WO2005069458A1 - Optisch gezündete funkenstrecke - Google Patents

Optisch gezündete funkenstrecke Download PDF

Info

Publication number
WO2005069458A1
WO2005069458A1 PCT/DE2005/000048 DE2005000048W WO2005069458A1 WO 2005069458 A1 WO2005069458 A1 WO 2005069458A1 DE 2005000048 W DE2005000048 W DE 2005000048W WO 2005069458 A1 WO2005069458 A1 WO 2005069458A1
Authority
WO
WIPO (PCT)
Prior art keywords
spark gap
ignition
light
overvoltage protection
optical waveguide
Prior art date
Application number
PCT/DE2005/000048
Other languages
English (en)
French (fr)
Inventor
Peter Menke
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to BRPI0506825-8A priority Critical patent/BRPI0506825B1/pt
Priority to US10/597,128 priority patent/US20070165351A1/en
Priority to CN200580002391XA priority patent/CN1910797B/zh
Publication of WO2005069458A1 publication Critical patent/WO2005069458A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T1/00Details of spark gaps
    • H01T1/20Means for starting arc or facilitating ignition of spark gap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T2/00Spark gaps comprising auxiliary triggering means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T2/00Spark gaps comprising auxiliary triggering means
    • H01T2/02Spark gaps comprising auxiliary triggering means comprising a trigger electrode or an auxiliary spark gap
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/06Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using spark-gap arresters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0061Details of emergency protective circuit arrangements concerning transmission of signals
    • H02H1/0069Details of emergency protective circuit arrangements concerning transmission of signals by means of light or heat rays

