WO2005078748A1 - 磁性薄膜及びそれを用いた磁気抵抗効果素子並びに磁気デバイス - Google Patents

磁性薄膜及びそれを用いた磁気抵抗効果素子並びに磁気デバイス Download PDF

Info

Publication number
WO2005078748A1
WO2005078748A1 PCT/JP2005/002185 JP2005002185W WO2005078748A1 WO 2005078748 A1 WO2005078748 A1 WO 2005078748A1 JP 2005002185 W JP2005002185 W JP 2005002185W WO 2005078748 A1 WO2005078748 A1 WO 2005078748A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
magnetic
substrate
magnetoresistive element
mga
Prior art date
Application number
PCT/JP2005/002185
Other languages
English (en)
French (fr)
Inventor
Ryosuke Kainuma
Koichiro Inomata
Kiyohito Ishida
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to US10/589,283 priority Critical patent/US20090015969A1/en
Publication of WO2005078748A1 publication Critical patent/WO2005078748A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/16Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3909Arrangements using a magnetic tunnel junction
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head
    • Y10T428/1107Magnetoresistive
    • Y10T428/1114Magnetoresistive having tunnel junction effect

Definitions

  • the present invention relates to a magnetic thin film having a large spin polarizability, a magnetoresistive element using the same, and a magnetic device.
  • GMR giant magnetoresistance
  • MRAM non-volatile random access magnetic memory
  • the giant magnetoresistive element has a giant magnetoresistive element with a current-in-plane (CIP) structure that allows current to flow in the film plane and a current-perpendicular to the plane (CPP) with a current flowing in the direction perpendicular to the film plane.
  • CIP current-in-plane
  • CPP current-perpendicular to the plane
  • a giant magnetoresistive element having a structure is known.
  • the principle of a giant magnetoresistive element is spin-dependent scattering at the interface between a magnetic layer and a nonmagnetic layer.
  • a giant magnetoresistive element having a CPP structure has a larger GMR than a giant magnetoresistive element having a CIP structure. .
  • a spin-valve type in which an antiferromagnetic layer is brought close to one of the ferromagnetic layers and the spin of the ferromagnetic layer is fixed is used.
  • the electric resistivity of the antiferromagnetic layer is about 200 ⁇ cm, which is about two orders of magnitude larger than that of the GMR film, so that the GMR effect is weakened.
  • the spin-valve CPP structure giant magnetoresistive element has a low magnetoresistance of less than 1%. For this reason, although a giant magnetoresistive element having a CIP structure has already been put to practical use in reproducing a hard disk, a giant magnetoresistive element having a CPF structure has not yet come into practical use.
  • TMR tunnel magnetoresistance
  • TMR 2P, P 2 / (1 -P. P 2 ) (1)
  • the spin polarizability P of the ferromagnetic material takes a value of 0 ⁇ P ⁇ 1.
  • TMR elements are expected to be applied to magnetic heads for hard disks and non-volatile random access magnetic memories (MRAM).
  • MRAM non-volatile random access magnetic memories
  • the MTJ elements are arranged in a matrix, and a current is applied to a separately provided wiring to apply a magnetic field, thereby controlling the two magnetic layers constituting each MTJ element to be parallel and antiparallel to each other.
  • causes "1" and "0" to be recorded. Reading is performed using the TMR effect.
  • the element size is reduced in MRAM to increase the density, the noise due to the variation of the elements increases, and the TMR value is insufficient at present. Therefore, it is necessary to develop devices that exhibit larger TMR.
  • a conventional full Heusler alloy having a L 2 i structure such as C 0 2 MnGe can be manufactured by heating the substrate to about 300 ° C and further increasing the film thickness to 25 nm or more. (See Reference 2 below).
  • Bunnan Inu 1 T. Mi azaki and N. Tezuka, Spin polarized tunneling in ferromagnet / insulator / ferromagnet junctions, 1995, J. Magn. Magn. Mater, L39, p. 1231
  • Bunnan Dog 2 T. Ambrose, JJ Crebs and GA Prinz, "Magnetic proper ties of s ingle crystal CzMnGe Heusl er al loy fi lms", 2000, Appl. Phys. Le tt., Vol. 87, p. 5463
  • Bunnan Inu 3 T. Block, C. Fel ser, and J. Windeln, "Spin Polarized tuned Tunneling at Room Temperature in a Heus ler Compound- a non-oxide Material s wi tha Large Negative Magnetoresi stance Effect in Low Magnetic Fields, Apr il 28, 2002, Intermag Digest, EE01
  • Bunnan Inu 4 K. Inomata, S. Okaraura, R. Goto and N. Tezuka, "Large tunn eling magnetoresi stance at room temperature using a Heusler al loy wi th B 2 structur", 2003, Jpn. J. Appl. . Phys., Vol. 42, PL419
  • Bunnan Inu 5 1. Galanaki s and PH Dederi chs, Slater-Pauling behavior and origin of the hal f-metal 1 ici ty of the ful Heus ler al loys ", 2002, The American Physical Society, PHYSICAL REVIEW B, Vol. 66, pp. 174429-1-1744 29-9
  • the conventional half-metal thin film requires substrate heating and treatment to obtain its structure, which increases the surface roughness or oxidizes, and does not provide a large TMR. It is considered one of the causes.
  • a thin film may not exhibit half-metal characteristics on the surface, and the half-metal characteristics are sensitive to the composition and the order of atomic arrangement.
  • the difficulty in obtaining the electronic state of the half metal at the interface is also presumed to be the reason that a large TMR cannot be obtained. From the above, there is a problem that the fabrication of a half-metal thin film is actually extremely difficult, and a favorable half-metal thin film that can be used for various magnetoresistance effect elements has not been obtained.
  • an object of the present invention is to provide a magnetic thin film having a large spin polarizability, a magnetoresistive element using the same, and a magnetic device.
  • G a is an element having a valence electron equal to A 1
  • CoGa is not as stable as C 0 A 1
  • Co 2 MGa, -x A 1 x thin film As a result of the fabrication, this film is ferromagnetic at room temperature, and the substrate is not heated or formed at a temperature of 500 ° C or lower, or by heat-treating the thin film at a temperature of 500 ° C or lower.
  • a magnetic thin film of the present invention comprises a substrate and a C 0 2 MGa A 1 x thin film formed on the substrate, wherein the C 0 2 MGa, -A 1 thin film is L 2, or B 2 2 It has a single-phase structure, and the M of the thin film is composed of one or more of Ti, V, Mo, W, Cr, Mn, and Fe, and the average valence electron concentration Z in M is 5 5 ⁇ Z ⁇ 7.5 and 0 ⁇ x ⁇ 0.7.
  • the substrate is heated at a temperature of 500 or less including no heating to form the C 0 2 MG ai -x A 1 x thin film, or the formed thin film is further heated to a temperature of 500 ° C. or less. May be heat-treated.
  • the substrate thermal oxidation S i, glass, M g 0 monocrystal, G a A s single crystal, A 1 2 0 3 may be either one of single crystal.
  • Substrate and C o 2 MGa, - x A 1 buffer layer one but it may also have been arranged between the x films.
  • this buffer layer at least one of Al, Cu, Cr, Fe, Nb, Ni, Ta, and NiFe can be used.
  • Co 2 MGa A 1 (where M is T i, V, Mo, W, Cr, ⁇ , F) is a ferromagnetic half-metal having high spin polarizability at room temperature. e) one or more of e, the average valence electron concentration in M is 5.5 ⁇ Z ⁇ 7.5, and 0 ⁇ x ⁇ 0.7. 7) Magnetic thin film (C 0 2 MGa! -X A 1 ⁇ (0 ⁇ x ⁇ 0.7) magnetic thin film or simply Co 2 MG a to x A 1 x thin film).
  • the tunnel magnetoresistance effect element of the present invention is a tunnel magnetoresistance effect element having a plurality of ferromagnetic layers on a substrate, wherein at least one of the ferromagnetic layers has a single phase structure of L 2 or B 2.
  • MGai- x A 1 x (where M is one or more of Ti, V, ⁇ , W, Cr, ⁇ , Fe) and the average valence electron concentration Z in M is 5 5 ⁇ Z ⁇ 7.5 and 0 ⁇ X ⁇ 0.7 7) It is characterized by being made of a magnetic thin film.
  • the ferromagnetic layer is made in the fixed layer and the free layer,-free layer C o 2 MGa, with L 2 or B 2 single-phase structure, - is x A 1 x magnetic thin film .
  • the substrate is heated at a temperature of 500 ° C. or less including no heating to form a Co 2 MGa, _ x A 1 thin film, or the formed thin film is further 500 ° C. or less At a temperature of 5, you can do it.
  • the substrate, thermal oxidation S i, glass, MgO single crystal, GaAs single crystal, Al 2 0 3 may be either one of single crystal.
  • a buffer layer may be provided between the substrate and the Co 2 MGa, -x A 1 x thin film.
  • This knocker layer can be composed of at least one of Al, Cu, Cr, Fe, Nb, Ni, Ta, and NiFe.
  • a tunneling magneto-resistance effect element having a large TMR at a low external magnetic field at room temperature can be obtained.
  • the giant magnetoresistive element of the present invention is a giant magnetoresistive element having a plurality of ferromagnetic layers on a substrate, wherein at least one of the ferromagnetic layers is L 2! Or C 0 2 MGa having a single-phase structure of B 2, -x A 1 ⁇ (where M is one or more of Ti, V, Mo, W, Cr, Mn, Fe)
  • M is one or more of Ti, V, Mo, W, Cr, Mn, Fe
  • the average valence electron concentration Z in M is 5.5 ⁇ Z ⁇ 7.5, and 0 ⁇ x ⁇ 0.7.7) It is made of a magnetic thin film and has a structure in which current flows in the direction perpendicular to the film surface. It is characterized by the following.
  • the ferromagnetic layer is composed of a fixed layer and a free layer, and the free layer is a Co 2 MGa, —x A 1 (0 ⁇ x ⁇ 0.7) magnetic thin film having an L 2 ⁇ or B 2 single phase structure.
  • the substrate may be in the Co 2 MGa which is heated at 500 ° C below temperatures including without heating, - x A 1 x or a thin film is deposited, or thin film this film formation further 500 ° C or less of Heat treatment may be performed at a temperature.
  • Substrate and C o 2 MGa, - may be disposed one layer buffer between x A 1 x thin film.
  • the substrate, thermal oxidation S i, glass, MgO single crystal, GaAs single crystal, Al 2 0 3 may be either one of single crystal.
  • the buffer layer may be composed of at least one of A, Cu, Cr, Fe, Nb, Ni, Ta, and NiFe.
  • a giant magnetoresistive element having a large GMR at a low external magnetic field at room temperature can be obtained.
  • the magnetic device of the present invention comprises a Co 2 MGa, -x A 1 having an L 2 or B 2 single-phase structure (where M is Ti, V, Mo, W, Cr, Mn, Fe The average valence electron concentration in M is 5.5 ⁇ Z ⁇ 7.5, and 0 ⁇ x ⁇ 0.7.7)
  • a magnetic thin film is formed on the substrate. It is characterized by being done. In this case, whether the free layer is a magnetic thin film of Co 2 MGa x A 1 (0 ⁇ x ⁇ 0.7)
  • a tunnel magnetoresistive effect element or a giant magnetoresistive effect element may be used.
  • the tunnel magnetoresistive element or the giant magnetoresistive element is heated at a temperature of 500 ° C.
  • the formed thin film is further processed at a temperature of 500 ° C or less.
  • a tunnel magnetoresistance effect element or a giant magnetoresistance effect element having a buffer layer disposed between the substrate and the Co 2 MG ai -x A 1 (0 ⁇ x ⁇ 0.7) thin film can be used.
  • the substrate is thermally oxidized S i, glass, MgO single crystal, it is possible to use a GaAs single crystal, Al 2 0 3 tunneling magneto resistance effect element or a giant magnetoresistive effect element is any one of a single crystal.
  • As a buffer layer if a tunnel magnetoresistive element or a giant magnetoresistive element using at least one of Al, Cu, Cr, Fe, Nb, Ni, Ta, and NiFe is used. Good.
  • the magnetic head and the magnetic recording apparatus of the present invention may be a Co 2 MGa, -x A 1 x (where M is Ti, V, Mo, W, cr, Mn, consists of one or of two or more of F e, the average valence electron concentration Z of M is 5. 5 ⁇ Z ⁇ 7. a 5, and, 0 ⁇ x ⁇ 0. 7) magnetic It is characterized in that a thin film is formed on a substrate.
  • the tunneling magnetoresistive element or the giant magnetoresistive element whose free layer is the Co 2 MGa, -x A 1 ⁇ (here, 0 ⁇ 0.7) magnetic thin film is used. Used. Substrate is heated at a temperature of 500 containing no heating Co 2 MGa, -, A 1 or x thin film is deposited, or heat the film forming the thin film at 500 ° C below the temperature to further A tunnel magnetoresistive element or a giant magnetoresistive element manufactured by the above method may be used. A tunnel magnetoresistive element or a giant magnetoresistive element in which one buffer is disposed between the substrate and the Co 2 MGa A 1 x thin film may be used.
  • Substrate, thermal oxidation S i, glass, MgO single crystal it is also possible to use a GaAs single crystal, Al 2 0 3 tunneling magnetoresistive element or a giant magnetoresistance effect element is any one of a single crystal.
