WO2005083004A1 - 難燃性樹脂組成物 - Google Patents

難燃性樹脂組成物 Download PDF

Info

Publication number
WO2005083004A1
WO2005083004A1 PCT/JP2005/002904 JP2005002904W WO2005083004A1 WO 2005083004 A1 WO2005083004 A1 WO 2005083004A1 JP 2005002904 W JP2005002904 W JP 2005002904W WO 2005083004 A1 WO2005083004 A1 WO 2005083004A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
flame
inorganic particles
mass
retardant resin
Prior art date
Application number
PCT/JP2005/002904
Other languages
English (en)
French (fr)
Inventor
Makoto Soyama
Kazuhiko Inoue
Masatoshi Iji
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to US10/590,237 priority Critical patent/US8138256B2/en
Priority to DE112005000457T priority patent/DE112005000457B4/de
Publication of WO2005083004A1 publication Critical patent/WO2005083004A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/21Interferons [IFN]
    • A61K38/215IFN-beta
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/249Interferons

Definitions

  • the present invention relates to a flame-retardant resin composition and a flame-retardant molding material or molded article using the same.
  • Resin compositions used in the field of electric and electronic devices are required to have a high degree of flame retardancy from the viewpoint of safety, and are being widely researched and developed as "flame retardant resins".
  • Polycarbonate-based resins have excellent heat resistance and electrical properties, and are actively studied as resin materials for flame-retardant resin compositions.
  • Patent Document 1 discloses a flame-retardant resin composition in which inorganic particles such as silica are blended with an aromatic polycarbonate. Specifically, the shape of the inorganic particles to be mixed is devised to improve the flame retardancy of the aromatic polycarbonate.
  • Patent Document 2 discloses a flame-retardant material containing particles having a particle size of 10 lOOnm obtained by pulverizing an inorganic porous material supporting a flame retardant.
  • an additive flame retardant selected from metals, metal salts, and inorganic compounds is supported on porous glass or a porous body obtained by firing an inorganic material such as silicon oxide or aluminum oxide.
  • This is a flame-retardant resin material that is extruded biaxially with a resin such as polycarbonate or polypropylene, and simultaneously pulverized and compounded. here It is stated that additives are well dispersed in this material, and flame retardancy is achieved.
  • Patent Document 1 JP 2004-010825 A
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2001-152030
  • the present invention has been made in view of the above problems, and has as its object to stably obtain a polycarbonate resin composition having excellent flame retardancy.
  • the inorganic particles include particles comprising a composite of silicon dioxide and aluminum oxide, and A flame-retardant resin composition having a% particle size (D50) of 110 / im is provided. Further, the present invention is the above-mentioned flame-retardant resin composition, wherein the inorganic particles are contained in the entire composition in an amount of 1 to 60% by mass.
  • the flame-retardant resin composition of the present invention contains a polycarbonate resin and inorganic particles, and (i) a resin containing at least a composite of silicon dioxide and aluminum oxide as the inorganic particles; And (ii) characterized in that the particle size of the inorganic particles is controlled to a specific range.
  • silica particles and alumina particles Although there has been an example of a technique for blending in a fat, studies have not been made on the use of particles containing a composite of silicon dioxide and aluminum oxide. In the present invention, by using inorganic particles containing such a composite, excellent flame retardancy, which cannot be obtained by a single silicon dioxide particle, a single aluminum oxide particle, or a simple mixture thereof, can be obtained. It has been realized.
  • the inorganic particles in the present invention preferably further include, in addition to the particles containing the above-described complex, an anoreminium oxide particle and a silicon dioxide particle.
  • the aluminum oxide particles and the silicon dioxide particles used here are particles containing aluminum oxide and silicon dioxide as main components, respectively, and may contain trace components in addition.
  • a preferred example of the inorganic particles is fly ash.
  • Fly ash is a general term for combustion ash generated at thermal power plants, especially fine coal ash produced at thermal power plants that burn coal using the pulverized coal combustion method.
  • JP-A-2000-336254 discloses a technique in which fly ash is added to a thermoplastic polyester resin for the purpose of improving the mechanical strength of the thermoplastic polyester resin. This Japanese Patent 2000
  • No. 336254 discloses a polyester resin composition comprising 30 99 parts by mass of a thermoplastic polyester resin and 70 parts by mass of fly ash, wherein the specific surface area of the fly ash is 1000 8000 cm 2 / g. It is supposed to be.
  • the commercially available inorganic particles such as fly ash disclosed in Japanese Patent Publication No. 2000-336254 have a D50 of more than 10 xm.
  • D50 is the particle size at which the integrated value in mass percentage becomes 50%.
  • the polycarbonate resin since the D50 of the inorganic particles is controlled to 10 ⁇ m or less by a classification process or the like, the polycarbonate resin The synergistic action of these and inorganic particles has made it possible for the first time to achieve a stable and excellent flame retardancy while suppressing a decrease in formability.
  • a compound containing at least a composite of silicon dioxide and aluminum oxide is used as the inorganic particles, and the particles of the inorganic particles are used. Since the diameter is controlled to a specific range, excellent flame retardancy can be stably realized.
  • FIG. 1 is a graph showing the relationship between D50 of fly ash and flame retardancy.
  • FIG. 2 is a graph showing the relationship between the amount of fly ash and flame retardancy.
  • FIG. 3 is a graph showing the particle size distribution of fly ash (FA-A4).
  • FIG. 4 is a graph showing the particle size distribution of fly ash (FA-A5).
  • FIG. 5 is a graph showing the particle size distribution of fly ash (FA-A8).
  • FIG. 6 is a graph showing the particle size distribution of fly ash (FA-A9).
  • FIG. 7 is a graph showing the particle size distribution of fly ash (FA-A10).
  • FIG. 8 is a graph showing the particle size distribution of fly ash (FA—Al 1).
  • the flame-retardant resin composition of the present invention is obtained by blending a polycarbonate resin with inorganic particles having a particle diameter in a specific range, and the inorganic particles include a composite of silicon dioxide and aluminum oxide. It is characterized by the following. With such a configuration, the flame retardancy of the polycarbonate-based resin composition is improved, and the moldability of the polycarbonate-based resin is maintained.
  • the polycarbonate resin in the present invention is a resin containing a repeating unit represented by the following general formula (1). [0022] [Formula 1]
  • R 1 and R 2 each represent an alkyl group having 16 carbon atoms or an aryl group having 6 to 12 carbon atoms, and may be the same or different, and m and n Are integers from 0 to 4 respectively.
  • Z is a single bond, an alkylene group or alkylidene group having 1 to 6 carbon atoms, a cycloalkylene group or cycloalkylidene group having 5 to 20 carbon atoms, a fluorenylidene group, or ⁇ ⁇ , _S-, -SO-,- SO—shows a young bond ]
  • Polycarbonate resins are polymers produced by a phosgene method in which a dihydroxydiaryl compound is reacted with phosgene, or a transesterification method in which a dihydroxydiaryl compound is reacted with an ester carbonate such as diphenyl carbonate.
  • a typical example is a polycarbonate resin manufactured from 2,2_bis (4-hydroxyphenyl) propane (bisphenol A).
  • dihydroxydiaryl compound examples include, in addition to bisphenol A, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2_bis (4 —Hydroxyphenyl) butane, 2,2_bis (4-hydroxyphenyl) octane, bis (4-hydroxyphenyl) phenylmethane, 2,2-bis (4-hydroxy_3-methylphenyl) propane, 2 2,2-bis (4-hydroxy-3-tert-butylphenyl) propane, 2,2-bis (4-hydroxy-3-bromophenylinole) propane, 2,2-bis (4-hydroxy_3,5-dibromophenylinole) propane Bis (hydroxyaryl) alkanes such as 2,2_bis (4-hydroxy-3,5-dichloromouth feninole) propane; 1,1-bis (4-hydroxyphenyl) cyclopentane Bis (hydroxyaryl) cycloalkanes such as 1,1,1-bis
  • piperazine dipiperidyl hydroquinone, resorcinol, 4,4 ; -dihydroxyl xidiphenyl, hydrinic quinone, and the like may be used as a mixture.
  • Phenyl compounds having three or more valences include phloroglucin, 4,6-dimethyl-2,4,6-tris (4-hydroxyphenyl) heptene, 2,4,6-dimethyl-2,4,6-tris (4-hydroxy Phenyl) heptane, 1,3,5-tris (4-hydroxyphenyl) benzene, 1,1,1-tris (4-hydroxyphenyl) ethane, 2,2-bis [4,4-di (4- [Hydroxyphenyl) cyclohexyl] propane and the like.
  • the polycarbonate resin preferably has a number average molecular weight of 10,000 to 100,000.
  • the number average molecular weight of the polycarbonate resin is 10,000 or more, a resin composition having excellent mechanical strength or flame retardancy can be stably obtained.
  • the number average molecular weight of the polycarbonate resin is 100,000 or less, the viscosity of the resin composition is in an appropriate range, and the moldability is improved.
  • the polycarbonate-based resin of the present invention is produced from the above-mentioned raw materials by a conventionally known method, using a molecular weight regulator, a catalyst and the like, if necessary.
  • the water content of the polycarbonate resin is not particularly limited, but is preferably, for example, 100 ppm or less. When the water content is within this range, the production stability of the resin composition is improved.
  • the content of the polycarbonate-based resin is preferably 10% by mass or more, more preferably 40% by mass or more, even more preferably 60% by mass or more, based on the total amount of the flame-retardant resin composition. It is 99% by mass or less, more preferably 95% by mass or less, even more preferably 80% by mass or less. By having such a content, together with the action of the inorganic particles, Excellent flame retardancy is obtained.
  • the inorganic particles used in the present invention mean particles mainly composed of an inorganic component, and include inorganic particles containing a trace amount of an organic component.
  • the inorganic particles used in the present invention are particles containing a composite of silicon dioxide and aluminum oxide.
  • the complex of silicon dioxide and aluminum oxide means particles containing a phase of silicon dioxide and a phase of aluminum oxide.
  • particles containing a composite oxide of silicon and aluminum particles obtained by fusing silicon dioxide particles and aluminum oxide particles, and the like.
  • the inorganic particles preferably include aluminum oxide particles and silicon dioxide particles in addition to the particles of the composite.
  • a flame-retardant resin composition having excellent flame retardancy can be stably obtained.
  • Examples of the inorganic particles having such a configuration include particles containing a composite oxide of silicon and aluminum, and inorganic particles made of a mixture of silica particles and alumina particles.
  • Examples of such inorganic particles having a low acquisition cost include, but are not particularly limited to, fly ash.
  • Incineration ash obtained from garbage incinerators and the like is combustion ash obtained by burning various things, whereas fly ash is coal-fired ash generated in a coal-fired boiler of a thermal power plant.
  • fly ash is coal-fired ash generated in a coal-fired boiler of a thermal power plant.
  • the raw materials have distinct characteristics, and contain less heavy metals other than silicon and aluminum, compared to the combustion ash generated in garbage incinerators.
  • the flame-retardant resin composition of the present invention has sufficient flame retardancy even if it does not contain a flame retardant such as a phosphorus-based flame retardant or a halogen-based flame retardant. It is preferable from the viewpoint of environmental protection that no phosphorus-based or halogen-based flame retardant is used.
  • the D50 of the inorganic particles in the present invention is preferably 1 / im or more, more preferably 3 / im or more. Also, this D50 is preferably 10 ⁇ or less, more preferably 7 ⁇ or less.
  • D50 is 1 ⁇ m or more
  • the flame retardancy of the resin composition is improved.
  • scattering of inorganic particles is suppressed, and workability and handling stability in the resin composition manufacturing process are improved.
  • the flame retardancy of the resin composition is further improved. Further, scattering of inorganic particles is further suppressed, and workability and handling stability in the production process of the resin composition are further improved.
  • the inorganic particles in the present invention desirably satisfy the particle size conditions defined as follows.
  • the inorganic particles contain particles having a particle size of 20 ⁇ m or less, preferably at least 70 cumulative% (number cumulative), more preferably at least 90 cumulative%.
  • the proportion of particles having a particle size of 20 ⁇ or less is 70 cumulative% (number cumulative) or more based on the entire inorganic particles, the flame retardancy is improved. Further, a decrease in the moldability of the resin composition is suppressed.
  • the proportion of particles having a particle size of 20 ⁇ m or less is 90 cumulative% or more, the flame retardancy of the resin composition is further improved. Further, a decrease in the moldability of the resin composition is further suppressed.
  • the particle diameter of the inorganic particles can be measured by a method such as observation of a cross section of an article obtained by using the resin composition by an electron microscope.
  • an ultra-thin section of the resin composition is observed using a transmission electron microscope, or a cut surface of the resin composition is observed using a scanning electron microscope, and a photograph is taken. From the photograph, the individual particle diameter is measured for 100 or more particles in the resin composition. The particle size of each particle is determined by calculating the area S of the particle and calculating from (4SZ TT) 1/2 . The particle size of the inorganic particles can also be measured by a light scattering method described later. And essentially equivalent values are obtained.
