WO2005069459A1 - Funkenstrecke mit optisch gezündetem leistungshalbleiterbauelement - Google Patents

Funkenstrecke mit optisch gezündetem leistungshalbleiterbauelement Download PDF

Info

Publication number
WO2005069459A1
WO2005069459A1 PCT/DE2005/000036 DE2005000036W WO2005069459A1 WO 2005069459 A1 WO2005069459 A1 WO 2005069459A1 DE 2005000036 W DE2005000036 W DE 2005000036W WO 2005069459 A1 WO2005069459 A1 WO 2005069459A1
Authority
WO
WIPO (PCT)
Prior art keywords
spark gap
ignition
power semiconductor
overvoltage protection
electrode
Prior art date
Application number
PCT/DE2005/000036
Other languages
English (en)
French (fr)
Inventor
Wilfried Breuer
Peter Menke
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to BRPI0506827A priority Critical patent/BRPI0506827B1/pt
Priority to US10/597,097 priority patent/US7663856B2/en
Publication of WO2005069459A1 publication Critical patent/WO2005069459A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T2/00Spark gaps comprising auxiliary triggering means
    • H01T2/02Spark gaps comprising auxiliary triggering means comprising a trigger electrode or an auxiliary spark gap
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/06Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using spark-gap arresters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/78Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled
    • H03K17/79Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled controlling bipolar semiconductor switches with more than two PN-junctions, or more than three electrodes, or more than one electrode connected to the same conductivity region
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0061Details of emergency protective circuit arrangements concerning transmission of signals
    • H02H1/0069Details of emergency protective circuit arrangements concerning transmission of signals by means of light or heat rays