  • Nokufa layer A, Cu, Cr, F JP2005 / 002185 A tunnel magnetoresistive element or giant magnetoresistive element composed of at least one of e, Nb, Ni, Ta, and NiFe may be used.
  • a large-capacity, high-power, high-speed magnetic head and a magnetic recording device can be obtained by using a magnetoresistive element having a large TMR or GMR at a low external magnetic field at room temperature.
  • FIG. 1 is a sectional view of a magnetic thin film according to the first embodiment of the present invention.
  • FIG. 2 is a sectional view of a modification of the magnetic thin film according to the first embodiment.
  • FIG. 3 is a diagram schematically illustrating the structure of Co 2 MG ai -x A 1 x used for the magnetic thin film according to the first embodiment.
  • FIG. 4 is a diagram showing a cross section of a magnetoresistive element using a magnetic thin film according to a second embodiment of the present invention.
  • FIG. 5 is a view showing a cross section of a modification of the magnetoresistive element using the magnetic thin film according to the first embodiment.
  • FIG. 6 is a view showing a cross section of a modified example of the magnetoresistive element using the magnetic thin film according to the second embodiment.
  • FIG. 7 is a diagram showing a cross section of a magnetoresistive element using a magnetic thin film according to the third embodiment of the present invention.
  • FIG. 8 is a view showing a cross section of a modification of the magnetoresistive element using the magnetic thin film according to the third embodiment.
  • FIG. 9 is a diagram schematically illustrating resistance when an external magnetic field is applied to a magnetoresistance effect element using the magnetic thin film of the present invention.
  • FIG. 10 is a diagram showing the electron diffraction at [01-1] incidence of the C 02 CrGa alloy produced in Example 1.
  • FIG. 11 is a diagram illustrating the magnetic field dependence of the resistance of the tunnel magnetoresistance effect element according to the second embodiment.
  • FIG. 12 is a diagram illustrating the magnetic field dependence of the resistance of the tunnel magnetoresistive element of the third embodiment. Five
  • FIG. 1 is a sectional view of a magnetic thin film according to a first embodiment of the present invention.
  • the magnetic thin film 1 of the present invention on the substrate 2, C o 2 MGa, at room temperature - it is arranged x A 1 film 3.
  • M is composed of one or more of Ti, V, Mo, W, Cr, Mn, and Fe, and the average valence electron in M
  • the concentration Z is 5.5 ⁇ Z ⁇ 7.5 and 0 ⁇ x ⁇ 0.7.
  • M Cr, Mo, W
  • the average valence concentration Z is 6, which satisfies the above 5.5 ⁇ Z ⁇ 7.5.
  • the valence electron concentrations Z of M ,, and M 2 are Z M , and Z M2 , respectively.
  • C 0 2 MGa, -x A 1 x thin film 3 is ferromagnetic at room temperature, has an electric resistivity of about 200 ⁇ -cm, and has a L 2 or B 2 single-phase structure without heating the substrate.
  • the thickness of C 0 2 MGa, -x A 1 x thin film 3 on substrate 2 is 1 nm or more 1 It is sufficient if it is ⁇ ⁇ m or less.
  • the magnetic thin film 5 of the present invention has the same structure as the magnetic thin film 1 of FIG. 1, except that the substrate 2 and C 0 2 MGai A 1 (where M is Ti, V, Mo, W , Cr, Mn, and Fe, and the average valence electron concentration Z in M is 5.5 ⁇ Z ⁇ 7.5, and 0 ⁇ x ⁇ 0.7. )
  • the buffer layer 4 is inserted between the thin film 3.
  • Substrate 2 used in the magnetic thin film 5 is a polycrystalline such as thermal oxidation S and glass, M gO, it can be formed using a single crystal such as A 1 2 ⁇ 3, Ga As.
  • the above Co 2 MGa A 1 (where M is one or more of Ti, V, Mo, W, Cr, Mn, and Fe), and the average valence electron concentration Z in M is 5.5 ⁇ Z ⁇ 7.5, and 0 ⁇ x ⁇ 0.7. 7)
  • the thickness of the thin film 3 may be lnm or more and 1 ⁇ m or less. If this film thickness is less than 1 nm, it is substantially difficult to obtain the L 2 or B 2 single-phase structure described later, and if this film thickness exceeds 1 m, application as a spin device becomes difficult. Not preferred.
  • C 0 2 MGa used in the magnetic thin film according to the first embodiment of the present invention - x A 1 x (where, M is T i, V, Mo, W , C r, Mn, of F e
  • M is T i, V, Mo, W , C r, Mn, of F e
  • the average valence concentration in M is 5.5 ⁇ Z ⁇ 7.5 and the structure of 0 ⁇ x ⁇ 0.7
  • FIG. The structure shown in the figure is eight times (two times the lattice constant) that of a conventional unit cell of bcc (body-centered cubic lattice).
  • M at position I in FIG. 3 (where M is one or two of Ti, V, Mo, W, Cr, Mn, Fe) Or more species) in such a composition that the average valence electron concentration Z is 5.5 ⁇ Z ⁇ 7.5.
  • M is one or two of Ti, V, Mo, W, Cr, Mn, Fe
  • Z is 5.5 ⁇ Z ⁇ 7.5.
  • C 0 2 MGai-x A 1 x (where M is composed of one or more of Ti, V, Mo, W, Cr, Mn, Fe), and The average valence electron concentration Z is 5.5 ⁇ Z ⁇ 7.5 and 0 ⁇ x ⁇ 0.7. 7)
  • the thin film 3 can be used for a very thin film with a thickness of several nm or B 2 A single-phase structure is obtained.
  • C 0 2 MGa, -x A 1 ⁇ (where M is T and consists of one or more of V, Mo, W, Cr, Mn, and Fe, and the average valence electron concentration in M Z is 5.5 ⁇ Z ⁇ 7.5, and 0 ⁇ x ⁇ 0.7.
  • the B2 structure of the thin film is similar to the L2] structure, but the difference is the L2 structure. However, while the M and Ga (A 1) atoms are regularly arranged, the B 2 structure is irregularly arranged. These differences can be measured by X-ray diffraction or electron diffraction.
  • the average valence electron concentration Z of M is set to 5.5 ⁇ M ⁇ 7.5 in the Co 2 MGa, -x A lx thin film 3 . If Z is less than 5.5, the Curie temperature of the thin film falls below 100 ° C, and a large TMR cannot be obtained at room temperature. On the other hand, when Z exceeds 7.5, the half-metal characteristic of the thin film disappears, and for example, a large GMR or TMR cannot be obtained in a giant magnetoresistance effect element and a tunnel magnetoresistance effect element having a CPP structure. is there. Next, a second embodiment of a magnetoresistive element using the magnetic thin film of the present invention will be described.
  • FIG. 4 is a diagram showing a cross section of a magnetoresistive element using a magnetic thin film according to a second embodiment of the present invention.
  • FIG. 4 shows the case of a tunnel magnetoresistance effect element.
  • the tunnel magnetoresistive element 10 has, for example, Co 2 MG a, -x A 1 ⁇ (where M is Ti, V, Mo, W, Cr) , Mn, and F e, the average valence electron concentration in M is 5.5 ⁇ Z ⁇ 7.5, and 0 ⁇ x ⁇ 0.7.7) Thin film 3 And a structure in which an insulating layer 1 serving as a tunnel layer, a ferromagnetic layer 12, and an antiferromagnetic layer 13 are sequentially stacked.
  • the antiferromagnetic layer I 3 is used for a so-called spin bubble type structure for fixing the spin of the ferromagnetic layer 12.
  • Co 2 MG a, -x A 1 x (where M is one or more of Ti, V, Mo, W, Cr, Mn, Fe)
  • the average valence electron concentration Z in M is 5.5 ⁇ Z ⁇ 7.5, and 0 ⁇ x ⁇ 0.7)
  • the thin film 3 is called a free layer and the ferromagnetic layer 12 is called a pinned layer.
  • the ferromagnetic layer 12 may have either a single-layer structure or a multi-layer structure.
  • a 1 O x which is an oxide of A 1 2 ⁇ ⁇ 3 and A 1
  • IrMn or the like can be used for the antiferromagnetic layer 13.
  • a nonmagnetic electrode layer 14 serving as a protective film on the antiferromagnetic layer 13 of the tunnel magnetoresistance effect element 10 of the present invention.
  • FIG. 5 is a view showing a cross section of a modification of the magnetoresistive element using the magnetic thin film according to the second embodiment of the present invention.
  • Tunnel magnetoresistance effect element 1 5 is a magnetoresistive effect element was use ⁇ magnetic thin film of the present invention, the buffer more 4 and Co 2 M Ga> on the substrate 2 - X A 1 x (where, M is T i , V, Mo, W, Cr, Mn, and Fe, and the average valence electron concentration Z in M is 5.5 ⁇ Z ⁇ 7.5, and 0 ⁇ x ⁇ 0.7.
  • FIG. 5 differs from the structure of FIG. 4 in that the structure of FIG. 002185 This is the point where the buffer layer 4 is provided.
  • FIG. 6 is a diagram showing a cross section of a modification of the magnetoresistive element using the magnetic thin film according to the first embodiment of the present invention.
  • the tunnel magnetoresistive element 20 which is a magnetoresistive element using the magnetic thin film of the present invention, includes a buffer layer 4 and C 0 2 MG a, -x A 1 x (where M is Ti , V, Mo, W, Cr, Mn, and Fe, the average valence electron concentration in M is 5.5 ⁇ Z ⁇ 7.5, and 0 ⁇ x ⁇ 0.7)
  • the thin film 3 is disposed, and the insulating layer 11 serving as a tunnel layer and C 0 2 MG a ix A lx (where M is Ti, V, Mo, W, Cr) , Mn, or Fe, and the average valence electron concentration in M is 5.5 ⁇ Z ⁇ 7.5, and 0 ⁇ X ⁇ 0.7)
  • Thin film 1 6, an antiferromagnetic layer 13 and a nonmagnetic electrode layer 14 serving as a protective film are sequentially laminated.
  • FIG. 6 differs from the structure of FIG. 5 in that the ferromagnetic layer 12 serving as the pinned layer in FIG. 4 is also a magnetic thin film of the present invention, C 02 MG a i- x A 1 x (where M is One or more of Ti, V, Mo, W, Cr, Mn, and Fe; the average valence electron concentration Z in M is 5.5 ⁇ Z ⁇ 7.5; And 0 ⁇ x ⁇ 0.7) This is the point that a thin film 16 was used.
  • Other structures are the same as in FIG.
  • the substrate 2 used for the tunneling magnetoresistive element 1 0, 1 5, 2 0, polycrystalline, such as thermal oxidation S and glass, MgO, may be a single crystal such as A l 2 0 3, GaAs .
  • the buffer layer 4 Al, Cu, Cr, Fe, Nb, Ni, Ta, NiFe, or the like can be used.
  • the C o 2 and MG a have x A (where, M is I from T i, V, Mo, W , C r, Mn, 1 or 2 or more of the F e 85, the average valence electron concentration Z in M should be 5.5 ⁇ Z ⁇ 7.5 and 0 ⁇ X ⁇ 0.7)
  • the thickness of the thin film 3 should be 1 nm or more and 1 or less.
  • the tunnel magnetoresistive effect element 10, 15, 20 of the present invention having the above-described structure is formed by a general thin film forming method such as a sputtering method, a vapor deposition method, a laser ablation method, an MBE method, and an electrode having a predetermined shape. It can be manufactured by using a masking process for forming such as.
  • tunnel magnetoresistive elements 10 and 15 which are the magnetoresistive elements using the magnetic thin film of the present invention will be described.
  • the magnetoresistive elements 10 and 15 using the magnetic thin film of the present invention use two ferromagnetic layers 3 and 12, one of which is close to the antiferromagnetic layer 13, 2 (pin layer), the spin-valve type is used to fix the spin, so that when an external magnetic field is applied, the ferromagnetic layer C 0 2 MGa, -x A 1 x (where , M is one or more of Ti, V, Mo, W, Cr, Mn, and Fe, and the average valence electron concentration Z in M is 5.5 ⁇ Z ⁇ 7.5. And 0 ⁇ x ⁇ 0.7 Only the spin of thin film 3 is reversed.
  • the magnetization of the ferromagnetic layer 12 due to the spin valve effect causes the spin to be fixed in one direction by the exchange interaction with the antiferromagnetic layer 13, so that the free layer C 0 MGa A 1 (where , M consists of one or more of Ti, V, Mo, W, Cr, Mn, and Fe, and the average valence electron concentration Z in M is 5.5 ⁇ Z ⁇ 7.5. Yes, and 0 ⁇ x ⁇ 0.7) Parallel and antiparallel spins of thin film 3 can be easily obtained.
  • the free layer Co 2 MGa A 1 (where M is composed of one or more of Ti, V, Mo, W, Cr, Mn, Fe)
  • the average valence concentration Z of the film is 5.5 ⁇ Z ⁇ 7.5 and 0 ⁇ X ⁇ 0.7) Since the magnetization of the thin film 3 is small, the demagnetizing field is small and the magnetization reversal occurs with the smaller magnetic field. Can be. Accordingly, the tunnel magnetoresistive elements 10 and 15 of the present invention are suitable for magnetic devices such as MRAM which require magnetization reversal with low power.
  • tunnel magnetoresistance effect which is a magnetoresistance effect element using the magnetic thin film of the present invention.
  • the operation of the element 20 will now be described.
  • the tunnel magnetoresistive element 20 further includes a ferromagnetic f raw Co 2 MGa, -x A 1 x (where M is T i, V, Mo , W, Cr, Mn, and Fe, and the average valence electron concentration Z in M is 5.5 ⁇ Z ⁇ 7.5 and 0 ⁇ x ⁇ 0 7) Same as thin film 3 Co 2 MGa! _ X A 1 x (where M is one or more of Ti, V, Mo, W, Cr, Mn, Fe) Since the average valence electron concentration Z in M is 5.5 ⁇ Z ⁇ 7.5 and 0 ⁇ x ⁇ 0.7), the denominator of the above equation (1) is smaller.