  • the content of total silicon dioxide in the inorganic particles is preferably 44 to 85% by mass based on the total amount of the inorganic particles. It is preferably 40% by mass. Further, the total amount of the total silicon dioxide and the total aluminum oxide contained in the inorganic particles is preferably at least 60% by mass based on the total amount of the inorganic particles. It is preferable that silicon dioxide and aluminum oxide are contained in the inorganic particles as a composite.
  • fly ash contains 3 to 45% by weight of mullite, which is a complex of silicon dioxide and aluminum oxide (Environmental Technology Association of Japan; Fly Ash Association of Japan, Coal Ash Handbook, 2000). Again, fly ash is preferred.
  • the content of the inorganic particles in the flame-retardant resin composition is not particularly limited, but is preferably 1% by mass or more, more preferably 5% by mass or more, based on the whole resin composition. More preferably, it is at least 20% by mass.
  • the content of the inorganic particles is preferably 60% by mass or less, more preferably 50% by mass or less, and further preferably 40% by mass or less.
  • the content of the inorganic particles is 1% by mass or more, the effect of improving the flame retardancy of the resin composition can be stably obtained. Further, it is possible to stably suppress a decrease in the moldability of the resin composition. When the content of the inorganic particles is 5% by mass or more, the effect of improving the flame retardancy of the resin composition can be more stably obtained. When the content of the inorganic particles is 10% by mass or more, the flame retardancy of the resin composition is further improved.
  • the content of the inorganic particles is 65% by mass or more, injection molding tends to be difficult. However, when the content is 60% by mass or less, the injection moldability of the resin composition becomes good, and the flame retardancy of the resin composition increases. The property is also good.
  • the content of the inorganic particles is 50% by mass or less, the ratio of the resin component or the inorganic particles in the resin composition becomes appropriate, so that the flame retardancy is improved. Further, the molding of the resin composition is further facilitated.
  • the content of the inorganic particles is 40% by mass or less, the flame retardancy of the resin composition is further improved, and the moldability of the resin composition is further improved.
  • fly ash hereinafter abbreviated as "8" as appropriate
  • the inorganic particles it is preferable to use fly ash (hereinafter abbreviated as "8" as appropriate) as the inorganic particles.
  • FA is a dust collector in a thermal power plant or the like that burns coal in a pulverized coal combustion system. This is the finely divided coal combustion ash that is collected.
  • the FA typically has the following components.
  • ferric oxide Fe 2 O 3
  • titanium oxide TiO 2
  • magnesium oxide M
  • the content of silicon dioxide (silica: SiO 2) is preferably
  • the content of aluminum oxide is preferably at least 10% by mass.
  • the content of aluminum oxide is within this range, the effect of improving the flame retardancy of the resin composition can be stably obtained by synergistic action with the polycarbonate-based resin composition.
  • the total content of silicon dioxide and aluminum oxide is preferably at least 60% by mass, more preferably at least 70% by mass, and even more preferably at least 80% by mass. is there. Further, the total content of silicon dioxide and aluminum oxide is preferably 99% by mass or less, more preferably 95% by mass or less. When the total content of silicon dioxide and anorenium oxide is within this range, the effect of improving the flame retardancy of the resin composition can be stably obtained due to the synergistic action with the polycarbonate resin composition.
  • silicon dioxide and aluminum oxide partly form a composite oxide, and partly form particles having a multiphase structure consisting of a silicon dioxide phase and an aluminum oxide phase in the particles. are doing.
  • Ferric oxide Fe 2 O 3
  • titanium oxide TiO 2
  • magnesium oxide MgM
  • FIG. 3 is a graph showing the particle size distribution of one example (A4) of FA shown in Table 1 below.
  • the FA-A4 has a D50 force of 3.9 ⁇ m, and 97% of the particles have a particle size of 20 ⁇ m or less, and 96 of the particles have a particle size of 0.5 ⁇ m or more. %. In addition, it has a characteristic distribution (bimodal distribution) with two peaks of particle size distribution around 1.5 ⁇ m in particle size and 6.0 / im in particle size.
  • a classification treatment using a specific sieve there are a classification treatment using an airflow classification device, and the like.
  • a trace amount of heavy metal or the like may be eluted from a molded product using the resin composition, depending on the use environment or use method.
  • “heavy metals and the like” include heavy metals such as hexavalent chromium, lead and mercury and harmful elements such as selenium and arsenic.
  • Examples of the elution inhibitor for heavy metals and the like include an adsorbent and a reducing agent for an inorganic compound, and an ion exchange resin.
  • adsorbent or reducing agent for inorganic compounds examples include ferrous sulfate and ferric sulfate, schevenoletmanite, sodium thiosulfate, hydrated talcite, hydroxyapatite, and the like. Particularly preferred is sulfuric acid. Ferrous and Schwertmannite.
  • Examples of the ion exchange resin include a chelate resin, an anion exchange resin, and a cation exchange resin.
  • the adsorbent forms an adsorbent such as a hydrated oxide of a metal such as iron in the resin to adsorb heavy metals or the like, or that the reducing agent is used to adsorb heavy metals or the like. Reduction and insolubilization. Further, the combined use of a reducing agent and an adsorbent may reduce heavy metals and the like, and may make it easier to be adsorbed. For this reason, an adsorbent and a reducing agent may be mixed and used.
  • the anti-elution agent is often a water-containing agent such as ferrous sulfate monohydrate, if it is added in excess, the water evaporates during injection molding of the resin composition, resulting in molding. In some cases, the appearance of the product may deteriorate, such as the appearance of silver streaks (hereinafter referred to as "sino liver”) or discoloration due to the anti-elution agent.
  • a water-containing agent such as ferrous sulfate monohydrate
  • the addition amount of the elution inhibitor in the resin composition is preferably at most less than 2% by mass, more preferably 1% by mass or less.
  • the dissolution inhibitor is used to prevent heavy metals and the like from dissolving when the relative mass ratio to FA is 1/1000 or more, particularly preferably 1/100 or more. It has the effect of stopping.
  • the resin composition contains 10% by mass of FA
  • a method of coating the surface of the molded product with a water-repellent or moisture-permeable film can be used.
  • the water-repellent film is not particularly limited, but for example, a fluororesin film can be used. When used together with an anti-elution agent, it is more effective in preventing elution of heavy metals and the like.
  • a fiber-forming fluoropolymer that forms a fiber structure (fibril-like structure) in the resin composition may be further added to the resin composition containing the polycarbonate resin and the inorganic particles. I like it.
  • fiber-forming fluoropolymer examples include polytetrafluoroethylene, tetrafluoroethylene copolymers (eg, tetrafluoroethylene / hexafluoropropylene copolymer, etc.), Examples include fluorinated polymers and polycarbonates produced from fluorinated diphenols.
  • the fiber-forming fluoropolymer fine powder-like fluoropolymer 1, fluoropolymer aqueous disperser, powdery fluoropolymer / acrylonitrile-styrene copolymer mixture, powdery fluoropolymer / polymethylmetallic
  • Various forms of fluoropolymer, such as rate mixtures, can be used.
  • the amount of the fiber-forming type fluoropolymer is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, based on the entire flame-retardant resin composition.
  • the content is preferably 5% by mass or less, more preferably 1% by mass or less, and even more preferably 0.8% by mass or less.
  • the compounding amount of the fluoropolymer is 0.05% by mass or more, the effect of preventing dribbling during combustion can be stably obtained. Further, when the compounding amount of the fluoropolymer is 0.1% by mass or more, the flame retardancy of the resin composition is further improved.
  • the resin composition When the content of the fluoropolymer is 5% by mass or less, the resin composition is easily dispersed in the resin, so that it can be easily mixed with the polycarbonate resin uniformly, and the resin composition having flame retardancy can be obtained. Stable production of is possible. Further, when the blending amount of the fluorine-containing polymer is 1% by mass or less, the flame retardancy is further improved. When the compounding amount of the fluoropolymer is 0.8% by mass or less, the flame retardancy of the resin composition is further improved.
  • the polycarbonate-based resin has a carbonate bond in the chemical structure, and the oxygen in the carbonate bond and the surface hydroxyl group of the inorganic particles form a hydrogen bond, thereby stabilizing heat resistance.
  • the rate of forming hydrogen bonds with the polycarbonate resin increases, and a composite of the inorganic particles and the polycarbonate resin is easily formed during combustion, which promotes carbonization. And the flame retardancy is significantly improved.
  • the composite of silicon dioxide and aluminum oxide in the inorganic particles functions specifically as a flame retardant catalyst for the polycarbonate resin.
  • the organic components on the molded product surface volatilize during the initial combustion, and the surface becomes a high concentration of FA or a composite of polycarbonate and FA, which also contributes to flame retardancy. it seems to do.
  • various heat stabilizers, antioxidants, coloring agents, fluorescent brighteners, fillers, fillers, etc. may be added to the resin composition as long as the effects of the flame retardant resin composition are not impaired.
  • Additives such as mold agents, softeners, antistatic agents, plasticizers, dispersants, etc., impact modifiers, and other polymers are acceptable.
  • inorganic particles such as FA are used for silane coupling agents and titanate cutlets. Surface treatment with a pulling agent, etc.
  • heat stabilizer examples include metal hydrogen sulfates such as sodium hydrogen sulfate, potassium hydrogen sulfate, and lithium hydrogen sulfate, and metal sulfates such as aluminum sulfate. These are usually used in the range of 0.5% by mass.
  • Examples of the filler include glass fibers, glass beads, glass flakes, carbon fibers, turquoise powder, clay powder, my strength, potassium titanate whiskers, and wollastonite powder.
  • Examples of impact modifiers include glass fibers, organic fibers, acrylic elastomers, polyester elastomers, and core-shell type methyl methacrylates "butadiene. Styrene copolymer, methyl methacrylate" acrylonitrile. Examples include styrene copolymers, ethylene propylene rubbers, ethylene propylene rubbers, and the like. In particular, glass fiber is excellent in function as an impact modifier.
  • plasticizer examples include trimellitic acid esters, pyromellitic acid esters, polycarbonate diol, trimethylolpropanetribenzoate, dipentaerythritol, polycaprolactamone, and alkyl P-hydroxybenzoate. And the like.
  • Examples of the dispersant include an olefin maleic acid copolymer, a styrene maleic anhydride copolymer, and sodium naphthalene sulfonate.
  • flame retardants can be added as needed, such as phosphorus-based flame retardants, heat-absorbing agents such as metal hydroxides and borates, nitrogen compounds such as melamines, silicone-based flame retardants, and various metal salts.
  • heat-absorbing agents such as metal hydroxides and borates
  • nitrogen compounds such as melamines
  • silicone-based flame retardants and various metal salts.
  • examples include a carbonization accelerator and a halogen-based flame retardant.
  • the method for producing the resin composition may be, for example, mixing with a known mixer such as a tumbler, a ribbon blender, a Banbury mixer, or a kneader, a single screw extruder, or a twin screw extruder. Melt kneading by a known extruder such as an extruder.
  • a known mixer such as a tumbler, a ribbon blender, a Banbury mixer, or a kneader, a single screw extruder, or a twin screw extruder.
  • a raw material mixture composed of a pellet-like component such as a resin component and a raw material mixture composed of a powder-like component such as inorganic particles containing FA and the like are separately premixed.
  • examples thereof include a method in which the raw material mixture is independently supplied to the extruder to perform melt kneading, and a method in which each raw material component is independently supplied to the extruder to perform melt kneading.
  • a masterbatch in which inorganic particles are dispersed in an organic solvent or a melted resin is manufactured in advance using a mixer such as a mixer, and the masterbatch is blended at the time of molding and processing of the resin composition.
  • a composition can also be obtained.
  • the extruder has a cylinder set value of the extruder of 200 to 400 ° C, preferably 220 to 350. C, more preferably 230 ° C, even at 300 ° C. Further, the extruder can be rotated at a screw speed of 30 700 rpm, preferably 80-500 rpm, and more preferably 100 300 rpm.
  • melt kneading can be performed by setting the average residence time in the extruder to 10 150 seconds, preferably 20 100 seconds, and more preferably 30 to 60 seconds.
  • the temperature of the molten resin composition is preferably in the range of 250 to 300 ° C, and the melt kneading can be performed while taking care not to apply excessive heating to the resin composition during kneading.
  • the melt-kneaded resin composition is extruded as a strand from a die attached to the tip of the extruder, and is pelletized to obtain a pellet of the resin composition.
  • devolatilization can be performed simultaneously with melt-kneading.
  • the devolatilization means removing volatile components generated in the melt-kneading step by venting to atmospheric pressure or reducing the pressure through a vent port attached to the extruder.