Definitions

  • the invention relates to overvoltage protection with a spark gap which has electrodes opposite one another, an ignition circuit for igniting the spark gap and a light source connected to a protective device at ground potential for generating an ignition light which can be fed to a receiving unit of the ignition circuit by means of at least one optical waveguide, the Spark gap and the ignition circuit are at a high voltage potential.
  • FIG. 1 shows such an overvoltage protection which has a main spark gap 2 with main electrodes 3.
  • the main electrodes are connected in parallel to series capacitors that are connected to a three-phase AC network at high voltage potential. By bridging the spark gap, the capacitor is protected against excessive voltages.
  • the series capacitors or other electronic components to be protected are arranged on an isolated platform 4, which are supported by columnar support beams (not shown in the figures) in an environment at ground potential.
  • the main electrode 3 shown at the bottom in FIG. 1 is at a high voltage potential which corresponds to that of the platform 4, while the main electrode 3 shown at the top in FIG. 1 is at the high voltage potential of the three-phase network.
  • a voltage between about 60 kV and 160 kV drops between the main electrodes, so that the the platform 4 arranged components are designed for this voltage drop.
  • An ignition circuit 5 and an ignition electrode ⁇ are provided for the active ignition of the spark gap 2, the ignition circuit 5 having a capacitive voltage divider with a first capacitor 7 and a second capacitor 8.
  • the second capacitor 8 can be bridged by a parallel branch in which a tripping spark gap 9 and in series with this an ohmic resistor 10 are arranged.
  • the trigger spark gap 9 can be transferred into its open position by control electronics 11, in which a current flow over the parallel branch and thus a bridging of the second capacitor 8 is made possible.
  • the bridging causes the ignition electrode 6 to be at the potential of the lower main electrode 3, which, however, is spatially closer to the upper main electrode 3 than the lower main electrode 3. A spark discharge occurs which jumps over to the lower main electrode 3.
  • the control electronics 11 can be supplied with the energy required to trigger the trigger spark gap 9 via an energy supply 12.
  • the ignition spark gap 9 is ignited actively.
  • a protective device 13 monitors electrical measured variables of the three-phase network, such as the alternating current of each phase of the three-phase network and / or the voltage drop across the electronic components on the platform 4. If trigger conditions exist, such as the threshold voltage being exceeded on the component, the protective device 13 generates a trigger signal which is transmitted to a semiconductor laser 14, which then generates an optical trigger signal which is fed to the control electronics 11 as a receiving unit via an optical waveguide 15. When receiving an optical trigger signal nals or in other words a pilot light, the control electronics cause an electrical triggering of the spark gap 2.
  • the protective device 13 and the semiconductor laser 14 are at a ground potential, so that their access and maintenance is simplified if necessary.
  • the optical waveguide 15 enables the ignition light to be guided reliably, while at the same time the insulation between the platform 4 which is at high voltage potential and the components 13 and 14 of the overvoltage protection 1 which are at earth potential is retained.
  • the object of the invention is to provide an overvoltage protection of the type mentioned at the outset, which is reliable and inexpensive.
  • the receiving unit has at least one power semiconductor component which can be converted by the ignition light from a blocking position in which a current flow through the power semiconductor component is interrupted to a pass position in which current flow through the power semiconductor component is made possible.
  • the activation of the overvoltage protection is simplified.
  • an optoelectric converter for example a diode, which depending on the received light intensity has an electrical trigger. generated signal
  • the ignition light is fed directly to an optically ignitable power semiconductor component which enables a current to flow through the ignition.
  • a current flow is enabled in a current branch for a short period of time, which current current can be used in any circuitry to ignite the spark gap.
  • the power semiconductor components do not require any energy supply requiring maintenance at a high voltage potential, so that the overvoltage protection according to the invention stands out in terms of its cost and reliability.
  • the semiconductor components are advantageously designed as oppositely connected and optically ignitable thyristors. Thyristors can only be actively moved from their blocking position to the open position. The reverse process is passive. In the event of a zero current crossing of an alternating current flowing via the thyristor, the alternating current falls below the holding current of the circuit breaker component, so that it is brought back into its blocking position. To increase the dielectric strength, several thyristors can also be connected in series.
  • each thyristor can be supplied with ignition light via its own optical waveguide.
  • a corresponding number of further light sources are provided, each of which is connected to an assigned optical waveguide.
  • Op table couplers are known according to the prior art, so that their mode of operation need not be discussed in more detail here.
  • the ignition circuit advantageously has a capacitive voltage divider which has a capacitor which can be bridged by means of the power semiconductor component. By bridging one of the capacitors of the voltage divider, for example, a current surge can be generated, so that a voltage pulse can be generated in an ignition coil via a coil, which triggers the spark gap.
  • the ignition circuit is connected to an ignition electrode whose distance from a first electrode of the spark gap is less than the distance between a first electrode and the second electrode opposite it, the ignition electrode being able to be acted upon by the electrical potential of the second electrode by means of the ignition circuit is.
  • the spark gap has at least two pairs of opposing electrodes which are arranged in series with one another, the bridgeable capacitor being connected in parallel with a pair of the opposing electrodes.
  • the spark gap is composed of two or more partial spark gaps.
