WO2005080648A1 - 化合物単結晶の製造方法、およびそれに用いる製造装置 - Google Patents

化合物単結晶の製造方法、およびそれに用いる製造装置 Download PDF

Info

Publication number
WO2005080648A1
WO2005080648A1 PCT/JP2005/002560 JP2005002560W WO2005080648A1 WO 2005080648 A1 WO2005080648 A1 WO 2005080648A1 JP 2005002560 W JP2005002560 W JP 2005002560W WO 2005080648 A1 WO2005080648 A1 WO 2005080648A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
container
single crystal
production method
pressure
Prior art date
Application number
PCT/JP2005/002560
Other languages
English (en)
French (fr)
Inventor
Yusuke Mori
Yasuo Kitaoka
Hisashi Minemoto
Isao Kidoguchi
Yasuhito Takahashi
Takatomo Sasaki
Fumio Kawamura
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2006510239A priority Critical patent/JP4189423B2/ja
Priority to US10/598,095 priority patent/US7435295B2/en
Publication of WO2005080648A1 publication Critical patent/WO2005080648A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/06Reaction chambers; Boats for supporting the melt; Substrate holders
    • C30B19/063Sliding boat system
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/06Reaction chambers; Boats for supporting the melt; Substrate holders
    • C30B19/064Rotating sliding boat system
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/08Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
    • C30B9/10Metal solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1016Apparatus with means for treating single-crystal [e.g., heat treating]

