WO2005063838A1 - 重合体および重合体の製造方法 - Google Patents

重合体および重合体の製造方法 Download PDF

Info

Publication number
WO2005063838A1
WO2005063838A1 PCT/JP2004/019331 JP2004019331W WO2005063838A1 WO 2005063838 A1 WO2005063838 A1 WO 2005063838A1 JP 2004019331 W JP2004019331 W JP 2004019331W WO 2005063838 A1 WO2005063838 A1 WO 2005063838A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
group
active energy
projection
polymerization
Prior art date
Application number
PCT/JP2004/019331
Other languages
English (en)
French (fr)
Inventor
Genji Imai
Original Assignee
Kansai Paint Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003434119A external-priority patent/JP2005187769A/ja
Priority claimed from JP2003433797A external-priority patent/JP4786865B2/ja
Application filed by Kansai Paint Co., Ltd. filed Critical Kansai Paint Co., Ltd.
Priority to EP04807688A priority Critical patent/EP1698647A4/en
Priority to US10/596,826 priority patent/US7649027B2/en
Publication of WO2005063838A1 publication Critical patent/WO2005063838A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Definitions

  • the present invention relates to a polymer having a projection (including a so-called polymer brush) and a method for producing a polymer having a projection using a supercritical fluid or a subcritical fluid. Further, the present invention relates to a structure having a polymer having a projection on a substrate.
  • a polymer brush has a structure in which polymer chains whose ends are immobilized (chemically bonded or adsorbed) on the solid surface extend vertically to the solid surface. The degree of stretching of the polymer chain strongly depends on the graft density.
  • a polymer brush is usually obtained by grafting a polymer chain to a solid surface by surface graft polymerization, in particular, surface-initiated living radical polymerization.
  • Japanese Patent Application Laid-Open No. 2001-131208 discloses a process for providing a substrate to which at least one free radical initiator also having a radical generation site at a distal end is covalently bonded. Contacting the covalently bonded substrate with a monomer under conditions that promote free radical polymerization of the radical generating site forces of the initiator to form a polymerizable brush. A method for preparing the material is disclosed.
  • JP-A-2002-145971 describes a method for producing a polymer brush by surface-initiated living radical polymerization.
  • surface-initiated living radical polymerization is a method in which a polymerization initiator is first fixed on a solid surface by a Langmuir-Blodgett (LB) method or a chemical adsorption method, and then polymerized by a living radical polymerization (ATRP method).
  • a chain (graft chain) is grown on a solid surface.
  • a graft polymer chain which is obtained by such surface-initiated living radical polymerization and constitutes a graft polymer layer disposed on the substrate surface by graft polymerization, is a different kind.
  • a nanostructured functional body characterized in that a chemical composition has a multilayer structure in the thickness direction by copolymerization with a monomer or oligomer.
  • this publication discloses that after a polymerization initiation portion (polymerization initiation group) of a molecule disposed on a substrate surface is deactivated in a predetermined pattern in a film surface direction, a polymerization initiation portion which is not deactivated is obtained.
  • the nanostructured functional body is characterized in that the polymer is graft-polymerized and the graft polymer layer is disposed in a predetermined pattern.
  • Japanese Patent Application Laid-Open No. 2001-131208 describes that the obtained polymer brush is useful for solid-phase synthesis of an array of peptides, polynucleotides or low-molecular organic molecules.
  • Japanese Patent Application Laid-Open No. 2001-158813 describes application of a polymer brush to surface modification of a contact lens, an intraocular lens, an artificial cornea, and the like.
  • the publication includes a polymer brush kidney dialysis membrane, a blood storage bag, a pacemaker lead, a vascular implant, a wound dressing, an ocular patch, a drug delivery patch, a heart valve, a graft vessel, a force catheter. It also describes its application to radiotherapy, prostheses and the island of Langernodurus.
  • Japanese Patent Application Publication No. 2002-504842 describes an application of a polymer brush to a stent.
  • Japanese Patent Application Publication No. 2002-535450 discloses a method for detecting nucleic acid molecules (such as a DNA sensor) and a method for preparing nucleic acids, (poly) saccharides or (poly) peptides or compounds such as antibodies, and the like from samples.
  • the application of a polymer brush to a method for purifying a polymer is described.
  • the above publication discloses the use of a polymer brush as an affinity matrix, the use as a sensor chip, the immobilization of starting molecules for the formation of oligos or polymers, preferably for the synthesis of nucleic acids or peptides.
  • These conventional polymer brushes can have a structure in which the polymer chains (graft chains) are elongated only in a good solvent, and in a dry state or in a poor solvent, the polymer chains (graft chains) can be used. (Graft chain) is folded or folded.
  • a supercritical fluid is a fluid whose density is close to that of a liquid and whose viscosity and diffusion coefficient are close to that of a gas, and has both gas diffusivity and liquid substance solubility. It has an effect.
  • supercritical fluids use their dissolving power to extract hop extracts and fragrances, extract and separate active components such as weakened fins from coffee and tobacco, and extract and remove unnecessary components. It's being used.
  • the production of caffeine-less coffee using supercritical diacid carbon has been industrialized since the late 1970s.
  • supercritical fluids have also been used for removing unreacted monomers from polymers, and for removing and concentrating impurities in chemical raw materials and products, such as concentration and dehydration of alcohol. It is also used for debinding of ceramics, cleaning and drying of semiconductors and mechanical parts.
  • etherimide-based bismaleimide conjugate containing an impurity such as an aromatic hydrocarbon solvent used at the time of production is subjected to a pressure of 60 atm or more and a temperature of 20 ° C or more.
  • a method for purifying a bismaleimide compound which is characterized by performing an extraction and removal treatment of impurities brought into contact with carbon dioxide in a supercritical state or a state close to a supercritical state.
  • supercritical fluids are used for fine particle formation, thin film formation, and fine fiber formation by rapid expansion (RESS method) such as production of whisker-like fine particles such as silica. It is also used for fine particles by poor solvent (GAS method) such as adding strength (surface coating), and for thin films.
  • RSS method rapid expansion
  • GAS method poor solvent
  • JP-A-8-104830 discloses that a polymer polymerization reaction solution in a polymerization step for producing a polymer solid raw material for coating is dissolved in a supercritical phase using carbon dioxide and a polar organic solvent.
  • a method for producing fine particles for paints which is characterized by rapidly expanding.
  • Japanese Patent Application Laid-Open No. 7-505429 discloses a method in which a fluoromonomer is dissolved in a solvent containing supercritical disulfide carbon.
  • a method for producing a fluoropolymer comprises a step of conducting a thermal polymerization of a fluoromonomer in the solvent in the presence of a radical polymerization initiator to produce a fluoropolymer.
  • Japanese Patent Application Laid-Open No. 2000-26509 discloses a method in which dimethyl (2,2'-azobisisobutyrate) is used as an initiator, and at least one fluorinated monomer is supercritically oxidized.
  • a method for producing a fluoropolymer which is thermally polymerized in the same is disclosed.
  • Japanese Patent Application Laid-Open No. 2002-327003 discloses that a radically polymerizable monomer component containing 20% by mass or more of an alkyl fluoride group-containing (meth) acrylate is used as a polymerization solvent using supercritical carbon dioxide as a polymerization solvent.
  • a method for producing a polymer having a fluoroalkyl group to be polymerized is disclosed.
  • JP-A-2001-151802 discloses that a monomer composition containing an ethylenically unsaturated monomer having a carboxyl group such as (meth) acrylic acid is heated in supercritical carbon dioxide in a hot-radical A method for producing a polymer fine powder by polymerizing the polymer powder is disclosed.
  • Japanese Patent Application Laid-Open No. 2002-179707 discloses a radical polymerization initiator which is a polymer having a specific structure, which is substantially soluble in supercritical carbon dioxide in supercritical carbon dioxide.
  • a method for producing polymer fine particles by thermally polymerizing a monomer such as methyl methacrylate is disclosed.
  • Japanese Patent Application Laid-Open No. 2002-128808 discloses a polymerizable monomer such as methyl methacrylate or styrene in supercritical carbon dioxide in the presence of a specific non-polymerizable dispersant such as docosanoic acid or myristic acid.
  • a method for producing a polymer in which a monomer is subjected to thermal radical polymerization is disclosed.
  • An object of the present invention is to provide a polymer including a protrusion having a height that is large relative to a diameter and a high force. It is a further object of the present invention to provide a polymer having a projecting portion, which contains an additional caro component for adding the function of the polymer. Another object of the present invention is to provide a method for easily producing a polymer having such a projection.
  • the present invention relates to one or more photopolymerizable polymer precursors containing a photocurable compound having two or more unsaturated bonds by irradiating active energy rays in a supercritical fluid or a subcritical fluid. Is polymerized to produce a polymer having a projection.
  • the present invention provides a method for producing unsaturated bonds by irradiating active energy rays in a supercritical fluid or a subcritical fluid in the presence of one or more additional components for adding a function of a polymer.
  • Production of a polymer characterized by subjecting one or more photopolymerizable polymerization precursors containing a photocurable compound having two or more to photopolymerization to produce a polymer containing the additive component and having a projection. Is the way.
  • the present invention is a polymer including a projection in which the height of the projection is 0.1 times or more the diameter of the projection and the height of the projection is lOnm or more.
  • the present invention is a polymer containing one or more additional components for adding a function of the polymer, the polymer having a protrusion.
  • the “polymer having a protrusion” refers to a polymer having a protrusion or a polymer having one or more protrusions.
  • the polymer itself is referred to as a “projection”
  • the projection is referred to as a “projection”.
  • “Polymer including protrusion” includes a so-called polymer brush, but is not limited thereto.
  • a film or plate made of a polymer and having a plurality of protrusions on its surface, or a protrusion itself made of a polymer is also included in the present invention.
  • the method of the present invention it is possible to easily produce a polymer including projections having a height that is large and a height that is high with respect to the diameter.
  • the polymer containing the obtained protrusions has, for example, a height of the protrusions of 0.1 times or more of the diameter, and more than 1 time of the diameter, and a height of the protrusions of at least SlOnm, and more than 1 m. It is.
  • a polymer including a protruding portion having a height that is higher than the diameter is not obtained conventionally.
  • a polymer containing a projection containing the additional component can be easily produced.
  • the photopolymerizable polymerization precursor to be polymerized (hereinafter, also referred to as "polymerization precursor") and optional components used as necessary can be appropriately selected. Also, by changing the pressure, Z, or temperature during the polymerization reaction, the solubility of the polymerization precursor and the additional component in the solvent (supercritical fluid or subcritical fluid) can be changed, so that the polymerization pressure and polymerization By controlling the temperature, it is possible to control the composition of the polymer containing the obtained projections. Therefore, according to the production method of the present invention, it is possible to obtain a polymer having projections having various physical properties and functions.
  • composition of the polymerization precursor to be polymerized and the additive component to be contained during the polymerization or by fluctuating at least one of the pressure and the temperature during the polymerization, for example, the obtained protrusion is formed.
  • the composition of the polymer to be contained can be changed, for example, in the film thickness direction (perpendicular to the substrate surface).
  • the polymer having a protruding portion of the present invention is expected to be applied to various uses including the use of a conventional polymer brush, in addition to its unique form, and to a novel functional structure. It is also expected to be realized.
  • the polymer of the present invention in which the height of the projection is 0.1 times or more the diameter of the projection and the height of the projection is 10 ⁇ m or more is high regardless of the composition of the polymer. It has water repellency. Therefore, the same water repellency as a fluorine resin such as PTFE (polytetrafluoroethylene) frequently used in the water repellent treatment can be provided.
  • PTFE polytetrafluoroethylene
  • a polymer including a projection can be formed on an active energy ray transmitting substrate arranged so as to be exposed to a supercritical fluid or a subcritical fluid.
  • the active energy ray transmitting base material is arranged so that the active energy ray incident surface is not exposed to the supercritical fluid or subcritical fluid, and the active energy beam emitting surface is exposed to the supercritical fluid or subcritical fluid.
  • a polymer including a projection can be easily formed selectively on a portion where the active energy ray has passed. That is, for example, it is possible to form a polymer including projections containing an additive component having a desired fine pattern on a substrate.
  • a film (hereinafter, also referred to as a “metal film”) mainly composed of a metal having a different microstructure and Z or a metal oxide can be easily formed.
  • the polymer containing the protrusions of the present invention in which the additive component is one or more kinds of organometallic complexes, is subjected to a reduction treatment, so that the organometallic complex is converted into a metal and, depending on the type of metal, a metal oxide. It is also possible to easily form a polymer containing a metal, Z and a metal oxide containing a protrusion.
  • FIG. 1 is a schematic configuration diagram of an example of a manufacturing apparatus used to carry out a manufacturing method of the present invention.
  • FIG. 2 is a schematic configuration diagram of an example of a manufacturing apparatus used to carry out the manufacturing method of the present invention.
  • FIG. 4 is an SEM photograph of a metal Pt film obtained in Example 1.
  • FIG. 5 is an SEM photograph of a polymer having a protrusion obtained in Example 5.
  • FIG. 6 is an SEM photograph of a polymer having a protrusion obtained in Example 6.
  • FIG. 7 is a SEM photograph of a polymer having a protrusion obtained in Example 7.
  • FIG. 8 is an SEM photograph of the polymer film obtained in Reference Example 1.
  • FIG. 9 is a schematic cross-sectional view of the polymer film obtained in Reference Example 1.
  • a supercritical fluid or a subcritical fluid is used as a polymerization solvent.
  • the supercritical fluid refers to a fluid in which both the temperature and the pressure exceed the critical point, that is, the fluid is in the state of being at or above the critical temperature and at or above the critical pressure.
  • Critical temperature and critical pressure are values specific to a substance.
  • the critical temperature of carbon dioxide is 30.9 ° C and the critical pressure is 7.38MPa.
  • the critical temperature of methanol is 239.4 ° C and the critical pressure is 8.09MPa.
  • the critical temperature of water is 374.1 ° C and the critical pressure is 22.12MPa.
  • a subcritical fluid is a fluid that has the same effect as a supercritical fluid, and usually has a temperature of 0.65 times or more of the critical temperature in Kelvin and a pressure of 0.65 times or more of the critical pressure. Refers to fluid.
  • the supercritical fluid or the subcritical fluid can be appropriately selected depending on the solubility of the polymerization precursor and the like.
  • examples of supercritical fluids or subcritical fluids include alcohols such as carbon dioxide, water, methane, ethane, ethylene, propylene, propylene, and methanol, and ammonia.
  • Chlorofluorocarbons Chlorofluorocarbons, carbon monoxide and the like.
  • an inorganic gas such as nitrogen, helium, and argon can be used.
  • supercritical fluids or subcritical fluids can be a mixture of two or more. Above all, supercritical diacid carbon or subcritical diacid carbon is preferred because it becomes supercritical or subcritical at a relatively low temperature and low pressure.
  • the amount of the supercritical fluid or subcritical fluid used can be appropriately determined according to the polymerization precursor, reaction conditions, and the like.
  • the charged concentration of the polymerization precursor can be about 1% to 70% by mass.
  • a supercritical fluid or a subcritical fluid is used as a reaction field, but other liquids or gases may be present.
  • the polymer precursor which is a solute is used.
  • a co-solvent may be used to assist in dissolving the body, additive components or photopolymerization initiator.
  • the entrainer depends on the supercritical fluid or subcritical fluid used, the polymerization precursor, etc. Can be selected appropriately.
  • examples of the entrainer include methanol, ethanol, propane, butane, hexane, octane, acetic acid, ethyl acetate, acetone, water, and acetonitrile. , Dichloromethane and the like.
  • One end trainer may be used, or two or more end trainers may be used in combination. The amount of entrainer used can be determined as appropriate.
  • the pressure during the polymerization reaction can be appropriately determined according to the supercritical fluid or subcritical fluid as the polymerization solvent, the polymerization precursor, the properties of the target polymer, and the like.
  • the polymerization pressure is more preferably not less than 0.65 times the critical pressure of the fluid, and more preferably not less than the critical pressure.
  • the polymerization pressure is preferably 5 MPa or more, more preferably 7 MPa or more, and more preferably the critical pressure is 7.4 MPa or more.
  • the polymerization pressure is in this range, the polymerization reaction proceeds more favorably, and a higher quality polymer can be obtained.
  • the upper limit of the polymerization pressure is not particularly limited, it can be generally set to a range of 150 MPa or less from the viewpoint of the pressure resistance of the apparatus.
  • the polymerization pressure may be kept constant from the start to the end of the polymerization, or may be changed during the polymerization, such as increasing or decreasing the pressure as the polymerization proceeds.
  • the temperature during the polymerization reaction can be appropriately determined according to the supercritical fluid or subcritical fluid as the polymerization solvent, the polymerization precursor, the properties of the target polymer, and the like.
  • the polymerization temperature is more preferably at least 0.65 times the critical temperature of the fluid, and more preferably at least the critical temperature.
  • the polymerization temperature is preferably 20 ° C or higher, more preferably 30 ° C or higher, and more preferably the critical temperature is 31 ° C or higher. preferable.
  • the polymerization temperature is in this range, the polymerization reaction proceeds more favorably, and a higher quality polymer can be obtained.
  • the upper limit of the polymerization temperature is not particularly limited, it can be usually set in the range of 250 ° C. or lower.
  • the polymerization temperature may be kept constant from the start to the end of the polymerization, or may be varied during the polymerization.
  • the polymerization precursor in carbon dioxide at a pressure of 5 MPa or more and a temperature of 20 ° C. or more. It is preferable to photopolymerize the polymerization precursor.
  • a supercritical fluid or subcritical fluid changes its density and polarity depending on pressure and temperature. Can. This makes it possible to change the solubility of the polymerization precursor and the optional component as an additive component in a solvent (supercritical fluid or subcritical fluid). Therefore
  • the composition of the obtained polymer can be controlled by controlling the polymerization pressure and the polymerization temperature. Further, by changing at least one of the pressure and the temperature during the polymerization, the composition of the obtained polymer can be changed, for example, in a direction perpendicular to the substrate surface.
  • one or more polymerization precursors such as monomers
  • one or more polymerization precursors in a supercritical fluid or a subcritical fluid as described above Photopolymerization is performed by irradiation with active energy rays in the presence of an additive component and a photopolymerization initiator.
  • the polymerization precursor to be polymerized contains one or more photocurable compounds which are compounds having two or more unsaturated bonds.
  • the active energy ray to be irradiated can be appropriately determined according to the polymerization precursor, the photopolymerization initiator, and the like.
  • Examples of active energy rays include ultraviolet rays having a wavelength of 10 to 380 nm, visible rays having a wavelength of 380 to 780 nm, and near infrared rays having a wavelength of 780 nm (0.78 ⁇ m) to 2.5 ⁇ m.
  • ultraviolet or visible light having a wavelength of 500 nm or less, or ultraviolet or visible light having a wavelength of 420 nm or less is used as the active energy ray, particularly ultraviolet light having a wavelength of 380 nm or less, and even ultraviolet light having a wavelength of 330 nm or less.
  • the active energy ray may have a single wavelength, or may include light of the above-mentioned wavelength which does not have to have one peak in the spectral distribution (emission distribution). It may have any spectral distribution.
  • lamps used for active energy ray irradiation
  • those generally used can be used.
  • the irradiation amount (integrated light amount) of the active energy ray can be appropriately determined according to the desired degree of polymerization of the polymer, the height of the projections of the polymer including the projections, and the like.
  • the dose of active energy rays for example, 0.5mjZcm 2 - lOOjZcm can be 2, were bears more preferably LrujZcm 2 than on it, LOjZcm 2 or less being more preferred.
  • the irradiation amount of the active energy ray is
  • the irradiation amount of the active energy ray can be adjusted by the irradiation time, lamp output, and the like.
  • intensity of the active energy ray may be appropriately determined, for example, O.OlmWZcm 2 - may be 1 Te la WZcm 2 (TWZcm 2).
  • the irradiation time of the active energy ray should be determined in accordance with the intensity so that a desired irradiation amount can be obtained.
  • a polymerization precursor and, if necessary, an additive component and nanoparticles are contained in a supercritical fluid or a subcritical fluid.
  • an additive component and nanoparticles are contained in a supercritical fluid or a subcritical fluid.
  • photopolymerization is performed by irradiating with active energy rays.
  • the nanoparticles include nanocarbon and CdSe.
  • the polymerization precursor is not particularly limited as long as it is soluble in a supercritical fluid or subcritical fluid as a solvent and has photopolymerizability.
  • the polymerization precursor can also be polymerized while a part thereof is dissolved in a supercritical fluid or a subcritical fluid. Further, the polymerization precursor may be a monomer, an oligomer or a polymer.
  • a photocurable compound which is a compound having two or more unsaturated bonds is used as a polymerization precursor.
  • a polymerization precursor having one unsaturated bond can be used together with the photocurable compound.
  • the polymerization precursor for example, it may have a substituent and may have a maleimide group or a substituent. And may have a (meth) atalyloyl group or a substituent! / Or may have a cyclic ether structure, an optionally substituted alkyl group or a substituent.
  • the (meth) atalyloyl group means an atalyloyl group and a methacryloyl group. When it has two or more of these groups, it may have only the same group or different groups.
  • the substituent is not particularly limited as long as it does not inhibit the polymerization reaction, and examples thereof include a hydrocarbon group having 12 or less carbon atoms, a halogen atom, an amino group, a carboxyl group, a hydroxyl group, and a cyano group.
  • a self-luminous polymerizable compound which is a photopolymerizable compound in the absence of a photopolymerization initiator is preferable.
  • a maleimide-based compound having at least two maleimide groups is preferable.
  • a maleimide-based compound represented by the following general formula (1) may be mentioned.
  • A is a hydrocarbon group which may have a substituent or a group wherein the hydrocarbon group which may have a substituent also has an ether bond, an ester bond, a urethane bond, and a carbonate bond force.
  • B represents an ether bond, an ester bond, a urethane bond or a carbonate bond
  • R represents a substituent.
  • m represents an integer of 2 to 6, provided that B and R do not need to be the same even if two or more are mixed There.) 0 [0071]
  • m is preferably an integer of 2 to 6 from the viewpoint of forming a cured film by itself.
  • R in the general formula (1) is preferably an alkylene group, a cycloalkylene group, an arylalkylene group, or a cycloalkylalkylene group.
  • the alkylene group may be linear or branched.
  • the arylalkylene group or cycloalkylalkylene group may have an aryl group or a cycloalkyl group in the main chain, or may have an aryl group or a cycloalkyl group in the branched chain.
  • R is preferably a straight-chain alkylene group having 115 carbon atoms or a branched alkylene group having 115 carbon atoms from the viewpoint of curability.
  • R in the general formula (1) include, for example, a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group, an octamethylene group, and a nonamethylene group.
  • Linear alkylene groups such as, decamethylene group, pendecamethylene group, dodecamethylene group; 1-methylethylene group, 1-methyl-trimethylene group, 2-methyl-trimethylene group, 1-methyl-tetramethylene group, 2-methyl- Branched alkylene groups such as tetramethylene group, 1-methylpentamethylene group, 2-methyl-pentamethylene group, 3-methyl-pentamethylene group and neopentylene group; cycloalkylene groups such as cyclopentylene group and cyclohexylene group; Benzylene group, 2, 2-diphenyl-root rimethylene group, 1 phenylene group, 1 Arylene alkylene groups having aryl groups in the main chain or side chains such as phenyltetraethylene group and 2-phenyltetraethylene group; cyclohexylmethylene group, 1-cyclohexylethylene group, 1-cyclohexyl group A cycloalkylene alkylene group having a cycloalky
  • a in the general formula (1) represents a hydrocarbon group which may have a substituent, or a hydrocarbon group which may have a substituent has an ether bond, an ester bond, a urethane bond, A (poly) ether linked chain or (poly) ether residue (A-1), (poly) ester linked chain or (poly) ether having a molecular weight of 40-100,000 linked by at least one bond selected from the group consisting of carbonate bond strengths; Poly) ester residue (A-2), (poly) urethane linked chain or (poly) urethane residue (A-3) or (poly) carbonate linked chain or (poly) carbonate residue (A-4) ).
  • A may be a linking chain composed of an oligomer or a polymer in which these linking chains are repeated as one unit and repeated! /.
  • a in the general formula (1) is a hydrocarbon group which may have a substituent
  • specific examples thereof include the hydrocarbon groups mentioned as specific examples of R.
  • (A-1) at least one hydrocarbon group selected from the group consisting of a linear anolexylene group, a branched anolexylene group, a cycloanolexylene group, and an arylene group (Poly) ether with a molecular weight of 40-100,000
  • (A-2-1) a linear alkylene group, a branched alkylene group, a cycloalkylene group, and an aryl group.
  • At least one hydrocarbon group selected from the group consisting of: A linking chain or residue composed of (poly) ester (poly) ol having a molecular weight of 40-100,000 and having those repeating units;
  • (A-2-2) a linear alkylene group, a branched alkylene group, a cycloalkylene group, and an aryl group.
  • At least one hydrocarbon group selected from the group consisting of: (Poly) ether (poly) ol having a molecular weight of 40 to 100,000 having these repeating units is esterified with G, tree, penter, and hexacarboxylic acid (hereinafter abbreviated as polycarboxylic acid).
  • A-5) a linear alkylene group, a branched alkylene group, a cycloalkylene group, and an aryl group, wherein at least one hydrocarbon group selected from the group consisting of 100—40,000 (poly) epoxy A linking chain or residue obtained by opening the ring;
  • (A-3-1) a linear alkylene group, a branched alkylene group, a cycloalkylene group, and an aryl group; at least one hydrocarbon group selected from the group consisting of A linking chain or residue composed of a (poly) ether (poly) isocyanate obtained by urethane-forming a (poly) ether (poly) ol having a molecular weight of 40 to 100,000 having these repeating units and an organic (poly) isocyanate;
  • (A-3-2) a linear alkylene group, a branched alkylene group, a cycloalkylene group, and an aryl group; at least one hydrocarbon group selected from the group consisting of A linking chain or residue composed of a (poly) ester (poly) isocyanate obtained by urethane-forming a (poly) ester (poly) ol having a molecular weight of 40 to 100,000 having these repeating units and an organic (poly) isocyanate;
  • (A-4) a linear alkylene group, a branched alkylene group, a cycloalkylene group, and an aryl group: a molecular weight having at least one hydrocarbon group selected from the group consisting of: Linking chains or residues composed of 40-100,000 (poly) ether (poly) ol carbonates;
  • (A-2-1), (A-2-2) and (A-2-3) are represented by the general formula (1), and are represented by (poly) ester connecting chain or (poly) ester residue.
  • (A-3-1) and (A-3-2) are represented by ( ⁇ ⁇ ) (poly) urethane connecting chain or (poly) urethane residue (A-3) in the general formula (1).
  • Examples of the (poly) ether (poly) ol constituting the linking chain or the residue (A-1) include, for example, polyalkylene such as polyethylene glycol, polypropylene glycol, polybutylene glycol, and polytetramethylene glycol.
  • Glycols ethylene glycol, propanediol, propylene glycol, tetramethylene glycol, pentamethylene glycol, hexanediol, neopentyl glycol, glycerin, trimethylonolepropane, pentaerythritol, diglycerin, ditrimethylolpropane, dipentaerylis And ethylene oxide-modified, propylene oxide-modified, butylene oxide-modified and tetrahydrofuran-modified alkylene glycols such as liter. Among them, various modified products of alkylene glycols are preferred.
  • the above-mentioned connecting chain or I s the (poly) ether (poly) ol that constitutes the residue (A-1), such as a copolymer of ethylene oxide and propylene oxide, a copolymer of propylene glycol and tetrahydrofuran, and a copolymer of ethylene glycol and tetrahydrofuran.
  • Copolymers, hydrocarbon polyols such as polyisoprene glycol, hydrogenated polyisoprene glycol, polybutadiene glycol, hydrogenated polybutadiene glycol, and polytetramethylenehexaglyceryl ether (hexaglycerin modified with tetrahydrofuran). Valent hydroxyl group conjugates and the like.
