その製法および成型品の製造方法
JP3668811B2 (ja) 2001-09-25 2005-07-06 株式会社東京大学Tlo マグネシウム基複合材料の製造方法
JP3768909B2 (ja) 2002-03-25 2006-04-19 株式会社栗本鐵工所 マグネシウム合金部材とその製造方法
JP2003313623A (ja) 2002-04-25 2003-11-06 Unix Kk Mg合金ならびに、それからなる部材ならびにそれらの製造方法
JP4231435B2 (ja) 2004-03-09 2009-02-25 株式会社日立製作所 ナビゲーション端末装置およびその通信制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0390530A (ja) * 1989-08-24 1991-04-16 Pechiney Electrometall 機械的強度の高いマグネシウム合金及び該合金の急速凝固による製造方法
JPH04231435A (ja) * 1990-06-01 1992-08-20 Pechiney Electrometall 機械的強度の高いストロンチウム含有マグネシウム合金及び急速凝固によるその製造方法
JPH10195502A (ja) * 1997-01-09 1998-07-28 Ritsumeikan ステンレス鋼粉末、ステンレス鋼部材及び該ステンレス鋼部材の製造方法
JP2002129208A (ja) * 2000-10-19 2002-05-09 Nagoya Industrial Science Research Inst 微細結晶材料の製造方法
JP2002249801A (ja) * 2001-02-26 2002-09-06 National Institute Of Advanced Industrial & Technology 高耐食性マグネシウム合金および高耐食性マグネシウム材料の作製方法
JP2002256307A (ja) * 2001-02-27 2002-09-11 National Institute Of Advanced Industrial & Technology 急冷凝固を利用したマグネシウム合金粉末の作製およびその成形方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1726385A4 *

Also Published As

Publication number Publication date
US20080038573A1 (en) 2008-02-14
EP1726385A1 (en) 2006-11-29
EP1726385A4 (en) 2009-05-27
CN100553826C (zh) 2009-10-28
US7909948B2 (en) 2011-03-22
JP2005256133A (ja) 2005-09-22
CN1942267A (zh) 2007-04-04
KR20060135813A (ko) 2006-12-29
JP3884741B2 (ja) 2007-02-21

Similar Documents

Publication Publication Date Title
CN1283830C (zh) 钽溅蚀靶和形成金属件的方法
Fatemi-Varzaneh et al. Processing of AZ31 magnesium alloy by a new noble severe plastic deformation method
JP6506953B2 (ja) 性能強化された金属材料の製造方法
EP1897638A1 (en) Raw magnesium-alloy powder material, magnesium alloy with high proof stress, process for producing raw magnesium-alloy powder material, and process for producing magnesium alloy with high proof stress
Guo et al. Reciprocating extrusion of rapidly solidified Mg–6Zn–1Y–0.6 Ce–0.6 Zr alloy
JP3884741B2 (ja) マグネシウム合金顆粒状粉体原料の製造方法
JP2009090359A (ja) ねじり前方押出し装置およびねじり前方押出し法
CN110343886A (zh) 一种多晶粒尺度强化铝合金材料的制备方法
Kore et al. Formability of aluminium sheets manufactured by solid state recycling
CN110629059B (zh) 一种异构高熵合金材料及其制备方法
KR20100083183A (ko) 마그네슘 합금 소재의 제조 방법
CN115287486B (zh) 一种混合铝屑固态再生变形铝合金的制备方法
JP2005000992A (ja) 材料の偏熱ねじり押出し法
Sun et al. Synthesis and consolidation of TiAl by MA–PDS process from sponge-Ti and chip-Al
JP2006152446A (ja) 合金粉体原料の製造方法
JP3860825B2 (ja) マグネシウム合金粉の結晶粒微細化装置
JPH06330214A (ja) 高硬度耐摩耗性アルミニウム粉末合金およびその製造方法
KR101074972B1 (ko) 압출용 빌릿의 제조 방법 및 마그네슘 합금 소재의 제조 방법
JP2006097085A (ja) 粉体の結晶粒微細化
CN115161528B (zh) 一种Mg-RE基耐高温高性能镁合金的制备方法
Volokitina et al. ECAP PROCESSED SILUMIN AK9 MODIFIED BY LIGATURE Al ALLOY: MICROSTRUCTURE AND MECHANICAL PROPERTIES.
Chang et al. Effects of temperature and grain refinement on the closed-die forging of a micro gear
US20110189497A1 (en) Pure-aluminum structural material with high specific strength consolidated by giant-strain processing method
CN116590564A (zh) 一种铝基复合材料及其制备方法
CN117626075A (zh) 一种超高强度镁合金板材及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480042439.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067018751

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004745278

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2004745278

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10592877

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10592877

Country of ref document: US