  • the pellets of the flame-retardant resin composition thus obtained have excellent flame retardancy, so that they are used for electric and electronic equipment, building materials, automobile parts, daily necessities, medical uses, agricultural uses, and toys. It can be used as a flame-retardant molding material for molding molded articles such as entertainment products.
  • the present invention provides a flame-retardant molding material containing the above-mentioned flame-retardant resin composition.
  • the flame-retardant resin molding material means a resin molding material having a property of suppressing combustion of the resin composition even in a high-temperature oxidizing atmosphere.
  • a resin composition pellet made of a flame-retardant resin composition is a typical example.
  • the flame retardant resin composition of the present invention is useful as a composition for improving flame retardancy.
  • the flame retardant resin composition can be appropriately blended with a thermoplastic resin or the like to obtain a flame retardant molding material. That is, the flame-retardant molding material of the present invention may be a material composed of only the above-mentioned flame-retardant resin composition, but further improves the moldability such as melt fluidity and the mechanical properties such as impact resistance.
  • a thermoplastic resin other than the polycarbonate-based resin may be contained.
  • thermoplastic resin examples include polystyrene resins such as polystyrene, high-impact polystyrene, and styrene-butadiene copolymer rubber, polyphenylene ether-based resins, polyolefin-based resins, and polychloride resins.
  • Resin polyamide resin, polyester resin, polypropylene resin, polyphenylene sulfide resin, polymethacrylate resin, rubber-modified polymer, polyacrylate resin, acrylic nitrile-butadiene copolymer rubber, Acrylonitrile '' Selected from styrene copolymers and their modified acrylic rubbers, acrylonitrile.butadiene.styrene copolymer, acrylonitrile.ethylene-propylene-diene rubber (EPDM) One or two or more Together it can be used.
  • EPDM acrylonitrile.ethylene-propylene-diene rubber
  • thermoplastic resins polybutadiene, styrene / butadiene copolymer rubber, acrylonitrile / butadiene copolymer rubber, polybutyl acrylate and the like are preferable.
  • the proportion of the flame-retardant resin composition of the present invention in the flame-retardant molding material is not particularly limited, but is preferably 10% by mass or more, more preferably 30% by mass or more, and furthermore It is preferably at least 60% by mass, more preferably at most 99% by mass, more preferably at most 85% by mass, further preferably at most 70% by mass.
  • the proportion of the flame-retardant resin composition is 10% by mass or more, the effect of improving the flame retardancy can be stably observed while suppressing the decrease in the moldability of the flame-retardant molding material.
  • the proportion of the flame-retardant resin composition is 30% by mass or more, the balance between the flame retardancy and the moldability is good. Further, when the proportion of the flame-retardant resin composition is 60% by mass or more, the balance between flame retardancy and moldability is further improved.
  • the flame-retardant resin composition When the proportion of the flame-retardant resin composition is 99% by mass or less, the flame-retardant molding material tends to be excellent in mechanical strength or moldability. In addition, the flame-retardant resin composition When the proportion of the substance is 85% by mass or less, the balance between flame retardancy and mechanical strength is good. Further, when this ratio is 70% by mass or less, the balance between flame retardancy, mechanical strength, and moldability is further improved.
  • a molded article containing the above-described flame-retardant resin composition can be provided. With such a configuration, a molded article having excellent flame retardancy can be obtained. In addition, it is possible to suppress a decrease in the moldability of the molded product.
  • a method for molding the flame-retardant molding material there is no particular limitation, and a known injection molding method, gas assist molding method, extrusion molding method, blow molding method, injection / compression molding method, or the like may be used. it can.
  • the molded article obtained by such a method has excellent flame retardancy, it is used for electric and electronic devices, building materials, automobile parts, daily necessities, medical applications, agricultural applications, toys, and entertainment. It can be used for comfort goods and the like. In particular, it is suitably used for the housing of electrical and electronic equipment that requires excellent flame retardancy.
  • the particle size distribution of the inorganic particles can be measured using a particle size distribution measuring device manufactured by MICRO TRAC.
  • Dispersion medium 2% by mass aqueous solution of sodium hexametaphosphate (refractive index: 1.33)
  • Measurement time 20 seconds, 3 times
  • Pretreatment Put about 20 mg of sample in 30 ml of dispersion medium, disperse by ultrasonic wave (20 kHz, 300 kW) for 3 minutes, put the dispersion in a measurement cell, and adjust to a concentration of 0.1 lg / 1 with pure water. You.
  • thermoplastic resin PC polycarbonate resin (trade name; Caliber 301-22 (mass average molecular weight 47,000, number average molecular weight 27,000), manufactured by Sumitomo Dow).
  • PET polyethylene terephthalate (Toyobo Co., Ltd., trade name; PETMAX RE554)
  • PBT polybutylene terephthalate (manufactured by Mitsubishi Engineering-Plastics Corporation, trade name: Novaduran 5010R5).
  • PP polypropylene (manufactured by Sumitomo Chemical Co., Ltd., trade name; AH561).
  • Ny 6 _ nylon (Toray Industries Co., Ltd., trade name; Amiran CM101 7).
  • FA-A4-A7 is equivalent to fly ash I of JIS A6201 (1999) and is suitable for realizing flame retardancy.
  • FA-A8-A12 is fly ash II (standard) The particle size is relatively large.
  • FA-A8 is a fly ash type II product with a small D50 force of 0.9 zm, and therefore has an effect of improving flame retardancy.
  • the FA shown here was silicon dioxide and aluminum oxide. It has been confirmed that they include particles that are composites, mainly particles composed of silicon dioxide, and particles composed mainly of aluminum oxide.
  • HS crushed silicon dioxide (manufactured by Denki Kagaku Kogyo KK, trade name; FS 3CC, average particle size 3.2 ⁇ m).
  • A1 Spherical aluminum oxide (manufactured by Showa Denko KK, trade name; CB-A05S, average particle size 2.9 ⁇ m).
  • PTFE Polytetrafluoroethylene (manufactured by Daikin, trade name: Polyflon FA_500, fiber-forming fluoropolymer).
  • FD-l FeSO ⁇ ⁇ ⁇ (ferrous sulfate ⁇ monohydrate) (manufactured by Fuji Titanium Co., Ltd .; trade name: FD-1
  • Polycarbonate resin (Calibur 301-22) and FA are fed to a continuous kneading extruder (KCK Co., Ltd. KCK80X2-35VVEX (7)) set at a cylinder temperature of 280 ° C and kneaded and extruded under melt shearing. Then, after cooling and solidifying in water, it was cut into pellets.
  • KCK Co., Ltd. KCK80X2-35VVEX (7) set at a cylinder temperature of 280 ° C and kneaded and extruded under melt shearing. Then, after cooling and solidifying in water, it was cut into pellets.
  • the cylinder temperature was 280 using a 20-ton injection molding machine (EC20P-0.4A manufactured by Toshiba Machine Co., Ltd.).
  • ° C, mold setting temperature Molded under the conditions of 80 ° C, a test piece for evaluating the flame retardancy of the above resin composition (125 mm X 13 mm X 1.6 mm), a test piece for evaluating oxygen index (125 mm X 6.5 mm X 3. Omm) and a test piece for bending test evaluation (125 mm X 12.7 mm X 3.2 mm).
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PP propylene
  • Ny 6-nylon
  • the oxygen index which is one type of evaluation index for flame retardancy evaluation, is based on JIS K-7201 (ISO 4589) for oxygen index evaluation specimens (125 mm X 6.5 mm X 3. Omm) obtained by injection molding. It measured according to.
  • the UL94 test is a method for evaluating the residual flame time and drip force and flame retardancy after a flame of a burner is brought into contact with a test piece of a predetermined size held vertically, for 10 seconds. It is divided into the classes shown in Table 2.
  • the afterflame time shown above is the length of time that the test piece continues to burn flaming after the ignition source is moved away.
  • the ignition of the cotton by the drip means the lower end force of the test piece. It is determined by whether or not the marking cotton 300 mm below is ignited by dripping from the specimen.
  • test piece for bending test evaluation obtained by injection molding (125 m m ⁇ 12.7 mm ⁇ 3.2 mm), the flexural strength and flexural modulus were measured according to ASTM C-256.
  • melt flow properties of the obtained resin composition were measured. Melt flow characteristics were measured by drying the resin composition at 120 ° C for 4 hours, and then using a 20-ton injection molding machine (EC20P-0.4A, manufactured by Toshiba Machine Co., Ltd.), cylinder temperature: 280 ° C, gold Mold set temperature
  • Spiral flow was measured under the conditions of: 80 ° C, injection pressure: 1600 kgf / cm 2 , and thickness lmm, and evaluated according to the following criteria.
  • a flame-retardant resin composition was prepared by mixing PTFE and FA in the composition shown in Table 4 with PC, and the flame retardancy of UL94 and the average afterflame time were evaluated. The moldability of this composition was also adjusted. Beta. The results are shown in Table 4. Fig. 1 shows the relationship between D50 and average afterflame time. The results of the PC itself are also shown for reference.
  • the resin composition in which FA having a D50 in the range of 110 ⁇ m was mixed with a polycarbonate resin was excellent in difficulty. It has flammability and moldability. That is, it is considered that when FA having a D50 of 110 ⁇ m is blended, the dispersibility of FA becomes good and the flame retardancy of the resin composition is improved.
  • a molded article of a resin composition containing FA having a D50 in the range of 3 to 7 ⁇ m in a polycarbonate resin (experiment number 13 to 15) has significantly improved flame retardancy. That is, when FA having a D50 of 3 to 7 ⁇ m is blended with the polycarbonate resin, it is considered that the FA dispersibility is further improved and the flame retardancy of the resin composition is further improved.
  • a flame-retardant resin composition composed of 56.5% by mass of PC6, 0.5% by mass of PTFE and 30% by mass of the inorganic particles shown in Table 6 was prepared, and the flame retardancy was evaluated. Table 6 shows the results.
  • a flame-retardant resin composition was prepared by mixing 0.5% by mass of PTFE and FA-A5 with the composition shown in Table 7 to the thermoplastic resin shown in Table 7, and the flame retardancy was evaluated. Table 7 shows the results.
  • thermoplastic resins polyethylene terephthalate (PET) (experiment numbers 37 and 38), polybutylene terephthalate (PBT) (experiment numbers 39 and 40), and polypropylene (PP)
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PP polypropylene
  • the present invention can provide a polycarbonate-based flame-retardant resin composition having high flame retardancy and excellent melt fluidity or environmental friendliness, and a flame-retardant molding material or molded article using the same at low cost.
  • a flame-retardant resin composition having improved flame retardancy while suppressing a decrease in moldability is provided.
  • the flame retardancy is improved.
  • a flame-retardant resin composition having an excellent balance of moldability, mechanical properties, and the like is provided.
  • the appearance characteristics were evaluated according to the following criteria.
  • Dissolution test method for heavy metals, etc. (based on dissolution test based on soil environmental standards (Notification No. 46 of the Environment Agency))
  • Sample Take a predetermined amount of pellets, make a kneaded material at a kneading temperature of 280 ° C using a stone mill type extruder (manufactured by KCK, discharge rate: 8 kg / h), freeze-pulverize, and then sieve nonmetal Le, obtained by passing through (aperture 2mm). If the pellet size is 2mm or less, use it as it is.
  • Preparation of eluate Sample (unit: g) and solvent (prepared by adding hydrochloric acid to pure water so that the hydrogen ion concentration index becomes 5.8-6.3) (unit: ml) Mix at a ratio of 10% by weight so that the total volume is 500 ml or more.
  • Elution method The prepared test solution was shaken at room temperature and normal pressure for 6 hours using a shaking machine (adjusting the shaking frequency to about 200 times per minute in advance and shaking width to 415 cm). And shake it.
  • Measurement of elution amount The sample solution obtained by the above operation was allowed to stand for 10 to 30 minutes, then centrifuged at approximately 3000 rpm for 20 minutes, and the supernatant was filtered through a membrane filter with a pore size of 0.45 m. Take the solution, and measure the amount of hexavalent chromium, arsenic, selenium, lead and mercury contained in the obtained test solution by ICP emission analysis or atomic absorption analysis.
  • the resin composition containing the polycarbonate resin and the inorganic particles containing FA having a specific particle size (Experiment No. 45)
  • the resin composition was found to be a heavy metal or the like in the dissolution test. Hexavalent chromium, arsenic and selenium are eluted in trace amounts. Elution of heavy metals and the like can be suppressed while maintaining flammability.
  • the anti-elution agent is mixed in the resin composition at less than 2.0% by mass, preferably less than 1.5% by mass, no sino-lever occurs at the time of molding. The appearance characteristics of the resulting molded article are improved.
  • the inorganic particles containing the composite of silicon dioxide and aluminum oxide ash obtained by burning power wood or the like using FA as the inorganic particles, silica-alumina composite particles, etc. It can be used if it has the composition, particle size, etc. specified in the present invention.
  • the flame-retardant resin composition of the present invention has extremely excellent flame-retardant properties, and is therefore useful for applications requiring flame retardancy, particularly for electric and electronic equipment housings.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Immunology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 無機粒子として、二酸化珪素及び酸化アルミニウムの複合体を含有し、D50が1~10μmである無機粒子、好ましくはフライアッシュを含有する難燃性樹脂組成物が開示されている。