  • Examples of the (poly) ester (poly) ol constituting the above-mentioned linking chain or residue (A-2-1) include, for example, polyethylene glycol, polypropylene glycol, polybutylene glycol, polytetramethylene glycol and the like.
  • Polyalkylene glycols or ethylene glycol, propanediol, propylene glycol, tetramethylene glycol, pentamethylene glycol, hexanediol, neopentyl glycol, glycerin, trimethylolpropane, pentaerythritol, diglycerin, ditrimethylolpropane, alkylene glycolate le such as dipentaerythritol epsilon - force Purorataton modified products, .gamma.
  • adipic acid Aliphatic polyester polyols which are esterified products of aliphatic dicarboxylic acids such as dimer acid and polyols such as neopentyldaricol and methylpentanediol; aromatic dicarboxylic acids such as terephthalic acid and neopentyl glycol Polyester polyols such as aromatic polyester polyols which are esterified with polyols; polyhydric hydroxyl conjugates such as polycarbonate polyols, acrylic polyols, polytetramethylenehexaglyceryl ether (hexaglycerin modified with tetrahydrofuran) Esterified with a dicarboxylic acid such as fumaric acid, phthalic acid, isophthalic acid, itaconic acid, adipic acid, sebacic acid, or maleic acid
  • the (poly) carboxylic acid ⁇ (poly) ether (poly) ol ⁇ ester having a polycarboxylic acid at the terminal constituting the linking chain or residue ( ⁇ -2-2) includes, for example, succinic acid , Adipic acid, phthalic acid, hexahydrophthalic acid, tetrahydrophthalic acid, fumaric acid, isophthalic acid
  • Polycarboxylic acids such as acid, itaconic acid, adipic acid, sebacic acid, maleic acid, trimellitic acid, pyromellitic acid, benzenepentacarboxylic acid, benzenehexacarboxylic acid, citric acid, tetrahydrofurantetracarboxylic acid, and cyclohexanetricarboxylic acid
  • Polycarboxylic acids such as acid, itaconic acid, adipic acid, sebacic acid, maleic acid, trimellitic acid, pyromellitic acid,
  • the (poly) carboxylic acid ⁇ (poly) ester (poly) ol ⁇ ester having a polycarboxylic acid at the terminal constituting the linking chain or the residue (A-2-3) includes, for example, succinic acid , Adipic acid, phthalic acid, hexahydrophthalic acid, tetrahydrophthalic acid, fumaric acid, isophthalic acid, itaconic acid, adipic acid, sebacic acid, maleic acid, trimellitic acid, pyromellitic acid, benzenepentacarboxylic acid, Di-, tri-, penta-, and hexa-carboxylic acids such as benzenehexacarboxylic acid, citric acid, tetrahydrofuran tetracarboxylic acid, and cyclohexanetricarboxylic acid, and the (poly) ester (poly) shown in (A-2) above (Poly) carboxylic acid, and
  • Examples of the (poly) epoxide constituting the above-mentioned connecting chain or residue (A-5) include (methyl) epichlorohydrin, bisphenol A and bisphenol F, and ethylene oxide thereof. Epiclorhydrin modified bisphenol type epoxy resin synthesized with denatured product, propylene oxide modified product, etc .; (methyl) epichlorohydrin, hydrogenated bisphenol A, hydrogenated bisphenol F, Epichlorohydrin-modified hydrogenated bisphenol-type epoxy resins and epoxy novolak resins synthesized from ethylene oxide-modified products, propylene oxide-modified products, etc .; phenol, biphenol, etc.
  • aromatic epoxy such as glycidyl ester of terephthalic acid, isophthalic acid or pyromellitic acid
  • Glycols such as (poly) ethylene glycol, (poly) propylene glycol, (poly) butylene glycol, (poly) tetramethylene glycol, neopentyl glycol, and the like; polyglycidyl ethers of alkylene oxide modified products thereof; trimethylol Fats such as propane, trimethylolethane, glycerin, diglycerin, erythritol, pentaerythritol, sorbitol, 1,4 butanediol, 1,6 xandiol Glycidyl ethers of aliphatic polyhydric alcohols and modified alkylene oxides thereof; Glycidyl esters of carboxylic acids such as adipic acid, sebacic acid, maleic acid
  • Examples of the (poly) ester (poly) isocyanate constituting the above-mentioned linking chain or residue (A-3) include, for example, methylene diisocyanate, hexamethylene diisocyanate, and trimethylhexamate.
  • Aliphatic diisocyanates such as tylene diisocyanate, tetramethylene diisocyanate, lysine diisocyanate and dimer acid diisocyanate; 2,4 tolylene diisocyanate, 2,4-tolylene diisocyanate Dimer of cyanate, 2,6-tolylene diisocyanate, p-xylene diisocyanate, m-xylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 1,5 naphthylene diisonate Cyanate, 3, 3 'dimethyl biphenyl-4,
  • Aromatic diisocyanates such as 4 'diisocyanate; isophorone diisocyanate, 4,4'-methylenebis (cyclohexyl isocyanate), methylcyclohexane-1,2,4-diisocyanate , A cycloaliphatic diisocyanate such as methylcyclohexane 2,6-diisocyanate, 1,3- (isocyanatemethylene) cyclohexane, and a (poly) ether (poly) ol. (Poly) ether (poly) isocyanate.
  • Examples of the (poly) ether (poly) ol used in the reaction with the polyisocyanate include polyalkylene glycols such as polyethylene glycol, polypropylene glycol, polybutylene glycol, and polytetramethylene glycol; ethylene glycol and propane.
  • Ethylene oxides of alkylene glycols such as diol, propylene glycol, tetramethylene glycol, pentamethylene glycol, hexanediol, neopentyl glycol, glycerin, trimethylolpropane, pentaerythritol, diglycerin, ditrimethylolpropane, dipentaerythritol
  • Various modifications of alkylene glycols are preferred.
  • the (poly) ether (poly) ol used in the reaction with the polyisocyanate includes a copolymer of ethylene oxide and propylene oxide, a copolymer of propylene glycol and tetrahydrofuran, and a copolymer of ethylene glycol and ethylene glycol.
  • Hydrocarbon polyols such as copolymers with tetrahydrofuran, polyisoprene glycol, hydrogenated polyisoprene glycol, polybutadiene glycol, hydrogenated polybutadiene glycol; polytetramethylenehexaglyceryl ether (hexaglycerin modified with tetrahydrofuran) And the like.
  • Examples of the (poly) ester (poly) isocyanate constituting the linking chain or the residue (A-3-1) include, for example, the polyisocyanate mentioned for the linking chain or the residue (A-1). And (poly) ester (poly) ol, and (poly) ester (poly) isocyanate obtained by urethane-dani.
  • Examples of the (poly) ester (poly) ol used for the reaction with the polyisocyanate include ethylene glycolone, propanediol, propylene glycol, tetramethylene glycol, pentamethylene glycol, hexanediol, and neopentyl.
  • aliphatic polyester polyol which is an esterified product of an aliphatic dicarboxylic acid such as adipic acid and dimer acid with a polyol such as neopentyldaricol and methylpentanediol
  • Polyester polyols such as aromatic polyester polyols which are esterified products of aromatic dicarboxylic acids such as terephthalic acid and polyols such as neopentyl glycol; polycarbonate polyols, acrylic polyols, polytetramethylene hexaglyceryl ether (hex)
  • the (poly) ether (poly) ol constituting the above-mentioned linking chain or residue ( ⁇ -4) For example, the (poly) ether (poly) ol mentioned for the connecting chain or residue (A-1) can be mentioned.
  • (Poly) ether examples of compounds used for carbonate esterification with (poly) ol include dimethyl carbonate, dipropyl carbonate, and phosgene. Alternatively, polycarbonate can be produced by alternate polymerization of epoxide and carbon dioxide.
  • a in the general formula (1) represents a linear alkylene group having 2 to 24 carbon atoms, a branched alkylene group having 2 to 24 carbon atoms, or an alkylene having 2 to 24 carbon atoms having a hydroxyl group.
  • Molecular weight linked by at least one bond selected from the group consisting of 100,000 (poly) ether linked chains or (poly) ether residues (A: L) are (poly) ester linked chains or (poly) ester residues
  • (A-2) preferably includes a straight-chain alkylene group having 2 to 24 carbon atoms, a branched alkylene group having 2 to 24 carbon atoms, an alkylene group having 2 to 24 carbon atoms having a hydroxyl group, and a Z or aryl group
  • (Poly) ether linked chain or (poly) ether residue (A-1) having a molecular weight of 100-100,000, which also has a repeating unit force, or a linear alkylene group having 2-24 carbon atoms, or a branched alkylene group having 224 carbon atoms
  • Poly) ester linked chain or (poly) ester residue having a molecular weight of 100-100,000 which also has a repeating unit force containing an alkylene group having 2-24 carbon atoms having a hydroxyl group and a Z or aryl group (A-2) Is more preferred ⁇ .
  • R is an alkylene group having 15 to 15 carbon atoms
  • B is represented by —COO— or —OCO— from the viewpoint of curability.
  • A is an ester bond
  • A is a linear alkylene group having 2 to 6 carbon atoms, a branched alkylene group having 2 to 6 carbon atoms or an alkylene group having 2 to 6 carbon atoms having a hydroxyl group.
  • a maleimide compound which is a (poly) ether-linked chain or (poly) ether residue (A-1) is preferred.
  • Examples of such a maleimide-based compound include polyetherbismaleimide acetate represented by the following general formula (2). [0092] [Formula 2]
  • R 1 represents an alkylene group, and n is an integer of 1 to 1,000.
  • the maleimide compound represented by the general formula (1) can be synthesized, for example, from a maleimide compound having a carboxyl group and a compound that reacts with the carboxyl group by a known method.
  • the compound that reacts with a carboxyl group include, for example, at least one hydrocarbon group selected from the group consisting of a linear alkylene group, a branched alkylene group, a cycloalkylene group, and an aryl group.
  • Examples thereof include 2- to 6-functional polyols or polyepoxides having an average molecular weight of 100 to 1,000,000 and having one or a repeating unit thereof bonded thereto.
  • the maleimide compound represented by the general formula (1) can be synthesized from a maleimide compound having a hydroxyl group and a compound that reacts with the hydroxyl group by a known method.
  • the compound that reacts with the hydroxyl group includes, for example, at least one hydrocarbon group selected from the group consisting of a linear alkylene group, a branched alkylene group, a cycloalkylene group, and an aryl group.
  • Di-, tri-, penta-, hexyl-carboxylic acid having two to six carboxyl groups, ether bonds or ester bonds in one molecule having an average molecular weight of 100 to 1,000,000 having one or a repeating unit thereof, (Poly) isocyanate, carbonate, phosgene and the like.
  • polymerization precursor examples include the following compounds.
  • Examples of the compound having one maleimide group include methylmaleimide, hexylmaleimide, N-phenylmaleimide, N- (2-tert-butylphenyl) maleimide, and N- (2-fluorene-phthalate).
  • Compounds having two or more maleimide groups include, for example, ⁇ , ⁇ 'ethylene bismaleimide, ⁇ , ⁇ '-hexamethylene bismaleimide, ⁇ , ⁇ '—4,4'-biphenylbismaleimide, ⁇ , ⁇ 'One 3,3'-biphenylbismaleimide, ⁇ , ⁇ ' — (4,4, diphenylmethane) bismaleimide, ⁇ , N'—3,3-diphenylmethanebismaleimide, ⁇ , ⁇ '— 4,4-diphenylmethanebismaleimide, ⁇ , ⁇ '-methylenebis (3-chloro- ⁇ -phenylene) bismaleimide, ⁇ , ⁇ '—4,4'dicyclohexylmethanebismaleimide, ⁇ , ⁇ '— (2,2,1-diethyl-6,6'dimethyl-4,4'-methylenediphenyl-bismaleimide), ⁇ , ⁇ '-1
  • a maleimide compound obtained by the reaction of 3,4,4 'triaminodiphenylmethane, triaminophenol or the like with maleic anhydride, tris- (4-aminophenyl) phosphate or tris- (4-aminophenyl) ) -Maleimide compounds obtained by the reaction of thiophosphate and maleic anhydride are also included.
  • Examples of the fluorinated bismaleimide-based compound include 2,2'bis (4-maleimidophenol) hexafluoropropane and 2,2'bis [4- (3-maleimidophenol).
  • Examples of the maleimide-based compound also include oligomers and polymers having one or more maleimide groups.
  • the type of the oligomer is not particularly limited, and examples thereof include those obtained by a Michael addition reaction of the above maleimide compound with a polyamine, and those obtained by reacting maleic acid and ⁇ or maleic anhydride with diamine. And the like.
  • a polyimide precursor having a terminal anhydride group obtained by reacting tetracarboxylic dianhydride with diamine, and maleimi which is a reaction product of an epoxy resin and a maleimide group-containing monocarboxylic acid.
  • a product obtained by reacting a hydroxyl group-containing maleimide conjugate such as a maleimide compound, which is a reaction product of a maleimide group-containing monocarboxylic acid with a polyol conjugate.
  • one or more maleimide groups may be a urethane resin, an epoxy resin, a polyester resin, a polyether resin, an alkyd resin, a polychlorinated butyl resin, Compounds bonded to polymer components or oligomer components such as fluorine resin, silicone resin, butyl acetate resin, phenol resin, polyamide resin, and two or more modified resins are also included.
  • Examples of the compound having one or more (meth) atalyloyl groups include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and (meth) acrylate.
  • Other compounds having two or more (meth) atalyloyl groups include, for example, 1,4-butanediol di (meth) atalylate, neopentyl glycol di (meth) atalylate, propylene oxide-modified neopentyl glycol Di (meth) acrylate, neopentyl glycol hydroxypropionate di (meth) acrylate, neopentyl glycol hydroxyvivalate di (meth) acrylate, 1,6 xandiol di (meth) acrylate, 1,9-nonandiol (Meth) acrylate, tripropylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, pro Lenoxide-modified trimethylolpropane tri (meth) ata
  • Dicyclopentenyl cinnamate diethylene glycol dicyclopentyl monoether, (meth) acrylic acid ester of oligooxyethylene or oligopropylene glycol dicyclopentenyl monoether, and the like.
  • 3,9 bis (1,1-bismethyl-2-cyclohexyl) spiro [5,5] pandecane such as dicyclopentenoxicetyl monofumarate or difumarate, 3,9 bis (1,1 bismethyl-2-oxoxetyl) ) —2,4,8,10-Tetraoxaspiro [5,5] ⁇ decane, 3,9-bis (2-oxoshetyl) spiro [5,5] ⁇ decane, 3,9 bis (2-oxoshetyl) — Mono, di (meth) acrylates, such as 2,4,8,10-tetraoxaspiro [5,5] indene, Log recall Echirenokishido or Puropi
  • oligomers and polymers having one or more (meth) atalyloyl groups are also included.
  • the type of this oligomer is not particularly limited, and examples thereof include oligoethylene glycol, epoxy resin oligomer, polyester resin oligomer, polyamide resin oligomer, urethane resin oligomer, oligobutyl alcohol, and phenol resin oligomer. And so on.
  • epoxy resin oligomers for example, diglycidyl ether diatalylate of bisphenol A
  • epoxy resin oligomers of acrylic acid and methyltetrahydrophthalic anhydride for example, epoxy resin oligomers of acrylic acid and methyltetrahydrophthalic anhydride.
  • reaction product reaction product of epoxy resin oligomer with 2-hydroxyethyl acrylate, reaction product of epoxy resin oligomer with diglycidyl ether and diarylamine, reaction product of glycidyl diatalylate with phthalic anhydride Ring-opening copolymerized ester, ester of methacrylic acid dimer and polyol, atalylic acid, phthalic anhydride, propylene oxide and polyester obtained, reaction of oligoethylene glycol, maleic anhydride, and glycidyl methacrylate Object, oligobutyl alcohol and N-methylo The reaction product of acrylamide, oligobutyl alcohol esterified with anhydrous succinic acid and then added with glycidyl methacrylate, and ⁇ , ⁇ '-diaminodiphenyl is reacted with diaryl ester of pyromellitic dianhydride.
  • Oligomer obtained by the reaction a reaction product of ethylene maleic anhydride copolymer with arylamine, a reaction product of methyl vinyl ether maleic anhydride copolymer with 2-hydroxyethyl acrylate, and further glycidyl.
  • oligomer having a (meth) atalyloyl group examples include oligoethylene dalichol di (meth) acrylate, norphenol EO modified (meth) acrylate, oligopropylene glycol di (meth) acrylate, Neopentyl glycol di (meth) acrylate, butylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol poly (meta) ) Acrylates, bisphenol A diglycidyl ether di (meth) acrylate, oligoester (meth) phthalate and the like.
  • a (meth) atalyloyl group-containing silicone oligomer in which at least one terminal silicon atom is bonded with one or more groups containing a (meth) atalyloyl group or a (meth) atalyloyl group is also exemplified.
  • Examples of the structure of the silicone oligomer itself include those containing at least one of an alkylsiloxane structural unit having 2 or more carbon atoms, an arylsiloxane structural unit, and an aralkylsiloxane structural unit.
  • Atalyloyl groups are used.
  • Urethane-based resin, epoxy-based resin, polyester-based resin, polyether-based resin, alkyd-based resin, and polychlorinated vinyl-based resin Compounds bonded to polymer or oligomer components such as resin, fluorine resin, silicone resin, butyl acetate resin, phenol resin, polyamide resin, and modified resin of two or more of these. are also mentioned.
  • Examples of the compound having one or more cyclic ether structures include a cyclic ether structure containing 2 to 12 carbons and 16 oxygens, particularly a cyclic ether structure having one or more bridged structures containing O. And ethereal conjugates. More specifically, a compound having an epoxy ring such as a glycidyl group can be used.
  • Examples of the compound having one or more cyclic ether structures include ethylene glycol diglycidyl ether, trimethylolpropane triglycidyl ether, and the like.
  • oligomers and polymers having one or more cyclic ether structures are also included.
  • Examples of the oligomer having a cyclic ether structure include oligoethylene glycol diglycidyl ether.
  • one or more of these groups having a cyclic ether structure may be used.
  • Polymer resins such as polyamide resins and modified resins of two or more of these resins may also be used.
  • Examples of the compound having one or more alkyl groups include a compound having one or more vinyl groups and one or more Z or aryl groups.
  • Examples of the compound having one or more alkenyl groups include polybutyl cinnamate.
  • alkenyl groups are used.
  • Urethane-based resin, epoxy-based resin, polyester-based resin, polyether-based resin, alkyd-based resin, polychloride-based resin, fluorine-based resin Compounds bonded to polymer components or oligomer components such as resin, silicone resin, butyl acetate resin, phenol resin, polyamide resin and modified resin of two or more of these are also included.
  • Examples of the compound having one or more vinylene groups include a compound having an ethylenically unsaturated double bond, and an unsaturated polyester.
  • the thing includes, for example, polybulcinnamate.
  • At least one vinylene group is a urethane-based resin, an epoxy-based resin, a polyester-based resin, a polyether-based resin, an alkyd-based resin, a polychlorinated butyl-based resin, or a fluorine-based resin.
  • Compounds bonded to a polymer component or an oligomer component such as resin, silicone resin, butyl acetate resin, phenol resin, polyamide resin, and two or more modified resins thereof are also included.
  • Examples of the compound having one or more styryl groups include styrene, ⁇ -methylstyrene, ⁇ -methinolestyrene, ⁇ -methyl- ⁇ -methylstyrene, ⁇ -methoxystyrene, ⁇ -methoxystyrene, and 2,4. Examples include dimethylstyrene, chlorostyrene, bromostyrene and the like. In addition, polybutylbenzaracetophenones, polyvinylstyryl pyridines and the like can be mentioned. Can be
  • one or more styryl groups may be a urethane resin, an epoxy resin, a polyester resin, a polyether resin, an alkyd resin, a polychloride resin, a fluorine resin.
  • Compounds bonded to a polymer component or an oligomer component such as resin, silicone resin, butyl acetate resin, phenol resin, polyamide resin, and two or more modified resins thereof are also included.
  • Examples of the compound having one or more azide groups include 2,6bis (4azidobenzylidene) cyclohexanone, 2,6bis (4'azidobenzyl) methylcyclohexanone, and the like.
  • one or more azide groups may be a urethane resin, an epoxy resin, a polyester resin, a polyether resin, an alkyd resin, a polychloride resin, a fluorine resin.
  • examples include resin-based, silicone-based resin, butyl acetate-based resin, phenol-based resin, polyamide-based resin, and modified resin bonded to a polymer or oligomer component such as modified resin of two or more of these. .
  • a cyano group-containing Bury conjugate such as acrylonitrile and methacrylo-tolyl
  • a halogen-containing vinyl compound such as Shirani butyl and Shirani violetidene
  • Vinyl compounds containing organic acid groups such as butyl acetate and butyl propionate
  • reactive monomers such as ethylene, maleic acid and itaconic acid
  • acrylic-modified silicones chloroethyl vinyl ether, arylglycidyl ether
  • Examples include crosslinkable copolymer monomers such as tyriden norbornene, dibutylbenzene, triaryl cyanurate and triaryl isocyanurate.
  • One of these polymerization precursors may be used alone, or two or more thereof may be used in combination.
  • the composition of the obtained polymer can be changed, for example, in a direction perpendicular to the substrate surface by changing the composition of the polymerization precursor to be polymerized.
  • the additive component for adding the function of the polymer is not particularly limited, and may be an organic substance or an inorganic substance.
  • the additive component to be used can be appropriately selected according to the desired composition and physical properties of the polymer.
  • the functions added by the added components include, for example, an adsorption function, a separation function, a catalyst function, and a medicinal function.
  • the present invention is not limited to these.
  • the additive component is preferably one that performs photopolymerization in a state where at least a part thereof is dissolved in a supercritical fluid or a subcritical fluid, but is dispersed in a supercritical fluid or a subcritical fluid.
  • the photopolymerization may be performed in a state where the photopolymerization is performed.
  • Examples of the additional component include a compound containing a metal (including a complex).
  • Examples of the compound containing a metal include a compound represented by the following general formula (3), a compound represented by the following general formula (4), a compound represented by the following general formula (5), and a compound represented by the following general formula (6) , Those represented by the following general formula (7), and those represented by the following general formula (8).
  • M 1 represents a metal element
  • X 1 represents 0, S, SO or PO.
  • P and q represent M 1 and X 1
  • X 1 It represents a ratio of a value determined by the valence of the metal element M 1. However, if X 1 is 2 or more, X 1 may be one that requires two or more kinds Nag all the same mixed. )
  • M 2 represents a metal element
  • X 2 represents F, Cl, Br, I, CN, NO, CIO or NR ⁇ R ⁇ R
  • R Q1 , R ° 2 , R ° 3 , and R ° 4 may be the same or different. Further, R Q1 , R ° 2 , R ° 3 , and R ° 4 may be a polyvalent ligand such as phthalocyanine. ). t represents a ratio between M 2 and X 2 and is a value determined by the valence of the metal element M 2 . However, if X 2 is 2 or more, X 2 may be those which require two or more kinds Nag all the same mixed. ) [0133] [Formula 5]
  • M 3 represents a metal element
  • R 3 represents hydrogen, a hydrocarbon group or CF.
  • i represents M 3 and
  • OR 3 is a value determined by the valence of the metal element M 3 . However, when there are two or more (OR 3 ), all of R 3 need not be the same, and two or more of them may be mixed. )
  • M 4 represents a metal element
  • R 4 represents hydrogen, a hydrocarbon group, or CF.
  • j represents M 4 and
  • OCOR 4 is a value determined by the valence of the metal element M 4 .
  • R 4 does not need to be all the same, and two or more may be mixed.
  • M 5 represents a metal element
  • R 5 represents hydrogen, a hydrocarbon group or CF.
  • k represents M 5 and
  • R 5 does not need to be all the same.
  • M 6 represents a metal element
  • R 6 and R 7 each independently represent hydrogen, a hydrocarbon group or CF. 1 represents the ratio of M 6 to (R 6 COCH COR 7 ) It represents, to the valence of the metal element M 6 It is a value determined for However, when there are two or more (R 6 COCH COR 7 ), R 6 and R 7 are
  • the above formula (3) The formula (4) M 2 in the above formula (5) in M 3, M 4 in the formula (6) in, M 5 in the above formula (7), as M 6 in the above formula (8) Is not particularly limited, for example, nickel (Ni), gold (Au), silver (Ag), copper (Cu), indium (In), palladium (Pd), platinum (Pt), tin (Sn), Tungsten (W), aluminum (A1) and the like are preferable.
  • M 1 in the formula (3), the formula (4) in M 2, M 3 in the formula (5) wherein M 4 in the formula (6) wherein M 5 in the above formula (7), M 6 in the above formula (8) may be of two or more kinds. That is, an alloy composed of the above-mentioned metal elements may be used.
  • the number of carbon atoms of the hydrocarbon group is Although not particularly limited, 110 is preferable.
  • These hydrocarbon groups include, for example, saturated aliphatic hydrocarbon groups, unsaturated aliphatic hydrocarbon groups, alicyclic hydrocarbon groups, alicyclic-aliphatic hydrocarbon groups, aromatic hydrocarbon groups, and aromatic hydrocarbon groups.
  • Group-aliphatic hydrocarbon groups The aliphatic hydrocarbon group may be linear or branched.
  • hydrocarbon group examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a neopentyl group, and a tert-pentyl group.
  • the content of the metal contained in the above metal compound that is, p and q in the above formula (3), t in the above formula (4), i in the above formula (5), J in the formula (6), k in the formula (7), and 1 in the formula (8) are not particularly limited.
  • examples of the additive component include organometallic complexes such as an organic platinum complex and an organic palladium complex.
  • the organic platinum complex is not particularly limited, and examples thereof include a platinum alkyl complex, a platinum one-year-old refine complex, a platinum arene complex, a platinum phosphine complex, and a platinum phosphite complex.
  • a platinum alkyl complex specifically, Pt (COD), Pt (COD) Me, Pt (COD)
  • COD represents 1,5-cyclooctadiene
  • Me represents methyl
  • Et represents ethyl
  • Bu represents butyl
  • Ph represents phenyl
  • the organic palladium complex is not particularly limited, and examples thereof include PdCl [P (Me)], PdCl (PBu),
  • organometallic complex as an additive component
  • organometallic complex examples include an organic ruthenium complex, an organic cobalt complex, an organic rhodium complex, an organic iridium complex, and an organic nickel complex. These complexes may have any kind of ligand.
  • the produced polymer containing the projections can be metallized by firing.
  • an organometallic complex whose ligand is a hydrocarbon is preferable to use as an additional component.
  • additional components include various medicinal components such as known organic compounds such as blood circulation promoters, anti-inflammatory agents, anti-inflammatory analgesics, antioxidants, antihistamines, bactericides, antibiotics, and steroids.
  • medicinal components such as known organic compounds such as blood circulation promoters, anti-inflammatory agents, anti-inflammatory analgesics, antioxidants, antihistamines, bactericides, antibiotics, and steroids.
  • additive component for adding the function of the polymer may be used, or two or more types may be used in combination.
  • the composition of the obtained polymer can be changed, for example, in a direction perpendicular to the surface of the base material by changing the composition or the amount of the additive component.
  • the amount of the additive component for adding the function of the polymer can be appropriately determined according to the desired composition and physical properties of the polymer.
  • the amount of the added component can be, for example, about 0.001 to 100 parts by weight based on 100 parts by weight of the polymer precursor to be polymerized.
  • the amount of the added component is preferably 0.1 part by weight or more based on 100 parts by weight of the polymerization precursor to be polymerized, and is preferably 50 parts by weight or less based on 100 parts by weight of the polymerization precursor to be polymerized.
  • a photopolymerization initiator is required.
  • the photopolymerization initiator is not particularly limited as long as it is soluble in the supercritical fluid or subcritical fluid or the polymerization precursor, and may be appropriately determined according to the supercritical fluid or subcritical fluid or the polymer precursor to be used. Can be.
  • Examples of the photopolymerization initiator include dialkyl (2, 2 ') such as dimethyl (2,2'-azobisisobutyrate) and ethyl (2,2'-azobisisobutyrate).
  • dialkyl (2, 2 ') such as dimethyl (2,2'-azobisisobutyrate) and ethyl (2,2'-azobisisobutyrate).
  • photopolymerization initiators include, for example, benzoin alkyl ethers such as benzoin, benzoin ethyl ether, benzoin n-propyl ether and benzoin isobutyl ether; 2,2-dimethoxy-2-phenylacetophenone; 1- (4-morpholinophenyl) butane 1-on, 1-hydroxycyclohexylphenol-ketone, diacetyl, diphenylsulfide, eosin, thionine, 9,10-anthraquinone, 2-ethylethyl 9, 10 Anthraquinone and the like.
  • benzoin alkyl ethers such as benzoin, benzoin ethyl ether, benzoin n-propyl ether and benzoin isobutyl ether
  • 2,2-dimethoxy-2-phenylacetophenone 1- (4-morpholinophenyl) butane 1-on, 1-hydroxycyclohexylphenol
  • Examples of the photopolymerization initiator further include aromatic carboxy compounds such as benzophenone, benzoin methyl ether, benzoin isopropyl ether, benzyl, xanthone, thioxanthone, and anthraquinone; acetophenone, propiophenone, and ⁇ -hydroxyisobutyne.
  • Acetophenones such as ruphenone, ⁇ , ⁇ '- dichloro-4phenoxyacetophenone, 1-hydroxy-1-cyclohexylacetophenone, and acetophenone; benzoyl peroxide, tert-butyl-peroxybenzoate, tert-butyl-peroxy Organics such as xy-2-ethylhexanoate, tert-butylhydroxide peroxide, di-tert-butyldiperoxyisophthalate, 3,3 ', 4,4'-tetra (tert-butylperoxycarbol) benzophenone Peroxide; diphene Diphenyl normodium salts such as eodonium bromide and diphenyl eodonium chloride; organic halides such as tetrahydrochloride, carbon tetrabromide, carbon form, and eodoform; Hue - Lou 5 Isookisazoron, 2,4,6
  • One of the above photopolymerization initiators may be used alone, or two or more thereof may be used in combination.
  • the amount of the photopolymerization initiator to be used can be appropriately determined, and for example, can be about 0.1 to 30 parts by mass with respect to 100 parts by mass of the polymerization precursor.
  • the above photopolymerization initiator and a photopolymerization initiation auxiliary agent can be used in combination.
  • the photopolymerization initiation aid include 2-dimethylaminoethyl benzoate, ⁇ , ⁇ ′-dimethylaminoethyl methacrylate, isoamyl ⁇ -dimethylaminobenzoate, ethyl ethyl ⁇ -dimethylaminobenzoate, and the like.
  • a photosensitizer having an interaction with the produced polymer or photopolymerization initiator can be used.
  • the spectral sensitizer include dyes such as thioxanthene, xanthene, ketone, thiopyrylium salt, basestyryl, merocyanine, 3-substituted coumarin, cyanine, atharidin, and thiazine.
  • the term “interaction” includes energy transfer and electron transfer from the excited spectral sensitizer to the polymer and ⁇ or photopolymerization initiator to be produced.
  • 1 shows a schematic configuration diagram of an example of the manufacturing apparatus.
  • 1 is a carbon dioxide cylinder
  • 2 is a pump for supplying carbon dioxide
  • 3 is a reactor capable of maintaining high temperature and high pressure
  • 4 is a temperature control means
  • 5 is a window for entering active energy rays (for example, a quartz window)
  • 5 ' is a window (for example, quartz window)
  • 6 is a light source
  • 7 is a pressure reducing valve
  • 8 is a base material that transmits active energy rays (active energy ray transmitting base material)
  • 9 is a magnetic stirrer
  • 10 is a stirrer (rotating) Child).
  • the window 5 'need not be provided.
  • the active energy single ray permeable base material 8 is arranged inside the active energy ray permeable window 5 provided in the reactor 3.
  • the active energy ray transmitting base material 8 is not exposed to the supercritical carbon dioxide or subcritical carbon dioxide on the surface on the side of the window 5 which is the active energy ray incident surface, and the active energy ray Is arranged such that the exit surface of the substrate is exposed to the supercritical diacid carbon or subcritical diacid carbon.
  • the active energy ray transmitting base material 8 does not need to be disposed so as to be in contact with the window 5, and is provided with an interposing member such as an active energy ray transmitting film.
  • the method of fixing the active energy ray transmitting substrate 8 is not particularly limited.
  • a method is provided in which a window is provided at the bottom of the concave portion of the reactor wall, and the substrate is pressed into the bottom of the recess to make close contact with the window.