  • an auxiliary spark gap which is part of the ignition circuit is ignited by the power semiconductor component, the spark gap which is connected in parallel to the component to be protected being ignited by the ignition of the auxiliary spark gap.
  • the ignition circuit includes several auxiliary spark gaps that are connected in series to one another in order to increase the dielectric strength of the ignition circuit. As described above, it may be sufficient here to bridge only one auxiliary spark gap through the power semiconductor components.
  • the spark gap and the ignition circuit are arranged on a platform which is carried in isolation by means of supports and which is set up to carry components which are provided for improving the power transmission in an energy distribution network carrying AC voltage.
  • Such components are, for example, capacitors or coils that are used to compensate for reactive power and are connected either in series or in parallel in the three-phase network. In this way, excessively large distances between terminals of the components located at a high voltage potential and terminals at ground potential can be avoided.
  • the components can be protected against overvoltages by connecting them in parallel with the overvoltage protection.
  • the light source is, for example, an expedient laser.
  • the laser can be in the immediate vicinity be arranged in the control unit, the laser pulses for triggering the overvoltage protection being sent to the platform via the non-conductive optical waveguide and being received there by the power semiconductor component, thereby providing an ignition of the spark gap and thus protecting the desired component on the platform.
  • a semiconductor for example, is suitable as a laser, the laser pulses of which can be coupled into the optical waveguide or fibers via a coupling element. Deviating from this, however, it is also possible for a fiber laser to be integrated in the optical waveguide (s), which is pumped via a semiconductor laser.
  • the semiconductor laser is connected to a protective device, which in turn is supplied by measuring transducers with electrical measurement variables which, for example, measure the voltage drop across a component, for the protection of which the overvoltage protection is provided.
  • the component is, for example, a capacitor arranged on a platform, which is connected in series in one phase of a three-phase network.
  • the measured values generated by the sensor are sampled and digitized, the protective device using a logic implemented in it compares the digital voltage values derived from the measured values with trigger conditions and, if a trigger condition is present, generates a trigger signal which causes the semiconductor laser to emit a laser pulse.
  • FIG. 1 shows a known surge protection according to the prior art
  • Figure 2 shows an exemplary embodiment of the surge protection according to the invention in a schematic representation
  • FIG. 3 shows a further exemplary embodiment of the overvoltage protection according to the invention in a schematic illustration.
  • FIG 1 shows an overvoltage protection according to the prior art, which has already been described above.
  • FIG. 2 shows an exemplary embodiment of the overvoltage protection 1 according to the invention, which is provided to protect a component (not shown in the figure), such as a high-voltage capacitor, the high-voltage capacitor being connected in series in a high-voltage three-phase network.
  • a component such as a high-voltage capacitor
  • the high-voltage capacitor being connected in series in a high-voltage three-phase network.
  • the electrical components arranged on the platform 4 are at a high-voltage potential, the voltage drop of which is in the medium-voltage range with respect to the respective phases of the three-phase network. In this way, excessive distances to bring about the necessary dielectric strengths are avoided.
  • the overvoltage protection is arranged in parallel with the component to be protected.
  • the overvoltage protection 1 according to FIG. 2 is actively ignited, voltage values dropping at the component to be protected being fed to the protective device 13, which checks these for the presence of a tripping condition. If the voltage drop across the component to be protected exceeds a maximum threshold value, for example, the protective device generates an electrical one Trigger pulse for triggering the laser 14, which then generates a light pulse as a pilot light that can be coupled into the optical waveguide 15.
  • the electrically non-conductive optical waveguide 15 is connected at its end facing away from the laser 14 to a thyristor 16 which, after receiving a firing pulse via the optical waveguide 15, transfers it from its blocking position into which the current flow through the thyristor 16 is interrupted to its open position in which current flow in one direction is made possible.
  • the overvoltage protection 1 shown is provided for alternating currents, so that two thyristors 16 connected in opposite directions are connected in parallel to one another in order to provide a passage of currents with different polarities.
  • the second thyristor 16 is also coupled to an optical waveguide 15 which leads to the laser 14.
  • the laser 14 is equipped with means which, depending on the control signal from the protective device 13, couple the ignition light into one or the other optical waveguide 15.
  • FIG. 3 shows a further exemplary embodiment of the overvoltage protection 1 according to the invention in a schematic illustration.
  • the spark gap 2 here consists of two partial spark gaps 17, each of which has a pair of electrodes 3 lying opposite one another.
  • the partial spark gaps 17 are arranged in a series circuit and each connected in parallel to a capacitor 7, 8.
  • the capacitor 8 When the capacitor 8 is bridged by firing the thyristors 16, the total voltage drops at the upper spark gap 17 in FIG. 3, the electrodes of which are at an insufficient distance to hold the total voltage. An ignition spark is created.
  • the thyristors 16 After the thyristors 16 have been moved into their blocking position, the total voltage drops at the partial spark gap 17 shown in FIG. 3, which then also ignites.
  • Each of the partial spark gaps has its own gas-tight housing 18.
  • the spark gap 2 can be designed overall for higher voltages without having to accept disadvantages with regard to their control options.
  • the spark gap shown in FIG. 3 is designed for voltages in the range between 160 kV and 300 kV.
  • the overvoltage protection shown in FIG. 2, however, can be used advantageously for voltages in the range between 60 kV and 160 kV.