  • the TMR of the tunnel magnetoresistive element of the present invention increases.
  • the tunnel magnetoresistive element 20 of the present invention is suitable for a magnetic device such as a MRAM that requires low power switching.
  • FIG. 7 is a view showing a cross section of a magnetoresistive element using a magnetic thin film according to the third embodiment of the present invention.
  • the magnetoresistive element using the magnetic thin film of the present invention is a giant magnetoresistive element.
  • the giant magnetoresistive element 30 is provided on a substrate 2 with a coffer layer 4 and a ferromagnetic material of the present invention, Co 2 MGa, -x A 1 (where M is T and V , Mo, W, Cr, Mn, and Fe, and the average valence electron concentration in M is 5.5 ⁇ Z ⁇ 7.5, and 0 ⁇ X ⁇ 0.7)
  • a thin film 3 is provided, and a nonmagnetic metal layer 21, a ferromagnetic layer 2, and a nonmagnetic electrode layer 14 serving as a protective film are sequentially laminated. .
  • FIG. 8 is a diagram showing a cross section of a modified example of the magnetoresistive element using the magnetic thin film according to the third embodiment of the present invention.
  • the giant magnetoresistive element 35 of the present invention is The giant magnetoresistive element 30 differs from the giant magnetoresistive element 30 in that an antiferromagnetic layer 13 is provided between the ferromagnetic layer 22 and the electrode layer 14 to provide a spin valve type giant magnetoresistive element. Other structures are the same as those in FIG.
  • the antiferromagnetic layer 13 has a function of fixing the spin of the ferromagnetic layer 22 which is to be a pin layer adjacent thereto.
  • a voltage is applied between the buffer layer 4 and the electrode layer 14 of the giant magnetoresistive element 3 ⁇ , 35.
  • An external magnetic field is applied in parallel in the film plane.
  • the current can flow from the buffer layer 4 to the electrode layer 14 in a CIP structure in which a current flows in the film surface or a CPP structure in which a current flows in the direction perpendicular to the film surface.
  • Substrate 2 of the giant magneto-resistive element 30, 35 is thermally oxidized S i, polycrystalline, such as glass, further, Mg_ ⁇ , as possible out to use a single crystal such as A 12 ⁇ 3, GaAs.
  • As the buffer layer 4 A, Cu, Cr, Fe, Nb, Ni, Ta, NiFe, or the like can be used.
  • As the raw metal layer 21, Cu, A1, or the like can be used.
  • the ferromagnetic layers 22, C oF e, N i Fe, C o 2 M Gai-x A 1 x (
  • a composite film made of the following materials can be used. IrMn or the like can be used for the antiferromagnetic layer 13.
  • the thickness of the thin film 3 may be 1 nm or more and 1 m or less. When the thickness is less than 1 nm, it is substantially difficult to obtain an L 2 or B 2 single-phase structure, and when the thickness exceeds 1 ⁇ m, application as a giant magnetoresistive element is difficult. Is not preferred.
  • the giant magnetoresistive element 30 and 35 of the present invention having the above-described structure, and a normal thin film forming method such as a sputtering method, a vapor deposition method, a laser ablation method, an MBE method, and an electrode having a predetermined shape are formed. It can be manufactured by using a mask process for performing the above.
  • the ferromagnetic layer of the giant magnetoresistive element 30 which is a magnetoresistive element using the magnetic thin film of the present invention is C 0 2 MGa i- x A 1 x (where M is T i, V, Mo, W , 2005/002185
  • Thin film 3 is a half-metal and therefore has a large spin polarizability. Therefore, only one spin of the thin film 3 contributes to conduction when an external magnetic field is applied. Therefore, according to the giant magnetoresistive element 30, an extremely large magnetoresistance, that is, GMR can be obtained.
  • the spin of the ferromagnetic layer 22 which is a pin layer is fixed by the antiferromagnetic layer 13.
  • the free layer Co 2 MGa A 1 (where M is one of Ti, V, Mo, W, Cr, Mn, and Fe) Species or two or more species, the average valence electron concentration Z in M is 5.5 ⁇ Z ⁇ 7.5, and 0 ⁇ x ⁇ 0.7. Become parallel.
  • the half metal contributes to conduction C 0 2 MGa i A 1 x (where M is one or two of Ti, V, Mo, W, Cr, Mn, Fe) Since the average valence electron concentration Z in M is 5.5 ⁇ Z ⁇ 7.5 and 0 ⁇ x ⁇ 0.7. Is obtained.
  • various magnetoresistance effect elements using the magnetic thin film of the present invention have a very large TMR or GMR at room temperature in a low magnetic field.
  • FIG. 9 is a diagram schematically illustrating resistance when an external magnetic field is applied to a tunneling magnetoresistive element or a giant magnetoresistive element which is a magnetoresistive element using the magnetic thin film of the present invention.
  • the horizontal axis in the figure is the external magnetic field applied to the magnetoresistive element using the magnetic thin film of the present invention, and the vertical axis is the resistance.
  • a voltage necessary for obtaining a giant magnetoresistance effect or a tunnel magnetoresistance effect is sufficiently applied.
  • the resistance of the magnetoresistive element using the magnetic thin film of the present invention is an external resistance. It shows a large change due to the magnetic field.
  • the external magnetic field is reduced from the area (I)
  • the external magnetic field is reduced to zero, and the external magnetic field is reversed and increased, the resistance increases from the minimum in the area (11) to the maximum in the area ( ⁇ 1).
  • the external magnetic field in the region (11) is H ,.
  • the region ( ⁇ 1) passes through the region (IV) to the region (V
  • the magnetoresistive effect element using the magnetic thin film of the present invention has the ferromagnetic layer 22 and the free layer C 0 2 MG a A 1 x in the external magnetic field of the region (I) and the region (V).
  • M is one or more of Ti, V, Mo, W, Cr, Mn, and Fe
  • the average valence electron concentration Z in M is 5.5 ⁇ Z ⁇ 7 5 and 0 ⁇ x ⁇ 0.7.
  • C o 2 MGa, - A 1 x thin film 3 may be, for example, C o 2 F e C r G a.
  • Equation (2) When an external magnetic field is applied, the magnetoresistance change rate is expressed by Equation (2). The larger this value is, the more desirable the magnetoresistance change rate is.
  • Magnetoresistance change rate (maximum resistance-minimum resistance) / minimum resistance (%) (2)
  • the magnetoresistance effect element using the magnetic thin film of the present invention has a magnetic field as shown in FIG.
  • a magnetic field that is slightly larger than zero that is, a low magnetic field
  • a large magnetoresistance change rate can be obtained.
  • the magnetoresistive effect element using the magnetic thin film of the present invention exhibits a large TMR or GMR in a low magnetic field at room temperature. Obtainable. Since the magnetoresistance effect element using the magnetic thin film of the present invention exhibits a large TMR or GMR at room temperature in a low magnetic field, a highly sensitive magnetic head for reading and a magnetic head using these magnetic heads are provided.
  • Various types of magnetic recording devices can be configured. Further, for example, an MTJ element, which is a magnetoresistive element using the magnetic thin film of the present invention, is arranged in a matrix, and a current is applied to a separately provided wiring to apply an external magnetic field.
  • a magnetic device such as an MRAM can be configured.
  • the GMR element having a CPP structure which is the magnetoresistive element of the present invention, the GMR is large, so that the capacity of a magnetic device such as a hard disk drive (HDD) or a MRAM can be increased.
  • HDD hard disk drive
  • C o 2 MGa a magnetic thin film of the present invention, as -x A 1 x, were fabricated C o 2 C r Ga was 0 composition x of M as C r.
  • the average valence electron concentration Z of M is 6.
  • FIG. 10 is a diagram showing the electron diffraction at [01-1] incidence of the C 0 2 CrGa alloy produced in Example 1.
  • the accelerating voltage of the electron beam is 20 OkV, and the numbers in the figure indicate the diffraction from the (200), (111), and (022) planes, respectively.
  • both regular reflections from the (200) and (111) planes appeared, indicating that the alloy had a L 2, Heusler structure. If the alloy is irregular body-centered cubic, neither of the two types of diffraction from the (200) and (111) planes shown in the figure will appear. In the case of the B 2 structure, only diffraction from the (200) plane appears, and no diffraction from the (111) plane exists.
  • the high-frequency sputtering apparatus using the above-mentioned C 0 1 CrGa alloy as a target was used to form Co 2 C on a thermally oxidized Si substrate 2 or a substrate 2 on which a Ta thin film was laminated as a buffer layer 4 on the Si substrate 2.
  • An rGa thin film was prepared by changing the substrate temperature. At a substrate temperature of 500 ° C. or lower, the structure of the C 0 2 CrGa magnetic thin film 3 thus manufactured was an L 2 or B 2 structure.
  • Example 2 A spin-valve-type tunnel magnetoresistive element 15 shown in FIG. 5 was produced at room temperature.
  • Ta is used as a buffer layer 4, and Ta (10 nm) / Co 2 CrGa (300 nm) / A 1 Ox ( 1.6 nm) / C o 9 oF e, o (5 nm) / N i Fe (2 nm) /
  • IrMn (20 nm) / Ta (10 nm) were sequentially laminated to produce a tunnel magnetoresistive element 15.
  • the numbers in parentheses are the respective film thicknesses.
  • Ta is buffer—layer 4
  • Co 2 Cr Ga thin film 3 is ferromagnetic free layer
  • a 10 x is tunnel insulating layer
  • N i F e is strongly magnetic material element comprising a composite membrane with a pin layer of the ferromagnetic layer 1 2
  • I RMN is antiferromagnetic layer 1 3
  • Ta on the antiferromagnetic layer 13 IrMn is the protective film 14.
  • the high frequency power of the magnetron was 100 W at the time of film formation of each layer other than the above-mentioned tunnel insulating film A 1 Ox, and the high frequency power at the time of film formation by plasma oxidation of A 1 O x was 40 W.
  • the Ar gas pressure for discharge was 8 Pa.
  • Substrate temperature is
  • FIG. 11 is a diagram illustrating the magnetic field dependence of the resistance of the tunnel magnetoresistance effect element 15 according to the second embodiment.
  • the horizontal axis of the figure is the external magnetic field H (Oe), and the vertical axis is the resistance ( ⁇ ).
  • the magnetoresistance sweeps an external magnetic field and measures its hysteresis characteristics. From now on, TMR will
  • FIG. I2 is a diagram showing the magnetic field dependence of the resistance of the tunnel magnetoresistive element 15 of the third embodiment.
  • the horizontal axis in the figure is the external magnetic field H (Oe), and the vertical axis is the resistance ( ⁇ ). Magnetic resistance The resistance sweeps the external magnetic field and measures its hysteresis characteristics. from now on
  • the TMR was determined to be 3.2%.
  • Example 2 In Example 2 and Example 3, no plateau was observed in the TMR curve, and complete antiparallel spin states were not realized.
  • the TMR can be significantly increased. Industrial Available '
  • Magnetic thin films can be prepared at room temperature without heating. In addition, it shows ferromagnetic properties and has a large spin polarizability.
  • Co 2 MGa, -x A 1 x having the L 2 or B 2 single-phase structure of the present invention (where M is Ti, V, Mo, W, Cr, Mn, Fe)
  • the average valence electron concentration Z in M is 5.5 ⁇ Z ⁇ 7.5 and 0 ⁇ x ⁇ 0.7.
  • Giant magnetoresistance effect using a magnetic thin film According to the device, a very large GMR can be obtained at room temperature with a low external magnetic field. Similarly, a very large TMR can be obtained by using a tunnel magnetoresistive element.
  • M is one or more of Ti, V, Mo, W, Cr, Mn, Fe
  • the average valence electron concentration Z in M is 5.5 ⁇ Z ⁇ 7.5 and 0 ⁇ x ⁇ 0.7 .
  • a new magnetic device can be realized by applying it to various magnetic devices. In this case, since the saturation magnetization is small, the magnetization reversal magnetic field due to spin injection is small, so that magnetization reversal can be realized with low power consumption, efficient spin injection into semiconductors is possible, and spin FETs can be developed. It can be widely used as a key material for developing the spin electronics field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)
  • Semiconductor Memories (AREA)