  • the substrate is not particularly limited as long as it transmits the active energy rays.
  • Examples thereof include transparent resin or translucent resin, transparent or translucent glass, and metals such as ITO (indium oxide). Oxides and metals are exemplified.
  • the material of the base material is selected in consideration of the composition of the polymer to be formed. For example, when a bismaleimide-based polymer is formed, if the base material is quartz glass, the formed polymer has low adhesion and can be easily peeled off. On the other hand, if the substrate is PET (polyethylene terephthalate) film, a polymer having high adhesion is formed. Further, for example, a base material coated with a coating material such as polyvinyl alcohol (PVA) can also be used.
  • PVA polyvinyl alcohol
  • a substrate having an arbitrary shape can be used.
  • the polymerization precursor dissolved in the supercritical fluid or subcritical fluid is polymerized in a state of being uniformly distributed at the substrate interface, and the To produce a polymer containing Therefore, even on a substrate having a fine uneven structure or a deep uneven structure, it is possible to uniformly form a polymer having a projection.
  • the window 5 for receiving the active energy ray on which the base material 8 is arranged, or the arrangement member provided thereon is provided with the shape of the base material forming the polymer including the protrusion,
  • the shape can be determined according to the shape of the polymer containing the desired projection.
  • the polymerization precursor and, if necessary, the additional components and the photopolymerization initiator are charged into the reactor 3.
  • the polymerization precursor and the additional component are liquid
  • the polymerization precursor, the additional component, and the photopolymerization initiator can be supplied to the storage tank reactor 3 by a pump.
  • two or more types of polymerization precursors are used, or when a polymerization precursor and an additive component are used, they can be mixed in advance and supplied to the force reactor 3, or the reactors can be separately used. 3 can also be supplied.
  • the polymerization precursor, the added component, and the photopolymerization initiator can be supplied to the reactor 3 after being adjusted to the polymerization temperature by a heater in advance.
  • the pump is supplied from the pump 2 to the reactor 3 from the tank 1.
  • the carbon dioxide is adjusted to a polymerization temperature by a heater in advance, and then supplied to the reactor 3.
  • the pressure in the reactor 3 is adjusted to the polymerization pressure by the amount of carbon dioxide supplied.
  • the temperature in the reactor 3 is adjusted to the polymerization temperature by temperature control means 4 such as a heater.
  • the adjustment of the pressure in the reactor 3 and the adjustment of the temperature in the reactor 3 can be performed simultaneously, or one of them can be adjusted and then the other can be adjusted.
  • the polymerization precursor which has been adjusted to a polymerization temperature or a higher temperature by a heater in advance, and if necessary, an additional component and carbon dioxide are supplied to the reactor 3, the polymerization reaction If the temperature in the reactor 3 can be maintained at the polymerization temperature during the middle, the temperature control means 4 such as heating means may not be provided.
  • the inside of the reactor 3 is set to a predetermined pressure and temperature
  • the inside of the reactor is stirred by the magnetic stirrer 9 and the stirrer 10 while the window 5 and the active energy ray transmissive window 5 are transmitted from the light source 6.
  • a photopolymerization reaction is performed by irradiating the active energy ray into the reactor 3 through the base material 8, and the active energy ray transmitting base material includes a projection on the active energy ray emission surface.
  • the active energy ray may be irradiated continuously or intermittently. By controlling the irradiation amount of the active energy ray, it is possible to control the height of the polymer protrusion including the formed protrusion.
  • a polymer including a protrusion formed by photopolymerization in the presence of an additive component contains the additive component selectively in the protrusion.
  • a polymerization precursor and Z or an additional component can be further supplied to the reactor 3.
  • the composition of the polymerization precursor and the additional component can be changed in a direction perpendicular to the surface of the base material.
  • the stirring means for stirring the inside of the reactor is not limited to the magnetic stirrer 9 and the stirrer 10.
  • a polymer including a projection on a portion of the substrate through which the active energy ray has passed.
  • a polymer including a projection having a desired pattern can be formed.
  • a mask pattern may be attached to the outside of the window 5, or the shape of the window itself may be a predetermined pattern shape.
  • a light irradiation area can be narrowed as compared with other light sources, so that a polymer including a projection having a fine pattern can be formed.
  • a laser beam as a light source, it is possible to irradiate light with higher intensity than other light sources, and it is possible to irradiate a polymer having projections with a higher density and higher aspect ratio (higher than the diameter of the projections). Control becomes easier.
  • the polymer produced is prepared by rapidly reducing the pressure from a supercritical state or a subcritical state, or by rapidly reducing the temperature from a high-temperature state to a high-pressure state. Can be foamed. Since the supercritical fluid or the subcritical fluid has a strong and uniform penetrating power into the inside of the polymer, a uniform porous body can be formed by performing such a treatment.
  • the cooling rate of the polymer and the pressure reducing rate of the polymer can be appropriately determined.
  • the pore size By controlling the polymer cooling rate and the polymer decompression rate, the pore size can be controlled. The higher the polymer cooling rate and polymer depressurization rate, the larger the pore size tends to be.
  • the polymer After the polymerization, if necessary, the polymer is allowed to stand in a supercritical fluid or a subcritical fluid for a predetermined period of time, and then the polymer is foamed by rapid decompression or rapid cooling and rapid decompression. ⁇
  • the polymer including protrusions formed on the base material taken out of the reactor 3 can be post-cured by irradiation of electromagnetic waves, irradiation of light, heating, or a combination thereof. .
  • the shape of the reactor used to carry out the method for producing a polymer of the present invention is not limited to that shown in FIG.
  • an optical system such as an optical fiber may be provided inside the reactor, and the reactor may be irradiated with active energy rays through this optical system.
  • FIG. 2 shows a schematic configuration diagram of another example of the manufacturing apparatus used to carry out the manufacturing method of the present invention.
  • Reference numerals 110 denote the same members as in FIG.
  • 12 and 12' denote stirrers (rotors)
  • the reservoirs 11 and 11 'for the polymerization precursor and Z or the additional component may have a temperature control means.
  • the stirring means for stirring the inside of the storage sections 11 and 11 ' is a magnetic It is not limited to the ones 13, 13 'and the stirrers 12, 12.
  • the reservoirs 11 and 11 ′ for the polymerization precursor and Z or the additional component have a stirring means for stirring the inside!
  • the production apparatus shown in Fig. 2 is a storage section 11 and 11 'with an openable and closable lid for storing the polymerization precursor and Z or an additive, and a stirring section for stirring the inside of the storage sections 11 and 11'. It has a configuration similar to that of the manufacturing apparatus shown in FIG.
  • the storage units 11 and 11 ' may contain one kind of polymerization precursor or an additional component, or may contain two or more kinds of polymerization precursors and Z or a mixture of additional components.
  • the lid of the storage section is opened, and the polymerization precursor and Z or the added components stored inside are supplied to the reactor 3.
  • the polymerization precursor and Z or the added component can be supplied to the reactor 3 after being adjusted to the polymerization temperature by a heater in advance.
  • a polymer including a protrusion can be manufactured in the same manner as in the case of manufacturing a polymer using the manufacturing apparatus shown in Fig. 1 described above.
  • the storage portions 11 and 11 'of the polymerization precursor and Z or the additional component are configured to supply the polymerization precursor and Z or the additional component stored therein to the reaction system only when necessary. It is not necessary to have a lid. For example, if the polymerization precursor and Z or added components to be stored do not dissolve or disperse in a supercritical fluid or a subcritical fluid unless heated to a high temperature, a lid is not provided in the storage section, and the storage section is not provided. What is necessary is just to provide the heating means which heats.
  • the production apparatus shown in Fig. 2 changes the composition of the obtained polymer including the projections to the surface of the base material by changing the composition of the polymerization precursor to be polymerized and the additive component to be contained during the polymerization. It is particularly preferably used when changing in the vertical direction.
  • the polymer having the protrusions of the present invention can be produced.
  • the polymer grows along the irradiation direction of the active energy ray, and a protrusion of the polymer is formed. That is, usually, the polymer grows in a direction perpendicular to the surface of the base material, and a projection of the polymer is formed.
  • the irradiation time of the active energy ray (polymerization time) becomes longer, the produced polymer tends to become a continuous film from the polymer containing the projections.
  • a polymer including a projection having a height of 0.1 times or more the diameter, a polymer including a projection having a height of 1 time or more the diameter, and a polymer having a height of 1 time or more the diameter Including polymers with protrusions that are at least twice the diameter, including polymers with heights that are at least three times the diameter, and those with protrusions that are at least five times the diameter A polymer can be produced.
  • the upper limit of the ratio of the height to the diameter of the projection is not particularly limited.
  • the height of the projection can be 50 times the diameter.
  • a polymer including a protrusion having a height of lOnm or more, a polymer including a protrusion having a height of 0.5 m or more, and a polymer having a height force of m or more is further provided.
  • a polymer containing a certain protrusion, a polymer containing a protrusion having a height of 5 m or more, a polymer containing a protrusion having a height of 10 m or more, and a height of 30 m or more It is possible to produce a polymer containing a projection having a height of 50 m or more, and a polymer containing a projection having a height of 50 m or more.
  • the upper limit of the height of the projection is not particularly limited, for example, the height of the projection can be set to 500 ⁇ m.
  • the height of the projections of the polymer can be adjusted by the irradiation amount (integrated light amount) of the active energy ray.
  • the height of the polymer protrusion is almost proportional to the amount of active energy beam irradiation.When the amount of active energy beam irradiation exceeds a certain amount, the height of the polymer protrusion does not increase any more.
  • the interval between the parts is narrowing and there is a tendency for continuous film
  • a polymer having a protrusion that is at least 1 times the diameter and a height of the protrusion of 1 m or more, and a protrusion having a height of at least 5 times the diameter and the protrusion It is possible to produce a polymer having a protrusion having a height of 50 m or more. In this way, the height is large relative to the diameter, Conventionally, a polymer having a high protrusion has not been obtained by polymerizing a polymerization precursor such as a monomer.
  • the surface density of the protrusions of the polymer including the protrusions is not particularly limited. According to the present invention, for example, the surface density of the protrusions is as high as 0.01 Znm 2 or more, and further 0.1 or more Znm 2 or more. It is possible to form a polymer having protrusions at a surface density on a substrate. Further, the density of the polymer protrusions including the protrusions can be reduced, and the surface density of the protrusions can be, for example, 0.001 / ⁇ m 2 .
  • the surface density of the projections refers to the density of the projection-like polymers on the surface of the base material.
  • a polymer containing a projection can be formed on a substrate at the same time as performing a polymerization reaction.
  • the polymerization precursor to be polymerized and the additive component can be appropriately selected, and the resulting polymer containing the projections has a large height with respect to the diameter, and has a high height and includes the projections. .
  • the polymer containing the projections formed can be easily peeled off from the base material. It can also be obtained as a resin film having the above projections.
  • a polymer containing projections containing various additive components can be obtained.
  • the resulting polymer containing the projections has a height that is large relative to the diameter and includes the projections that are high.
  • the composition can be changed in a direction perpendicular to the surface of the base material to obtain a polymer having a projection.
  • the polymer containing the protrusion of the present invention is expected to be applied to various uses, particularly due to its unique form, and is also expected to realize a novel functional structure.
  • a polymer having a projection containing an organic palladium complex as an additional component is N It can be used for electroless plating such as i.
  • the combination of the additive component (organometallic complex) and the metal to be plated can be appropriately determined without being limited to the organic palladium complex and Ni.
  • a granular drug can be produced.
  • the polymer containing a protruding portion of the present invention utilizes an unusual morphology, and appropriately selects a polymer precursor to be polymerized and an additive component as necessary, thereby preparing an artificial kidney such as an artificial kidney or an artificial lung. It can be applied to organs, plasma purification materials and the like.
  • a polymer including a protrusion containing an organometallic complex such as an organoplatinum complex as an additive component is baked and metallized, and a metal film having a specific fine structure (including a metal oxide film) Can also be formed.
  • the fired metal film substantially maintains the shape of the polymer including the projections containing the organometallic complex before firing, and has a porous structure.
  • the firing conditions for forming the metal film can be determined as appropriate according to the type of the organometallic complex that is the additive component.
  • a metal film can be formed by baking a polymer containing a projection containing an organometallic complex in an oxygen-containing gas such as air at 250 to 2000 ° C. for 5 minutes to 48 hours.
  • the firing temperature is preferably 300 ° C or higher, and more preferably 1700 ° C or lower.
  • the baking time is usually preferably 10 minutes or more, and more preferably 5 hours or less.
  • the metal film thus obtained is also expected to be applied to various uses.
  • the titanium oxide film obtained by the present invention or the film comprising titanium oxide and a noble metal such as platinum is expected to be a highly active photocatalyst, particularly a highly active photocatalyst for environmental purification.
  • a polymer containing a projection having an organometallic complex such as an organoplatinum complex or an organopalladium complex as an additive component is subjected to a reduction treatment to convert the organometallic complex into a metal, and depending on the type of metal, a metal oxide.
  • a polymer containing a protrusion and containing a metal and Z or a metal oxide can be formed.
  • the reduction treatment method and the reduction treatment conditions for forming a polymer containing a metal and Z or a metal oxide and containing a protrusion are not particularly limited, and the type of the organic metal complex as an additive component may be different. Can be appropriately determined according to the conditions.
  • Examples of the reduction treatment method include a method of immersing a polymer containing a projection containing an organometallic complex in a solution containing a reducing agent, and a method of producing a polymer containing a projection containing an organometallic complex. In contact with a reducing gas to effect a gas phase reduction.
  • the reducing agent used is a metal that reduces the organometallic complex that is an additive component to form a metal.
  • the material is not particularly limited as long as it can be made into a metal oxide film.
  • the reducing agent include sodium borohydride, potassium borohydride, dimethylamine borane (DMAB), trimethylamine borane (TMAB), hydrazine, formaldehyde, derivatives of these compounds, and sulfites such as sodium sulfite. And hypophosphites such as sodium hypophosphite.
  • ferrous salts such as FeSO
  • metal salts of hydrogen phosphate such as sodium hypophosphite, hydroxylamine sulphate, phosphorus, and hydrosulfite.
  • the solution containing the reducing agent is usually an aqueous solution, but the solvent for dissolving the reducing agent is not limited to water.
  • the solvent for dissolving the reducing agent include methanol, ethanol, ethyl ether, hexane, benzene, methylene chloride, diglyme (diethylene glycol dimethyl ether), tetrahydrofuran, dimethylacetamide, dimethyl sulfoxide, and acetonitrile.
  • the concentration of the reducing agent in the solution containing the reducing agent is usually about 0.003 to 0.1 mol Z liter. If the concentration of the reducing agent in the solution containing the reducing agent is 0.003 mol / L or more, the speed of the reduction reaction will be sufficiently higher.
  • the concentration of the reducing agent in the solution containing the reducing agent is preferably 0.005 mol / liter or more. On the other hand, when the concentration of the reducing agent in the solution containing the reducing agent is 0.1 mol Z liter or less, the falling off of the deposited metal can be more sufficiently suppressed.
  • the reduction treatment temperature may usually be about 20 to 90 ° C.
  • the temperature of the reduction treatment is preferably 25 ° C or higher, and more preferably 80 ° C or lower.
  • the reduction treatment time may be about 110 minutes.
  • the reduction treatment time is preferably 2 minutes or more, and more preferably 5 minutes or less.
  • the reducing gas used is an organic metal complex which is an additional component.
  • the material is not particularly limited as long as it can be converted into a metal or a metal oxide.
  • the reducing gas include hydrogen gas, diborane gas, and the like.
  • the reduction treatment conditions such as the reduction treatment temperature and the reduction treatment time can be appropriately determined according to the type of the reducing gas to be used, the type of the organometallic complex that is the additive component, and the like.
  • the treatment may be performed in a hydrogen gas stream at a temperature of about 30 to 300 ° C. for about 5 to 60 minutes.
  • the temperature of the reduction treatment may be appropriately determined in consideration of the heat resistance of the polymer or the substrate to be treated, the ease with which the organometallic complex as an additional component is reduced, and the like!
  • the reduction treatment is usually performed until at least the organometallic complex present on the surface of the polymer is almost completely reduced. If necessary, the reduction treatment may be stopped halfway before that.
  • the thus obtained polymer containing the metal and Z or metal oxide and having a protrusion can be used as, for example, a plating base.
  • a polymer including a projection containing an additive component even on a substrate having a fine uneven structure or a deep uneven structure.
  • coating in a microreactor called a microreactor having a diameter of several tens / zm is also possible.
  • the polymer of the present invention including a projection of a specific size has an excellent water repellent function due to its unique form.
  • a polymer having a very high water repellency (super water repellency) having a contact angle with water of 90 ° or more, or even 100 ° or more can be obtained.
  • the contact angle with water is measured at a measurement temperature of 20 ° C.
  • One drop (151) of pure water is dropped on the surface of the polymer film to be measured, and 10 seconds after the drop, the shape of the water drop is measured using a microscope. Observed in the above, it is determined by measuring the angle at which the water droplet contacts the polymer film.
  • the water-repellent function of the polymer having a protrusion of the present invention is due to its unique form. That is, the polymer having the protrusions of the present invention has high water repellency regardless of the composition of the polymer. Therefore, according to the present invention, a polymer (film) having a composition suitable for the intended use can be provided with an excellent water-repellent function.
  • the polymer having a protrusion of the present invention also has an excellent adhesive function due to its unique form.
  • the polymer having a protrusion of the present invention can be used in various fields as an adhesive or an adhesive sheet.
  • the polymer having a projection of the present invention also has an excellent adsorption function!
  • the polymer having a protrusion according to the present invention can be used in various fields as an adsorbent or a separation membrane (such as a gas separation membrane).
  • the polymer containing a projection of the present invention utilizes the unique form thereof, appropriately selects a polymerization precursor to be polymerized, and uses it for DNA detection and selection (DNA sensor). It is possible to do.
  • the polymer having a protrusion of the present invention can be applied to a backlight light guide / scattering plate of a display by appropriately selecting a polymerization precursor to be polymerized.
  • a metal film can also be formed on the polymer having a protrusion of the present invention by a known method such as vapor deposition.
  • the metal film is not limited to a simple metal, but may be an alloy.
  • the metal film may be a metal oxide, a metal nitride, a metal carbide, or the like.
  • the metal film or the metal oxide film formed on the polymer having the protrusions of the present invention can be applied to an electron gun or the like.
  • This electron gun can be used, for example, for a display.
  • the polymer force metal film including the protrusion of the present invention can be peeled off by a known method, and the obtained metal film can be used as a resin extrusion molding die.
  • a polymer including protrusions in which nanoparticles and other additives are uniformly dispersed for example, a colored film or a fluorescent film can be formed.
  • dioxin carbon was introduced into the reactor at a cylinder pressure (about 7 MPa), and then the temperature was raised to 35 ° C.
  • the pressure inside the reactor was adjusted to 30MPa by a pressurized pump to bring it into a supercritical state.
  • an ultra-high pressure mercury lamp equipped with a quartz fiber was used as a light source, and the irradiation amount of ultraviolet light from outside the reactor through the quartz pressure window into the reactor Irradiation was performed so as to be lOjZcm 2 .
  • the irradiation conditions of the ultraviolet rays at this time were an irradiation intensity of 33 mWZcm 2 and an irradiation time of 303 seconds.
  • the wavelength of the irradiated ultraviolet light ranges from 254 to 436 ⁇ m.
  • a polymer was formed on the quartz pressure-resistant window, including a projection that grew in the direction of ultraviolet irradiation, that is, in the direction perpendicular to the surface of the substrate.
  • FIG. 3 shows an SEM photograph (upper figure) and an XMA Pt image (lower figure) of the obtained polymer including the protrusions.
  • the white part is Pt.
  • the photopolymerization was performed in the same manner as in Example 1 except that the mask pattern was bonded to the outside of the quartz pressure-resistant window, and ultraviolet light was irradiated into the reactor through this mask pattern.
  • Photopolymerization was carried out in the same manner as in Example 1 to obtain a polymer containing a protrusion containing an organic platinum complex as an additional component.
  • the obtained polymer containing projections was immersed in a 0.3% NaBH aqueous solution at room temperature, and subjected to a reduction treatment.
  • Photopolymerization was performed in the same manner as in Example 1, except that the added component was an organic palladium complex (palladium acetate). A polymer containing protrusions containing an organic palladium complex as an additive was obtained.
  • the added component was an organic palladium complex (palladium acetate).
  • the obtained polymer containing projections is immersed in a 0.3% NaBH aqueous solution at room temperature, and subjected to a reduction treatment.
  • the polymer containing the projections After washing with pure water, the polymer containing the projections is immersed in concentrated sulfuric acid (concentration: 50 mL ZL) at 40 ° C. (313 K) for 2 minutes while stirring, and the catalyst is activated for plating. Gender drama was performed. Then, the polymer containing the projections was taken out from the concentrated sulfuric acid and washed with pure water.
  • concentrated sulfuric acid concentration: 50 mL ZL
  • an aqueous solution for electroless copper plating [a mixed aqueous solution of OPC700A (concentration: 100mLZL) and OPC700B (concentration: 100mL / L) manufactured by Okuno Pharmaceutical Co., Ltd.] was placed in a 5L beaker.
  • the polymer containing the above protrusions is bubbled with air in a bath at room temperature for 60 minutes.
  • the copper plating treatment was carried out by immersing in this aqueous solution for electroless copper plating while stirring while stirring. Then, the polymer containing the protrusions was also taken out of the aqueous solution for electroless copper plating, and washed with pure water.
  • an aqueous solution for electroless copper plating [Okuno Pharmaceutical Co., Ltd., OPC Kappa-I T1 (concentration: 60mLZL) and Okuno Pharmaceutical Co., Ltd., OPC Kappa-I T2 (concentration: 12mLZL) and Okuno Pharmaceutical Co., Ltd. Aqueous solution mixed with OPC Kappa-1 T3 (concentration: 100 mLZL)], and the polymer containing the protrusions is stirred at 60 ° C (333K) for 120 minutes and air is bubbled into the tank. While stirring, it was immersed in this aqueous solution for copper electroless plating to perform copper plating. Then, the polymer containing the projections was also subjected to an aqueous solution for electroless copper plating, and was subjected to ultrasonic cleaning at room temperature in pure water for 5 minutes and in methanol for 10 minutes.
  • the polymer including the projections which has been subjected to the copper plating treatment, has a uniform plating film (thickness of the plating layer: 2 m) without blisters on the surface of the polymer in appearance. , Was.
  • a 30 cm 3 capacity pressure-resistant reactor with a quartz pressure-resistant window at the bottom of the recess provided on the inner wall of the reactor was charged with polyetherbismaleimide acetate (Dia Nippon Ink Kagaku Kogyo Co., Ltd., MIA- 200) 0.872 g was charged.
  • carbon dioxide was introduced into the reactor at a cylinder pressure (about 7 MPa), and then the temperature was raised to 35 ° C.
  • Carbon was introduced by a pressurized pump so that the pressure inside the reactor became 30 MPa, and a supercritical state was established.
  • the charged concentration of the polymerization precursor polyetherbismaleimide acetate was 3.5% by mass.
  • an ultra-high pressure mercury lamp equipped with a quartz fiber was used as a light source, and the irradiation amount of ultraviolet light from outside the reactor into the reactor through a quartz pressure-resistant window was irradiated to UZcm 2 .
  • the irradiation conditions of the ultraviolet rays at this time were an irradiation intensity of 33 mWZcm 2 and an irradiation time of 30.3 seconds.
  • the wavelength of the irradiated ultraviolet light ranges from 254 to 436 nm.
  • a polymer was formed on the quartz pressure-resistant window, including a projection that grew in the direction of ultraviolet irradiation, that is, in the direction perpendicular to the substrate surface.
  • Fig. 5 shows an SEM photograph of the resulting polymer containing protrusions. You.
  • the irradiation conditions of ultraviolet rays as irradiation time 152 seconds at irradiation intensity 33MWZcm 2, where except for the irradiation amount of the ultraviolet was 5JZcm 2 was subjected to photopolymerization in the same manner as in Example 5, on the quartz pressure-resistant window, ultraviolet A polymer containing protrusions grown in the irradiation direction, that is, perpendicular to the substrate surface, was formed.
  • FIG. 6 shows an SEM photograph of the obtained polymer including the protrusions.
  • irradiation conditions of ultraviolet rays as irradiation time 303 seconds at irradiation intensity 33MWZcm 2, except that the irradiation dose of ultraviolet rays was LOjZcm 2 in the same manner as in Example 5 was carried out photopolymerization, on quartz pressure-resistant window, ultraviolet Thus, a polymer containing protrusions grown in the irradiation direction, ie, perpendicular to the substrate surface, was formed.
  • Fig. 7 shows an SEM photograph of the obtained polymer including the protrusions.
  • the water contact angle of a continuous film obtained by polymerizing the same polymerization precursor (MIA-200, manufactured by Dainippon Ink and Chemicals, Inc.) was 90 °.
  • the polymer having the projections of the present invention had higher water repellency than a continuous film having the same composition.
  • the water repellency of the obtained polymer including the projections was equivalent to that of PTFE (polytetrafluoroethylene).
  • the photopolymerization was performed in the same manner as in Example 7 except that the mask pattern was bonded to the outside of the quartz pressure-resistant window, and ultraviolet light was irradiated into the reactor through the mask pattern. A polymer including projections to which the mask pattern was transferred was formed on the transmitted portions.
  • FIG. 8 shows an SEM photograph of the obtained polymer film.
  • FIG. 9 shows a schematic cross-sectional view of the obtained polymer film. 21 is a substrate (quartz pressure-resistant window), and 22 is a polymer film.
  • the polymer film obtained in Reference Example 1 was more porous and continuous than the polymer having protrusions obtained in Example 7.
  • Example 5-7 the sizes of the protrusions are as shown in FIG. 5-7. Specifically, the height of the protrusions is about 0.5 to about 100 m, and the height of each protrusion is The length was about 0.1 to about 10 times of each diameter.
  • a polymer having a projection having various physical properties and functions and a film mainly containing a metal and Z or a metal oxide having a specific fine structure.
  • a film mainly containing a metal and Z or a metal oxide having a specific fine structure For example, it is expected to be applied to various uses such as medical materials, medical materials, separation function materials, sensor materials, and catalyst materials. Also, the realization of a new functional structure is expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 超臨界流体中または亜臨界流体中において、所望により1種以上の重合体の機能を追加するための添加成分の存在下、活性エネルギー線の照射により、不飽和結合を2個以上有する光硬化性化合物を含む1種以上の光重合性重合前駆体を光重合し、突起部を含む重合体を製造することを特徴とする重合体の製造方法;及び、その製造方法により得られる突起部の高さが、その突起部の径の0.1倍以上であり、かつ突起部の高さが10nm以上である突起部を含む重合体。