Definitions

  • the present invention relates to a method for producing a compound single crystal and a production apparatus used for the method.
  • it relates to a method for producing a group III nitride single crystal such as gallium nitride or aluminum nitride, and a production apparatus used for the method.
  • Group III nitride compound semiconductors such as gallium nitride (GaN) (hereinafter sometimes referred to as group III nitride semiconductors or GaN-based semiconductors) are used as materials for semiconductor elements that emit blue or ultraviolet light. Attention has been paid. Blue laser diodes (LDs) are applied to high-density optical disks and displays, and blue light-emitting diodes (LEDs) are applied to displays and lighting. Ultraviolet LD is expected to be applied to biotechnology and the like, and ultraviolet LED is expected as an ultraviolet light source for fluorescent lamps.
  • LDs blue laser diodes
  • LEDs blue light-emitting diodes
  • a group III nitride semiconductor (for example, GaN) substrate for LD or LED is usually formed by depositing a group III nitride single crystal on a sapphire substrate using a vapor phase epitaxial growth method. They are formed by growing them.
  • the vapor phase growth methods include metal organic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE), and molecular beam epitaxy (MBE).
  • a GaN crystal layer is formed on a sapphire substrate by metal organic chemical vapor deposition (MOCVD), and then a single crystal is formed by liquid phase epitaxy (LPE). It has been reported how to grow
  • FIG. 8 shows a schematic configuration diagram of the growing apparatus.
  • the growth apparatus includes a source gas supply apparatus 801 for supplying nitrogen gas as a source gas, a pressure regulator 802 for adjusting the pressure of the growth atmosphere, and a reaction vessel (stainless steel vessel) for growing crystals. 803 and a heating device (electric furnace) 804.
  • a crucible 805 is set inside the stainless steel container 803.
  • the connection pipe 806 for supplying the source gas from the source gas supply device 801 to the stainless steel container 803 is made of a SUS-based material.
  • Alumina (Al 2 O 3) is used for the crucible 805.
  • the temperature inside the electric furnace 804 is 600 ° C (873K)
  • Atmospheric pressure is 100 atm by a pressure regulator 802 can be controlled in the range of (1 00 X 1. 01325 X 10 5 Pa) or less.
  • reference numeral 807 denotes a stop valve, and 808 denotes a leak valve.
  • Na which is a flux
  • metal gallium which is a raw material
  • a substrate in which GaN is grown on a sapphire substrate as a seed crystal by MOCVD is set in the crucible 805.
  • the crucible 805 is inserted into the stainless steel container 803, set in the electric furnace 804, and connected to the connection pipe 806 connected to the raw material gas supply device 801.
  • the growth temperature is 850 ° C (1123K)
  • the nitrogen atmosphere pressure is 30 atmospheres (30 ⁇ 1.0325 ⁇ 10 5 Pa)
  • the growth temperature is maintained for 30 hours and 96 hours to grow GaN single crystals.
  • a GaN single crystal with a thickness of 50 ⁇ m grows with a growth time of 30 hours and a 700 ⁇ m thickness grows with a growth time of 96 hours.
  • Patent Document 1 JP-A-2002-293696
  • the source gas in the source liquid (which may include a flux source).
  • a source gas such as nitrogen is pressurized and dissolved in the source liquid. Therefore, uneven nucleation is likely to occur at the gas-liquid interface.
  • nucleation occurs at the gas-liquid interface, crystal growth on the seed crystal that is originally supposed to grow is suppressed, and as a result, the growth rate decreases.
  • an object of the present invention is to provide a method for producing a compound single crystal capable of improving a growth rate and growing a large single crystal with high crystal uniformity in a short time, and a production apparatus used therefor.
  • a production method of the present invention is a method for producing a compound single crystal in which a raw material gas is reacted with a raw material liquid to grow a compound single crystal. And producing the single crystal while stirring the raw material liquid such that a gas-liquid interfacial force in contact with the raw material gas also flows toward the inside of the raw material liquid.
  • the present inventors have repeated a series of studies on the growth of compound single crystals.
  • it is important to dissolve the raw material gas in the raw material liquid in a supersaturated state and to suppress the generation of non-uniform nuclei at the gas-liquid interface, which is a factor for improving the crystal growth rate. It was recognized that it was one of. Therefore, in the present invention, as described above, in the raw material liquid, the gas-liquid interfacial force in contact with the raw material gas also flows toward the inside of the raw material liquid. This problem was solved by agitating the raw material liquid as would occur.
  • the raw material gas can be easily dissolved in the raw material liquid by the agitation, a supersaturated state can be realized in a short time, and the growth rate of the compound single crystal can be improved.
  • the agitation forms a flow from the gas-liquid interface having a high gas concentration to the inside of the liquid material having a low gas concentration, and the dissolution of the material gas becomes uniform. Nucleation can be suppressed, and the quality of the resulting compound single crystal can be improved.
  • FIG. 1 is a schematic view showing one example of a configuration of a production apparatus of the present invention.
  • FIG. 2 is a schematic view showing an example of steps of a production method of the present invention.
  • a is a schematic diagram showing an example of inserting a material into a crucible
  • b is a schematic diagram showing an example of inserting the crucible into a hermetically sealed pressure and heat resistant apparatus and injecting nitrogen into the hermetically sealed pressure and heat resistant container.
  • And c is a schematic diagram showing an example of the tightness of the hermetically sealed pressure- and heat-resistant container.
  • FIG. 3 is a schematic view showing another example of the configuration of the manufacturing apparatus of the present invention.
  • FIG. 4 is a schematic diagram showing still another example of the configuration of the production apparatus of the present invention.
  • FIG. 5 is a schematic diagram showing still another example of the configuration of the production apparatus of the present invention.
  • FIG. 6 is a schematic view showing an example of a raw material liquid stirring step of the present invention.
  • a is a schematic diagram showing an example of the dissolution of the raw material before stirring
  • bd is a schematic diagram showing an example of the stirring of the raw material liquid.
  • FIG. 7 is a schematic view showing another example of the steps of the production method of the present invention.
  • a is a schematic diagram showing another example of insertion of a material into a crucible
  • b is a schematic diagram showing an example of injection of a liquid flux material
  • c is another schematic diagram of injection of nitrogen.
  • FIG. 2 is a schematic diagram showing one example of the method
  • d is a schematic diagram showing an example of taking out a raw material liquid.
  • FIG. 8 is a schematic diagram showing an example of a configuration of a conventional manufacturing apparatus.
  • FIG. 9 is a schematic diagram showing an example of steps of a conventional manufacturing method.
  • a is a schematic diagram showing an example of the state of the plate template in the crucible being grown
  • b is a schematic diagram showing an example of the state of the plate template in the crucible after cooling the raw material liquid after growth.
  • FIG. 10 is a schematic view showing still another example of the steps of the production method of the present invention. a, at the same time, with a plurality of plate-shaped templates standing almost vertically on the bottom of the crucible
  • FIG. 11 is a schematic view showing another example of the step of agitating the raw material liquid of the present invention.
  • a is a schematic diagram illustrating an example of stirring by a stirring blade
  • b is a schematic diagram illustrating an example of stirring by a baffle plate
  • c is a schematic diagram illustrating an example of stirring by a spiral protrusion on the inner wall surface of the crucible.
  • FIG. 12 is a schematic diagram showing still another example of the configuration of the production apparatus of the present invention.
  • FIG. 13 is a schematic diagram showing still another example of the configuration of the production apparatus of the present invention.
  • FIG. 14 is a schematic view showing an example of the configuration of a closed pressure- and heat-resistant container rotating mechanism of the present invention.
  • thermocouples 113, 312, 413, 511 thermocouples
  • a single crystal production apparatus having a heating device and a hermetically sealed pressure- and heat-resistant container heated inside the heating device is prepared, and a raw material gas and other raw materials for the compound single crystal are provided in the container. And sealed under a pressurized atmosphere.
  • the container is housed in the heating device, the container is heated by the heating device to make the other raw materials liquid, and a raw material liquid is prepared.
  • the raw material gas is reacted with the raw material liquid while stirring the raw material liquid to grow a single crystal. Due to the hermeticity of the pressure-resistant and heat-resistant container, the pressurized atmosphere can be filled with the raw material gas and other raw materials without maintaining the state of being connected to the raw material gas supply device by the connecting pipe.
  • the connecting pipe force can be separated and swung, and the raw material liquid can be freely stirred.
  • the conventional crystal growing apparatus it was difficult to stir the raw material liquid due to its structure. That is, in the apparatus shown in FIG. 8, the raw material gas supply device 801 and the stainless steel container 803 are connected by the SUS connection pipe 806, so that the stainless steel container 803 is fixed.
  • the hermetic pressure- and heat-resistant container may be swung without disconnecting the connection pipe by taking measures such as using a flexible pipe.
  • a single crystal is grown by reacting the source gas and the source liquid while stirring the source liquid by shaking the container.
  • the container is rocked by rocking the heating device.
  • a crucible is installed in the container, and at least one force of the inside of the crucible and the inner wall surface includes the following (A), (B), (C) and (D). It is preferable that the group strength has at least one to be selected.
  • the template (C) is, for example, a template described later.
  • the swing includes, for example, a moving movement, a linear repetitive movement, a pendulum-like repetitive movement, a rotating movement, or a combination thereof.
  • the raw material liquid is stirred such that the gas-liquid interfacial force is directed toward the inside of the raw material by combining the linear repetitive motion or the rotating motion, etc.
  • the raw material gas concentration is increased. ⁇ Low raw material gas concentration from the gas-liquid interface! ⁇ A flow into the raw material liquid is formed, and non-uniform nucleation on the inner wall surface of the hermetically sealed pressure- and heat-resistant container can be suppressed. Is possible.
  • the other raw materials preferably include a flux raw material.
  • the single crystal production apparatus further includes a source gas supply apparatus, and the source gas supply apparatus is connected to the container containing the other raw materials to supply the source gas. It is preferable that, after the supply and the completion of the supply, the source gas supply device be separated from the container, and then the container be rocked. [0024] In the production method of the present invention, it is preferable that the raw material gas supply device is separated from the container after the container is heated to make the other raw materials liquid and the pressure in the container is adjusted.
  • the single crystal production apparatus may further include an auxiliary tank apparatus for supplying a raw material gas, and the auxiliary tank apparatus and the container may be connected to each other.
  • the single crystal production apparatus further includes a source gas supply device, wherein the source gas supply device and the container are connected by a flexible pipe.
  • the container may be swung without separating it from the container.
  • another manufacturing method of the present invention using a flexible pipe includes preparing a single crystal manufacturing apparatus having a heating device, a sealed pressure- and heat-resistant container heated inside the heating device, a raw material gas supply device, and a flexible pipe. Then, the raw material gas of the compound single crystal and other raw materials are put in the container, the container is stored in the heating device, and the raw material gas supply device and the container are connected by a flexible pipe.
  • the source gas supply device and the container are separated is optional. As described above, even if the container is rocked without separating the source gas supply device and the container, the The gas supply device and the container may be separated, the container may be closed, and the container may be rocked. If the container is swung without separating the source gas supply device and the container, crystal growth can be performed stably while the pressure of the container is kept constant by a pressure regulator. A certain growth direction and growth rate can be achieved, which is more preferable.
  • the raw material gas contains at least one of nitrogen and ammonia, and the other raw materials contain a group III element (gallium, aluminum or indium) and a flux raw material.
  • the single crystal generated in the raw material liquid is preferably a group III nitride single crystal.
  • the group III element may be used alone. Or two or more of them may be used in combination.
  • the flux raw material preferably contains at least one of an alkali metal and an alkaline earth metal.
  • the growth temperature is set to 700 ° C. (973 K) or more
  • the vapor pressure of the alkali metal or alkaline earth metal becomes large, so that the temperature inside the reaction vessel is increased. If the distribution occurs, it will aggregate. As a result, the flux ratio of the raw material liquid changes, which has a large effect on crystal growth. Even if a motor for stirring was attached to the reaction vessel, the reaction vessel was in a high-temperature region in the heating device, so the magnetic force was lost, and it was difficult to stir the raw material liquid.
  • the raw material liquid can be stirred, there is no problem in using the alkali metal or alkaline earth metal.
  • the alkali metal for example, sodium, lithium, potassium, and the like can be used.
  • the alkaline earth metal for example, Ca, Mg, Sr, Ba, Be and the like can be used.
  • the alkali metal and the alkaline earth metal one kind may be used alone, or two or more kinds may be used in combination.
  • the semiconductor layer represented by the composition formula AlGaInN (where 0 ⁇ u ⁇ l, 0 ⁇ v ⁇ l, 0 ⁇ u + v ⁇ l) is provided in the container. It is preferable that a template having a pre-arranged!
  • the immersion of the template in the other raw material liquid in the container is performed after the raw material liquid is formed by heating and the raw material gas is dissolved in the raw material liquid.
  • U which is preferred.
  • a crucible is installed in the container, the template is a plate-shaped template, and the crucible is installed upright on a bottom surface of the crucible.
  • still another manufacturing method of the present invention using a plate-shaped template is as follows: preparing a single crystal manufacturing apparatus having a heating device and a hermetically sealed pressure- and heat-resistant container that heats inside the heating device; A crucible is installed, a plate-shaped template is arranged in a state of standing substantially vertically on the bottom surface of the crucible, a raw material gas of the compound single crystal and other raw materials are put in the crucible, and a container in which the crucible is installed Is stored in the heating device, the container is heated by the heating device to make the other raw materials liquid, In this state, the raw material gas is reacted with the raw material liquid to grow a single crystal.
  • the number of the plate templates may be one, or a plurality (for example, 2
  • the container is rocked so that the raw material liquid moves in a direction parallel to the plate-shaped template.
  • the flux material is taken out of the container after the growth of the compound single crystal.
  • still another manufacturing method of the present invention having a step of taking out a flux material is to prepare a single crystal manufacturing apparatus having a heating device and a sealed pressure- and heat-resistant container that heats inside the heating device.
  • the raw material gas of the above-mentioned compound single crystal and other raw materials are put therein, and this container is housed in the heating device, and the container is heated by the heating device to make the other raw materials liquid, and in this state, A production method wherein a single crystal is grown by reacting the raw material gas and the raw material liquid, and at least the flux raw material is taken out of the container after the growth of the compound single crystal is completed.
  • the other raw material liquid contains at least gallium and sodium, and the heating temperature thereof is preferably 100 ° C (373K) or more.
  • the heating temperature which is more preferably 300 ° C (573K) or more, is still more preferably 500 ° C (773K) or more.
  • the growth rate of the group III nitride single crystal is preferably 30 ⁇ / hr or more, and the growth rate of the group III nitride crystal is 50 / z mZ
  • the growth rate of the group III nitride crystal which is more preferably not less than time, is more preferably not less than 100 / z mZ time.
  • the pressure of the feed gas in the container is a 5 atm (5 X 1. 01325 X 10 5 Pa) to 1000 atmospheres (1000 XI. 01325 X 10 5 Pa) or less That power S preferred.
  • the amount of the source gas dissolved in the source liquid can be increased.
  • the heating device may be filled with an inert gas. Is preferred.
  • the internal volume of the vessel is V (liter)
  • the atmospheric pressure during growth (single crystal formation) is P (Pa)
  • the growth temperature is T (K)
  • the temperature when the other raw materials are weighed is T1 (K).
  • the following expression (1) is satisfied, and that the following expression (2) is more preferable.
  • a pipe connecting the container housed in the heating apparatus and the outside of the heating apparatus may include at least one of the raw material liquid and the other raw material. It is preferable that the structure is not easily aggregated.
  • the pipe include a connection pipe between the container and the source gas supply device, the flexible pipe, a connection pipe between the container and the auxiliary tank device, and the like.
  • the inner diameter of the pipe is preferably 3 mm or less, more preferably 2 mm or less.
  • the single crystal manufacturing apparatus of the present invention is a single crystal manufacturing apparatus used in the manufacturing method of the present invention, wherein the hermetically sealed pressure- and heat-resistant container, a heating device for storing the container therein, And a rocking device for rocking the container.
  • the container swings together with the heating device.
  • the swing includes, for example, a movement, a linear repetition, a pendulum repetition, a rotation, or a combination thereof.
  • a crucible is installed inside the container, and at least one of the inside of the crucible and the inner wall surface is selected from the following (A), (B), (C) and (D).
  • the group strength also has at least one selected.
  • the template (C) is, for example, a template described later.
  • the container is housed in the heating container so as to be maintained at a constant temperature.
  • the raw material liquid contains an alkali metal or an alkaline earth metal, for example, when the growing temperature is set to 700 ° C. (973 K) or more, the vapor pressure becomes large, so that a temperature distribution occurs in the container. This is because the above-mentioned raw material liquid may aggregate and have a great influence on crystal growth.
  • the single crystal production apparatus of the present invention preferably further includes a source gas supply apparatus.
  • the container and the source gas supply apparatus can be freely connected and disconnected!
  • the apparatus for producing a single crystal of the present invention may further include a flexible pipe, whereby the container and the source gas supply device are connected.
  • the apparatus for producing a single crystal of the present invention may further include an auxiliary tank device for supplying a source gas, wherein the auxiliary tank device is connected to the container.
  • an atmosphere containing nitrogen (preferably rather is 1000 atm (1000 X 1. 01325 X 10 5 Pa) less Caro pressure atmosphere)
  • a raw material liquid containing a Group III element (gallium, aluminum or indium) and an alkali metal is reacted with nitrogen to grow a Group III nitride single crystal.
  • a Group III element gallium, aluminum or indium
  • an alkali metal is reacted with nitrogen to grow a Group III nitride single crystal.
  • one of the group III elements may be used alone, or two or more may be used in combination.
  • the above-mentioned alkali metal is also as described above.
  • the atmosphere containing nitrogen for example, a nitrogen gas atmosphere or a nitrogen gas atmosphere containing ammonia can be applied.
  • This embodiment is an example in which the hermetically sealed pressure and heat resistant container can be separated from the connection pipe cap, and the hermetically sealed pressure and heat resistant container is also swung by swinging the heating device.
  • the manufacturing apparatus of the present embodiment and an example of a manufacturing method using the same will be described.
  • the manufacturing apparatus includes a raw material gas supply device for supplying a raw material gas, a pressure regulator for adjusting the pressure of a growing atmosphere, a sealed pressure- and heat-resistant container for growing crystals, a heating device, A swing device for swinging the entire heating device is provided.
  • a source gas a gas containing nitrogen or ammonia is used.
  • a SUS-based material such as SU S316
  • a material resistant to high temperature and high pressure such as Inconel, Hastelloy or Incoloy can be used.
  • a crucible is set inside the hermetically sealed pressure- and heat-resistant container.
  • alumina Al OBN, PBN,
  • MgO, CaO, W and the like can be used.
  • the heating device for example, an electric furnace including a heat insulating material and a heater can be used. It is preferable that the heating device is housed in a growth furnace and the temperature is controlled by, for example, a thermocouple. In particular, from the viewpoint of preventing agglomeration of the raw material liquid (which may include a flux raw material), it is preferable to control the temperature so that the temperature of the hermetically sealed pressure- and heat-resistant container is kept uniform.
  • the temperature in the heating device (growth furnace) can be controlled, for example, at 600 ° C (873K) to 1100 ° C (1373K).
  • the pressure regulator for example, can be controlled in the range of 1000 atm (1000 X I. 0 1325 X 10 5 Pa) or less. Since the hermetically sealed pressure- and heat-resistant container can be detached freely, the hermetically sealed pressure- and heat-resistant container can be fixed in the heating device (growth furnace) and the entire heating device (growth furnace) can be swung.
  • An alkali metal as a flux and a group III element are inserted into a crucible, and a reaction gas containing nitrogen is filled in a hermetically sealed pressure- and heat-resistant vessel. Single crystals can be produced. In a pressurized atmosphere containing nitrogen, nitrogen is dissolved in a raw material liquid containing a group III element (gallium, aluminum or indium) and an alkali metal.
  • a group III element gallium, aluminum or indium
  • the raw material liquid may further contain an alkaline earth metal.
  • an alkaline earth metal As described above, one of the m-group elements may be used alone, Alternatively, two or more types may be used in combination.
  • the alkali metal and alkaline earth metal are also as described above.
  • the vapor pressure increases at a high temperature of 700 ° C. (973 K) or more, so that the temperature in the hermetically sealed pressure- and heat-resistant container is increased.
  • the raw material liquid is aggregated. For example, 800 for sodium.
  • the raw material liquid is prepared by charging a raw material into a crucible and heating.
  • the temperature is adjusted, for example, from 700 ° C (973K) to 1100 ° C (1373K).
  • the raw material gas containing nitrogen is filled in a closed pressure- and heat-resistant container in a pressurized atmosphere state, and the atmospheric pressure in the closed pressure- and heat-resistant container by the raw material gas is preferably adjusted after heating.
  • Atmospheric pressure for example, 1 atm (1 X 1. 01325 X 10 5 Pa) - is adjusted to 1000 atmospheres (1000 X I. 0 1325 X 10 5 Pa) degree.
  • a template may be inserted into the crucible.
  • a template is a composition formula of Al Ga In N (0 ⁇ u ⁇ l, 0 ⁇ v ⁇ l, 0 ⁇ u + v ⁇ l) on a substrate such as sapphire.
  • compositional formula of Al Ga In N (where 0 ⁇ u ⁇ 1, 0 ⁇ u v 1— u— v
  • the template may be immersed during the formation of the raw material liquid, but is more preferably immersed in a state in which nitrogen is dissolved to some extent in the raw material liquid.
  • crucible 107 contains group III element 201 as a raw material, alkali metal 202 as a flux, and a composition formula Al Ga In N (0 ⁇ u ⁇ 1, 0 uv 1— u— v
  • a template 203 having a semiconductor layer represented by ⁇ v ⁇ 1, 0 ⁇ u + v ⁇ 1) is inserted.
  • the weighing of the group III element 201 and the alkali metal 202 is preferably performed in a glove box substituted with nitrogen in order to avoid oxidation of the alkali metal 202 and adsorption of water. It is even more preferable to replace the inside of the glove box with Ar or Ne!
  • the crucible 107 is inserted into the hermetically sealed pressure- and heat-resistant container 103, and the upper cover 204 is closed. After closing the stop valve 109, remove it from the glove box.
  • the closed pressure- and heat-resistant container 103 is connected to a source gas supply device (not shown), the stop valve 109 is opened, and the source gas is injected into the closed pressure- and heat-resistant container 103.
  • a source gas supply device not shown
  • the stop valve 109 is opened, and the source gas is injected into the closed pressure- and heat-resistant container 103.
  • the same effect can be obtained by injecting the raw material gas into the glove box, then closing the stop valve 109 and removing the disconnection portion 108 to separate the source gas.
  • the hermetically sealed pressure- and heat-resistant container 103 is fixed in a heating device (growth furnace).
  • the conditions for melting and crystal growth of the raw materials are determined by the force that changes depending on the flux components, atmospheric gas components and their pressures.
  • the temperature is 700 ° C (973K)-1100 ° C (1373K), preferably 700 ° C (1373K). 973K)-Growing at a low temperature of 900 ° C (1173K).
  • the pressure is 1 atm (1 X 1. 01325 X 10 5 Pa) or more, the line preferably 5 atm (5 X 1. 01325 X 10 5 Pa) to 1000 atmospheres (1000 X 1.
  • the raw material liquid is formed in the crucible by raising the temperature to the growth temperature, and the raw material liquid and the raw material gas are reacted in the hermetically sealed pressure- and heat-resistant container while stirring the raw material liquid by shaking the heating device (growth furnace). As a result, a single crystal of the m-group nitride semiconductor is generated. If the internal volume of the hermetic pressure- and heat-resistant container is smaller than the amount of the consumed m-group element, the pressure inside the hermetic pressure- and heat-resistant container is reduced due to consumption of nitrogen.
  • the rocking is temporarily stopped during the growth, and the detached portion 108 is connected again to the source gas supply device, the source gas is injected into the hermetically sealed pressure and heat resistant container, and the pressure in the hermetically sealed pressure and heat resistant container is adjusted. I do. Thereafter, the detached portion 108 is detached again, and the growth is resumed while swinging. This enables more stable growth.