Abstract

スピン分極率の大きい磁性薄膜及びそれを用いた磁気抵抗効果素子並びに磁気デバイスで、基板(2)と基板(2)上に形成されるCo2 MGa1-x Alx 薄膜(3)とを備え、Co2 MGa1-x Alx薄膜(3)はL21またはB2単相構造を有し、薄膜のMはTi,V,Mo,W,Cr,Mn,Feの中の1種または2種以上からなり、M中の平均価電子濃度Zが5.5≦Z≦7.5であり、かつ、0≦x≦0.7であると、室温において、強磁性を示し大きなスピン分極率が得られる。基板(2)とCo2 Fex Cr1-xAl薄膜(3)との間にはバッファー層(4)が挿入されてもよい。この磁性薄膜を用いたトンネル磁気抵抗効果素子及び巨大磁気抵抗効果素子は、室温において、低磁界で大きなTMRとGMRが得られる。

Description

磁性薄膜及びそれを用いた磁気抵抗効果素子並びに磁気デ Zヾィス 技術分野
本発明は、 スピン分極率の大きい磁性薄膜及びそれを用いた磁気抵抗効果素子 並びに磁気デバイスに関する。
明 背景技術
近年、 強磁性層 非磁性金属層の多層田膜からなる巨大磁気抵抗 (GM R) 効果 素子、及び強磁性層/絶縁体層/強磁性層からなるトンネル磁気抵抗効果素子や 強磁性スピントンネル接合 (M T J ) 素子が、 新しい磁界センサーや不揮発性ラ ンダムアクセス磁気メモリ (M RAM) 素子として注目されている。
巨大磁気抵抗効果素子には、 膜面内に電流を流すタイプの C I P (Current In Plane) 構造の巨大磁気抵抗効果素子と、 膜面垂直方向に電流を流すタイプの C P P (Current Perpendicular to the Plane) 構造の巨大磁気抵抗効果素子が知 られている。 巨大磁気抵抗効果素子の原理は磁性層と非磁性層の界面におけるス ピン依存散乱にあり、 一般に、 C P P構造の巨大磁気抵抗効果素子の方が C I P 構造の巨大磁気抵抗効果素子よりも GMRが大きい。
このような巨大磁気抵抗効果素子は、 強磁性層の一方に反強磁性層を近接させ て強磁性層のスピンを固定させるスピンバルブ型が用いられている。 C F P構造 のスピンバルブ型巨大磁気抵抗効果素子の場合、反強磁性層の電気抵抗率が 2 0 0〃Ω · c m程度と GM R膜に比べて 2桁程度大きいため、 GM R効果が薄めら れ、 スピンバルブ型の C P P構造の巨大磁気抵抗効果素子の磁気抵抗の値は 1 % 以下と小さい。 そのため、 C I P構造の巨大磁気抵抗効果素子はすでにハードデ イスクの再生へッ ドに実用化されているものの、 C P F構造の巨大磁気抵抗効果 素子はまだ実用にいたっていない。
一方、 トンネル磁気抵抗効果素子や MT Jでは、外部磁界によって 2つの強磁 性層の磁ィヒを互いに平行あるいは反平行に制御することにより、 膜面垂直方向の トンネル電流の大きさが互いに異なる、 いわゆるトンネル磁気抵抗 (TMR)効 果が室温で得られる (下記文献 1参照) 。 この T MRは、 用いる強磁性体と絶縁 体との界面におけるスピン分極率 Pに依存し、 二つの強磁性体のスピン分極率を それぞれ , P2 とすると、 一般に下記 (1 ) 式で与えられることが知られて いる。
TMR=2P, P2 / ( 1 -P. P2 ) (1) ここで、 強磁性体のスピン分極率 Pは 0<P≤ 1の値をとる。
現在、 得られている室温における最大の TMRは P〜0. 5の Co Fe合金を 用いた場合の約 50パーセントである。 TMR素子は現在、 ハードディスク用磁 気ヘッ ド及び不揮発性ランダムアクセス磁気メモリ (MRAM) への応用が期待 されている。 MRAMでは、 MT J素子をマトリックス状に配置し、 別に設けた 配線に電流を流して磁界を印加することで、 各 MT J素子を構成する二つの磁性 層を互いに平行、 反平行に制御することにより、 "1" , "0" を記録させる。 読み出しは、 TMR効果を利用して行う。 しかし、 MRAMでは高密度化のため に素子サイズを小さくすると、 素子のバラツキに伴うノイズが増大し、 TMRの 値が現状では不足するという問題がある。 したがって、 より大きな TMRを示す 素子の開発が必要である。
上記 ( I) 式からわかるように、 P= 1の磁性体を用いると無限に大きな TM Rが期待される。 P = 1の磁性体はハーフメタルと呼ばれる。 これまで、 ノくンド 構造計算によって、 Fe34 , Cr〇2 , (La-Sr) Mn03 , Th2 M n07 , S r 2 F eMo 06 などの酸化物、 N i Mn S bなどのハーフホイスラ 一合金、 及び C 02 MnGe, Co2 Mn S i , Co2 C r A 1などの L 2 , 構 造をもつフルホイスラー合金などがハ一フメタルとして知られている。 例えば、 C 0 2 MnGeなどの従来の L 2 i 構造を有するフルホイスラー合金は基板を 3 00°C程度に加熱し、 さらに、 その膜厚を通常 25 nm以上にして作製できるこ とが報告されている (下記文献 2参照) 。
最近、 ハーフメタルの C 02 C r A 1の構成元素である C rの一部を F eで置 換した C 02 F e o. 4 C Γ ο. 6 A 1も、 バンド構造の理論計算によれば、 L 2 i 型のハーフメタルであることが報告された (下記文献 3参照) 。 また、 その薄膜 を用いたトンネル接合が作製され、 室温で 1 6 %程度の T M Rが報告されている (下記文献 4参照) 。 ホイスラー化合物の磁ィ匕特性やハーフメタル特性において 、 構成元素の総価電子 Zによりそれらの特性をまとめられることも報告された ( 下記文献 5 ) 。
文南犬 1 : T. Mi azaki and N. Tezuka, Spin polarized tunnel ing in fe rromagnet/insulator/ferromagnet junctions , 1995, J. Magn. Magn. Mater, L39, p. 1231
文南犬 2 : T. Ambrose, J. J. Crebs and G. A. Prinz, "Magnetic proper t ies of s ingle crystal CzMnGe Heusl er al loy fi lms" , 2000, Appl. Phys. Le tt., Vol. 87, p. 5463
文南犬 3 : T. Block, C. Fel ser, and J. Windeln, "Spin Polari zed Tunne l ing at Room Temperature in a Heus ler Compound- a non-oxide Material s wi t h a Large Negative Magnetoresi stance Effect in Low Magnetic Fields , Apr i l 28, 2002, Intermag Digest, EE01
文南犬 4 : K. Inomata, S. Okaraura, R. Goto and N. Tezuka, "Large tunn el ing magnetoresi stance at room temperature using a Heusler al loy wi th B 2 structur", 2003, Jpn. J. Appl. Phys. , Vol. 42, PL419
文南犬 5 : 1. Galanaki s and P. H. Dederi chs, Slater-Paul ing behavior and origin of the hal f-metal 1 ici ty of the fulト Heus ler al loys", 2002, Th e American Physical Society, PHYSICAL REVIEW B, Vol. 66, pp. 174429-1-1744 29-9
従来のハードディスクの再生へッ ドに実用化されている C I P構造の巨大磁気 抵抗効果素子においては、 高記録密度に向け微細化が進められているが、 素子の 微細化に伴い信号電圧の不足が予測されており、 C 〖 P構造の巨大磁気抵抗効果 素子の代わりに C P P構造の巨大磁気抵抗効果素子の高性能化が要求されている が、 未だ実現されていない。
上記のハーフメタルの C 0 2 C r A lを除き、 ハーフメタル薄膜が作製されて いるが、 基板を 3 0 0 °C以上に加熱するか、 または室温で成膜後 3 0 0 °C以上の 温度で熱処理することが必要である。 しかし、 これまでに作製された薄膜がハー フメタルであったという報告はない。 そして、 これらのハーフメタルを用いたト ンネル接合素子の作製も一部試みられているが、 いずれも室温の T M Rは期待に 反して小さく、 F e 3 04 を用いた場合の精々 1 0数0 /0が最大であった。
このように、 従来のハーフメタル薄膜はその構造を得るために基板加熱や, 理を必要としており、 それによつて表面のラフネスが増大したり、 または酸化し たりすることも大きな TMRが得られない原因の一つと考えられている。
—方、 薄膜ではバルク材料と異なり、 表面においてはハーフメタル特性を示さ ない可能性があること、 また、 ハーフメタル特性は組成や原子配列の規則度に敏 感であり、 特にトンネル接合では、 その界面においてハーフメタルの電子状態を 得るのが困難であることも、 大きな T M Rが得られない原因と推定される。 以上のことから、 ハーフメタル薄膜の作製が実際には非常に困難で、 各種の磁 気抵抗効果素子に使用できる良好なハーフメタル薄膜が得られていないという課 題がある。
バンド構造の理論言十算でハーフメタルであることが予測されている、 C 02 F e o. 4 C Γ Ο. 6 A 1薄膜及びこの薄膜を用いたトンネル接合が作製され、 TMR が得られている。 しかしながら、 = 0でぁる( 0 2 CrA l側では、 B 2構造 の C oA 1化合物が極めて安定なために、 B 2構造である C oA 1 と A 2構造で ある C oCrとの 2相分離が生じやすく、 ハーフメタル特性が期待される C 0 2 F e o. 4 C r 0. 6 A 1薄膜のような単一相の合金が得られにくいという課題があ る。 発明の開示
本発明は、 上記課題に鑑み、 スピン分極率の大きい磁性薄膜及びそれを用いた 磁気抵抗効果素子並びに磁気デバイスを提供することを目的としている。
本発明者らは、 G aは A 1と等しい価電子を有する元素であり、 CoGaは、 C 0 A 1ほど安定ではないことを考慮して、 C o2 MGa,-x A 1 x 薄膜を作製 した結果、 この膜は室温で強磁性であり、 かつ、 基板を無加熱、 または 500°C 以下の温度で成膜したり、 さらにこの薄膜を 500°C以下の温度で熱処理するこ とにより、 L 2 , または B 2単相構造を作製できることを見出し、 本発明を完成 002185 するに至った。
上記目的を達成するため、 本発明の磁性薄膜は、 基板と基板上に形成される C 0 2 MGa A 1 x 薄膜とを備え、 C 02 MGa,- A 1 薄膜は L 2 , また は B 2単相構造を有し、 薄膜の Mは T i , V, Mo, W, C r, Mn, F eの中 の 1種または 2種以上からなり、 M中の平均価電子濃度 Zが 5. 5≤ Z≤ 7. 5 であり、 かつ、 0≤x≤0. 7であることを特徴とする。
基板は、 無加熱を含む 500 以下の温度で加熱されて前記 C 02 MGa i -x A 1 x 薄膜が成膜されているか、 またはこの成膜した薄膜をさらに 5 0 0 °C以下 の温度で熱処理されたものであってもよい。 上記基板は、 熱酸化 S i, ガラス, M g 0単結晶, G a A s単結晶, A 12 03 単結晶の何れか一つであればよい。 基板と C o2 MGa,-x A 1 x 薄膜との間にバッファ一層が配設されていてもよ い。 このバッファ一層としては、 A l , C u, C r , F e , Nb, N i , Ta, N i F eのうちの少なくとも一つを用いることができる。
この構成によれば、 室温において、 強磁性であり、 スピン分極率の大きいハー フメタルである C o2 MGa A 1 (ここで、 Mは T i , V, Mo, W, C r, Μη, F eの中の 1種または 2種以上からなり、 M中の平均価電子濃度 が 5. 5≤Z≤7. 5であり、 かつ、 0≤x≤0. 7) 磁性薄膜 (以下、 適宜 C 0 2 MGa ! -x A 1 χ (0≤x≤ 0. 7 ) 磁性薄膜または単に C o 2 M G aト x A 1 x 薄膜と呼ぶ) を得ることができる。
本発明の卜ンネル磁気抵抗効果素子は、 基板上に複数の強磁性層を有するトン ネル磁気抵抗効果素子において、 少なくとも一方の強磁性層が、 L 2 , または B 2単相構造を有する Co 2 MGai-x A 1 x (ここで、 Mは T i, V, Μο, W , C r , Μη, F eの中の 1種または 2種以上からなり、 M中の平均価電子濃度 Zが 5. 5≤Z≤ 7. 5であり、 かつ、 0≤ X≤ 0. 7 ) 磁性薄膜でなることを 特徴とする。