Description

明 細 書
重合体および重合体の製造方法
技術分野
[0001] 本発明は、突起部を含む重合体 (所謂ポリマーブラシも含む)、および、超臨界流 体または亜臨界流体を使用して突起部を含む重合体を製造する方法に関する。さら に、本発明は、基材上に突起部を含む重合体を有する構造体に関する。
背景技術
[0002] 近年、その特異な形態から、ポリマーブラシが注目されて 、る。ポリマーブラシとは、 固体表面に末端が固定化 (化学結合や吸着)された高分子鎖が固体表面に垂直方 向に伸張された構造をとつているものである。高分子鎖の延伸の程度はグラフト密度 に強く依存する。
[0003] ポリマーブラシは、通常、表面グラフト重合、特に表面開始リビングラジカル重合に よって固体表面に高分子鎖をグラフトさせることにより得られる。
[0004] 例えば、特開 2001— 131208号公報には、 1以上の、基材カも遠位にラジカル生 成部位を有するフリーラジカルイニシエータ一が共有結合している基材を提供するェ 程と、該共有結合した基材を、該イニシエータ一のラジカル生成部位力 のフリーラ ジカル重合を促進する条件下で、モノマーと接触させて重合性ブラシを形成するェ 程とを包含する、重合性ブラシ基材の調製方法が開示されている。
[0005] また、特開 2002— 145971号公報には、表面開始リビングラジカル重合によりポリ マーブラシを製造する方法が記載されて 、る。表面開始リビングラジカル重合とは、 具体的には、まず固体表面に重合開始剤を Langmuir-Blodgett (LB)法あるいは化 学吸着法により固定ィ匕し、次いでリビングラジカル重合 (ATRP法)により高分子鎖( グラフト鎖)を固体表面に成長させるものである。この公報には、表面開始リビングラ ジカル重合によって、長さと長さ分布の規制された高分子鎖を従来にない高い表面 密度で基体表面に成長されることが可能とされ、その高いグラフト密度のため、溶媒 で膨潤させることで伸び切り鎖長にも匹敵する膜厚を与え、真の意味での"ポリマー ブラシ"状態がはじめて実現されていると記載されている。また、この公報には、表面 開始による従来のラジカル重合では、ー且生成したラジカルは不可逆停止するまで 成長し順次グラフト鎖を生成するため、先に成長したグラフト鎖の立体障害のためそ の近傍へのグラフトイ匕を妨げられるのに対して、本系では重合がリビング的に進行、 すなわち、すべてのグラフト鎖がほぼ均等に成長するため、隣接グラフト鎖間の立体 障害が軽減されたことも、高いグラフト密度が得られた要因と考えられるとも記載され ている。
[0006] そして、上記特開 2002— 145971号公報には、このような表面開始リビングラジカ ル重合により得られる、グラフト重合により基体表面に配設したグラフトポリマー層を 構成するグラフトポリマー鎖が別種のモノマーまたはオリゴマーとの共重合により膜厚 方向に化学組成が多層構造化されていることを特徴とするナノ構造機能体が開示さ れている。さらに、この公報には、基体表面に配設された分子の重合開始部(重合開 始基)が、膜面方向で所定パターンで不活性化された後に、不活性化されていない 重合開始部がグラフト重合されてグラフトポリマー層が所定のパターンで配設されて V、ることを特徴とするナノ構造機能体も開示されて!、る。
[0007] また、辻井敬亘著"ポリマーブラシの新展開"「未来材料」第 3卷、第 2号、 p.48-55に も、表面開始リビングラジカル重合により得られる高密度 (濃厚)ポリマーブラシにつ いて詳細に記載されている。
[0008] ポリマーブラシに関しては、以下の通り、様々な用途への応用が検討されている。
[0009] 上記特開 2001— 131208号公報には、得られるポリマーブラシがペプチド、ポリヌ クレオチドまたは有機低分子のアレイの固相合成において有用であると記載されて いる。
[0010] 上記特開 2002— 145971号公報には、開示されているナノ構造機能体が外部刺 激応答性の複合粒子や複合素子、多機能センサー等として有用なものであると記載 されている。
[0011] また、特開 2001— 158813号公報には、ポリマーブラシのコンタクトレンズ、眼内レ ンズ、人工角膜等の表面改質への応用について記載されている。さらに、この公報 には、ポリマーブラシの腎臓の透析膜、血液貯蔵袋、ペースメーカーの導線、血管移 植片、傷治療の包帯、眼帯、薬剤送達パッチ、心臓バルブ、移植用血管、力テーテ ル、人工器官、ランゲルノヽルス島への応用についても記載されている。
[0012] 特表 2002— 504842号公報には、ポリマーブラシのステントへの応用について記 載されている。
[0013] 特表 2002— 535450号公報には、核酸分子の検出方法 (DNAセンサー等)や、試 料から核酸、(多)糖または (ポリ)ペプチドあるいはそれらの複合体、抗体等の化合 物を精製するための方法へのポリマーブラシの応用について記載されている。さらに 、上記公報には、ポリマーブラシのァフィユティーマトリックスとしての使用、センサー チップとしての使用、オリゴまたはポリマーの形成のための、好ましくは核酸またはべ プチド合成のための開始分子の固定ィ匕のための使用や、電場での分子、好ましくは 生体分子の分離におけるゲルとしての使用につ 、ても記載されて 、る。
[0014] また、ポリマーブラシとは異なるが、 A. K. GEIM et al., "Microfabricated
adhesive mimicking gecko foot-hair , Nature materials, Vol.2, July 2003, p.461-463 には、二次加工により形成された、角錐状 (毛状)のポリイミドの高密度の アレイについて記載されている。具体的には、厚さ 5 μ mのポリイミドフィルムをシリコ ン基板上に形成し、アルミニウムマスクを用いた酸素プラズマエッチングにより、ポリイ ミドフィルムにアルミニウムパターンを転写して、例えば、直径 0.6 μ m、高さ 2.0 μ m の角錐状のポリイミドのアレイを形成している。この文献には、このものが高い粘着性 を持つことも記載されて 、る。
[0015] なお、これら、従来のポリマーブラシは、良溶媒中でのみ高分子鎖 (グラフト鎖)が 伸びきつた構造をとることが可能であり、乾燥状態または貧溶媒中では、高分子鎖( グラフト鎖)が倒れた構造や、折り畳まれた構造をしている。
[0016] ところで、超臨界流体は、密度は液体に近ぐ粘度および拡散係数は気体に近い 流体であり、気体の拡散性と液体の物質溶解性とを併せ持っているため、反応溶媒 として様々な効果を有して 、る。
[0017] 従来、超臨界流体は、その溶解力を利用して、ホップエキスや香料の抽出、コーヒ 一やタバコからの脱力フ インなど、有効成分の抽出分離、不要成分の抽出除去な どに利用されている。例えば、超臨界二酸ィ匕炭素を利用したカフェインレスコーヒー の製造が、 1970年代後半頃から工業的に行われている。 [0018] また、近年、超臨界流体は、ポリマーからの未反応モノマーの除去や、アルコール の濃縮'脱水など、化学原料、製品等の不純物除去、濃縮にも利用されている。さら には、セラミックの脱バインダー、半導体や機械部品の洗浄'乾燥などにも利用され ている。例えば、特開平 7— 149721号公報には、製造時に用いられた芳香族炭化 水素溶媒などの不純物を含有するエーテルイミド系ビスマレイミドィ匕合物を、圧力 60 気圧以上かつ温度 20°C以上の超臨界状態あるいは超臨界状態に近い状態の二酸 化炭素と接触させる不純物の抽出除去処理に付すことを特徴とするビスマレイミド化 合物の精製方法が開示されている。
[0019] その他にも、超臨界流体は、シリカ等のひげ状微粒子の製造など、急激膨張 (RES S法)による微粒子化、薄膜化、微細繊維化に利用されており、また、シリカエアロゲ ルの強度付加 (表面コーティング)など、貧溶媒化 (GAS法)による微粒子化、薄膜ィ匕 にも利用されている。例えば、特開平 8— 104830号公報には、塗料用高分子固体原 料を製造するための重合工程における高分子重合反応溶液を、二酸化炭素および 極性有機溶媒を用いて超臨界相に溶解させ、急速膨張させることを特徴とする塗料 用微粒子の製造方法が開示されている。
[0020] ところで、従来、塗料用微粒子などの重合体は、重合反応速度の制御や重合生成 物のハンドリング等の点から、多量の有機溶媒を用いる溶液重合法などにより製造さ れている。しかし、溶液重合法では、重合体は溶媒を半分程度含む溶液状態で生成 されるため、重合後、得られた重合体溶液カゝら溶媒を除去し、乾燥する脱溶剤工程 が必要であり、工程が煩雑である。また、脱溶剤工程において揮散する有機溶剤の 処理にも課題がある。
[0021] これに対し、近年、溶媒として超臨界流体、特に超臨界二酸ィ匕炭素を用いて、重合 体を製造する試みがなされている。超臨界二酸ィ匕炭素を溶媒として用いる場合、重 合後に溶媒の除去および乾燥を行う必要がなぐ工程を簡略化でき、コストを下げる ことができる。また、有機溶媒を用いない点で、環境面での負荷も小さい。しかも、二 酸化炭素は、有機溶媒と比べて、容易に回収、再利用することができる。さらには、 多くの場合、重合体と単量体とでは二酸ィ匕炭素に対する溶解度に差があるため、超 臨界二酸ィ匕炭素を溶媒として用いることにより、生成物である重合体に含まれる未反 応の単量体は少なくなり、より高純度な重合体を製造することができる。
[0022] 超臨界流体を使用した重合体の製造方法としては、例えば、特表平 7 - 505429号 公報に、フルォロモノマーを、超臨界二酸ィ匕炭素を含んでなる溶剤中に可溶ィ匕する 工程と、該溶剤中でフルォロモノマーをラジカル重合開始剤の存在下で熱重合し、 フルォロポリマーを製造する工程とを有するフルォロポリマーの製造方法が開示され ている。
[0023] 特開 2000— 26509号公報〖こは、開始剤としてジメチル(2,2'—ァゾビスイソブチレ ート)を用い、少なくとも 1つのフッ素化モノマーを超臨界二酸ィ匕炭素中で熱重合させ るフルォロポリマーの製造方法が開示されて 、る。
[0024] 特開 2002-327003号公報には、超臨界二酸化炭素を重合溶媒として、フッ化ァ ルキル基含有 (メタ)アタリレートを 20質量%以上含有するラジカル重合可能な単量 体成分を熱重合するフッ化アルキル基含有重合体の製造方法が開示されている。
[0025] 特開 2001— 151802号公報には、(メタ)アクリル酸等のカルボキシル基を有するェ チレン性不飽和単量体を含む単量体組成物を、超臨界二酸化炭素中で、熱ラジカ ル重合させて高分子微粉体とする高分子微粉体の製造方法が開示されている。
[0026] 特開 2002-179707号公報には、超臨界二酸化炭素中において、超臨界二酸ィ匕 炭素に実質的に可溶な、特定の構造を有する重合体であるラジカル重合開始剤によ り、メタクリル酸メチル等の単量体を熱重合する高分子微粒子の製造方法が開示され ている。
[0027] また、特開 2002-128808号公報には、ドコサン酸やミリスチン酸など、特定の非 重合性分散剤の存在下、超臨界二酸化炭素中で、メタクリル酸メチルやスチレン等 の重合性単量体を熱ラジカル重合する重合体の製造方法が開示されている。
[0028] 小林正範ら著"超臨界二酸ィヒ炭素を用いたビニルモノマーの分散重合"「色材」第 75卷、第 8号、 p.371-377, 2002年には、超臨界二酸化炭素を溶媒とした重合反応に より得られたポリ(1,1, 2,2—テトラヒドロへプタデカフルォロデシルアタリレート)および ポリ(1,1, 2,2—テトラヒドロへプタデカフルォロデシルメタタリレート)を界面活性剤とし て用い、超臨界二酸ィ匕炭素を溶媒として種々のアクリル系モノマーの分散重合を行う ことが記載されている。 [0029] 以上のように、超臨界二酸化炭素などの超臨界流体中で単量体を熱重合する重合 体の製造方法については既に検討されている力 超臨界流体中で単量体を光重合 する重合体の製造方法は知られて 、な 、。
発明の開示
[0030] 本発明の目的は、径に対して高さが大きぐし力も高さが高い突起部を含む重合体 を提供することにある。さらに本発明の目的は、重合体の機能を追加するための添カロ 成分を含有する、突起部を含む重合体を提供することにある。さらに本発明の目的は 、このような突起部を含む重合体を簡便に製造できる方法を提供することにある。
[0031] 本発明は、超臨界流体中または亜臨界流体中において、活性エネルギー線の照 射により、不飽和結合を 2個以上有する光硬化性化合物を含む 1種以上の光重合性 重合前駆体を光重合し、突起部を含む重合体を製造することを特徴とする重合体の 製造方法である。
[0032] さらに本発明は、超臨界流体中または亜臨界流体中において、 1種以上の、重合 体の機能を追加するための添加成分の存在下、活性エネルギー線の照射により、不 飽和結合を 2個以上有する光硬化性化合物を含む 1種以上の光重合性重合前駆体 を光重合し、前記添加成分を含有する、突起部を含む重合体を製造することを特徴 とする重合体の製造方法である。
[0033] さらに本発明は、突起部の高さが、その突起部の径の 0.1倍以上であり、かつ、突 起部の高さが lOnm以上である突起部を含む重合体である。
[0034] さらに本発明は、 1種以上の、重合体の機能を追加するための添加成分を含有す る、突起部を含む重合体である。
[0035] ここで、「突起部を含む重合体」とは、突起状の重合体、あるいは、 1個以上の突起 を有する重合体のことをいう。突起状の重合体の場合は、その重合体そのものを「突 起部」といい、 1個以上の突起を有する重合体の場合は、突起を「突起部」という。「突 起部を含む重合体」には所謂ポリマーブラシも含まれるが、これに限定されるもので はない。例えば、重合体力 成るフィルムまたはプレートであってその表面に複数の 突起を有するものや、重合体からなる突起物自体も本発明に含まれる。
[0036] また、突起部の径 (基材表面に対して平行方向の突起部の長さ)が一定でない場 合、突起部の底面の最も長!ヽ径 (長径あるいは長辺)を径と 、う。
[0037] 本発明の方法によれば、径に対して高さが大きぐし力も、高さが高い突起部を含 む重合体を簡便に製造することができる。得られる突起部を含む重合体は、例えば、 突起部の高さが径の 0.1倍以上、さらには径の 1倍以上であり、かつ、突起部の高さ 力 SlOnm以上、さらには 1 m以上である。このように、径に対して高さが大きぐしか も、高さが高い突起部を含む重合体は、従来、得られていな力つた。また、本発明の 方法を、重合体の機能を追加するための添加成分の存在下に行う場合は、添加成 分を含有する突起部を含む重合体を簡便に製造することができる。
[0038] 本発明の方法にお!、て、重合する光重合性重合前駆体 (以下、「重合前駆体」とも いう。)および必要に応じて使用する添加成分は適宜選択することができる。また、重 合反応時の圧力および Zまたは温度を変化させることにより、重合前駆体および添 加成分の溶媒 (超臨界流体または亜臨界流体)に対する溶解度を変化させることが できるので、重合圧力および重合温度を制御することにより、得られる突起部を含む 重合体の組成を制御することができる。そのため、本発明の製造方法によれば、様々 な物性や機能を有する突起部を含む重合体を得ることができる。
[0039] さらには、重合する重合前駆体および含有させる添加成分の組成を重合中に変化 させることにより、あるいは、重合中に圧力および温度の少なくとも一方を変動させる こと等により、得られる突起部を含む重合体の組成を例えば膜厚方向(基材表面に 対して垂直方向)に変化させることも可能である。
[0040] 本発明の突起部を含む重合体は、その特異な形態と相俟って、従来のポリマーブ ラシの用途を始め、様々な用途への適用が期待され、また、新規な機能構造体の実 現も期待される。
[0041] 例えば、突起部の高さが突起部の径の 0.1倍以上であり、かつ突起部の高さが 10η m以上である本発明の重合体は、重合体の組成に関わらず、高い撥水性を有するも のである。したがって、撥水化処理に多用されている PTFE (ポリテトラフルォロェチ レン)等のフッ素系榭脂と同等の撥水性を付与することができる。
[0042] また、本発明の方法によれば、超臨界流体または亜臨界流体に曝されるように配置 された活性エネルギー線透過基材上に、突起部を含む重合体を形成できる。特に、 活性エネルギー線の入射面が超臨界流体または亜臨界流体に曝されず、活性エネ ルギ一線の出射面が超臨界流体または亜臨界流体に曝されるように配置された活性 エネルギー線透過基材を透過させて活性エネルギー線を照射することにより重合前 駆体を光重合し、活性エネルギー線透過基材の活性エネルギー線出射面上に、突 起部を含む重合体を簡便に形成できる。さらには、活性エネルギー線を、マスクバタ ーンを介して基材に照射することにより、活性エネルギー線が透過した部分上に選択 的に突起部を含む重合体を簡便に形成できる。すなわち、例えば、基材上に所望の 微細パターンを有する添加成分を含有する突起部を含む重合体を形成することがで きるのである。
[0043] さらに、添加成分が 1種以上の有機金属錯体である本発明の突起部を含む重合体 を焼成することにより、焼成前の突起部を含む重合体の形状がほぼ維持された、特 異的な微細構造を有する金属および Zまたは金属酸ィ匕物を主成分とする膜 (以下「 金属膜」とも 、う)を簡便に形成することもできる。
[0044] さらに、添加成分が 1種以上の有機金属錯体である本発明の突起部を含む重合体 を還元処理することにより、有機金属錯体を金属に、金属の種類によっては金属酸 化物にして、金属および Zまたは金属酸化物を含有する、突起部を含む重合体を簡 便に形成することもできる。
図面の簡単な説明
[0045] [図 1]本発明の製造方法を実施するために用いる製造装置の一例の概略構成図で ある。
[図 2]本発明の製造方法を実施するために用いる製造装置の一例の概略構成図で ある。
[図 3]上側の写真は実施例 1で得られた突起部を含む重合体の SEM写真であり、下 側の写真は実施例 1で得られた突起部を含む重合体の XMA Pt像である。
[図 4]実施例 1で得られた金属 Pt膜の SEM写真である。
[図 5]実施例 5で得られた突起部を含む重合体の SEM写真である。
[図 6]実施例 6で得られた突起部を含む重合体の SEM写真である。
[図 7]実施例 7で得られた突起部を含む重合体の SEM写真である。 [図 8]参考例 1で得られた重合体膜の SEM写真である。
[図 9]参考例 1で得られた重合体膜の模式的断面図である。
発明を実施するための最良の形態
[0046] 本発明の方法では、重合溶媒として超臨界流体または亜臨界流体を用いる。
[0047] 超臨界流体とは、温度、圧力ともに臨界点を超えた状態、すなわち臨界温度以上 で臨界圧力以上の状態にある流体をいう。臨界温度および臨界圧力は物質固有の 値である。例えば、二酸化炭素の臨界温度は 30.9°C、臨界圧力は 7.38MPaである 。メタノールの臨界温度は 239.4°C、臨界圧力は 8.09MPaである。水の臨界温度は 374.1°C、臨界圧力は 22.12MPaである。亜臨界流体とは、超臨界流体と同様の作 用効果が得られる流体であり、通常、ケルビン単位で温度が臨界温度の 0.65倍以上 であり、かつ、圧力が臨界圧力の 0.65倍以上である流体をいう。
[0048] 超臨界流体または亜臨界流体は、重合前駆体の溶解度などに応じて適宜選択す ることができる。超臨界流体または亜臨界流体としては、例えば、二酸化炭素、水、メ タン、ェタン、エチレン、プロノ ン、プロピレン、メタノーノレ等のアルコール、アンモニア
、フロン、一酸ィ匕炭素などが挙げられる。さらには、窒素、ヘリウム、アルゴンなどの無 機ガスも挙げられる。これらの超臨界流体または亜臨界流体は 2種以上の混合物と することもできる。中でも、比較的低温、低圧力で超臨界状態または亜臨界状態にな る点から、超臨界二酸ィ匕炭素または亜臨界二酸ィ匕炭素が好まし 、。
[0049] 超臨界流体または亜臨界流体の使用量は、重合前駆体や反応条件などに応じて 適宜決めることができる。例えば、重合前駆体の仕込み濃度は 1質量%—70質量% 程度とすることができる。
[0050] なお、本発明においては、超臨界流体または亜臨界流体を反応場とするが、他の 液体あるいは気体が存在して 、てもよ 、。
[0051] 本発明において、超臨界流体相中または亜臨界流体相中の重合前駆体、あるい は任意成分である添加成分や光重合開始剤の濃度を高める目的で、溶質である重 合前駆体、添加成分または光重合開始剤の溶解を助ける助溶媒 (ェントレーナー)を 用いてもよい。
[0052] ェントレーナーは、用いる超臨界流体または亜臨界流体や重合前駆体などに応じ て適宜選択することができる。超臨界二酸ィ匕炭素または亜臨界二酸ィ匕炭素を用いる 場合、ェントレーナーとしては、例えば、メタノール、エタノール、プロパン、ブタン、へ キサン、オクタン、酢酸、酢酸ェチル、アセトン、水、ァセトニトリル、ジクロロメタンなど が挙げられる。ェントレーナーは 1種を用いてもよいし、 2種以上を併用してもよい。ェ ントレーナーの使用量は適宜決めることができる。
[0053] 重合反応時の圧力(重合圧力)は、重合溶媒である超臨界流体または亜臨界流体 や重合前駆体、目的とする重合体の特性などに応じて適宜決めることができる。重合 圧力は、流体の臨界圧力の 0.65倍以上であることが好ましぐ臨界圧力以上である ことがより好ましい。超臨界二酸ィ匕炭素または亜臨界二酸ィ匕炭素を用いる場合、重 合圧力は 5MPa以上が好ましぐ 7MPa以上がより好ましぐ臨界圧力である 7.4MP a以上が特に好ましい。重合圧力がこの範囲であれば、より良好に重合反応が進行し 、より高品質の重合体が得られる。重合圧力の上限は特に限定されないが、装置の 耐圧性などの点から、通常、 150MPa以下の範囲に設定できる。重合圧力は重合開 始から終了まで一定圧に保ってもよぐまた、重合の進行に伴って昇圧あるいは降圧 する等、重合中に圧力を変動させてもよい。
[0054] 重合反応時の温度 (重合温度)は、重合溶媒である超臨界流体または亜臨界流体 や重合前駆体、目的とする重合体の特性などに応じて適宜決めることができる。重合 温度は、流体の臨界温度の 0.65倍以上であることが好ましぐ臨界温度以上である ことがより好ましい。超臨界二酸ィ匕炭素または亜臨界二酸ィ匕炭素を用いる場合、重 合温度は 20°C以上が好ましぐ 30°C以上がより好ましぐ臨界温度である 31°C以上 が特に好ましい。重合温度がこの範囲であれば、より良好に重合反応が進行し、より 高品質の重合体が得られる。重合温度の上限は特に限定されないが、通常、 250°C 以下の範囲に設定できる。重合温度は重合開始から終了まで一定温度に保ってもよ ぐまた、重合中に温度を変動させてもよい。
[0055] 具体的には、圧力 5MPa以上、温度 20°C以上の二酸化炭素中において重合前駆 体を光重合することが好ましぐさらに、圧力 7MPa以上、温度 30°C以上の二酸化炭 素中にお 、て重合前駆体を光重合することが好ま U、。
[0056] 超臨界流体または亜臨界流体は圧力および温度によって密度や極性を変化させ ることができる。これにより、重合前駆体および任意成分である添加成分の溶媒 (超 臨界流体または亜臨界流体)に対する溶解度を変化させることができる。したがって
、例えば、添加成分を使用する場合や、 2種以上の重合前駆体を使用する場合は、 重合圧力および重合温度を制御することにより、得られる重合体の組成を制御するこ とができる。また、重合中に圧力および温度の少なくとも一方を変動させることにより、 得られる重合体の組成を、例えば、基材表面に対して垂直方向に変化させることも可 能である。
[0057] 本発明の方法においては、上述のような超臨界流体中または亜臨界流体中におい て、 1種以上の重合前駆体 (単量体など)、及び必要に応じて、 1種以上の添加成分 や光重合開始剤との存在下、活性エネルギー線の照射により光重合を行う。ここで、 不飽和結合を 1個有する重合前駆体のみを重合しても網目構造にはならず、硬化し ない。硬化するためには、不飽和結合を 2個以上有する重合前駆体が必要である。 従って、本発明では、重合する重合前駆体には、不飽和結合を 2個以上有する化合 物である光硬化性化合物を 1種以上含有させる。
[0058] 照射する活性エネルギー線は、重合前駆体や光重合開始剤などに応じて適宜決 めることができる。活性エネルギー線としては、波長 10— 380nmの紫外線、波長 38 0— 780nmの可視光線、波長 780nm(0.78 μ m)— 2.5 μ mの近赤外線などが挙 げられる。多くの場合、活性エネルギー線としては、波長 500nm以下の紫外線また は可視光線、さらには波長 420nm以下の紫外線または可視光線が用いられ、特に 波長 380nm以下の紫外線、さらには波長 330nm以下の紫外線が用いられる。
[0059] 活性エネルギー線は単一波長のもの、あるいは、分光分布 (発光分布)にお 、てそ のピークが 1つであるものでなくてもよぐ上記の波長の光が含まれていればどのよう な分光分布を有するものであってもよ 、。
[0060] 活性エネルギー線照射に用いられるランプ類 (光源)は、一般に使用されているも のが使用でき、例えば、超高圧水銀灯、高圧水銀灯、中圧水銀灯、低圧水銀灯、ケ ミカルランプ、メタルハライドランプ、カーボンアーク灯、キセノン灯、水銀 キセノン灯 、タングステン灯、水素ランプ、重水素ランプ、エキシマーランプ、ショートアーク灯、 UVレーザー(波長: 351nm— 364nm)に発振線を持つレーザー、ヘリウム '力ドミニ ゥムレーザー、アルゴンレーザー、エキシマーレーザーなどが挙げられる。
[0061] 活性エネルギー線の照射量 (積算光量)は、所望の重合体の重合度や、突起部を 含む重合体の突起部の高さなどに応じて適宜決めることができる。活性エネルギー 線の照射量は、例えば、 0.5mjZcm2— lOOjZcm2とすることができ、 lrujZcm2以 上がより好ましぐまた、 lOjZcm2以下がより好ましい。
[0062] 活性エネルギー線の照射量は、
活性エネルギー線の照射量 (j/cm 2) =
活性エネルギー線の強度 (WZcm2) X 照射時間(sec) で定義される。
[0063] 活性エネルギー線の照射量の調節は、照射時間、ランプ出力などによって行うこと ができる。
[0064] 活性エネルギー線の強度は適宜決めることができ、例えば、 O.OlmWZcm2— 1テ ラ WZcm2 (TWZcm2)とすることができる。活性エネルギー線の照射時間は、その 強度に合わせて、所望の照射量が得られるように決めればょ 、。
[0065] 本発明においては、超臨界流体中または亜臨界流体中に、重合前駆体と、必要に 応じて添加成分やナノ粒子(平均粒子径が例えば lOOnm以下の超微粒子)とを好ま しくは均一に溶解 ·分散させた後、活性エネルギー線を照射して光重合を行う。ナノ 粒子としては、例えば、ナノカーボン、 CdSeなどが挙げられる。これにより、添加成分 やナノ粒子が均一に分散した突起部を含む重合体を生成することができる。また、必 要に応じて、他の添加剤を配合することもできる。
[0066] 重合前駆体は、溶媒である超臨界流体または亜臨界流体に溶解し、光重合性を有 するものであれば特に制限されない。重合前駆体は、その一部が超臨界流体または 亜臨界流体に溶解している状態で重合することもできる。また、重合前駆体はモノマ 一、オリゴマーあるいはポリマーであってもよい。なお前述の通り、本発明においては 、重合前駆体として、不飽和結合を 2個以上有する化合物である光硬化性ィヒ合物を 用いる。重合前駆体として、光硬化性化合物と共に、不飽和結合を 1個有する重合 前駆体を用いることもできる。
[0067] 重合前駆体としては、例えば、置換基を有して 、てもよ 、マレイミド基、置換基を有 して 、てもよ 、 (メタ)アタリロイル基、置換基を有して!/、てもよ 、環状エーテル構造、 置換基を有していてもよいァルケ-ル基、置換基を有していてもよいビ-レン基、置 換基を有していてもよいスチリル基およびアジド基カもなる群より選ばれる 1種以上の ものを有する化合物が挙げられる。ここで、(メタ)アタリロイル基とは、アタリロイル基 およびメタクリロイル基を意味する。これらの基を 2つ以上有する場合、同一の基のみ を有していてもよぐまた、異なる基を有していてもよい。置換基は、重合反応を阻害 しないものであれば特に制限されず、例えば、炭素数 12以下の炭化水素基、ハロゲ ン原子、アミノ基、カルボキシル基、ヒドロキシル基、シァノ基などが挙げられる。
[0068] 重合前駆体としては、光重合開始剤非存在下で光重合する化合物である自発光 重合性ィ匕合物が好ましい。
[0069] 自発光重合性ィ匕合物である重合前駆体としては、例えば、マレイミド基を少なくとも 2つ有するマレイミド系化合物が好ましい。具体的には、下記一般式(1)で表される マレイミド系化合物が挙げられる。
[0070] [化 1]
Figure imgf000015_0001
(式中、 Aは、置換基を有していてもよい炭化水素基、または、置換基を有していても よい炭化水素基がエーテル結合、エステル結合、ウレタン結合およびカーボネート結 合力もなる群より選ばれる少なくとも 1つの結合で結ばれた分子量 40— 100,000の( ポリ)エーテル連結鎖または (ポリ)エーテル残基、(ポリ)エステル連結鎖または(ポリ )エステル残基、(ポリ)ウレタン連結鎖または (ポリ)ウレタン残基、あるいは、(ポリ)力 ーボネート連結鎖または (ポリ)カーボネート残基を表す。 Bはエーテル結合、エステ ル結合、ウレタン結合またはカーボネート結合を表す。 Rは、置換基を有していてもよ い炭化水素基を表す。 mは 2— 6の整数を表す。ただし、 Bおよび Rは全て同じである 必要はなぐ 2種以上が混在するものであってもよい。 ) 0 [0071] 一般式(1)中の mは、単独で硬化膜を形成する点から、 2— 6の整数であることが好 ましい。
[0072] 一般式(1)中の Rとしては、アルキレン基、シクロアルキレン基、ァリールアルキレン 基、シクロアルキルアルキレン基が好ましい。ここで、アルキレン基は直鎖状であって も、分岐状であってもよい。また、ァリールアルキレン基あるいはシクロアルキル アル キレン基は、主鎖にァリール基またはシクロアルキル基を有していてもよぐまた、分 枝鎖にァリール基またはシクロアルキル基を有していてもよい。 Rとしては、硬化性の 点から、炭素数 1一 5の直鎖アルキレン基または炭素数 1一 5の分岐アルキレン基が 好ましい。
[0073] 一般式(1)中の Rの具体例としては、例えば、メチレン基、エチレン基、トリメチレン 基、テトラメチレン基、ペンタメチレン基、へキサメチレン基、ヘプタメチレン基、ォクタ メチレン基、ノナメチレン基、デカメチレン基、ゥンデカメチレン基、ドデカメチレン基な どの直鎖状アルキレン基; 1 メチルエチレン基、 1ーメチルートリメチレン基、 2—メチル —トリメチレン基、 1ーメチルーテトラメチレン基、 2—メチルーテトラメチレン基、 1 メチル ペンタメチレン基、 2—メチルーペンタメチレン基、 3—メチルーペンタメチレン基、ネオ ペンチレン基などの分岐アルキレン基;シクロペンチレン基、シクロへキシレン基など のシクロアルキレン基;ベンジレン基、 2, 2—ジフエ-ルートリメチレン基、 1 フエ-ルー エチレン基、 1 フエ-ルーテトラエチレン基、 2—フエ-ルーテトラエチレン基などの主 鎖または側鎖にァリール基を有するァリールアルキレン基;シクロへキシルメチレン基 、 1ーシクロへキシルーエチレン基、 1ーシクロへキシルーテトラエチレン基、 2—シクロへ キシルーテトラエチレン基などの主鎖または側鎖にシクロアルキル基を有するシクロア ルキルーアルキレン基;などが挙げられる。
[0074] 一般式(1)中の Aは、置換基を有していてもよい炭化水素基、または、置換基を有 していてもよい炭化水素基がエーテル結合、エステル結合、ウレタン結合およびカー ボネート結合力もなる群より選ばれる少なくとも 1つの結合で結ばれた分子量 40— 10 0,000の(ポリ)エーテル連結鎖または(ポリ)エーテル残基 (A— 1)、(ポリ)エステル 連結鎖または (ポリ)エステル残基 (A— 2)、(ポリ)ウレタン連結鎖または(ポリ)ウレタン 残基 (A— 3)あるいは (ポリ)カーボネート連結鎖または (ポリ)カーボネート残基 (A— 4 )を表す。 Aは、これらの連結鎖が繰り返しの一単位となって繰り返されたオリゴマー あるいはポリマーで構成される連結鎖であってもよ!/、。