Definitions

  • the invention relates to an overvoltage protection with a spark gap, which has electrodes opposite one another, with a light source for generating an ignition light as a function of trigger signals from a control unit, the ignition light being set up for directly igniting the spark gap.
  • Such surge protection is already known from DE 197 18 660 AI.
  • the overvoltage protection described there has a spark gap which consists of two electrodes located opposite one another.
  • a pulsed nitrogen laser is provided, the laser pulses in the UV range of which are directed in a gas space delimited by the electrodes.
  • a window made of quartz glass which is permeable to UV light is provided for coupling the ignition light into the radio link surrounded by a housing.
  • a metal aerosol is provided between the electrodes, so that ignition electrons can be generated by photoemission.
  • an overvoltage protection system with a spark gap which can be ignited via an ignition electrode.
  • An ignition circuit is used to trigger the spark gap, which consists of a capacitive voltage divider with an ignition capacitor and an ignition switching element to which, owing to the capacitive voltage divider, a lower voltage drops than at the main electrodes of the spark gap. If the voltage applied to the ignition switching element exceeds If a threshold value is reached, this is transferred from a blocking position in which a current flow is interrupted to its current-carrying pass position, so that the ignition capacitor is discharged, which causes a spark discharge between the ignition electrode and one of the main electrodes and thus triggers the ignition of the main spark gap ,
  • Actively ignitable spark gaps are also used as overvoltage protection for components that are arranged on isolated high-voltage platforms.
  • FIG. 1 shows such an overvoltage protection which has a main spark gap 2 with main electrodes 3.
  • the main electrodes are connected in parallel to series capacitors that are connected to a three-phase AC network at high voltage potential. By bridging the spark gap, the capacitor is protected against excessive voltages.
  • the series capacitors or other electronic components to be protected are arranged on an isolated platform 4, which are supported by columnar support beams (not shown in the figures) in an environment at ground potential.
  • the main electrode 3 shown at the bottom in FIG. 1 is at a high voltage potential which corresponds to that of the platform 4, while the main electrode 3 shown at the top in FIG. 1 is at the high voltage potential of the three-phase network.
  • An ignition circuit 5 with an ignition electrode 6 is provided for the active ignition of the spark gap 2, the ignition circuit 5 having a capacitive voltage divider with a first capacitor 7 and an ignition capacitor 8.
  • the ignition capacitor 8 can be bridged by a parallel branch, in which a trigger spark gap 9 and in series with this an ohmic resistor 10 is arranged.
  • the trigger spark gap 8 can be transferred to its open position by control electronics 11, in which a current flow over the parallel branch and thus a bridging of the ignition capacitor 8 is made possible.
  • the bridging causes the ignition electrode 6 to be at the potential of the lower main electrode 3, which, however, is spatially closer to the upper main electrode 3 than the lower main electrode 3. A spark discharge occurs which jumps over to the lower main electrode 3.
  • the control electronics 11 can be supplied with the energy required to trigger the trigger spark gap 9 via an energy supply 12.
  • the ignition spark gap 9 is ignited actively.
  • a protective device 13 monitors electrical measured variables of the three-phase network, such as the alternating current of each phase of the three-phase network and / or the voltage drop across the electronic components on the platform 4. If trigger conditions exist, such as the threshold voltage being exceeded on the component, the protective device 13 generates a trigger signal which is transmitted to a semiconductor laser 14, which then generates an optical trigger signal which is fed to the control electronics 11 via an optical waveguide 15. When an optical trigger signal is received, the control electronics cause the spark gap 2 to be triggered electrically. The spark gap 2 is therefore only indirectly or indirectly triggered by an optical signal, the light intensity of which is therefore only matched to the sensitivity of the opto-electrical converter of the control electronics.
  • the protective device 13 and the semiconductor laser 14 are at a ground potential, so that their access and maintenance is simplified if necessary.
  • the optical waveguide 15 enables the ignition light to be guided securely, while at the same time the insulation between the platform 4 which is at high voltage potential and the components 13 and 14 of the overvoltage protection 1 which are at ground potential is retained.
  • the object of the invention is to provide an overvoltage protection of the type mentioned at the beginning, with which a safe ignition of the spark gap is made possible.
  • the invention solves this problem by an optical waveguide for guiding the pilot light to the spark gap.
  • the pilot light is guided safely from the light source via an optical waveguide to the spark gap.
  • the material from which the optical waveguide is made has an optical transparency which is sufficiently high for the pilot light and that light absorption with dissipative heat development is consequently largely avoided.
  • the light output required to ignite the spark gap is so high that after the ignition light has emerged from the optical waveguide by photoemission and / or multi-photon absorption or other ef- a sufficient number of free charge carriers is provided, which are accelerated by the electric field prevailing between the electrodes of the spark gap and form an arc.
  • one of the electrodes of the spark gap is grounded, whereas the other main electrode is at a higher potential in this regard.
  • this case is not relevant in practice.
  • the main electrodes are arranged on an electrically insulated platform which is at a high-voltage potential and is intended for carrying components which can be connected to a high-voltage three-phase network, the light source being grounded.
  • the light source is not arranged on the platform, but in the environment which is grounded and to which the light source is connected in an electrically conductive manner.
  • the overvoltage protection is used to protect components such as capacitors, coils and the like arranged on the platform.
  • the insulating optical waveguide extends between the platform and the grounded light source, so that the control of the spark gap is possible while maintaining the isolation of the platform from the earth potential.
  • the light source expediently has a pump laser which is set up for optically pumping a fiber laser, an active medium of the fiber laser being formed in a section of the optical waveguide.
  • Said section of the optical waveguide is doped with an optically active material which absorbs the pump light, so that when sufficient inversion is possible.
  • the material of the said section of the optical waveguide supports the laser process.
  • the fiber laser avoids complex coupling of the pilot light into the optical waveguide. Rather, the light propagates in the optical waveguide itself after it emerges from the laser resonator of the optical waveguide, so that high ignition light powers can be generated in the optical waveguide depending on the pump power.