上記構成において、 好ましくは、 強磁性層は、 固定層とフリー層とで成り、 フ リー層は L 2 , または B 2単相構造を有する C o2 MGa,-x A 1 x 磁性薄膜で ある。 前記基板は、 無加熱を含む 500°C以下の温度で加熱されて C o 2 MGa ,_x A 1 薄膜が成膜されるか、 またはこの成膜した薄膜をさらに 500°C以下 5 の温度で ,理すればよい。 基板としては、 熱酸化 S i, ガラス, MgO単結晶 , GaAs単結晶, Al 2 03 単結晶の何れか一つであればよい。 基板と Co2 MGa, -x A 1 x 薄膜との間にバッファ一層が配設されていてもよい。 このノくッ ファー層は、 Al, Cu, Cr, F e , Nb, N i, Ta, N i F eのうちの少 なくとも一つで構成されることができる。
上記構成によれば、 室温において、 低外部磁界で TMRの大きいトンネル磁気 抵抗効果素子を得ることができる。
本発明の巨大磁気抵抗効果素子は、 基板上に複数の強磁性層を有する巨大磁気 抵抗効果素子において、 少なくとも一方の強磁性層が、 L 2! または B 2単相構 造を有する C 02 MGa , -x A 1 χ (ここで、 Mは T i, V, Mo, W, C r, Mn, F eの中の 1種または 2種以上からなり、 M中の平均価電子濃度 Zが 5. 5≤Z≤7. 5であり、 かつ、 0≤x≤0. 7)磁性薄膜で成り、 膜面垂直方向 に電流が流れる構造としたことを特徴とする。
前記強磁性層は、 固定層とフリー層とで成り、 フリー層が L 2〖 または B 2単 相構造を有する C o2 MGa,— x A 1 (0≤x≤0. 7)磁性薄膜でなること が好ましい。 上記基板は、 無加熱を含む 500°C以下の温度で加熱されることで Co2 MGa,-x A 1 x 薄膜が成膜されるか、 またはこの成膜した薄膜がさらに 500°C以下の温度で熱処理されていてもよい。 基板と C o2 MGa,-x A 1 x 薄膜との間にバッファ一層を配設するようにしてもよい。 基板としては、 熱酸化 S i, ガラス, MgO単結晶, GaAs単結晶, Al 2 03 単結晶の何れか一つ であればよい。 バッファ一層は、 Aし Cu, Cr, Fe, Nb, N i, Ta, N i Feのうちの少なくとも一つで構成することができる。
上記構成によれば、 室温において、 低外部磁界で G MRの大きい巨大磁気抵抗 効果素子を得ることができる。
本発明の磁気デバイスは、 L 2, または B 2単相構造を有する C o2 MGa,- x A 1 (ここで、 Mは T i, V, Mo, W, C r , Mn, Feの中の 1種また は 2種以上からなり、 M中の平均価電子濃度 Zが 5. 5≤Z≤7. 5であり、 か つ、 0≤x≤0. 7)磁性薄膜が基板上に形成されてなることを特徴とする。 こ の場合、 フリー層が上記 C o2 MGaト x A 1 (0≤x≤0. 7 )磁性薄膜か ら成るトンネル磁気抵抗効果素子又は巨大磁気抵抗効果素子を用いればよい。 好ましくは、 トンネル磁気抵抗効果素子または巨大磁気抵抗効果素子は、 その 基板が無加熱を含む 500°C以下の温度で加熱されて C 02 MG aト A 1 薄 膜が成膜されるか、 またはこの成膜した薄膜がさらに 500 °C以下の温度で, 理して作製されている。 基板と Co2 MGa i-x A 1 (0≤x≤0. 7)薄膜 との間に、 バッファー層が配設された卜ンネル磁気抵抗効果素子または巨大磁気 抵抗効果素子を用いることができる。 前記基板が、 熱酸化 S i , ガラス, MgO 単結晶, GaAs単結晶, Al 2 03 単結晶の何れか一つであるトンネル磁気抵 抗効果素子または巨大磁気抵抗効果素子を用いることができる。 バッファ一層と して、 Al, Cu, Cr, Fe, Nb, N i, Ta, N i F eのうちの少なくと も一つを用いたトンネル磁気抵抗効果素子又は巨大磁気抵抗効果素子を用いれば よい。
上記構成によれば、 室温において、 低外部磁界で TMRや GMRの大きい磁気 抵抗効果素子を用いた磁気デバィスを得ることができる。
また、 本発明の磁気へッ ド及び磁気記録装置は、 L 2 , または B 2単相構造を 有する Co2 MGa, -x A 1 x (ここで、 Mは T i, V, Mo, W, Cr, Mn , F eの中の 1種または 2種以上からなり、 M中の平均価電子濃度 Zが 5. 5≤ Z≤ 7. 5であり、 かつ、 0≤x≤0. 7)磁性薄膜が基板上に形成されてなる ことを特徴とする。
上記構成において、 好ましくは、 フリー層が前記 Co2 MGa,-x A 1 χ (こ こで、 0≤χ≤0. 7)磁性薄膜であるトンネル磁気抵抗効果素子または巨大磁 気抵抗効果素子を用いる。 基板は、 無加熱を含む 500で以下の温度で加熱され て Co2 MGa,-, A 1 x 薄膜が成膜されるか、 またはこの成膜した薄膜がさら に 500 °C以下の温度で熱処理して作製されたトンネル磁気抵抗効果素子又は巨 大磁気抵抗効果素子を用いてもよい。 基板と Co2 MGa A 1 x 薄膜との間 にバッファ一層が配設されたトンネル磁気抵抗効果素子又は巨大磁気抵抗効果素 子を用いてもよい。 基板が、 熱酸化 S i , ガラス, MgO単結晶, GaAs単結 晶, Al 2 03 単結晶の何れか一つであるトンネル磁気抵抗効果素子又は巨大磁 気抵抗効果素子を用いることもできる。 ノくッファ一層が、 Aし Cu, Cr, F JP2005/002185 e, Nb, N i , T a, N i F eのうちの少なくとも一つから成るトンネル磁気 抵抗効果素子または巨大磁気抵抗効果素子を用いてもよい。
上記構成によれば、室温において、低外部磁界で TMRや GMRの大きい磁気 抵抗効果素子を用いることで、 大容量、 力、つ、 高速な磁気へッド及び磁気記録装 置を得ることができる。 図面の簡単な説明
図 1は、 本発明に係る第 1の実施形態による磁性薄膜の断面図である。
図 2は、 上記第 1の実施形態による磁性薄膜の変形例の断面図である。
図 3は、 上記第 1の実施形態による磁性薄膜に用いる C o 2 MGa i -x A 1 x の構造を模式的に説明する図である。
図 4は、 本発明に係る第 2の実施形態による磁性薄膜を用いた磁気抵抗効果素 子の断面を示す図である。
図 5は、上記第 1の実施形態による磁性薄膜を用いた磁気抵抗効果素子の変形 例の断面を示す図である。
図 6は、上記第 2の実施形態による磁性薄膜を用いた磁気抵抗効果素子の変形 例の断面を示す図である。
図 7は、本発明に係る第 3の実施形態による磁性薄膜を用いた磁気抵抗効果素 子の断面を示す図である。
図 8は、 上記第 3の実施形態による磁性薄膜を用いた磁気抵抗効果素子の変形 例の断面を示す図である。
図 9は、本発明の磁性薄膜を用いた磁気抵抗効果素子に外部磁界を印加したと きの抵抗を模式的に説明する図である。
図 1 0は、 実施例 1で製作した C 02 C r G a合金の [0 1— 1 ] 入射の電子 線回折を示す図である。
図 1 1は、 実施例 2のトンネル磁気抵抗効果素子の抵抗の磁場依存性を示す図 である。
図 1 2は、 実施例 3のトンネル磁気抵抗効果素子の抵抗の磁場依存性を示す図 である。 5
発明を実施するための最良の形態
本発明は、 以下の詳細な発明及び本発明の幾つかの実施の形態を示す添付図 面に基づいて、 より良く理解されるものとなろう。 なお、添付図面に示す種々の 実施例は本発明を特定または限定することを意図するものではなく、 単に本発明 の説明及び理解を容易とするためだけのものである。
以下、 図面に示した実施形態に基づいて本発明を詳細に説明する。 各図におい て同一又は対応する部材には同一符号を用いる。
始めに本発明の磁性薄膜の第 1の実施形態を示す。
図 1は、本発明に係る第 1の実施形態による磁性薄膜の断面図である。 図 1に 示すように、 本発明の磁性薄膜 1は、基板 2上に、室温において C o 2 MGa,- x A 1 薄膜 3を配設している。 C o2 MGa,-x A 1 x 薄膜 3において、 Mは T i , V, Mo, W, C r, Mn, F eの中の 1種または 2種以上からなり、 M 中の平均価電子濃度 Zが 5. 5≤Z≤ 7. 5であり、 かつ 0≤x≤ 0. 7である 。 ただし、上記 Mの元素の価電子濃度 Zは、上記元素の T i , V, Mo, W, C r , Mn, F eのそれぞれにおいて、 ZTi = 4, Zv = 5 , Zc,. = ZM。 = Zw = 6 , ZMn=7, ZFe=8と定義する。 Mが C r, Mo, Wの場合には、 平均価電 子濃度 Zが 6であり、上記の 5. 5≤Z≤ 7. 5を満足する。
Mが 2種からなる場合の平均価電子濃度 Zについて説明する。 その組成が、 M = MlaM2 l-aとする。 , M2 は、 上記の金属 Mから選ばれる金属であり、 そ の組成としては、 M, が aであり、 M2 が 1—aである。 M, , M2 の価電子濃 度 Zをそれぞれ、 ZM,, ZM2とする。 この MlaM21-aの平均価電子濃度 Zは、 Z = aXZM1+ ( 1— a) XZM2で計算でき、 この Zを 5. 5≤Z≤ 7. 5となる ように、 Mの組成を決めればよい。
Mが 2種以上からなる場合にも、 その組成と価電子濃度 Zから、 同様にして平 均価電子濃度 Zを、 5. 5≤Z≤ 7. 5を満足するように Mの選定をすればよい 。 C 02 MGa,-x A 1 x 薄膜 3は、室温で強磁性であり、 電気抵抗率が 200 ιΩ - cm程度であり、 かつ基板を加熱することなく L 2 , または B 2単相構造 を有している。 基板 2上の C 0 2 MGa,-x A 1 x 薄膜 3の膜厚は 1 nm以上 1 〃m以下であればよい。 図 2は本発明に係る第 1の実施形態による磁性薄膜の変形例の断面図である。 図 2に示すように、 本発明の磁性薄膜 5は、 図 1の磁性薄膜 1の構造において、 さらに、 基板 2と C 02 MGai A 1 (ここで、 Mは T i, V, Mo, W, C r, Mn, F eの中の 1種または 2種以上からなり、 M中の平均価電子濃度 Z が 5. 5≤Z≤ 7. 5であり、 かつ、 0≤x≤ 0. 7) 薄膜 3との間にバッファ 一層 4が挿入されている。 ファー層 4を揷入することで、基板 1上の C 0 2 MGai A 1 (ここで、 0≤x≤ 1 ) 薄膜 3の結晶性をさらによくすること ができる。
上記磁性薄膜し 5に用いる基板 2は、 熱酸化 S し ガラスなどの多結晶、 M gO、 A 123 、 Ga Asなどの単結晶を用いることができる。 ファー層 4としては、 A l, Cu, C r, F e , Nb, N i, Ta, N i F eなどを用い ることができる。
上記 C o2 MGa A 1 (ここで、 Mは T i, V, Mo, W, C r , Mn , F eの中の 1種または 2種以上からなり、 M中の平均価電子濃度 Zが 5. 5≤ Z≤ 7. 5であり、 かつ、 0≤x≤ 0. 7) 薄膜 3の膜厚は、 l nm以上で 1〃 m以下であればよい。 この膜厚が 1 nm未満では、実質的に後述する L 2 , また は B 2単相構造を得るのが困難になり、 この膜厚が 1 mを超えるとスピンデバ イスとしての応用が困難になり好ましくない。
次に、 上記構成の第 1の実施形態に用いる磁性薄膜の作用を説明する。
図 3は、 本発明の第 1の実施形態の磁性薄膜に用いる C 02 MGa,-x A 1 x (ここで、 Mは T i, V, Mo, W, C r, Mn, F eの中の 1種または 2種以 上からなり、 M中の平均価電子濃度 Zが 5. 5≤Z≤ 7. 5であり、 かつ、 0≤ x≤ 0. 7) の構造を模式的に説明する図である。 図に示す構造は、 b c c (体 心立方格子) の慣用的単位胞の 8倍 (格子定数で 2倍) の構造を示している。
C 02 MGa Aし の L 2 , 構造においては、 図 3の Iの位置に M (ここ で、 Mは T i , V, Mo, W, C r , Mn, F eの中の 1種または 2種以上から なる) がその平均価電子濃度 Zを 5. 5≤Z≤ 7. 5とする組成となるように配 置され、 Πの位置に G aと A 1 とが組成比として G a,— x A 1 x (0≤x≤ 0. 7) となるように配置され、 111 と IVの位置に C oが配置される。
C 0 2 MG a , -x A 1 χ の B 2単相構造においては、 図 3の Iの位置及び Πの 位置に、 M (ここでは、 T i , V, Mo, W, C r , Mn, F eの中の 1種また は 2種以上からなる) と Gaと A 1とが不規則に配列され、 111 及び IVの位置に C oが配置される。 この際、 Mと F eと C rとの組成比は、 MU Ga i-x A 1 x (ここで、 0≤x≤ 0. 7 ) となるように配置される。
次に、 上記構成の第 1の実施形態に用いる磁性薄膜 1, 5の磁気的性質を説明 する。 上記構成の C 0 2 MGa ! -x A 1 χ (ここで、 Mは T i, V, Mo, W, C r, Mn, F eの中の 1種または 2種以上からなり、 M中の平均価電子濃度 Z が 5. 5≤Z≤ 7. 5であり、 かつ、 0≤x≤0. 7 ) 薄膜 3は、 室温で強磁性 であり、 かつ、 基板を加熱することなく L 2 , または B 2単相構造の C o2 MG a,-x A 1 x 薄膜が得られる。