[0075] 一般式(1)中の Aが置換基を有していてもよい炭化水素基である場合、その具体 例としては、例えば、 Rの具体例として挙げた炭化水素基が挙げられる。
[0076] さらに一般式(1)中の Aとしては、
(A-1) 直鎖ァノレキレン基、分枝ァノレキレン基、シクロアノレキレン基およびァリーノレ 基力 なる群より選ばれる少なくとも 1つの炭化水素基がエーテル結合で結合された 一つあるいはそれらの繰り返し単位を有する分子量 40— 100,000の(ポリ)エーテル
(ポリ)オールから構成される連結鎖または残基;
(A— 2—1) 直鎖アルキレン基、分枝アルキレン基、シクロアルキレン基およびァリー ル基力 なる群より選ばれる少なくとも 1つの炭化水素基がエステル結合で結合され た一つある!/、はそれらの繰り返し単位を有する分子量 40— 100,000の(ポリ)エステ ル (ポリ)オールから構成される連結鎖または残基;
(A— 2—2) 直鎖アルキレン基、分枝アルキレン基、シクロアルキレン基およびァリー ル基力 なる群より選ばれる少なくとも 1つの炭化水素基がエーテル結合で結合され た一つある!/、はそれらの繰り返し単位を有する分子量 40— 100,000の(ポリ)エーテ ル (ポリ)オールと、ジー,トリー,ペンター,へキサ一力ルボン酸(以下、ポリカルボン酸と略 記する)とをエステルイ匕して得られる、末端がポリカルボン酸残基である(ポリ)カルボ ン酸 { (ポリ)エーテル (ポリ)オール }エステル力も構成される連結鎖または残基; (A— 2—3) 直鎖アルキレン基、分枝アルキレン基、シクロアルキレン基およびァリー ル基力 なる群より選ばれる少なくとも 1つの炭化水素基がエーテル結合およびエス テル結合で結合された一つある 、はそれらの繰り返し単位を有する分子量 40— 100 ,000の(ポリ)エステル(ポリ)オールと、ポリカルボン酸とをエステル化して得られる、 末端がポリカルボン酸残基である(ポリ)カルボン酸 { (ポリ)エステル (ポリ)オール }ェ ステルから構成される連結鎖または残基;
(A-5) 直鎖アルキレン基、分枝アルキレン基、シクロアルキレン基およびァリール 基力 なる群より選ばれる少なくとも 1つの炭化水素基がエーテル結合で結合された 一つあるいはそれらの繰り返し単位を有する分子量 100— 40,000の(ポリ)エポキシ ドを開環して得られる連結鎖または残基;
(A— 3—1) 直鎖アルキレン基、分枝アルキレン基、シクロアルキレン基およびァリー ル基力 なる群より選ばれる少なくとも 1つの炭化水素基がエーテル結合で結合され た一つある!/、はそれらの繰り返し単位を有する分子量 40— 100,000の(ポリ)エーテ ル (ポリ)オールと、有機 (ポリ)イソシァネートとをウレタンィ匕した (ポリ)エーテル (ポリ) イソシァネートから構成される連結鎖または残基;
(A— 3—2) 直鎖アルキレン基、分枝アルキレン基、シクロアルキレン基およびァリー ル基力 なる群より選ばれる少なくとも 1つの炭化水素基がエステル結合で結合され た一つある!/、はそれらの繰り返し単位を有する分子量 40— 100,000の(ポリ)エステ ル (ポリ)オールと、有機 (ポリ)イソシァネートとをウレタンィ匕した (ポリ)エステル (ポリ) イソシァネートから構成される連結鎖または残基;
(A— 4) 直鎖アルキレン基、分枝アルキレン基、シクロアルキレン基およびァリール 基力 なる群より選ばれる少なくとも 1つの炭化水素基がエーテル結合で結合された 一つあるいはそれらの繰り返し単位を有する分子量 40— 100,000の(ポリ)エーテル (ポリ)オールの炭酸エステルから構成される連結鎖または残基;
などが挙げられる。
[0077] なお、( A— 2—1)、 ( A— 2—2)および ( A— 2—3)を一般式(1)で 、う(ポリ)エステル 連結鎖または (ポリ)エステル残基 (A— 2)とする。 (A-3-1)および (A— 3— 2)を一般 式(1)で!ヽぅ(ポリ)ウレタン連結鎖または(ポリ)ウレタン残基 (A-3)とする。
[0078] 上記の連結鎖または残基 (A— 1)を構成する(ポリ)エーテル (ポリ)オールとしては、 例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレンダリコール、 ポリテトラメチレングリコールなどのポリアルキレングリコール類;エチレングリコール、 プロパンジオール、プロピレングリコール、テトラメチレングリコール、ペンタメチレング リコーノレ、へキサンジオール、ネオペンチルグリコール、グリセリン、トリメチローノレプロ パン、ペンタエリスリトール、ジグリセリン、ジトリメチロールプロパン、ジペンタエリスリト ールなどのアルキレングリコール類のエチレンォキシド変性物、プロピレンォキシド変 性物、ブチレンォキシド変性物またはテトラヒドロフラン変性物;などが挙げられる。中 でも、アルキレングリコール類の各種変性物が好ましい。さらに、上記の連結鎖また は残基 (A— 1)を構成する(ポリ)エーテル (ポリ)オールとしては、エチレンォキシドと プロピレンォキシドとの共重合体、プロピレングリコールとテトラヒドロフランとの共重合 体、エチレングリコールとテトラヒドロフランとの共重合体、ポリイソプレングリコール、 水添ポリイソプレングリコール、ポリブタジエングリコール、水添ポリブタジエングリコー ルなどの炭化水素系ポリオール類、ポリテトラメチレンへキサグリセリルエーテル (へ キサグリセリンのテトラヒドロフラン変性物)などの多価水酸基ィ匕合物などが挙げられ る。
[0079] 上記の連結鎖または残基 (A— 2— 1)を構成する(ポリ)エステル (ポリ)オールとして は、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコー ル、ポリテトラメチレングリコールなどのポリアルキレングリコール類、あるいは、ェチレ ングリコール、プロパンジオール、プロピレングリコール、テトラメチレングリコール、ぺ ンタメチレングリコール、へキサンジオール、ネオペンチルグリコール、グリセリン、トリ メチロールプロパン、ペンタエリスリトール、ジグリセリン、ジトリメチロールプロパン、ジ ペンタエリスリトールなどのアルキレングリコル類の ε—力プロラタトン変性物、 γ—ブ チロラタトン変性物、 δ バレロラタトン変性物またはメチルバレロラタトン変性物;アジ ピン酸、ダイマー酸などの脂肪族ジカルボン酸と、ネオペンチルダリコール、メチルぺ ンタンジオールなどのポリオールとのエステル化物である脂肪族ポリエステルポリオ ール;テレフタル酸などの芳香族ジカルボン酸と、ネオペンチルグリコールなどのポリ オールとのエステル化物である芳香族ポリエステルポリオールなどのポリエステルポリ オール;ポリカーボネートポリオール、アクリルポリオール、ポリテトラメチレンへキサグ リセリルエーテル (へキサグリセリンのテトラヒドロフラン変性物)などの多価水酸基ィ匕 合物と、フマル酸、フタル酸、イソフタル酸、ィタコン酸、アジピン酸、セバシン酸、マ レイン酸などのジカルボン酸とのエステル化物;グリセリンなどの多価水酸基含有化 合物と、脂肪酸エステルとのエステル交換反応により得られるモノグリセリドなどの多 価水酸基含有化合物などが挙げられる。
[0080] 上記の連結鎖または残基 (Α— 2— 2)を構成する末端がポリカルボン酸である(ポリ) カルボン酸 { (ポリ)エーテル(ポリ)オール }エステルとしては、例えば、コハク酸、アジ ピン酸、フタル酸、へキサヒドロフタル酸、テトラヒドロフタル酸、フマル酸、イソフタル 酸、ィタコン酸、アジピン酸、セバシン酸、マレイン酸、トリメリット酸、ピロメリット酸、ベ ンゼンペンタカルボン酸、ベンゼンへキサカルボン酸、シトリック酸、テトラヒドロフラン テトラカルボン酸、シクロへキサントリカルボン酸などのポリカルボン酸と、上記(A— 1) で示した(ポリ)エーテル (ポリ)オールとのエステルイ匕で得られる、末端がポリカルボ ン酸である(ポリ)カルボン酸 { (ポリ)エーテル (ポリ)オール }エステルなどが挙げられ る。
[0081] 上記の連結鎖または残基 (A— 2— 3)を構成する末端がポリカルボン酸である(ポリ) カルボン酸 { (ポリ)エステル(ポリ)オール }エステルとしては、例えば、コハク酸、アジ ピン酸、フタル酸、へキサヒドロフタル酸、テトラヒドロフタル酸、フマル酸、イソフタル 酸、ィタコン酸、アジピン酸、セバシン酸、マレイン酸、トリメリット酸、ピロメリット酸、ベ ンゼンペンタカルボン酸、ベンゼンへキサカルボン酸、シトリック酸、テトラヒドロフラン テトラカルボン酸、シクロへキサントリカルボン酸などのジー、トリー、ペンタ—、へキサ— カルボン酸と、上記 (A— 2)に示した (ポリ)エステル (ポリ)オールとのエステルイ匕で得 られる、末端がポリカルボン酸である(ポリ)カルボン酸 { (ポリ)エステル (ポリ)オール } エステルが挙げられる。
[0082] 上記の連結鎖または残基 (A— 5)を構成する(ポリ)エポキシドとしては、例えば、(メ チル)ェピクロルヒドリンと、ビスフエノール Aやビスフエノール F、それらのエチレンォ キシド変性物、プロピレンォキシド変性物などと力 合成されるェピクロルヒドリン変性 ビスフエノール型のエポキシ榭脂;(メチル)ェピクロルヒドリンと、水添ビスフエノール A、水添ビスフエノール F、それらのエチレンォキシド変性物、プロピレンォキシド変性 物などとから合成されるェピクロルヒドリン変性水添ビスフエノール型のエポキシ榭脂 、エポキシノボラック榭脂;フエノール、ビフエノールなどと(メチル)ェピクロルヒドリンと の反応物;テレフタル酸、イソフタル酸またはピロメリット酸のグリシジルエステルなど の芳香族エポキシ榭脂;(ポリ)エチレングリコール、(ポリ)プロピレングリコール、(ポリ )ブチレングリコール、(ポリ)テトラメチレングリコール、ネオペンチルグリコールなどの グリコール類、それらのアルキレンォキシド変性物のポリグリシジルエーテル;トリメチ ロールプロパン、トリメチロールェタン、グリセリン、ジグリセリン、エリスリトール、ペンタ エリスリトール、ソルビトール、 1,4 ブタンジオール、 1,6 キサンジオールなどの脂 肪族多価アルコールや、それらのアルキレンォキシド変性物のグリシジルエーテル; アジピン酸、セバシン酸、マレイン酸、ィタコン酸などのカルボン酸のグリシジルエス テル;多価アルコールと多価カルボン酸とのポリエステルポリオールのグリシジルエー テル;グリシジル (メタ)ァクルレートゃメチルダリシジル (メタ)アタリレートの共重合体; 高級脂肪酸のグリシジルエステル、エポキシ化アマ-油、エポキシ化大豆油、ェポキ シ化ひまし油、エポキシィ匕ポリブタジエンなどの脂肪族エポキシ榭脂などが挙げられ る。
[0083] 上記連結鎖または残基 (A-3)を構成する(ポリ)ヱ一テル (ポリ)イソシァネートとし ては、例えば、メチレンジイソシァネート、へキサメチレンジイソシァネート、トリメチル へキサメチレンジイソシァネート、テトラメチレンジイソシァネート、リジンジイソシァネ ート、ダイマー酸ジイソシァネートなどの脂肪族ジイソシァネートイ匕合物; 2,4 トリレン ジイソシァネート、 2,4—トリレンジイソシァネートの 2量体、 2,6—トリレンジイソシァネー ト、 p—キシレンジイソシァネート、 m—キシレンジイソシァネート、 4,4'ージフエニルメタ ンジイソシァネート、 1,5 ナフチレンジイソシァネート、 3, 3' ジメチルビフエ-ルー 4,
4'ージイソシァネートなどの芳香族ジイソシァネートイ匕合物;イソホロンジイソシァネー ト、 4,4'ーメチレンビス(シクロへキシルイソシァネート)、メチルシクロへキサン一 2,4— ジイソシァネート、メチルシクロへキサン 2,6—ジイソシァネート、 1,3— (イソシァネー トメチレン)シクロへキサンなどの脂環式ジイソシァネートなどのポリイソシァネートと、 ( ポリ)エーテル (ポリ)オールとのウレタン化反応によって得られる(ポリ)エーテル (ポリ )イソシァネート等が挙げられる。
[0084] ポリイソシァネートとの反応に用いる(ポリ)エーテル(ポリ)オールとしては、例えば、 ポリエチレングリコール、ポリプロピレングリコール、ポリブチレンダリコール、ポリテトラ メチレングリコールなどのポリアルキレングリコール類;エチレングリコール、プロパン ジオール、プロピレングリコール、テトラメチレングリコール、ペンタメチレングリコーノレ 、へキサンジオール、ネオペンチルグリコール、グリセリン、トリメチロールプロパン、ぺ ンタエリスリトール、ジグリセリン、ジトリメチロールプロパン、ジペンタエリスリトールなど のアルキレングリコール類のエチレンォキシド変性物、プロピレンォキシド変性物、ブ チレンォキシド変性物またはテトラヒドロフラン変性物;などが挙げられる。中でも、ァ ルキレングリコール類の各種変性物が好ましい。さらに、ポリイソシァネートとの反応 に用いる(ポリ)エーテル (ポリ)オールとしては、エチレンォキシドとプロピレンォキシド との共重合体、プロピレングリコールとテトラヒドロフランとの共重合体、エチレングリコ 一ルとテトラヒドロフランとの共重合体、ポリイソプレングリコール、水添ポリイソプレン グリコール、ポリブタジエングリコール、水添ポリブタジエングリコールなどの炭化水素 系ポリオール類;ポリテトラメチレンへキサグリセリルエーテル(へキサグリセリンのテト ラヒドロフラン変性物)などの多価水酸基ィ匕合物などが挙げられる。
[0085] 上記の連結鎖または残基 (A-3— 1)を構成する(ポリ)エステル (ポリ)イソシァネート としては、例えば、連結鎖または残基 (A— 1)で挙げたポリイソシァネートと、(ポリ)ェ ステル (ポリ)オールとのウレタンィ匕で得られる(ポリ)エステル (ポリ)イソシァネートなど が挙げられる。
[0086] ポリイソシァネートとの反応に用いる(ポリ)エステル(ポリ)オールとしては、例えば、 エチレングリコーノレ、プロパンジオール、プロピレングリコール、テトラメチレングリコー ル、ペンタメチレングリコール、へキサンジオール、ネオペンチルグリコール、グリセリ ン、トリメチロールプロパン、ペンタエリスリトール、ジグリセリン、ジトリメチロールプロパ ン、ジペンタエリスリトールなどのアルキレングリコール類の ε一力プロラタトン変性物、 γ ブチロラタトン変性物、 δ バレロラタトン変性物またはメチルバレロラタトン変性 物;アジピン酸、ダイマー酸などの脂肪族ジカルボン酸と、ネオペンチルダリコール、 メチルペンタンジオールなどのポリオールとのエステル化物である脂肪族ポリエステ ルポリオール;テレフタル酸などの芳香族ジカルボン酸と、ネオペンチルグリコールな どのポリオールとのエステル化物である芳香族ポリエステルポリオールなどのポリエス テルポリオール;ポリカーボネートポリオール、アクリルポリオール、ポリテトラメチレン へキサグリセリルエーテル(へキサグリセリンのテトラヒドロフラン変性物)などの多価水 酸基化合物と、フマル酸、フタル酸、イソフタル酸、ィタコン酸、アジピン酸、セバシン 酸、マレイン酸などのジカルボン酸とのエステル化物;グリセリンなどの多価水酸基含 有ィ匕合物と、脂肪酸エステルとのエステル交換反応により得られるモノグリセリドなど の多価水酸基含有ィ匕合物などが挙げられる。
[0087] 上記の連結鎖または残基 (Α— 4)を構成する(ポリ)エーテル (ポリ)オールとしては、 例えば、連結鎖または残基 (A— 1)で挙げた (ポリ)エーテル (ポリ)オールなどが挙げ られる。
[0088] (ポリ)エーテル (ポリ)オールとの炭酸エステルイ匕に用いる化合物としては、炭酸ジ ェチル、炭酸ジプロピル、フォスゲンなどが挙げられる。また、エポキシドとニ酸ィ匕炭 素との交互重合によってもポリカーボネートイ匕することができる。
[0089] これらの中でも、一般式(1)中の Aとしては、炭素数 2— 24の直鎖アルキレン基、炭 素数 2— 24の分枝アルキレン基、水酸基を有する炭素数 2— 24のアルキレン基、シ クロアルキレン基、ァリール基およびァリールアルキレン基力 なる群より選ばれる少 なくとも 1つの基力 エーテル結合およびエステル結合力 なる群より選ばれる少なく とも 1つの結合で結ばれた分子量 100— 100,000の(ポリ)エーテル連結鎖または( ポリ)エーテル残基 (A一: L)ある 、は(ポリ)エステル連結鎖または(ポリ)エステル残基
(A— 2)が好ましぐ炭素数 2— 24の直鎖アルキレン基、炭素数 2— 24の分枝アルキ レン基、水酸基を有する炭素数 2— 24のアルキレン基および Zまたはァリール基を 含む繰り返し単位力もなる分子量 100— 100,000の(ポリ)エーテル連結鎖または( ポリ)エーテル残基 (A— 1)、あるいは、炭素数 2— 24の直鎖アルキレン基、炭素数 2 一 24の分枝アルキレン基、水酸基を有する炭素数 2— 24のアルキレン基および Zま たはァリール基を含む繰り返し単位力もなる分子量 100— 100,000の(ポリ)エステ ル連結鎖または (ポリ)エステル残基 (A-2)がより好ま ヽ。
[0090] 一般式(1)で表されるマレイミド系化合物としては、硬化性の点から、 Rは炭素数 1 一 5のアルキレン基であり、 Bは—COO—または—OCO—で表されるエステル結合で あり、 Aは炭素数 2— 6の直鎖アルキレン基、炭素数 2— 6の分枝アルキレン基または 水酸基を有する炭素数 2— 6のアルキレン基を含む繰り返し単位力もなる分子量 100 一 1,000の(ポリ)エーテル連結鎖または (ポリ)エーテル残基 (A— 1)であるマレイミド 系化合物が好ましい。
[0091] このようなマレイミド系化合物として、例えば、下記一般式(2)で表されるポリエーテ ルビスマレイミド酢酸エステルが挙げられる。 [0092] [化 2]
Figure imgf000024_0001
(式中、 R1はアルキレン基を表し、 nは 1一 1,000の整数である。 ) o
[0093] 一般式(1)で表わされるマレイミド系化合物は、例えば、カルボキシル基を有するマ レイミド化合物と、カルボキシル基と反応する化合物とから公知の方法により合成する ことができる。カルボキシル基と反応する化合物としては、例えば、直鎖アルキレン基 、分枝アルキレン基、シクロアルキレン基およびァリール基力 なる群より選ばれる少 なくとも 1つの炭化水素基力 エーテル結合および Zまたはエステル結合で結合され た一つあるいはそれらの繰り返し単位を有する平均分子量 100— 1,000,000の 2— 6官能のポリオールまたはポリエポキシドなどが挙げられる。
[0094] また、一般式(1)で表わされるマレイミド系化合物は、ヒドロキシル基を有するマレイ ミド化合物と、ヒドロキシル基と反応する化合物とから、公知の方法により合成すること ができる。ヒドロキシル基と反応する化合物としては、例えば、直鎖アルキレン基、分 枝アルキレン基、シクロアルキレン基およびァリール基力 なる群より選ばれる少なく とも 1つの炭化水素基力 エーテル結合および Zまたはエステル結合で結合された 一つあるいはそれらの繰り返し単位を有する平均分子量 100— 1,000,000の 1分子 中に 2— 6個のカルボキシル基、エーテル結合またはエステル結合を有するジー、トリ 一、ペンター、へキサ一力ルボン酸、(ポリ)イソシァネート、炭酸エステルまたはホスゲ ンなどが挙げられる。
[0095] 重合前駆体としては、その他に、以下のような化合物が挙げられる。
[0096] マレイミド基を 1つ有する化合物としては、例えば、メチルマレイミド、へキシルマレイ ミド、 N—フエ-ルマレイミド、 N—(2— tert—ブチルフエ-ル)マレイミド、 N— (2—フルォ 口フエ-ル)マレイミド、 N—(2—クロ口フエ-ル)マレイミド、 N— (2—ブロモフエ-ル)マ レイミド、 N— (2—ョードフエ-ル)マレイミド、 N—シクロへキシルマレイミド、 N—ラウリル マレイミド、 Ν,Ν'—メチレンビス(Ν フエ-ル)モノマレイミド、ヒドロキシメチルマレイミ ド、ヒドロキシェチルマレイミド、 2—ェチルカーボネートェチルマレイミド、 2—イソプロ ピルウレタンェチルマレイミド、 2—アタリロイルェチルマレイミド、ァセトキシェチノレマレ イミド、ァミノフエ-ルマレイミド、 Ν— (2— CF—フエ-ル)マレイミド、 Ν— (4— CF フエ
3 3
-ル)マレイミド、 Ν— (2— CF—フエ-ル)メチルマレイミド、 Ν— (2 ブロモ—3,5— CF
3 3 —フエ-ル)マレイミドなどが挙げられる。
マレイミド基を 2つ以上有する化合物としては、例えば、 Ν,Ν' エチレンビスマレイミ ド、 Ν,Ν'—へキサメチレンビスマレイミド、 Ν,Ν'— 4,4'ービフエ-ルビスマレイミド、 Ν,Ν '一 3, 3'—ビフエ-ルビスマレイミド、 Ν,Ν'—(4,4,ージフエ-ルメタン)ビスマレイミド、 Ν, N'— 3, 3—ジフエ-ルメタンビスマレイミド、 Ν,Ν'— 4,4—ジフエ-ルメタンビスマレイミド 、 Ν,Ν'—メチレンビス(3—クロロー ρ フエ二レン)ビスマレイミド、 Ν,Ν'— 4,4'ージシクロ へキシルメタンビスマレイミド、 Ν,Ν'—(2,2,一ジェチルー 6, 6' ジメチルー 4,4'ーメチレ ンジフエ-レン)ビスマレイミド、 Ν,Ν'— 1,2—フエ-レンビスマレイミド、 Ν,Ν'— 1,3—フ ェニレンビスマレイミド、 Ν,Ν'— 1,4 フエ二レンビスマレイミド、 2, 2' ビス(4 Ν マレ イミドフエ-ル)プロパン、 2, 2' ビス [4— (4— Ν マレイミドフエノキシ)フエ-ル]プロパ ン、 2,2' ビス [3 tert—ブチルー 5—メチルー 4一(4 マレイミドフエノキシ)フエ二ノレ]プ 口パン、 2, 2' ビス(4 N マレイミドー 2—メチルー 5—ェチルフエ-ル)プロパン、 2,2'— ビス(4 N—マレイミドー 2, 5—ジブロモフエ-ル)プロパン、ビス(4 N マレイミドフエ- ル)メタン、ビス(3, 5—ジメチルー 4 マレイミドフエ-ル)メタン、ビス(3—ェチルー 5—メ チルー 4—マレイミドフエ-ル)メタン、ビス(3, 5—ジェチルー 4 マレイミドフエ-ル)メタ ン、ビス(3—メチルー 4—マレイミドフエ-ル)メタン、ビス(3—ェチルー 4 マレイミドフエ -ル)メタン、 m—ジー N マレイミドベンゼン、 2,6—ビス [2— (4 マレイミドフエ-ル)プ ロピノレ]ベンゼン、 Ν,Ν'— 2,4—トノレイレンビスマレイミド、 Ν,Ν'— 2, 6—トノレイレンビスマ レイミド、 Ν,Ν'— 4,4—ジフエ-ルエーテルビスマレイミド、?^,?^ー3,3—ジフェ-ルェー テルビスマレイミド、 Ν,Ν'— 4,4ージフエ-ルスルフイドビスマレイミド、?^,?^—3,3—ジフ ェ-ルスルフイドビスマレイミド、 Ν,Ν'— 4,4ージフエ-ルスルホンビスマレイミド、 Ν,Ν' —3,3—ジフエ-ルスルホンビスマレイミド、 Ν,Ν'— 4,4—ジフエ-ルケトンビスマレイミド 、 Ν,Ν'— 3, 3—ジフエニノレケトンビスマレイミド、 Ν,Ν'— 4,4—ジフエ二ルー 1,1—プロパン ビスマレイミド、 Ν,Ν'— 3, 3—ジフエ-ルー 1,1 プロパンビスマレイミド、 3, 3'—ジメチル —Ν,Ν'— 4,4ージフエニルメタンビスマレイミド、 3, 3'—ジメチルー Ν,Ν'— 4,4'ービフエ二 ルビスマレイミド、 1,3—ビス(3—マレイミドフエノキシベンゼン、ビス(4 マレイミドフエ -ル)メタン、ビス [4— (3—マレイミドフエノキシ)フエ-ル]メタン、 2,2—ビス [4— (4 マ レイミドフエノキシ)フエ-ル]メタン、 1,1—ビス [4— (4 マレイミドフエノキシ)フエ-ル] メタン、 1,1—ビス [3—メチルー 4— (4 マレイミドフエノキシ)フエ-ル]メタン、 1,1 ビス [
3—クロロー 4— (4 マレイミドフエノキシ)フエ-ル]メタン、 1,1—ビス [3—ブロモー 4— (4— マレイミドフエノキシ)フエ-ル]メタン、 1 , 1 ビス [4— (3—マレイミドフエノキシ)フエ- ル]ェタン、 1,2 ビス [4— (3 マレイミドフエノキシ)フエ-ル]ェタン、 1,1 ビス [4 (4 —マレイミドフエノキシ)フエ-ル]ェタン、 1,1—ビス [3—メチルー 4— (4 マレイミドフエノ キシ)フエ-ル]ェタン、 1,1 ビス [3 クロロー 4— (4 マレイミドフエノキシ)フエ-ル]ェ タン、 1,1—ビス [3—ブロモー 4— (4—マレイミドフエノキシ)フエ-ル]ェタン、 2,2 ビス(
4—マレイミドフエ-ル)プロパン、 2, 2 ビス [4— (3—マレイミドフエノキシ)フエ-ル]プ 口パン、 2,2—ビス [4— (4 マレイミドフエノキシ)フエ-ル]プロパン、 2,2 ビス [3 クロ ロー 4— (4 マレイミドフエノキシ)フエ-ノレ]プロパン、 2, 2 ビス [3—ブロモー 4— (4 マ レイミドフエノキシ)フエ-ル]プロパン、 2, 2 ビス [3—ェチルー 4— (4—マレイミドフエノ キシ)フエ-ル]プロパン、 2,2 ビス [3 プロピル 4— (4 マレイミドフエノキシ)フエ二 ル]プロパン、 2,2 ビス [3 イソプロピル 4— (4—マレイミドフエノキシ)フエ-ル]プロ パン、 2,2 ビス [3—ブチルー 4— (4 マレイミドフエノキシ)フエ-ル]プロパン、 2,2—ビ ス [3— sec—ブチルー 4— (4 マレイミドフエノキシ)フエ-ル]プロパン、 2,2 ビス [3—メ トキシー 4 (4—マレイミドフエノキシ)フエ-ル]プロパン、 1 , 1—ビス [4— (4 マレイミド フエノキシ)フエ-ル]プロパン、 2,2—ビス [4— (3—マレイミドフエノキシ)フエ-ル]ブタ ン、 3,3—ビス [4— (4 マレイミドフエノキシ)フエ-ル]ペンタン、 4,4' ビス(3—マレイミ ドフエノキシ)ビフエ-ル、ビス [4— (3—マレイミドフエノキシ)フエ-ル]ケトン、ビス [4 (3—マレイミドフエノキシ)フエ-ル]スルホキシド、ビス [4— (3—マレイミドフエノキシ)フ ェ -ル]スルホン、ビス [4— (3—マレイミドフエノキシ)フエ-ル]エーテル、 Ν,Ν'— p—べ ンゾフエノンビスマレイミド、 Ν,Ν'—ドデカメチレンビスマレイミド、 Ν,Ν'— m キシリレン ビスマレイミド、 Ν,Ν'— p—キシリレンビスマレイミド、 Ν,Ν'— 1,3 ビスメチレンシクロへ キサンビスマレイミド、 Ν,Ν'— 1,4 ビスメチレンシクロへキサンビスマレイミド、 Ν,Ν'-2 ,4 トリレンビスマレイミド、 Ν,Ν'— 2,6 トリレンビスマレイミド、 Ν,Ν'—ジフエニノレエタン ビスマレイミド、 Ν,Ν'—ジフエ-ルエーテルビスマレイミド、 Ν,Ν'— (メチレンージテトラヒ ドロフエ-ル)ビスマレイミド、 Ν,Ν'—(3—ェチル) 4,4ージフエ-ルメタンビスマレイミ ド、 Ν,Ν'—(3, 3—ジメチル) 4,4—ジフエ-ルメタンビスマレイミド、?^,?^—(3,3—ジェ チル) 4,4—ジフエ-ルメタンビスマレイミド、 Ν,Ν'—(3, 3—ジクロ口) 4,4ージフエ- ルメタンビスマレイミド、 Ν,Ν'—トリジンビスマレイミド、 Ν,Ν' イソホロンビスマレイミド、 Ν,Ν'— ρ,ρ'—ジフエ-ルジメチルシリルビスマレイミド、 Ν,Ν'—べンゾフエノンビスマレ イミド、 Ν,Ν'—ジフエ-ルプロパンビスマレイミド、 Ν,Ν' ナフタレンビスマレイミド、 Ν, Ν'—4,4— ( 1 , 1ージフエ-ルーシクロへキサン)ビスマレイミド、 Ν,Ν'— 3, 5— ( 1 , 2,4—トリ ァゾール)ビスマレイミド、 Ν,Ν' ピリジン 2,6—ジィルビスマレイミド、 Ν,Ν'— 5—メトキ シ一 1,3—フエ-レンビスマレイミド、 1,2—ビス(2—マレイミドエトキシ)ェタン、 1,3 ビス (3—マレイミドプロボキシ)プロパン、 Ν,Ν'— 4,4—ジフエ-ルメタン ビスージメチルマ レイミド、 Ν,Ν'—へキサメチレン ビス—ジメチルマレイミド、 Ν,Ν'— 4,4'— (ジフエ-ル エーテル) ビスージメチルマレイミド、 Ν,Ν'— 4,4'— (ジフエ-ルスルホン) ビスージメ チノレマレイミド、トリエチレングリコールビスカーボネートビスェチノレマレイミド、イソホロ ンビスウレタンビスェチノレマレイミド、ビスェチルマレイミドカーボネート、 4,9 ジォキ サ—1,12ドデカンビスマレイミド、ビスプロピノレマレイミド、ドデカン Ν,Ν' ビスマレイミ ド、 Ν— (2,4, 6 イソプロピル— 3 マロイミドフエ-ル)マレイミドなどが挙げられる。
[0098] また、 3,4,4' トリアミノジフエ-ルメタン、トリァミノフエノールなどと無水マレイン酸と の反応で得られるマレイミド系化合物や、トリス— (4ーァミノフエ-ル) ホスフェートある いはトリスー (4ーァミノフエニル)ーチォホスフェートと無水マレイン酸との反応で得られ るマレイミド系化合物も挙げられる。
[0099] また、含フッ素ビスマレイミド系化合物としては、例えば、 2,2' ビス(4—マレイミドフ ェ -ル)へキサフルォロプロパン、 2, 2' ビス [4— (3—マレイミドフエノキシ)フエ-ル]— 1, 1,1 , 3, 3, 3—へキサフルォロプロパン、 2, 2' ビス [4— (4 マレイミドフエノキシ)フエ -ル]—1, 1,1,3,3, 3—へキサフルォロプロパン、 2, 2' ビス [4— (4 マレイミド— 2—トリ フルォロメチルフエノキシ)フエニル]—1, 1,1 , 3, 3, 3—へキサフルォロプロパン、 2, 2— ビス [ 3 , 5—ジメチルー (4—マレイミドフエノキシ)フエ-ル]— 1 , 1,1,3,3, 3—へキサフル ォロプロパン、 2, 2 ビス [3, 5—ジブロモ—(4 マレイミドフエノキシ)フエ-ル]— 1,1, 1, 3, 3, 3—へキサフルォロプロパン、 2,2' ビス [3 マレイミドー 5 (トリフルォロメチル)フ ェ-ル ]—1,1,1, 3, 3, 3—へキサフルォロプロパン、 2, 2' ビス(3 フルオロー 5 マレイ ミドフエ二ル)— 1,1,1,3,3,3—へキサフルォロプロパン、 3, 3' ビスマレイミドー 5, 5'—ビ ス(トリフルォロメチル)ビフエ-ル、 3, 3'—ジフルオロー 5, 5'—ビスマレイミドビフエ-ル 、 3, 3'—ビスマレイミドー 5, 5'—ビス(トリフルォロメチル)ベンゾフエノン、 3, 3'—ジフルォ 口一 5, 5' ビスマレイミドベンゾフエノン、 1,3—ビス [3 マレイミド一 5— (トリフルォロメチ ル)フエノキシ]ベンゼン、 1,4 ビス [3 マレイミドー 5— (トリフルォロメチル)フエノキシ] ベンゼン、 1,3 ビス(3 フルォロ— 5—マレイミドフエノキシ)ベンゼン、 1,4 ビス(3—フ ルォ口— 5—マレイミドフエノキシ)ベンゼン、 1,3 ビス(3 フルオロフエノキシ)—5—フ ルォロベンゼン、 1,3 ビス(3—フルオロー 5 マレイミドフエノキシ)—5 フルォロベン ゼン、 3, 5—ビス [3—マレイミドフエノキシ]ベンゾトリフルオリド、 3,5—ビス [3—マレイミド —5— (トリフルォロメチル)フエノキシ]ベンゾトリフルオリド、ビス(3—フルオロー 5—マレ イミドフエ-ル)エーテル、ビス [3—マレイミドー 5— (トリフルォロメチル)フエ-ル]エー テル、ビス(3—フルオロー 5—マレイミドフエ-ル)スルフイド、ビス [3—マレイミドー 5— (ト リフルォロメチル)フエ-ル]スルフイド、ビス(3—フルォロ— 5—マレイミドフヱ-ル)スル ホン、ビス [3 マレイミド— 5— (トリフルォロメチル)フエ-ル]スルホン、 1,3 ビス(3—フ ルォ口— 5—マレイミドフエ-ル)—1,1 , 3, 3—テトラメチルジシロキサン、 1 , 3—ビス [3—マ レイミド— 5— (トリフルォロメチル)フエ-ル]— 1,1, 3,3—テトラメチルジシロキサンなどが 挙げられる。
[0100] また、マレイミド系化合物としては、マレイミド基を 1つ以上有するオリゴマーおよび ポリマーも挙げられる。
[0101] このオリゴマーの種類は特に制限されず、例えば、上記のマレイミド系化合物とポリ ァミン類とのマイケル付加反応により得られるもの、マレイン酸類および Ζまたは無水 マレイン酸類とジァミンとを反応させて得られるものなどが挙げられる。また、テトラ力 ルボン酸二無水物とジァミンとを反応させて得られる末端無水物基を有するポリイミド 前駆体と、エポキシ榭脂とマレイミド基含有モノカルボン酸との反応物であるマレイミ ド化合物などの水酸基含有マレイミドィ匕合物とを反応させて得られるものや、テトラ力 ルボン酸二無水物とジァミンとを反応させて得られる末端無水物基を有するポリイミド 前駆体と、エポキシ榭脂とマレイミド基含有モノカルボン酸との反応物であるマレイミ ド化合物などの水酸基含有マレイミドィ匕合物と、ポリオ一ルイ匕合物とを反応させて得 られるものなどが挙げられる。