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Power Conversion In General (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

Um einen Überspannungsschutz (1) mit einer Funkenstrecke (2), die zwei einander gegenüberliegende Elektroden (3) aufweist, einem Zündkreis (5) zum Zünden der Funkenstrecke (2) und einer mit einem Schutzgerät (13) verbundenen Lichtquelle auf Erdpotential zur Erzeugung eines Zündlichtes, das mittels wenigstens eines Lichtwellenleiters (15) einer Empfangseinheit des Zündkreises (5) zuführbar ist, wobei sich die Funkenstrecke (2) und der Zündkreis (5) auf einem Hochspannungspotential befinden, bereitzustellen, der zuverlässig und kostengünstig ist, wird vorgeschlagen, dass die Empfangseinheit wenigstens ein Leistungshalbleiterbauelement (16) aufweist, das durch das Zündlicht von einer Sperrstellung, in der ein Stromfluss über das Leistungshalbleiterbauelement (16) unterbrochen ist, in eine Durchlassstellung überführbar ist, in der ein Stromfluss über das Leistungshalbleiterbauelement (16) ermöglicht ist.

Description

Beschreibung
Funkenstrecke mit optisch gezündetem Leistungshalbleiterbauelement
Die Erfindung betrifft einen Überspannungsschutz mit einer Funkenstrecke, die einander gegenüberliegende Elektroden aufweist, einem Zündkreis zum Zünden der Funkenstrecke und einer mit einem Schutzgerät verbundenen Lichtquelle auf Erdpotential zur Erzeugung eines Zündlichtes, das mittels wenigstens eines Lichtwellenleiters einer Empfangseinheit des Zündkreises zuführbar ist, wobei sich die Funkenstrecke und der Zündkreis auf einem Hochspannungspotential befinden.
Ein solcher Überspannungsschutz ist gemäß dem landläufigen Stand der Technik bereits bekannt. Figur 1 zeigt einen solchen Überspannungsschutz, der eine Hauptfunkenstrecke 2 mit Hauptelektroden 3 aufweist. Die Hauptelektroden sind parallel zu Reihenkondensatoren geschaltet, die an einem Drehstrom- wechselspannungsnetz auf Hochspannungspotential angeschlossen sind. Durch die Überbrückung mittels der Funkenstrecke wird der Kondensator vor zu hohen Spannungen geschützt. Dabei sind die Reihenkondensatoren oder andere zu schützende elektronische Bauelemente auf einer isoliert aufgestellten Plattform 4 angeordnet, die über säulenförmige, figürlich nicht dargestellte Stützträger an einer sich auf Erdpotential befindlichen Umgebung abgestützt sind. So befindet sich beispielsweise die in Figur 1 unten gezeichnete Hauptelektrode 3 auf einem Hochspannungspotential, das demjenigen der Plattform 4 entspricht, während die in Figur 1 oben gezeichnete Hauptelektrode 3 sich auf dem Hochspannungspotential des Drehstromnetzes befindet. Zwischen den Hauptelektroden fällt eine Spannung zwischen etwa 60 kV und 160 kV ab, so dass die auf der Plattform 4 angeordneten Bauteile für diesen Spannungsabfall ausgelegt sind.
Zum aktiven Zünden der Funkenstrecke 2 ist ein Zündkreis 5 sowie eine Zündelektrode β vorgesehen, wobei der Zündkreis 5 einen kapazitiven Spannungsteiler mit einem ersten Kondensator 7 und einem zweiten Kondensator 8 aufweist. Der zweite Kondensator 8 ist durch einen Parallelzweig überbrückbar, in dem eine Auslösefunkenstrecke 9 und in Reihenschaltung zu dieser ein ohmscher Widerstand 10 angeordnet sind. Die Auslösefunkenstrecke 9 kann durch eine Steuerelektronik 11 in ihre Durchlassstellung überführt werden, in der ein Stromfluss über den Parallelzweig und somit eine Überbrückung des zweiten Kondensators 8 ermöglicht ist. Durch die Überbrückung wird die Zündelektrode 6 auf das Potential der unteren Hauptelektrode 3 gelegt, die jedoch räumlich näher an der oberen Hauptelektrode 3 angeordnet ist als die untere Hauptelektrode 3. Es entsteht eine Funkenentladung, die auf die untere Hauptelektrode 3 überspringt. Die Steuerelektronik 11 ist über eine Energieversorgung 12 mit der zum Auslösen der Auslösefunkenstrecke 9 notwendigen Energie versorgbar.
Die Zündung der Auslösefunkenstrecke 9 erfolgt aktiv. Dabei überwacht ein Schutzgerät 13 elektrische Messgrößen des Drehstromnetzes wie den Wechselstrom jeder Phase des Drehstromnetzes und/oder die an den elektronischen Bauteilen auf der Plattform 4 abfallende Spannung. Liegen Auslösebedingungen, wie beispielsweise das Überschreiten einer Schwellenspannung an dem Bauteil vor, erzeugt das Schutzgerät 13 ein Auslösesignal, das an einen Halbleiterlaser 14 übertragen wird, der daraufhin ein optisches Auslösesignal erzeugt, das über einen Lichtwellenleiter 15 der Steuerelektronik 11 als Empfangseinheit zugeführt wird. Bei Empfang eines optischen Auslösesig- nals oder mit anderen Worten eines Zundlichtes bewirkt die Steuerelektronik eine elektrische Auslosung der Funkenstrecke 2.
Das Schutzgerat 13 sowie der Halbleiterlaser 14 befinden sich auf einem Erdpotential, so dass deren Zugang und Wartung im Bedarfsfall vereinfacht ist. Durch den Lichtwellenleiter 15 ist eine sichere Fuhrung des Zundlichtes ermöglicht, wobei gleichzeitig die Isolierung zwischen der sich auf Hochspannungspotential befindlichen Plattform 4 und den sich auf Erdpotential befindlichen Bauteilen 13 und 14 des Uberspannungs- schutzes 1 erhalten bleibt.
Insbesondere aufgrund der notwendigen Elektronik mit Energieversorgung auf der Plattform 4 ist der vorbekannte Uberspan- nungsschutz kostenintensiv und in seiner Wartung aufwandig.
Aufgabe der Erfindung ist es, einen Uberspannungsschutz der eingangs genannten Art bereitzustellen, der zuverlässig und kostengünstig ist.
Die Erfindung lost diese Aufgabe dadurch, dass die Empfangseinheit wenigstens ein Leistungshalbleiterbauelement aufweist, das durch das Zundlicht von einer Sperrstellung, in der ein Stromfluss über das Leistungshalbleiterbauelement unterbrochen ist, in eine Durchlassstellung uberfuhrbar ist, in der ein Stromfluss über das Leistungshalbleiterbauelement ermöglicht ist.