  • the heating device (growth furnace) is preferably filled with an inert gas. Sky If the closed pressure- and heat-resistant container is kept at high temperature in the air, it will be oxidized, making it difficult to reuse. By holding a sealed pressure- and heat-resistant container in an inert gas such as Ar, N, He, Ne, etc.
  • the sealed pressure- and heat-resistant container can be reused.
  • the hermetically sealed pressure- and heat-resistant container 103 After being separated at the separation portion 108, it was fixed to a heating device (growing furnace). In this case, it is difficult to finely adjust the pressure in the hermetically sealed pressure- and heat-resistant container 103. For this reason, it is more preferable that the hermetically sealed pressure- and heat-resistant container 103 be fixed to a heating device (growth furnace), heated to the growth temperature, adjusted in pressure, and then separated at the separation portion 108.
  • the stirring action of the raw material liquid will be described.
  • the heating device (growing furnace) is tilted (not shown) to tilt the crucible 601 fixed therein, so that the template 603 is immersed in the raw material liquid 602.
  • the temperature of the heating device (growth furnace) is raised to melt the raw materials.
  • the heating device (growth furnace) and the crucible 601 are swung right and left to shake and agitate the raw material liquid (FIG. 6 (b)-(d)).
  • the force fixing template 603 to the lower surface of crucible 601 the template is immersed in a state in which the raw material liquid 602 has insufficiently dissolved nitrogen. After the raw materials are melted, the crucible is rocked to sufficiently dissolve the nitrogen, and then the template is immersed.
  • FIGs. 2 and 6 illustrate a method of installing a seed crystal template at the bottom of the crucible or at an angle.
  • a seed crystal template In order to supply crystal substrates inexpensively while applying force, it is indispensable to grow a plurality of substrates simultaneously.
  • a plurality of plate-shaped templates were installed obliquely or parallel to the bottom of the crucible, a big problem occurred.
  • FIG. 9 shows a state in which a plurality of plate-shaped templates 902 are installed in crucible 901 in parallel with the bottom surface.
  • FIG. 9A shows the state of the raw material liquid 902 and the plate template 903 in the crucible 901 during growth.
  • FIG. 9B shows the state of the raw material liquid 902 and the plate-shaped template 903 in the crucible 901 after the growth and cooling of the raw material liquid 903.
  • a raw material liquid composed of an alkali metal and a group III element solidifies and contracts when cooled. Therefore, the central portion becomes concave as shown in FIG. 9B, and stress is generated in the plate-shaped template 903 in the direction of the arrow. This response The force causes distortion of the substrate, and when the stress is large, cracks occur.
  • the crucible 1001 is set inside a closed pressure- and heat-resistant container (not shown). Next, the sealed pressure- and heat-resistant container is connected to the source gas supply device, the stop valve is opened, and the source gas is injected into the sealed pressure- and heat-resistant container (not shown). Inside the crucible 1001, a group III element as a raw material and an alkali metal as a flux are inserted. At the same time, a plurality of plate-shaped templates 1003 are placed on the bottom of the crucible 1001 so as to stand substantially vertically, as shown in FIG. FIG. 10A is a side view of the plate-shaped template 1003 viewed from the lateral direction.
  • FIGS. 10 (b)-(d) are front views of the plate template 1003 as viewed from the front.
  • An alkali metal for example, sodium
  • nitrogen is dissolved by pressurization of gas-liquid interfacial force, it is effective to reduce the concentration distribution in the vertical direction by installing the plate-like template in a state of standing substantially vertically.
  • the method of installing the plate-like template in a state of standing substantially perpendicular to the bottom of the crucible is as follows: The practical effect is great in a production method in which pressurized nitrogen is dissolved in a raw material liquid composed of an alkali metal and a group III element, and a group III nitride single crystal is grown in the raw material liquid.
  • the method of installing the plate template is not an essential requirement of the present invention, and it is optional.
  • This embodiment is an example in which the hermetically sealed pressure- and heat-resistant container can be separated from the connection pipe cap, and only the hermetically sealed pressure- and heat-resistant container is rocked.
  • an example of the manufacturing apparatus of the present embodiment and an example of a manufacturing method using the same will be described.
  • the production apparatus includes a source gas supply device for supplying a source gas, a pressure regulator for adjusting the pressure of the growing atmosphere, a sealed pressure- and heat-resistant container for growing crystals, and a heating device ( (A growth furnace) and a rotating mechanism for swinging the closed pressure- and heat-resistant container.
  • the closed pressure- and heat-resistant container is rotated by the rotation mechanism.
  • a rotation mechanism is attached to the connection pipe.For example, by periodically reversing the rotation direction, it is possible to more efficiently stir the raw material liquid, Improves the dissolution of nitrogen in the raw material liquid.
  • a compound single crystal can be produced in the same manner as in Embodiment 1, except that only the closed pressure- and heat-resistant container is rocked.
  • the raw material liquid composed of a group III element and an alkali metal is, for example, framed by friction with a crucible wall.
  • the generation of non-uniform nuclei on the inner wall surface of the crucible can be suppressed more than the stirring method of the linear repetitive movement of the first embodiment. Wear. That is, in the stirring method of the linear repetitive motion of the embodiment 1, since the raw material liquid is not always in contact with the inner wall surface of the crucible, the reaction with the raw material gas such as nitrogen becomes violent, and the unevenness becomes uneven. It will promote nucleation. On the other hand, in the stirring method with rotational mobility as in the present embodiment, since the raw material liquid is always in contact with the inner wall surface of the crucible, uneven nucleation can be suppressed.
  • FIG. 11 shows three examples of mechanisms for this in the state.
  • a lid 1102 is provided on the crucible 1101, a stirring blade 1103 is hung from the lid 1102, and a hermetically sealed pressure- and heat-resistant container (not shown) and a crucible 1101 are provided.
  • a hermetically sealed pressure- and heat-resistant container (not shown) and a crucible 1101 are provided.
  • the stirring blade 1103 causes a flow in the raw material liquid 1104 in a downward direction, that is, the gas-liquid interfacial force is directed toward the inside of the raw material liquid.
  • a baffle plate 1106 is attached to the gas-liquid interface (the baffle plate 1106 may be integrated with the crucible 1101).
  • the baffle plate 1106 When the container (not shown) and the crucible 1101 are rotated to generate convection in the rotation direction of the raw material liquid 1104, the baffle plate 1106 generates a gas-liquid interfacial force toward the inside of the raw material liquid 1104.
  • a spiral projection 1107 is formed on the inner wall surface of the crucible 1101, and the hermetically sealed pressure- and heat-resistant container (not shown) and the crucible 1101 are rotated to rotate the raw material liquid.
  • a convection in the rotation direction occurs in 1104
  • a flow is generated from the gas-liquid interface toward the inside of the raw material liquid 1104 by the spiral projection 1107.
  • Examples of a device for rotating the hermetically sealed pressure- and heat-resistant container include a device in which a rotating mechanism is attached to the connection pipe described above.
  • the device is not limited thereto.
  • a device having a closed pressure-resistant heat-resistant container rotating mechanism attached to the lower portion may be used.
  • an auxiliary tank device for supplying the source gas may be attached to the hermetically sealed pressure- and heat-resistant container.
  • a pressure regulator for regulating pressure may be attached to an intermediate portion of a connection pipe connecting the closed pressure- and heat-resistant container and the auxiliary tank device.
  • the pressure of the auxiliary tank device is higher than the pressure of the hermetically sealed pressure- and heat-resistant container. This makes it possible to replenish the raw material gas consumed in the closed pressure- and heat-resistant container.
  • This embodiment is an example in which a raw material gas supply device and a hermetically sealed pressure- and heat-resistant container are connected by a flexible pipe, and the container is swung without separating the raw material gas supply device and the container.
  • a raw material gas supply device and a hermetically sealed pressure- and heat-resistant container are connected by a flexible pipe, and the container is swung without separating the raw material gas supply device and the container.
  • the manufacturing apparatus includes a raw material gas supply device for supplying a raw material gas, a pressure regulator for adjusting the pressure of a growing atmosphere, a sealed pressure- and heat-resistant container for growing crystals, a flexible pipe, Equipped with a heating device (growing furnace) and a rocking device that rocks the entire heating device (growing furnace). Since the raw material gas supply device and the hermetically sealed pressure- and heat-resistant container are connected by the flexible pipe, the entire heating device (growth furnace) can be swung without disconnecting the hermetically sealed pressure- and heat-resistant container, and the crucible can be removed. The raw material liquid inside can be stirred.
  • a compound single crystal can be produced in the same manner as in Embodiment 1, except that the closed pressure- and heat-resistant container is rocked without separating the raw material gas supply device and the closed pressure- and heat-resistant container.
  • the closed pressure- and heat-resistant container is rocked without separating the raw material gas supply device and the closed pressure- and heat-resistant container.
  • crystal growth can be performed stably while keeping the pressure of the closed pressure- and heat-resistant container constant by the pressure regulator. And a certain growth direction and growth rate can be realized.
  • connection pipe for supplying the source gas attached to the hermetically sealed pressure- and heat-resistant container is disposed outside the heating device. This is because stop valves, pressure regulators, flexible pipes, etc. need to be placed outside the heating device.
  • the raw material liquid contains the alkali metal or alkaline earth metal
  • its vapor pressure increases at a high temperature of 700 ° C (973K) or higher, so that If a temperature distribution occurs in the inside, the particles aggregate. Therefore, the temperature of the hermetically sealed pressure- and heat-resistant container body is preferably maintained uniformly.
  • connection pipe Since the connection pipe is disposed outside the heating device while the pressure is being applied, if the inside diameter of the connection pipe is too large, the vapor of the raw material liquid or the flat raw material is likely to move, and the connection pipe is placed in a low-temperature region in the connection pipe. They agglomerate and solidify. As a result, the flux ratio in the raw material liquid changes, which has a large effect on crystal growth. Further, if the connecting pipe is clogged, it becomes impossible to supply nitrogen during growth or supply nitrogen through a flexible pipe, which greatly affects crystal growth. When the inner diameter dependence of the connection pipe for supplying source gas attached to the hermetically sealed pressure- and heat-resistant container was evaluated, when the inner diameter was 3 mm or more, coagulation occurred in the connection pipe.
  • the inner diameter of the connection pipe is preferably 3 mm or less, more preferably 2 mm or less.
  • the flexible pipe, the connection pipe between the container and the auxiliary tank device, and the like have the same inner diameter.
  • This embodiment is an example in which a step of taking out the raw material liquid containing the flux raw material from the hermetically sealed pressure- and heat-resistant container after the completion of the growth of the compound single crystal.
  • it is preferable to include a step of injecting the flux raw material into the closed pressure- and heat-resistant container, and a step of extracting a raw material liquid containing the flux raw material from the sealed pressure- and heat-resistant container after the generation of the compound single crystal.
  • the present embodiment is optional as to whether or not to implement the present invention, which is not an essential requirement.
  • an example of the manufacturing method of the present embodiment will be described.
  • a flux material is injected into a crucible in a hermetically sealed pressure- and heat-resistant container into which a group III element has been inserted in advance by a flux material injection pipe. At this time, it is preferable to prevent the flux raw material from being oxidized by replacing the atmosphere in the closed pressure- and heat-resistant container with nitrogen. Thereafter, the inside of the closed pressure- and heat-resistant container is adjusted to a pressurized atmosphere, and heated to form a raw material liquid, and a raw material liquid single crystal in which the raw material gas is in a supersaturated state is deposited.
  • the raw material liquid is taken out of the crucible in a heating device (growth furnace) at a temperature at which the raw material liquid does not solidify.
  • the pressure in the hermetically sealed pressure- and heat-resistant container is reduced, the extraction nove is inserted into the raw material liquid, and the inside of the hermetically sealed pressure- and heat-resistant container is pressurized, whereby the raw material liquid is taken out from the extraction pipe.
  • the reaction is carried out, for example, at 100 ° C (373K) or higher, preferably 300 ° C (573K) or higher, more preferably 500 ° C (773K) or higher.
  • a group III element 701 and a template 702, which are raw materials, are inserted into crucible 502.
  • a liquid flux material 703 is injected from the outside.
  • a micro heater or the like is wound around the injection pipe 504, and it is preferable that the temperature of the injection pipe 504 is maintained at a temperature equal to or higher than the melting point of the flux raw material.
  • the cut-off portion 505 is connected to a raw material gas supply device (not shown).
  • the stop knob 503 is opened, and the source gas is supplied from the source gas supply device to the closed pressure- and heat-resistant container 501.
  • the sealed pressure- and heat-resistant container 501 is fixed to a heating device (growth furnace) (not shown), and after the growth temperature is increased, the pressure is adjusted. After adjusting the pressure, close the stop valve 501 and remove the disconnecting part 505 to disconnect.
  • the raw material liquid 506 is taken out of the crucible 502.
  • the temperature of the raw material liquid 506 is lowered, the pressure in the hermetically sealed pressure- and heat-resistant container is reduced, the raw material liquid 506 is maintained in a molten liquid state, and the extraction pipe 507 is inserted into the raw material liquid 506, and the hermetically-sealed pressure- and heat-resistant container is inserted.
  • the raw material liquid 506 is taken out from the extraction pipe 507 to an external container (FIG. 7 (d)).
  • a compound single crystal can be produced in the same manner as in mode 1.
  • FIG. 1 shows a schematic configuration diagram of an example of the production apparatus of the present invention.
  • a source gas supply device 101 a pressure regulator 102, a hermetically sealed pressure- and heat-resistant container 103, a growth furnace 104, and a rocking device for rocking the entire growth furnace 104 are provided.
  • a stop valve 105 and a leak valve 106 are mounted.
  • a crucible 107 is set inside the hermetically sealed pressure- and heat-resistant container 103.
  • the connection pipe 114 for supplying the raw material gas and the hermetically sealed pressure- and heat-resistant container 103 can be separated by a separation portion 108.
  • a stop valve 109 is attached to the upper portion of the hermetically sealed pressure- and heat-resistant container 103 via a connection portion 110.
  • An electric furnace including a heat insulating material 111 and a heater 112 is disposed inside the growth furnace 104, and the temperature is controlled by a thermocouple 113.
  • the sealed pressure- and heat-resistant container 103 is fixed in an electric furnace, The entire growth furnace 104 can be swung in the direction of the arrow.
  • reference numeral 115 denotes a connection pipe.
  • Fig. 3 shows a schematic configuration diagram of another example of the production apparatus of the present invention.
  • a crucible 306 is set inside a hermetically sealed pressure- and heat-resistant container 305.
  • a connection pipe (not shown) for supplying the source gas and the hermetically sealed pressure- and heat-resistant container 305 can be separated by a separation portion 313.
  • a stop valve 307 is attached to the upper portion of the hermetically sealed pressure- and heat-resistant container 305 via a connection portion 308.
  • An electric furnace including a heat insulating material 310 and a heater 311 is arranged inside the growth furnace 309, and the temperature is controlled by a thermocouple 312.
  • a rotation mechanism 314 is attached to the connection pipe 315, and only the hermetically sealed pressure- and heat-resistant container can be swung.
  • FIG. 12 shows a schematic configuration diagram of still another example of the production apparatus of the present invention.
  • the same parts as those in FIG. 3 are denoted by the same reference numerals. 3, except that the rotating mechanism 3 14 is attached to the connection pipe 315, and the sealing pressure- and heat-resistant vessel rotating mechanism 316 is attached to the lower part of the sealed pressure- and heat-resistant vessel 305. Is the same
  • FIG. 13 shows a schematic configuration diagram of still another example of the production apparatus of the present invention.
  • the same parts as those in FIG. 12 are denoted by the same reference numerals.
  • an auxiliary tank device 317 for supplying the raw material gas is attached to the hermetically sealed pressure- and heat-resistant container 305, and that a pressure regulator 318 is attached via a connection portion 308 instead of the stop valve 307, It is similar to the device of FIG.
  • FIG. 14 is a schematic diagram of the rotating shaft of the hermetically sealed pressure- and heat-resistant container rotating mechanism 316 when the downward force is also observed.
  • FIG. 4 shows a schematic configuration diagram of still another example of the production apparatus of the present invention.
  • a source gas supply device 405, a pressure regulator 407, a sealed pressure- and heat-resistant container 401, a flexible pipe 408, a growth furnace 406, and a swinging device for swinging the whole growth furnace 406 are provided.
  • Pressure regulator 407 After that, a stop valve 409 and a leak valve 410 are attached.
  • a crucible 402 is set inside a hermetically sealed pressure- and heat-resistant container 401.
  • a stop valve 403 is attached to the upper part of the hermetically sealed pressure- and heat-resistant container 401 via a connection portion 404.
  • An electric furnace including a heat insulating material 411 and a heater 412 is arranged inside the growth furnace 406, and the temperature is controlled by a thermocouple 413. Since the flexible pipe 408 is used to connect the closed pressure- and heat-resistant container 401 and the raw material gas supply device 405, the stop valve 403 may be opened or closed. When the container is opened, the pressure inside the hermetically sealed pressure- and heat-resistant container 401 can be kept constant, so that stable growth is possible. The stop valve 403 may be closed when sufficient nitrogen is injected into the hermetically sealed pressure- and heat-resistant container 401 with respect to the consumption of the group III element.
  • the sealed pressure- and heat-resistant container 401 is fixed in an electric furnace, and can swing the entire growth furnace 406 in the direction of the arrow.
  • reference numeral 414 denotes a connection pipe.
  • Fig. 5 shows a schematic configuration diagram of still another example of the production apparatus of the present invention.
  • a crucible 502 is set inside a hermetically sealed pressure- and heat-resistant container 501.
  • the sealed pressure- and heat-resistant container 501 is provided with a pipe 504 for injecting a flux material and a pipe 506 for extracting.
  • a connection pipe (not shown) for supplying the source gas and the hermetically sealed pressure- and heat-resistant container 501 can be separated by a separation portion 505.
  • a stop valve 503 is attached to the upper part of the hermetically sealed pressure vessel 501.
  • An electric furnace including a heat insulating material 509 and a heater 510 is disposed inside the growth furnace 508, and the temperature is controlled by a thermocouple 511.
  • the sealed pressure- and heat-resistant container 501 is fixed in an electric furnace, and can swing the entire growth furnace 508 in the direction of the arrow.
  • a group III nitride single crystal was manufactured using the manufacturing apparatus of FIG. The manufacturing method shown in FIG. 2 was used.
  • As the hermetically sealed pressure- and heat-resistant container 103 a stainless steel container made of SUS316 was used.
  • the group III element 201 Ga3g was used, and for the alkali metal 202, Na3g was used.
  • the template 203 has a sapphire substrate temperature of 1020 (12931-1100 (137 3K), and then supply trimethylgallium (TMG) and ⁇ onto the substrate.
  • a sapphire substrate on which a semiconductor layer having a GaN force was formed was used.
  • the size of the template was 20 mm X 20 mm.
  • the pressure regulator 102 of Figure 1 is set to 25 atm (25 X 1. 01325 X 10 5 Pa), it was fed a raw material gas from the material gas supply equipment 101 to the stainless steel container 103. Nitrogen was used as a source gas.
  • SUS316 is used as the material of the hermetically sealed pressure- and heat-resistant container 103, the inside of the electric furnace was set to a nitrogen atmosphere. Therefore, even after the single crystal was produced, the corrosion of the hermetically sealed pressure- and heat-resistant container could be almost completely reused. If the atmosphere gas is an inert gas other than nitrogen, such as Ar, the corrosion of the closed pressure- and heat-resistant container can be reduced.
  • a single crystal having a thickness of lmm could be grown for a growth time of 30 hours. Since the crucible was shaken, the raw material liquid was stirred, and nitrogen was dissolved efficiently, the nitrogen dissolution time could be shortened to within 10 hours, and a growth rate of 50 mZ was realized.
  • a group III nitride single crystal was manufactured using the manufacturing apparatus shown in FIG.
  • the manufacturing method is the crucible 306
  • a W (tungsten) crucible was used
  • Ga5g was used for the group III element
  • Na5g and LiO. 04g were used for the alkali metal
  • a pressure regulator (not shown) was set to 10 atm (10 X 1.0325 X 10 5 Pa)
  • the source gas was supplied from a source gas supply device (not shown) to the stainless steel container 305
  • the growth temperature was 830 ° C (1103K) and the nitrogen atmosphere at 830 ° C (1103K). ⁇ pressure 20 atm, except (20 X I. 01325 X 10 5 Pa) and the fact was the same as in example 1.
  • only the stainless container 305 is swung by the rotation mechanism 314 attached to the connection pipe 315.
  • a crystal having a thickness of 2 mm could be grown for a growth time of 40 hours. Even at a growth rate of 60-70 ⁇ mZ, high-speed growth was achieved.
  • the stainless steel container 304 can be rotated more stably, and the stainless steel container 305 can be sealed in a sealed pressure-resistant heat-resistant container. Since the rotation mechanism 316 can be fixed tightly, it is easy to perform a reversing movement. Further, by using the manufacturing apparatus of FIG. 13 instead of the manufacturing apparatus of FIG. 3, it became possible to further supply the raw material gas consumed in the hermetically sealed pressure- and heat-resistant container.
  • the stirring of the present invention is to stir the raw material liquid such that a flow is generated from the gas-liquid interface in contact with the raw material gas toward the inside of the raw material liquid.
  • a mechanism for generating a flow toward the inside of the raw material liquid in the container holding the raw material liquid, that is, the crucible it is preferable to attach a mechanism for generating a flow toward the inside of the raw material liquid in the container holding the raw material liquid, that is, the crucible.
  • Example 4 A group III nitride single crystal was manufactured using the manufacturing apparatus of FIG.
  • the manufacturing method is to use an Inconel container for the closed pressure- and heat-resistant container 401, use an alumina crucible for the crucible 402, use Ga5g for the group III element, use Na5g for the alkali metal, and use an alkaline earth metal.
  • a CaO.05g was used, a template with a GaN semiconductor layer with a thickness of 10 m on a sapphire substrate was used.
  • the procedure was the same as in Example 1 except that the nitrogen atmosphere pressure was 20 atm (20 ⁇ 1.0325 ⁇ 10 5 Pa).
  • the Inconel container 401 and the raw material gas supply apparatus 405 using a flexible pipe 408 are connected by connecting portions 404, to flexible noisypu 408 1000 atm (1000 X 1. 01325 X 10 5 Pa) Because of the corresponding design, it was possible to grow while swinging the Inconel container 401 without disconnecting the Inconel container 401 and the raw material gas supply device 405 at the connection portion 404.
  • a crystal having a thickness of 2 mm could be grown for a growth time of 30 hours. Since the crucible was swung, the raw material liquid was stirred, and nitrogen was dissolved efficiently, the nitrogen dissolution time could be shortened to within 10 hours, and a growth rate of about 100 mZ was achieved.
  • the atmosphere in the electric furnace was air, but corrosion of the closed pressure- and heat-resistant container was hardly observed.
  • the atmosphere in the electric furnace is made of an inert gas, so that the number of times of reusing the sealed pressure- and heat-resistant container can be improved. Even if the atmosphere in the electric furnace was air as well, corrosion was hardly observed even when Hastelloy Incoloy was used as an alternative material for the closed pressure- and heat-resistant container.
  • a group III nitride single crystal was manufactured using the manufacturing apparatus shown in FIG. The method shown in FIG. 7 was used as the manufacturing method.
  • a stainless steel container was used as the hermetically sealed pressure- and heat-resistant container 501.
  • Ga was used for the group III element 701
  • a template having a semiconductor layer represented by A1N on a sapphire substrate was used for the template 702
  • liquid sodium was used for the flux raw material 703.
  • the raw material liquid was formed in the crucible by raising the temperature to the growth temperature, and the growth furnace 508 was swung in the direction of the arrow to generate a single crystal of a group III nitride semiconductor. After the growth of the single crystal, the temperature of the raw material liquid is lowered to 300 ° C (573K), and the raw material liquid is extracted to allow cooling. It was possible to avoid that the raw material liquid was alloyed and the formed single crystal was damaged.
  • a group III nitride single crystal was manufactured using the manufacturing apparatus shown in FIG. The method shown in Fig. 10 was used as the manufacturing method.
  • a stainless steel container was used for the hermetically sealed pressure- and heat-resistant container 401, and an alumina crucible was used for the crucible 402 (1 001).
  • For the group III element Ga40g was used, and for the alkali metal, Na50g was used.
  • FIG. 10 (a) five sheets of the template 1003 were placed perpendicular to the bottom of the crucible 1001.
  • the raw material liquid was formed in the crucible by raising the temperature to the growth temperature, and the growth furnace 406 was swung in the direction of the arrow to generate a single crystal of a group III nitride semiconductor.
  • the growth temperature is 850. C (1123K), 850. Was C nitrogen atmosphere pressure of 35 atm at (1123K) (35 X 1. 01325 X 1 0 5 Pa).