Description

明 細 書
難燃性樹脂組成物
技術分野
[0001] 本発明は、難燃性樹脂組成物及びそれを用レ、た難燃性成形材料又は成形品に関 する。
背景技術
[0002] 電気'電子機器分野に用いられる樹脂組成物は、安全性の面から高度の難燃性が 要求されるため、「難燃性樹脂」として広く研究開発が進められている。ポリカーボネ ート系樹脂は、優れた耐熱性、電気的特性などを有するため、難燃性樹脂組成物の 樹脂原料として盛んに研究されてレ、る材料である。
[0003] 今日、電気 ·電子機器分野に用いられる樹脂組成物はさらに高度な難燃性が要求 され、ポリカーボネート系樹脂は各種難燃剤の添カ卩により、難燃性のさらなる改善が 図られている。
[0004] 従来の難燃剤としては、臭素系難燃剤、リン系難燃剤等が使用されているが、近年 、ハロゲン原子を含まないで難燃性を達成することが要求されている。そのような状 況下に、無機粒子をポリカーカーボネート系樹脂に微量配合して難燃性を改良する 試みがされている。
[0005] 例えば、特開 2004—010825号公報(特許文献 1)は、芳香族ポリカーボネートに シリカ等の無機粒子を配合した難燃性樹脂組成物を開示している。具体的には、配 合する無機粒子の形状を工夫することにより、芳香族ポリカーボネートの難燃性の向 上を図っている。
[0006] また、特開 2001— 152030号公報 (特許文献 2)は、難燃剤を担持した無機多孔質 体を粉砕して得た粒径が 10 lOOnmの粒子を含む難燃材料を開示している。具体 的には、多孔質ガラス、或いは酸化珪素、酸化アルミニゥ等の無機材料を焼成した 多孔質体に金属、金属塩、無機化合物から選ばれる添加剤 (難燃剤)を担持させ、 次いでこの多孔質の粒子をポリカーボネート、ポリプロピレン等の樹脂とともに 2軸押 出して、微粉化と複合化を同時に行ない、配合した難燃性樹脂材料である。ここでは 、この材料中では添加剤がよく分散され、難燃性が達成されるとしている。
特許文献 1 :特開 2004 - 010825号公報
特許文献 2:特開 2001— 152030号公報
発明の開示
発明が解決しょうとする課題
[0007] し力しながら、これら従来技術では高い水準の難燃性を安定的に実現することは、 なお困難であった。つまり、ポリカーボネート系樹脂に無機粒子を配合することによつ て達成される難燃化は、従来のポリカーボネート系樹脂と比して難燃性に優れる傾向 はあるものの、高度な難燃性を示す基準として知られる UL94試験 (機器の部品用プ ラスチック材料の燃焼性試験)における V— 0基準をクリアするには至らず、 V— 2基準 のクリアも困難な状況であった。
[0008] ポリカーボネート系樹脂以外の樹脂系においても、難燃効果を高めるための材料 について種々検討されているが、いずれの組合せにおいても、充分な難燃性を安定 的に実現することは困難であった。
[0009] 本発明は上記課題に鑑みてなされたものであり、優れた難燃性を有するポリカーボ ネート系樹脂組成物を安定的に得ることを目的とする。
課題を解決するための手段
[0010] 本発明によれば、ポリカーボネート系樹脂と無機粒子を含有する難燃性樹脂組成 物において、無機粒子は、二酸化珪素及び酸化アルミニウムの複合体からなる粒子 を含むものであり、かつ、 50%粒径(D50)が 1一 10 /i mであることを特徴とする難燃 性樹脂組成物が提供される。さらに、本発明は、無機粒子が全組成物中に 1一 60質 量%含まれてレ、る上記難燃性樹脂組成物である。
[0011] また、本発明によれば、無機粒子がフライアッシュである上記難燃性樹脂組成物が 提供される。
[0012] 本発明おける難燃性樹脂組成物は、ポリカーボネート系樹脂と無機粒子を含有す るものであり、(i)無機粒子として少なくとも二酸化珪素及び酸化アルミニウムの複合 体を含むものを用いること、及び、(ii)該無機粒子の粒径を特定範囲に制御している ことが特徴である。背景技術の項で説明したように、シリカ粒子やアルミナ粒子を樹 脂中に配合する技術はこれまでも検討された例があるが、二酸化珪素及び酸化アル ミニゥムの複合体を含む粒子の使用については検討された例がなかった。本発明に おいては、このような複合体を含む無機粒子を用いることにより、二酸化珪素粒子単 体、酸化アルミニウム粒子単体、あるいはこれらの単なる混合物では得られない、優 れた難燃'性を実現したものである。
[0013] 上記構成により難燃性が改善される理由は必ずしも明らかではないが、着火時に おいて、上述のような特定の無機粒子がポリカーボネート系樹脂に作用し、燃焼しに くい構造体を形成することによると考えられる。
[0014] 本発明における無機粒子は、上記複合体を含有する粒子に加え、さらに、酸化ァ ノレミニゥム粒子と、二酸化珪素粒子とを含むものとすることが好ましい。ここで使用す る酸化アルミニウム粒子及び二酸化珪素粒子は、それぞれ酸化アルミニウム、二酸 化珪素を主成分として含む粒子であり、他に微量成分を含んでいても良い。二酸化 珪素及び酸化アルミニウムの複合体の粒子、二酸化ケイ素粒子及び酸化アルミニゥ ム粒子からなる無機粒子を用いることにより、樹脂組成物の難燃性がより向上する。 その理由は必ずしも明らかではないが、ポリカーボネート系樹脂に対する無機粒子 の作用がより確実に発揮されることによると推察される。
[0015] この無機粒子の好適な例として、フライアッシュがある。フライアッシュとは火力発電 所で発生する燃焼灰の総称で、特に石炭を微粉炭燃焼方式で燃焼させる火力発電 所などで生成される微粉末石炭灰のことである。例えば、特開 2000— 336254号公 報には、熱可塑性ポリエステル樹脂の機械的強度の改善を目的として、熱可塑性ポ リエステル樹脂にフライアッシュを添加する技術が開示されている。この特開 2000—
336254号公報では、熱可塑性ポリエステル樹脂 30 99質量部とフライアッシュ 70 一 1質量部とからなるポリエステル樹脂組成物が開示されており、ここでレ、うフライアツ シュの比表面積は 1000 8000cm2/gであるとされている。
[0016] この 2000—336254号公報に開示された、市販されているフライアッシュをはじめと する無機粒子は、 D50が 10 x mを超えているものである。なお、 D50とは、質量百分 率での積算値が 50%となる点での粒度である。本発明においては、無機粒子の D5 0が分級処理などにより 10 μ m以下に制御されているため、ポリカーボネート系樹脂 とこの無機粒子との相乗作用により、成形性の低下を抑制しつつ優れた難燃性を安 定的に実現することが初めて可能になった。
発明の効果
[0017] 本発明によれば、ポリカーボネート系樹脂と無機粒子を用いた難燃性樹脂組成物 において、無機粒子として、少なくとも二酸化珪素及び酸化アルミニウムの複合体を 含むものを用いるとともに、無機粒子の粒径を特定範囲に制御しているため、優れた 難燃性を安定的に実現することができる。
図面の簡単な説明
[0018] [図 1]フライアッシュの D50と難燃性の関係を示すグラフ図である。
[図 2]フライアッシュの配合量と難燃性の関係を示すグラフ図である。
[図 3]フライアッシュの粒度分布を表すグラフ図である(FA— A4)。
[図 4]フライアッシュの粒度分布を表すグラフ図である(FA— A5)。
[図 5]フライアッシュの粒度分布を表すグラフ図である(FA— A8)。
[図 6]フライアッシュの粒度分布を表すグラフ図である(FA— A9)。
[図 7]フライアッシュの粒度分布を表すグラフ図である(FA— A10)。
[図 8]フライアッシュの粒度分布を表すグラフ図である(FA— Al 1)。
発明を実施するための最良の形態
[0019] 以下、本発明の実施の形態について、さらに詳細に説明する。
[0020] 本発明の難燃性樹脂組成物は、ポリカーボネート系樹脂に粒径が特定の範囲にあ る無機粒子を配合したものであり、無機粒子が二酸化珪素と酸化アルミの複合体を 含むものであることを特徴とする。このような構成により、ポリカーボネート系樹脂組成 物の難燃性が改善されるとともに、ポリカーボネート系樹脂の成形性も保たれている。
[0021] 本発明におけるポリカーボネート系樹脂とは、下記一般式(1)で表される繰り返し 単位を含有する樹脂である。 [0022] [化 1]
Figure imgf000007_0001
[式中、 R1及び R2は、それぞれ炭素数 1一 6のアルキル基又は炭素数 6— 12のァリー ル基を示し、それぞれ同じであっても異なるものであってもよぐ m及び nは、それぞ れ 0— 4の整数である。 Zは、単結合、炭素数 1一 6のアルキレン基又はアルキリデン 基、炭素数 5— 20のシクロアルキレン基又はシクロアルキリデン基、フルォレニリデン 基、又 ίま一〇_、 _S―、 -SO-, -SO—若しく ίま _C〇一結合を示す。 ]
2
ポリカーボネート系樹脂は、ジヒドロキシジァリールイ匕合物とホスゲンを反応させるホ スゲン法、ジヒドロキシジァリール化合物とジフヱニルカーボネートなどの炭酸エステ ルを反応させるエステル交換法等によって製造される重合体であり、代表的なものと して、 2, 2_ビス(4—ヒドロキシフエニル)プロパン(ビスフエノーノレ A)から製造された ポリカーボネート系樹脂がある。
[0023] ジヒドロキシジァリール化合物としては、ビスフエノーノレ Aの他に、ビス(4—ヒドロキシ フエ二ノレ)メタン、 1 , 1_ビス(4—ヒドロキシフエ二ノレ)ェタン、 2, 2_ビス(4—ヒドロキシ フエ二ノレ)ブタン、 2, 2_ビス(4—ヒドロキシフエ二ノレ)オクタン、ビス(4—ヒドロキシフエ 二ノレ)フエニルメタン、 2, 2—ビス(4—ヒドロキシ _3—メチルフエニル)プロパン、 2, 2- ビス(4—ヒドロキシー 3—第三ブチルフエニル)プロパン、 2, 2—ビス(4—ヒドロキシー 3— ブロモフエ二ノレ)プロパン、 2, 2—ビス(4ーヒドロキシ _3、 5—ジブロモフエ二ノレ)プロパ ン、 2, 2_ビス(4—ヒドロキシー 3, 5—ジクロ口フエ二ノレ)プロパン等のビス(ヒドロキシァ リール)アルカン類、 1 , 1—ビス(4—ヒドロキシフエニル)シクロペンタン、 1 , 1—ビス(4 —ヒドロキシフエニル)シクロへキサン等のビス(ヒドロキシァリール)シクロアルカン類、 4, Α' —ジヒドロキシジフエニルエーテル、 4, Α' —ジヒドロキシー 3, 3' —ジメチルジ フエニルエーテル等のジヒドロキシジァリールエーテル類、 4, —ジヒドロキシジフ ヱニルスルフイド等のジヒドロキシジァリールスルフイド類、 4, —ジヒドロキシジフエ ニルスルホキシド、 4, A' —ジヒドロキシー 3, 3' —ジメチルジフエニルスルホキシド等 のジヒドロキシジァリールスルホキシド類、 4, A' —ジヒドロキシジフエニルスルホン、 4 , ' —ジヒドロキシー 3, 3f —ジメチルジフエニルスルホン等のジヒドロキシジァリール スルホン類などが挙げられる。
[0024] これらは単独で又は 2種類以上混合して使用される力 ハロゲン置換基を有さない 化合物を使用する方が、燃焼時にハロゲンを含むガスが環境へ排出されなレ、ので好 ましい。
[0025] これらの他に、ピぺラジン、ジピペリジルハイドロキノン、レゾルシン、 4, 4; —ジヒド 口キシジフエニル、ハイド口キノン等を混合して使用してもよい。
[0026] さらに、以下に示すような 3価以上のフエノール化合物を混合使用してもよい。 3価 以上のフエノール化合物としては、フロログルシン、 4, 6—ジメチルー 2, 4, 6—トリス(4 —ヒドロキシフエニル)ヘプテン、 2, 4, 6_ジメチルー 2, 4, 6—トリス(4—ヒドロキシフエ ニル)ヘプタン、 1, 3, 5—トリス(4—ヒドロキシフエニル)ベンゼン、 1 , 1 , 1—トリス(4—ヒ ドロキシフエニル)ェタン、 2, 2—ビス [4, 4—ジ(4—ヒドロキシフエニル)シクロへキシル ]プロパン等が挙げられる。
[0027] ポリカーボネート系樹脂は数平均分子量が 10, 000— 100, 000であるものが好ま しい。
[0028] ポリカーボネート系樹脂の数平均分子量が 10, 000以上であると、優れた機械的 強度又は難燃性を有する樹脂組成物が安定的に得られる。また、ポリカーボネート系 樹脂の数平均分子量が 100, 000以下であると、樹脂組成物の粘度が適当な範囲と なり、成形性が良好となる。
[0029] 本発明のポリカーボネート系樹脂は、上記した原料から、必要に応じて分子量調節 剤、触媒等を使用して、従来公知の方法により製造される。
[0030] 本発明においては、ポリカーボネート系樹脂の含水率は、特に制限はないが、例え ば lOOOppm以下とすることが好ましい。含水率がこの範囲にあれば、樹脂組成物の 製造安定性が向上する。
[0031] ポリカーボネート系樹脂の含有量は、難燃性樹脂組成物の総量に対して、好ましく は 10質量%以上、より好ましくは 40質量%以上、さらに好ましくは 60質量%以上で あり、好ましくは 99質量%以下、より好ましくは 95質量%以下、さらに好ましくは 80質 量%以下である。このような含有量とすることにより、無機粒子の作用とあいまって、 優れた難燃性が得られる。
[0032] 本発明において使用する無機粒子とは、主として無機成分からなる粒子を意味し、 微量の有機成分を含有する無機粒子も含まれる。
[0033] 本発明で使用する無機粒子は、二酸化珪素と酸化アルミニウムの複合体を含有す る粒子である。なお、二酸化珪素と酸化アルミニウムの複合体は、二酸化珪素の相及 び酸化アルミニウムの相を含む粒子を意味する。その具体的態様としては、たとえば
、珪素とアルミニウムとの複合酸化物を含む粒子、二酸化珪素粒子と酸化アルミユウ ム粒子とが融着した粒子などが挙げられる。
[0034] このような構成の無機粒子を用いることにより、二酸化珪素粒子単体、酸化アルミ二 ゥム粒子単体、あるいはこれらの単なる混合物では得られなレ、、優れた難燃性を実 現すること力 Sできる。
[0035] 無機粒子は、上記複合体の粒子に加えて、酸化アルミニウム粒子及び二酸化珪素 粒子を含むことが好ましい。このような複数の異なる種類の粒子を含む無機粒子を用 レ、ることにより、難燃性に優れる難燃性樹脂組成物を安定的に得ることができる。
[0036] このような構成の無機粒子として、たとえば、珪素とアルミニウムの複合酸化物を含 む粒子、シリカ粒子及びアルミナ粒子の混合物からなる無機粒子などが挙げられる。