Erfindungsgemaß ist die Ansteuerung des Uberspannungsschutzes vereinfacht. Statt das Zundlicht einem optoelektrischen Wandler, beispielsweise einer Diode, zuzuführen, die in Abhängigkeit der empfangenen Lichtintensitat ein elektrisches Auslo- sesignal erzeugt, wird das Zundlicht ummittelbar einem optisch zundbaren Leistungshalbleiterbauelement zugeführt, das durch das Zünden einen Stromfluss ermöglicht. Auf diese Weise ist beispielsweise in einem Stromzweig für eine kurze Zeitdauer ein Stromfluss ermöglicht, der in beliebigen Verschal- tungen zum Zünden der Funkenstrecke eingesetzt werden kann. Im Gegensatz zum Stand der Technik benotigen die Leistungshalbleiterbauelemente keine wartungsanfallige Energieversorgung auf einem Hochspannungspotential, so dass der erfin- dungsgemaße Uberspannungsschutz hinsichtlich seiner Kosten und Zuverlässigkeit hervorsticht.
Vorteilhafterweise sind die Halbleiterbauelemente als gegensinnig geschaltete und optisch zundbare Thyristoren ausgestaltet. Thyristoren können aktiv nur von ihrer Sperrstellung in die Durchlassstellung überfuhrt werden. Der umgekehrte Vorgang erfolgt passiv. Bei einem Stromnulldurchgang eines über den Thyristor fließenden Wechselstromes, unterschreitet der Wechselstrom den Haltestrom des Leistungsschalterbauelementes, so dass dieses wieder in seine Sperrstellung überfuhrt wird. Zur Erhöhung der Spannungsfestigkeit können auch mehrere Thyristoren in Reihe geschaltet sein.
Gemäß einer diesbezüglich zweckmäßigen Weiterentwicklung sind weitere Lichtwellenleiter vorgesehen, so dass jeder Thyristor über einen eigenen Lichtwellenleiter mit Zundlicht versorgbar ist. Zur Einspeisung des Zundlichtes in die weiteren Lichtwellenleiter ist beispielsweise eine entsprechende Anzahl weiterer Lichtquellen vorgesehen, die jeweils mit einem zugeordneten Lichtwellenleiter verbunden sind. Abweichend hiervon ist es möglich, einen oder mehrere optische Koppler zu verwenden, um das Zundlicht einer einzigen Lichtquelle nach Bedarf auf die vorhandenen Lichtwellenleiter zu verteilen. Op- tische Koppler sind gemäß dem Stand der Technik bekannt, so dass auf deren Wirkungsweise an dieser Stelle nicht naher eingegangen zu werden braucht.
Vorteilhafterweise weist der Zündkreis einen kapazitiven Spannungsteiler auf, der über einen Kondensator verfugt, welcher mittels des Leistungshalbleiterbauelements uberbruckbar ist. Durch das überbrücken eines der Kondensatoren des Spannungsteilers ist beispielsweise ein Stromstoss erzeugbar, so dass über eine Spule ein Spannungsimpuls in einer Zündspule erzeugbar ist, die ein Auslosen der Funkenstrecke bewirkt.
Abweichend hiervon ist der Zundkreis mit einer Zündelektrode verbunden, deren Abstand zu einer ersten Elektrode der Funkenstrecke geringer ist als der Abstand zwischen einer ersten Elektrode und der ihr gegenüberliegenden zweiten Elektrode, wobei die Zündelektrode mittels des Zündkreises mit dem e- lektrischen Potential der zweiten Elektrode beaufschlagbar ist .
Bei einer zweckmäßigen Variante weist die Funkenstrecke wenigstens zwei Paare von einander gegenüberliegenden Elektroden auf, die in Reihenschaltung zueinander angeordnet sind, wobei der uberbrückbare Kondensator parallel zu einem Paar der einander gegenüberliegenden Elektroden geschaltet ist. Mit anderen Worten ist die Funkenstrecke aus zwei oder mehreren Teilfunkenstrecken zusammengesetzt. Nach der Überbruckung des Kondensators fällt die zuvor an allen Teilfunkenstrecken abfallende Spannung nunmehr an den Teilfunkenstrecken ab, die nicht überbrückt sind. Aufgrund des dadurch erhöhten Spannungsabfalls an den nicht überbrückten Teilfunkenstrecken tritt an diesen Teilfunkenstrecken eine Funkenentladung auf. Nach Übergang des Halbleiterbauelementes in seine Sperrstel- lung fallt auch an der oder den parallel zum Kondensator geschalteten Teilfunkenstrecken eine erhöhte Spannung ab, die auch hier eine Funkenentladung hervorruft.
Im Rahmen der Erfindung ist es weiterhin möglich, dass durch das Leistungshalbleiterbauelement eine Hilfsfunkenstrecke gezündet wird, die Teil des Zundkreises ist, wobei durch das Zünden der Hilfsfunkenstrecke die Funkenstrecke gezündet wird, die parallel zu dem zu schutzenden Bauteil geschaltet ist. Im Bedarfsfall umfasst der Zundkreis mehrere Hilfsfun- kenstrecken die zueinander in Reihe geschaltet sind, um die Spannungsfestigkeit des Zundkreises zu erhohen. Hierbei kann es - wie zuvor beschrieben - ausreichend sein, lediglich eine Hilfsfunkenstrecke durch die Leistungshalbleiterbauelemente zu überbrücken.
Gemäß einer bevorzugten Weiterentwicklung der Erfindung sind die Funkenstrecke und der Zundkreis auf einer mittels Stutzer isoliert getragenen Plattform angeordnet, die zum Tragen von Bauteilen eingerichtet ist, die zur Verbesserung der Leis- tungsubertragung in einem Wechselspannung fuhrenden Energieverteilungsnetz vorgesehen sind. Solche Bauteile sind beispielsweise Kondensatoren oder Spulen, die zur Kompensation von Blindleistung dienen und entweder in Reihe oder parallel in das Drehstromnetz geschaltet sind. Auf diese Weise können übergroße Abstände zwischen sich auf einem Hochspannungspotential befindlichen Klemmen der Bauteile und Klemmen auf Erdpotential vermieden werden. Durch Parallelschaltung mit dem Uberspannungsschutz können die Bauteile vor Überspannungen geschützt werden.