Abstract

 成長レートを向上し、結晶均一性が高く大きな単結晶を短時間で育成できる化合物単結晶の製造方法、およびそれに用いる製造装置を提供する。原料液において、原料ガスと接する気液界面から前記原料液の内部に向かう流れが生じるように、前記原料液を攪拌しながら化合物単結晶を成長させる。前記攪拌によって、原料ガスを容易に原料液に溶解することができ、短時間で過飽和状態を実現することが可能であり、化合物単結晶の成長レートを向上させることができる、しかも、前記攪拌によって、原料ガス濃度の高い気液界面から原料ガス濃度の低い原料液内部への流れが形成され、原料ガスの溶解も均一となるので、気液界面での不均一な核発生を抑制でき、得られる化合物単結晶の品質も向上する。

Description

明 細 書
化合物単結晶の製造方法、およびそれに用いる製造装置
技術分野
[0001] 本発明は、化合物単結晶の製造方法、およびそれに用いる製造装置に関する。特 に、ガリウムナイトライドやアルミニウムナイトライドなどの III族窒化物単結晶の製造方 法、およびそれに用いる製造装置に関する。
背景技術
[0002] 窒化ガリウム (GaN)などの III族窒化物化合物半導体 (以下、 III族窒化物半導体ま たは GaN系半導体という場合がある)は、青色や紫外光を発光する半導体素子の材 料として注目されている。青色レーザダイオード (LD)は、高密度光ディスクやディスプ レイなどに応用され、また、青色発光ダイオード (LED)は、ディスプレイや照明など に応用される。また、紫外線 LDは、バイオテクノロジなどへの応用が期待され、紫外 線 LEDは、蛍光灯の紫外線源として期待されている。
[0003] LDや LED用の III族窒化物半導体 (例えば、 GaN)の基板は、通常、サファイア基 板上に、気相ェピタキシャル成長法を用いて、 III族窒化物単結晶をへテロェピタキシ ャル成長させることによって形成されている。気相成長方法としては、有機金属化学 気相成長法 (MOCVD法)、水素化物気相成長法 (HVPE法)、分子線エピタキシー 法(MBE法)などがある。
[0004] 一方、気相ェピタキシャル成長ではなぐ液相で結晶成長を行う方法も検討されて きた。 GaNや A1Nなどの III族窒化物単結晶の融点における窒素の平衡蒸気圧は 1 万気圧以上であるため、従来、 GaNを液相で成長させるためには 1200°C (1473K) で 8000気圧(8000 X I. 01325 X 105Pa)の条件力必要とされてきた。これに対し、 近年、 Naなどのアルカリ金属をフラックスとして用いることで、 750°C (1023K)、 50 気圧(50 X 1. 01325 X 105Pa)という比較的低温低圧で GaNを合成できることが明 らかにされた。
[0005] 最近では、アンモニアを含む窒素ガス雰囲気下において Gaと Naとの混合物を 800 で(10731 、50気圧(50 1. 01325 X 105Pa)で溶融させ、この融解液 (原料液) を用いて 96時間の育成時間で、最大結晶サイズが 1. 2mm程度の単結晶が得られ ている(例えば、特許文献 1参照)。
[0006] また、サファイア基板上に有機金属気相成長(MOCVD: Metal Organic Che mical Vapor Deposition)法によって GaN結晶層を成膜したのち、液相成長(LP E : Liquid Phase Epitaxy)法によって単結晶を成長させる方法も報告されている
[0007] 以下に、 Naなどのアルカリ金属をフラックスとして用いた GaN結晶の液相成長法に ついて説明する。図 8に、育成装置の概略構成図を示す。前記育成装置は、原料ガ スである窒素ガスを供給するための原料ガス供給装置 801、育成雰囲気の圧力を調 整するための圧力調整器 802、結晶育成を行うための反応容器 (ステンレス容器) 80 3および加熱装置 (電気炉) 804を備える。ステンレス容器 803の内部には、坩堝 80 5がセットされて ヽる。原料ガス供給装置 801からステンレス容器 803へ原料ガスを供 給するための接続パイプ 806には、 SUS系の材料が用いられている。坩堝 805には 、アルミナ (Al O )が用いられている。電気炉 804内の温度は、 600°C (873K)— 11
2 3
00°C (1373K)に制御できる。雰囲気圧力は、圧力調整器 802によって 100気圧(1 00 X 1. 01325 X 105Pa)以下の範囲で制御できる。なお、図 8において、 807は、ス トップバルブを示し、 808は、リーク弁を示す。
[0008] フラックスである Naと原料である金属ガリウムとを、所定の量だけ秤量し、坩堝 805 内にセットする。また、坩堝 805内に、種結晶としてサファイア基板上に MOCVD (有 機金属気相成長法: Metal Organic Chemical Vapor Deposition)法により G aNを成長させた基板をセットする。坩堝 805をステンレス容器 803内に挿入して、電 気炉 804内にセットし、原料ガス供給装置 801につながっている接続パイプ 806と接 続する。育成温度を 850°C (1123K)、窒素雰囲気圧力を 30気圧(30 X 1. 01325 X 105Pa)とし、 30時間および 96時間育成温度で保持し GaN単結晶を成長させる。 30時間の育成時間では厚み 50 μ m、 96時間の育成時間では厚み 700 μ mの GaN 単結晶が成長する。
[0009] この結果より、現状の育成装置では、窒素を GaZNa融解液 (原料液)に溶解させ 過飽和状態を形成するためには、 20— 30時間程度を必要としている。また、厚み方 向(C軸方向)の成長レートは、 10 μ mZ時間程度である。
[0010] し力しながら、 GaNを初めとする III族窒化物単結晶の分野では、さらなる成長レート および品質の向上が求められている。
特許文献 1:特開 2002-293696号公報
発明の開示
発明が解決しょうとする課題
[0011] 前記成長レートを向上させるためには、原料液 (フラックス原料を含む場合もある) に原料ガスを効率よく溶解させることが必要である。し力しながら、例えば、従来の Na などのアルカリ金属やアルカリ土類金属をフラックスとして用いた窒化物半導体単結 晶の液相成長法では、窒素などの原料ガスを加圧して原料液に溶解させるため、気 液界面で不均一な核発生が生じやすい。気液界面で核発生が生じると本来成長さ せたい種結晶上での結晶成長が抑制されるため、結果として成長レートが低下する。
[0012] そこで、本発明の目的は、成長レートを向上し、結晶均一性が高く大きな単結晶を 短時間で育成できる化合物単結晶の製造方法、およびそれに用いる製造装置を提 供することである。
課題を解決するための手段
[0013] 上記目的を達成するために、本発明の製造方法は、原料ガスと原料液とを反応さ せて化合物単結晶を成長させる化合物単結晶の製造方法であって、前記原料液に おいて、前記原料ガスと接する気液界面力も前記原料液の内部に向力つて流れが 生じるように、前記原料液を攪拌しながら前記単結晶を成長させることを特徴とする 製造方法である。
発明の効果
[0014] 本発明者等は、化合物単結晶の成長について一連の研究を重ねた。その過程で、 単結晶の成長において、原料液に原料ガスを過飽和状態で溶解させること、および 気液界面での不均一な核発生を抑制することが重要であり、これが結晶成長レート 向上の要因の一つであるという認識を得た。そこで、本発明では、上記のように、原 料液において、原料ガスと接する気液界面力も前記原料液の内部に向力つて流れが 生じるように、前記原料液を攪拌することによって、この問題を解決した。すなわち、 前記攪拌によって、原料ガスを容易に原料液に溶解することができ、短時間で過飽 和状態を実現することが可能であり、化合物単結晶の成長レートを向上させることが できる。し力も、前記攪拌によって、原料ガス濃度の高い気液界面から原料ガス濃度 の低い原料液内部への流れが形成され、原料ガスの溶解も均一となるので、気液界 面での不均一な核発生を抑制でき、得られる化合物単結晶の品質も向上する。 図面の簡単な説明
[図 1]図 1は、本発明の製造装置の構成の一例を示す模式図である。
[図 2]図 2は、本発明の製造方法の工程の一例を示す模式図である。 aは、坩堝への 材料の挿入の一例を示す模式図であり、 bは、前記坩堝の密閉性耐圧耐熱装置へ の挿入および前記密閉性耐圧耐熱容器への窒素の注入の一例を示す模式図であり
、 cは、前記密閉性耐圧耐熱容器の密閉の一例を示す模式図である。
[図 3]図 3は、本発明の製造装置の構成のその他の例を示す模式図である。
[図 4]図 4は、本発明の製造装置の構成のさらにその他の例を示す模式図である。
[図 5]図 5は、本発明の製造装置の構成のさらにその他の例を示す模式図である。
[図 6]図 6は、本発明の原料液の攪拌工程の一例を示す模式図である。 aは、攪拌前 の原料の溶解の一例を示す模式図であり、 b— dは、原料液の攪拌の一例を示す模 式図である。
[図 7]図 7は、本発明の製造方法の工程のその他の例を示す模式図である。 aは、坩 堝への材料の挿入のその他の例を示す模式図であり、 bは、液状のフラックス原料の 注入の一例を示す模式図であり、 cは、窒素の注入のその他の例を示す模式図であ り、 dは、原料液の取り出しの一例を示す模式図である。
[図 8]図 8は、従来の製造装置の構成の一例を示す模式図である。
[図 9]図 9は、従来の製造方法の工程の一例を示す模式図である。 aは、育成中の坩 堝内の板状テンプレートの状態の一例を示す模式図であり、 bは、育成後、原料液を 冷却した後の坩堝内の板状テンプレートの状態の一例を示す模式図である。
[図 10]図 10は、本発明の製造方法の工程のさらにその他の例を示す模式図である。 aは、同時に、複数枚の板状テンプレートを、坩堝の底面に略垂直に立てた状態で
設置した一例を板状テンプレートの横方向から見た側面図であり、 b— dは、原料液 の o攪1—拌の一例を板状テンプレートの正面方向から見た正面図である。
[図 11]図 11は、本発明の原料液の攪拌工程のその他の例を示す模式図である。 aは 、攪拌羽根による攪拌の一例を示す模式図であり、 bは、じゃま板による攪拌の一例 を示す模式図であり、 cは、坩堝内壁面の螺旋状の突起による攪拌の一例を示す模 式図である。
[図 12]図 12は、本発明の製造装置の構成のさらにその他の例を示す模式図である。
[図 13]図 13は、本発明の製造装置の構成のさらにその他の例を示す模式図である。
[図 14]図 14は、本発明の密閉性耐圧耐熱容器回転機構の構成の一例を示す模式 図である。
符号の説明
405、 801 原料ガス供給装置
102、 318, 407, 802 圧力調整器
103、 305、 401、 501、 803 密閉性耐圧耐熱容器
104、 309、 406、 508、 804 育成炉
105、 109、 307、 403、 409、 503、 807 ストップバルブ
106、 410、 808 リーク弁
107、 306、 402、 502、 601、 805、 901、 1001、 1101
108、 313、 505 切り離し部分
110、 308、 404 接続部分
111、 310、 411、 509 断熱材
112、 311、 412、 510 ヒータ
113、 312、 413、 511 熱電対
114、 806 接続パイプ
115、 205, 315, 414 接続配管
201、 701 III族元素
202 アルカリ金属
203、 603、 702、 902、 1003、 1105 テンプレー卜 204 上蓋
314 回転機構
316 密閉性耐圧耐熱容器回転機構
317 補助タンク装置
318 波板
408 フレキシブルパイプ
504 注入用パイプ
506、 602、 903、 1002、 1104 原料液
507 抽出用パイプ
703 フラックス原料
1102 蓋
1103 攪拌羽根
1106 じゃま板
1107 螺旋状の突起
発明を実施するための最良の形態
本発明の製造方法において、加熱装置と、前記加熱装置の内部で加熱する密閉 性耐圧耐熱容器とを有する単結晶製造装置を準備し、前記容器中に前記化合物単 結晶の原料ガスおよびその他の原料を入れて加圧雰囲気下で密閉し、その容器を 前記加熱装置内に収納し、前記加熱装置によって前記容器を加熱し前記その他の 原料を液状にして原料液を調整し、この状態で、前記原料液を攪拌しながら前記原 料ガスと前記原料液とを反応させて単結晶を成長させることが好ましい。前記密閉性 耐圧耐熱容器は、その密閉性故に、接続パイプによって原料ガス供給装置と接続し た状態を保持しなくても、原料ガスおよびその他の原料を入れて加圧雰囲気にする ことができるので、接続パイプ力 切り離し、これを揺動させることが可能となり、原料 液を自在に攪拌することができる。これに対し、従来の結晶育成装置は、その構造上 、原料液を攪拌することが困難であった。すなわち、図 8に示す装置では、原料ガス 供給装置 801とステンレス容器 803とが、 SUS製接続パイプ 806で接続されており、 このためステンレス容器 803は固定された状態になっていた。また、後述のように、本 発明において、フレキシブルパイプ等を用いるなどの手段を講じることにより、接続パ イブを切り離すことなく前記密閉性耐圧耐熱容器を揺動させてもよい。
[0018] 本発明の製造方法において、前記容器を揺動することにより前記原料液を攪拌し ながら前記原料ガスと前記原料液とを反応させて単結晶を成長させることが好ましい
[0019] 本発明の製造方法において、前記加熱装置を揺動することにより前記容器を揺動 させることが好ましい。
[0020] 本発明の製造方法において、前記容器内に坩堝が設置され、前記坩堝内部およ び内壁面の少なくとも一方力 下記の (A)、(B)、(C)および (D)からなる群力も選択 される少なくとも一つを有することが好ましい。
(A)攪拌羽根
(B)じゃま板
(C)テンプレート
(D)螺旋状の突起
上記 (C)のテンプレートは、例えば、後述のテンプレートなどである。
[0021] 本発明の製造方法において、前記揺動としては、例えば、移動運動、直線的な反 復運動、振り子状反復運動、回転運動若しくはこれらの組み合わせ運動などが挙げ られる。例えば、前記直線的な反復運動や前記回転運動などを組み合わせるなどし て、気液界面力も前記原料の内部に向力つて流れが生じるように前記原料液を攪拌 すれば、原料ガス濃度の高!ヽ気液界面から原料ガス濃度の低!ヽ原料液内部への流 れが形成され、前記密閉性耐圧耐熱容器内壁面での不均一な核発生も抑制できる ので、大きな成長レートを実現することが可能である。
[0022] 本発明の製造方法において、前記その他の原料は、フラックス原料を含むことが好 ましい。
[0023] 本発明の製造方法において、前記単結晶製造装置は、さらに原料ガス供給装置を 有し、前記その他の原料が入れられた前記容器に前記原料ガス供給装置を接続し て前記原料ガスを供給し、供給終了後、前記容器から前記原料ガス供給装置を切り 離し、その後、前記容器を揺動することが好ましい。 [0024] 本発明の製造方法において、前記容器を加熱して前記その他の原料を液状にし、 かつ前記容器内の圧力を調整した後、前記容器から前記原料ガス供給装置を切り 離すことが好ましい。
[0025] 本発明の製造方法において、単結晶の生成後の前記容器内の前記原料ガスの圧 力が減少して 、ることが好ま 、。
[0026] 本発明の製造方法において、前記単結晶製造装置は、さらに原料ガス供給用の補 助タンク装置を有し、前記補助タンク装置と前記容器とが接続されて 、てもよ!、。
[0027] 本発明の製造方法において、前記単結晶製造装置は、さらに原料ガス供給装置を 有し、前記原料ガス供給装置と前記容器とが、フレキシブルパイプによって接続され 、前記原料ガス供給装置と前記容器とを切り離すことなぐ前記容器を揺動してもよ い。また、フレキシブルパイプを用いた本発明のその他の製造方法は、加熱装置と、 前記加熱装置の内部で加熱する密閉性耐圧耐熱容器とを有する単結晶製造装置、 原料ガス供給装置およびフレキシブルパイプを準備し、前記容器中に前記化合物単 結晶の原料ガスおよびその他の原料を入れて、その容器を前記加熱装置内に収納 し、前記原料ガス供給装置と前記容器とを、フレキシブルパイプによって接続し、前 記加熱装置によって前記容器を加熱して前記その他の原料を液状にし、この状態で 、前記原料ガスと前記原料液とを反応させて単結晶を成長させる製造方法である。な お、前記原料ガス供給装置と前記容器とを切り離すかどうかは任意であり、前述のよ うに、前記原料ガス供給装置と前記容器とを切り離すことなぐ前記容器を揺動しても 、前記原料ガス供給装置と前記容器とを切り離し、前記容器を密閉状態として、前記 容器を揺動しても、どちらでもよい。前記原料ガス供給装置と前記容器とを切り離す ことなぐ前記容器を揺動させれば、圧力調整器により前記容器の圧力を一定に保 持しながら、安定して結晶成長を行うことができるため、一定の成長方位、成長レート を実現でき、より好ましい。
[0028] 本発明の製造方法において、前記原料ガスは、窒素またはアンモニアの少なくとも 一方を含有し、前記その他の原料は、 III族元素 (ガリウム、アルミニウム若しくはインジ ゥム)とフラックス原料を含み、前記原料液中で生成される単結晶は、 III族窒化物単 結晶であることが好ましい。なお、前記 III族元素は、 1種類を単独で使用してもよいし 、若しくは 2種類以上を併用してもよい。