[0102] さら〖こは、マレイミド基 1つ以上が、ウレタン系榭脂、エポキシ系榭脂、ポリエステル 系榭脂、ポリエーテル系榭脂、アルキド系榭脂、ポリ塩ィ匕ビュル系榭脂、フッ素系榭 脂、シリコーン系榭脂、酢酸ビュル系榭脂、フエノール系榭脂、ポリアミド榭脂および これらの 2種以上の変性榭脂などのポリマー成分あるいはオリゴマー成分に結合した 化合物も挙げられる。
[0103] (メタ)アタリロイル基を 1つ以上有する化合物としては、例えば、(メタ)アクリル酸メ チル、(メタ)アクリル酸ェチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、( メタ)アクリル酸へキシル、(メタ)アクリル酸ォクチル、(メタ)アクリル酸 2—ェチルへキ シル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ラウリル、( メタ)アクリル酸ラウリル トリデシル、(メタ)アクリル酸トリデシル、(メタ)アクリル酸セチ ルーステアリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸シクロへキシル、(メタ) アクリル酸ベンジル、メタクリル酸フエ-ル等の(メタ)アクリル酸エステル類;(メタ)ァク リル酸アミド、(メタ)アクリル酸メチロールアミド等の (メタ)アクリル酸アミド類;(メタ)ァ クリル酸、(メタ)アクリル酸ヒドロキシェチル、(メタ)アクリル酸ヒドロキシプロピル、(メ タ)アクリル酸ヒドロキシブチル、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル 酸ジェチルアミノエチル、(メタ)アクリル酸ブチルアミノエチル、(メタ)アクリル酸グリシ ジル、(メタ)アクリル酸テトラヒドロフルフリル等の反応性アクリル系モノマー類;ジ (メ タ)アクリル酸エチレン、ジ (メタ)アクリル酸ジエチレングリコール、ジ(メタ)アクリル酸 トリエチレングリコール、ジ (メタ)アクリル酸テトラエチレンダリコール、ジ (メタ)アクリル 酸デカエチレングリコール、ジ (メタ)アクリル酸ペンタデカエチレングリコール、ジ (メタ )アクリル酸ペンタコンタへクタエチレングリコール、ジ(メタ)アクリル酸ブチレン、(メタ )アクリル酸ァリル、トリ(メタ)アクリル酸トリメチロールプロパン、テトラ (メタ)アクリル酸 ペンタエリスリトール、ジ (メタ)アクリル酸フタル酸ジエチレングリコール等の架橋性ァ クリル系モノマー類;ジエチレングリコール変性ノ-ルフエノール(メタ)アタリレート、ィ ソデシル (メタ)アタリレート、ラウリル (メタ)アタリレート、セチル (メタ)アタリレート、ステ ァリル (メタ)アタリレート、 2— (2—エトキシエトキシ) 2—ェチルへキシル (メタ)アタリレー ト等の単官能 (メタ)アクリルィ匕合物などが挙げられる。
[0104] その他に、(メタ)アタリロイル基を 2つ以上有する化合物としては、例えば、 1,4ーブ タンジオールジ (メタ)アタリレート、ネオペンチルグリコールジ (メタ)アタリレート、プロ ピレンォキシド変性ネオペンチルグリコールジ (メタ)アタリレート、ヒドロキシプロピオン 酸ネオペンチルグリコールジ (メタ)アタリレート、ヒドロキシビバリン酸ネオペンチルグ リコールジ (メタ)アタリレート、 1,6 キサンジオールジ(メタ)アタリレート、 1,9ーノナ ンジオールジ (メタ)アタリレート、トリプロピレングリコールジ (メタ)アタリレート、ポリプ ロピレングリコールジ(メタ)アタリレート、トリメチロールプロパントリ(メタ)アタリレート、 エチレンォキシド変性トリメチロールプロパントリ(メタ)アタリレート、プロピレンォキシド 変性トリメチロールプロパントリ(メタ)アタリレート、プロピレンォキシド変性グリセリントリ (メタ)アタリレート、ペンタエリスリトールトリ(メタ)アタリレート、ペンタエリスリトールテト ラ(メタ)アタリレート、ジトリメチロールプロパンテトラ (メタ)アタリレート、ジペンタエリス リトールへキサ (メタ)アタリレート、イソシァヌール酸エチレンォキシド変性トリ(メタ)ァ タリレートなどが挙げられる。
[0105] また、イソボル-ル (メタ)アタリレート、ノルボル-ル (メタ)アタリレート、ジシクロペン
、ジエチレングリコールジシクロペンテ-ルモノエーテルの(メタ)アクリル酸エステル、 オリゴォキシエチレンまたはオリゴプロピレングリコールジシクロペンテニルモノエーテ ルの(メタ)アクリル酸エステルなど、ジシクロペンテ-ルシンナメート、ジシクロペンテ ノキシェチルシンナメート、ジシクロペンテノキシェチルモノフマレートまたはジフマレ ートなど、 3, 9 ビス(1,1—ビスメチルー 2—才キシェチル)ースピロ [5, 5]ゥンデカン、 3, 9 ビス(1 , 1 ビスメチルー 2—ォキシェチル)—2,4,8, 10—テトラオキサスピロ [5,5]ゥ ンデカン、 3,9—ビス(2—ォキシェチル)ースピロ [5, 5]ゥンデカン、 3, 9 ビス(2—ォキ シェチル)— 2,4,8, 10—テトラオキサスピロ [5,5]ゥンデカンなどのモノー、ジ (メタ)ァク リレート、あるいは、これらのスピログリコールのエチレンォキシドまたはプロピレンォキ シド付加重合体のモノー、ジ (メタ)アタリレート、または、これらのモノ (メタ)アタリレート のメチルエーテル、 1—ァザビシクロ [2,2,2]— 3 オタテュル (メタ)アタリレート、ビシク 口 [2,2,1]— 5 ヘプテン 2,3—ジカルボキシルモノアリルエステルなど、ジシクロペン タジェ-ル (メタ)アタリレート、ジシクロペンタジェ-ルォキシェチル (メタ)アタリレート 、ジヒドロジシクロペンタジェニル (メタ)アタリレートなどが挙げられる。
[0106] また、(メタ)アタリロイル基を 1つ以上有するオリゴマーおよびポリマーも挙げられる
[0107] このオリゴマーの種類は特に制限されず、例えば、オリゴエチレングリコール、ェポ キシ榭脂オリゴマー、ポリエステル榭脂オリゴマー、ポリアミド榭脂オリゴマー、ウレタ ン榭脂オリゴマー、オリゴビュルアルコール、フエノール榭脂オリゴマーなどが挙げら れる。
[0108] これらの具体例としては、エポキシ榭脂オリゴマーのアクリル酸エステル (例えば、ビ スフエノール Aのジグリシジルエーテルジアタリレート)、エポキシ榭脂オリゴマーとァ クリル酸とメチルテトラヒドロフタル酸無水物との反応生成物、エポキシ榭脂オリゴマ 一と 2—ヒドロキシェチルアタリレートとの反応生成物、エポキシ榭脂オリゴマーとジグリ シジルエーテルとジァリルァミンとの反応生成物、グリシジルジアタリレートと無水フタ ル酸との開環共重合エステル、メタクリル酸二量体とポリオールとのエステル、アタリ ル酸と無水フタル酸とプロピレンォキシドと力 得られるポリエステル、オリゴエチレン グリコールと無水マレイン酸とグリシジルメタタリレートとの反応生成物、オリゴビュルァ ルコールと N—メチロールアクリルアミドとの反応生成物、オリゴビュルアルコールを無 水コハク酸でエステル化した後にグリシジルメタタリレートを付加させたもの、ピロメリッ ト酸ニ無水物のジァリルエステル化物に ρ,ρ'—ジアミノジフエ-ルを反応させて得られ るオリゴマー、エチレン 無水マレイン酸共重合体とァリルァミンとの反応生成物、メ チルビ-ルエーテル 無水マレイン酸共重合体と 2—ヒドロキシェチルアタリレートとの 反応生成物、これにさらにグリシジルメタタリレートを反応させたもの、ウレタン結合を 介してオリゴォキシアルキレンセグメントまたは飽和オリゴエステルセグメントあるいは その両方が連結し、両末端にアタリロイル基またはメタクロィル基を有するウレタン系 オリゴマー、末端アクリル変性イソプレンゴムまたはブタジエンゴムなどが挙げられる。 [0109] また、(メタ)アタリロイル基を有するオリゴマーの具体例としては、オリゴエチレンダリ コールジ (メタ)アタリレート、ノ-ルフエノール EO変成(メタ)アタリレート、オリゴプロピ レングリコールジ(メタ)アタリレート、ネオペンチルグリコールジ (メタ)アタリレート、ブ チレングリコールジ (メタ)アタリレート、 1,6-へキサンジオールジ (メタ)アタリレート、ト リメチロールプロパントリ(メタ)アタリレート、ペンタエリスリトールポリ(メタ)アタリレート 、ビスフエノール Aジグリシジルエーテルジ (メタ)アタリレート、オリゴエステル (メタ)ァ タリレートなどが挙げられる。
[0110] また、少なくともいずれか一方の末端ケィ素に、(メタ)アタリロイル基あるいは (メタ) アタリロイル基を含む基が 1つ以上結合している (メタ)アタリロイル基含有シリコーン オリゴマーも挙げられる。シリコーンオリゴマー自身の構造としては、例えば、炭素数 2 以上のアルキルシロキサン構造単位、ァリールシロキサン構造単位またはァラルキル シロキサン構造単位のいずれか 1つ以上を含むものが挙げられる。
[0111] さらには、(メタ)アタリロイル基 1つ以上力 ウレタン系榭脂、エポキシ系榭脂、ポリ エステル系榭脂、ポリエーテル系榭脂、アルキド系榭脂、ポリ塩ィ匕ビ二ル系榭脂、フ ッ素系榭脂、シリコーン系榭脂、酢酸ビュル系榭脂、フエノール系榭脂、ポリアミド榭 脂およびこれらの 2種以上の変性榭脂などのポリマー成分あるいはオリゴマー成分に 結合した化合物も挙げられる。
[0112] 環状エーテル構造を 1つ以上有する化合物としては、 2— 12個の炭素と 1一 6個の 酸素とを含む環状エーテル構造、特には O を含む橋かけ構造を 1つ以上有する 含環状エーテルィ匕合物が挙げられる。より具体的には、グリシジル基などのエポキシ 環を有する化合物が挙げられる。
[0113] 環状エーテル構造を 1つ以上有する化合物としては、例えば、エチレングリコール ジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテルなどが挙げられ る。
[0114] また、環状エーテル構造を 1つ以上有するオリゴマーおよびポリマーも挙げられる。
[0115] 環状エーテル構造を有するオリゴマーとしては、例えば、オリゴエチレングリコール ジグリシジルエーテルなどが挙げられる。
[0116] さらには、これらの環状エーテル構造を有する基 1つ以上力 ウレタン系榭脂、ェポ キシ系榭脂、ポリエステル系榭脂、ポリエーテル系榭脂、アルキド系榭脂、ポリ塩化ビ 二ル系榭脂、フッ素系榭脂、シリコーン系榭脂、酢酸ビュル系榭脂、フエノール系榭 脂、ポリアミド榭脂およびこれらの 2種以上の変性榭脂などのポリマー成分ある ヽはォ リゴマー成分に結合したィ匕合物も挙げられる。
[0117] ァルケ-ル基を 1つ以上有する化合物としては、ビニル基および Zまたはァリル基 を 1つ以上有する化合物が挙げられる。アルケニル基を 1つ以上有する化合物として は、例えば、ポリビュルケィ皮酸エステル類などが挙げられる。
[0118] さらには、アルケニル基 1つ以上力 ウレタン系榭脂、エポキシ系榭脂、ポリエステ ル系榭脂、ポリエーテル系榭脂、アルキド系榭脂、ポリ塩ィ匕ビュル系榭脂、フッ素系 榭脂、シリコーン系榭脂、酢酸ビュル系榭脂、フエノール系榭脂、ポリアミド榭脂およ びこれらの 2種以上の変性榭脂などのポリマー成分あるいはオリゴマー成分に結合し た化合物も挙げられる。
[0119] ビニレン基を 1つ以上有する化合物としては、例えば、エチレン性不飽和二重結合 を有する化合物、不飽和ポリエステルなどが挙げられる。また、ビ-レン基を 1つ以上 有する化合物として、シンナミル基(C H CH = CH— CH—)あるいはシンナミリデン
6 5 2
基 (C H— CH = CH— CH = )を 1つ以上有する化合物も挙げられる。このような化合
6 5
物としては、例えば、ポリビュルシンナメートが挙げられる。ポリビュルシンナメートは、 例えば、ポリビュルアルコールに C H CH = CH— CH— COC1を反応させることに
6 5 2
よって得ることができる。
[0120] さらには、ビニレン基 1つ以上が、ウレタン系榭脂、エポキシ系榭脂、ポリエステル系 榭脂、ポリエーテル系榭脂、アルキド系榭脂、ポリ塩ィ匕ビュル系榭脂、フッ素系榭脂 、シリコーン系榭脂、酢酸ビュル系榭脂、フエノール系榭脂、ポリアミド榭脂およびこ れらの 2種以上の変性榭脂などのポリマー成分あるいはオリゴマー成分に結合した 化合物も挙げられる。
[0121] スチリル基を 1つ以上有する化合物としては、例えば、スチレン、 α—メチルスチレン 、 ρ—メチノレスチレン、 α—メチルー ρ—メチルスチレン、 ρ—メトキシスチレン、 ο—メトキシ スチレン、 2,4 ジメチルスチレン、クロロスチレン、ブロモスチレンなどが挙げられる。 また、ポリビュルべンザルァセトフエノン類、ポリビニルスチリルビリジン類などが挙げ られる。
[0122] さらには、スチリル基 1つ以上が、ウレタン系榭脂、エポキシ系榭脂、ポリエステル系 榭脂、ポリエーテル系榭脂、アルキド系榭脂、ポリ塩ィ匕ビュル系榭脂、フッ素系榭脂 、シリコーン系榭脂、酢酸ビュル系榭脂、フエノール系榭脂、ポリアミド榭脂およびこ れらの 2種以上の変性榭脂などのポリマー成分あるいはオリゴマー成分に結合した 化合物も挙げられる。
[0123] アジド基を 1つ以上有する化合物としては、例えば、 2,6 ビス (4 アジドベンジリデ ン)シクロへキサノン、 2,6 ビス(4' アジドベンジル)メチルシクロへキサノンなどが挙 げられる。
[0124] さらには、アジド基 1つ以上が、ウレタン系榭脂、エポキシ系榭脂、ポリエステル系榭 脂、ポリエーテル系榭脂、アルキド系榭脂、ポリ塩ィ匕ビュル系榭脂、フッ素系榭脂、シ リコーン系榭脂、酢酸ビュル系榭脂、フエノール系榭脂、ポリアミド榭脂およびこれら の 2種以上の変性榭脂などのポリマー成分あるいはオリゴマー成分に結合したィ匕合 物も挙げられる。
[0125] また、上記のようなモノマーと共重合可能なモノマーとして、アクリロニトリルおよびメ タクリロ-トリル等のシァノ基含有ビュルィ匕合物類;塩ィ匕ビュルおよび塩ィ匕ビユリデン 等のハロゲン含有ビニル化合物類;酢酸ビュルおよびプロピオン酸ビュル等の有機 酸基含有ビニル化合物類;エチレン、マレイン酸およびィタコン酸等の反応性単量体 類;アクリル変性シリコーン類;クロロェチルビ-ルエーテル、ァリルグリシジルエーテ ル、ェチリデンノルボルネン、ジビュルベンゼン、トリァリルシアヌレートおよびトリァリ ルイソシァヌレート等の架橋性共重合モノマー類などが挙げられる。
[0126] 以上のような重合前駆体は 1種を用いてもよいし、 2種以上を併用してもよい。
[0127] また、重合中に、重合する重合前駆体の組成を変化させること等により、得られる重 合体の組成を、例えば、基材表面に対して垂直方向に変化させることも可能である。
[0128] 本発明の製造方法において、重合体の機能を追加するための添加成分は特に制 限されず、有機物であっても、無機物であってもよい。使用する添加成分は、所望の 重合体の組成や物性などに応じて適宜選択することができる。添加成分により追加さ れる機能としては、例えば、吸着機能、分離機能、触媒機能、薬効機能などが挙げら れるが、これらに限定されるものではない。
[0129] 添加成分は、少なくともその一部が超臨界流体または亜臨界流体に溶解している 状態で光重合を行うものであることが好ましいが、超臨界流体中または亜臨界流体 中に分散して 、る状態で光重合を行うものであってもよ 、。
[0130] 添加成分としては、例えば、金属を含む化合物 (錯体も含む)が挙げられる。金属を 含む化合物として、例えば、下記一般式(3)で表されるもの、下記一般式 (4)で表さ れるもの、下記一般式(5)で表されるもの、下記一般式 (6)で表されるもの、下記一 般式(7)で表されるもの、下記一般式 (8)で表されるものが挙げられる。
[0131] [化 3]
M,p X 1 q (3)
(式中、 M1は金属元素を表し、 X1は 0、 S、 SOまたは POを表す。 pと qとは、 M1と X1
4 4
との比率を表し、金属元素 M1の価数によって決定される値である。ただし、 X1が 2個 以上ある場合、 X1は全て同じである必要はなぐ 2種以上が混在するものであっても よい。 )
[0132] [化 4]
M 2 X 2 t (4)
(式中、 M2は金属元素を表し、 X2は F、 Cl、 Br、 I、 CN、 NO、 CIOまたは NR^R^R
Q3RM (ここで、 RQ1、 を
Figure imgf000035_0001
表す。 RQ1、 R°2、 R°3、 R°4は同一のものであってよいし、異なるものであってもよい。ま た、 RQ1、 R°2、 R°3、 R°4は、フタロシアニンなどの多価配位子であってもよい。)を表す。 tは、 M2と X2との比率を表し、金属元素 M2の価数によって決定される値である。ただ し、 X2が 2個以上ある場合、 X2は全て同じである必要はなぐ 2種以上が混在するもの であってもよい。 ) [0133] [化 5]
M3 (OR3) i (5)
(式中、 M3は金属元素を表し、 R3は水素、炭化水素基または CFを表す。 iは、 M3と(
3
OR3)との比率を表し、金属元素 M3の価数によって決定される値である。ただし、 (O R3)が 2個以上ある場合、 R3は全て同じである必要はなぐ 2種以上が混在するもの であってもよい。 )
[0134] [化 6]
M4 (OCO R4) d (6)
(式中、 M4は金属元素を表し、 R4は水素、炭化水素基または CFを表す。 jは、 M4と(
3
OCOR4)との比率を表し、金属元素 M4の価数によって決定される値である。ただし、 (OCOR4)が 2個以上ある場合、 R4は全て同じである必要はなぐ 2種以上が混在す るものであってもよい。 )
[0135] [化 7]
M5 (OS03R" k (7)
(式中、 M5は金属元素を表し、 R5は水素、炭化水素基または CFを表す。 kは、 M5
3
(OSO R5)との比率を表し、金属元素 M5の価数によって決定される値である。ただし
3
、(OSOR5)が 2個以上ある場合、 R5は全て同じである必要はなぐ 2種以上が混在
3
するものであってもよい。 )
[0136] [化 8] 6 (R6COC H2COR7) 1 (8)
(式中、 M6は金属元素を表し、 R6、 R7は、それぞれ独立に、水素、炭化水素基または CFを表す。 1は、 M6と (R6COCH COR7)との比率を表し、金属元素 M6の価数によ つて決定される値である。ただし、 (R6COCH COR7)が 2個以上ある場合、 R6、 R7
2
全て同じである必要はなぐ 2種以上が混在するものであってもよい。 ) 0
[0137] なお、上記式(3)中の pおよび q、上記式 (4)中の t、上記式(5)中の i、上記式(6) 中の j、上記式(7)中の 上記式(8)中の 1は、上記の通り、金属元素の価数によって 決定され、例えば、上記式(3)中の M1が a価の金属である場合、(p, q) = (1, a/2) であり、また、例えば、上記式 (4)中の M2が b価の金属である場合、 t = bである。
[0138] 上記式(3)
Figure imgf000037_0001
上記式(4)中の M2、上記式(5)中の M3、上記式(6)中の M4、 上記式(7)中の M5、上記式 (8)中の M6としては、特に限定されないが、例えば、ニッ ケル (Ni)、金 (Au)、銀 (Ag)、銅(Cu)、インジウム(In)、パラジウム(Pd)、白金(Pt )、スズ (Sn)、タングステン (W)、アルミニウム (A1)等が好ましい。上記式(3)中の M1 、上記式(4)中の M2、上記式(5)中の M3、上記式(6)中の M4、上記式(7)中の M5、 上記式(8)中の M6は 2種以上であってもよい。すなわち、上記の金属元素から成る 合金であってもよい。
[0139] 上記式(3)、上記式 (4)、上記式(5)、上記式(6)、上記式(7)、および、上記式(8 )において、炭化水素基の炭素数は、特に限定されないが、 1一 50が好ましい。これ らの炭化水素基としては、例えば、飽和脂肪族炭化水素基、不飽和脂肪族炭化水素 基、脂環式炭化水素基、脂環式 -脂肪族炭化水素基、芳香族炭化水素基、芳香族 -脂肪族炭化水素基などが挙げられる。脂肪族炭化水素基は直鎖状であっても、分 岐状であってもよい。
[0140] 炭化水素基として、具体的には、メチル基、ェチル基、 n プロピル基、イソプロピル 基、 n ブチル基、イソブチル基、 tert ブチル基、 n ペンチル基、イソペンチル基、 ネオペンチル基、 tert ペンチル基、 2—メチルブチル基、 n—へキシル基、イソへキシ ル基、 3—メチルペンチル基、ェチルブチル基、 n—へプチル基、 2 メチルへキシル 基、 n—ォクチル基、イソォクチル基、 tert—才クチル基、 2 ェチルへキシル基、 3—メ チルヘプチル基、 n ノ-ル基、イソノ-ル基、 1ーメチルォクチル基、ェチルヘプチル 基、 n デシル基、 1 メチルノニル基、 n—ゥンデシル基、 1,1ージメチルノニル基、 n— ドデシル基、 nーテトラデシル基、 n—へプタデシル基、 n—才クタデシル基、さら〖こは、 エチレンやプロピレン、ブチレンの重合物あるいはそれらの共重合物より成る基など が挙げられる。
[0141] また、上記の金属化合物中に含まれる金属の含有率、すなわち、上記式(3)中の p および q、上記式 (4)中の t、上記式(5)中の i、上記式(6)中の j、上記式(7)中の k、 上記式 (8)中の 1は、特に限定されない。
[0142] より具体的に説明すると、添加成分としては、例えば、有機白金錯体、有機パラジゥ ム錯体などの有機金属錯体が挙げられる。
[0143] 有機白金錯体は特に制限されず、例えば、白金 アルキル錯体、白金一才レフイン 錯体、白金 アレーン錯体、白金 ホスフィン錯体、白金 ホスファイト錯体などが挙 げられる。有機白金錯体として、具体的には、 Pt(COD)、 Pt(COD)Me、 Pt(COD)
2 2
Et、 Pt(CH =CH ) CI、 Pt(CH =CH ) (PPh ), Pt(PPh )、 Pt(PMe ), Pt(PEt )
2 2 2 2 2 2 2 2 3 3 4 3 3
、 Pt(PBu )、 Pt[P(OPh) ]、 Pt[P(OMe) ]、 Pt[P(OEt) ]、 Pt[P(OBu) ]などが挙
3 4 3 4 3 4 3 4 3 4 げられる。ただし、ここで CODは 1,5—シクロォクタジェンを表し、 Meはメチルを表し、 Etはェチルを表し、 Buはブチルを表し、 Phはフエ-ルを表す。
[0144] 有機パラジウム錯体は特に制限されず、例えば、 PdCl [P(Me) ]、 PdCl (PBu )、
2 3 4 2 3 2
Pd(PPh )などが挙げられる。また、 Pd (O CCH )、 Pd(acac)なども挙げられる。た
3 4 3 2 3 6 2
だし、ここで acacはァセチルァセトナトを表す。
[0145] 添加成分である有機金属錯体としては、その他に、有機ルテニウム錯体、有機コバ ルト錯体、有機ロジウム錯体、有機イリジウム錯体、有機ニッケル錯体などが挙げられ る。なお、これらの錯体も、どのような配位子を有するものであってもよい。
[0146] 添加成分として有機金属錯体を含有する場合、製造された突起部を含む重合体を 焼成して金属化することもできる。その場合は、添加成分として配位子が炭化水素で ある有機金属錯体を用いることが好まし 、。
[0147] また、添加成分として、種々の薬効成分、例えば、公知の血行促進剤、抗炎症剤、 消炎鎮痛剤、抗酸化剤、抗ヒスタミン剤、殺菌剤、抗生物質、ステロイド剤などの有機 化合物も挙げられる。
[0148] また、添加成分として、他の榭脂成分、ゴム成分、充填剤、耐熱安定剤、耐候安定 剤、酸化防止剤、帯電防止剤、難燃剤、スリップ剤、アンチブロッキング剤、防曇剤、 滑剤、核剤、染料、顔料なども挙げられる。 [0149] 以上のような、重合体の機能を追加するための添加成分は 1種を用いてもよいし、 2 種以上を併用してもよい。
[0150] また、重合中に、添加成分の組成や量を変化させること等により、得られる重合体 の組成を、例えば、基材表面に対して垂直方向に変化させることも可能である。
[0151] 重合体の機能を追加するための添加成分の使用量は、所望の重合体の組成や物 性などに応じて適宜決めることができる。添加成分の使用量は、例えば、重合する重 合前駆体 100重量部に対して 0.001— 100重量部程度とすることができる。通常、添 加成分の使用量は、重合する重合前駆体 100重量部に対して 0.1重量部以上が好 ましぐまた、重合する重合前駆体 100重量部に対して 50重量部以下が好ましい。
[0152] 自発光重合性化合物以外の重合前駆体を重合する場合、光重合開始剤が必要で ある。光重合開始剤としては、超臨界流体または亜臨界流体あるいは重合前駆体に 溶解するものであれば特に制限されず、用いる超臨界流体または亜臨界流体や重 合前駆体などに応じて適宜決めることができる。
[0153] 光重合開始剤としては、例えば、ジメチル(2,2'—ァゾビスイソブチレート)、ジェチ ル(2, 2'—ァゾビスイソブチレート)などのジアルキル(2, 2'—ァゾビスイソブチレート)、 2, 2'—ァゾビス(イソブチ口-トリル)(AIBN)、 2,2'—ァゾビス(2—メチルブチ口-トリル )、 2,2'—ァゾビス(2,4—ジメチルバレ口-トリル)等のァゾ系開始剤; tert ブチルハイ ドロパーォキシド、クメンハイド口パーォキシド、 tert ブチルパーォキシネオデカネー ト、 tert ブチルパーォキシピバレート、 tert—へキシルバーォキシ 2—ェチルへキサ ノエート、メチルェチルケトンパーォキシド、ァセチルシクロへキシルスルホ -ルパー ォキシド、ラウロイルパーォキシド、過酸化ベンゾィル等の過酸化物系開始剤などが 挙げられる。
[0154] その他の光重合開始剤としては、例えば、ベンゾイン、ベンゾインェチルエーテル、 ベンゾイン n プロピルエーテル、ベンゾインイソブチルエーテル等のベンゾインァ ルキルエーテル類; 2,2—ジメトキシー 2—フエ-ルァセトフエノン、 2—べンジルー 2—ジメ チルァミノ— 1— (4 モルフォリノフエ-ル) ブタン 1 オン、 1—ヒドロキシシクロへキシ ルフエ-ルケトン、ジァセチル、ジフエ-ルスルフイド、ェォシン、チォニン、 9, 10—ァ ントラキノン、 2—ェチルー 9, 10 アントラキノンなどが挙げられる。 [0155] 光重合開始剤としては、さらに、ベンゾフエノン、ベンゾインメチルエーテル、ベンゾ インイソプロピルエーテル、ベンジル、キサントン、チォキサントン、アントラキノン等の 芳香族カルボ-ル化合物;ァセトフエノン、プロピオフエノン、 α—ヒドロキシイソブチ ルフエノン、 α , α 'ージクロル 4 フエノキシァセトフエノン、 1—ヒドロキシ一 1ーシクロへ キシルァセトフエノン、ァセトフエノン等のァセトフエノン類;ベンゾィルパーオキサイド 、 tert—ブチルーパーォキシベンゾエート、 tert—ブチルーパーォキシ 2—ェチルへキ サノエート、 tert ブチルハイド口パーオキサイド、ジー tert—ブチルジパーォキシイソ フタレート、 3,3',4,4'—テトラ(tert ブチルパーォキシカルボ-ル)ベンゾフエノン等 の有機過酸化物;ジフエ二ルョードニゥムブロマイド、ジフエ二ルョードニゥムクロライ ド等のジフエ二ルノヽ口-ゥム塩;四塩ィ匕炭素、四臭化炭素、クロ口ホルム、ョードホル ム等の有機ハロゲン化物; フエ-ルー 5 イソォキサゾロン、 2,4,6—トリス(トリクロ口 メチル) 1 , 3, 5—トリァジンべンズアントロン等の複素環式および多環式化合物;1, 1' ーァゾビス(シクロへキサン— 1 カルボ-トリル)等のァゾ化合物;ヨーロッパ特許 1523 77号公報に記載の鉄—アレン錯体(Iron- Arene Complex);特開昭 63— 221110号 公報に記載のチタノセンィ匕合物などが挙げられる。
[0156] 以上のような光重合開始剤は 1種を用いてもよいし、 2種以上を併用してもよい。
[0157] 光重合開始剤の使用量は適宜決めることができ、例えば、重合前駆体 100質量部 に対して 0.1— 30質量部程度とすることができる。
[0158] また、必要に応じて、上記の光重合開始剤と光重合開始助剤 (増感剤)とを併用す ることができる。光重合開始助剤としては、例えば、 2—ジメチルアミノエチルベンゾェ ート、 Ν,Ν'—ジメチルアミノエチルメタタリレート、 ρ—ジメチルァミノ安息香酸イソアミル エステル、 ρ—ジメチルァミノ安息香酸ェチルエステルなどが挙げられる。
[0159] 本発明においては、製造される重合体や光重合開始剤と相互作用性を有する分 光増感剤を使用することができる。分光増感剤としては、例えば、チォキサンテン系、 キサンテン系、ケトン系、チォピリリウム塩系、ベーススチリル系、メロシアニン系、 3— 置換クマリン系、シァニン系、アタリジン系、チアジン系などの色素類が挙げられる。 なお、ここでいう「相互作用」には、励起された分光増感剤から、製造される重合体お よび Ζまたは光重合開始剤へのエネルギー移動や電子移動などが含まれる。 [0160] 次に、図面を参照しながら、本発明の重合体の製造方法の一実施形態を説明する 。図 1に、製造装置の一例の概略構成図を示す。 1は二酸化炭素ボンべ、 2は二酸化 炭素供給用ポンプ、 3は高温 ·高圧状態を維持できる反応器、 4は温度制御手段、 5 は活性エネルギー線を入射するための窓(例えば石英窓)、 5'は窓(例えば石英窓) 、 6は光源、 7は減圧弁、 8は活性エネルギー線を透過する基材 (活性エネルギー線 透過基材)、 9はマグネチックスターラー、 10は撹拌子(回転子)である。なお、窓 5'は 設けなくてもかまわない。
[0161] まず、反応器 3に設けられた活性エネルギー線透過性の窓 5の内側に、活性エネ ルギ一線透過基材 8を配置する。活性エネルギー線透過基材 8は、重合反応時、活 性エネルギー線の入射面である窓 5側の面が超臨界二酸ィヒ炭素または亜臨界二酸 化炭素に曝されず、活性エネルギー線の出射面が超臨界二酸ィ匕炭素または亜臨界 二酸ィ匕炭素に曝されるように配置する。活性エネルギー線透過基材 8は窓 5に接す るように配置しなくてもよぐ活性エネルギー線透過フィルム等の配置用部材を介在さ せることちでさる。
[0162] 活性エネルギー線透過基材 8の固定方法は特に制限されず、例えば、窓を反応器 壁の凹部の底に設け、そこに基材を押し込んで窓に密着させる方法、窓枠に基材を 留め具で装着する方法などが挙げられる。また、窓を取り外し可能な構成とし、窓そ のものを基材とすることも可能である。
[0163] 基材としては活性エネルギー線を透過するものであれば特に制限されず、例えば、 透明榭脂あるいは半透明榭脂、透明あるいは半透明のガラス、 ITO (インジゥムース ズ酸化物)等の金属酸化物や金属などが挙げられる。基材の材質は、形成する重合 体の組成なども考慮して選択される。例えば、ビスマレイミド系の重合体を形成する 場合、基材が石英ガラスであれば形成される重合体の密着性は低ぐ容易に剥がす ことができる。一方、基材カ PET (ポリエチレンテレフタレート)フィルムであれば密着 性が高い重合体が形成される。また、例えば、ポリビニルアルコール (PVA)等のコー ティング材料を塗布した基材を使用することもできる。
[0164] なお、基材は、任意の形状のものを使用することができる。超臨界流体または亜臨 界流体に溶解した重合前駆体は、均一に基材界面に分布した状態で重合し、突起 部を含む重合体を生成する。そのため、微細な凹凸構造や深い凹凸構造を有する 基材上にでも、均一に突起部を含む重合体を形成することが可能である。
[0165] また、基材 8が配置される活性エネルギー線を入射するための窓 5、あるいは、その 上に設けられる配置用部材は、突起部を含む重合体を形成する基材の形状や、所 望の突起部を含む重合体の形状に合わせてその形状を決めることができる。
[0166] 反応器 3内に活性エネルギー線透過基材 8を配置した後、重合前駆体と必要に応 じて添加成分や光重合開始剤を反応器 3に入れる。また、重合前駆体や添加成分が 液体である場合は、重合前駆体、添加成分、光重合開始剤を、ポンプにより、それら の貯溜槽力 反応器 3へと供給することもできる。 2種以上の重合前駆体を用いる場 合、あるいは重合前駆体と添加成分とを用いる場合は、それらを予め混合して力 反 応器 3へと供給することもできるし、それぞれ別々に反応器 3へと供給することもできる 。重合前駆体、添加成分、光重合開始剤は、予め加熱器により重合温度に調整した 後、反応器 3へと供給することもできる。