Erfindungsgemaß ist die Lichtquelle beispielsweise ein zweckmäßiger Laser. Der Laser kann in unmittelbarer Nachbarschaft der Steuerungseinheit angeordnet sein, wobei die Laserpulse zum Auslosen des Uberspannungsschutzes über den nicht leitenden Lichtwellenleiter zur Plattform sendet und dort von dem Leistungshalbleiterbauelement empfangen werden, wodurch eine Zündung der Funkenstrecke und somit der Schutz des gewünschten Bauteils auf der Plattform bereitgestellt ist. Als Laser eignet sich beispielsweise ein Halbleiterlaser, dessen Laserpulse über ein Koppelelement in den oder die Lichtwellenleiter einkoppelbar ist. Abweichend hiervon ist es jedoch auch möglich, dass in dem oder den Lichtwellenleitern ein Faserlaser integriert ist, der über einen Halbleiterlaser gepumpt wird. Dabei ist der Halbleiterlaser mit einem Schutzgerat verbunden, welches wiederum von Messgebern mit elektrischen Messgroßen versorgt ist, die beispielsweise die an einem Bauteil abfallende Spannung messen, zu dessen Schutz der Uber- spannungsschutz vorgesehen ist. So handelt es sich bei dem Bauteil beispielsweise um einen auf einer Plattform angeordneten Kondensator, der in Reihe in eine Phase eines Drehstromnetzes geschaltet ist. Die von dem Messgeber erzeugten Messwerte werden abgetastet und digitalisiert, wobei das Schutzgerat über eine in ihr implementierte Logik die aus den Messwerten abgeleiteten digitalen Spannungswerte mit Auslosebedingungen vergleicht und bei Vorliegen einer Auslosebedingung ein Auslosesignal erzeugt, das den Halbleiterlaser zum Aussenden eines Laserpulses veranlasst.
Weitere zweckmäßige Ausgestaltungen und Vorteile der Erfindung sind Gegenstand der nachfolgenden Beschreibung von Ausfuhrungsbeispielen der Erfindung unter Bezug auf die Figuren der Zeichnung, wobei
Figur 1 einen vorbekannten Uberspannungsschutz gemäß dem Stand der Technik, Figur 2 ein Ausfuhrungsbeispiel des erfindungsgemaßen Uberspannungsschutzes in schematischer Darstellung, und
Figur 3 ein weiteres Ausfuhrungsbeispiel des erfindungs- gemaßen Uberspannungsschutzes in schematischer Darstellung zeigen.
Figur 1 zeigt einen Uberspannungsschutz gemäß dem Stand der Technik, der bereits zuvor beschrieben wurde.
Figur 2 zeigt ein Ausfuhrungsbeispiel des erfindungsgemaßen Uberspannungsschutzes 1, der zum Schutz eines figurlich nicht dargestellten Bauteils - wie beispielsweise eines Hochspannungskondensators - vorgesehen ist, wobei der Hochspannungskondensator in Reihe in ein Hochspannungsdrehstromnetz geschaltet ist. Wie bereits im Zusammenhang mit Figur 1 beschrieben wurde, liegen die auf der Plattform 4 angeordneten elektrischen Bauteile auf einem Hochspannungspotential, dessen Spannungsabfall gegenüber den jeweiligen Phasen des Drehstromnetzes im Mittelspannungsbereich liegt. Auf diese Weise sind übergroße Abstände zum Herbeifuhren der notwendigen Spannungsfestigkeiten vermieden. Der Uberspannungsschutz ist in Parallelschaltung zum zu schutzenden Bauteil angeordnet.
Wie der Uberspannungsschutz gemäß Figur 1 wird der Uberspannungsschutz 1 gemäß Figur 2 aktiv gezündet, wobei an dem zu schutzenden Bauteil abfallende Spannungswerte dem Schutzgerat 13 zugeführt werden, das diese auf das Vorliegen einer Auslosebedingung überprüft. Überschreitet die an dem zu schutzenden Bauteil abfallende Spannung beispielsweise einen maximalen Schwellenwert, erzeugt das Schutzgerat einen elektrischen Auslosepuls zum Auslosen des Lasers 14, der daraufhin einen Lichtpuls als Zundlicht erzeugt, das in den Lichtwellenleiter 15 einkoppelbar ist. Der elektrisch nicht leitende Lichtwellenleiter 15 ist an seinem vom Laser 14 abgewandten Ende mit einem Thyristor 16 verbunden, der nach Erhalt eines Zundpul- ses über den Lichtwellenleiter 15 von einer Sperrstellung, in der ein Stromfluss durch den Thyristor 16 unterbrochen ist, in seine Durchlassstellung überfuhrt wird, in der ein Stromfluss in einer Richtung ermöglicht ist.
Der gezeigte Uberspannungsschutz 1 ist für Wechselstrome vorgesehen, so dass zum Bereitstellen eines Durchlasses unterschiedlich gepolter Strome zwei gegensinnig geschaltet Thyristoren 16 parallel zueinander geschaltet sind. Auch der zweite Thyristor 16 ist mit einem Lichtwellenleiter 15 gekoppelt, der zum Laser 14 gefuhrt ist. Dabei ist der Laser 14 mit Mitteln ausgerüstet, die je nach Steuerungssignal seitens des Schutzgerates 13 das Zundlicht in den einen oder anderen Lichtwellenleiter 15 einkoppeln.
Befindet sich einer der Thyristoren 16 in seiner Durchlassstellung, wird die Zundelektrode 6, deren Abstand zur in Figur 2 oberen Hauptelektrode 3 geringer ist als der Abstand der unteren Hauptelektrode 3 zur oberen Hauptelektrode, auf das Potential der unteren Hauptelektrode geschaltet. Aufgrund der Abstandsverringerung kommt es zum Durchbruch zwischen der oberen Hauptelektrode 3 und der Zundelektrode 6, wobei der Zündfunken von der oberen Hauptelektrode auf die untere Hauptelektrode überspringt, sobald sich beide Thyristoren 16 wieder in ihrer Sperrstellung befinden. Dies tritt bei einem Stromnulldurchgang des Wechselstromes ein. Figur 3 zeigt ein weiteres Ausfuhrungsbeispiel des erfin- dungsgemaßen Uberspannungsschutzes 1 in schematischer Darstellung. Die Funkenstrecke 2 besteht hier aus zwei Teilfunkenstrecken 17, die jeweils ein Paar einander gegenüberliegender Elektroden 3 aufweisen. Die Teilfunkenstrecken 17 sind in einer Reihenschaltung angeordnet und jeweils parallel zu einem Kondensator 7, 8 geschaltet. Bei Überbruckung des Kondensators 8 durch Zünden der Thyristoren 16 fallt die Gesamtspannung an der in Figur 3 oberen Teilfunkenstrecke 17 ab, deren Elektroden einen zum Halten der Gesamtspannung unzureichenden Abstand aufweisen. Es entsteht ein Zündfunken. Nach überfuhren der Thyristoren 16 in ihre Sperrstellung fallt die Gesamtspannung an der in Figur 3 unten gezeichneten Teilfunkenstrecke 17 ab, die daraufhin ebenfalls zündet. Jeder der Teilfunkenstrecken weist ein eigenes gasdichtes Gehäuse 18 auf .
Durch die Reihenschaltung von Teilfunkenstrecken 17 kann die Funkenstrecke 2 insgesamt für höhere Spannungen ausgelegt werden, ohne Nachteile hinsichtlich ihrer Steuerungsmoglich- keiten hinnehmen zu müssen. So ist die in Figur 3 gezeigte Funkenstrecke für Spannungen im Bereich zwischen 160 kV und 300 kV ausgelegt. Der in Figur 2 gezeigte Uberspannungsschutz ist hingegen vorteilhaft für Spannungen im Bereich zwischen 60 kV und 160 kV verwendbar.