[0037] このような無機粒子であって、入手コストが安価なものとしては、特に限定するもの ではないが、例えば、フライアッシュを挙げることができる。
[0038] ゴミ焼却炉などから得られる焼却灰は種々雑多なものを燃焼させ得られた燃焼灰で あるのに対して、フライアッシュは火力発電所の石炭燃焼ボイラーで発生する石炭燃 焼灰であるので、原材料の素性が明確であり、珪素及びアルミニウム以外の重金属 等の含有がゴミ焼却炉で発生する燃焼灰に比べて少ない。また、重金属等の含有量 を制御することもフライアッシュでは比較的容易である。したがって、樹脂組成物に充 填材として添加したとき、フライアッシュは環境に悪影響を与えにくいという利点もある
[0039] また、本発明の難燃性樹脂組成物は、リン系難燃剤、ハロゲン系難燃剤等の難燃 剤を配合していなくても、充分な難燃性を有している。リン系難燃剤やハロゲン系難 燃剤を全く使用しないことは環境保護の観点からは好ましい。 [0040] 本発明における無機粒子の D50は、好ましくは 1 /i m以上、より好ましくは 3 /i m以 上である。また、この D50は、好ましくは 10 μ ΐη以下、より好ましくは 7 μ ΐη以下である
[0041] D50が 1 μ m以上である場合、樹脂組成物の難燃性が向上する。また、樹脂組成 物の成形性の低下を抑制することもできる。さらに、無機粒子の飛散が抑制され、樹 脂組成物の製造工程における作業性や取扱安定性が向上する。
[0042] D50が 3 μ m以上であると、樹脂組成物の難燃性が一層良好となる。また、無機粒 子の飛散がさらに抑制され、樹脂組成物の製造工程における作業性や取扱安定性 もさらに向上する。
[0043] D50が 10 μ m以下である場合、樹脂組成物の難燃性が向上する。また、樹脂組成 物の成形性が低下するのを抑制できる。 D50が 以下であると、燃焼時にポリ力 ーボネート系樹脂の炭化がより促進され、その結果、樹脂組成物の難燃性が一層良 好となる。
[0044] また、本発明における無機粒子は、 D50により規定される上記粒径条件を満たすこ とに加え、以下のように規定される粒径条件を満たすことが望ましい。
[0045] 無機粒子は、粒径が 20 μ m以下である粒子を、好ましくは 70累積% (数累積)以上 、より好ましくは 90累積%以上含むものとすることが望ましい。粒径が 20 μ ΐη以下で ある粒子の割合が、無機粒子全体を基準として、 70累積% (数累積)以上の場合に は、難燃性が向上する。また、樹脂組成物の成形性の低下が抑制される。また、粒径 が 20 μ m以下である粒子の割合が 90累積%以上の場合には、樹脂組成物の難燃 性がより一層良好になる。また、樹脂組成物の成形性の低下がさらに抑制される。
[0046] 無機粒子の粒径は、樹脂組成物を用いて得られた成形品の電子顕微鏡による断 面観察等の方法により測定することができる。
[0047] 具体的には、透過型電子顕微鏡を用いて樹脂組成物の超薄切片を観察するか、 あるいは走査型電子顕微鏡を用いて樹脂組成物の切出面を観察し、写真撮影を行 レ、、その写真から樹脂組成物中における 100個以上の粒子に対して個々の粒子径 を計測する。なお、各粒子の粒径は、粒子の面積 Sを求め、(4SZ TT ) 1/2から算出し て求める。また、この無機粒子の粒径は、後述する光散乱法によって測定することも でき、本質的に同等の値が得られる。
[0048] また、本発明では、無機粒子中の全二酸化珪素の含有量が、無機粒子の総量に 対し、 44一 85質量%であることが好ましぐまた、全酸化アルミニウムの含有量が 15 一 40質量%であることが好ましい。さらに、無機粒子に含まれる全二酸化珪素と全酸 化アルミニウムの合計量力 無機粒子の総量に対し、 60質量%以上であることが好 ましレ、。そして、二酸化珪素と酸化アルミニウムが複合体として無機粒子に含まれて レ、ることが好ましい。例えば、フライアッシュでは二酸化珪素と酸化アルミニウムの複 合体であるムライトが 3— 45質量%含まれている(環境技術協会'日本フライアッシュ 協会、「石炭灰ハンドブック」、 2000) したがって、この点力、らも、フライアッシュが 好ましいものである。
[0049] 本発明において難燃性樹脂組成物中の無機粒子の含有量は、特に制限はないが 、樹脂組成物全体に対し、好ましくは 1質量%以上、より好ましくは 5質量%以上、さ らに好ましくは 20質量%以上である。また、無機粒子の含有量は、好ましくは 60質量 %以下、より好ましくは 50質量%以下、さらに好ましくは 40質量%以下である。
[0050] 無機粒子の含有量が 1質量%以上であると、樹脂組成物の難燃性の向上効果が 安定して得られる。また、樹脂組成物の成形性の低下を安定して抑制することができ る。無機粒子の含有量が 5質量%以上であると、樹脂組成物の難燃性の改善効果が より安定して得られる。そして、無機粒子の含有量が 10質量%以上の場合には、榭 脂組成物の難燃性がさらに良好となる。
[0051] 無機粒子の含有量が 65質量%以上であると射出成形が困難になりやすいが、 60 質量%以下では、樹脂組成物の射出成形性が良好となり、また、樹脂組成物の難燃 性も良好となる。無機粒子の含有量が 50質量%以下であると、樹脂組成物中の樹脂 成分又は無機粒子の割合が適度となるため、難燃性が向上する。また、樹脂組成物 の成形がより一層容易になる。無機粒子の含有量が 40質量%以下の場合には、樹 脂組成物の難燃性がさらに良好となり、樹脂組成物の成形性がさらに良好になる。
[0052] 本発明では、無機粒子としてフライアッシュ(以下、適宜 八」と略す)を用いること が好ましい。
[0053] FAとは、石炭を微粉炭燃焼方式で燃焼させる火力発電所などにおいて集塵機で 捕集される微粉末の石炭燃焼灰のことである。
[0054] FAは、典型的には、下記成分を有している。
(a)二酸化珪素: 44一 80質量%。
(b)酸化アルミニウム: 15 40質量0 /0
(c)その他の成分:酸化第二鉄 (Fe O )、酸化チタン (TiO )、酸化マグネシウム(M
2 3 2
gO)、酸化カルシウム(Ca〇)等。
[0055] 本発明で使用する FAにおいて、二酸化珪素(シリカ: SiO )の含有量は、好ましく
2
は 44質量%以上であり、より好ましくは 50質量%以上である。また、好ましくは 85質 量%以下であり、より好ましくは 75質量%以下である。二酸化珪素の含有量がこの範 囲内にあると、ポリカーボネート系樹脂組成物との相乗作用により、樹脂組成物の難 燃性向上効果が安定して得られる。
[0056] 一方、酸化アルミニウム(アルミナ: Al O )の含有量は、好ましくは 10質量%以上で
2 3
あり、より好ましくは 15質量%以上である。また、好ましくは 40質量%以下であり、より 好ましくは 30質量%以下である。酸化アルミニウムの含有量がこの範囲内にあると、 ポリカーボネート系樹脂組成物との相乗作用により、樹脂組成物の難燃性向上効果 が安定して得られる。
[0057] 本発明で使用する FAでは、二酸化珪素と酸化アルミニウムの合計含有量は、好ま しくは 60質量%以上であり、より好ましくは 70質量%以上であり、さらに好ましくは 80 質量%以上である。また、二酸化珪素と酸化アルミニウムとの合計含有量は、好ましく は 99質量%以下であり、より好ましくは 95質量%以下である。二酸化珪素と酸化ァ ノレミニゥムとの合計含有量がこの範囲内にあると、ポリカーボネート系樹脂組成物との 相乗作用により、樹脂組成物の難燃性向上効果が安定して得られる。
[0058] FA中では、二酸化珪素及び酸化アルミニウムは、一部は複合酸化物を形成し、一 部は粒子中で二酸化珪素の相と酸化アルミニウムの相からなる多相構造を有する粒 子を形成している。
[0059] なお、 FA中の酸化第二鉄(Fe O )、酸化チタン (TiO )、酸化マグネシウム(Mg〇
2 3 2
)及び酸化カルシウム(Ca〇)は、二酸化珪素及び酸化アルミニウムが上記範囲にあ る限り、樹脂組成物の難燃性や成形性などを特に低下させることはない。 FAはこれ ら酸化物以外にも微量の重金属等の成分を含有するが、ゴミ焼却炉などから得られ る焼却灰に比べると重金属等の濃度は低い。これは、焼却灰が種々雑多なものを燃 焼させ得られた燃焼灰であるのに対して、 FAが火力発電所の石炭燃焼灰であること に因る。
[0060] また、原材料の素性が明確であるので、重金属等の含有量を制御することも FAで は比較的容易である。微量の重金属等の溶出防止対策を施すことで、樹脂組成物 及びその成形品の環境への影響リスクをさらに低減することができる。
[0061] また、 FAは電子顕微鏡で見ると大部分の粒子が球形をしている。このため、 FAを 用いると、樹脂組成物の成形加工時における成形性の低下を抑制しつつ難燃性の 向上を図ることができる。
[0062] FAは火力発電所などで大量に発生し、大部分が産業廃棄物となっているのが現 状であるため、調達コストが安いという利点がある。そのため、難燃性を有する樹脂組 成物の製造コストも低減することができる。
[0063] 図 3は、後記表 1に示した FAの 1例 (A4)の粒度分布を表すグラフである。
[0064] この FA— A4は、 D50力 ^3. 9 μ mであり、粒径 20 μ m以下である粒子が 97累積% であり、粒径 0. 5 μ m以上である粒子が 96累積%である。また、粒径 1. 5 μ m付近と 粒径 6. 0 /i m付近に、 2つの粒度分布のピークがある特徴的な分布(バイモーダル な分布)を有している。
[0065] このように、粒度分布のピークが 2つある FAを含む場合には、樹脂組成物の難燃 性が安定して良好になる。また、樹脂組成物の成形性の低下が安定して抑制される
[0066] 市販の FAは、通常、 D50が 10 z mを超えているので、本発明には直接使用するこ とはできないので、分級処理等により粒径制御したものを用いることが好ましい。これ により、ポリカーボネート系樹脂と無機粒子との相乗作用が顕著となり、優れた難燃 性を安定して実現することができる。また、樹脂組成物の成形性も良好に維持される
[0067] なお、無機粒子の粒径制御の方法としては、特定の目開きのふるいを用いた分級 処理、気流分級装置を用いた分級処理等がある。 [0068] FA等の無機粒子を含有する樹脂組成物では、使用環境又は使用方法によっては 、該樹脂組成物を使用した成形物から微量の重金属等が溶出する可能性もある。な お、本発明において、「重金属等」とは、 6価クロム、鉛、水銀などの重金属及びセレ ン、ヒ素などの有害元素を合わせたものである。
[0069] 本願発明の難燃性樹脂組成物においては、無機粒子として FAを用いる場合に、 樹脂組成物の各種物性や外観を低下させない範囲で、微量の重金属等が溶出する のを防止する対策を施してもょレ、。
[0070] 重金属等の溶出防止対策として、樹脂組成物に溶出防止剤を添加する方法、樹脂 組成物成形品の表面に溶出防止機能を有する膜を形成する(例えば、溶出防止剤 を含有した塗料を塗装する)方法等を取り得る。
[0071] 溶出防止対策を行うことにより、 FAの原材料である石炭の種類や FA製造時の燃 焼条件などに因って重金属等の含有量が多少ばらついた場合でも、重金属等の溶 出を確実に抑制することができる。また、重金属等の含有量に因らずに FAを使用で きるので、火力発電所の副生成物である FAを資源としてより有効に利用できる。
[0072] 重金属等の溶出防止対策としては、溶出防止剤を樹脂組成物に添加する方法が 簡便でかつ長期使用におレ、ても効果的である。
[0073] この重金属等の溶出防止剤としては、無機化合物の吸着剤や還元剤、またイオン 交換樹脂などが挙げられる。
[0074] 無機化合物の吸着剤や還元剤としては、例えば硫酸第一鉄や硫酸第二鉄、シュべ ノレトマナイト、チォ硫酸ナトリウム、ハイド口タルサイト、ヒドロキシアパタイトなどが挙げ られ、特に好ましくは、硫酸第一鉄及びシュベルトマナイトである。
[0075] またイオン交換樹脂としては、キレート樹脂、ァニオン交換樹脂、カチオン交換樹脂 などが挙げられる。
[0076] これらの溶出防止剤の効果としては、吸着剤が鉄等の金属の含水酸化物などの吸 着体を樹脂内で形成して重金属等を吸着すること、あるいは、還元剤が重金属等を 還元し、不溶化することなどである。さらに、還元剤と吸着剤の併用によって、重金属 等が還元され、より吸着されやすくなる場合がある。このため、吸着剤と還元剤を混合 して用いてもよい。 [0077] 溶出防止剤は、硫酸第一鉄 ·一水塩のような水分を含有する薬剤であることが多い ため、過剰に添加すると、樹脂組成物を射出成形する時に水分が蒸発し、成形体外 観に銀色の筋 (以下、「シノレバー」という。)の発生や、溶出防止剤に起因する変色が 発生するなど成形品の意匠性の低下を引き起こす場合がある。
[0078] このため、溶出防止剤の添加量は、樹脂組成物中で多くても 2質量%未満とするこ と力 S好ましく、より好適には 1質量%以下とすることが望ましい。
[0079] なお、無機粒子として FAを使用するときは、溶出防止剤は、 FAに対して相対質量 比で 1/1000以上、特に好ましくは、 1/100以上であるときに重金属等の溶出防 止の効果がある。例えば、樹脂組成物が FA10質量%を含有する場合には、溶出防 止剤は 0. 01質量%以上、好ましくは 0. 1質量%以上を、 2質量%未満において配 合することが望ましぐそれにより、シルバー等の外観不良の発生を抑制でき、重金 属等の溶出も防止できる。
[0080] 樹脂組成物成形品の表面に溶出防止機能を有する膜を形成する場合、撥水性又 は水分透過防止性の膜で成形品表面をコートする方法が取り得る。撥水性の膜とし ては特に限定しないが、例えばフッ素樹脂系のものが利用できる。溶出防止剤と併 用すると、重金属等の溶出防止により効果的である。
[0081] 本発明においては、ポリカーボネート系樹脂及び無機粒子を含有する樹脂組成物 に、さらに樹脂組成物中で繊維構造 (フイブリル状構造)を形成する繊維形成型の含 フッ素ポリマーを配合することが好ましレ、。繊維形成型の含フッ素ポリマーを配合する ことにより、燃焼時のドリップ現象を防止することが可能となる。
[0082] 繊維形成型の含フッ素ポリマーとしては、ポリテトラフルォロエチレン、テトラフルォ 口エチレン系共重合体(たとえば、テトラフルォロエチレン/へキサフルォロプロピレ ン共重合体等)、部分フッ素化ポリマー、フッ素化ジフヱノールから製造されるポリ力 ーボネート等が挙げられる。