  • the pump laser is, for example, solid-state lasers such as an Nd-YAG laser or a semiconductor laser, which have an emission wavelength in the absorption range of the optically active particles of the fiber laser.
  • Optics are advantageously provided for focusing the ignition light.
  • an optical system is provided on the platform between the spark gap and the exit-side end of the optical waveguide, which, after appropriate alignment, brings about a focusing of the ignition light in the gas space, which is delimited by the main electrodes.
  • the light intensity in the focus area is so high that, due to non-linear interactions between the gas molecules and the laser light, free electrons or, in other words, a laser-induced optical breakthrough in the spark gap is generated via multiphoton absorption.
  • the free electrons are accelerated by the electric field between the main electrodes, so that an arc arises between the electrodes due to the resulting avalanche effect causes a voltage drop on the component to be protected.
  • the ignition light is advantageously directed onto a surface of the electrode which faces the opposite electrode.
  • the so-called photoemission is used to trigger sparks.
  • the ignition light interacts with the surface material of the electrode. Due to this interaction, electrons are released from the electrode material, which lead to the triggering of the spark gap. It is also possible to focus the pilot light.
  • an alignment of the optical waveguide is selected such that the surface of the main electrode lies in the way of the ignition light emerging from the optical waveguide.
  • a non-focused ignition light strikes the surface of the electrode at right or acute angles. It is crucial in both variants that due to the interaction between the electrode material, a number of free charge carriers necessary for triggering the spark gap is provided. Melting of the fiber end in the ignited spark gap is avoided in this way.
  • the pilot light is incident transversely to the electric field between the main electrodes, the pilot light being guided along the surface of a main electrode and thereby causing electrons to emerge from the surface material.
  • the photoemission effect triggers the spark discharge.
  • the free end of the optical waveguide facing away from the light source is advantageously arranged in an electrode. According to this advantageous further development, the light beam emerges from the optical waveguide parallel to the field lines of the electrical field prevailing between the main electrodes. To protect the optical waveguide from melting away, the outlet end of the optical waveguide is recessed in a main electrode, so that the optical waveguide remains spaced from the ignition arc.
  • the spark gap is part of an ignition circuit for igniting a main spark gap.
  • the main spark gap is connected in parallel, for example, to a component to be protected against overvoltages.
  • the spark gap can have a plurality of partial spark gaps which are arranged in series with one another and only one of which is ignited directly by light. By firing only one or a part of the partial spark gaps connected in series, the voltage drop across the not yet fired partial spark gaps increases, so that these are also ignited. This applies accordingly to the series connection of spark gaps that are not part of an ignition circuit, but are arranged directly parallel to the component to be protected. In other words, any interconnections of spark gaps are possible according to the present invention.
  • FIG. 2 shows an embodiment of an overvoltage protection according to the invention.
  • FIG. 1 shows a previously known exemplary embodiment of an overvoltage protection 1 according to the prior art, which has already been described above.
  • FIG. 2 shows an exemplary embodiment of an overvoltage protection 1 according to the invention, which is connected in parallel to a component, such as a high-voltage capacitor, which is arranged on the platform 4 and is not shown in the figure.
  • the high-voltage capacitor is connected in series in one phase of a high-voltage three-phase network.
  • the components that can be coupled to the high-voltage line of the three-phase network are arranged on the platform 4, which is kept, for example, isolated from an environment at ground potential via support supports made of ceramic, cast resin or the like.
  • overvoltage protection 1 comprises a main spark gap 2 consisting of main electrodes 3, which can be ignited by means of ignition electrode 6.
  • the triggering circuit 5 is used for triggering, which - like the ignition electrode - is arranged on the platform 4 and is therefore at a high voltage potential.
  • the ignition circuit 5 consists of a capacitive voltage divider, which consists of the capacitor 7 and the ignition capacitor 8, which are connected in series to one another.
  • the ignition capacitor 8 can be bridged by a bridging branch in which the ohmic see resistor 10 and a trigger spark gap 9 are arranged as a spark gap in series.
  • the protective device 13 and a pump laser 16 are at ground potential.
  • the pump laser 16 is not used to generate an ignition light which can be coupled into the optical waveguide 15, but for pumping a fiber laser 17, which as Section of the optical waveguide 15 is formed and consists of a host crystal which is doped with optically active particles.
  • the host crystal which is transparent to the pump light of the pump laser 16 supports the optically active particles in producing the population inversion, so that laser operation of the fiber laser 17 is made possible.
  • the protective technology device 13 is connected to measuring sensors (not shown in the figure), such as voltage meters, so that the voltage drop across a component to be monitored can be fed to the protective device 13.
  • the overvoltage protection 1 shown in FIG. 2 acts as follows:
  • the protective device 13 compares the voltage values supplied by the voltmeter, for example with a threshold value. Deviating from this, the protective device derives a voltage value from the current values of the measuring devices. If the voltage values exceed the threshold value, the protective device 13 triggers an electrical trigger pulse which is fed to the pump laser 16. After receiving the trigger pulse, the pump laser 16 generates a pump light that releases a laser pulse from the fiber laser 17. The laser pulse of the fiber laser 17 is called the ignition light. The ignition light emanating from the fiber laser 17 becomes the trigger spark gap 9 via the optical waveguide 15 performed, which is sealed by a housing, not shown. The housing is filled with a gas.
  • the free end of the optical waveguide is arranged in the housing in such a way that the ignition light emerging from the optical waveguide 15 falls transversely to the electrical field generated by the electrodes of the trigger spark gap 9 into the gas space delimited by the electrodes.
  • the laser light from the fiber laser 17 is so intense that an optical breakthrough is generated in the trigger spark gap 8 and thus the trigger spark gap 8 is ignited.
  • the breakdown of the spark gap 3 is generated by the circuitry already described in connection with FIG. 1, so that the component connected in parallel is protected against excessive voltages.
  • the optical waveguide (s) is led directly to the main spark gap.
  • the main spark gap is thus optically ignitable. In this way, an expensive ignition circuit has become superfluous. The cost advantages gained from this compensate for the costs for the pump laser and the fiber laser.