Claims

Patentansprüche
1. Uberspannungsschutz (1) mit einer Funkenstrecke (2), die einander gegenüberliegende Elektroden (3) aufweist, einem Zündkreis (5) zum Zünden der Funkenstrecke (2) und einer mit einem Schutzgerät (13) verbundenen Lichtquelle (14) auf Erdpotential zur Erzeugung eines Zündlichtes, das mittels wenigstens eines Lichtwellenleiters (15) einer Empfangseinheit des Zündkreises zuführbar ist, wobei sich die Funkenstrecke (2) und der Zündkreis (5) auf einem Hochspannungspotential befinden, d a d u r c h g e k e n n z e i c h n e t, dass die Empfangseinheit wenigstens ein Leistungshalbleiterbauelement (16) aufweist, das durch das Zündlicht von einer Sperrstellung, in der ein Stromfluss über das Leistungshalbleiterbauelement (16) unterbrochen ist, in eine Durchlassstellung überführbar ist, in der ein Stromfluss über das Leistungshalbleiterbauelement (16) ermöglicht ist.
2. Uberspannungsschutz (1) nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, dass die Leistungshalbleiterbauelemente als gegensinnig geschaltete und optisch zündbare Thyristoren (16) realisiert sind.
3. Uberspannungsschutz (1) nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, dass der Zündkreis (5) einen kapazitiven Spannungsteiler (7, 8) aufweist, der über einen Kondensator (8) verfügt, der mittels der Leistungshalbleiterbauelemente (16) überbrückbar ist.
4. Uberspannungsschutz (1) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass der Zündkreis (5) mit einer Zündelektrode (6) verbunden ist, deren Abstand zu einer ersten Elektrode (3) der Funkenstrecke (2) geringer ist als der Abstand zwischen der ersten Elektrode (3) und einer ihr gegenüberliegenden zweiten Elektrode (3), wobei die Zündelektrode (6) mittels des Zündkreises (5) mit dem elektrischen Potential der zweiten Elektrode (3) beaufschlagbar ist.
5. Uberspannungsschutz (1) nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t, dass die Funkenstrecke (2) wenigstens zwei Paare von einander gegenüberliegenden Elektroden (3) aufweist, die in Reihenschaltung zueinander angeordnet sind, wobei der überbrückbare Kondensator (8) parallel zu einem Paar der einander gegenüberliegenden Elektroden (3) geschaltet ist.
6. Uberspannungsschutz (1) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass die Funkenstrecke (2) und der Zündkreis (5) auf einer mittels Stützer isoliert getragenen Plattform (4) angeordnet sind, die zum Tragen von Bauteilen eingerichtet ist, die zur Verbesserung der Leistungsübertragung eines Energieverteilungsnetzes vorgesehen sind.
PCT/DE2005/000036 2004-01-13 2005-01-10 Funkenstrecke mit optisch gezündetem leistungshalbleiterbauelement WO2005069459A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BRPI0506827A BRPI0506827B1 (pt) 2004-01-13 2005-01-10 centelhador com ignição ativada por semicondutor de potência acionado por luz
US10/597,097 US7663856B2 (en) 2004-01-13 2005-01-10 Spark gap comprising an optically triggered power semiconductor component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004002581.9 2004-01-13
DE102004002581A DE102004002581B4 (de) 2004-01-13 2004-01-13 Funkenstrecke mit optisch gezündetem Leistungshalbleiterbauelement

Publications (1)

Publication Number Publication Date
WO2005069459A1 true WO2005069459A1 (de) 2005-07-28

Family

ID=34716653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2005/000036 WO2005069459A1 (de) 2004-01-13 2005-01-10 Funkenstrecke mit optisch gezündetem leistungshalbleiterbauelement

Country Status (5)

Country Link
US (1) US7663856B2 (de)
CN (1) CN100541948C (de)
BR (1) BRPI0506827B1 (de)
DE (1) DE102004002581B4 (de)
WO (1) WO2005069459A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2902579A1 (fr) * 2006-06-19 2007-12-21 Soule Prot Surtensions Sa Dispositif de protection contre les surtensions associant en serie plusieurs eclateurs a declenchement simultane et procedes correspondants

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004002581B4 (de) 2004-01-13 2005-11-10 Siemens Ag Funkenstrecke mit optisch gezündetem Leistungshalbleiterbauelement
FI121765B (fi) * 2005-07-01 2011-03-31 Alstom Grid Oy Menetelmä ja sovitelma sarjakipinävälin liipaisemiseksi
US7916443B2 (en) * 2008-07-03 2011-03-29 Getac Technology Corp. Antistatic device with multiple discharging intervals
EP2521228B1 (de) * 2011-05-05 2014-01-01 ABB Research Ltd. Vorrichtung und Verfahren zum schnellen Schließen eines Stromkreises und Verwendung der Vorrichtung
FR2981786B1 (fr) * 2011-10-21 2013-11-22 Abb France Procede de coupure d'un arc electrique, procede et dispositif de protection d'une installation contre les surtensions
DE102015013222B3 (de) * 2015-07-27 2016-12-15 DEHN + SÖHNE GmbH + Co. KG. Schaltungsanordnung zur elektronischen Ansteuerung von triggerbaren Überspannungsableitern
US20190120144A1 (en) * 2017-10-23 2019-04-25 Unison Industries, Llc Spark gap circuit
BE1026431B1 (de) * 2018-06-28 2020-02-03 Phoenix Contact Gmbh & Co Funkenstrecke mit Zündkreis und Funkenstreckenanordnung
CN110048307B (zh) * 2019-01-24 2020-04-28 西安交通大学 气体开关

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06165369A (ja) * 1992-11-16 1994-06-10 Ngk Insulators Ltd 半導体式避雷装置
JPH09205728A (ja) * 1996-01-25 1997-08-05 Nec Corp 異常電圧防護回路
DE19718660A1 (de) * 1997-05-02 1998-11-19 Karlsruhe Forschzent Verfahren zur Triggerung einer gasisolierten Schaltfunkenstrecke und Vorrichtung zur Anwendung des Verfahrens