[0083] また、繊維形成型の含フッ素ポリマーとして、ファインパウダー状のフルォロポリマ 一、フルォロポリマーの水性ディスパー、粉体状のフルォロポリマー/アクリロニトリル 一スチレン共重合体混合物、粉体状のフルォロポリマー/ポリメチルメタタリレート混 合物などの様々な形態のフルォロポリマーを用いることができる。 [0084] 繊維形成型の含フッ素ポリマーの配合量は、難燃性樹脂組成物全体を基準として 、好ましくは 0. 05質量%以上、より好ましくは 0. 1質量%以上が適当である。また、 好ましくは 5質量%以下、より好ましくは 1質量%以下、さらに好ましくは 0. 8質量% 以下が適当である。
[0085] 含フッ素ポリマーの配合量が 0. 05質量%以上であると、燃焼時のドリッビング防止 効果が安定して得られる。また、含フッ素ポリマーの配合量が 0. 1質量%以上である と、樹脂組成物の難燃性が一層良好となる。
[0086] また、含フッ素ポリマーの配合量が 5質量%以下であると、樹脂中に分散しやすい ため、ポリカーボネート系樹脂と均一に混合することが容易となり、難燃性を有する樹 脂組成物の安定生産が可能となる。また、含フッ素ポリマーの配合量が 1質量%以下 であると、難燃性が一層良好となる。含フッ素ポリマーの配合量が 0. 8質量%以下で あると、樹脂組成物の難燃性がより一層良好となる。
[0087] FAをはじめとする二酸化珪素及び酸化アルミニウムを含む粒子を含む無機粒子の 配合により、ポリカーボネート系樹脂を含む樹脂組成物が難燃性を発現する要因とし ては、以下を推察する。
[0088] ポリカーボネート系樹脂は化学構造中にカーボネート結合を有し、カーボネート結 合中の酸素と無機粒子の表面水酸基とが水素結合を形成することにより、耐熱安定 化する。特定の粒径範囲にある無機粒子では、ポリカーボネート系樹脂との水素結 合を形成する割合が増大し、燃焼時に無機粒子とポリカーボネート系樹脂の複合化 物を形成し易くなり、炭化を促進するため、難燃性が著しく向上する。
[0089] さらに、無機粒子中の二酸化珪素及び酸化アルミニウムの複合体がポリカーボネー ト系樹脂に対し、難燃触媒として特異的に働くと考える。特に、 FAを使用したときに は、初期燃焼中に成形品表面の有機成分が揮発し、表面が高濃度の FA又はポリ力 ーボネートと FAとの複合化物となることも、難燃化に寄与していると考えられる。
[0090] さらに、本発明において、難燃性樹脂組成物の効果を損なわない範囲で、樹脂組 成物に各種の熱安定剤、酸化防止剤、着色剤、蛍光増白剤、充填材、離型剤、軟化 材、帯電防止剤、可塑剤、分散剤等の添加剤、衝撃性改良材、他のポリマーなどを 配合しても良レ、。さらに、 FA等の無機粒子はシラン系カップリン剤、チタネート系カツ プリング剤などで表面処理してレ、てもよレ、。
[0091] 熱安定剤としては、例えば、硫酸水素ナトリウム、硫酸水素カリウム、硫酸水素リチウ ム等の硫酸水素金属塩、硫酸アルミニウム等の硫酸金属塩などが挙げられる。これら は、通常 0 0. 5質量%の範囲で用いられる。
[0092] 充填材としては、例えば、ガラス繊維、ガラスビーズ、ガラスフレーク、炭素繊維、タ ルク粉、クレー粉、マイ力、チタン酸カリウムゥイスカー、ワラストナイト粉等が挙げられ る。
[0093] 衝撃性改良材としては、たとえばガラス繊維、有機繊維、アクリル系エラストマ一、ポ リエステル系エラストマ一、コアシェル型のメチルメタタリレート'ブタジエン.スチレン 共重合体、メチルメタタリレート'アクリロニトリル 'スチレン共重合体、エチレン 'プロピ レン系ゴム、エチレン.プロピレン.ジェン系ゴム等が挙げられる。特にガラス繊維は衝 撃改良材としての機能に優れる。
[0094] 可塑剤としては、例えば、トリメリット酸系エステル、ピロメリット酸系エステル、ポリ力 ーボネートジオール、トリメチロールプロパントリべンゾエート、ジペンタエリスリトール 、ポリ力プロラタトン、 P-ヒドロキシ安息香酸アルキルエステル等が挙げられる。
[0095] 分散剤としては、例えば、ォレフィン マレイン酸コポリマー、スチレン 無水マレイン 酸共重合物、ナフタレンスルホン酸ナトリウム等が挙げられる。
[0096] 必要に応じて他の難燃剤が添加でき、リン系難燃剤、金属水酸化物やホウ酸塩な どの吸熱剤、メラミン類などの窒素化合物、シリコーン系難燃剤、各種金属塩などの 炭化促進剤、さらにハロゲン系難燃剤等が挙げられる。
[0097] 本発明において、樹脂組成物の製造方法は、特に制限はなぐタンブラ一、リボン プレンダー、バンバリ一ミキサー、ニーダ一等の公知の混合機による混合や、単軸押 出機、二軸押出機等の公知の押出機による溶融混練が挙げられる。
[0098] 例えば、樹脂成分などのペレット状成分からなる原材料混合物と、 FAなどを含む無 機粒子などのパウダー状成分力 なる原材料混合物と、をそれぞれ別途に予備混合 したものを調製し、それぞれの原料混合物を独立して押出機に供給し、溶融混練を 行う方法、それぞれの原料成分を独立して押出機に供給し溶融混練を行う方法等が 例示できる。 [0099] さらに、無機粒子を有機溶媒や溶融させた樹脂などに分散させたマスターバッチを 予めミキサーなどの混合機を用いて製造し、このマスターバッチを樹脂組成物の成形 加工時に配合して樹脂組成物を得ることもできる。
[0100] 特に、無機粒子の粒径が小さい場合には、マスターバッチを製造することで、無機 粒子の飛散を抑制し、作業性又は取扱安定性を向上させることができるため、有効 な製造方法である。
[0101] 溶融混練では、押出機は押出機のシリンダー設定値を 200 400°C、好ましくは 2 20— 350。C、さらに好ましくは 230 300°Cとしてもよレ、。また、押出機スクリュー回 転数を 30 700rpm、好ましくは 80— 500rpmとし、さらに好ましくは 100 300rp mとすること力 Sできる。
[0102] 押出機内の平均滞留時間を 10 150秒、好ましくは 20 100秒、さらに好ましくは 30— 60秒として溶融混練を行うことができる。溶融樹脂組成物の温度は好ましくは 2 50— 300°Cの範囲とし、混練中に樹脂組成物に過剰の加熱を与えないように配慮し ながら溶融混練を行うことができる。溶融混練した樹脂組成物は、押出機先端に取り 付けられたダイよりストランドとして押し出され、ペレタイズされて樹脂組成物のペレツ トが得られる。
[0103] そして、難燃性樹脂組成物の製造において、溶融混練と同時に脱揮を行うこともで きる。脱揮とは、押出機に取り付けられたベント口を通じて、溶融混練工程で生じる揮 発成分を、大気圧開放あるいは減圧により除去することを意味する。
[0104] こうして得られた難燃性樹脂組成物のペレットは、優れた難燃性を有するため、電 気 ·電子機器用途、建材用途、 自動車部品用途、 日用品用途、医療用途、農業用途 、玩具、娯楽用品などの成形品を成形するための難燃性成形材料として用いること ができる。
[0105] また、本発明においては、上記の難燃性樹脂組成物を含有する難燃性成形材料を 提供する。
[0106] なお、本明細書において、難燃性樹脂成形材料とは、高温酸化雰囲気においても 、樹脂組成物の燃焼が抑制される性質を有する樹脂成形材料を意味する。例えば、 難燃性樹脂組成物からなる樹脂組成物ペレットなどが代表例である。 [0107] 本発明における難燃性樹脂組成物は、難燃性を向上させる組成物として有用であ る。この難燃性樹脂組成物を、適宜、熱可塑性樹脂等に配合し、難燃性成形材料を 得ること力 Sできる。つまり、本発明の難燃性成形材料は、上記の難燃性樹脂組成物 のみからなる材料であってよいが、溶融流動性等の成形性及び、耐衝撃性等の機械 的特性をさらに改良する目的で、ポリカーボネート系樹脂以外の熱可塑性樹脂を含 有していてもよい。
[0108] このような熱可塑性樹脂としては、たとえば、ポリスチレン、ハイインパクトポリスチレ ン、スチレン.ブタジエン共重合ゴム等のポリスチレン系樹脂、ポリフエ二レンエーテル 系樹脂、ポリオレフイン系樹脂、ポリ塩ィ匕ビュル系樹脂、ポリアミド系樹脂、ポリエステ ル系樹脂、ポリプロピレン系樹脂、ポリフエ二レンスルフイド系樹脂、ポリメタタリレート 系樹脂、ゴム変性重合体、ポリアクリル酸エステル系樹脂、アクリル二トリル'ブタジェ ン共重合ゴム、アクリロニトリル 'スチレン共重合体とこれのアクリルゴム変成物、アタリ ロニトリル.ブタジエン.スチレン共重合体、アクリロニトリル.エチレン一プロピレンージ ェン系ゴム(EPDM) 'スチレン共重合体等のスチレン系ポリマー等から選ばれる 1種 をもしくは 2種以上を組み合わせて使用することができる。
[0109] これらの熱可塑性樹脂の中では、ポリブタジエン、スチレン.ブタジエン共重合ゴム 、アクリロニトリル.ブタジエン共重合ゴム、ポリアクリル酸ブチル等が好ましい。
[0110] 本発明において、難燃性成形材料中の本発明の難燃性樹脂組成物の割合は、特 に制限はないが、好ましくは 10質量%以上、より好ましくは 30質量%以上、さらに好 ましくは 60質量%以上であり、また、好ましくは 99質量%以下、より好ましくは 85質 量%以下、さらに好ましくは 70質量%以下である。
[0111] 上記難燃性樹脂組成物の割合が 10質量%以上の場合には、難燃性成形材料の 成形性の低下を抑制しつつ難燃性向上効果が安定して認められる。また、上記難燃 性樹脂組成物の割合が 30質量%以上の場合には、難燃性と成形性とのバランスが 良好なものとなる。さらに、上記難燃性樹脂組成物の割合が 60質量%以上の場合に は、難燃性と成形性とのバランスがさらに良好となる。
[0112] また、上記難燃性樹脂組成物の割合が 99質量%以下の場合には、難燃性成形材 料の機械的強度又は成形性の面で優れる傾向がある。また、上記難燃性樹脂組成 物の割合が 85質量%以下の場合には、難燃性と機械的強度とのバランスが良好と なる。さらに、この割合が 70質量%以下の場合には、難燃性と機械的強度と成形性 とのバランスがさらに良好となる。
[0113] また、本発明においては、上記の難燃性樹脂組成物を含有する成形品を提供でき る。このような構成により、難燃性に優れる成形品が得られる。また、成形品の成形性 の低下を抑制することができる。
[0114] 上記難燃性成形材料を成形する方法としては、特に制限はなぐ公知の射出成形 法、ガスアシスト成形法、押出成形法、ブロー成形法、射出 ·圧縮成形法等を用いる こと力 Sできる。
[0115] このような方法により得られた成形品は、優れた難燃性を有するため、電気'電子機 器用途、建材用途、 自動車部品用途、 日用品用途、医療用途、農業用途、玩具、娯 楽用品などに用いることができる。特に、優れた難燃性が要求される電気 ·電子機器 の筐体に好適に用いられる。
[0116] 以上、本発明の構成について説明した力 これらの構成を任意に組み合わせたも のも本発明の態様として有用である。
実施例
[0117] 以下、本発明を実施例によりさらに説明するが、本発明はこれらに限定されるもの ではない。
[0118] (1)粒度分布の測定方法
無機粒子の粒度分布は、 MICRO TRAC社製の粒度分布測定装置" D. H. S
9200PRO FRAタイプ"を用レ、、以下の条件で光散乱法により測定した。
分散媒 :2質量%へキサメタリン酸ナトリウム水溶液 (屈折率 1. 33)
測定時間: 20秒、 3回
前処理 :分散媒 30mlに試料約 20mgを入れ、超音波(20kHz、 300kW)で 3分間 分散処理し、該分散液を測定セルに入れ、純水で濃度 0. lg/1になるように調整す る。
[0119] (2)使用原料
(2 - 1)熱可塑性樹脂 PC :ポリカーボネート系樹脂 (住友ダウ (株)製、商品名;カリバー 301-22 (質量平 均分子量 47000、数平均分子量 27000) )。
PET:ポリエチレンテレフタレート(東洋紡績(株)製、商品名; PETMAX RE554)
PBT:ポリブチレンテレフタレート(三菱エンジニアリングプラスチックス(株)製、商品 名;ノバデュラン 5010R5)。
PP :ポリプロピレン (住友化学 (株)製、商品名; AH561)。
Ny : 6_ナイロン (東レ(株)製、商品名;アミラン CM1017)。
[0120] (2— 2)無機粒子
FA:フライアッシュ。下記表 1に示す製品を用いた。
[0121] [表 1]
Figure imgf000021_0001
[0122] 表 1に記載の FAの一部について、その粒度分布の測定結果を図 3— 8に示した。
[0123] なお、 FA—A4— A7は JIS A6201 (1999)のフライアッシュ I種に相当し、 難燃性 の実現に好適であり、 FA— A8— A12は同フライアッシュ II種 (標準品)に相当し、粒 径が比較的大きい。
[0124] なお、 FA—A8は、フライアッシュ II種品である力 D50力 . 9 z mと小さレ、ため、難 燃性の向上効果が得られている。
[0125] また、元素分析などにより、ここに示した FAは、二酸化珪素及び酸化アルミニウム の複合体である粒子、主として二酸化珪素からなる粒子及び主として酸化アルミユウ ムからなる粒子を含むことを確認している。なお、試料による力 二酸化珪素と酸化ァ ノレミニゥムの複合体であるムライトの含有量は 3— 44質量0 /。であった。
S :球状二酸化珪素 (電気化学工業 (株)製、商品名; FB3SCC、平均粒子径 3. 2 μ m)。
HS :破砕二酸化珪素 (電気化学工業 (株)製、商品名; FS 3CC、平均粒子径 3. 2 μ m)。
A1 :球状酸化アルミニウム(昭和電工 (株)製、商品名; CB - A05S、平均粒子径 2. 9 μ m)。
[0126] (2— 3)繊維形成型の含フッ素ポリマー
PTFE :ポリテトラフルォロエチレン(ダイキン社製、商品名;ポリフロン FA_500、繊 維形成型の含フッ素ポリマー)。
[0127] (2— 4)溶出防止剤
FD-l : FeSO · Η Ο (硫酸第一鉄 ·一水和物)(富士チタン (株)製、商品名; FD— 1
4 2
SW :シュベルトマナイト(ソフィァ社製、商品名; Asre_S、化学式; Fe O (OH)
8 8 8-
(SO ) · ηΗ 0 ( 1≤χ≤1. 75) )。
2Χ 4 X 2
[0128] (3)樹脂組成物、樹脂成形品の作製
ポリカーボネート系樹脂(カリバー 301— 22)と FAを、シリンダー温度が 280°Cに 設定された連続混練押出機( (株) KCK製 KCK80X2-35VVEX (7) )に供給し、 溶融剪断下において混練押し出しし、次いで、水中で冷却固化した後、ペレット状に 切断した。