Landscapes

  • Lasers (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)

Abstract

Um einen Überspannungsschutz (1) mit einer Funkenstrecke (2), die einander gegenüberliegende Elektroden (3) aufweist, mit einer Lichtquelle zur Erzeugung eines Zündlichtes in Abhängigkeit von Auslösesignalen einer Steuerungseinheit, wobei das Zündlicht zum unmittelbaren Zünden der Funkenstrecke (2) eingerichtet ist, bereitzustellen, mit dem ein sicheres Zünden der Funkenstrecke ermöglicht ist, wird ein Lichtwellenleiter (15) zum Führen des Zündlichtes zur Funkenstrecke (2) vorgeschlagen.

Description

Beschreibung
Optisch gezündete Funkenstrecke
Die Erfindung betrifft einen Überspannungsschutz mit einer Funkenstrecke, die einander gegenüberliegende Elektroden aufweist, mit einer Lichtquelle zur Erzeugung eines Zündlichtes in Abhängigkeit von Auslösesignalen einer Steuerungseinheit, wobei das Zündlicht zum unmittelbaren Zünden der Funkenstrecke eingerichtet ist.
Ein solcher Überspannungsschutz ist aus der DE 197 18 660 AI bereits bekannt. Der dort beschriebene Überspannungsschutz weist eine Funkenstrecke auf, die aus zwei einander gegenüberliegenden Elektroden besteht. Zum Zünden der Funkenstrecke ist ein gepulster Stickstofflaser vorgesehen, dessen im UV- Bereich liegenden Laserpulse in einem von den Elektroden begrenzten Gasraum gelenkt werden. Zum Einkoppeln des Zündlichtes in die mit einem Gehäuse umgebene Funkstrecke ist ein für das UV-Licht durchlässiges Fenster aus Quarzglas vorgesehen. Zum Herabsetzen der zum Zünden der Funkenstrecke benötigte Energie der Lichtpulse, ist zwischen den Elektroden ein Metall-Aerosol bereitgestellt, so dass Zündelektronen durch Fotoemission erzeugbar sind.
Aus der DE 198 03 636 AI ist ein Überspannungsschutzsystem mit einer Funkenstrecke bekannt, die über eine Zündelektrode zündbar ist. Zum Auslösen der Funkenstrecke dient ein Zündkreis, der aus einem kapazitiven Spannungsteiler mit einem Zündkondensator sowie aus einem Zündschaltelement besteht, an dem aufgrund des kapazitiven Spannungsteilers eine geringere Spannung abfällt als an den Hauptelektroden der Funkenstrecke. Übersteigt die an dem Zündschaltelement anliegende Span- nung einen Schwellenwert wird dieses von einer Sperrstellung, in der ein Stromfluss unterbrochen ist, in seine stromführende Durchlassstellung überführt, so dass es zu einer Entladung des Zündkondensators kommt, der eine Funkenentladung zwischen der Zündelektrode und einer der Hauptelektroden herbeiführt und so die Zündung der Hauptfunkenstrecke auslöst.
Aktiv zündbare Funkenstrecken werden auch als Überspannungsschutz von Bauteilen eingesetzt, die auf isoliert aufgestellten Hochspannungsplattformen angeordnet sind.
Ein solcher Überspannungsschutz ist gemäß dem landläufigen Stand der Technik bereits bekannt. Figur 1 zeigt einen solchen Überspannungsschutz, der eine Hauptfunkenstrecke 2 mit Hauptelektroden 3 aufweist. Die Hauptelektroden sind parallel zu Reihenkondensatoren geschaltet, die an einem Drehstrom- wechselspannungsnetz auf Hochspannungspotential angeschlossen sind. Durch die Überbrückung mittels der Funkenstrecke wird der Kondensator vor zu hohen Spannungen geschützt. Die Reihenkondensatoren oder andere zu schützende elektronische Bauelemente sind auf einer isoliert aufgestellten Plattform 4 angeordnet, die über säulenförmige, figürlich nicht dargestellte Stützträger an einer sich auf Erdpotential befindlichen Umgebung abgestützt sind. So befindet sich beispielsweise die in Figur 1 unten gezeichnete Hauptelektrode 3 auf einem Hochspannungspotential, das demjenigen der Plattform 4 entspricht, während die in Figur 1 oben gezeichnete Hauptelektrode 3 sich auf dem Hochspannungspotential des Drehstromnetzes befindet. Zwischen den Hauptelektroden fällt eine Spannung zwischen etwa 60 kV und 160 kV ab, so dass die auf der Plattform 4 angeordneten Bauteile für diesen Spannungsabfall ausgelegt sind. Zum aktiven Zünden der Funkenstrecke 2 ist ein Zündkreis 5 mit einer Zündelektrode 6 vorgesehen, wobei der Zündkreis 5 einen kapazitiven Spannungsteiler mit einem ersten Kondensator 7 und einem Zündkondensator 8 aufweist. Der Zündkondensator 8 ist durch einen Parallelzweig überbrückbar, in dem eine Auslösefunkenstrecke 9 und in Reihenschaltung zu dieser ein ohmscher Widerstand 10 angeordnet ist. Die Auslösefunkenstrecke 8 kann durch eine Steuerelektronik 11 in ihre Durchlassstellung überführt werden, in der ein Stromfluss über den Parallelzweig und somit eine Überbrückung des Zündkondensators 8 ermöglicht ist. Durch die Überbrückung wird die Zündelektrode 6 auf das Potential der unteren Hauptelektrode 3 gelegt, die jedoch räumlich näher an der oberen Hauptelektrode 3 angeordnet ist als die untere Hauptelektrode 3. Es entsteht eine Funkenentladung, die auf die untere Hauptelektrode 3 überspringt. Die Steuerelektronik 11 ist über eine Energieversorgung 12 mit der zum Auslösen der Auslösefunkenstrecke 9 notwendigen Energie versorgbar.
Die Zündung der Auslösefunkenstrecke 9 erfolgt aktiv. Dabei überwacht ein Schutzgerät 13 elektrische Messgrößen des Drehstromnetzes wie den Wechselstrom jeder Phase des Drehstromnetzes und/oder die an den elektronischen Bauteilen auf der Plattform 4 abfallende Spannung. Liegen Auslösebedingungen, wie beispielsweise das Überschreiten einer Schwellenspannung an dem Bauteil vor, erzeugt das Schutzgerät 13 ein Auslösesignal, das an einen Halbleiterlaser 14 übertragen wird, der daraufhin ein optisches Auslösesignal erzeugt, das über einen Lichtwellenleiter 15 der Steuerelektronik 11 zugeführt wird. Bei Empfang eines optischen Auslösesignals bewirkt die Steuerelektronik eine elektrische Auslösung der Funkenstrecke 2. Die Funkenstrecke 2 wird also nur indirekt oder mittelbar durch ein optisches Signal ausgelöst, dessen Lichtintensität daher lediglich auf die Empfindlichkeit des opto-elektrischen Wandlers der Steuerelektronik abgestimmt ist.
Das Schutzgerät 13 sowie der Halbleiterlaser 14 befinden sich auf einem Erdpotential, so dass deren Zugang und Wartung im Bedarfsfall vereinfacht ist. Durch den Lichtwellenleiter 15 ist eine sichere Führung des Zündlichtes ermöglicht, wobei gleichzeitig die Isolierung zwischen der sich auf Hochspannungspotential befindlichen Plattform 4 und der sich auf Erdpotential befindlichen Bauteile 13 und 14 des Überspannungsschutzes 1 erhalten bleibt.