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4121270A (en) * 1977-02-09 1978-10-17 Westinghouse Electric Corp. Series capacitor system with force firing of protective bypass device
JPS5911772A (ja) * 1982-07-12 1984-01-21 Kansai Electric Power Co Inc:The 光点弧サイリスタの過電圧保護装置
GB8322620D0 (en) * 1983-08-23 1983-09-28 Binns D F Alternating current power supplies
SE451520B (sv) * 1985-05-13 1987-10-12 Asea Ab Skyddsanordning for ett seriekondensatorbatteri
SE458894B (sv) * 1987-09-04 1989-05-16 Asea Ab Anordning foer oeverspaenningsskydd
FI80812C (fi) * 1988-11-04 1990-07-10 Nokia Oy Ab System foer tvaongsdiggering av gnistgap.
JPH04179086A (ja) 1990-11-13 1992-06-25 Mitsubishi Electric Corp 直列コンデンサ設備
US5153460A (en) * 1991-03-25 1992-10-06 The United States Of America As Represented By The Secretary Of The Army Triggering technique for multi-electrode spark gap switch
JPH07245387A (ja) * 1994-03-04 1995-09-19 Fuji Electric Co Ltd 光点弧サイリスタの光点弧方法
DE102004002581B4 (de) 2004-01-13 2005-11-10 Siemens Ag Funkenstrecke mit optisch gezündetem Leistungshalbleiterbauelement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06165369A (ja) * 1992-11-16 1994-06-10 Ngk Insulators Ltd 半導体式避雷装置
JPH09205728A (ja) * 1996-01-25 1997-08-05 Nec Corp 異常電圧防護回路
DE19718660A1 (de) * 1997-05-02 1998-11-19 Karlsruhe Forschzent Verfahren zur Triggerung einer gasisolierten Schaltfunkenstrecke und Vorrichtung zur Anwendung des Verfahrens

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 018, no. 493 (E - 1606) 14 September 1994 (1994-09-14) *
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 12 25 December 1997 (1997-12-25) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2902579A1 (fr) * 2006-06-19 2007-12-21 Soule Prot Surtensions Sa Dispositif de protection contre les surtensions associant en serie plusieurs eclateurs a declenchement simultane et procedes correspondants
EP1870977A1 (de) * 2006-06-19 2007-12-26 ABB France Vorrichtung zum Schutz gegen Überspannungen, die mit mehreren, in Reihe geschalteten Funkenstrecken mit simultaner Auslösung verbunden ist, und entsprechende Verfahren

Also Published As

Publication number Publication date
BRPI0506827A (pt) 2007-05-29
BRPI0506827B1 (pt) 2017-04-04
CN1910798A (zh) 2007-02-07
DE102004002581B4 (de) 2005-11-10
US7663856B2 (en) 2010-02-16
CN100541948C (zh) 2009-09-16
US20070285858A1 (en) 2007-12-13
DE102004002581A1 (de) 2005-08-04

Similar Documents

Publication Publication Date Title
WO2005069459A1 (de) Funkenstrecke mit optisch gezündetem leistungshalbleiterbauelement
EP2276136B1 (de) Überspannungsschutz für Wechselrichter mit eingangsseitigem EMV-Filter
DE102012112480B4 (de) Gekapselte, blitzstromtragfähige und folgestrombegrenzende Überspannungsschutzeinrichtung mit mindestens einer Funkenstrecke
EP0724980A1 (de) Fahrzeug mit einem brennstoffzellen- oder batteriegespeisten Energieversorgungsnetz
DE102014117417A1 (de) Schaltzustandsüberprüfung mit Schaltungsteilen eines Isolationswächters
DE19930122C1 (de) Verfahren zur Verhinderung des Draufschaltens auf in Abzweigen bestehende elektrische Kurzschlüsse und zugehörige Anordnung
DE102012022399A1 (de) Zündkreis
WO2011036287A1 (de) Vorrichtung zum kurzschliessen
EP3224630B1 (de) Schaltungsanordnung für hochspannungsprüfungen und hochspannungsprüfanlage
WO2005069458A1 (de) Optisch gezündete funkenstrecke
EP0024585B1 (de) Schutzisolierter Netzanschluss mit Überspannungsableitern
DE102018128121A1 (de) AC/DC-Umwandlungs-Anordnung
EP1461852B1 (de) Mehrpoliges überspannungsschutzsystem und verfahren zum sicheren betrieb eines mehrpoligen überspannungsschutzsystems
DE19736903A1 (de) Umrichter mit Gleichspannungszwischenkreis sowie Verfahren zum Betrieb eines solchen Umrichters
DE4006259C2 (de) Schaltungsanordnung zum Detektieren von Lichtbogenüberschlägen in elektrischen Kabeln
EP0160235B1 (de) Ueberwachungseinrichtung für den Auslösekreis eines elektrischen Leistungsschalters
DE19521108A1 (de) Vorrichtung zur Erfassung des Durchzündens der Schalter einer Stromrichterschaltungsanordnung
WO2006010725A1 (de) Strombegrenzer mit funkenstrecke
EP0193989A2 (de) Überspannungsschutzschaltung für breitbandige digitale Leitungssysteme
DE2840848A1 (de) Fluessigkeitspegel-ueberwachungssystem
EP3743980A1 (de) Umschaltvorrichtung
DE102015115284B3 (de) Schutzvorrichtung für eine elektrische Energieversorgungseinrichtung und elektrische Energieversorgungseinrichtung mit einer derartigen Schutzvorrichtung
DE102017102807A1 (de) Schutzvorrichtung für Schaltanlage
DE3240831C2 (de)
DE3119551A1 (de) "stromerzeugungssystem"

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1612/KOLNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/007705

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 200580002392.4

Country of ref document: CN

122 Ep: pct application non-entry in european phase
ENP Entry into the national phase

Ref document number: PI0506827

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 10597097

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10597097

Country of ref document: US