さらに、 上記構成の C 0 2 MGai-x A 1 x (ここで、 Mは T i, V, Mo, W, Cr, Mn, F eの中の 1種または 2種以上からなり、 M中の平均価電子濃 度 Zが 5. 5≤Z≤ 7. 5であり、 かつ、 0≤x≤0. 7) 薄膜 3は、 膜厚が数 nm程度の非常に薄い膜においても、 または B 2単相構造が得られる。 C 02 MGa,-x A 1 χ (ここで、 Mは Tし V, Mo , W, C r, Mn, F eの 中の 1種または 2種以上からなり、 M中の平均価電子濃度 Zが 5. 5≤Z≤ 7. 5であり、 かつ、 0≤x≤0. 7) 薄膜の B 2構造は、 L 2】 構造と類似してい るが、 異なるのは L 2 , 構造では、 上記 Mと Ga (A 1 ) 原子が規則的に配置し ているのに対し、 B 2構造は、 不規則に配列していることである。 これらの違い は X線回折や電子線回折で測定することができる。
上記 C o 2 MGa, -x A l x 薄膜 3において、 Mの平均価電子濃度 Zを、 5. 5≤M≤ 7. 5とした理由について説明する。 Zが 5. 5より小さいと、 薄膜の キュリー温度が 1 00°Cを下回り、 室温で大きな TMRが得られなくなる。 一方 、 Zが 7. 5を越えると、 薄膜のハーフメタル特性が消滅し、 例えば、 CPP構 造の巨大磁気抵抗効果素子及びトンネル磁気抵抗効果素子において、 大きな GM Rや TMRが得られないからである。 次に、 本発明の磁性薄膜を用いた磁気抵抗効果素子に係る第 2の実施形態を示 す。
図 4は本発明に係る第 2の実施形態による磁性薄膜を用いた磁気抵抗効果素子 の断面を示す図である。 図 4は卜ンネル磁気抵抗効果素子の場合を示している。 この図に示すように、 トンネル磁気抵抗効果素子 1 0は、 例えば、 基板 2上に C o2 MG a , -x A 1 χ (ここで、 Mは T i, V, Mo, W, C r , Mn, F eの 中の 1種または 2種以上からなり、 M中の平均価電子濃度 Zが 5. 5≤Z≤ 7. 5であり、 かつ、 0≤x≤0. 7) 薄膜 3が配設され、 トンネル層となる絶縁層 1 し 強磁性層 1 2, 反強磁性層 1 3が順次積層された構造を有している。 反強 磁性層 I 3は、 強磁性層 1 2のスピンを固着させる、 所謂、 スピンバブル型の構 造のために用いている。 この構造においては、 C o2 MG a , -x A 1 x (ここで 、 Mは T i, V, Mo, W, C r, Mn, F eの中の 1種または 2種以上からな り、 M中の平均価電子濃度 Zが 5. 5≤Z≤ 7. 5であり、 かつ、 0≤x≤ 0. 7 ) 薄膜 3をフリ一層、 強磁性層 1 2をピン層と呼ぶ。 また、 強磁性層 1 2は、 単層構造と複数の層構造のいずれでもよい。 絶縁層 1 1には A 1 23 や A 1の 酸化物である A 1 O x を、 強磁性層 1 2には C 0 F e , N i F e、 あるいは、 C oF eと N i F eとの複合膜などを、反強磁性層 1 3には I rMnなどを用いる ことができる。
さらに、 本発明の卜ンネル磁気抵抗効果素子 1 0の反強磁性層 1 3の上には、 さらに保護膜となる非磁性の電極層 1 4を堆積させることが好ましい。
図 5は、本発明に係る第 2の実施形態による磁性薄膜を用いた磁気抵抗効果素 子の変形例の断面を示す図である。 本発明の磁性薄膜を用 ヽた磁気抵抗効果素子 であるトンネル磁気抵抗効果素子 1 5は、 基板 2上にバッファ一層 4と Co2 M Ga>-X A 1 x (ここで、 Mは T i , V, Mo, W, Cr, Mn, F eの中の 1 種または 2種以上からなり、 M中の平均価電子濃度 Zが 5. 5≤Z≤ 7. 5であ り、 かつ、 0≤x≤0. 7) 薄膜 3が配設され、 トンネル層となる絶縁層 1 1と 、 強磁性層 1 2と、反強磁性層 1 3と、保護膜となる非磁性の電極層 1 4が順次 積層された構造を有している。 図 5が図 4の構造と異なるのは、 図 4の構造に、 002185 バッファ一層 4が配設された点である。 他の構造は図 4と同じである 図 6は、 本発明に係る第 1の実施形態による磁性薄膜を用いた磁気抵抗効果素 子の変形例の断面を示す図である。 本発明の磁性薄膜を用いた磁気抵抗効果素子 であるトンネル磁気抵抗効果素子 2 0は、 基板 2上にバッファ一層 4と C 0 2 M G a , -x A 1 x (ここで、 Mは T i, V, Mo, W, C r, Mn, F eの中の 1 種または 2種以上からなり、 M中の平均価電子濃度 Zが 5. 5≤Z≤ 7. 5であ り、 かつ、 0≤x≤ 0. 7 ) 薄膜 3が配設され、 トンネル層となる絶縁層 1 1と 、 C 0 2 MG a i-x A l x (ここで、 Mは T i, V, Mo, W, C r , Mn, F eの中の 1種または 2種以上からなり、 M中の平均価電子濃度 Zが 5. 5≤Z≤ 7. 5であり、 かつ、 0≤ X≤ 0. 7 ) 薄膜 1 6と、反強磁性層 1 3と、保護膜 となる非磁性の電極層 1 4が順次積層された構造を有している。 図 6が図 5の構 造と異なるのは、 図 4のピン層となる強磁性層 1 2も、 本発明の磁性薄膜である C 02 MG a i-x A 1 x (ここで、 Mは T i, V, M o , W, C r , Mn, F e の中の 1種または 2種以上からなり、 M中の平均価電子濃度 Zが 5. 5≤Z≤ 7 . 5であり、 かつ、 0≤x≤ 0. 7) 薄膜 1 6を用いた点である。 他の構造は図 5と同じである。
トンネル磁気抵抗効果素子 1 0, 1 5, 2 0に電圧を加える場合は、 C o 2 M G a A 1 χ (ここで、 Mは T i , V, Mo , W, C r , Mn, F eの中の 1 種または 2種以上からなり、 M中の平均価電子濃度 Zが 5. 5≤Z≤ 7. 5であ り、 かつ、 0≤x≤ 0. 7 )薄膜 3またはバッファ一層 4と電極層 1 4との間に 印加される。 また、外部磁界は、膜面内に平行に印加される。 ノ ッファー層 4か ら電極層 1 4への電流の流し方は、 膜面垂直方向に電流を流す C P P構造とする ことができる。
ここで、 上記トンネル磁気抵抗効果素子 1 0 , 1 5 , 2 0に用いる基板 2は、 熱酸化 S し ガラスなどの多結晶、 MgO、 A l 2 03 、 GaAsなどの単結晶 であってよい。 バッファ一層 4として、 A l, C u, C r , F e , Nb, N i, Ta, N i F eなどを用いることができる。 上記 C o 2 MG aい x Aし (ここ で、 Mは T i, V, Mo , W, C r , Mn, F eの中の 1種又は 2種以上からな 85 り、 M中の平均価電子濃度 Zが 5. 5≤Z≤ 7. 5で、 かつ、 0≤ X≤ 0. 7) 薄膜 3の膜厚は 1 nm以上で 1 以下であればよい。 この膜厚が 1 nm未満で は実質的に L 2 , または B 2単相構造を得るのが困難になり、 この膜厚が 1 を超えると卜ンネル磁気抵抗効果素子としての応用が困難になり好ましくない。 上記構成の本発明のトンネル磁気抵抗効果素子 1 0, 1 5, 2 0は、 スパッタ法 、 蒸着法、 レーザアブレ一シヨン法、 MB E法などの通常の薄膜成膜法と、 所定 の形状の電極などを形成するためのマスク工程などを用いて製造することができ る。
つぎに、 本発明の磁性薄膜を用いた磁気抵抗効果素子であるトンネル磁気抵抗 効果素子 1 0及び 1 5の動作について説明する。
本発明の磁性薄膜を用いた磁気抵抗効果素子 1 0, 1 5は、 二つの強磁性層 3 , 1 2を用い、 一方には反強磁性層 1 3が近接し、 近接した強磁性層 1 2 (ピン 層) のスピンを固着させるスピンバルブ型を用いているので、 外部磁界が印加さ れたときには、 他方のフリー層となる強磁性層 C 02 MGa,-x A 1 x (ここで 、 Mは T i, V, Mo, W, C r, Mn, F eの中の 1種または 2種以上からな り、 M中の平均価電子濃度 Zが 5. 5≤Z≤ 7. 5であり、 かつ、 0≤x≤ 0. 7) 薄膜 3のスピンのみが反転される。 したがって、 スピンバルブ効果により強 磁性層 1 2の磁化は、 反強磁性層 1 3との交換相互作用によってスピンが 1方向 に固定されるので、 フリー層である C 0 MG a A 1 (ここで、 Mは T i , V, Mo, W, C r, Mn, F eの中の 1種または 2種以上からなり、 M中の 平均価電子濃度 Zが 5. 5≤Z≤ 7. 5であり、 かつ、 0≤x≤ 0. 7) 薄膜 3 のスピンの平行、 反平行が容易に得られる。 この際、 フリー層である C o2 MG a A 1 (ここで、 Mは T i, V, Mo, W, C r, Mn, F eの中の 1種 または 2種以上からなり、 M中の平均価電子濃度 Zが 5. 5≤Z≤ 7. 5であり 、 かつ、 0≤ X≤ 0. 7 ) 薄膜 3の磁化が小さいため、 反磁界が小さくそれだけ 小さな磁界で磁化反転を起こすことができる。 これにより、 本発明のトンネル磁 気抵抗効果素子 1 0, 1 5は、 MR AMなど低電力での磁化反転を必要とする磁 気デバイスに好適である。
次に、 本発明の磁性薄膜を用いた磁気抵抗効果素子であるトンネル磁気抵抗効 果素子の 20の動作について説明する。
トンネル磁気抵抗効果素子 20は、 さらに、 ピン層の強磁性層 1 6もフリー層 である強磁 f生の C o2 MGa, -x A 1 x (ここで、 Mは T i , V, Mo, W, C r , Mn, F eの中の 1種または 2種以上からなり、 M中の平均価電子濃度 Zが 5. 5≤Z≤ 7. 5であり、 かつ、 0≤x≤0. 7) 薄膜 3と同じ C o2 MGa !_x A 1 x (ここで、 Mは T i , V, Mo, W, C r, Mn, F eの中の 1種ま たは 2種以上からなり、 M中の平均価電子濃度 Zが 5. 5≤Z≤ 7. 5であり、 かつ、 0≤x≤0. 7) を用いているので、上記 ( 1 ) 式の分母がより小さくな り、 さらに、 本発明のトンネル磁気抵抗効果素子の TMRは大きくなる。 これに より、 本発明のトンネル磁気抵抗効果素子 20は、 MR AMなど低電力での磁ィ匕 反転を必要とする磁気デバイスに好適である。 次に、 本発明の磁性薄膜を用いた磁気抵抗効果素子に係る第 3の実施形態を示 す。
図 7は、 本発明に係る第 3の実施形態による磁性薄膜を用いた磁気抵抗効果素 子の断面を示す図である。 本発明の磁性薄膜を用いた磁気抵抗効果素子は、 巨大 磁気抵抗効果素子の場合を示している。 図に示すように、 巨大磁気抵抗効果素子 30は、 基板 2上に、 ノ ッファー層 4と強磁性体となる本発明の C o 2 MGa,- x A 1 (ここで、 Mは Tし V, Mo, W, C r, Mn, F eの中の 1種また は 2種以上からなり、 M中の平均価電子濃度 Zが 5. 5≤Z≤7. 5であり、 か つ、 0≤ X≤ 0. 7 ) 薄膜 3が配設され、 非磁性金属層 2 1と強磁性層 2と保 護膜となる非磁性の電極層 1 4とが順次積層された構造を有している。
ここで、 巨大磁気抵抗効果素子のバッファ一層 4と電極層 1 4との間に電圧が 印加される。 また、外部磁界は、膜面内に平行に印加される。 バッファ一層 4か ら電極層 1 4への電流の流し方は、 膜面内に電流を流すタイプである C I P構造 と、 膜面垂直方向に電流を流すタイプである CP P構造とすることができる。 図 8は、 本発明に係る第 3の実施形態による磁性薄膜を用いた磁気抵抗効果素 子の変形例の断面を示す図である。 本発明の巨大磁気抵抗効果素子 3 5が、 図 7 の巨大磁気抵抗効果素子 30と異なるのは、 強磁性層 22と電極層 1 4との間に 反強磁性層 1 3を設けスピンバルブ型の巨大磁気抵抗効果素子とした点である。 他の構造は、 図 7と同じであるので説明は省略する。 反強磁性層 1 3は、 近接し たピン層となる強磁性層 22のスピンを固着させる働きをする。 巨大磁気抵抗効 果素子 3◦, 35のバッファ一層 4と電極層 1 4との間に電圧が印加される。 ま た、 外部磁界は、 膜面内に平行に印加される。 バッファ一層 4から電極層 1 4へ の電流の流し方は、 膜面内に電流を流すタイプである C I P構造と、 膜面垂直方 向に電流を流すタイプである C P P構造とすることができる。
上記巨大磁気抵抗効果素子 30, 3 5の基板 2は、 熱酸化 S i、 ガラスなどの 多結晶、 さらに、 Mg〇, A 12 〇3 , GaAsなどの単結晶を用いることがで きる。 ノ ッファー層 4として、 Aし Cu, C r, F e, Nb, N i , Ta, N i F eなどを用いることができる。 磁 'ί生金属層 2 1としては、 Cu, A 1など を用いることができる。 強磁性層 22としては、 C oF e, N i Fe, C o 2 M Gai-x A 1 x (ここで、 Mは T i, V, Mo, W, Cr, Mn, F eの中の 1 種または 2種以上からなり、 M中の平均価電子濃度 Zが 5. 5≤Z≤ 7. 5であ り、 かつ、 0≤x≤0. 7) 薄膜などの何れか一つか、 またはこれらの材料から なる複合膜を用いることができる。 反強磁性層 1 3には I rMnなどを用いるこ とができる。