Aufgrund der notwendigen Elektronik mit Energieversorgung auf der Plattform ist der vorbekannte Überspannungsschutz kostenintensiv und aufwendig in der Wartung.
Aufgabe der Erfindung ist es, einen Überspannungsschutz der eingangs genannten Art bereitzustellen, mit dem ein sicheres Zünden der Funkenstrecke ermöglicht ist.
Die Erfindung löst diese Aufgabe durch einen Lichtwellenleiter zum Führen des Zündlichtes zur Funkenstrecke.
Gemäß der vorliegenden Erfindung wird das Zündlicht von der Lichtquelle sicher über einen Lichtwellenleiter zur Funkenstrecke geführt. Hierzu ist es notwendig, dass das Material, aus dem Lichtwellenleiter besteht, eine für das Zündlicht ausreichend hohe optische Transparenz aufweist und Lichtabsorption mit dissipativer Wärmeentwicklung im Gefolge weitgehend vermieden sind. Die zum Zünden der Funkenstrecke benötigte Lichtleistung ist erfindungsgemäß so hoch, dass nach dem Austritt des Zündlichtes aus dem Lichtwellenleiter durch Photoemission und/oder Mehrphotonenabsorption oder andere Ef- fekte eine ausreichende Anzahl von freien Ladungsträgern bereitgestellt ist, die von dem zwischen den Elektroden der Funkenstrecke herrschenden elektrischen Feld beschleunigt werden und einen Lichtbogen ausbilden.
Im Rahmen der Erfindung ist beispielsweise eine der Elektroden der Funkenstrecke geerdet, wohingegen sich die andere Hauptelektrode auf einem diesbezüglich höheren Potential befindet. Dieser Fall ist in der Praxis jedoch nicht relevant.
Bei einer bevorzugten Ausführung der Erfindung sind die Hauptelektroden jedoch auf einer elektrisch isoliert aufgestellten Plattform angeordnet, die sich auf einem Hochspannungspotential befindet und zum Tragen von Bauteilen vorgesehen ist, die an ein Hochspannungsdrehstromnetz anschließbar sind, wobei die Lichtquelle geerdet ist. Mit anderen Worten ist die Lichtquelle nicht auf der Plattform angeordnet, sondern in der Umgebung, die geerdet ist und mit der die Lichtquelle elektrisch leitend verbunden ist. Dabei dient der Überspannungsschutz zum Schutz von auf der Plattform angeordneten Bauteilen wie Kondensatoren, Spulen und dergleichen. Der isolierend wirkende Lichtwellenleiter erstreckt sich zwischen der Plattform und der geerdeten Lichtquelle, so dass die Steuerung der Funkenstrecke bei gleichzeitiger Aufrechterhaltung der Isolierung der Plattform gegenüber dem Erdpotential ermöglicht ist.
Zweckmäßigerweise weist die Lichtquelle einen Pumplaser auf, der zum optischen Pumpen eines Faserlasers eingerichtet ist, wobei ein aktives Medium des Faserlasers in einem Abschnitt des Lichtwellenleiters ausgebildet ist. Der besagte Abschnitt des Lichtwellenleiters ist mit einem optisch aktiven Material dotiert, welches das Pumplicht absorbiert, so dass bei aus- reichend hoher Pumpleistung eine Besetzungsinversion ermöglicht ist. Hierbei unterstützt das Material des besagten Abschnitts des Lichtwellenleiters den Laserprozess . Durch den Faserlaser wird ein aufwändiges Einkoppeln des Zündlichtes in den Lichtwellenleiter vermieden. Das Licht breitet sich vielmehr nach Austritt aus dem Laserresonator des Lichtwellenleiters in dem Lichtwellenleiter selbst aus, so dass in Abhängigkeit der Pumpleistung hohe Zündlichtleistungen in dem Lichtwellenleiter erzeugbar sind.
Als Pumplaser eignen sich beliebige Pumplaser, die dem Fachmann als solche bestens bekannt sind. So ist der Pumplaser, beispielsweise Festkörperlaser wie ein Nd-YAG-Laser oder ein Halbleiterlaser, die eine Emissionswellenlänge im Absorptionsbereich der optisch aktiven Teilchen des Faserlasers aufweisen.
Vorteilhafterweise ist eine Optik zum Fokussieren des Zündlichtes vorgesehen. Gemäß dieser vorteilhaften Weiterentwicklung ist auf der Plattform zwischen der Funkenstrecke und dem austrittsseitigen Ende des Lichtwellenleiters eine Optik vorgesehen, die nach entsprechender Ausrichtung eine Fokussie- rung des Zündlichtes in dem Gasraum herbeiführt, der von den Hauptelektroden begrenzt ist. Durch die Bündelung des Zündlichtes wird die Lichtintensität im Fokusbereich so hoch, dass aufgrund nicht linearer Wechselwirkungen zwischen den Gasmolekülen und dem Laserlicht beispielsweise über Mehrphotonenabsorption freie Elektronen oder mit anderen Worten ein Laser induzierter optischer Durchbruch in der Funkenstrecke erzeugt wird. Durch das zwischen den Hauptelektroden herrschende elektrische Feld werden die freien Elektronen beschleunigt, so dass sich aufgrund des entstehenden Lawineneffektes ein Lichtbogen zwischen den Elektroden ausbildet, der einen Spannungsabfall an dem zu schützenden Bauelement bewirkt .
Vorteilhafterweise ist das Zündlicht auf eine Oberfläche der Elektrode geführt, die der gegenüberliegenden Elektrode zugewandt ist. Bei dieser zweckmäßigen Weiterentwicklung wird die so genannte Photoemission zur Funkenauslösung ausgenutzt. Dabei wechselwirkt das Zündlicht mit dem Oberflächenmaterial der Elektrode. Aufgrund dieser Wechselwirkung werden aus dem Elektrodenmaterial Elektronen freigesetzt, die zum Auslösen der Funkenstrecke führen. Dabei ist auch eine Fokussierung des Zündlichtes möglich.
Abweichend hiervon ist eine solche Ausrichtung des Lichtwellenleiters gewählt, dass die Oberfläche der Hauptelektrode im Wege des aus dem Lichtwellenleiter austretenden Zündlichtes liegt. Dabei trifft beispielsweise ein nicht fokussiertes Zündlicht recht- oder spitzwinklig auf die Oberfläche der Elektrode. Entscheidend ist bei beiden Varianten, dass aufgrund der Wechselwirkung zwischen dem Elektrodenmaterial eine für das Auslösen der Funkenstrecke notwendige Anzahl freier Ladungsträger bereitgestellt ist. Ein Abschmelzen des Lichtwellenleiterendes in der gezündeten Funkenstrecke wird auf diese Weise vermieden.