[0029] 本発明の製造方法において、前記フラックス原料は、アルカリ金属およびアルカリ 土類金属の少なくとも一方を含むことが好ましい。この場合において、従来の製造方 法では、例えば、育成温度を 700°C (973K)以上とした場合には、前記アルカリ金属 やアルカリ土類金属の蒸気圧が大きくなるため、反応容器内に温度分布が生じると 凝集してしまう。これにより、原料液のフラックス比が変化するため、結晶成長に大き な影響を与える。また、反応容器に攪拌用のモーターを取り付けたとしても、前記反 応容器が加熱装置内の高温領域にあるため、磁力がなくなってしまい、原料液を攪 拌することは困難であった。これに対し、本発明の製造方法では、前記原料液を攪 拌することができるので、前記アルカリ金属やアルカリ土類金属の使用においても、 問題を生じない。なお、前記アルカリ金属としては、例えば、ナトリウム、リチウム、カリ ゥムなどを用いることができる。前記アルカリ土類金属としては、例えば、 Ca、 Mg、 Sr 、 Ba、 Beなどを用いることができる。前記アルカリ金属およびアルカリ土類金属は、 1 種類を単独で使用してもょ 、し、若しくは 2種類以上を併用してもょ 、。
[0030] 本発明の製造方法において、前記容器内に、組成式 Al Ga In N (ただし、 0≤ u≤l、 0≤v≤l、 0≤u+v≤l)で表される半導体層を有するテンプレートが、予め 配置されて 、ることが好まし!/、。
[0031] 本発明の製造方法では、前記容器内において、前記テンプレートの前記その他の 原料液への浸漬が、加熱によって前記原料液を形成し、前記原料ガスを前記原料液 に溶解した後に行われることが好ま U、。
[0032] 本発明の製造方法において、前記容器内に坩堝が設置され、前記テンプレートが 、板状テンプレートであり、前記坩堝の底面に略垂直に立てた状態で設置されている ことが好ましい。また、板状テンプレートを用いた本発明のさらにその他の製造方法 は、加熱装置と、前記加熱装置の内部で加熱する密閉性耐圧耐熱容器とを有する 単結晶製造装置を準備し、前記容器内に坩堝を設置し、板状テンプレートを、前記 坩堝の底面に略垂直に立てた状態で配置し、前記坩堝中に前記化合物単結晶の原 料ガスおよびその他の原料を入れ、前記坩堝を設置した容器を前記加熱装置内に 収納し、前記加熱装置によって前記容器を加熱して前記その他の原料を液状にし、 この状態で、前記原料ガスと前記原料液とを反応させて単結晶を成長させる製造方 法である。本方法において、前記板状テンプレートは、一枚でもよいし、複数枚 (例え ば、 2— 10枚)であってもよい。また、前記板状テンプレートの立て方は、略垂直状態 であればよいので、若干傾いていてもよい。
[0033] 本発明の製造方法において、前記原料液が、前記板状テンプレートに対して平行 方向に移動するように前記容器を揺動することが好まし 、。
[0034] 本発明の製造方法では、化合物単結晶の成長終了後、前記容器から、少なくとも 前記フラックス原料を取り出すことが好ましい。また、フラックス原料の取り出し工程を 有する本発明のさらにその他の製造方法は、加熱装置と、前記加熱装置の内部で加 熱する密閉性耐圧耐熱容器とを有する単結晶製造装置を準備し、前記容器中に前 記化合物単結晶の原料ガスおよびその他の原料を入れ、この容器を前記加熱装置 内に収納し、前記加熱装置によって前記容器を加熱して前記その他の原料を液状 にし、この状態で、前記原料ガスと前記原料液とを反応させて単結晶を成長させ、化 合物単結晶の成長終了後、前記容器から、少なくとも前記フラックス原料を取り出す 製造方法である。
[0035] 本発明の製造方法において、前記その他の原料液が、少なくともガリウムおよびナ トリウムを含み、その加熱温度が、 100°C (373K)以上であることが好ましぐ前記カロ 熱温度が、 300°C (573K)以上であることがより好ましぐ前記加熱温度が、 500°C ( 773K)以上であることがさらに好ましい。
[0036] 本発明の製造方法において、前記 III族窒化物単結晶の成長レートは、 30 μ ηι/ 時間以上であることが好ましぐ前記 III族窒化物結晶の成長レートは、 50 /z mZ時間 以上であることがより好ましぐ前記 III族窒化物結晶の成長レートは、 100 /z mZ時 間以上であることがさらに好ましい。
[0037] 本発明の製造方法において、前記容器内の前記原料ガスの圧力は、 5気圧(5 X 1 . 01325 X 105Pa)以上 1000気圧(1000 X I . 01325 X 105Pa)以下であること力 S 好ましい。加圧することで、前記原料液への前記原料ガスの溶解量を増やすことがで さるカゝらである。
[0038] 本発明の製造方法において、前記加熱装置内に、不活性ガスが充填されているこ とが好ましい。
[0039] 本発明の製造方法において、前記その他の原料中にガリウムが含まれる場合にお いて、消費される前記ガリウムの重量 X(g)および原子量 a ( = 69. 723)に対して、前 記容器の内部体積を V (リットル)、育成 (単結晶の生成)時の雰囲気圧力を P (Pa)、 育成温度を T(K)、前記その他の原料の秤量時の温度を T1 (K)としたとき、下記式( 1)を満足することが好ましぐ下記式 (2)を満足することがより好ましぐ下記式 (3)を 満足することがさらに好ましい。
VX (P/1. 01325 X IO5) X (T1/T) > (X/2a) X 22. 4 X 2 (1) VX (P/1. 01325 X IO5) X (Tl/T) > (X/2a) X 22. 4 X 5 (2) VX (P/1. 01325 X IO5) X (Tl/T) > (X/2a) X 22. 4 X 10 (3)
[0040] 本発明の製造方法では、前記単結晶製造装置において、前記加熱装置に収納さ れる前記容器と前記加熱装置外部とをつなぐ配管は、前記原料液および前記その 他の原料の少なくとも一方を凝集させにく 、構造であることが好ま 、。前記配管とし ては、例えば、前記容器と前記原料ガス供給装置の接続配管、前記フレキシブルパ イブ、前記容器と前記補助タンク装置の接続配管などが挙げられる。
[0041] 本発明の製造方法において、前記配管の内径は、 3mm以下であることが好ましく 、 2mm以下であることがより好ましい。
[0042] 本発明の単結晶製造装置は、本発明の製造方法に使用される単結晶製造装置で あって、前記密閉性耐圧耐熱容器と、その内部に前記容器を収納する加熱装置と、 前記容器を揺動する揺動装置とを含む単結晶製造装置である。
[0043] 本発明の単結晶製造装置において、前記加熱装置とともに前記容器が揺動するこ とが好ましい。
[0044] 本発明の単結晶製造装置において、前記揺動としては、例えば、移動運動、直線 的な反復運動、振り子状反復運動、回転運動若しくはこれらの組み合わせ運動など が挙げられる。
[0045] 本発明の単結晶製造装置において、前記容器内部に坩堝が設置され、前記坩堝 内部および内壁面の少なくとも一方が、下記の (A)、(B)、(C)および (D)からなる群 力も選択される少なくとも一つを有することが好ましい。 (A)攪拌羽根
(B)じゃま板
(C)テンプレート
(D)螺旋状の突起
上記 (C)のテンプレートは、例えば、後述のテンプレートなどである。
[0046] 本発明の単結晶製造装置において、前記容器は、一定温度に保持されるように前 記加熱容器に収納されて ヽることが好ま ヽ。前記原料液がアルカリ金属やアルカリ 土類金属を含む場合には、例えば、育成温度を 700°C (973K)以上とした場合、そ の蒸気圧が大きくなるため、前記容器内に温度分布が生じると前記原料液が凝集し てしまい、結晶成長に対して大きな影響を与えてしまうことがあるからである。
[0047] 本発明の単結晶製造装置において、さらに、原料ガス供給装置を含むことが好まし い。
[0048] 本発明の単結晶製造装置にお!ヽて、前記容器と前記原料ガス供給装置とは、接続 および切り離しが自在であることが好まし!/、。
[0049] 本発明の単結晶製造装置において、さらに、フレキシブルパイプを含み、これによ つて前記容器と前記原料ガス供給装置とが接続されて ヽてもよ ヽ。
[0050] 本発明の単結晶製造装置において、さらに、原料ガス供給用の補助タンク装置を 含み、前記補助タンク装置が前記容器と接続されて 、てもよ 、。
[0051] 次に、本発明の実施の形態として、本発明の化合物単結晶の製造方法の一例に ついて、 III族窒化物単結晶の製造方法を例に説明する。
[0052] 本発明の III族窒化物単結晶の製造方法では、例えば、窒素を含む雰囲気 (好まし くは 1000気圧(1000 X 1. 01325 X 105Pa)以下のカロ圧雰囲気)下にお!/ヽて、 III族 元素 (ガリウム、アルミニウム若しくはインジウム)およびアルカリ金属とを含む原料液と 窒素とを反応させて、 III族窒化物単結晶を成長する。なお、前記 III族元素は、前述 のとおり、 1種類を単独で使用してもよいし、若しくは 2種類以上を併用してもよい。前 記アルカリ金属についても、前述のとおりである。窒素を含む雰囲気下としては、例え ば、窒素ガス雰囲気や、アンモニアを含む窒素ガス雰囲気を適用できる。
[0053] (実施形態 1) 本形態は、密閉性耐圧耐熱容器を接続パイプカゝら切り離すことが可能で、加熱装 置を揺動させることで前記密閉性耐圧耐熱容器も揺動させる例である。以下、本形 態の製造装置の一例、およびそれを用いた製造方法の一例について説明する。
[0054] 前記製造装置は、原料ガスを供給するための原料ガス供給装置、育成雰囲気の圧 力を調整するための圧力調整器、結晶育成を行うための密閉性耐圧耐熱容器、加 熱装置および加熱装置全体を揺動する揺動装置を備える。原料ガスには、窒素また はアンモニアを含有するガスが用いられる。密閉性耐圧耐熱容器には、例えば、 SU S316などの SUS系材料、インコネル、ハステロィ若しくはインコロイなどの高温高圧 に耐性のある材料が利用できる。特に、インコネル、ハステロィ若しくはインコロイなど の材料は、高温高圧化における酸ィ匕に対しても耐性があり、不活性ガス以外の雰囲 気でも利用でき、再利用、耐久性の点カゝら好ましい。密閉性耐圧耐熱容器の内部に は、坩堝がセットされている。坩堝材料には、例えば、アルミナ (Al O BN、 PBN、
2 3
MgO、 CaO、 Wなどを用いることができる。前記加熱装置には、例えば、断熱材とヒ ータとから構成される電気炉などを用いることができる。前記加熱装置は、育成炉に 収められ、例えば、熱電対などにより温度管理されることが好ましい。特に、原料液( フラックス原料を含む場合がある)の凝集を防止する観点から、密閉性耐圧耐熱容器 の温度が均一に保持されるように温度管理をすることが好ま 、。
[0055] 加熱装置(育成炉)内の温度は、例えば、 600°C (873K) -1100°C (1373K)に 制御できる。雰囲気圧力は、圧力調整器によって、例えば、 1000気圧(1000 X I. 0 1325 X 105Pa)以下の範囲で制御できる。密閉性耐圧耐熱容器の切り離しが自在 なため、密閉性耐圧耐熱容器を加熱装置 (育成炉)内に固定し、加熱装置 (育成炉) 全体を揺動することが可能となる。
[0056] 坩堝の中に、フラックスとしてのアルカリ金属と、 III族元素とを挿入し、密閉性耐圧 耐熱容器内に窒素を含む反応ガスを充填することにより、液相成長により、 m族窒化 物単結晶を製造することができる。窒素を含む加圧雰囲気中で、 III族元素 (ガリウム、 アルミニウム若しくはインジウム)とアルカリ金属とを含む原料液中に窒素を溶解させ
、 III族窒化物結晶を成長させる。なお、前記原料液は、さらに、アルカリ土類金属を 含んでもよい。前記 m族元素は、前述のとおり、 1種類を単独で使用してもよいし、若 しくは 2種類以上を併用してもよい。前記アルカリ金属、アルカリ土類金属についても 、前述のとおりである。前述のとおり、前記原料液に前記アルカリ金属や前記アルカリ 土類金属が含まれると、 700°C (973K)以上の高温下ではその蒸気圧が大きくなる ため、前記密閉性耐圧耐熱容器内に温度分布が生じると前記原料液が凝集してしま う。例えば、ナトリウムの 800。C (1073K)での蒸気圧は、 300Torr (300 X 133. 32 2Pa)であり、前記原料液がナトリウムを含む場合、前記温度分布が 10°C ( = 10K) 以下であればほとんど凝集が観測されな 、が、 20°C ( = 20K)以上では凝集が観測 され、 50°C ( = 50K)以上ではほとんどの原料液が低温部分に凝集する。そのため、 前記密閉性耐圧耐熱容器の温度を均一に保持することが好まし!/ヽ。
[0057] 前記原料液は、原料を坩堝に投入し加熱することによって調製される。温度は、例 えば、 700°C (973K)— 1100°C (1373K)に調整される。また、窒素を含む原料ガ スは、加圧雰囲気状態で密閉性耐圧耐熱容器に充填することが好ましぐ原料ガス による密閉性耐圧耐熱容器内の雰囲気圧力は、加熱後に調整することが好ましい。 雰囲気圧力は、例えば、 1気圧(1 X 1. 01325 X 105Pa)— 1000気圧(1000 X I. 0 1325 X 105Pa)程度に調整される。前記原料液を形成した後、前記原料液が窒素 で過飽和の状態になると III族窒化物結晶が析出する。
[0058] 前記坩堝内部には、テンプレートを挿入してもよい。テンプレートとは、サファイアな どの基板上に組成式 Al Ga In N (ただし、 0≤u≤l、 0≤v≤l, 0≤u+v≤l)で u v 1— u~v
表される半導体層を形成したものや、組成式 Al Ga In N (ただし、 0≤u≤ 1、 0≤ u v 1— u— v
v≤l、 0≤u+v≤l)で表される単結晶などを意味する。坩堝内に種結晶としてテン プレートを挿入することで、テンプレートに厚膜の単結晶を成長させることができ、容 易に大面積の基板を実現できる。テンプレートは、原料液形成時に浸漬させていても よいが、ある程度窒素が原料液に溶解した状態で浸漬させることがさらに好ましい。
[0059] 次に、図 2を用いて、前記製造装置を用いた III族窒化物単結晶の製造方法の一例 について具体的に説明する。
[0060] 図 2 (a)に示すように、坩堝 107に、原料である III族元素 201、フラックスであるアル カリ金属 202およびサファイア基板上に組成式 Al Ga In N (ただし、 0≤u≤ 1、 0 u v 1— u— v
≤v≤ 1、 0≤u+v≤ 1)で表される半導体層を有するテンプレート 203を挿入する。 前記 III族元素 201およびアルカリ金属 202の秤量は、アルカリ金属 202の酸化や水 分吸着を回避するため、窒素で置換されたグローブボックス中で行われることが好ま し 、。前記グローブボックス内を Arや Neなどで置換することがさらに好まし!/、。
[0061] 次に、図 2 (b)に示すように、坩堝 107を密閉性耐圧耐熱容器 103に挿入し、上蓋 204を閉める。ストップバルブ 109を閉じた後、グローブボックスから取り出す。
[0062] 次に、密閉性耐圧耐熱容器 103を原料ガス供給装置(図示せず)に接続し、ストツ プバルブ 109を開放し、密閉性耐圧耐熱容器 103に原料ガスを注入する。このとき、 図示していないが、ロータリーポンプなどで密閉性耐圧耐熱容器 103内を真空引き し、その後再び原料ガスを注入し置換する工程を行うことが好まし ヽ。
[0063] 次に、図 2 (c)に示すように、ストップバルブ 109を閉じて、切り離し部分 108をはず すことで、切り離す。
[0064] なお、グローブボックス内で原料ガスを注入し、その後、ストップバルブ 109を閉じ て、切り離し部分 108をはずすことで切り離しても、同様の効果が得られる。
[0065] 次に、密閉性耐圧耐熱容器 103を、加熱装置 (育成炉)内に固定する。原料の溶 融および結晶成長の条件は、フラックスの成分や雰囲気ガス成分およびその圧力に よって変化する力 例えば、温度が 700°C (973K)— 1100°C (1373K)、好ましくは 700°C (973K)— 900°C (1173K)の低温で育成が行われる。圧力は、 1気圧(1 X 1 . 01325 X 105Pa)以上、好ましくは 5気圧(5 X 1. 01325 X 105Pa)以上 1000気圧 (1000 X 1. 01325 X 105Pa)以下で行われる。育成温度に昇温することにより原料 液を坩堝内に形成し、加熱装置 (育成炉)を揺動させ、原料液を攪拌させながら、密 閉性耐圧耐熱容器内で、原料液と原料ガスを反応させて、 m族窒化物半導体の単 結晶を生成する。なお、消費される m族元素の量に対して密閉性耐圧耐熱容器の内 部体積が小さい場合には、窒素が消費されることにより密閉性耐圧耐熱容器内の圧 力が低下する。この場合には、育成中に揺動を一時停止し、再び切り離し部分 108 を原料ガス供給装置に接続し、密閉性耐圧耐熱容器に原料ガスを注入し、密閉性 耐圧耐熱容器内の圧力を調整する。その後、再び切り離し部分 108を切り離し、揺 動させながら育成を再開する。これにより、より安定な育成が可能となる。
[0066] なお、加熱装置 (育成炉)内には、不活性ガスが充填されていることが好ましい。空 気中で密閉性耐圧耐熱容器を高温下に保持すると、酸化するため再利用が困難と なる。 Ar、 N、 He、 Neなどの不活性ガス中に密閉性耐圧耐熱容器を保持することで
2
、密閉性耐圧耐熱容器の再利用が可能となる。
[0067] なお、切り離し部分 108で切り離した後、加熱装置 (育成炉)に固定したが、この場 合、密閉性耐圧耐熱容器 103内の圧力を細力べ調整することが困難である。そのた め、密閉性耐圧耐熱容器 103を加熱装置 (育成炉)に固定し、育成温度に昇温した のち、圧力を調整して、その後切り離し部分 108で切り離すことがさらに好ましい。
[0068] 図 6を用いて、原料液の攪拌作用について説明する。はじめに、図 6 (a)に示すよう に、加熱装置 (育成炉)を傾けることで(図示せず)、その中に固定されている坩堝 60 1を傾けて、テンプレート 603が原料液 602に浸漬しな 、状態で加熱装置(育成炉) を昇温し、原料を溶解する。次に、所望の育成温度および育成圧力に設定後、前記 加熱装置 (育成炉)および坩堝 601を左右に揺動することで、原料液を揺らし攪拌さ せる(図 6 (b)—(d) )。