[0129] 得られた樹脂組成物のペレットを 120°Cで 4時間、乾燥した後、 20トンの射出成形 機 (東芝機械 (株)製 EC20P-0. 4A)を用いて、シリンダー温度: 280°C、金型設 定温度: 80°Cの条件で成形して、上記樹脂組成物の難燃性評価用試験片(125m m X 13mm X l . 6mm)、酸素指数評価用試験片(125mm X 6. 5mm X 3. Omm) 及び曲げ試験評価用試験片(125mm X 12. 7mm X 3. 2mm)を作製した。
[0130] 但し、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリ プロピレン (PP)及び 6—ナイロン (Ny)を含む樹脂組成物に関しては、混練及び射出 共にシリンダー温度を 260°Cとした。
[0131] (4)各種評価
(4 - 1)難燃性評価
難燃性評価の評価指数の一種である酸素指数は、射出成形により得られた酸素指 数評価用試験片(125mm X 6. 5mm X 3. Omm)について、 JIS K-7201 (ISO 4589)に準じて測定した。
[0132] 難燃性評価のうち UL94試験については、射出成形により得られた難燃性評価用 試験片(125mm X 13mm X l . 6mm)を温度 23°C、湿度 50%の恒温室の中で 48 時間放置し、アンダーライターズ 'ラボラトリーズが定めている UL94試験 (機器の部 品用プラスチック材料の燃焼性試験)に準拠した難燃性の評価にて行った。
[0133] UL94試験とは、鉛直に保持した所定の大きさの試験片にバーナーの炎を 10秒間 接炎した後の残炎時間やドリップ性力 難燃性を評価する方法であり、以下の表 2に 示すクラスに分けられている。
[0134] [表 2]
Figure imgf000023_0001
[0135] なお、上記分類以外の燃焼形態をとる場合は、 notV— 2と分類した。ちなみに、難 燃性が良好な順から並べると、 V— 0、 V— 1、 (V— 2及び notV— 2)となる。
[0136] 上に示す残炎時間とは、着火源を遠ざけた後の、試験片が有炎燃焼を続ける時間 の長さであり、ドリップによる綿の着火とは、試験片の下端力 約 300mm下にある標 識用の綿が、試験片からの滴下物(ドリップ)によって着火されるかどうかによって決 定される。
[0137] (4一 2)機械的強度の評価
機械的強度については、射出成形により得られた曲げ試験評価用試験片(125m m X 12. 7mm X 3. 2mm)について、 ASTM C— 256に準じて曲げ強度及び曲げ 弾性率を測定した。
[0138] (4一 3)成形性の評価
成形性の評価指標として、得られた樹脂組成物の溶融流動特性を測定した。溶融 流動特性の測定は、樹脂組成物を 120°Cで 4時間乾燥してから、 20トンの射出成形 機 (東芝機械製 EC20P - 0. 4A)を用いて、シリンダー温度: 280°C、金型設定温度
: 80°C、射出圧力: 1600kgf/cm2、厚み lmmの条件でスパイラルフローを測定し て、以下の基準で評価した。
〇:溶融流動特性に優れてレ、る。
△:溶融流動特性が不十分である。
X:溶融流動特性が悪い。
[0139] 実験例 1 (酸素指数による難燃性及び成形性)
PCに対し、 FA-A5 (D50 = 5. 0 μ m)を表 3に示す組成で配合した難燃性樹脂 組成物を作製し、酸素指数評価用試験片により酸素指数を測定した。これらの組成 物の成形性も調べた。評価結果を表 3に示す。なお、参考のため、 PC自体の酸素指 数及び成形性も示した。
[0140] [表 3]
Figure imgf000024_0001
実験例 2 (FAの D50と難燃性検討)
PCに対し、 PTFE及び FAを表 4に示す組成で配合した難燃性樹脂組成物を作製 し、 UL94の難燃性及び平均残炎時間を評価した。また、この組成物の成形性も調 ベた。その結果を表 4に示す。また、 D50と平均残炎時間の関係を図 1に示す。なお 、参考のために、 PC自体の結果も示した。
[表 4]
Figure imgf000025_0001
[0143] 表 4及び図 1の結果から明らかなように、 D50が 1一 10 μ mの範囲にある FAをポリ カーボネート系樹脂に配合した樹脂組成物(実験ナンバー 12— 17)は優れた難燃 性及び成形性を有している。すなわち、 D50が 1一 10 μ mでぁるFAを配合した場合 には、 FAの分散性が良好となり樹脂組成物の難燃性が向上すると考えられる。また 、 D50が 3— 7 μ mの範囲にある FAをポリカーボネート系樹脂に配合した樹脂組成 物の成形品(実験ナンバー 13— 15)は、難燃性が著しく向上している。すなわち、 D 50が 3— 7 μ mである FAをポリカーボネート系樹脂に配合した場合には、 FAの分散 性がさらに良好となり、樹脂組成物の難燃性がさらに向上すると考えられる。
[0144] —方、表 4及び図 1に明らかなように、 D50が 1一 ΙΟ μ ΐηの範囲外である FAの配合
(実験ナンバー 10 11、 18— 21)では、ポリカーボネート系樹脂自体よりも難燃性 の低下が見られる。
[0145] 実験例 3 (FA配合量と難燃性及び曲げ物性)
PCに対し、 PTFE及び FA— A5を表 5に示す組成で配合した難燃性組成物を作製 し、 UL94の難燃性及び平均残炎時間を評価した。また、この組成物の曲げ物性及 び成形性も調べた。その結果を表 5に示す。また、 FAの配合量と平均残炎時間の関 係を図 2に示す。
[表 5]
Figure imgf000026_0001
[0147] 表 5及び図 2の結果から明らかなように、所定粒子径の FAを5— 50質量%の割合 でポリカーボネート系樹脂に配合した樹脂組成物(実験ナンバー 23— 28)は難燃性 が著しく向上している。すなわち、 FAを 5— 50質量%となるようにポリカーボネート系 樹脂に配合した場合、樹脂組成物中の樹脂成分又は FAの比率が適度となるため、 難燃性が向上すると考えられる。
[0148] 実験例 4 (無機粒子の違いによる難燃性の評価)
PC69. 5質量%、 PTFE0. 5質量%及び表 6に示す無機粒子 30質量%からなる 難燃性樹脂組成物を作成し、難燃性を評価した。結果を表 6に示す。
[0149] [表 6] 組 成 評価結果
平均残 験 P C P T F E 無機粒子 難燃性
炎時間
No. 1 . 6 質量 ¾; 質量 ¾; 種別 D50 ( m) 質量% 秒/本
30 69. 5 0. 5 FA-A5 5. 0 30 V-0 0. 6
31 69. 5 0. 5 S 3. 0 30 V-1 22. 6
32 69. 5 0. 5 HS 3. 0 30 No tV-2 > 30
33 69. 5 0. 5 A 1 2. 9 30 V- 1 1 9. 7
S 3. 0 15
34 69. 5 0. 5 V- 1 20. 5
A 1 2. 9 1 5 [0150] 表 6から明らかなように、 FAを用いた場合 (実験ナンバー 30)は、二酸化珪素(S、 HS)や酸化アルミニウム (A1)を用いた場合に比べ、難燃性の改善効果が著しい。す なわち、 FAは、二酸化珪素のみからなる粒子(S、 HS)や、酸化アルミニウムのみか らなる粒子 (A1)には含まれない、二酸化珪素及び酸化アルミニウムを含む複合体を 含む無機粒子だからである。
[0151] 実験例 5 (樹脂の違いによる難燃性の比較)
表 7に示す熱可塑性樹脂に PTFE0. 5質量%と FA - A5を、表 7に示す組成で配 合して難燃性樹脂組成物を作成し、難燃性を評価した。結果を表 7に示す。
[0152] [表 7]
Figure imgf000027_0001
[0153] 表 7から明ら力なように、他の熱可塑性樹脂としてポリエチレンテレフタレート(PET ) (実験ナンバー 37、 38)、ポリブチレンテレフタレート(PBT) (実験ナンバー 39、 40 )、ポリプロピレン(PP) (実験ナンバー 41、 42)あるいは 6—ナイロン (Ny) (実験ナン バー 43、 44)を用いた樹脂組成物にあっては、 FAによる難燃性の改善効果が見ら れない。
[0154] そのため、難燃性の改善効果は、ポリカーボネート系樹脂と、特定の粒径の FAを はじめとする二酸化珪素及び酸化アルミニウムの複合体を含む粒子を含む無機粒子 との組合せによる相乗作用により得られる特有な効果であることがわかる。
[0155] このように、ポリカーボネート系樹脂と、特定の粒径の FAをはじめとする二酸化珪 素及び酸化アルミニウムを含む複合体を含む無機粒子を含む樹脂組成物によれば 、高度な難燃性を有し、さらに溶融流動性又は環境調和性に優れるポリカーボネート 系の難燃性樹脂組成物、それを用いる難燃性成形材料又は成形品を低コストで提 供できる。
[0156] すなわち、本発明において、成形性の低下を抑制しつつ難燃性が向上した難燃性 樹脂組成物が提供され、特に無機粒子の D50が 3 7 x mにある場合、難燃性、成 形性、機械的特性等のバランスに優れた難燃性樹脂組成物が提供される。
[0157] 実験例 6 (溶出防止剤による重金属等の溶出防止性評価)
PC、 PTFE、 FA - A5及び溶出防止剤(硫酸第一鉄'一水和物又はシュベルトマナ イト)を表 8に示す量を使用し、難燃性樹脂組成物を作成し、難燃性を評価した。また 、難燃性評価用試験片を作製したときにその外観を目視により観察しシノレバーの発 生の有無とその程度を調べた (外観特性)。結果を表 8に示す。さらに、該樹脂組成 物を環境庁告示 46号 (土壌環境基準に係る溶出試験)に準拠する重金属等の溶出 試験により、溶出金属量を定量した。重金属等の溶出試験の結果を表 9に示す。な お、参考のため、 FA— A5の重金属等の含有量を表 10に示す。
[0158] 外観特性の評価
外観特性は、下記基準で評価した。
〇:シルバーがほとんど観察されない。
△:シノレバーがわずかに観察される。
X:シルバーが観察される。
[0159] 重金属等の溶出試験方法(土壌環境基準に係る溶出試験 (環境庁告示 46号)に 準拠)
サンプル:所定量のペレットをとり、石臼式の押出機 (KCK製、吐出量: 8kg/h)を 用い混練温度 280°Cで混練物を作成し、次いで凍結粉砕した後、非金属製のふる レ、(目開き 2mm)を通過させて得る。なお、ペレットの粒径が 2mm以下のものはその まま使用する。
[0160] 溶出液の調製:試料 (単位 g)と溶媒 (純水に塩酸をカ卩え、水素イオン濃度指数が 5 . 8-6. 3となるようにしたもの)(単位 ml)を、全液量が 500ml以上となるように、重量 体積比 10 %の割合で混合する。 [0161] 溶出方法:調製した測定液を常温常圧で振とう機(予め振とう回数を毎分約 200回 に、振とう幅を 4一 5cmに調整したもの)を用いて、 6時間連続して振とうする。
[0162] 溶出量測定:上記の操作で得られる試料液を 10— 30分静置した後、毎分約 3000 回転で 20分間遠心分離し、上澄み液を孔径 0.45 mのメンブランフィルターでろ 過してろ液を取り、得られた検液に含有される六価クロム、ヒ素、セレン、鉛及び水銀 を、 ICP発光分析又は原子吸光分析により溶出量を測定する。
[0163] [表 8]
Figure imgf000029_0001
[0164] [表 9]
実験 溶出防止剤 重金属等溶出試験 (m gZL )
Να 種別 対 FA量 Cr(VI) As Se Pb Hg
45 ― 0 0.01 0.004 0.003 <0.005 <0.0005
46 FD-1 1/1000 〈0.01 〈0.001 く 0.001 <0.005 <0.0005
47 FD-1 1/600 <0.01 <0.001 <0.001 <0.005 <0.0005
48 FD-1 1/100 く 0.01 <0.001 く 0.001 <0.005 <0.0005
49 FD-1 1/30 く 0.01 〈0.001 <0.001 <0.005 <0.0005
50 FD-1 1/20 く 0.01 <0.001 <0.001 く 0.005 く 0.0005
51 FD-1 1/15 く 0.01 <0.001 く 0.001 <0.005 く 0.0005
52 S 1/1000 〈0.01 く 0.001 く 0.001 く 0.005 <0.0005
53 SW 1/600 <0.01 く 0.001 <0.001 <0.005 <0.0005
54 SW 1/100 <0.01 く。.001 〈0· 001 〈0.005 く 0.0005
55 SW 1/30 <0.01 く 0.001 <0.001 く 0.005 <0.0005
56 SW 1/20 <0.01 〈0.001 <0.001 く 0.005 <0.0005
57 SW 1/15 <0.01 く 0.001 く 0.001 く 0.005 く 0.0005 [0165] [表 10]
Figure imgf000030_0001
[0166] 表 9から明らかなように、ポリカーボネート系樹脂と、特定の粒径の FAを含む無機 粒子とを含む樹脂組成物(実験ナンバー 45)によれば、溶出試験にて重金属等であ る六価クロム、ヒ素及びセレンを微量に溶出するが、溶出防止剤として硫酸第一鉄 · 一水和物ゃシュベルトマナイトを FAに対し 1/1000以上の量で配合することにより、 高度な難燃性を維持しつつ重金属等の溶出を抑制することができる。また、表 8に見 られるように、樹脂組成物中に溶出防止剤を 2. 0質量%未満、好ましくは 1. 5質量 %未満で配合すれば、成形時におけるシノレバーの発生がないため、製造される成形 品の外観特性が向上する。
[0167] 以上、本発明を実施例に基づいて説明した。この実施例はあくまで例示であり、種 々の変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に 理解されるところである。
[0168] これら実施例では、二酸化珪素及び酸化アルミニウムの複合体を含む無機粒子と して、 FAを無機粒子として用いた力 木等を燃焼させて得られる灰、シリカ 'アルミナ 複合粒子等も、本発明に特定する組成、粒径等を備えていれば使用可能である。 産業上の利用可能性
[0169] 本発明の難燃性樹脂組成物は、極めて優れた難燃特性を有しているので、難燃性 が必要な用途、特に電気'電子機器の筐体に有用である。