上記 C o2 MGa, -x A 1 x (ここで、 Mは T i, V, Mo, W, C r, Mn , F eの中の 1種または 2種以上からなり、 M中の平均価電子濃度 Zが 5. 5≤ Z≤ 7. 5であり、 かつ、 0≤ X≤ 0. 7) 薄膜 3の膜厚は、 1 nm以上で 1 m以下であればよい。 この膜厚が 1 nm未満では実質的に L 2 , または B 2単相 構造を得るのが困難になり、 そして、 この膜厚が 1〃mを超えると巨大磁気抵抗 効果素子としての応用が困難になり好ましくない。
上記構成の本発明の巨大磁気抵抗効果素子 30, 3 5【ま、 スパッタ法、 蒸着法 、 レーザァブレーション法、 M B E法などの通常の薄膜成膜法と、 所定の形状の 電極などを形成するためのマスク工程などを用いて製造することができる。 本発明の磁性薄膜を用いた磁気抵抗効果素子である巨大磁気抵抗効果素子 30 の強磁性層である C 0 2 MGa i-x A 1 x (ここで、 Mは T i , V, Mo, W, 2005/002185
Cr, Mn, F eの中の 1種または 2種以上からなり、 M中の平均価電子濃度 Z が 5. 5≤Z≤ 7. 5であり、 かつ、 0≤x≤0. 7) 薄膜 3は、 ハーフメタル であることからスピン分極率が大きい。 このため、外部磁界が印加されたときに 伝導に寄与するのは、 この薄膜 3の一方のスピンのみである。 したがって、 巨大 磁気抵抗効果素子 30によれば、非常に大きな磁気抵抗、即ち、 GMRが得られ る。
次に、 磁性薄膜を用いた磁気抵抗効果素子であるスピンバルブ型の巨大磁気抵 抗効果素子 3 5の場合には、 ピン層である強磁性層 22のスピンは反強磁性層 1 3により固定されており、外部磁界を印加するこことで、 フリー層である C o 2 MG a A 1 (ここで、 Mは T i, V, Mo, W, C r, Mn, F eの中の 1種または 2種以上からなり、 M中の平均価電子濃度 Zが 5. 5≤Z≤ 7. 5で あり、 かつ、 0≤x≤0. 7) 薄膜 3のスピンが外部磁界により平行と反平行の 状態になる。 そして、伝導に寄与するのはハーフメタルである C 02 MGa i A 1 x (ここで、 Mは T i , V, Mo, W, C r , Mn, F eの中の 1種または 2種以上からなり、 M中の平均価電子濃度 Zが 5. 5≤Z≤ 7. 5であり、 かつ 、 0≤x≤ 0. 7) 薄膜 3の一方のスピンだけであるので、 非常に大きな GMR が得られる。 次に、 本発明の磁性薄膜による磁気抵抗効果素子を用いた磁気装置に係る第 4 の実施形態を示す。
図 1〜図 8に示すように、 本発明の磁性薄膜を用いた各種の磁気抵抗効果素子 は、室温において、低磁界で TMRまたは GMRが非常に大きくなる。
図 9は、 本発明の磁性薄膜を用いた磁気抵抗効果素子である卜ンネル磁気抵抗 効果素子や巨大磁気抵抗効果素子に外部磁界を印加したときの抵抗を模式的に説 明する図である。 図の横軸は、 本発明の磁性薄膜を用いた磁気抵抗効果素子に印 加される外部磁界で、縦軸が抵抗である。 本発明の磁性薄膜を用いた磁気抵抗効 果素子は、 巨大磁気抵抗効果やトンネル磁気抵抗効果を得るための必要な電圧が 、 十分に印加されている。
図示するように、 本発明の磁性薄膜を用いた磁気抵抗効果素子の抵抗は、 外部 磁界により大きな変化を示す。 外部磁界を領域 ( I ) より印カ卩し、 外部磁界を減 少させ、 零として、 さらに外部磁界を反転して増大させると、 領域 (11) から領 域 (Π1)において最小の抵抗から最大の抵抗に変化する。 ここで、 領域 (11) の 外部磁界を H, とする。
さらに、 外部磁界を増加させると、 領域 (Π1)から領域 (IV) を経て領域 (V
) までの抵抗変化が得られる。 これにより、 本発明の磁性薄膜を用いた磁気抵抗 効果素子は、 領域 ( I ) と、 領域 (V) の外部磁界において、 強磁性層 22とフ リ一層である C 0 2 MG a A 1 x (ここで、 Mは T i, V, Mo, W, C r , Mn, F eの中の 1種または 2種以上からなり、 M中の平均価電子濃度 Zが 5 . 5≤Z≤ 7. 5であり、 かつ、 0≤x≤0. 7 ) 薄膜 3とのスピンが平行とな り、 最小の抵抗となる。 そして、 領域 (m)では上記スピンが反平行の状態とな り、 最大の抵抗となる。 C o2 MGa,— A 1 x 薄膜 3は、 例えば C o2 F e C r G aを用いることができる。
磁気抵抗変化率は、 外部磁界を印加したとき、 下雷己 (2) 式で表され、 この値 が大きいほど磁気抵抗変化率としては望ましい。
磁気抵抗変化率 = (最大の抵抗一最小の抵抗) /最小の抵抗 (%) ( 2 ) これにより、 本発明の磁性薄膜を用いた磁気抵抗効果素子は、 図 9に示すよう に、 磁界が零から より極く僅かに大きい磁界、 即ち低い磁界を加えることで 、 大きな磁気抵抗変化率が得られる。
図 9で説明したように、 本発明の磁性薄膜を用いた磁気抵抗効果素子は、 室温 において、 低磁界で大きな TMRまたは GMRを示すので、 磁気抵抗センサとし て用いれば、 感度の高い磁気素子を得ることができる。 本発明の磁性薄膜を用い た磁気抵抗効果素子は、 室温において、 低磁界で大きな TMRまたは GMRを示 すので、 感度の高い読み出し用の磁気へッ ド及びこれらの磁気へッドを用いた各 種の磁気記録装置を構成することができる。 また、 本発明の磁性薄膜を用いた磁 気抵抗効果素子である、 例えば、 MT J素子をマトリックス状に配置し、 別に設 けた配線に電流を流して外部磁界を印加する。 この MT J素子を構成するフリ一 層の強磁性体の磁ィヒを、 外部磁界により互いに平行と反平行に制御することによ り、 "1 " 、 "0" を記録させる。 さらに、 読み出しは TMR効果を利用して行 うことなどにより、 MRAMなどの磁気装置を構成することができる。 また、本 発明の磁気抵抗効果素子である C P P構造の G M R素子においては、 G M Rが大 きいので、 ハードディスク駆動装置 (HDD) や MR AMなどの磁気装置の大容 量化ができる。 実施例 1
以下、 本発明の実施例について説明する。
本発明の磁性薄膜である C o2 MGa, -x A 1 x として、 Mを C rとして組成 xを 0とした C o2 C r Gaを製作した。 この場合、 Mの平均価電子濃度 Zは、 6である。
最初に、本発明の磁性薄膜の材料となる C o 2 C r Ga合金の製作について説 明する。 高純度の C 0と C rと G aをそれぞれ 2 5 %、 2 5 %、 5 0 %の組成比 で、 アーク溶解装置に投入し、 1 1 0 0°Cで 2 4時間の溶解を行い、 氷水焼入れ をして C o 2 C r Ga合金を製作した。
図 1 0は、 実施例 1で製作した C 0 2 C r G a合金の [0 1— 1 ] 入射の電子 線回折を示す図である。 電子ビームの加速電圧は 20 O kVであり、 図中の数字 は、 それぞれ、 (2 0 0) , ( 1 1 1 ) , ( 0 2 2 ) 面などからの回折を示して いる。 図から明らかなように、 ( 2 0 0 ) , ( 1 1 1 ) 面からの両規則反射が共 に出現し、 本合金が L 2 , のホイスラー構造であることが分かった。 なお、 本合 金が不規則体心立方晶であれば、 図中に示す ( 2 00 ) , ( 1 1 1 ) 面からの回 折は 2種類とも出現しない。 また、 B 2構造であれば (2 0 0 ) 面からの回折の みが出現し、 ( 1 1 1 ) 面からの回折は存在しない。
上記 C 0 1 C r G a合金をターゲットとして用いた高周波スパッ夕装置により 、 熱酸化 S i基板 2または S i基板 2にバッファ層 4として Ta薄膜を積層した 基板 2上に、 C o2 C r Ga薄膜を基板温度を変えて作製した。 基板温度が 50 0°C以下で、 このようにして製作した C 0 2 C r Ga磁性薄膜 3の構造は L 2 , または B 2構造であった。 実施例 2 図 5に示すスピンバルブ型の卜ンネル磁気抵抗効果素子 1 5を室温で作製した 。 熱酸化 S i基板 2上に、 マグネトロンスパッタ装置とメタルマスクを用いて、 T aをバッファ一層 4として、 Ta ( 1 0 nm) /C o 2 C r G a ( 300 nm ) /A 1 Ox ( 1. 6 nm) /C o 9oF e ,o ( 5 nm) /N i F e (2 nm) /
I r Mn (20 nm) /T a ( 1 0 nm) を順に積層して、 卜ンネル磁気抵抗効 果素子 1 5を製作した。 括弧内の数字はそれぞれの膜厚である。 Taはバッファ —層 4、 Co2 Cr Ga薄膜 3は強磁性のフリー層、 A 10x はトンネル絶縁層
1 し C 09oF e ,。及び N i F eは強磁性層 1 2のピン層で複合膜からなる強磁 性体、 I rMnは反強磁性層 1 3であり、 Co9。F e i。/N i F eの強磁性層 1
2のスピンを固定する役割をしている。 そして、 反強磁性層 1 3である I rMn 上の Taは、保護膜 1 4である。
上記のトンネル絶縁膜である A 1 Ox以外の各層成膜時におけるマグネトロン の高周波電力は 1 00Wであり、 A 1 Ox のプラズマ酸化による成膜時の高周波 電力は 4 0 Wであつた。 放電用 A rガス圧力はし 8 P aであった。 基板温度は
400 °Cであり、 この場合の C 02 C r G a薄膜 3は、 L 2【 構造であった。 な お、 成膜時に 1 000 eの磁界を印加して膜面内に一軸異方性を導入した。 この膜厚が 300 nmの C o 2 C r G a磁性薄膜を有するトンネル磁気抵抗効 果素子 1 5に外部磁界を印加して、 室温で磁気抵抗を測定した。 図 1 1は、 実施 例 2のトンネル磁気抵抗効果素子 1 5の抵抗の磁場依存性を示す図である。 図の 横軸は外部磁界 H (Oe) であり、 縦軸は抵抗 (Ω) である。 磁気抵抗は、 外部 磁界をスイープして、 そのヒステリス特性も測定している。 これから、 TMRは
2. 6%と求まった。 実施例 3
Co2 Cr Ga薄膜 3を用い、 その膜厚を 1 0 O nmとした以外は、 実施例 2 と同様のスピンバルブ型トンネル磁気抵抗効果素子 1 5を作製した。 このトンネ ル磁気抵抗効果素子 1 5に外部磁界を印加して室温で磁気抵抗を測定した。 図 I 2は、実施例 3のトンネル磁気抵抗効果素子 1 5の抵抗の磁場依存性を示す図で ある。 図の横軸は外部磁界 H (Oe) であり、 縦軸は抵抗 (Ω) である。 磁気抵 抗は、 外部磁界をスイープして、 そのヒステリス特性も測定している。 これから
、 TMRは 3. 2%と求まった。
実施例 2及び実施例 3では、 TMR曲線にプラトーが見られず、 スピンの完全 な反平行状態が実現していない。 卜ンネル磁気抵抗効果素子 1 5の作製条件を最 適化することにより、 TMRを飛躍的に大きくできることが期待される。 産業上の利用可能'
本発明によれば、 L 2 , または B 2単相構造を有する C o 2 MGai-x A 1 x
(ここで、 Mは T i, V, Mo, W, C r, Mn, F eの中の 1種または 2種以 上からなり、 M中の平均価電子濃度 Zが 5. 5≤Z≤ 7. 5であり、 かつ、 0≤ x≤ 0. 7) 磁性薄膜は、 室温において、 力 D熱せずに作製することができる。 さ らに、 強磁性特性を示し、 スピン分極率が大きい。
また、 本発明の L 2 , または B 2単相構造を有する C o2 MGa,-x A 1 x ( ここで、 Mは T i, V, Mo, W, C r, Mn, F eの中の 1種または 2種以上 からなり、 M中の平均価電子濃度 Zが 5. 5≤Z≤ 7. 5であり、 かつ、 0≤x ≤ 0. 7) 磁性薄膜を用いた巨大磁気抵抗効果素子によれば、 室温において、 低 外部磁界で非常に大きな GMRを得ることができる。 また、 トンネル磁気抵抗効 果素子によっても、 同様に、 非常に大きな TMRを得ることができる。
さらに、 本発明の L 2 , または B 2単相構造を有する C 0 2 MGa,-x A 1 x
(ここで、 Mは T i , V, Mo, W, C r, Mn, F eの中の 1種または 2種以 上からなり、 M中の平均価電子濃度 Zが 5. 5≤Z≤ 7. 5であり、 かつ、 0≤ x≤ 0. 7) 磁性薄膜を用いた各種の磁気抵抗効果素子を、 超ギガビッ ト大容量 と高速の磁気へッ ドや不揮発性で高速動作する M R A Mをはじめ種々の磁気装置 へ応用することにより、 新規な磁気装置が実現できる。 この場合、 飽和磁化が小 さいためスピン注入による磁化反転磁場が小さくなり、 低消費電力で磁化反転を 実現できるほか、 半導体への効率的なスピン注入が可能になり、 スピン FETが 開発される可能性があるなど、 広くスピンエレクトロニクス分野を拓くキー材料 として利用することができる。