[0069] 図 6では、テンプレート 603を坩堝 601の下面に固定している力 この場合、原料液 602への窒素の溶解が不十分な状態でテンプレートを浸漬させることとなる。原料を 溶融後、坩堝を揺動し、窒素を十分に溶解させた後、テンプレートを浸漬させること 力 Sさらに好ましい。
[0070] 図 2や図 6には、種結晶であるテンプレートを坩堝の底部に設置したり、斜めに設置 したりする方法が図示されている。し力しながら、安価に結晶基板を供給するために は、複数枚を同時に結晶成長させることが必要不可欠となる。ここで、複数枚の板状 テンプレートを坩堝の底部に対して斜め、または平行に設置した場合には、大きな問 題が生じることがわ力つた。
[0071] 図 9は、複数枚の板状テンプレート 902を、坩堝 901内に底面に平行に設置した状 態を示している。図 9 (a)は、育成中の坩堝 901内の原料液 902と板状テンプレート 9 03の状態を示している。図 9 (b)は、育成後、原料液 903を冷却した後の坩堝 901内 の原料液 902と板状テンプレート 903の状態を示して 、る。アルカリ金属と III族元素 とからなる原料液は、冷却すると凝固し、収縮する。そのため、図 9 (b)のように中心 部分が凹形状となり、板状テンプレート 903に矢印の方向に応力が発生する。この応 力により、基板に歪みが生じ、応力が大きい場合には、割れが発生する。
[0072] 上記の結果をもとに、図 10に示すように、複数枚の板状テンプレート 1003を、坩堝 1001の底面に略垂直に立てた状態で設置することを検討した。
[0073] 密閉性耐圧耐熱容器(図示せず)の内部に、坩堝 1001をセットする。次に、密閉性 耐圧耐熱容器を原料ガス供給装置に接続し、ストップバルブを開放し、密閉性耐圧 耐熱容器に原料ガスを注入する(図示せず)。坩堝 1001の内部には、原料である III 族元素とフラックスであるアルカリ金属とを挿入する。同時に、複数枚の板状テンプレ ート 1003を、図 10 (a)に示すように、坩堝 1001の底面に略垂直に立てた状態で設 置する。なお、図 10 (a)は、板状テンプレート 1003を横方向から見た側面図である。
[0074] 密閉性耐圧耐熱容器を加熱装置 (育成炉)に固定し (図示せず)、所望の育成温度 および育成圧力に設定後、前記加熱装置 (育成炉)および坩堝 1001を左右に揺動 することで、原料液を揺らし攪拌させる(図 10 (b)— (d) )。なお、図 10 (b)一 (d)は、 板状テンプレート 1003を正面から見た正面図である。
[0075] 図 10 (b)—(d)に示すように、原料液が、板状テンプレートに対して平行方向に移 動するように密閉性耐圧耐熱容器を揺動することが好ましい。これにより、板状テンプ レートが原料液の攪拌の妨げとなることを防止でき、板状テンプレート間に原料液の 流れを形成することができ、均一な結晶成長を同時に促進できる。
[0076] 一定時間定温定圧で結晶成長させた後、室温まで温度を下げて、板状テンプレー トを取り出したところ、板状テンプレート上に III族窒化物単結晶を成長でき、板状テン プレートおよび III族窒化物単結晶には割れやひびなどは観測されな力つた。
[0077] アルカリ金属、例えば、ナトリウムは、固体(970kgZm3)と液体(760kgZm3、 800 °C (1073K) )の比重の差が 22%と大きいため、凝固時の収縮も大きい。そのため、 坩堝底面に略垂直に立てた状態で板状テンプレートを設置しなければ、取り出し時、 すなわち冷却時に、板状テンプレートに応力が働くため、破損させてしまう。また、窒 素が気液界面力 の加圧により溶解するため、板状テンプレートを略垂直に立てた 状態で設置することで上下方向の濃度分布低減にも効果的である。さらに、攪拌方 向を板状テンプレートと平行に行うことで、濃度が均一な原料液を形成できる。以上 より、坩堝底面に対して略垂直に立てた状態で板状テンプレートを設置する方法は、 アルカリ金属と III族元素とからなる原料液中に加圧窒素を溶解させ、その原料液中 で III族窒化物単結晶を成長させる製造方法において、その実用的効果は大きい。な お、前記板状テンプレートの設置方法は、本発明の必須要件ではなぐ実施するか どうかは任意である。
[0078] (実施形態 2)
本形態は、密閉性耐圧耐熱容器を接続パイプカゝら切り離すことが可能で、前記密 閉性耐圧耐熱容器のみを揺動させる例である。以下、本形態の製造装置の一例、お よびそれを用いた製造方法の一例について説明する。
[0079] 前記製造装置は、原料ガスを供給するための原料ガス供給装置、育成雰囲気の圧 力を調整するための圧力調整器、結晶育成を行うための密閉性耐圧耐熱容器、加 熱装置 (育成炉)および密閉性耐圧耐熱容器を揺動するための回転機構を備える。 前記回転機構により、前記密閉性耐圧耐熱容器が回転する。前記密閉性耐圧耐熱 容器内に坩堝が挿入され固定されている場合には、坩堝も同時に回転することがで きる。前記密閉性耐圧耐熱容器のみを揺動するために、接続配管に回転機構が取り 付けられ、例えば、回転方向を周期的に反転させることで、原料液をさらに効率よく 攪拌することが可能となり、原料液への窒素の溶解を向上させる。密閉性耐圧耐熱 容器のみを揺動させる以外は、実施形態 1と同様にして、化合物単結晶を製造でき る。 III族元素とアルカリ金属とからなる原料液では、例えば、坩堝壁との摩擦によって ち 枠される。
[0080] 本形態のように、密閉性耐圧耐熱容器を回転運動させる攪拌方法では、実施形態 1の直線的な反復運動の攪拌方法よりも、坩堝内壁面での不均一な核発生を抑制で きる。すなわち、実施形態 1の直線的な反復運動の攪拌方法では、坩堝内壁面に原 料液が常には接していない状況となるため、窒素などの原料ガスとの反応が激しくな り、不均一な核発生を促進することとなる。これに対し、本形態のような回転運度の攪 拌方法では、坩堝内壁面に原料液が常に接しているため、不均一な核発生を抑制 できる。また、原料ガスを気液界面カゝら原料液に溶解させる本発明の製造方法では、 気液界面で不均一な核発生が生じやすい。そのため、原料ガスと接する気液界面か ら原料液の内部に向力つて流れが生じるように原料液を攪拌する必要がある。本形 態におけるそのための機構の 3つの例を、図 11に示す。
[0081] 図 11 (a)に示す機構では、坩堝 1101に蓋 1102がされ、前記蓋 1102から攪拌羽 根 1103が釣り下がつていて、密閉性耐圧耐熱容器(図示せず)および坩堝 1101を 回転することで原料液 1104に回転方向の対流が生じ、前記攪拌羽根 1103により、 より攪拌が促進される。このとき、前記攪拌羽根 1103により、原料液 1104に下方向 、すなわち、気液界面力も原料液の内部に向力つて流れが生じる。
[0082] 図 11 (b)に示す機構では、気液界面にじゃま板 1106が取り付けられていて (前記 じゃま板 1106は、坩堝 1101に一体ィ匕されていてもよい。)、密閉性耐圧耐熱容器( 図示せず)および坩堝 1101を回転させて原料液 1104に回転方向の対流が生じた ときに、前記じゃま板 1106により、気液界面力 原料液 1104の内部に向かって流れ が生じる。
[0083] 図 11 (c)に示す機構では、坩堝 1101の内壁面に螺旋状の突起 1107が形成され て ヽて、密閉性耐圧耐熱容器(図示せず)および坩堝 1101を回転させて原料液 11 04に回転方向の対流が生じたときに、前記螺旋状の突起 1107により、気液界面か ら原料液 1104の内部に向力つて流れが生じる。
[0084] 密閉性耐圧耐熱容器を回転する装置としては、例えば、前述の接続配管に回転機 構を取り付けた装置が挙げられるが、これに制限されるものではなぐ例えば、密閉 性耐圧耐熱容器の下部に、密閉性耐圧耐熱容器回転機構を取り付けた装置として もよい。この場合には、さらに、密閉性耐圧耐熱容器に原料ガス供給用の補助タンク 装置を取り付けてもよい。また、前記密閉性耐圧耐熱容器と補助タンク装置を接続す る接続配管の中間部分に圧力を調整するための圧力調整器を取り付けてもょ ヽ。前 記補助タンク装置の圧力は、前記密閉性耐圧耐熱容器の圧力よりも高くなつている。 これにより、前記密閉性耐圧耐熱容器で消費される原料ガスを補給することが可能と なる。
[0085] (実施形態 3)
本形態は、原料ガス供給装置と密閉性耐圧耐熱容器とが、フレキシブルパイプによ つて接続され、前記原料ガス供給装置と前記容器を切り離すことなぐ前記容器を揺 動させる例である。以下、本形態の製造装置の一例、およびそれを用いた製造方法 の一例について説明する。
[0086] 前記製造装置は、原料ガスを供給するための原料ガス供給装置、育成雰囲気の圧 力を調整するための圧力調整器、結晶育成を行うための密閉性耐圧耐熱容器、フレ キシブルパイプ、加熱装置 (育成炉)および加熱装置 (育成炉)全体を揺動する揺動 装置を備える。前記原料ガス供給装置と前記密閉性耐圧耐熱容器とが、前記フレキ シブルパイプで接続されているため、密閉性耐圧耐熱容器を切り離さずとも、加熱装 置 (育成炉)全体を揺動させて、坩堝内の原料液を攪拌することができる。原料ガス 供給装置と密閉性耐圧耐熱容器を切り離すことなく、密閉性耐圧耐熱容器を揺動さ せる以外は、実施形態 1と同様にして、化合物単結晶を製造できる。この場合、原料 ガス供給装置と密閉性耐圧耐熱容器とを切り離す必要がないため、圧力調整器によ り密閉性耐圧耐熱容器の圧力を一定に保持しながら、安定して結晶成長を行うことも でき、一定の成長方位、成長レートを実現できる。なお、前述のとおり、前記原料ガス 供給装置と前記容器とを切り離し、前記容器を密閉状態として、前記容器を揺動して もよぐ前記原料ガス供給装置と前記容器とを切り離すかどうかは任意である。
[0087] 前記実施形態 1から 3において、密閉性耐圧耐熱容器に取り付けられた原料ガス 供給用の接続配管は、加熱装置外に配置されることが好ましい。ストップバルブ、圧 力調整機、フレキシブルパイプなどは、加熱装置外に配置される必要があるからであ る。前述のように、前記原料液に前記アルカリ金属やアルカリ土類金属が含まれる場 合には、 700°C (973K)以上の高温下ではその蒸気圧が大きくなるため、密閉性耐 圧耐熱容器内に温度分布が生じると凝集してしまう。そのため、密閉性耐圧耐熱容 器本体の温度は、好ましくは、均一に保持される。し力しながら、前記接続配管は、 加熱装置外に配置されるため、前記接続配管の内径が大きすぎると原料液やフラッ タス原料の蒸気が移動しやすくなり、前記接続配管内の低温領域にそれらが凝集し 、凝固してしまう。これにより、原料液中のフラックス比が変化して、結晶成長に大きな 影響を与える。また、前記接続配管がつまってしまうと、成長途中で窒素を補給したり 、フレキシブルパイプで窒素を供給したりすることができなくなり、結晶成長に大きな 影響を与える。密閉性耐圧耐熱容器に取り付けられた原料ガス供給用の接続配管 の内径依存性を評価したところ、内径が 3mm以上では、前記接続配管内で凝集、 凝固が生じやすぐ内径が 3mm以下では、凝集がかなり抑制され、内径が 2mm以 下では、凝集がほとんど生じないことが分力つた。そこで、前記接続配管の内径は、 3 mm以下とすることが好ましぐ 2mm以下とすることがより好ましい。なお、前記フレキ シブルパイプ、前記容器と前記補助タンク装置の接続配管なども、同様の内径とする ことが好ましい。
[0088] (実施形態 4)
本形態は、化合物単結晶の成長終了後、密閉性耐圧耐熱容器からフラックス原料 を含む原料液を取り出す工程を有する場合の例である。本発明では、密閉性耐圧耐 熱容器にフラックス原料を注入する工程と、化合物単結晶の生成後に密閉性耐圧耐 熱容器カゝらフラックス原料を含む原料液を抽出する工程とを有することが好ましい。 なお、本形態は、本発明の必須要件ではなぐ実施するかどうかは任意である。以下 、本形態の製造方法の一例について説明する。
[0089] 予め III族元素が挿入されている密閉性耐圧耐熱容器内の坩堝中に、フラックス原 料の注入用パイプによりフラックス原料を注入する。その際、密閉性耐圧耐熱容器内 の雰囲気を窒素置換しておくことにより、フラックス原料の酸ィ匕を防止することが好ま しい。その後、密閉性耐圧耐熱容器内を加圧雰囲気に調製し、加熱して原料液を形 成し、原料ガスが過飽和状態となった原料液力 単結晶を析出させる。
[0090] 化合物単結晶の成長終了後、加熱装置 (育成炉)内を、原料液が凝固しない温度 とした状態で、原料液を坩堝から取り出す。密閉性耐圧耐熱容器の圧力を減圧し、 抽出用ノイブを原料液に挿入し、密閉性耐圧耐熱容器内を加圧することで、抽出用 パイプより原料液が取り出される。ナトリウムとガリウムの原料液では、例えば、 100°C (373K)以上、好ましくは 300°C (573K)以上、より好ましくは 500°C (773K)以上で 行われる。
[0091] これにより、冷却時に原料液が凝固し収縮して、形成された単結晶が破損すること を回避することができる。また、ナトリウムなどのアルカリ金属は、水と激しく反応する ため、エタノールなどで処理する必要があり、単結晶の取り出しに時間を要していた 力 ナトリウムなどの抽出用ノイブにより取り出すことで、単結晶の取り出しも容易にな る。 [0092] 次に、図 7を用いて、前記工程の一例について具体的に説明する。
[0093] 図 7 (a)に示すように、坩堝 502の内部には、原料である III族元素 701およびテン プレート 702を挿入する。次に、図 7 (b)に示すように、外部から液状のフラックス原料 703を注入する。注入用パイプ 504には、図示していないが、例えば、マイクロヒータ 一などを巻いておき、注入用パイプ 504の温度を、フラックス原料の融点以上に保持 しておくことが好ましい。
[0094] 次に、図 7 (c)に示すように、密閉性耐圧耐熱容器 501に原料ガスを注入するため 、切り離し部分 505を原料ガス供給装置(図示せず)に接続する。ストップノ レブ 503 を開放し、原料ガスを原料ガス供給装置から密閉性耐圧耐熱容器 501へ供給する。 密閉性耐圧耐熱容器 501を加熱装置 (育成炉)に固定し (図示せず)、育成温度〖こ 昇温したのち、圧力調整を行う。圧力調整後、ストップバルブ 501を閉じて、切り離し 部分 505をはずすことで、切り離す。
[0095] 化合物単結晶の成長終了後、原料液 506を坩堝 502から取り出す。原料液 506を 温度降下させ、密閉性耐圧耐熱容器内の圧力を減圧し、原料液 506を融解液の状 態に保持し、抽出用パイプ 507を原料液 506に挿入し、密閉性耐圧耐熱容器内を加 圧することで、抽出用パイプ 507より原料液 506を外部の容器に取り出す(図 7 (d) )。
[0096] 密閉性耐圧耐熱容器にフラックス原料を注入する工程と、化合物単結晶の生成後 に密閉性耐圧耐熱容器カゝらフラックス原料を含む原料液を抽出する工程とを行うこと 以外は、実施形態 1と同様にして、化合物単結晶を製造できる。
[0097] 図 1に、本発明の製造装置の一例の概略構成図を示す。原料ガス供給装置 101、 圧力調整器 102、密閉性耐圧耐熱容器 103、育成炉 104および育成炉 104全体を 揺動する揺動装置を備える。圧力調整器 102の後には、ストップバルブ 105とリーク 弁 106が取り付けられている。密閉性耐圧耐熱容器 103の内部には、坩堝 107がセ ットされている。原料ガスを供給するための接続パイプ 114と、密閉性耐圧耐熱容器 103とは、切り離し部分 108により切り離すことができる。密閉性耐圧耐熱容器 103の 上部には、ストップバルブ 109が接続部分 110を介して取り付けられている。育成炉 104の内部には、断熱材 111とヒータ 112とから構成される電気炉が配置され、熱電 対 113により温度管理される。密閉性耐圧耐熱容器 103は、電気炉内に固定され、 育成炉 104全体を矢印の方向に揺動することができる。なお、図 1において、 115は 接続配管を示す。
[0098] 図 3に、本発明の製造装置のその他の例の概略構成図を示す。図示のように、密 閉性耐圧耐熱容器 305の内部に、坩堝 306がセットされている。原料ガスを供給する ための接続パイプ(図示せず)と、密閉性耐圧耐熱容器 305とは、切り離し部分 313 により切り離すことができる。密閉性耐圧耐熱容器 305の上部には、ストップバルブ 3 07が接続部分 308を介して取り付けられている。育成炉 309の内部には、断熱材 31 0とヒータ 311とから構成される電気炉が配置され、熱電対 312により温度管理される 。接続配管 315に回転機構 314が取り付けられており、密閉性耐圧耐熱容器のみを 揺動することができる。
[0099] 図 12に、本発明の製造装置のさらにその他の例の概略構成図を示す。なお、図 1 2において、図 3と同一部分には同一符号を付している。接続配管 315に回転機構 3 14が取り付けられているのに代えて、密閉性耐圧耐熱容器 305の下部に密閉性耐 圧耐熱容器回転機構 316が取り付けられていること以外は、図 3の装置と同様である
[0100] 図 13に、本発明の製造装置のさらにその他の例の概略構成図を示す。なお、図 1 3において、図 12と同一部分には同一符号を付している。密閉性耐圧耐熱容器 305 に原料ガス供給用の補助タンク装置 317が取り付けられていること、およびストップバ ルブ 307に代えて、圧力調整器 318が接続部分 308を介して取り付けられていること 以外は、図 12の装置と同様である。
[0101] なお、図 12および図 13の製造装置においては、前記密閉性耐圧耐熱容器回転機 構 316の回転軸部分の下部を、図 14に示すように歯車状にし、波板 318を上の矢印 のように左右に動かすことで、直線的な反復運動を、下の矢印のような回転方向の変 わる回転運動に変換することができる。なお、図 14は、前記密閉性耐圧耐熱容器回 転機構 316の回転軸を下力も見た模式図である。