Bei einer weiteren Ausgestaltung der Erfindung fällt das Zündlicht quer zum elektrischen Feld zwischen den Hauptelektroden ein, wobei das Zündlicht entlang der Oberfläche einer Hauptelektrode geführt und dabei den Austritt von Elektronen aus dem Oberflächenmaterial bewirkt. Auch hier löst der Effekt der Photoemission die Funkenentladung aus. Vorteilhafterweise ist das von der Lichtquelle abgewandte freie Ende des Lichtwellenleiters in einer Elektrode angeordnet. Gemäß dieser vorteilhaften Weiterentwicklung tritt der Lichtstrahl parallel zu den Feldlinien des zwischen den Hauptelektroden herrschenden elektrischen Feldes aus dem Lichtwellenleiter aus. Zum Schutz des Lichtwellenleiters vor dem Wegschmelzen ist das Austrittsende des Lichtwellenleiters in einer Hauptelektrode vertieft angeordnet, so dass der Lichtwellenleiter vom Zündlichtbogen beabstandet bleibt.
Bei einem bevorzugten Ausführungsbeispiel ist die Funkenstrecke Teile eines Zündkreises zum Zünden einer Hauptfunkenstrecke. Die Hauptfunkenstrecke ist beispielsweise parallel zu einem gegen Überspannungen zu schützenden Bauteil geschaltet. Dabei kann die Funkenstrecke zur Erhöhung der Spannungsfestigkeit mehrere Teilfunkenstrecken aufweisen, die in Reihenschaltung zueinander angeordnet sind und von denen nur eine ummittelbar durch Licht gezündet wird. Durch das Zünden nur einer oder eines Teils der in Reihe geschalteten Teilfunkenstrecken erhöht sich die an den noch nicht gezündeten Teilfunkernstrecken abfallende Spannung, so dass diese ebenfalls gezündet werden. Dies gilt entsprechend für die Reihenschaltung von Funkenstrecken, die nicht Teil eines Zündkreises sind, sondern unmittelbar parallel zu den zu schützenden Bauteil angeordnet sind. Mit anderen Worten sind beliebige Ver- schaltungen von Funkenstrecken gemäß der vorliegenden Erfindung möglich.
Weitere zweckmäßige Ausgestaltungen und Vorteile der Erfindung sind Gegenstand der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung unter Bezug auf die Figuren der Zeichnung, wobei gleich wirkende Bauteile mit gleichem Bezugszeichen versehen sind und wobei Figur 1 ein Ausführungsbeispiel eines Überspannungsschutzes gemäß dem Stand der Technik und
Figur 2 ein Ausführungsbeispiel eines erfindungsgemäßen Überspannungsschutzes zeigt.
Figur 1 zeigt ein vorbekanntes Ausführungsbeispiel eines Ü- berspannungsschutzes 1 gemäß dem Stand der Technik, das bereits weiter oben beschrieben wurde.
Figur 2 zeigt ein Ausführungsbeispiel eines erfindungsgemäßen Überspannungsschutzes 1, der parallel zu einem auf der Plattform 4 angeordneten und figürlich nicht dargestellten Bauelement, wie beispielsweise einem Hochspannungskondensator, geschaltet ist. Dabei ist der Hochspannungskondensator in Reihe in eine Phase eines Hochspannungsdrehstromnetzes geschaltet. Zur Vermeidung hoher Potentialdifferenzen sind die mit der Hochspannungsleitung des Drehstromnetzes koppelbaren Bauelemente auf der Plattform 4 angeordnet, die beispielsweise über Stützträger aus Keramik, Gießharz oder dergleichen isoliert auf einer auf Erdpotential liegenden Umgebung gehalten ist.
Der Überspannungsschutz 1 umfasst in dem gezeigten Ausführungsbeispiel eine aus den Hauptelektroden 3 bestehende Hauptfunkenstrecke 2, die mittels der Zündelektrode 6 zündbar ist. Zum Auslösen dient der Zündkreis 5, der - wie die Zündelektrode - auf der Plattform 4 angeordnet ist und sich somit auf einem Hochspannungspotential befindet. Der Zündkreis 5 besteht aus einem kapazitiven Spannungsteiler, der aus dem Kondensator 7 sowie dem Zündkondensator 8 besteht, die in Reihe zueinander geschaltet sind. Der Zündkondensator 8 ist durch einen Überbrückungszweig überbrückbar, in dem der ohm- sehe Widerstand 10 sowie eine Auslösefunkenstrecke 9 als Funkenstrecke in Reihe angeordnet sind.
Auf Erdpotential liegen hingegen das Schutzgerät 13 sowie ein Pumplaser 16. Der Pumplaser 16 dient, im Gegensatz zu dem Laser 13 gemäß Figur 1, nicht zur Erzeugung eines Zündlichtes, das in den Lichtwellenleiter 15 einkoppelbar ist, sondern zum Pumpen eines Faserlasers 17, der als Abschnitt des Lichtwellenleiters 15 ausgebildet ist und aus einem Wirtskristall besteht, der mit optisch aktiven Teilchen dotiert ist. Der für das Pumplicht des Pumplasers 16 durchlässige Wirtskristall unterstützt die optisch aktiven Teilchen bei der Erzeugung der Besetzungsinversion, so dass ein Laserbetrieb des Faserlasers 17 ermöglicht ist.
Das Schutztechnikgerät 13 ist mit figürlich nicht dargestellten Messgebern wie Spannungsmessern verbunden, so dass die an einem zu überwachenden Bauteil abfallende Spannung dem Schutzgerät 13 zuführbar sind.
Der in Figur 2 gezeigte Überspannungsschutz 1 wirkt folgendermaßen:
Das Schutzgerät 13 vergleicht die vom Spannungsmesser zugeführten Spannungswerte beispielsweise mit einem Schwellenwert. Abweichend hiervon leitet das Schutzgerät aus Stromwerten der Messgeräte einen Spannungswert ab. Übersteigen die Spannungswerte den Schwellenwert, löst das Schutzgerät 13 einen elektrischen Auslöseimpuls aus, der dem Pumplaser 16 zugeführt wird. Nach Empfang des Auslöseimpulses wird vom Pumplaser 16 ein Pumplicht erzeugt, das einen Laserpuls des Faserlasers 17 freisetzt. Der Laserpuls des Faserlasers 17 wird Zündlicht genannt. Das vom Faserlaser 17 ausgehende Zündlicht wird über den Lichtwellenleiter 15 zur Auslösefunkenstrecke 9 geführt, die von einem nicht dargestellten Gehäuse abgedichtet ist. Das Gehäuse ist mit einem Gas befüllt. Dabei ist das freie Ende des Lichtwellenleiters so in dem Gehäuse angeordnet, dass das aus dem Lichtwellenleiter 15 austretende Zündlicht quer zu dem von den Elektroden der Auslösefunkenstrecke 9 erzeugten elektrischen Feld in den von den Elektroden begrenzten Gasraum einfällt. Das Laserlicht des Faserlasers 17 ist so intensiv, dass ein optischer Durchbruch in der Auslösefunkenstrecke 8 erzeugt und somit die Auslösefunkenstrecke 8 gezündet wird. Durch die bereits im Zusammenhang mit Figur 1 beschriebene Verschaltung wird der Durchbruch der Funkenstrecke 3 erzeugt, so dass das parallel geschaltete Bauteil vor überhöhten Spannungen geschützt ist.
Bei einem hiervon abweichenden figürlich nicht dargestellten Ausführungsbeispiel ist der oder die Lichtwellenleiter direkt zur Hauptfunkenstrecke geführt. Die Hauptfunkenstreck ist somit optisch zündbar. Auf diese Weise ist ein kostspieliger Zündkreis überflüssig geworden. Die daraus gewonnenen Kostenvorteile kompensieren die Kosten für den Pumplaser und den Faserlaser .