Claims

請求の範囲
[I] ポリカーボネート系樹脂と無機粒子を含有する難燃性樹脂組成物において、
無機粒子は、二酸化珪素及び酸化アルミニウムの複合体からなる粒子を含むもの であり、かつ、 50%粒径(D50)が 1一 10 z mであることを特徴とする難燃性樹脂組 成物。
[2] 無機粒子が、全組成物中に、 1一 60質量%含まれている請求項 1に記載の難燃性 樹脂組成物。
[3] 無機粒子が、二酸化珪素及び酸化アルミニウムの複合体からなる粒子に加えて、 酸化アルミニウム粒子及び二酸化珪素粒子を含むものである請求項 1に記載の難燃 性樹脂組成物。
[4] 無機粒子がフライアッシュである請求項 1に記載の難燃性樹脂組成物。
[5] 無機粒子内の成分の溶出を防止する溶出防止剤を含む請求項 1に記載の難燃性 樹脂組成物。
[6] 溶出防止剤が、無機粒子内の成分を吸着する吸着剤又はイオン交換樹脂である 請求項 5に記載の難燃性樹脂組成物。
[7] 無機粒子内の成分の溶出を防止する溶出防止剤が、硫酸第一鉄'一水和物及び シュベルトマナイトから選ばれる請求項 5に記載の難燃性樹脂組成物。
[8] 無機粒子が、粒径 20 μ m以下の粒子を 70質量%以上含んでいる請求項 1に記載 の難燃性樹脂組成物。
[9] 無機粒子が、全二酸化珪素 44一 85質量%及び全酸化アルミニウム 15 40質量
%を含む請求項 1に記載の難燃性樹脂組成物。
[10] 無機粒子中の全二酸化珪素及び全酸化アルミニウムの合計量が、全無機粒子中 6
0質量%以上である請求項 9に記載の難燃性樹脂組成物。
[II] ざらに、繊維形成型の含フッ素ポリマーを、全難燃性樹脂組成物を基準として、 0.
05— 5質量%を含む請求項 1に記載の難燃性樹脂組成物。
[12] 請求項 1一 11のいずれか 1項に記載の難燃性樹脂組成物を含有する難燃性成形 材料。
[13] 請求項 1一 11のいずれ力 1項に記載の難燃性樹脂組成物を成形してなる成形品。
PCT/JP2005/002904 2004-02-27 2005-02-23 難燃性樹脂組成物 WO2005083004A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/590,237 US8138256B2 (en) 2004-02-27 2005-02-23 Flame-retardant resin composition
DE112005000457T DE112005000457B4 (de) 2004-02-27 2005-02-23 Flammhemmende Harzzusammensetzung, Formmaterial, das sie enthält, Formgegenstand und Verwendung einer Flugasche zum Verleihen von Flammhemmung

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004054142 2004-02-27
JP2004-054142 2004-02-27
JP2004-298861 2004-10-13
JP2004298861A JP4033188B2 (ja) 2004-02-27 2004-10-13 難燃性樹脂組成物

Publications (1)

Publication Number Publication Date
WO2005083004A1 true WO2005083004A1 (ja) 2005-09-09

Family

ID=34914455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002904 WO2005083004A1 (ja) 2004-02-27 2005-02-23 難燃性樹脂組成物

Country Status (4)

Country Link
US (1) US8138256B2 (ja)
JP (1) JP4033188B2 (ja)
DE (1) DE112005000457B4 (ja)
WO (1) WO2005083004A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007077189A (ja) * 2005-09-12 2007-03-29 Aron Kasei Co Ltd 難燃性樹脂組成物
WO2009014050A1 (ja) * 2007-07-24 2009-01-29 Teijin Chemicals Ltd. 難燃性樹脂組成物
EP4269343A4 (en) * 2020-12-24 2024-10-23 Denka Company Ltd OXIDE COMPOSITE PARTICLES, METHOD FOR PRODUCING THE SAME AND RESIN COMPOSITION

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4783156B2 (ja) * 2006-01-13 2011-09-28 大日精化工業株式会社 ポリカーボネート系難燃性樹脂組成物
JP5210493B2 (ja) * 2006-02-13 2013-06-12 三菱エンジニアリングプラスチックス株式会社 熱線遮蔽能を備えたポリカーボネート樹脂成形体
CN101443411B (zh) * 2006-05-15 2011-11-30 出光兴产株式会社 芳香族聚碳酸酯树脂组合物
US9976002B2 (en) * 2011-05-27 2018-05-22 Revolutionary Plastics, Llc Method to heuristically control formation and properties of a composition
GB2495749B (en) * 2011-10-20 2015-11-04 Rocktron Mineral Services Ltd Beneficiation of fly ash
US9790703B1 (en) 2016-08-16 2017-10-17 Go Team CCR LLC Methods of utilizing coal combustion residuals and structures constructed using such coal combustion residuals
US9988317B2 (en) 2016-08-16 2018-06-05 Go Team CCR LLC Structures constructed using coal combustion materials

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08104775A (ja) * 1994-10-06 1996-04-23 Kanebo Ltd 硯用熱可塑性樹脂組成物及び硯
US6379797B1 (en) * 1999-02-04 2002-04-30 Tohoku Munekata Co Ltd Resin additive
JP2004043641A (ja) * 2002-07-11 2004-02-12 Sekisui Chem Co Ltd 耐火性樹脂組成物

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3331671A (en) * 1964-08-19 1967-07-18 William D Goodwin Apparatus for transforming materials by pyrogenic techniques
US4243575A (en) 1979-07-25 1981-01-06 General Electric Company Filled thermoplastic resin compositions
US4560712A (en) * 1984-12-27 1985-12-24 Mobil Oil Company Polypropylene compositions containing bimodal calcium carbonate and a polysiloxane
US5047145A (en) * 1990-05-24 1991-09-10 Board Of Control Of Michigan Technological University Wet process for fly ash beneficiation
US5505766A (en) * 1994-07-12 1996-04-09 Electric Power Research, Inc. Method for removing pollutants from a combustor flue gas and system for same
US5837757A (en) * 1996-06-18 1998-11-17 Idemitsu Petrochemical Co., Ltd. Flame-retardant polycarbonate compositions
WO1999037592A1 (en) * 1998-01-26 1999-07-29 Board Of Control Of Michigan Technological University Processed fly ash as a filler in plastics
JP3046964B1 (ja) 1999-02-09 2000-05-29 東北ムネカタ株式会社 樹脂添加剤
JP2000336254A (ja) 1999-05-26 2000-12-05 Unitika Ltd ポリエステル樹脂組成物、並びにこれを用いてなる成形品
JP2001072853A (ja) 1999-09-08 2001-03-21 Teijin Chem Ltd 制振性熱可塑性樹脂組成物
JP3369137B2 (ja) 1999-11-30 2003-01-20 学校法人 芝浦工業大学 樹脂複合組成物、難燃性材料及びこれらの製造方法
DE19962930A1 (de) 1999-12-24 2001-06-28 Bayer Ag Flammwidrige Polycarbonat-Formmassen mit Talk besonderer Reinheit
DE19962929A1 (de) 1999-12-24 2001-06-28 Bayer Ag Polycarbonat-Formmassen mit speziellem Talk
JP4358400B2 (ja) * 2000-02-08 2009-11-04 太平洋セメント株式会社 セメント添加剤
JP2004010825A (ja) 2002-06-10 2004-01-15 Asahi Kasei Corp 芳香族ポリカーボネート系難燃樹脂組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08104775A (ja) * 1994-10-06 1996-04-23 Kanebo Ltd 硯用熱可塑性樹脂組成物及び硯
US6379797B1 (en) * 1999-02-04 2002-04-30 Tohoku Munekata Co Ltd Resin additive
JP2004043641A (ja) * 2002-07-11 2004-02-12 Sekisui Chem Co Ltd 耐火性樹脂組成物

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007077189A (ja) * 2005-09-12 2007-03-29 Aron Kasei Co Ltd 難燃性樹脂組成物
JP4741910B2 (ja) * 2005-09-12 2011-08-10 アロン化成株式会社 成形物およびその製造方法
WO2009014050A1 (ja) * 2007-07-24 2009-01-29 Teijin Chemicals Ltd. 難燃性樹脂組成物
JP5323701B2 (ja) * 2007-07-24 2013-10-23 帝人株式会社 難燃性樹脂組成物
EP4269343A4 (en) * 2020-12-24 2024-10-23 Denka Company Ltd OXIDE COMPOSITE PARTICLES, METHOD FOR PRODUCING THE SAME AND RESIN COMPOSITION

Also Published As

Publication number Publication date
DE112005000457B4 (de) 2012-03-01
JP4033188B2 (ja) 2008-01-16
JP2005272808A (ja) 2005-10-06
US20080269361A1 (en) 2008-10-30
US8138256B2 (en) 2012-03-20
DE112005000457T5 (de) 2008-05-15

Similar Documents

Publication Publication Date Title
EP2088168B1 (en) High flow polyester composition
JP4314334B2 (ja) 難燃性芳香族ポリカーボネート樹脂組成物成形体
JP4989998B2 (ja) 熱可塑性樹脂組成物および樹脂成形品
JP5615992B1 (ja) レーザーダイレクトストラクチャリング用樹脂組成物、樹脂成形品、およびメッキ層付樹脂成形品の製造方法
DE10392379B4 (de) Flammwidrige aromatische Polycarbonatharzzusammensetzung sowie Spritzgussteile und Strangpressteile, welche diese umfassen
JP5323701B2 (ja) 難燃性樹脂組成物
WO2005083004A1 (ja) 難燃性樹脂組成物
JP2011168633A (ja) ポリカーボネート樹脂組成物の製造方法、およびそれからなる成形品
KR20130008524A (ko) 내충격 개질된 열가소성 조성물의 제조를 위한 혼합물의 용도
JP4784578B2 (ja) 難燃性樹脂組成物
TWI309251B (ja)
JP2019006866A (ja) ポリブチレンテレフタレート系樹脂組成物及び成形体
JPH05222283A (ja) ポリカーボネート樹脂組成物
JP6310240B2 (ja) レーザーダイレクトストラクチャリング用熱可塑性樹脂組成物、樹脂成形品、および樹脂成形品の製造方法
JP2888721B2 (ja) ポリカーボネート樹脂成形材料およびその製造方法、並びにポリカーボネート樹脂成形品の製造方法
JP4783156B2 (ja) ポリカーボネート系難燃性樹脂組成物
JP3862840B2 (ja) 難燃性樹脂組成物の製造方法
JP4592273B2 (ja) 難燃性樹脂組成物及び成形体
JP4474938B2 (ja) 無機化合物樹脂分散体、成形ペレット及び成形品
JP2597668B2 (ja) 難燃性ポリエステル組成物
JP2843158B2 (ja) 熱可塑性スチレン系樹脂組成物構造体及びその製造法
JP2005068380A (ja) 難燃性ポリカーボネート樹脂組成物
JP5194357B2 (ja) 難燃性ポリエチレンテレフタレート樹脂組成物
JP3356899B2 (ja) 難燃性ポリカーボネート樹脂組成物
JP2001323150A (ja) 導電性樹脂組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10590237

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580006200.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1120050004570

Country of ref document: DE

122 Ep: pct application non-entry in european phase
RET De translation (de og part 6b)

Ref document number: 112005000457

Country of ref document: DE

Date of ref document: 20080515

Kind code of ref document: P

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607