[0102] 図 4に、本発明の製造装置のさらにその他の例の概略構成図を示す。原料ガス供 給装置 405、圧力調整器 407、密閉性耐圧耐熱容器 401、フレキシブルパイプ 408 、育成炉 406および育成炉 406全体を揺動する揺動装置を備える。圧力調整器 407 の後には、ストップバルブ 409とリーク弁 410が取り付けられている。密閉性耐圧耐熱 容器 401の内部に、坩堝 402がセットされている。密閉性耐圧耐熱容器 401の上部 には、ストップバルブ 403が接続部分 404を介して取り付けられている。育成炉 406 の内部には、断熱材 411とヒータ 412とから構成される電気炉が配置され、熱電対 41 3により温度管理される。密閉性耐圧耐熱容器 401と原料ガス供給装置 405の接続 にフレキシブルパイプ 408が用いられているため、ストップバルブ 403は、開放しても 、閉じてもどちらでもよい。開放した場合には、密閉性耐圧耐熱容器 401内の圧力を 一定に保持できるので安定な育成が可能となる。 III族元素の消費量に対して十分な 窒素が密閉性耐圧耐熱容器 401内に注入されて ヽる場合には、ストップバルブ 403 を閉じていてもよい。この場合には、原料ガス供給装置 405が複数の密閉性耐圧耐 熱容器に接続されている場合に、リークなどが生じても、他の装置に影響を与えない ので、実用的な効果が期待できる。密閉性耐圧耐熱容器 401は、電気炉内に固定さ れ、育成炉 406全体を矢印の方向に揺動することができる。なお、図 4に示す装置に おいて、 414は接続配管を示す。
[0103] 図 5に、本発明の製造装置のさらにその他の例の概略構成図を示す。図示のように 、密閉性耐圧耐熱容器 501の内部に、坩堝 502がセットされている。密閉性耐圧耐 熱容器 501には、フラックス原料の注入用パイプ 504および抽出用パイプ 506が取り 付けられている。原料ガスを供給するための接続パイプ (図示せず)と、密閉性耐圧 耐熱容器 501とは、切り離し部分 505により切り離すことができる。密閉性耐圧容器 5 01の上部には、ストップバルブ 503が取り付けられている。育成炉 508の内部には、 断熱材 509とヒータ 510とから構成される電気炉が配置され、熱電対 511により温度 管理される。密閉性耐圧耐熱容器 501は、電気炉内に固定され、育成炉 508全体を 矢印の方向に揺動することができる。
実施例 1
[0104] 図 1の製造装置を用いて、 III族窒化物単結晶を製造した。製造方法には、図 2に示 す方法を用いた。密閉性耐圧耐熱容器 103には、 SUS316から構成されるステンレ ス容器を用いた。 III族元素 201には、 Ga3gを、アルカリ金属 202には、 Na3gを用い た。テンプレー卜 203には、サファィァ基板温度を1020で(12931 — 1100で(137 3K)になるように加熱したのち、トリメチルガリウム (TMG)と ΝΗとを基板上に供給す
3
ること〖こよって、サファイア基板に GaN力もなる半導体層を成膜したものを用いた。前 記テンプレートの大きさとしては、 20mm X 20mmのものを用いた。図 1の圧力調整 器 102を 25気圧(25 X 1. 01325 X 105Pa)に設定し、原料ガスを原料ガス供給装 置 101からステンレス容器 103に供給した。原料ガスには、窒素を用いた。本実施例 では、密閉性耐圧耐熱容器 103の材質として SUS316を用いているため、電気炉内 を窒素雰囲気とした。そのため、単結晶の生成後においても、密閉性耐圧耐熱容器 の腐食はほとんどなぐ再利用することができた。なお、雰囲気ガスは、窒素以外でも よぐ Arなどの不活性ガスであれば、密閉性耐圧耐熱容器の腐食を低減できる。
[0105] 育成温度に昇温することにより原料液を坩堝内に形成し、育成炉 104を矢印の方 向に揺動させて、 III族窒化物半導体の単結晶を生成した。前記育成温度を 850°C ( 1123K)、 850°C (1123K)での窒素雰囲気圧力を 50気圧(50 X 1. 01325 X 105P a)とした。
[0106] 窒素が消費され、ステンレス容器内の圧力が低下するのを防止するため、育成中 に、数回窒素を再注入した。育成開始から 10時間後に揺動を一時停止し、切り離し 部分 108を原料ガス供給装置 101と接続し、ステンレス容器 103に原料ガスを注入し 、ステンレス容器 103内の圧力を 50気圧(50 X I. 01325 X 105Pa)に調整した。そ の後、再び切り離し部分 108を切り離し、揺動を再開し、育成を継続した。
[0107] 成長時間 30時間に対して lmm厚の単結晶を成長させることができた。坩堝を揺動 させ、原料液を攪拌し、窒素を効率よく溶解させているため、窒素溶解時間は 10時 間以内に短縮でき、成長レートとしても 50 mZ時間を実現することができた。
実施例 2
[0108] 本実施例では、密閉性耐圧耐熱容器の内部体積を変更し、密閉性耐圧耐熱容器 を原料ガス供給装置と切り離したままで育成を継続させた例について説明する。
[0109] まず、内部体積 Vが 7. 5 X 10— 2 (リットル)の密閉性耐圧耐熱容器を用い、育成途中 の窒素の補充による圧力調整を行わな力つたこと以外は実施例 1と同様にして III族 窒化物単結晶を製造した。 Gaおよび Naの秤量時の温度 T1は、 27°C (300K)とした 。この場合、 VX (P/1. 01235 X 105) X (T1/T) > (X/2a) X 22. 4 X 2 (ここで 、V=7. 5X10 (リツ卜ル)、 Tl= 300 (K)、ガリウムの原子量 a= 69. 723、実施例 1より、育成時の雰囲気圧力 P = 50X1. 01235X105(Pa), i¾¾¾T=1123(K )、消費されるガリウムの重量 X= 3(g))となる。ここで、ボイルーシャルルの法則により 、育成時(50気圧、 1123K)の密閉性耐圧耐熱容器内の窒素の体積(7. 5X10— 2リ ットル)を、 1気圧、 300Kでの体積に換算すると、約 1リットルとなる。また、 1気圧、 30 OKの雰囲気下で、 Ga3g(0. 043モル)を消費するために必要とされる窒素量は、 G a+l/2N→GaNより、約 0. 5リットル(22. 4X (0. 043/2) X (300/273) =0.
2
53)である。そのため、 Ga3gすべてが反応した状態において、密閉性耐圧耐熱容器 内の約 50%の窒素が消費され、密閉性耐圧耐熱容器内の 850°C(1123K)での圧 力は、 25気圧(25X1. 01325 X105Pa)程度となり、圧力変動は— 50%となる。育 成中に圧力が 50%変化し、育成期間の後半では成長レートの低下も見られたが、従 来のような密閉性耐圧耐熱容器を攪拌しない方法と比較すると、均一な結晶成長と、 早い成長レートが実現できた。また、容器の小型化することで、電気炉を含めた装置 をコンパクトにできた。ただし、 VX (P/1. 01235 X105) X (T1/T) < (X/2a) X 22.4X2では、育成中の圧力変化が大きぐ従来の育成方法と同じ、それ以下の成 長レートしか得られなかった。
次に、内部体積 Vが 0. 2 (リットル)の密閉性耐圧耐熱容器を用い、育成途中の窒 素の補充による圧力調整を行わな力つたこと以外は実施例 1と同様にして III族窒化 物単結晶を製造した。 Gaおよび Naの秤量時の温度 T1は、 27°C (300K)とした。こ の場合、 VX (P/1. 01235 X105) X (T1/T) > (X/2a) X 22.4X5(ここで、 V =0. 2(リッ卜ル)、丁1=300 、ガリウムの原子量 a=69. 723、実施例 1より、育成 時の雰囲気圧力 P = 50X1. 01235X105(Pa), i¾¾¾T=1123K,消費される ガリウムの重量 X= 3(g))となる。ここで、ボイルーシャルルの法則により、育成時(50 気圧、 1123K)の密閉性耐圧耐熱容器内の窒素の体積 (0. 2リットル)を、 1気圧、 3 00Kでの体積に換算すると、約 2. 7リットルとなる。また、前述のとおり、 1気圧、 300 Kの雰囲気下で、 Ga3g(0. 043モル)を消費するために必要とされる窒素量は、約 0 . 5リットルである。そのため、 Ga3gすべてが反応した状態において、密閉性耐圧耐 熱容器内の約 20%の窒素が消費され、密閉性耐圧耐熱容器内の 850°C(1123K) での圧力は、 40気圧 (40 X 1. 01325 X 105Pa)程度となり、圧力変動は 20%とな る。育成最後の 40気圧と育成初期の 50気圧とでは、窒素溶解量の変化が小さぐ成 長レートの変化も小さくなり、均一な結晶成長が実現できた。当然のことながら、 Gaの 消費量を半分の 1. 5gで育成を終了した場合には、窒素の消費量も半分となり、育成 後の圧力を 45気圧程度にでき、育成中の圧力変動をさらに小さくできるため、より好 ましい。(この場合、 VX (P/1. 01235 X 105) X (T1/T) > (X/2a) X 22. 4 X 1 0となる。)
[0111] 次に、内部体積 Vが 0. 4 (リットル)の密閉性耐圧耐熱容器を用い、育成途中の窒 素の補充による圧力調整を行わな力つたこと以外は実施例 1と同様にして III族窒化 物単結晶を製造した。 Gaおよび Naの秤量時の温度 T1は、 27°C (300K)とした。こ の場合、 V X (P/1. 01235 X 105) X (T1/T) > (X/2a) X 22. 4 X 10 (ここで、 V=0. 4 (リットル)、 T1 = 300K、ガリウムの原子量 a = 69. 723、実施例 1より、育成 時の雰囲気圧力 P = 50 X 1. 01235 X 105 (Pa) , i¾¾¾T= 1123K,消費される ガリウムの重量 X= 3 (g) )となる。ここで、ボイルーシャルルの法則により、育成時(50 気圧、 1123K)の密閉性耐圧耐熱容器内の窒素の体積 (0. 4リットル)を、 1気圧、 3 00Kでの体積に換算すると、約 5. 3リットルとなる。また、前述のとおり、 1気圧、 300 Kの雰囲気下で、 Ga3g (0. 043モル)を消費するために必要とされる窒素量は、約 0 . 5リットルである。そのため、 Ga3gすべてが反応した状態において密閉性耐圧耐熱 容器内の約 10%の窒素が消費され、密閉性耐圧耐熱容器内の 850°C (1123K)で の圧力は、 45気圧(45 X 1. 01325 X 105Pa)程度となり、圧力変動は— 10%となり、 育成条件の変化をさらに小さくすることができた。
[0112] さらに、 Gaの消費量に対して、 VX (PZ1. 01235 X 105) X (T1/T) > (X/2a)
X 22. 4 X 10となるように密閉性耐圧耐熱容器の内部体積を設定するために、密閉 性耐圧耐熱容器と原料ガス供給装置とを切り離す、またはそれらを接続する配管を 閉じても、育成中の圧力変動を約 10%に抑制することができ、安定な結晶成長が実 現できた。
実施例 3
[0113] 図 3の製造装置を用いて、 III族窒化物単結晶を製造した。製造方法は、坩堝 306 に、 W (タングステン)坩堝を用いたこと、 III族元素に Ga5gを、アルカリ金属に Na5g および LiO. 04gを用いたこと、圧力調整器(図示せず)を 10気圧(10 X 1. 01325 X 105Pa)に設定し、原料ガスを原料ガス供給装置(図示せず)からステンレス容器 305 に供給したこと、および育成温度を 830°C (1103K)、 830°C (1103K)での窒素雰 囲気圧力を 20気圧(20 X I. 01325 X 105Pa)としたこと以外は実施例 1と同様とし た。なお、本実施例では、接続配管 315に取り付けられた回転機構 314により、ステ ンレス容器 305のみが揺動される。
[0114] 成長時間 40時間に対して 2mm厚の結晶を成長させることができた。成長レートとし ても 60— 70 μ mZ時間の高速成長を実現することができた。
[0115] なお、図 3の製造装置に代えて、図 12の製造装置を用いることで、ステンレス容器 3 05をより安定に回転させることができ、また、前記ステンレス容器 305を密閉性耐圧 耐熱容器回転機構 316としつかりと固定することが可能なため、反転運動も行いやす かった。また、図 3の製造装置に代えて、図 13の製造装置を用いることで、さらに、前 記密閉性耐圧耐熱容器で消費される原料ガスを補給することが可能となった。
[0116] 本実施例では、加圧原料ガスを原料液に溶解させるため、気液界面で不均一な核 発生が生じやすい。本発明の攪拌の目的は、原料ガスと接する気液界面から原料液 の内部に向かって流れが生じるように原料液を攪拌することである。回転運度により、 効率よく原料液を攪拌するためには、原料液を保持する容器、すなわち坩堝内部に 原料液の内部に向力つて流れが生じるような機構を取り付けることが好ましい。
[0117] そこで、例えば、さらに、坩堝に前述の図 11に示した 3つの機構を取り付けることで 、気液界面力 原料液の内部に向う流れを形成することができた。これにより、気液 界面での不均一な核発生を抑制することが可能となった。
[0118] 具体的には、前記機構を有しない製造装置では、 850°C、 50気圧(50 X 1. 0132 5 X 105Pa)の成長条件で、気液界面および坩堝内壁面に不均一な核発生が生じた のに対し、図 11に示した 3つの機構を設けることで、 850。C、 50気圧(50 X 1. 0132 5 X 105Pa)の成長条件でも不均一な核発生が生じず、 50 μ mZ時間以上の成長レ ートを得ることができた。
実施例 4 [0119] 図 4の製造装置を用いて、 III族窒化物単結晶を製造した。製造方法は、密閉性耐 圧耐熱容器 401にインコネル容器を用いたこと、坩堝 402にアルミナ坩堝を用いたこ と、 III族元素に Ga5gを、アルカリ金属に Na5gを用いたこと、アルカリ土類金属である CaO. 05gを用いたこと、テンプレートにサファイア基板上に厚み 10 mの GaN半導 体層を有するテンプレートを用いたこと、および育成温度を 850°C (1123K)、 850°C (1123K)での窒素雰囲気圧力を 20気圧(20 X 1. 01325 X 105Pa)としたこと以外 は実施例 1と同様とした。なお、本実施例では、インコネル容器 401と原料ガス供給 装置 405とをフレキシブルパイプ 408を用いて接続部分 404で接続し、フレキシブル ノィプ 408は 1000気圧(1000 X 1. 01325 X 105Pa)にも対応した設計となって ヽ るため、接続部分 404でインコネル容器 401と原料ガス供給装置 405とを切り離さず とも、インコネル容器 401を揺動させながら育成することが可能であった。
[0120] 成長時間 30時間に対して 2mm厚の結晶を成長させることができた。坩堝を揺動さ せ、原料液を攪拌し、窒素を効率よく溶解させているため、窒素溶解時間は 10時間 以内に短縮でき、成長レートとしても 100 mZ時間程度を実現することができた。 本実施例では、密閉性耐圧耐熱容器の材質としてインコネルを用いたので、電気炉 内の雰囲気を空気としたが、密閉性耐圧耐熱容器の腐食はほとんど観測されなかつ た。なお、好ましくは、電気炉内の雰囲気を不活性ガスとすることで、密閉性耐圧耐 熱容器の再利用の回数を向上させることができる。密閉性耐圧耐熱容器の代替材質 として、ハステロィゃインコロイなどを用い、同様に電気炉内の雰囲気を空気としても 、腐食はほとんど観測されな力つた。
実施例 5
[0121] 図 5の製造装置を用いて、 III族窒化物単結晶を製造した。製造方法には、図 7に示 す方法を用いた。密閉性耐圧耐熱容器 501には、ステンレス容器を用いた。 III族元 素 701には、 Gaを、テンプレート 702には、サファイア基板上に A1Nで表される半導 体層を有するテンプレートを、フラックス原料 703には、液状のナトリウムを用いた。
[0122] 次に、育成温度に昇温することにより原料液を坩堝内に形成し、育成炉 508を矢印 の方向に揺動させて、 III族窒化物半導体の単結晶を生成した。単結晶の成長終了 後、 300°C (573K)まで原料液を温度降下させ、原料液を抽出することで、冷却時に 原料液が合金化して、形成された単結晶が破損することを回避することができた。 実施例 6
[0123] 図 4の製造装置を用いて、 III族窒化物単結晶を製造した。製造方法には、図 10に 示す方法を用いた。密閉性耐圧耐熱容器 401には、ステンレス容器を、坩堝 402 (1 001)には、アルミナ坩堝を用いた。 III族元素には、 Ga40gを、アルカリ金属には、 N a50gを用いた。テンプレート 1003には、サファイア基板上に厚み 10 mの GaN半 導体層を有するテンプレートを用いた。図 10 (a)に示すように、 5枚の前記テンプレ ート 1003を、坩堝 1001の底面に対して垂直に設置した。
[0124] 次に、育成温度に昇温することにより原料液を坩堝内に形成し、育成炉 406を矢印 の方向に揺動させて、 III族窒化物半導体の単結晶を生成した。前記育成温度を 850 。C (1123K)、 850。C (1123K)での窒素雰囲気圧力を 35気圧 (35 X 1. 01325 X 1 05Pa)とした。
[0125] 50時間定温定圧で成長させた後、室温まで温度を下げて、テンプレートを取り出し たところ、テンプレート上に 2mm厚の GaN単結晶を成長でき、テンプレートおよび Ga N単結晶には割れやひびなどは観測されな力つた。
産業上の利用可能性
[0126] 以上説明したように、本発明によれば、原料液の攪拌が容易になり、窒素の溶解が 促進され、高品質で低コストな基板を提供できる。