Claims

Patentansprüche
1. Überspannungsschutz (1) mit einer Funkenstrecke (2), die einander gegenüberliegende Elektroden (3) aufweist, mit einer Lichtquelle zur Erzeugung eines Zündlichtes in Abhängigkeit von Auslösesignalen einer Steuerungseinheit, wobei das Zündlicht zum unmittelbaren Zünden der Funkenstrecke (2) eingerichtet ist, g e k e n n z e i c h n e t d u r c h einen Lichtwellenleiter (15) zum Führen des Zündlichtes zur
Funkenstrecke (2).
2. Überspannungsschutz (1) nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, dass die Elektroden (3) auf einer elektrisch isoliert aufgestellten Plattform (4) angeordnet sind, die sich auf einem Hochspannungspotential befindet und zum Tragen von Bauteilen vorgesehen ist, die an ein Hochspannungsdrehstromnetz anschließbar sind, und dass die Lichtquelle geerdet ist.
3. Überspannungsschutz (1) nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, dass die Lichtquelle einen Pumplaser (16) aufweist, der zum optischen Pumpen eines Faserlasers (17) eingerichtet ist, wobei ein aktives Medium des Faserlasers (17) in einem Abschnitt des Lichtwellenleiters (15) ausgebildet ist.
4. Überspannungsschutz (1) nach einem der vorhergehenden Ansprüche, g e k e n n z e i c h n e t d u r c h eine Optik zum Fokussieren des Zündlichtes.
5. Überspannungsschutz (1) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass das Zündlicht auf einer Oberfläche der Elektrode (3) geführt ist, die der gegenüberliegenden Elektrode (3) zugewandt ist.
6. Überspannungsschutz (1) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass das von der Lichtquelle abgewandte freie Ende des Lichtwellenleiters (15) in einer Elektrode (3) angeordnet ist.
7. Überspannungsschutz nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass die Funkenstrecke Teil eines Zündkreises (5) zum Zünden einer
Hauptfunkenstrecke ist.
PCT/DE2005/000048 2004-01-13 2005-01-12 Optisch gezündete funkenstrecke WO2005069458A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BRPI0506825-8A BRPI0506825B1 (pt) 2004-01-13 2005-01-12 Overvoltage guard with oticly activated screwdriver
US10/597,128 US20070165351A1 (en) 2004-01-13 2005-01-12 Optically ignited spark gap
CN200580002391XA CN1910797B (zh) 2004-01-13 2005-01-12 光触发的火花隙

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004002582A DE102004002582A1 (de) 2004-01-13 2004-01-13 Optisch gezündete Funkenstrecke
DE102004002582.7 2004-01-13

Publications (1)

Publication Number Publication Date
WO2005069458A1 true WO2005069458A1 (de) 2005-07-28

Family

ID=34716654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2005/000048 WO2005069458A1 (de) 2004-01-13 2005-01-12 Optisch gezündete funkenstrecke

Country Status (5)

Country Link
US (1) US20070165351A1 (de)
CN (1) CN1910797B (de)
BR (1) BRPI0506825B1 (de)
DE (1) DE102004002582A1 (de)
WO (1) WO2005069458A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012112480B4 (de) 2012-07-04 2018-10-04 Dehn + Söhne Gmbh + Co. Kg Gekapselte, blitzstromtragfähige und folgestrombegrenzende Überspannungsschutzeinrichtung mit mindestens einer Funkenstrecke
DE102014201752A1 (de) * 2014-01-31 2015-08-06 Siemens Aktiengesellschaft Überspannungsschutz mit einer Funkenstrecke
DE102014201754A1 (de) * 2014-01-31 2015-08-06 Siemens Aktiengesellschaft Überspannungsschutz mit einer Funkenstrecke
FR3053171B1 (fr) * 2016-06-28 2018-07-06 Ene29 S.Ar.L. Dispositif d'amplification de puissance
US10103519B2 (en) 2016-08-17 2018-10-16 General Electric Company Krypton-85-free spark gap with photo-emission
US10916919B2 (en) 2016-08-18 2021-02-09 General Electric Company Krypton-85-free spark gap with a discharge probe
CN108448380B (zh) * 2018-03-07 2019-12-27 西北核技术研究所 一种激光触发的兆伏级低电感气体开关
BE1026431B1 (de) * 2018-06-28 2020-02-03 Phoenix Contact Gmbh & Co Funkenstrecke mit Zündkreis und Funkenstreckenanordnung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399941A (en) * 1993-05-03 1995-03-21 The United States Of America As Represented By The Secretary Of The Navy Optical pseudospark switch
DE19718660A1 (de) * 1997-05-02 1998-11-19 Karlsruhe Forschzent Verfahren zur Triggerung einer gasisolierten Schaltfunkenstrecke und Vorrichtung zur Anwendung des Verfahrens