[0167] 一方、二酸ィ匕炭素は、ポンプ 2により、二酸ィ匕炭素ボンべ 1から反応器 3へと供給さ れる。二酸化炭素は、予め加熱器により重合温度に調整した後、反応器 3へと供給 することちでさる。
[0168] 反応器 3内の圧力は、供給する二酸化炭素の量により重合圧力に調整する。一方 、反応器 3内の温度は、ヒーター等の温度制御手段 4により重合温度に調整する。反 応器 3内の圧力の調整と反応器 3内の温度の調整とは同時に行うこともでき、また、い ずれか一方を調整した後にもう一方を調製することもできる。
[0169] なお、予め加熱器により重合温度、あるいは、それ以上の温度に調整された重合前 駆体および必要に応じて添加成分と二酸化炭素とを反応器 3へと供給する場合、重 合反応中、反応器 3内の温度を重合温度に保つことができれば加熱手段などの温度 制御手段 4を設けなくてもよ 、。
[0170] 反応器 3内を所定の圧力および温度にした後、マグネチックスターラー 9と撹拌子 1 0とにより反応器内を攪拌しながら、光源 6から活性エネルギー線透過性の窓 5およ び基材 8を通して活性エネルギー線を反応器 3内へ照射することにより、光重合反応 を行い、活性エネルギー線透過基材の活性エネルギー線出射面上に、突起部を含 む重合体を形成する。活性エネルギー線は連続照射してもよいし、間欠照射してもよ い。活性エネルギー線の照射量を制御することにより、形成される突起部を含む重合 体の突起部の高さを制御することが可能である。
[0171] 添加成分の存在下の光重合により形成される突起部を含む重合体は、突起部に選 択的に添加成分を含有するものである。
[0172] また、重合中に、さらに重合前駆体および Zまたは添加成分を反応器 3へと供給す ることもできる。このようにして重合する重合前駆体や添加成分の組成を変化させるこ とにより、得られる突起部を含む重合体の組成を、基材表面に対して垂直方向に変 ィ匕させることができる。
[0173] なお、反応器内を攪拌する撹拌手段は、マグネチックスターラー 9および撹拌子 10 に制限されない。
[0174] また、本発明によれば、基材上の活性エネルギー線が透過した部分に選択的に、 突起部を含む重合体を形成することができる。例えば、マスクパターンを介して活性 エネルギー線を照射することにより、所望のパターンを有する突起部を含む重合体を 形成することができる。この場合、例えば、窓 5の外側にマスクパターンを貼り合せた り、窓の形状そのものを所定のパターン形状とすればよい。
[0175] また、光源としてレーザービームを用いることにより、他の光源と比べて光照射領域 を絞ることができるため、微細なパターンを有する突起部を含む重合体を形成するこ とが可能になる。また、光源としてレーザービームを用いることにより、他の光源と比 ベて高強度の光を照射することができ、突起部を含む重合体の突起部の密度ならび にアスペクト (突起部の径に対する高さの比率)の制御がより容易になる。
[0176] 重合反応終了後、減圧弁 7により二酸ィ匕炭素を放出させ、反応器 3内を大気圧程 度にまで減圧する。また、未反応の重合前駆体などを除去し、より高純度の重合体を 得るために、反応器 3内を大気圧よりも低圧に、例えば 133Pa以下の真空にした後、 大気圧程度に戻してもよい。反応器 3内の温度を常温程度に戻した後、突起部を含 む重合体が形成された基材 8を反応器 3から取り出す。
[0177] 重合反応終了後、超臨界状態または亜臨界状態である高圧状態から急減圧するこ とにより、あるいは、高温'高圧状態から急冷'急減圧することにより、製造した重合体 を発泡させることができる。超臨界流体または亜臨界流体は、重合体内部への浸透 力が強ぐかつ、均一であるため、このような処理を行うことにより、均一な多孔質体を 形成することができる。
[0178] その際、重合体の冷却速度および重合体の減圧速度は適宜決めることができる。
重合体の冷却速度および重合体の減圧速度を制御することにより、気孔径を制御す ることが可能である。重合体の冷却速度および重合体の減圧速度が速いほど、気孔 径が大きくなる傾向がある。
[0179] なお、重合後、必要に応じて所定時間、超臨界流体中または亜臨界流体中に重合 体を放置し、それカゝら急減圧あるいは急冷'急減圧して重合体を発泡させてもょ ヽ。
[0180] 反応器 3から取り出した基材上に形成された突起部を含む重合体は、電磁波の照 射、光の照射あるいは加熱により、または、それらを複合してポストキュアすることもで きる。
[0181] 重合反応終了後に反応器 3内から放出させた二酸ィ匕炭素は、回収して再利用する ことができる。
[0182] 以上の重合工程はバッチ式で示したが、連続式や半連続式で重合することもでき る。
[0183] また、本発明の重合体の製造方法を実施するために用いる反応器の形状は、図 1 に示すものに制限されない。例えば、光ファイバ一等の光学系を反応器内部に揷設 する構成とし、この光学系を通して活性エネルギー線を反応器内に照射することもで きる。
[0184] 図 2に、本発明の製造方法を実施するために用いる製造装置の他の一例の概略構 成図を示す。 1一 10は図 1と同様の部材である。 11および 11'は重合前駆体および Zまたは添加成分を入れておぐ開閉可能な蓋付きの貯溜部、 12および 12'は撹拌 子(回転子)、 13および 13'はマグネチックスターラーである。なお、窓 5'は設けなくて も力まわない。また、必要に応じて、重合前駆体および Zまたは添加成分の貯溜部 は 1つだけ設けてもよぐ 3つ以上設けてもよい。
[0185] 重合前駆体および Zまたは添加成分の貯溜部 11および 11'は、温度制御手段を 有していてもよい。また、貯溜部 11、 11'内を攪拌する撹拌手段は、マグネチックスタ 一ラー 13、 13'および撹拌子 12、 12に制限されない。重合前駆体および Zまたは添 加成分の貯溜部 11および 11 'は、内部を攪拌する撹拌手段を有して!、なくてもょ 、。
[0186] 図 2に示す製造装置は、重合前駆体および Zまたは添加成分を入れておぐ開閉 可能な蓋付きの貯溜部 11および 11'、貯溜部 11および 11'内を攪拌するための撹拌 子 12および 12、マグネチックスターラー 13および 13'が設けられていること以外は、 図 1に示す製造装置と同様の構成を有する。
[0187] 図 2に示す製造装置により突起部を含む重合体を製造する場合、重合する重合前 駆体と必要に応じて添加成分と光重合開始剤とを全て反応器 3に入れるのではなぐ その一部あるいは全てを貯溜部 11および 11'に入れる。貯溜部 11および 11'には、 1 種の重合前駆体または添加成分を入れてもよ!、し、 2種以上の重合前駆体および Z または添加成分を混合して入れてもょ 、。
[0188] そして、重合開始前あるいは重合中に、必要に応じて、貯溜部の蓋を開け、内部に 貯溜されて!ヽる重合前駆体および Zまたは添加成分を反応器 3へと供給する。これ により、重合中に、反応器 3内に存在する重合前駆体および添加成分の組成や量を 容易に調節することができる。重合前駆体および Zまたは添加成分は、予め加熱器 により重合温度に調整した後、反応器 3へと供給することもできる。
[0189] その他は、前述した、図 1に示す製造装置により重合体を製造する場合と同様にし て、突起部を含む重合体を製造することができる。
[0190] 重合前駆体および Zまたは添加成分の貯溜部 11および 11'は、必要なときにのみ 、内部に貯溜されている重合前駆体および Zまたは添加成分を反応系に供給できる 構成であれば、蓋を有していなくてもよい。例えば、貯溜する重合前駆体および Zま たは添加成分が高温にしなければ超臨界流体中または亜臨界流体中に溶解,分散 しないものである場合には、貯溜部に蓋を設けず、貯溜部を加熱する加熱手段を設 ければよい。
[0191] 図 2に示す製造装置は、重合中に、重合する重合前駆体および含有させる添加成 分の組成を変化させることにより、得られる突起部を含む重合体の組成を基材表面 に対して垂直方向に変化させる場合に、特に好適に使用される。
[0192] このようにして本発明の突起部を含む重合体を製造することができる。本発明にお いては、活性エネルギー線の照射方向に沿って重合体が成長していき、重合体の突 起部が形成される。すなわち、通常、基材表面に対して垂直方向に重合体が成長し ていき、重合体の突起部が形成される。なお、通常、活性エネルギー線の照射時間( 重合時間)が長くなると、製造される重合体は突起部を含む重合体から連続膜になる 傾向がある。
[0193] 本発明によれば、高さが径の 0.1倍以上である突起部を含む重合体、さらには高さ が径の 1倍以上である突起部を含む重合体、さらには高さが径の 2倍以上である突 起部を含む重合体、さらには高さが径の 3倍以上である突起部を含む重合体、さらに は高さが径の 5倍以上である突起部を含む重合体を製造することができる。突起部の 径に対する高さの比率の上限は特に限定されないが、例えば、突起部の高さを径の 50倍とすることができる。
[0194] また、本発明によれば、高さが lOnm以上である突起部を含む重合体、さらには高 さが 0.5 m以上である突起部を含む重合体、さらには高さ力 m以上である突起 部を含む重合体、さらには高さが 5 m以上である突起部を含む重合体、さらには高 さが 10 m以上である突起部を含む重合体、さらには高さが 30 m以上である突起 部を含む重合体、さらには高さが 50 m以上である突起部を含む重合体を製造する ことができる。突起部の高さの上限は特に限定されないが、例えば、突起部の高さを 500 μ mとすること力できる。
[0195] 重合体の突起部の高さは、活性エネルギー線の照射量 (積算光量)によって調節 することができる。重合体の突起部の高さは活性エネルギー線の照射量にほぼ比例 する力 活性エネルギー線の照射量が一定量以上になると重合体の突起部の高さ はそれ以上には高くならず、突起部の間隔が狭まってきて連続膜ィ匕する傾向がある
[0196] 特に、本発明によれば、突起部の高さが径の 0.1倍以上であり、かつ、突起部の高 さが lOnm以上である突起部を含む重合体、さらには突起部の高さが径の 1倍以上 であり、かつ、突起部の高さが 1 m以上である突起部を含む重合体、さらには突起 部の高さが径の 5倍以上であり、かつ、突起部の高さが 50 m以上である突起部を 含む重合体を製造することができる。このように、径に対して高さが大きぐし力も、高 さが高い突起部を含む重合体は、従来、モノマー等の重合前駆体を重合することに よっては得られていなかった。
[0197] 突起部を含む重合体の突起部の表面密度は特に限定されないが、本発明によれ ば、例えば突起部の表面密度が 0.01個 Znm2以上、さらには 0.1個 Znm2以上の高 い表面密度で突起部を含む重合体を基材上に形成することが可能である。また、突 起部を含む重合体の突起部の低密度化も可能であり、突起部の表面密度を例えば 0 .001個/ μ m2とすることができる。
[0198] ここで、突起部を含む重合体が突起状の重合体である場合、突起部の表面密度と は、基材表面における突起状の重合体の密度のことをいう。
[0199] 本発明によれば、重合反応を行うのと同時に、基材上に、突起部を含む重合体を 形成することができる。重合する重合前駆体および添加成分は適宜選択することが でき、し力も、得られる突起部を含む重合体は、径に対して高さが大きぐかつ、高さ が高 、突起部を含むものである。
[0200] また、前述の通り、選択する基材によっては形成される突起部を含む重合体を基材 力 容易に剥離することができるので、例えば、 1種以上の添加成分を含有する 1個 以上の突起を有する榭脂フィルムとして得ることもできる。
[0201] さらに、本発明においては、重合する重合前駆体および含有させる添加成分の組 成を変化させることにより、あるいは、重合中に圧力および温度の少なくとも一方を変 動させることにより、得られる突起部を含む重合体の組成を基材表面に対して垂直方 向に変化させることも可能である。
[0202] 以上のように、本発明によれば、例えば、種々の添加成分を含有する突起部を含 む重合体を得ることができる。し力も、得られる突起部を含む重合体は、径に対して 高さが大きぐかつ、高さが高い突起部を含むものである。さらには、組成が基材表面 に対して垂直方向に変化して 、る突起部を含む重合体を得ることもできる。
[0203] そのため、本発明によれば、様々な物性や機能を有する突起部を含む重合体を得 ることができる。本発明の突起部を含む重合体は、特にその特異な形態から、様々な 用途への適用が期待され、また、新規な機能構造体の実現も期待される。
[0204] 例えば、添加成分として有機パラジウム錯体を含有する突起部を含む重合体は、 N i等の無電解メツキに使用することが可能である。添加成分 (有機金属錯体)とメツキす る金属との組み合わせは有機パラジウム錯体と Niとに限定されるものではなぐ適宜 決めることができる。
[0205] また、添加成分を種々の薬効成分とすることにより、例えば、粒状の薬剤を製造す ることが可能である。
[0206] さらに、本発明の突起部を含む重合体は、その特異な形態を活かし、重合する重 合前駆体および必要に応じて添加成分を適宜選択して、人工腎臓、人工肺などの 人工臓器や、血漿浄ィ匕材料などに適用することが可能である。
[0207] また、添加成分として有機白金錯体などの有機金属錯体を含有する突起部を含む 重合体を焼成して金属化し、特異的な微細構造を有する金属膜 (金属酸化物の膜も 含む)を形成することもできる。焼成後の金属膜は、焼成前の有機金属錯体を含有す る突起部を含む重合体の形状をほぼ維持しており、多孔質の構造を有している。
[0208] 金属膜を形成するための焼成条件は、添加成分である有機金属錯体の種類など に応じて適宜決めることができる。例えば、有機金属錯体を含有する突起部を含む 重合体を空気などの酸素含有ガス中、 250— 2000°Cで 5分一 48時間焼成すること により、金属膜を形成することができる。通常、焼成温度は 300°C以上が好ましぐま た、 1700°C以下が好ましい。一方、通常、焼成時間は 10分間以上が好ましぐまた 、 5時間以下が好ましい。
[0209] このようにして得られる金属膜もまた、様々な用途への適用が期待される。例えば、 本発明により得られる酸ィ匕チタン膜、あるいは、酸ィ匕チタンと白金などの貴金属とから 成る膜は、高活性の光触媒、特に高活性の環境浄化用光触媒として期待される。
[0210] また、添加成分として有機白金錯体、有機パラジウム錯体などの有機金属錯体を含 有する突起部を含む重合体を還元処理して有機金属錯体を金属に、金属の種類に よっては金属酸化物にし、金属および Zまたは金属酸化物を含有する、突起部を含 む重合体を形成することもできる。
[0211] 金属および Zまたは金属酸化物を含有する、突起部を含む重合体を形成するため の還元処理方法および還元処理条件は、特に限定されず、添加成分である有機金 属錯体の種類などに応じて適宜決めることができる。 [0212] 還元処理方法としては、例えば、有機金属錯体を含有する突起部を含む重合体を 、還元剤を含有する溶液中に浸漬する方法や、有機金属錯体を含有する突起部を 含む重合体を還元性ガスと接触させて気相還元する方法などが挙げられる。
[0213] 有機金属錯体を含有する突起部を含む重合体を、還元剤を含有する溶液中に浸 漬する方法においては、使用する還元剤は、添加成分である有機金属錯体を還元し て金属に、あるいは、金属酸ィ匕物にすることができるものであれば特に制限されない 。還元剤としては、例えば、水素化ホウ素ナトリウム、水素化ホウ素カリウム、ジメチル ァミンボラン(DMAB)、トリメチルァミンボラン (TMAB)、ヒドラジン、ホルムアルデヒ ド、これらの各化合物の誘導体や、亜硫酸ナトリウム等の亜硫酸塩、次亜リン酸ナトリ ゥム等の次亜リン酸塩などが挙げられる。また、還元剤として、 FeSO等の第一鉄塩
4
、次亜リン酸ソーダ等のリン酸水素金属塩、硫酸ヒドロキシルァミン、ノ、イドロサルファ ィ卜なども挙げられる。
[0214] 還元剤を含有する溶液は、通常、水溶液とするが、還元剤を溶解するための溶媒 は水に限定されない。還元剤を溶解するための溶媒としては、例えば、メタノール、ェ タノール、ェチルエーテル、へキサン、ベンゼン、メチレンクロライド、ジグリム(ジェチ レングリコールジメチルエーテル)、テトラヒドロフラン、ジメチルァセトアミド、ジメチル スルホキシド、ァセトニトリルなどが挙げられる。
[0215] 還元剤を含有する溶液中の還元剤濃度は、通常、 0.003— 0.1モル Zリットル程度 とする。還元剤を含有する溶液中の還元剤濃度が 0.003モル Zリットル以上であれ ば、還元反応の速度がより十分に速くなる。還元剤を含有する溶液中の還元剤濃度 は、 0.005モル/リットル以上が好ましい。一方、還元剤を含有する溶液中の還元剤 濃度が 0.1モル Zリットル以下であれば、析出した金属の脱落をより十分に抑制する ことができる。
[0216] 還元処理温度は、通常、 20— 90°C程度とすればよい。還元処理温度は 25°C以上 が好ましぐまた、 80°C以下が好ましい。還元処理時間は、通常、 1一 10分程度とす ればよい。還元処理時間は 2分間以上が好ましぐまた、 5分間以下が好ましい。
[0217] 有機金属錯体を含有する突起部を含む重合体を還元性ガスと接触させて気相還 元する方法においては、使用する還元性ガスは、添加成分である有機金属錯体を還 元して金属に、あるいは、金属酸ィ匕物にすることができるものであれば特に制限され ない。還元性ガスとしては、例えば、水素ガス、ジボランガス等などが挙げられる。
[0218] 還元処理温度、還元処理時間などの還元処理条件は、使用する還元性ガスの種 類、添加成分である有機金属錯体の種類などに応じて適宜決めることができる。例え ば、還元性ガスとして水素ガスを用いる場合には、水素ガス気流中、 30— 300°C程 度の温度で、 5— 60分間程度処理すればよい。
[0219] 還元処理温度は、処理する重合体や基材の耐熱性、添加成分である有機金属錯 体の還元されやすさ等を考慮して適宜決めればよ!ヽ。
[0220] 還元処理は、通常、少なくとも重合体の表面に存在する有機金属錯体がほぼ完全 に還元されるまで行なわれる力 必要に応じて、その前に途中で還元処理を止めて ちょい。
[0221] このようにして得られる金属および Zまたは金属酸ィ匕物を含有する、突起部を含む 重合体は、例えば、メツキ下地として利用することができる。
[0222] また、本発明によれば、微細な凹凸構造や深い凹凸構造を有する基材上にでも、 均一に、添加成分を含有する突起部を含む重合体を形成することが可能である。例 えば、本発明によれば、マイクロリアクターと呼ばれる直径が数十/ z mの微小反応器 内のコーティングも可能である。
[0223] また、本発明によれば、基材の活性エネルギー線出射面の活性エネルギー線が透 過した部分に選択的に、添加成分を含有する突起部を含む重合体を形成することが できる。そのため、所望の微細パターンを有する、添加成分を含有する突起部を含 む重合体を形成することが可能である。
[0224] 本発明の特定サイズの突起部を含む重合体は、その特異な形態に起因して、優れ た撥水機能を有している。例えば、水との接触角が 90° 以上、さらには 100° 以上 の極めて高!、撥水性 (超撥水性)を有する突起部を含む重合体を得ることができる。 水との接触角は、測定温度 20°Cで、被測定対象物である重合体膜の表面上に純水 を一滴(15 1)滴下し、滴下後 10秒後に、その水滴形状を顕微鏡などで観察して、 水滴が重合体膜と接触する角度を測定することにより求める。
[0225] このような優れた撥水性を有する重合体 (膜)は、水や油を弾き、その表面に付着し た物質を容易に除去できることから、自動車、船舶、航空機などのウィンド一ガラス、 台所設備、台所用品、入浴設備、洗面設備、鏡、パラボナアンテナ、その他様々な 分野で広く用いられている。
[0226] 本発明の突起部を含む重合体の撥水機能は、その特異な形態に起因するもので ある。すなわち、本発明の突起部を含む重合体は、重合体の組成に関わらず、高い 撥水性を有するものである。従って、本発明によれば、その用途に適した組成の重合 体 (膜)に優れた撥水機能を持たせることが可能である。
[0227] また、本発明の突起部を含む重合体は、その特異な形態に起因して、優れた粘着 機能をも有している。本発明の突起部を含む重合体は、粘着剤、粘着シートとして様 々な分野で用いることができる。
[0228] また、本発明の突起部を含む重合体は、優れた吸着機能をも有して!/ヽる。本発明 の突起部を含む重合体は、吸着剤や分離膜 (ガス分離膜など)として様々な分野で 用!/、ることができる。
[0229] より具体的には、本発明の突起部を含む重合体は、その特異な形態を活かし、重 合する重合前駆体を適宜選択して、 DNAの検出 ·選別(DNAセンサー)に利用する ことが可能である。
[0230] また、本発明の突起部を含む重合体は、重合する重合前駆体を適宜選択して、デ イスプレイのバックライト導光 ·散乱板に適用することも可能である。
[0231] また、蒸着ゃメツキなどの公知の方法により、本発明の突起部を含む重合体上に金 属膜を形成することもできる。金属膜は、金属単体に限られず、合金であってもよぐ また、金属酸化物、金属窒化物、金属炭化物などであってもよい。
[0232] 本発明の突起部を含む重合体上に金属膜あるいは金属酸ィ匕物膜を形成したもの は、電子銃などに適用することが可能である。この電子銃は、例えば、ディスプレイな どに用いることができる。
[0233] また、本発明の突起部を含む重合体力 金属膜を公知の方法により剥離し、得られ た金属膜を榭脂の押出し成形の金型とすることもできる。
[0234] また、本発明によれば、微細な凹凸構造や深い凹凸構造を有する基材上にでも、 均一に突起部を含む重合体を形成することが可能である。例えば、本発明によれば 、マイクロリアクターと呼ばれる直径が数十; z mの微小反応器内のコーティングも可 能である。
[0235] また、ナノ粒子や他の添加剤が均一に分散した突起部を含む重合体を形成するこ とも可能であり、例えば、着色膜や蛍光膜を形成することもできる。
[0236] 以下、実施例を挙げて本発明をさらに詳細に説明する。なお、本発明はこれらの実 施例に限定されるものではない。
[0237] [実施例 1]
反応器内壁に設けられた凹部の底に石英耐圧窓を有する、容積 30cm3の耐圧反 応器に、重合前駆体としてポリエーテルビスマレイミド酢酸エステル (大日本インキ化 学工業株式会社製、 MIA— 200) 0.872gと、添加成分として有機白金錯体 [ (1,5— シクロォクタジェン)ジメチル白金 (II) ]0.026gとを仕込んだ。次に、反応器内を撹拌 しながら、二酸ィ匕炭素をボンべ圧 (約 7MPa)で反応器内に導入した後、 35°Cに昇温 し、さらに二酸ィ匕炭素を反応器内の圧力が 30MPaになるように加圧ポンプで導入し て超臨界状態とした。重合前駆体であるポリエーテルビスマレイミド酢酸エステルの 仕込み濃度は 3.5質量%であった。
[0238] 圧力 30MPa、温度 35°Cで 1時間攪拌した後、光源として石英ファイバーを装着し た超高圧水銀灯を用い、反応器の外から石英耐圧窓を介して反応器内へ紫外線を 照射量が lOjZcm2となるように照射した。このときの紫外線の照射条件は、照射強 度 33mWZcm2で照射時間 303秒間とした。照射した紫外線の波長は 254— 436η mの範囲である。その結果、石英耐圧窓上に、紫外線の照射方向、すなわち基材表 面に対して垂直方向に成長した突起部を含む重合体が形成された。
[0239] 紫外線照射後、 120分間カゝけて徐々に二酸化炭素を反応器外に放出し、反応器 内を大気圧にまで減圧した。
[0240] XMA(X線マイクロアナライザー)により、得られた突起部を含む重合体の Pt面分 析を行った。得られた突起部を含む重合体の SEM写真 (上図)と、 XMA Pt像 (下 図)とを図 3に示す。図 3の下図、 XMA Pt像において、白い部分が Ptである。その 結果、突起部を含む重合体において、突起部は Ptの濃度が高いことが分力つた。す なわち、添加成分である有機白金錯体を含有する突起部を含む重合体が形成され たことが分力つた。
[0241] また、得られた突起部を含む重合体を空気中、 450°Cで 5時間焼成し、 Ptを金属化 した。得られた金属 Pt膜の SEM写真を図 4に示す。焼成後の金属 Pt膜は、焼成前 の有機白金錯体を含有する突起部を含む重合体の形状を止めており、多孔質であ つた o
[0242] [実施例 2]
マスクパターンを石英耐圧窓の外側に貼り合わせ、このマスクパターンを介して紫 外線を反応器内へ照射した以外は実施例 1と同様にして光重合を行ったところ、石 英耐圧窓の紫外線が透過した部分上に、マスクパターンが転写された、有機白金錯 体を含有する突起部を含む重合体が形成された。
[0243] [実施例 3]
実施例 1と同様にして光重合を行い、添加成分である有機白金錯体を含有する突 起部を含む重合体を得た。
[0244] 得られた突起部を含む重合体を、室温で、 0.3%NaBH水溶液に浸漬し、還元処
4
理した。 0.3%NaBH水溶液に浸漬して約 2分後に、突起部を含む重合体の表面上
4
に金属白金が析出した。
[0245] [実施例 4]
添加成分を有機パラジウム錯体 (パラジウムァセトネート)とした以外は実施例 1と同 様にして光重合を行!ヽ、添加成分である有機パラジウム錯体を含有する突起部を含 む重合体を得た。
[0246] 得られた突起部を含む重合体を、室温で、 0.3%NaBH水溶液に浸漬し、還元処
4
理した。そして、純水で洗浄した後、この突起部を含む重合体を、 40°C (313K)で、 2分間、撹拌しながら濃硫酸 (濃度: 50mLZL)に浸漬し、メツキをするための触媒活 性ィ匕を行った。そして、この突起部を含む重合体を濃硫酸中から取り出し、純水で洗 浄した。
[0247] 次に、 5Lビーカーに、無電解銅メツキ用水溶液 [奧野製薬工業製、 OPC700A (濃 度: lOOmLZL)と奥野製薬工業製、 OPC700B (濃度: lOOmL/L)との混合水溶 液]を入れ、上記の突起部を含む重合体を、室温で、 60分間、空気を槽内にバブリ ングさせながら撹拌しながら、この無電解銅メツキ用水溶液に浸漬し、銅メツキ処理し た。そして、この突起部を含む重合体を無電解銅メツキ用水溶液力も取り出し、純水 で洗浄した。
[0248] 続いて、 5Lビーカーに、無電解銅メツキ用水溶液 [奧野製薬工業製、 OPCカッパ 一 T1 (濃度: 60mLZL)と奥野製薬工業製、 OPCカッパ一 T2 (濃度: 12mLZL)と 奧野製薬工業製、 OPCカッパ一 T3 (濃度: lOOmLZL)との混合水溶液]を入れ、 上記の突起部を含む重合体を、 60°C (333K)で、 120分間、撹拌および空気を槽 内にパブリングさせながら撹拌しながら、この無電解銅メツキ用水溶液に浸漬し、銅メ ツキ処理した。そして、この突起部を含む重合体を無電解銅メツキ用水溶液力も取り 出し、室温で、純水中で 5分間、メタノール中で 10分間、超音波洗浄した。
[0249] このようにして銅メツキ処理した、突起部を含む重合体は、外観上、重合体表面に、 フクレのな 、均一なメツキ膜 (メツキ層の厚み: 2 m)が形成されて!、た。
[0250] [実施例 5]
反応器内壁に設けられた凹部の底に石英耐圧窓を有する、容積 30cm3の耐圧反 応器に、重合前駆体としてポリエーテルビスマレイミド酢酸エステル (大日本インキ化 学工業株式会社製、 MIA-200) 0.872gを仕込んだ。次に、反応器内を撹拌しなが ら、二酸ィ匕炭素をボンべ圧 (約 7MPa)で反応器内に導入した後、 35°Cに昇温し、さ らにニ酸ィ匕炭素を反応器内の圧力が 30MPaになるように加圧ポンプで導入して超 臨界状態とした。重合前駆体であるポリエーテルビスマレイミド酢酸エステルの仕込 み濃度は 3.5質量%であった。
[0251] 圧力 30MPa、温度 35°Cで 1時間攪拌した後、光源として石英ファイバーを装着し た超高圧水銀灯を用い、反応器の外から石英耐圧窓を介して反応器内へ紫外線を 照射量が UZcm2となるように照射した。このときの紫外線の照射条件は、照射強度 33mWZcm2で照射時間 30.3秒間とした。照射した紫外線の波長は 254— 436nm の範囲である。その結果、石英耐圧窓上に、紫外線の照射方向、すなわち基材表面 に対して垂直方向に成長した突起部を含む重合体が形成された。
[0252] 紫外線照射後、 120分間カゝけて徐々に二酸化炭素を反応器外に放出し、反応器 内を大気圧にまで減圧した。得られた突起部を含む重合体の SEM写真を図 5に示 す。
[0253] [実施例 6]
紫外線の照射条件は、照射強度 33mWZcm2で照射時間 152秒間として、紫外線 の照射量を 5jZcm2とした以外は実施例 5と同様にして光重合を行ったところ、石英 耐圧窓上に、紫外線の照射方向、すなわち基材表面に対して垂直方向に成長した 突起部を含む重合体が形成された。得られた突起部を含む重合体の SEM写真を図 6に示す。
[0254] [実施例 7]
紫外線の照射条件は、照射強度 33mWZcm2で照射時間 303秒間として、紫外線 の照射量を lOjZcm2とした以外は実施例 5と同様にして光重合を行ったところ、石 英耐圧窓上に、紫外線の照射方向、すなわち基材表面に対して垂直方向に成長し た突起部を含む重合体が形成された。得られた突起部を含む重合体の SEM写真を 図 7に示す。
[0255] また、協和界面化学社製、接触角測定装置 CA— X150を用い、温度 20°C、湿度 55%の条件下で、重合体膜の表面上に純水を一滴(15 1)滴下し、滴下後 10秒後 に、その水滴形状を観察して、水滴が重合体膜と接触する角度を測定して、得られ た突起部を含む重合体の水接触角を測定した。その結果、得られた突起部を含む重 合体の水接触角は 109.9° であった。一方、同じ重合前駆体 (大日本インキ化学ェ 業株式会社製、 MIA— 200)を重合して得られた連続膜の水接触角は 90° であった 。本発明の突起部を含む重合体は、同じ組成の連続膜と比べて、高い撥水性を有し ていた。なお、得られた突起部を含む重合体の撥水性は、 PTFE (ポリテトラフルォロ エチレン)と同等であった。
[0256] [実施例 8]
マスクパターンを石英耐圧窓の外側に貼り合わせ、このマスクパターンを介して紫 外線を反応器内へ照射した以外は実施例 7と同様にして光重合を行ったところ、石 英耐圧窓の紫外線が透過した部分上に、マスクパターンが転写された突起部を含む 重合体が形成された。
[0257] [参考例 1] 紫外線の照射条件は、照射強度 33mWZcm2で照射時間 1515秒間として、紫外 線の照射量を 50jZcm2とした以外は実施例 5と同様にして光重合を行ったところ、 石英耐圧窓上に、重合体膜が形成された。
[0258] 得られた重合体膜の SEM写真を図 8に示す。また、得られた重合体膜の模式的断 面図を図 9に示す。 21は基材 (石英耐圧窓)、 22は重合体膜である。参考例 1で得ら れた重合体膜は、実施例 7で得られた突起部を含む重合体と比べて、多孔質な連続 膜ィ匕が進行していた。
[0259] なお実施例 5— 7において、突起部のサイズは図 5— 7に示される通りであり、具体 的には、突起部の高さは約 0.5—約 100 m、各突起部の高さは各径の約 0.1—約 10倍であった。
産業上の利用可能性
[0260] 本発明によれば、様々な物性や機能を有する突起部を含む重合体や、特異的な 微細構造を有する金属および Zまたは金属酸化物を主成分とする膜を得ることがで きる。例えば、医用材料、医薬用材料、分離機能材料、センサー材料、触媒材料など 、様々な用途への適用が期待される。また、新規な機能構造体の実現も期待される。
[0261] また、本発明によれば、径に対して高さが大きぐし力も高さが高い突起部を含む重 合体を得ることができ、例えば、撥水材料、粘着材料、吸着材料、分離機能材料、セ ンサー材料、ディスプレイ用材料、医用材料など、様々な用途への適用が期待される 。また、新規な機能構造体の実現も期待される。