Claims

請求の範囲
[1] 原料ガスと原料液とを反応させて化合物単結晶を成長させる化合物単結晶の製造 方法であって、前記原料液において、前記原料ガスと接する気液界面から前記原料 液の内部に向かって流れが生じるように、前記原料液を攪拌しながら前記単結晶を 成長させることを特徴とする製造方法。
[2] 加熱装置と、前記加熱装置の内部で加熱する密閉性耐圧耐熱容器とを有する単 結晶製造装置を準備し、前記容器中に前記化合物単結晶の原料ガスおよびその他 の原料を入れて加圧雰囲気下で密閉し、その容器を前記加熱装置に収納し、前記 加熱装置によって前記容器を加熱し前記その他の原料を液状にして原料液を調整 し、この状態で前記原料液を攪拌しながら前記原料ガスと前記原料液とを反応させ て単結晶を成長させる請求項 1記載の製造方法。
[3] 前記容器を揺動することにより前記原料液を攪拌しながら前記原料ガスと前記原料 液とを反応させて単結晶を成長させる請求項 2記載の製造方法。
[4] 前記加熱装置を揺動することにより前記容器も揺動させる請求項 3記載の製造方 法。
[5] 前記容器内に坩堝が設置され、前記坩堝内部および内壁面の少なくとも一方が、 下記の (A)、(B)、(C)および (D)からなる群力も選択される少なくとも一つを有する ことを特徴とする請求項 2記載の製造方法。
(A)攪拌羽根
(B)じゃま板
(C)テンプレート
(D)螺旋状の突起
[6] 前記揺動が、移動運動、直線的な反復運動、振り子状反復運動、回転運動および これらの組み合わせ運動力 なる群力 選択される少なくとも一つの運動である請求 項 3記載の製造方法。
[7] 前記その他の原料が、フラックス原料を含む請求項 2記載の製造方法。
[8] 前記単結晶製造装置が、さらに原料ガス供給装置を有し、前記その他の原料が入 れられた前記容器に前記原料ガス供給装置を接続して前記原料ガスを供給し、供給 終了後、前記容器から前記原料ガス供給装置を切り離し、その後、前記容器を揺動 する請求項 3記載の製造方法。
[9] 前記容器を加熱して前記その他の原料を液状にし、かつ前記容器内の圧力を調 整した後、前記容器から前記原料ガス供給装置を切り離す請求項 8記載の製造方法
[10] 単結晶の生成後の前記容器内の前記原料ガスの圧力が減少して 、る請求項 2記 載の製造方法。
[11] 前記単結晶製造装置が、さらに原料ガス供給用の補助タンク装置を有し、前記補 助タンク装置と前記容器とが接続されている請求項 2記載の製造方法。
[12] 前記単結晶製造装置が、さらに原料ガス供給装置を有し、前記原料ガス供給装置 と前記容器とが、フレキシブルパイプによって接続され、前記原料ガス供給装置と前 記容器とを切り離すことなぐ前記容器を揺動する請求項 3記載の製造方法。
[13] 前記原料ガスが、窒素およびアンモニアの少なくとも一方を含有し、前記その他の 原料が、ガリウム、アルミニウムおよびインジウム力 なる群力 選択される少なくとも 一つの III族元素とフラックス原料を含み、前記原料液中で生成される単結晶が、 III族 窒化物単結晶である請求項 1記載の製造方法。
[14] 前記フラックス原料力 アルカリ金属およびアルカリ土類金属の少なくとも一方を含 む請求項 13記載の製造方法。
[15] 前記容器内に、組成式 Al Ga in N (ただし、 0≤u≤ 1、 0≤v≤ 1、 0≤u+v≤ 1
u v 1— u— v
)で表される半導体層を有するテンプレートが、予め配置されている請求項 13記載の 製造方法。
[16] 前記容器内において、前記テンプレートの前記その他の原料液への浸漬が、加熱 によって前記原料液を形成し、前記原料ガスを前記原料液に溶解した後に行われる 請求項 15記載の製造方法。
[17] 前記容器内に坩堝が設置され、前記テンプレートが、板状テンプレートであり、前 記坩堝の底面に略垂直に立てた状態で設置されている請求項 15記載の製造方法。
[18] 前記原料液が、前記板状テンプレートに対して平行方向に移動するように前記容 器を揺動する請求項 17記載の製造方法。
[19] 化合物単結晶の成長終了後、前記容器から、少なくとも前記フラックス原料を取り 出す請求項 7記載の製造方法。
[20] 前記その他の原料液が、少なくともガリウムおよびナトリウムを含み、その加熱温度 力 100°C (373K)以上である請求項 19記載の製造方法。
[21] 前記加熱温度が、 100°C (373K)に代えて 300°C (573K)以上である請求項 20記 載の製造方法。
[22] 前記加熱温度が、 100°C (373K)に代えて 500°C (773K)以上である請求項 20記 載の製造方法。
[23] 前記 III族窒化物単結晶の成長レートが、 30 μ mZ時間以上である請求項 13記載 の製造方法。
[24] 前記 III族窒化物単結晶の成長レートが、 50 μ mZ時間以上である請求項 13記載 の製造方法。
[25] 前記 III族窒化物単結晶の成長レートが、 100 /z mZ時間以上である請求項 13記 載の製造方法。
[26] 前記容器内の前記原料ガスの圧力力 5気圧(5 X 1. 01325 X 105Pa)以上 1000 気圧(1000 X 1. 01325 X 105Pa)以下である請求項 2記載の製造方法。
[27] 前記加熱装置内に、不活性ガスが充填されている請求項 2記載の製造方法。
[28] 前記その他の原料中にガリウムが含まれる場合において、消費される前記ガリウム の重量 X(g)および原子量 a ( = 69. 723)に対して、前記容器の内部体積を V (リット ル)、育成 (単結晶の生成)時の雰囲気圧力を P (Pa)、育成温度を T(K)、前記その 他の原料の秤量時の温度を Tl (Κ)としたとき、下記式(1)を満足する請求項 2記載 の製造方法。
V X (P/1. 01325 X 105) X (T1/T) > (X/2a) X 22. 4 X 2 (1)
[29] 前記式(1)に代えて、下記式(2)を満足する請求項 28記載の製造方法。
V X (P/1. 01325 X 105) X (T1/T) > (X/2a) X 22. 4 X 5 (2)
[30] 前記式(1)に代えて、下記式(3)を満足する請求項 28記載の製造方法。
V X (P/1. 01325 X 105) X (T1/T) > (X/2a) X 22. 4 X 10 (3)
[31] 前記単結晶製造装置において、前記加熱装置に収納される前記容器と前記加熱 装置外部とをつなぐ配管が、前記原料液および前記その他の原料の少なくとも一方 を凝集させにくい構造である請求項 2記載の製造方法。
[32] 前記配管の内径が、 3mm以下である請求項 31記載の単結晶製造方法。
[33] 前記配管の内径が、 2mm以下である請求項 31記載の単結晶製造方法。
[34] 請求項 2記載の製造方法に使用される単結晶製造装置であって、前記密閉性耐圧 耐熱容器と、その内部に前記容器を収納する加熱装置と、前記容器を揺動する揺動 装置とを含む単結晶製造装置。
[35] 前記加熱装置とともに前記容器が揺動する請求項 34記載の単結晶製造装置。
[36] 前記揺動が、移動運動、直線的な反復運動、振り子状反復運動、回転運動および これらの組み合わせ運動力 なる群力 選択される少なくとも一つの運動である請求 項 34記載の製造装置。
[37] 前記容器内に坩堝が設置され、前記坩堝内部および内壁面の少なくとも一方が、 下記の (A)、(B)、(C)および (D)からなる群力も選択される少なくとも一つを有する ことを特徴とする請求項 34記載の単結晶製造装置。
(A)攪拌羽根
(B)じゃま板
(C)テンプレート
(D)螺旋状の突起
[38] 前記容器が、一定温度に保持されるように前記加熱装置に収納されている請求項
34記載の単結晶製造装置。
[39] さらに、原料ガス供給装置を含む請求項 34記載の単結晶製造装置。
[40] 前記容器と前記原料ガス供給装置とが、接続および切り離しが自在である請求項 3
9記載の単結晶製造装置。
[41] さらに、フレキシブルパイプを含み、これによつて前記容器と前記原料ガス供給装 置とが接続される請求項 39記載の単結晶製造装置。
[42] さらに、原料ガス供給用の補助タンク装置を含み、前記補助タンク装置が前記容器 と接続されて!、る請求項 34記載の単結晶製造装置。
PCT/JP2005/002560 2004-02-19 2005-02-18 化合物単結晶の製造方法、およびそれに用いる製造装置 WO2005080648A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006510239A JP4189423B2 (ja) 2004-02-19 2005-02-18 化合物単結晶の製造方法、およびそれに用いる製造装置
US10/598,095 US7435295B2 (en) 2004-02-19 2005-02-18 Method for producing compound single crystal and production apparatus for use therein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004043333 2004-02-19
JP2004-043333 2004-02-19

Publications (1)

Publication Number Publication Date
WO2005080648A1 true WO2005080648A1 (ja) 2005-09-01

Family

ID=34879298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002560 WO2005080648A1 (ja) 2004-02-19 2005-02-18 化合物単結晶の製造方法、およびそれに用いる製造装置

Country Status (4)

Country Link
US (1) US7435295B2 (ja)
JP (1) JP4189423B2 (ja)
CN (1) CN100564616C (ja)
WO (1) WO2005080648A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010083711A (ja) * 2008-09-30 2010-04-15 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体の製造方法
JP2010228990A (ja) * 2009-03-27 2010-10-14 Toyoda Gosei Co Ltd 結晶成長装置
US7833347B2 (en) 2006-03-23 2010-11-16 Ngk Insulators, Ltd. Process and apparatus for producing nitride single crystal
JP5338672B2 (ja) * 2007-09-28 2013-11-13 株式会社リコー Iii族元素窒化物の単結晶の製造方法および製造装置
JP2013234122A (ja) * 2007-12-05 2013-11-21 Ricoh Co Ltd Iii族窒化物結晶の結晶製造方法
JP2014221717A (ja) * 2014-07-16 2014-11-27 株式会社リコー 窒化物結晶製造方法および窒化物結晶製造装置
WO2015020226A1 (en) 2013-08-08 2015-02-12 Ricoh Company, Limited Method and apparatus for manufacturing group 13 nitride crystal
WO2015020225A1 (en) * 2013-08-08 2015-02-12 Ricoh Company, Limited Apparatus and method for manufacturing group 13 nitride crystal
US8999059B2 (en) * 2006-03-24 2015-04-07 Ngk Insulators, Ltd. Process for producing a nitride single crystal and apparatus therefor
US10100266B2 (en) 2006-01-12 2018-10-16 The Board Of Trustees Of The University Of Arkansas Dielectric nanolubricant compositions

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1734158B1 (en) * 2004-03-31 2012-01-04 NGK Insulators, Ltd. Gallium nitride single crystal growing method
JP5177555B2 (ja) * 2006-03-06 2013-04-03 日本碍子株式会社 単結晶の育成方法
JP4647525B2 (ja) * 2006-03-20 2011-03-09 日本碍子株式会社 Iii族窒化物結晶の製造方法
JP4827107B2 (ja) * 2006-03-24 2011-11-30 日本碍子株式会社 窒化物単結晶の製造方法
EP2135979B1 (en) * 2007-03-27 2013-12-18 NGK Insulators, Ltd. Method for manufacturing nitride single crystal
JP5688294B2 (ja) 2009-01-21 2015-03-25 日本碍子株式会社 3b族窒化物結晶板
DE112010002432B4 (de) * 2009-06-11 2018-02-08 Yasuo Kitaoka Verfahren und System zum Züchten eines Einkristalls eines Gruppe-III Metallnitrids und Reaktionscontainer zur Verwendung dabei
CN103249877A (zh) * 2010-11-10 2013-08-14 株式会社藤仓 氮化铝单晶的制造装置和制造方法
WO2013021804A1 (ja) 2011-08-10 2013-02-14 日本碍子株式会社 13族元素窒化物膜の剥離方法
CN108425147A (zh) 2011-08-10 2018-08-21 日本碍子株式会社 13族元素氮化物膜及其叠层体
CN102607923B (zh) * 2012-04-11 2014-04-09 中国科学院半导体研究所 碳化硅材料腐蚀炉
JP6175817B2 (ja) 2013-03-13 2017-08-09 株式会社リコー 13族窒化物結晶の製造方法、及び製造装置
JP6030762B2 (ja) * 2013-12-05 2016-11-24 日本碍子株式会社 窒化ガリウム基板および機能素子
CN103603049B (zh) * 2013-12-06 2016-04-20 北京大学东莞光电研究院 一种多片式氮化物单晶体材料生长装置及方法
CN104131351B (zh) * 2014-07-29 2017-12-15 北京大学东莞光电研究院 一种制备氮化物单晶体材料的工业化装置及方法
CN104962995B (zh) * 2015-07-23 2017-07-28 北京大学东莞光电研究院 一种氮化物单晶的生长装置及方法
WO2017019746A1 (en) 2015-07-28 2017-02-02 The Penn State Research Foundation Method and apparatus for producing crystalline cladding and crystalline core optical fibers
CN108796611A (zh) * 2018-07-06 2018-11-13 孟静 氮化镓单晶生长方法
CN110308089A (zh) * 2019-07-02 2019-10-08 中国科学院上海光学精密机械研究所 Kdp类晶体生长槽内溶液过饱和度实时测量系统及其测量方法
CN111118604A (zh) * 2019-11-18 2020-05-08 东莞理工学院 一种GaN晶体生长装置
CN111589374B (zh) * 2020-07-03 2021-06-04 河北兰升生物科技有限公司 振动加料装置和带有该装置的反应设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01116013A (ja) * 1987-10-27 1989-05-09 Kawasaki Steel Corp 気相化学反応装置
JP2004300024A (ja) * 2003-03-20 2004-10-28 Matsushita Electric Ind Co Ltd Iii族元素窒化物結晶の製造方法、それにより得られたiii族元素窒化物結晶およびそれを用いた半導体装置
JP2005012171A (ja) * 2003-03-20 2005-01-13 Matsushita Electric Ind Co Ltd Iii族窒化物基板の製造方法および半導体装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3957918B2 (ja) 1999-05-17 2007-08-15 独立行政法人科学技術振興機構 窒化ガリウム単結晶の育成方法
JP2002293696A (ja) 2001-03-29 2002-10-09 Japan Science & Technology Corp GaN単結晶の製造方法
US7176115B2 (en) 2003-03-20 2007-02-13 Matsushita Electric Industrial Co., Ltd. Method of manufacturing Group III nitride substrate and semiconductor device
KR100848380B1 (ko) 2004-06-11 2008-07-25 암모노 에스피. 제트오. 오. 갈륨 함유 질화물의 벌크 단결정 및 그의 어플리케이션

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01116013A (ja) * 1987-10-27 1989-05-09 Kawasaki Steel Corp 気相化学反応装置
JP2004300024A (ja) * 2003-03-20 2004-10-28 Matsushita Electric Ind Co Ltd Iii族元素窒化物結晶の製造方法、それにより得られたiii族元素窒化物結晶およびそれを用いた半導体装置
JP2005012171A (ja) * 2003-03-20 2005-01-13 Matsushita Electric Ind Co Ltd Iii族窒化物基板の製造方法および半導体装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Kagaku Kogaku Binran.", THE SOCIETA OF CHEMICA ENGINEERS, JAPAN., 1999, pages 426 - 427, XP002992113 *
KAWAMURA F. ET AL: "Growth of Transparent, Large Size GaN Single Crystal with Low Dislocations Using Ca-Na Flux Sytem.", JPN.J.APPL.PHYS., vol. 42, 2003, pages L729 - L731, XP002992114 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10100266B2 (en) 2006-01-12 2018-10-16 The Board Of Trustees Of The University Of Arkansas Dielectric nanolubricant compositions
US7833347B2 (en) 2006-03-23 2010-11-16 Ngk Insulators, Ltd. Process and apparatus for producing nitride single crystal
US8999059B2 (en) * 2006-03-24 2015-04-07 Ngk Insulators, Ltd. Process for producing a nitride single crystal and apparatus therefor
JP5338672B2 (ja) * 2007-09-28 2013-11-13 株式会社リコー Iii族元素窒化物の単結晶の製造方法および製造装置
JP2013234122A (ja) * 2007-12-05 2013-11-21 Ricoh Co Ltd Iii族窒化物結晶の結晶製造方法
JP2010083711A (ja) * 2008-09-30 2010-04-15 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体の製造方法
JP2010228990A (ja) * 2009-03-27 2010-10-14 Toyoda Gosei Co Ltd 結晶成長装置
WO2015020226A1 (en) 2013-08-08 2015-02-12 Ricoh Company, Limited Method and apparatus for manufacturing group 13 nitride crystal
WO2015020225A1 (en) * 2013-08-08 2015-02-12 Ricoh Company, Limited Apparatus and method for manufacturing group 13 nitride crystal
JP2015034104A (ja) * 2013-08-08 2015-02-19 株式会社リコー 13族窒化物結晶の製造装置及び製造方法
KR20160029838A (ko) 2013-08-08 2016-03-15 가부시키가이샤 리코 13 족 질화물 결정을 제조하기 위한 방법 및 장치
KR101788487B1 (ko) 2013-08-08 2017-10-19 가부시키가이샤 리코 13 족 질화물 결정을 제조하기 위한 방법 및 장치
JP2014221717A (ja) * 2014-07-16 2014-11-27 株式会社リコー 窒化物結晶製造方法および窒化物結晶製造装置

Also Published As

Publication number Publication date
US7435295B2 (en) 2008-10-14
CN1922345A (zh) 2007-02-28
JPWO2005080648A1 (ja) 2008-01-10
US20070215035A1 (en) 2007-09-20
CN100564616C (zh) 2009-12-02
JP4189423B2 (ja) 2008-12-03

Similar Documents

Publication Publication Date Title
JP4189423B2 (ja) 化合物単結晶の製造方法、およびそれに用いる製造装置
JP2005263622A (ja) 化合物単結晶の製造方法、およびそれに用いる製造装置
JP5129527B2 (ja) 結晶製造方法及び基板製造方法
JP4856934B2 (ja) GaN結晶
WO2004083498A1 (ja) Iii族元素窒化物単結晶の製造方法およびそれに用いる装置
WO2005071143A1 (ja) ガリウム含有窒化物単結晶の製造方法
JP5200291B2 (ja) Iii族元素窒化物結晶の製造方法、iii族元素窒化物結晶、半導体装置形成用基板および半導体装置
JP4414253B2 (ja) Iii族窒化物の結晶製造方法
US20100247418A1 (en) Method for producing group III nitride semiconductor
EP2439317A1 (en) Process and apparatus for production of crystals of compound of metal belonging to group-13 on periodic table
JP2003300799A (ja) Iii族窒化物結晶成長方法およびiii族窒化物結晶成長装置
JP5205630B2 (ja) 結晶製造方法および結晶製造装置
JP2005112718A (ja) 13族窒化物結晶の製造方法
JP4426238B2 (ja) Iii族窒化物の結晶製造方法
JP5454558B2 (ja) 結晶製造方法
JP4426251B2 (ja) Iii族窒化物の結晶製造方法
JP5167752B2 (ja) 液化アンモニアの充填方法および窒化物結晶の製造方法
JP2009007207A (ja) 結晶成長方法、および結晶成長装置
JP4787692B2 (ja) 結晶成長装置
JP4358033B2 (ja) 結晶育成装置
JP5053555B2 (ja) 結晶製造装置および製造方法
KR20050009340A (ko) 알루미늄 갈륨 나이트라이드 결정 성장용 수소화물 기상박막 성장 장치 및 방법
JP5365616B2 (ja) Iii族窒化物結晶の製造方法
JP2012020931A (ja) 結晶製造装置
JP4640943B2 (ja) Iii族窒化物の結晶製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510239

Country of ref document: JP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10598095

Country of ref document: US

Ref document number: 2007215035

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580005394.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10598095

Country of ref document: US