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1582805A (de) * 1968-02-07 1969-10-10
US3811070A (en) * 1972-10-25 1974-05-14 Westinghouse Electric Corp Laser initiated three electrode type triggered vacuum gap device
US4890040A (en) * 1987-06-01 1989-12-26 Gundersen Martin A Optically triggered back-lighted thyratron network
DE19611679C2 (de) * 1996-03-25 2001-10-31 Deutsch Zentr Luft & Raumfahrt Fremdgezündete Gasentladungsvorrichtung
DE19637984A1 (de) * 1996-09-18 1998-03-19 Asea Brown Boveri Elektrischer Apparat, insbesondere Überspannungsableiter und System zur Anzeige des Zustands dieses Apparats in einer zentralen Auswertevorrichtung
DE19803636A1 (de) * 1998-02-02 1999-08-05 Phoenix Contact Gmbh & Co Überspannungsschutzsystem
DE10048053A1 (de) * 2000-09-28 2002-06-06 Christoph Koerber Plasmastrahl-Zündsystem
JP2004022916A (ja) * 2002-06-19 2004-01-22 Nikon Corp レーザ光源制御方法及び装置、露光方法及び装置、並びにデバイス製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399941A (en) * 1993-05-03 1995-03-21 The United States Of America As Represented By The Secretary Of The Navy Optical pseudospark switch
DE19718660A1 (de) * 1997-05-02 1998-11-19 Karlsruhe Forschzent Verfahren zur Triggerung einer gasisolierten Schaltfunkenstrecke und Vorrichtung zur Anwendung des Verfahrens

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIOU R ET AL: "AN OPTICALLY TRIGGERED, GLOW SWITCH MARX BANK", IEEE TRANSACTIONS ON ELECTRON DEVICES, IEEE INC. NEW YORK, US, vol. 37, no. 6, 1 June 1990 (1990-06-01), pages 1591 - 1593, XP000160743, ISSN: 0018-9383 *

Also Published As

Publication number Publication date
US20070165351A1 (en) 2007-07-19
CN1910797B (zh) 2010-06-23
BRPI0506825B1 (pt) 2017-07-04
BRPI0506825A (pt) 2007-06-05
DE102004002582A1 (de) 2005-08-04
CN1910797A (zh) 2007-02-07

Similar Documents

Publication Publication Date Title
WO2005069458A1 (de) Optisch gezündete funkenstrecke
EP2276136B1 (de) Überspannungsschutz für Wechselrichter mit eingangsseitigem EMV-Filter
DE102012112480B4 (de) Gekapselte, blitzstromtragfähige und folgestrombegrenzende Überspannungsschutzeinrichtung mit mindestens einer Funkenstrecke
DE3721529A1 (de) Triggerung und isolation von pseudofunkenschaltern
DE4108474A1 (de) Vorrichtung zur vorionisierung eines gepulsten gaslasers
EP0249815A1 (de) Einrichtung zur Erfassung von Störlichtbögen
WO2005069459A1 (de) Funkenstrecke mit optisch gezündetem leistungshalbleiterbauelement
EP1456921A1 (de) Berspannungsschutzeinrichtung
DE2636177C3 (de) Hochenergielaser
DE1902214A1 (de) Anordnung zum Schutz gegen UEberspannungen
EP1461852B1 (de) Mehrpoliges überspannungsschutzsystem und verfahren zum sicheren betrieb eines mehrpoligen überspannungsschutzsystems
EP3075042B1 (de) Überspannungsschutz mit einer funkenstrecke
EP3075041B1 (de) Überspannungsschutz mit einer funkenstrecke
EP3472903B1 (de) Elektronische folgestromlöschhilfe
DE2431401A1 (de) Frequenzempfindliche vorionisationseinrichtung
DE2541166A1 (de) Verfahren und einrichtung zum schutz der duesen von werkstueckgepolten plasmabrennern
EP0088412B1 (de) Gas-Feuerungsautomat
DE3111021C1 (de) Schutzeinrichtung gegen elektrostatische Aufladungen für schutzisolierte elektrische Geräte
AT405582B (de) Vorrichtung zum behandeln eines werkstückes in einer gasentladung
DE102004056621A1 (de) Diodenlaser mit einem einer Laserdiode elektrisch parallel geschalteten Schutzelement
DE102020117042A1 (de) Überspannungsschutzanordnung
DE963714C (de) Einrichtung mit einer Gasentladungsroehre und Gasentladungsroehre fuer eine solche Einrichtung
DE3937445A1 (de) Elektrische schutzvorrichtung
MXPA06007704A (en) Optically ignited spark gap
DE2532448B2 (de) UV-Flammenwächter, insbesondere zur Überwachung von öl- und Gasbrennerflammen, mit unabhängigem Generator- und Triggerkreis

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1626/KOLNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/007704

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2007165351

Country of ref document: US

Ref document number: 10597128

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580002391.X

Country of ref document: CN

122 Ep: pct application non-entry in european phase
ENP Entry into the national phase

Ref document number: PI0506825

Country of ref document: BR

WWP Wipo information: published in national office

Ref document number: 10597128

Country of ref document: US