Claims

請求の範囲
[1] 超臨界流体中または亜臨界流体中において、活性エネルギー線の照射により、不 飽和結合を 2個以上有する光硬化性化合物を含む 1種以上の光重合性重合前駆体 を光重合し、突起部を含む重合体を製造することを特徴とする重合体の製造方法。
[2] 超臨界流体または亜臨界流体が、超臨界二酸化炭素または亜臨界二酸化炭素で ある請求項 1に記載の重合体の製造方法。
[3] 超臨界流体または亜臨界流体に曝されるように配置された活性エネルギー線透過 基材上に、突起部を含む重合体を形成する請求項 1に記載の重合体の製造方法。
[4] 活性エネルギー線の入射面が超臨界流体または亜臨界流体に曝されず、活性ェ ネルギ一線の出射面が超臨界流体または亜臨界流体に曝されるように配置された活 性エネルギー線透過基材を透過させて活性エネルギー線を照射することにより、不 飽和結合を 2個以上有する光硬化性化合物を含む 1種以上の光重合性重合前駆体 を光重合し、前記活性エネルギー線透過基材の活性エネルギー線出射面上に、突 起部を含む重合体を形成する請求項 3に記載の重合体の製造方法。
[5] 前記活性エネルギー線を、マスクパターンを介して前記活性エネルギー線透過基 材に照射することにより、前記活性エネルギー線透過基材の活性エネルギー線出射 面の活性エネルギー線が透過した部分上に選択的に突起部を含む重合体を形成す る請求項 4に記載の重合体の製造方法。
[6] 超臨界流体中または亜臨界流体中において、 1種以上の、重合体の機能を追加す るための添加成分の存在下、活性エネルギー線の照射により、不飽和結合を 2個以 上有する光硬化性化合物を含む 1種以上の光重合性重合前駆体を光重合し、前記 添加成分を含有する、突起部を含む重合体を製造することを特徴とする重合体の製 造方法。
[7] 添加成分が、 1種以上の有機金属錯体である請求項 6に記載の重合体の製造方法
[8] 添加成分が、 1種以上の有機白金錯体である請求項 7に記載の重合体の製造方法
[9] 突起部の高さが、その突起部の径の 0.1倍以上であり、かつ、突起部の高さが 10η m以上である突起部を含む重合体。
[10] 突起部の高さが、その突起部の径の 1倍以上である請求項 9に記載の重合体。
[11] 突起部の高さが 1 μ m以上である請求項 9に記載の重合体。
[12] 撥水機能を有する請求項 9に記載の重合体。
[13] 水との接触角が 90° 以上である請求項 12に記載の突起部を含む重合体。
[14] 基材上に、請求項 9に記載の突起部を含む重合体を有する構造体。
[15] 1種以上の、重合体の機能を追加するための添加成分を含有する、突起部を含む 重合体。
[16] 突起部の高さが突起部の径の 0.1倍以上であり、かつ、突起部の高さが lOnm以上 である請求項 15に記載の重合体。
[17] 基材上に、請求項 15に記載の突起部を含む重合体を有する構造体。
[18] 添加成分が、 1種以上の有機金属錯体である請求項 15に記載の重合体。
[19] 請求項 18に記載の突起部を含む重合体を還元処理することにより製造される、金 属および Zまたは金属酸化物を含有する、突起部を含む重合体。
[20] 請求項 18に記載の突起部を含む重合体を焼成することにより製造される、金属お よび Zまたは金属酸ィ匕物を主成分とする膜。
PCT/JP2004/019331 2003-12-26 2004-12-24 重合体および重合体の製造方法 WO2005063838A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04807688A EP1698647A4 (en) 2003-12-26 2004-12-24 POLYMER AND PROCESS FOR PRODUCING THE SAME
US10/596,826 US7649027B2 (en) 2003-12-26 2004-12-24 Polymer and process for producing polymer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-433797 2003-12-26
JP2003-434119 2003-12-26
JP2003434119A JP2005187769A (ja) 2003-12-26 2003-12-26 重合体
JP2003433797A JP4786865B2 (ja) 2003-12-26 2003-12-26 重合体膜および重合体膜の製造方法

Publications (1)

Publication Number Publication Date
WO2005063838A1 true WO2005063838A1 (ja) 2005-07-14

Family

ID=34742141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019331 WO2005063838A1 (ja) 2003-12-26 2004-12-24 重合体および重合体の製造方法

Country Status (5)

Country Link
US (1) US7649027B2 (ja)
EP (1) EP1698647A4 (ja)
KR (1) KR100763799B1 (ja)
TW (1) TWI294431B (ja)
WO (1) WO2005063838A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014077102A (ja) * 2012-10-12 2014-05-01 Kawamura Institute Of Chemical Research 有機無機複合体膜、及びその製造方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8298466B1 (en) * 2008-06-27 2012-10-30 Abbott Cardiovascular Systems Inc. Method for fabricating medical devices with porous polymeric structures
JP5356784B2 (ja) 2008-11-19 2013-12-04 Hoya株式会社 フォトマスクブランクの製造方法及びフォトマスクの製造方法
US8461546B2 (en) 2009-04-03 2013-06-11 Lawrence Livermore National Security, Llc Compounds for neutron radiation detectors and systems thereof
US9309456B2 (en) 2011-04-15 2016-04-12 Lawrence Livermore National Security, Llc Plastic scintillator with effective pulse shape discrimination for neutron and gamma detection
US8841412B2 (en) 2011-08-11 2014-09-23 Abbott Cardiovascular Systems Inc. Controlling moisture in and plasticization of bioresorbable polymer for melt processing
US9121947B2 (en) 2012-01-23 2015-09-01 Lawrence Livermore National Security, Llc Stress reduction for pillar filled structures
US9512250B2 (en) * 2012-02-23 2016-12-06 University Of Connecticut Manganese catalyzed photopolymerization of fluorinated monomers
CN102604016B (zh) * 2012-03-12 2014-09-03 大连大学 一种用于超临界二氧化碳中聚合反应的表面活性剂
US9650564B2 (en) * 2012-05-14 2017-05-16 Lawrence Livermore National Security, Llc System and plastic scintillator for discrimination of thermal neutron, fast neutron, and gamma radiation
US9241787B2 (en) * 2013-02-13 2016-01-26 Sifi Medtech Srl Intraocular lens with a proofed surface
US9274237B2 (en) 2013-07-26 2016-03-01 Lawrence Livermore National Security, Llc Lithium-containing scintillators for thermal neutron, fast neutron, and gamma detection
JP5960321B1 (ja) * 2015-05-12 2016-08-02 田中貴金属工業株式会社 有機白金化合物からなる化学蒸着用原料及び該化学蒸着用原料を用いた化学蒸着法
US11021558B2 (en) 2016-08-05 2021-06-01 Johnson & Johnson Vision Care, Inc. Polymer compositions containing grafted polymeric networks and processes for their preparation and use
US10961341B2 (en) 2018-01-30 2021-03-30 Johnson & Johnson Vision Care, Inc. Ophthalmic devices derived from grafted polymeric networks and processes for their preparation and use
US11034789B2 (en) 2018-01-30 2021-06-15 Johnson & Johnson Vision Care, Inc. Ophthalmic devices containing localized grafted networks and processes for their preparation and use
US11912800B2 (en) 2021-09-29 2024-02-27 Johnson & Johnson Vision Care, Inc. Amide-functionalized polymerization initiators and their use in the manufacture of ophthalmic lenses

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117481A (ja) * 1991-10-28 1993-05-14 Asahi Glass Co Ltd 水性分散液
JP2000251676A (ja) * 1999-02-25 2000-09-14 Canon Inc 電子放出素子製造用金属含有水溶液、該金属含有水溶液を用いた電子放出素子、電子源、画像形成装置、及びこれらの製造方法
JP2001131208A (ja) 1999-09-01 2001-05-15 Affymetrix Inc 重合性ブラシにおける高分子のアレイおよびそれを調製するための方法
JP2002145971A (ja) 2000-11-13 2002-05-22 Japan Science & Technology Corp ナノ構造機能体
JP2003128409A (ja) * 2001-10-22 2003-05-08 Ube Ind Ltd 多孔質炭素膜構造体、触媒担持体、燃料電池用電極、電極接合体、及び燃料電池
JP2003277987A (ja) * 2002-03-25 2003-10-02 Tayca Corp セラミックス薄膜の電解合成法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4006047A (en) 1974-07-22 1977-02-01 Amp Incorporated Catalysts for electroless deposition of metals on comparatively low-temperature polyolefin and polyester substrates
JP2001087628A (ja) * 1999-09-27 2001-04-03 Sintokogio Ltd 光触媒能を有するフィルター
JP2001347162A (ja) * 2000-06-07 2001-12-18 Sharp Corp 酸化チタン薄膜を有する光触媒材
JP3653572B2 (ja) * 2001-09-06 2005-05-25 福井県 多孔性光触媒の製造方法
TWI270555B (en) * 2003-02-25 2007-01-11 President Of Shizuoka Universi Method of manufacturing polymer
US7416707B2 (en) * 2004-05-19 2008-08-26 Kansai Paint Co., Ltd. Polymerization reaction apparatus, and method of producing polymer using this apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117481A (ja) * 1991-10-28 1993-05-14 Asahi Glass Co Ltd 水性分散液
JP2000251676A (ja) * 1999-02-25 2000-09-14 Canon Inc 電子放出素子製造用金属含有水溶液、該金属含有水溶液を用いた電子放出素子、電子源、画像形成装置、及びこれらの製造方法
JP2001131208A (ja) 1999-09-01 2001-05-15 Affymetrix Inc 重合性ブラシにおける高分子のアレイおよびそれを調製するための方法
JP2002145971A (ja) 2000-11-13 2002-05-22 Japan Science & Technology Corp ナノ構造機能体
JP2003128409A (ja) * 2001-10-22 2003-05-08 Ube Ind Ltd 多孔質炭素膜構造体、触媒担持体、燃料電池用電極、電極接合体、及び燃料電池
JP2003277987A (ja) * 2002-03-25 2003-10-02 Tayca Corp セラミックス薄膜の電解合成法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1698647A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014077102A (ja) * 2012-10-12 2014-05-01 Kawamura Institute Of Chemical Research 有機無機複合体膜、及びその製造方法

Also Published As

Publication number Publication date
TWI294431B (en) 2008-03-11
US7649027B2 (en) 2010-01-19
KR20060087596A (ko) 2006-08-02
US20090023830A1 (en) 2009-01-22
TW200535156A (en) 2005-11-01
KR100763799B1 (ko) 2007-10-05
EP1698647A4 (en) 2008-01-30
EP1698647A1 (en) 2006-09-06

Similar Documents

Publication Publication Date Title
WO2005063838A1 (ja) 重合体および重合体の製造方法
Tenhaeff et al. Initiated and oxidative chemical vapor deposition of polymeric thin films: iCVD and oCVD
KR100570952B1 (ko) 중합체의 제조 방법
CN108291011B (zh) 用于增材制造的环氧双重固化树脂
US20200183276A1 (en) Photoactive Catalyst Compositions
JP2023055693A (ja) 付加製造において有用な光重合性樹脂のブロッキング基
US10799613B2 (en) Direct photopatterning of robust and diverse materials
TW201239528A (en) Cured composition for nano-imprint, nano-imprint molding and method for forming pattern
KR940002882B1 (ko) 반응성 아크릴수지 미소입자와 그의 제법 및 그 입자를 함유하는 경화성 조성물
US20070082965A1 (en) Photocuring resin composition, medical device using same and method for manufacturing same
JP4786865B2 (ja) 重合体膜および重合体膜の製造方法
JP2005187769A (ja) 重合体
JP6971650B2 (ja) 表面加工樹脂フィルムの製造方法
WO2024014152A1 (ja) パターン基材の製造方法、硬化性組成物、及び部品の製造方法
US20220234292A1 (en) Additive manufacturing method to achieve three dimensional parts having superior properties
JP2007098668A (ja) 超撥水性基材及びその製造方法
JP2004242725A (ja) 医療用具およびその製造方法
TWI482795B (zh) 多官能基聚合物組成物及其合成方法
JP2020063344A (ja) 新規ブロックポリマー、樹脂組成物、およびシート
JPH05317666A (ja) 気体透過性膜の製造方法
JPH03154662A (ja) 二分子膜の作製方法
JPS62260140A (ja) 累積膜およびそれを利用したレジスト

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480034060.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067007015

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10596826

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2004807688

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 1020067007015

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004807688

Country of ref document: EP