Claims

請 求 の 範 囲
1. 基板と該基板上に形成される C o2 MGa,-x A l x 薄膜とを備え、 上記 C o2 MGa,-x A 1 x 薄膜は L 2 , または Β 2単相構造を有し、 上記薄膜の Μは T i , V, Mo, W, C r , Mn, F eの中の 1種または 2種 以上からなり、
該 M中の平均価電子濃度 Zが 5. 5≤Z≤ 7. 5であり、 かつ、 0≤ X≤ 0. 7であることを特徴とする、 磁性薄膜。
2. 前記基板が加熱され、 この加熱された基板上で前記 C 0 2 MGa, -x A 1 x 薄膜が成膜されることを特徴とする、 請求項 1に記載の磁性薄膜。
3. 前記基板上に成膜した C 02 MGa,-x A 1 x 薄膜が,理されるこ とを特徴とする、 請求項 1に記載の磁性薄膜。
4. 前記基板が、 熱酸化 S i , ガラス, MgO単結晶, GaAs単結晶, A 12 03 単結晶の何れか一つであることを特徴とする、 請求項 1に記載の磁性 薄膜。
5. 前記基板と前記 Co 2 MGa,-x A l x 薄膜の間にバッファ一層が配 設されていることを特徴とする、 請求項 1に記載の磁性薄膜。
6. 前記バッファ一層が、 Aし Cu, C r , F e , Nb, N i , Ta, N i F eのうちの少なくとも一つから成ることを特徴とする、 請求項 5に記載の 磁性薄膜。
7. 基板上に複数の強磁性層を有するトンネル磁気抵抗効果素子において 、 少なくとも一方の強磁性層が、 L 2 , または B 2単相構造を有する C 02 MG a , -x A 1 x (ここで、 Mは T i , V, Mo, W, C r , Mn, F eの中の 1種 または 2種以上からなり、 M中の平均価電子濃度 Zが 5. 5≤Z≤7. 5であり 、 かつ、 0≤x≤0. 7) 磁性薄膜でなることを特徴とする、 トンネル磁気抵抗 効果素子。
8. 前記強磁性層が、 固定層とフリー層とで成り、 該フリー層が L 2 , ま たは B 2単相構造を有する C 0 2 MGa, -x A 1 x (ここで、 Mは T i, V, Μ ο, W, Cr, Mn, F eの中の 1種または 2種以上からなり、 M中の平均価電 子濃度 Zが 5. 5≤Z≤ 7. 5であり、 かつ、 0≤x≤0. 7) 磁性薄膜でなる ことを特徴とする、 請求項 7に記載のトンネル磁気抵抗効果素子。
9. 前記基板が加熱され、 この加熱された基板上で前記 Co 2 MGai- x A 1 x 磁性薄膜が成膜されることを特徴とする、 請求項 7に記載のトンネル磁 気抵抗効果素子。
1 0. 前記基板上に成膜した C o2 MGa,-x A 1 x 磁性薄膜が熱処理さ れることを特徴とする、 請求項 7に記載のトンネル磁気抵抗効果素子。
1 1. 前記基板が、 熱酸化 S i , ガラス, MgO単結晶, GaAs単結晶 , A 12 O 3 単結晶の何れか一つであることを特徴とする、 請求項 7に記載のト ンネル磁気抵抗効果素子。
1 2. 前記基板と前記 C 02 MGai-x A 1 x (ここで、 Mは T i, V, Mo, W, C r, Mn, F eの中の 1種または 2種以上からなり、 M中の平均価 電子濃度 Zが 5. 5≤Z≤ 7. 5であり、 かつ、 0≤x≤0. 7 ) との間にバッ ファー層が配設されていることを特徴とする、 請求項 7に記載のトンネル磁気抵 抗効果素子。
1 3. 前記バッファ一層が、 Aし Cu, Cr, F e, Nb, N i , Ta
, N i F eのうちの少なくとも一つから成ることを特徴とする、 請求項 1 2に記 載のトンネル磁気抵抗効果素子。
1 4. 基板上に複数の強磁性層を有する巨大磁気抵抗効果素子において、 少なくとも一方の強磁性層が、 L 2 , または B 単相構造を有する C o 2 MGa ,-χ A 1 χ (ここで、 Mは T i, V, Mo, W, C r, Mn, F eの中の 1種ま たは 2種以上からなり、 M中の平均価電子濃度 Zが 5. 5≤Z≤ 7. 5であり、 かつ、 0≤x≤0. 7) 磁性薄膜で成り、 膜面垂直方向に電流が流れる構造とし たことを特徴とする、 巨大磁気抵抗効果素子。
1 5. 前記強磁性層が、 固定層とフリー層とで成り、 該フリー層が L 2 ,
, B 2 , A 2構造の何れか一つの構造を有する C 02 MGai-x A 1 x (ここで 、 UiT i , V, Mo, W, C r, Mn, F eの中の 1種または 2種以上からな り、 M中の平均価電子濃度 Zが 5. 5≤Z≤ 7. 5であり、 かつ、 0≤x≤ 0. 7) 磁性薄膜でなることを特徴とする、 請求項 1 4に記載の巨大磁気抵抗効果素 子。
1 6. 前記基板が加熱され、 この加熱された基板上で前記 C o 2 MGa,- x A 1 x 磁性薄膜が成膜されることを特徴とする、 請求項 1 4に記載の巨大磁気 抵抗効果素子。
1 7. 前記基板上に成膜した C o2 MGa,-x A 1 x 磁性薄膜が ,理さ れることを特徴とする、 請求項 1 4に記載の巨大磁気抵抗効果素子。
1 8. 前記基板が、 熱酸化 S i , ガラス, MgO単結晶, GaAs単結晶 , A 12 03 単結晶の何れか一つであることを特徴とする、 請求項 1 4に記載の 巨大磁気抵抗効果素子。
1 9. 前記基板と前記 C o2 MGa,-x A 1 x (ここで、 Mは T i, V, Mo, W, C r , Mn, F eの中の 1種または 2種以上からなり、 M中の平均価 電子濃度 Zが 5. 5≤Z≤ 7. 5であり、 かつ、 0≤x≤0. 7) 薄膜との間に バッファ一層が配設されていることを特徴とする、請求項 1 4に記載の巨大磁気 抵抗効果素子。
2 0. 前記バッファ一層が、 A l, Cu, C r, F e, Nb, N i, Ta , N i F eのうちの少なくとも一つから成ることを特徴とする、 請求項 1 9に記 載の巨大磁気抵抗効果素子。
2 1. L 2 , または B 2単相構造を有する C oz MGa,-x A 1 x (ここ で、 Mは T i, V, Mo, W, C r , Mn, F eの中の 1種または 2種以上から なり、 M中の平均価電子濃度 Zが 5. 5≤Z≤ 7. 5であり、 かつ、 0≤ X≤ 0 . 7)磁性薄膜が基板上に形成されてなることを特徴とする、磁気デバイス。
2 2. フリ一層が前記 C o2 MGa A 1 x (ここで、 Mは T i , V, Mo, W, C r , Mn, F eの中の 1種または 2種以上からなり、 M中の平均価 電子濃度 Zが 5. 5≤Z≤ 7. 5であり、 かつ、 0≤x≤ 0. 7)磁性薄膜で成 るトンネル磁気抵抗効果素子または巨大磁気抵抗効果素子を用いたことを特徴と する、 請求項 2 1に記載の磁気デバイス。
2 3. 前記基板が加熱され、 この加熱された基板上で成膜された前記 C o 2 MGai-x A 1 x 磁性薄膜により作製されたトンネル磁気抵抗効果素子又は巨 大磁気抵抗効果素子を用いたことを特徴とする、 請求項 2 1に記載の磁気デバィ ス。
24. 前記基板上に成膜した C o2 MGa i-x A l x 磁性薄膜が熱処理さ れて作製されたトンネル磁気抵抗効果素子又は巨大磁気抵抗効果素子を用いたこ とを特徴とする、 請求項 2 1に記載の磁気デバイス。
25. 前記基板が、 熱酸化 S i , ガラス, MgO単結晶, GaAs単結晶 , A 12 03 単結晶の何れか一つであるトンネル磁気抵抗効果素子又は巨大磁気 抵抗効果素子を用いたことを特徴とする、 請求項 2 1に記載の磁気デバイス。
26. 前記基板と前記 C o 2 MGa !-x A 1 x (ここで、 Mは T i , V, Mo, W, C r , Mn, F eの中の 1種または 2種以上からなり、 M中の平均価 電子濃度 Zが 5. 5≤Z≤ 7. 5であり、 かつ、 0≤x≤0. 7) 薄膜との間に バッファ一層が配設されたトンネル磁気抵抗効果素子又は巨大磁気抵抗効果素子 を用いたことを特徴とする、 請求項 2 1に記載の磁気デバイス。
27. 前記バッファ一層が、 A l , Cu, C r, F e, Nb, N i , T a , N i F eの少なくとも一つから成るトンネル磁気抵抗効果素子又は巨大磁気抵 抗効果素子を用いたことを特徴とする、 請求項 26に記載の磁気デバイス。
2 8. L 2 L 又は B 2単相構造を有する Co2 MGa ix A l x (ここで 、 : Mは T i , V, Mo, W, C r , Mn, F eの中の 1種または 2種以上からな り、 M中の平均価電子濃度 Zが 5. 5≤Z≤ 7. 5であり、 かつ、 0≤x≤0. 7) 磁性薄膜が基板上に形成されてなる磁気へッドを用いたことを特徴とする、 磁気記録装置。
29. フリー層が前記 C o 2 MGa卜 x A 1 x (ここで、 Mは T i , V, Mo, W, C r , Mn, F eの中の 1種または 2種以上からなり、 M中の平均価 電子濃度 Zが 5. 5≤Z≤7. 5であり、 かつ、 0≤x≤0. 7) 磁性薄膜で成 るトンネル磁気抵抗効果素子又は巨大磁気抵抗効果素子を磁気へッドに用いたこ とを特 ί敷とする、 請求項 2 8に記載の磁気記録装置。
30. 前記基板が加熱され、 この加熱された基板上で成膜された前記 Co 2 MGa !_x A 1 χ 磁性薄膜により作製されたトンネル磁気抵抗効果素子又は巨 大磁気抵抗効果素子を磁気へッドに用いたことを特徴とする、 請求項 2 8に記載 の磁気記録装置。
31. 前記基板上に成膜した C o2 MGa i-x A l x 磁性薄膜が熱処理さ れて作製されたトンネル磁気抵抗効果素子又は巨大磁気抵抗効果素子を磁気へッ ドに用いたことを特徴とする、 請求項 28に記載の磁気記録装置。
32. 前記基板が、 熱酸化 S i, ガラス, MgO単結晶, GaAs単結晶 , A 12 O3 単結晶の何れか一つであるトンネル磁気抵抗効果素子又は巨大磁気 抵抗効果素子を磁気へッドに用いたことを特徴とする、 請求項 28に記載の磁気 記録装置。
33. 前記基板と前記 C o 2 MGa A 1 x (ここで、 Mは T i , V, Mo, W, C r, Mn, F eの中の 1種または 2種以上からなり、 M中の平均価 電子濃度 Zが 5. 5≤Z≤ 7. 5であり、 かつ、 0 x≤0. 7) 薄膜との間に バッファ一層が配設されたトンネル磁気抵抗効果素子又は巨大磁気抵抗効果素子 を磁気へッドに用いたことを特徴とする、 請求項 28に記載の磁気記録装置。
34. 前記バッファ一層が、 A l, C u, C r , F e, Nb, N i , T a , N i F eのうちの少なくとも一つから成るトンネル磁気抵抗効果素子又は巨大 磁気抵抗効果素子を磁気へッドに用いたことを特徴とする、 請求項 33に記載の 磁気記録装置。
PCT/JP2005/002185 2004-02-13 2005-02-08 磁性薄膜及びそれを用いた磁気抵抗効果素子並びに磁気デバイス WO2005078748A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/589,283 US20090015969A1 (en) 2004-02-13 2005-02-08 Magnetic thin film, magnetoresistance effect device and magnetic device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004037514A JP2005228998A (ja) 2004-02-13 2004-02-13 磁性薄膜及びそれを用いた磁気抵抗効果素子並びに磁気デバイス
JP2004-037514 2004-02-13

Publications (1)

Publication Number Publication Date
WO2005078748A1 true WO2005078748A1 (ja) 2005-08-25

Family

ID=34857772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002185 WO2005078748A1 (ja) 2004-02-13 2005-02-08 磁性薄膜及びそれを用いた磁気抵抗効果素子並びに磁気デバイス

Country Status (3)

Country Link
US (1) US20090015969A1 (ja)
JP (1) JP2005228998A (ja)
WO (1) WO2005078748A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273657A (ja) 2006-03-31 2007-10-18 Tdk Corp 磁気抵抗効果素子およびその製造方法、ならびに薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ヘッドアームアセンブリおよび磁気ディスク装置
US8125745B2 (en) 2006-04-27 2012-02-28 Japan Science And Technology Agency Magnetic thin film, and magnetoresistance effect device and magnetic device using the same
JP2007317824A (ja) 2006-05-25 2007-12-06 Tdk Corp 磁気抵抗効果素子およびその製造方法、ならびに薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ヘッドアームアセンブリおよび磁気ディスク装置
JP4742276B2 (ja) 2007-03-26 2011-08-10 国立大学法人東京工業大学 強磁性体の形成方法並びにトランジスタ及びその製造方法
US9728238B2 (en) * 2011-12-19 2017-08-08 Intel Corporation Spin transfer torque memory (STTM) device with half-metal and method to write and read the device
US8947915B2 (en) * 2012-12-17 2015-02-03 International Business Machines Corporation Thermal spin torqure transfer magnetoresistive random access memory
CN103022345B (zh) * 2012-12-27 2014-09-17 河北工业大学 一种隧穿磁电阻多层膜材料
CN104575934A (zh) * 2015-02-02 2015-04-29 于广华 一种磁电阻薄膜材料、制备方法及磁传感器及元件
US10032980B2 (en) * 2016-04-26 2018-07-24 Globalfoundries Singapore Pte. Ltd. Integrated circuits with magnetic tunnel junctions and methods for producing the same
US10396123B2 (en) * 2017-07-26 2019-08-27 International Business Machines Corporation Templating layers for perpendicularly magnetized Heusler films
US20220320421A1 (en) * 2019-06-06 2022-10-06 Tohoku University Magnetoresistive element and magnetic storage device
JP6806199B1 (ja) * 2019-08-08 2021-01-06 Tdk株式会社 磁気抵抗効果素子およびホイスラー合金
CN113036032B (zh) * 2019-12-24 2024-08-27 Tdk株式会社 磁阻效应元件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147437A (ja) * 1993-11-24 1995-06-06 Toshiba Corp 磁気抵抗効果素子
JPH08250366A (ja) * 1995-03-14 1996-09-27 Toshiba Corp ホイスラー合金薄膜の製造方法、磁性膜を備えた積層膜、それを利用した磁気抵抗効果素子および固体磁気記録素子
JP2003218428A (ja) * 2002-01-24 2003-07-31 Alps Electric Co Ltd 磁気検出素子
JP2003277926A (ja) * 2001-12-07 2003-10-02 Samsung Electronics Co Ltd 同時スパッタリング法によるホイスラー合金の蒸着方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285739A (ja) * 1987-05-18 1988-11-22 Kureha Chem Ind Co Ltd 磁気光学記録再生用薄膜の製造方法
JP4285632B2 (ja) * 2001-02-23 2009-06-24 インターナショナル・ビジネス・マシーンズ・コーポレーション 巨大磁気抵抗およびスピン分極トンネルを有する化合物、その製造および使用方法
US6977801B2 (en) * 2003-02-24 2005-12-20 Hitachi Global Storage Technologies Netherlands B.V. Magnetoresistive device with exchange-coupled structure having half-metallic ferromagnetic Heusler alloy in the pinned layer
US20080063557A1 (en) * 2004-09-06 2008-03-13 Kagoshima University Spintronics Material and Tmr Device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147437A (ja) * 1993-11-24 1995-06-06 Toshiba Corp 磁気抵抗効果素子
JPH08250366A (ja) * 1995-03-14 1996-09-27 Toshiba Corp ホイスラー合金薄膜の製造方法、磁性膜を備えた積層膜、それを利用した磁気抵抗効果素子および固体磁気記録素子
JP2003277926A (ja) * 2001-12-07 2003-10-02 Samsung Electronics Co Ltd 同時スパッタリング法によるホイスラー合金の蒸着方法
JP2003218428A (ja) * 2002-01-24 2003-07-31 Alps Electric Co Ltd 磁気検出素子

Also Published As

Publication number Publication date
JP2005228998A (ja) 2005-08-25
US20090015969A1 (en) 2009-01-15

Similar Documents

Publication Publication Date Title
WO2005078748A1 (ja) 磁性薄膜及びそれを用いた磁気抵抗効果素子並びに磁気デバイス
JP4582488B2 (ja) 磁性薄膜及びそれを用いた磁気抵抗効果素子並びに磁気デバイス
US7989223B2 (en) Method of using spin injection device
US7357995B2 (en) Magnetic tunnel barriers and associated magnetic tunnel junctions with high tunneling magnetoresistance
JP4551484B2 (ja) トンネル磁気抵抗薄膜及び磁性多層膜作製装置
US6114056A (en) Magnetic element, and magnetic head and magnetic memory device using thereof
US8866243B2 (en) Ferromagnetic tunnel junction structure and magnetoresistive element using the same
JP2003124541A (ja) 交換結合膜、磁気抵抗効果素子、磁気ヘッド及び磁気ランダムアクセスメモリ
US20060012926A1 (en) Magnetic tunnel barriers and associated magnetic tunnel junctions with high tunneling magnetoresistance
JP3697369B2 (ja) 磁気素子、磁気メモリ装置、磁気抵抗効果ヘッド、磁気ヘッドジンバルアッセンブリ、及び磁気記録システム
JP4061590B2 (ja) 磁性薄膜及びそれを用いた磁気抵抗効果素子並びに磁気デバイス
JP3473016B2 (ja) 強磁性トンネル接合素子と磁気ヘッドと磁気メモリ
JP3946355B2 (ja) 磁気素子とそれを用いた磁気センサおよび磁気記憶装置
JP3547974B2 (ja) 磁気素子とそれを用いた磁気ヘッドおよび磁気記憶装置
JP2005019484A (ja) 磁気抵抗効果素子及び磁気ヘッド
JP2002190631A (ja) 磁気抵抗素子とその製造方法、および化合物磁性薄膜の形成方法
Fernandez-Outon et al. Large exchange bias IrMn/CoFe for magnetic tunnel junctions
Tsunekawa et al. Huge magnetoresistance and low junction resistance in magnetic tunnel junctions with crystalline MgO barrier
JPH09148651A (ja) 磁気抵抗効果素子および磁気変換素子
JPH1091921A (ja) デュアルスピンバルブ型薄膜磁気ヘッド
JP2000251230A (ja) 強磁性トンネル接合素子及びその製造方法、並びにこの素子を用いた磁気センサ
JP7136492B2 (ja) 磁気抵抗効果素子、磁気センサ、再生ヘッドおよび磁気記録再生装置
Zhao et al. Study of Spin Valves With $ L 1_ {0} $-FePt Pinning Layer and Different Pinned Layers
JP2007221069A (ja) 磁気抵抗効果素子および磁気記憶装置
JP2000311814A (ja) 交換結合膜の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10589283

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase