WO2005063435A1 - レーザー加工用保護シート及びレーザー加工品の製造方法 - Google Patents

レーザー加工用保護シート及びレーザー加工品の製造方法 Download PDF

Info

Publication number
WO2005063435A1
WO2005063435A1 PCT/JP2004/016268 JP2004016268W WO2005063435A1 WO 2005063435 A1 WO2005063435 A1 WO 2005063435A1 JP 2004016268 W JP2004016268 W JP 2004016268W WO 2005063435 A1 WO2005063435 A1 WO 2005063435A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective sheet
laser
workpiece
laser processing
sheet
Prior art date
Application number
PCT/JP2004/016268
Other languages
English (en)
French (fr)
Inventor
Masakatsu Urairi
Atsushi Hino
Naoyuki Matsuo
Tomokazu Takahashi
Takeshi Matsumura
Syouji Yamamoto
Original Assignee
Nitto Denko Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003430463A external-priority patent/JP2005186110A/ja
Priority claimed from JP2003430451A external-priority patent/JP4685346B2/ja
Priority claimed from JP2004099896A external-priority patent/JP4781634B2/ja
Priority claimed from JP2004100199A external-priority patent/JP2005279757A/ja
Priority claimed from JP2004100281A external-priority patent/JP2005279758A/ja
Priority claimed from JP2004100112A external-priority patent/JP4780695B2/ja
Priority claimed from JP2004100127A external-priority patent/JP2005279754A/ja
Priority claimed from JP2004100141A external-priority patent/JP4781635B2/ja
Priority to CN2004800387428A priority Critical patent/CN1898056B/zh
Priority to KR1020067010058A priority patent/KR101102728B1/ko
Priority to EP04799471A priority patent/EP1714730B1/en
Application filed by Nitto Denko Corporation filed Critical Nitto Denko Corporation
Priority to AT04799471T priority patent/ATE553638T1/de
Priority to US10/584,825 priority patent/US7586060B2/en
Publication of WO2005063435A1 publication Critical patent/WO2005063435A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/18Working by laser beam, e.g. welding, cutting or boring using absorbing layers on the workpiece, e.g. for marking or protecting purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2425/00Presence of styrenic polymer
    • C09J2425/006Presence of styrenic polymer in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2483/00Presence of polysiloxane
    • C09J2483/006Presence of polysiloxane in the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1377Protective layers
    • H05K2203/1383Temporary protective insulating layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer

Definitions

  • the present invention relates to a protective sheet for laser processing used when processing an object to be processed by ultraviolet absorption abrasion of laser light.
  • the present invention relates to various types of light-emitting or light-receiving element substrates such as sheet materials, circuit boards, semiconductor wafers, glass substrates, ceramic substrates, metal substrates, and semiconductor lasers, MEMS substrates, semiconductor packages, cloth, leather, and paper.
  • Manufacture of laser-processed products obtained by cutting, drilling, marking, grooving, scribing, or applying a force such as trimming to a workpiece by ultraviolet absorption of laser light. About the method.
  • Patent Document 1 As the above technique, for example, as a method of dicing an object to be processed, a method has been proposed in which the object to be processed is supported and fixed on a dicing sheet and the object is diced by a laser beam (Patent Document 1). ). Further, a method of dicing a semiconductor wafer by combining a water microjet and a laser has been proposed (Patent Document 2). The dicing sheet described in the patent document is provided on a laser light emitting surface side of a workpiece, and is provided with a dicing sheet. It is used to support and fix the workpiece (laser processed product) during and after each process.
  • the surface side of the workpiece that is in contact with the processing table or the pressure-sensitive adhesive sheet (the laser-light-emitting surface side) is not only the decomposed material of the processed material, but also the processed table or the decomposed material of the pressure-sensitive adhesive sheet irradiated with laser light Tend to adhere firmly to the surface of the object to be cured. For this reason, there have been problems that the improvement of the processing throughput is hindered and the reliability of cutting and drilling is reduced.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-343747
  • Patent Document 2 JP-A-2003-34780
  • the present invention provides a protective sheet for laser processing that can effectively suppress the contamination of the surface of a workpiece with a decomposed product when the workpiece is processed by ultraviolet absorption abrasion of laser light.
  • the purpose is to:
  • the present invention provides a laser processing protection that can effectively suppress the contamination of the surface of a workpiece by a decomposed product and increase the processing accuracy when the workpiece is processed by ultraviolet absorption abrasion of laser light.
  • An object of the present invention is to provide a method for manufacturing a laser-processed product using a sheet.
  • the inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, the following protective sheet for laser processing (hereinafter also referred to as a protective sheet) and a method for producing a laser-processed product using the protective sheet have been described. It has been found that the object can be achieved, and the present invention has been completed.
  • the first present invention relates to a protection sheet for laser processing provided on a laser light incident surface side of a workpiece when processing the workpiece by ultraviolet absorption abrasion of laser light.
  • the protective sheet is laminated on the laser light incident surface side (laser light irradiation surface side) of the workpiece before the laser beam is applied to the workpiece by laser absorption ultraviolet absorption abrasion, and is generated by the abrasion. It is used to protect the work surface from decomposed or scattered materials. Then, the protective sheet is processed together with the workpiece by ultraviolet absorption abrasion of laser light.
  • the decomposed matter generated from the laser beam irradiation part adheres to the surface of the protective sheet covering the workpiece, so that the decomposed substance is effectively prevented from adhering to the surface of the workpiece. can do.
  • the protective sheet preferably has a light transmittance of less than 50% in a laser light absorbing region.
  • a protective sheet with a light transmittance of less than 50% it is possible to effectively prevent decomposition products from entering the interface between the protection sheet and the workpiece and adhering at the interface. Can be.
  • the reason why the use of the protective sheet can suppress the contamination of the interface portion due to the decomposition product is considered as follows.
  • the protective sheet is eroded by the laser light earlier than the workpiece because the laser energy utilization efficiency of the protective sheet is large.
  • the underlying workpiece is eroded, but the decomposed material of the workpiece is also efficiently scattered to the outside by the eroded partial force of the protective sheet. It is considered that the contamination at the interface between the workpiece and the workpiece can be suppressed.
  • the light transmittance of the protective sheet in the laser light absorption region is preferably 40% or less, more preferably 30% or less, and particularly preferably 0%.
  • the light transmittance is 50% or more, the energy transmission to the object to be treated as a light energy absorber increases, and the laser beam transmitted through the protective sheet before the protective sheet is eroded by the laser beam. Erosion of the workpiece tends to proceed due to the light. In such a case, since there is no scattered path of the decomposed matter generated by the erosion of the workpiece, it is considered that the decomposed substance enters between the protective sheet and the workpiece and contaminates the surface of the workpiece.
  • the gas pressure during decomposition of the workpiece will be high. Therefore, gaseous decomposition products stay between the protective sheet and the workpiece, and the decomposition products contaminate the surface of the workpiece. If the surface of the workpiece is contaminated with the decomposed substance as described above, it becomes difficult to peel off the protective sheet after the workpiece is laser-processed, or it is difficult to remove the decomposed substance in the post-processing. And the processing accuracy of the workpiece tends to decrease.
  • the protective sheet has a pressure-sensitive adhesive layer provided on a base material.
  • the adhesion at the interface between the protective sheet and the workpiece can be improved, so that the invasion of decomposed products to the interface can be suppressed, and as a result, It is possible to suppress contamination of the workpiece surface.
  • the base material contains an aromatic polymer.
  • an aromatic polymer as a material for forming the base material, the light transmittance in the laser light absorption region can be reduced, and the etching speed of the protective sheet can be increased.
  • the weight ratio of the aromatic ring in the repeating unit constituting the aromatic polymer is preferably 41% by weight or more, more preferably 50% by weight or more. If the weight ratio of the aromatic ring is less than 41% by weight, the light transmittance in the laser light absorption region cannot be reduced sufficiently, and it tends to be difficult to sufficiently increase the etching rate of the protective sheet. is there.
  • the second invention is a protective sheet for laser processing used when processing an object to be processed by ultraviolet absorption of laser light, wherein the protective sheet has at least an adhesive layer on a substrate.
  • Laser processing characterized by being provided and having a base material etching rate (etching rate Z energy fluence) of 0.4 [m / pulse) / (j / cm 2 )] or more Related to protective sheet.
  • the etching rate which is the value obtained by dividing the etching rate ( ⁇ m / pulse) of the substrate by the energy fluence (jZcm 2 ) of the laser used, indicates the degree of laser workability of the substrate. It means that the larger the etching rate is, the easier the etching is.
  • the method of calculating the etching rate is described in detail in Examples.
  • a protective sheet having an etching rate of the substrate of 0.4 or more is used. Accordingly, contamination of the surface of the workpiece by the decomposition product can be effectively suppressed.
  • the reasons are considered as follows.
  • the etching rate of the substrate is 0.4 or more, the substrate is etched by the laser beam before the workpiece because the laser energy utilization efficiency of the substrate is large.
  • the lower layer workpiece is etched.However, the decomposed product of the workpiece also efficiently scatters the etching partial force of the protective sheet to the outside. It is difficult to enter the interface with the workpiece, and as a result, it is thought that contamination of the workpiece surface can be suppressed.
  • the etching rate of the substrate is preferably 0.5 or more, more preferably 0.6 or more. If the etching rate is less than 0.4, the energy transmission to the light-absorbing object, the caroage, increases, and the laser transmitted through the protective sheet before the substrate is sufficiently etched by the laser light. The etching of the workpiece proceeds by the light. In this case, since there is no scattered path of the decomposed matter generated by the etching of the processed material, the decomposed material enters the interface between the protective sheet and the processed material, thereby contaminating the surface of the processed material. There is fear.
  • the protective sheet has at least an adhesive layer provided on a base material.
  • the base material contains an aromatic polymer or a silicone rubber.
  • the etching rate of the base material can be easily adjusted to 0.4 or more.
  • the present invention provides a step (1) of installing the laser processing protection sheet on the laser light incident surface side of the workpiece, irradiating the laser beam with the laser processing protection sheet and the workpiece. (2), peeling the protection sheet for laser processing from the workpiece after processing
  • the present invention relates to a method for producing a laser-processed product including a separating step (3).
  • the workpiece is preferably a sheet material, a circuit substrate, a semiconductor wafer, a glass substrate, a ceramic substrate, a metal substrate, a semiconductor laser light-emitting or light-receiving element substrate, a MEMS substrate, or a semiconductor package. Further, it is preferable that the processing is processing for cutting or drilling a workpiece.
  • the protective sheet of the present invention is suitably used particularly when a semiconductor chip is manufactured by dicing a semiconductor wafer.
  • a third aspect of the present invention is to provide a substrate having at least a pressure-sensitive adhesive layer on a base material, and having an ultraviolet region wavelength ⁇ of the base material with respect to an absorption coefficient at the ultraviolet region wavelength ⁇ of a workpiece to be used.
  • a laser processing protective sheet with an extinction coefficient absorption coefficient in the ultraviolet region wavelength of the base material of the laser processing protection sheet ⁇ absorption coefficient in the ultraviolet region wavelength ⁇ of the workpiece to be used) of 1 or more.
  • ratio of extinction coefficient base of the protective sheet
  • the extinction coefficient ratio is an important parameter for laser workability between the base material of the protective sheet and the workpiece to be used.
  • the lower the extinction coefficient of a solid at a certain wavelength the lower the absorption of photoenergy.
  • light absorption in a solid occurs at the light penetration length (effective distance from the solid surface: 1Z extinction coefficient), and when the extinction coefficient is small, the light penetration length is long. Therefore, the stored energy per volume is reduced. Therefore, a material having a small extinction coefficient is difficult to be laser-processed.
  • the penetration length of laser light into a substrate is made shorter than the penetration length of laser light into a workpiece. be able to. Therefore, it is considered that the absorption of light energy by the base material was larger than that of the object to be processed, and the laser processing was easier.
  • the reason why the use of the protective sheet having the extinction coefficient ratio of 1 or more can effectively suppress the contamination of the surface of the material to be dried by the decomposition product is as follows. available. Since the protective sheet having an extinction coefficient specific force of at least ⁇ has the same or higher laser workability as that of the workpiece, it is etched by the laser beam simultaneously with or before the workpiece. You. Therefore, the decomposed product of the workpiece also efficiently scatters the component force of the etching portion of the protective sheet to the outside, and enters the interface between the protective sheet and the workpiece. As a result, it is considered that contamination of the workpiece surface can be effectively suppressed.
  • the extinction coefficient ratio is preferably 1.5 or more, more preferably 2 or more.
  • etching of the workpiece proceeds before the protective sheet is cut or perforated. In such a case, there is no scattered path of the decomposed matter generated by the etching of the processed material, so that the decomposed material may enter the interface between the protective sheet and the processed material and contaminate the surface of the processed material. .
  • the surface of the workpiece is contaminated with the decomposed material as described above, it becomes difficult to peel off the protective sheet from the workpiece after laser processing the workpiece, or decompose in the post-treatment. There is a tendency that removal of the workpiece becomes difficult, and the processing accuracy of the workpiece decreases.
  • the base material preferably contains an aromatic polymer or a silicone rubber. Since the above materials have a large absorption coefficient in the ultraviolet region wavelength, the absorption coefficient ratio can be relatively easily adjusted to 1 or more.
  • the fourth present invention uses a protective sheet for laser processing, which has at least an adhesive layer on a substrate and has an absorption coefficient of 20 cm- 1 or more at an ultraviolet region wavelength ⁇ of the substrate. Applying a pressure-sensitive adhesive layer of the protective sheet for laser processing to the laser light incident side of the metallic material, irradiating the laser light to the protective sheet for laser processing and the metallic material
  • the present invention relates to a method for producing a laser-processed article, which includes a step of processing a material and a step of peeling a protective sheet for laser processing from a metal-based material after processing.
  • Extinction coefficient at e ultraviolet region wavelength of said base material has preferably fixture further preferably 50Cm- 1 or more and 80Cm- 1 or more.
  • the wavelength in the ultraviolet region is preferably 355 nm.
  • a laser processing protective sheet having a density Z of 1 or more, and attaching the pressure-sensitive adhesive layer of the laser processing protective sheet to the laser light incident surface side of the workpiece.
  • the present invention also relates to a method for producing a laser-processed product, comprising: a step of irradiating a laser processing protective sheet and a workpiece by irradiating a laser beam;
  • density ratio density of the substrate of the protective sheet for laser processing Z density of the workpiece to be used
  • the reason why the selection of the protective sheet having the density ratio of 1 or more and the use thereof can effectively suppress the contamination of the surface of the workpiece by the decomposed product is as follows. Conceivable. Since the protective sheet having a density ratio of 1 or more has a laser processing property equal to or higher than that of the workpiece, it is etched by the laser beam simultaneously with the workpiece or earlier than the workpiece. For this reason, the decomposition product of the material to be processed also efficiently scatters the etching partial force of the protective sheet to the outside, and enters the interface between the protective sheet and the material to be processed. As a result, it is considered that contamination of the workpiece surface can be effectively suppressed.
  • the density ratio is preferably 1.1 or more, more preferably 1.4 or more.
  • the etching of the workpiece proceeds before the protective sheet is cut or perforated. In this case, there is no scattered path of the decomposed matter generated by the etching of the processed material, so that the decomposed material may enter the interface between the protective sheet and the processed material and contaminate the surface of the processed material. .
  • the surface of the workpiece is contaminated with the decomposition product as described above, it becomes difficult to peel the protective sheet from the workpiece after laser processing the workpiece, or to remove the decomposition product in the post-treatment. It tends to be difficult or the processing accuracy of the workpiece decreases.
  • the base material of the protective sheet preferably has a high density and contains an aromatic polymer or a silicon rubber.
  • a sixth aspect of the present invention uses a laser processing protective sheet having at least a pressure-sensitive adhesive layer on a base material and having a density of the base material of 1.lgZcm 3 or more; Attaching the pressure-sensitive adhesive layer of the protective sheet for laser processing to the light incident surface side of the laser, processing the protective sheet for laser processing and the metal-based material by irradiating laser light, and processing the laser.
  • the present invention relates to a method for producing a laser product, comprising a step of peeling a protective sheet for use from a metal material after processing.
  • the etching of the metal material may proceed before the protective sheet is cut or perforated. Further, since there is no scattered path of the decomposition product generated by the etching of the metal material, the decomposition product may enter the interface between the protective sheet and the metal material and contaminate the surface of the metal material.
  • the cause of the above phenomenon is that polymer materials etc. Differences in the abrasion process are possible. That is, in the case of a metal-based material, it passes through a thermochemical reaction process caused by heat generated by injecting photoenergy. Therefore, it is not possible to simply compare the processing efficiency of a polymer material or the like with the processing efficiency of a metal material.
  • the present inventors have compared and examined the processing rate of a metal-based material such as silicon and the heating rate of the base material of the protective sheet.
  • a metal-based material such as silicon
  • the density of the base material was 1.lgZcm 3 or more
  • the laser processing property is equal to or higher than that of the metal-based material, so that the contamination of the metal-based material surface by the decomposition product can be effectively suppressed.
  • the density of the substrate is 1
  • 3gZcm is 3 or more and 1. 5GZcm 3 or more.
  • the base material of the protective sheet preferably has a high density and contains an aromatic polymer or a silicon rubber.
  • the tensile strength of the processing protection sheet (the tensile strength of the work to be used) is 1 or more.
  • Use a laser processing protection sheet, and apply the laser processing protection to the laser light incident surface side of the work. Includes the step of attaching the adhesive layer of the sheet, the step of irradiating the laser beam to process the protective sheet for laser processing and the workpiece, and the step of peeling the protective sheet for laser processing from the workpiece after application A method for manufacturing a laser-processed product.
  • the present inventors have a correlation between the tensile strength, which is a mechanical property, and the laser workability. By selecting and using a protective sheet having the above-mentioned tensile strength ratio of 1 or more, the present inventors have found that the protective sheet is subject to the decomposition product. It has been found that contamination on the work surface can be effectively suppressed.
  • the reason why the use of a protective sheet having a tensile strength ratio of 1 or more to select and use the protective sheet can effectively suppress the contamination of the surface of the workpiece by the decomposition product is as follows. Conceivable. Since the protective sheet having a tensile strength specific force of at least ⁇ has the same or higher laser workability as that of the workpiece, it is etched by the laser beam simultaneously with or before the workpiece. You. As a result, the decomposed matter of the material to be scattered efficiently scatters outside the etching partial force of the protective sheet and enters the interface between the protective sheet and the material to be processed. As a result, it is considered that contamination of the workpiece surface can be effectively suppressed.
  • the tensile strength ratio is preferably 2 or more, more preferably 5 or more. If the tensile strength ratio is less than 1, etching of the workpiece proceeds before the protective sheet is cut or perforated. In such a case, there is no scattering path of the decomposed matter generated by etching of the processed material, so that the decomposed material may enter the interface between the protective sheet and the processed material and contaminate the surface of the processed material. . If the surface of the workpiece is contaminated with the decomposition product as described above, it becomes difficult to peel the protective sheet from the workpiece after laser processing the workpiece, or to remove the decomposition product in the post-processing. It tends to be difficult or the processing accuracy of the workpiece decreases.
  • An eighth aspect of the present invention uses a laser processing protective sheet having at least an adhesive layer on a base material and having a tensile strength of 100 MPa or more, and irradiating a metal material with laser light. Attaching the pressure-sensitive adhesive layer of the protective sheet for laser processing to the surface side, irradiating laser light to process the protective sheet for laser processing and the metal-based material, and processing the metallic sheet after processing the protective sheet for laser processing. And a method of manufacturing a laser-processed product including a step of separating the material from a material.
  • the etching of the metal material may proceed before the protective sheet is cut or perforated. . Since there is no scattered path of the decomposition product generated by etching the metal material, the decomposition product may enter the interface between the protective sheet and the metal material and contaminate the surface of the metal material.
  • the above phenomena can be caused by polymer materials and metallic materials. And the difference in the abrasion process. In other words, in the case of a metal-based material, it undergoes a thermochemical reaction process caused by heat generated by injecting light energy. Therefore, it is not possible to simply compare the processing efficiency of a polymer material or the like with the processing efficiency of a metal-based material.
  • the inventors of the present invention have compared the processing rate of a metal-based material such as silicon and the heating element of the base material of the protective sheet.
  • a metal-based material such as silicon
  • the tensile strength of the protective sheet is preferably 120 MPa or more, more preferably 140 MPa or more, and particularly preferably 200 MPa.
  • a protective sheet for laser processing in which the specific heat (Z) of the work to be used is less than 1 and affixing the pressure-sensitive adhesive layer of the protective sheet for laser processing to the laser light incident surface side of the work.
  • the present invention also relates to a method for producing a laser-processed product, comprising: a step of irradiating a laser processing protective sheet and a workpiece by irradiating a laser beam;
  • the present inventors have found that there is a correlation between the specific heat of a material and the laser processability, and that the lower the specific heat, the higher the abrasion occurs and the higher the laser processability. Then, it was found that by selecting and using a protective sheet having a specific heat ratio of less than 1, the contamination of the surface of the workpiece by the decomposition product can be effectively suppressed.
  • abrasion is based on the mechanism by which photons excite electrons in a material to cause a Coulomb explosion, It is thought to be caused by the mechanism of decomposition. If the specific heat of the material is small, it absorbs heat and the temperature rises easily, and thermal decomposition tends to occur. Conceivable.
  • the reason why the selection of the protective sheet having a specific heat ratio of less than 1 can effectively suppress the contamination of the surface of the workpiece by the decomposed product is as follows. Conceivable. Since the protective sheet having a specific heat ratio of less than 1 has a laser workability equal to or higher than that of the workpiece, it is etched by the laser beam simultaneously with or before the workpiece. For this reason, the decomposition product of the material to be processed also efficiently scatters the etching partial force of the protective sheet to the outside, and enters the interface between the protective sheet and the material to be processed. As a result, it is considered that contamination of the workpiece surface can be effectively suppressed.
  • the specific heat ratio is preferably 0.9 or less, more preferably 0.8 or less.
  • the etching of the workpiece proceeds before the protective sheet is cut or perforated. In this case, there is no scattered path of the decomposed matter generated by the etching of the processed material, so that the decomposed material may enter the interface between the protective sheet and the processed material and contaminate the surface of the processed material. .
  • the surface of the workpiece is contaminated with the decomposition product as described above, it becomes difficult to peel the protective sheet from the workpiece after laser processing the workpiece, or to remove the decomposition product in the post-treatment. It tends to be difficult or the processing accuracy of the workpiece decreases.
  • the workpiece may be a sheet material, a circuit substrate, a semiconductor wafer, a glass substrate, a ceramic substrate, a metal substrate, a semiconductor laser.
  • the substrate is a light emitting or light receiving element substrate, a MEMS substrate, or a semiconductor package.
  • the metal-based material is preferably a semiconductor wafer or a metal substrate.
  • a tenth aspect of the present invention is that the base material has at least a pressure-sensitive adhesive layer on the base material, and the refractive index at a wavelength of 546 nm of the base material with respect to the refractive index of the base material to be used at a wavelength of 546 nm.
  • Refractive index ratio refractive index of the base material of the laser processing protective sheet at a wavelength of 546 nm
  • Refractive index of the organic workpiece to be used at a wavelength of 546 nm is 1 or more. Attaching the pressure-sensitive adhesive layer of the laser processing protective sheet to the laser light incident surface side of the organic workpiece, and irradiating the laser light with the laser light.
  • the present invention relates to a method for producing a laser-processed product, which includes a step of processing a protective sheet for one-to-one processing and an organic workpiece, and a step of peeling the protective sheet for laser processing from the processed organic workpiece.
  • the present inventors have a correlation between the refractive index and the laser processability. By using a protective sheet having a refractive index specific power of not less than ⁇ , the contamination of the organic-based workpiece surface by the decomposition product can be reduced. It has been found that it can be suppressed effectively.
  • the refractive index ratio is an important parameter with respect to the laser workability between the base material of the protective sheet and the organic workpiece to be used.
  • the higher the index of refraction of a solid at a certain wavelength the slower the light travels through the solid and the higher the probability of photon absorption. Since the mechanism of laser ablation generation is due to electronic excitation by photon absorption, it is considered that the laser workability increases as the speed of light traveling through a solid decreases (that is, the refractive index increases).
  • the photon absorption in the substrate becomes larger than that of the organic workpiece, and the substrate is more laser-processed. It is considered easy.
  • a protective sheet having a refractive index ratio of 1 or more has a laser processing property equal to or higher than that of an organic workpiece, so that the protective sheet is irradiated with laser light at the same time as the organic workpiece or before the organic workpiece. Is etched.
  • the decomposition product of the organic workpiece efficiently scatters the etching partial force of the protective sheet to the outside, and enters the interface between the protective sheet and the organic workpiece. As a result, it is thought that contamination on the surface of the organic workpiece can be effectively suppressed.
  • the refractive index ratio is preferably 1.05 or more, more preferably 1.1 or more, particularly Preferably it is 1.2 or more. If the refractive index ratio is less than 1, the etching of the organic workpiece proceeds before the protective sheet is cut or perforated. In this case, there is no scattered path of decomposed substances generated by etching the organic workpiece, so that decomposed substances enter the interface between the protective sheet and the organic workpiece and contaminate the surface of the organic workpiece. There is a fear of doing. When the surface of the organic workpiece is contaminated with the decomposition product as described above, it becomes difficult to peel the protective sheet from the organic workpiece after laser processing the organic workpiece, or to perform post-treatment. It tends to be difficult to remove decomposed substances at high temperatures, and the processing accuracy of organic workpieces tends to decrease.
  • the eleventh invention uses a protective sheet for laser processing, which has at least a pressure-sensitive adhesive layer on a substrate, and has a refractive index of 1.53 or more at a wavelength of 546 nm of the substrate. Attaching the pressure-sensitive adhesive layer of the protective sheet for laser processing to the laser light incident surface side of the inorganic workpiece, and processing the protective sheet for laser processing and the inorganic workpiece by irradiating laser light. And a method for manufacturing a laser-processed product, comprising a step of peeling a protective sheet for laser processing from an inorganic workpiece after processing.
  • the inorganic workpiece may be a circuit board, a semiconductor wafer, a glass substrate, a ceramic substrate, a metal substrate, a semiconductor laser light-emitting or light-receiving element substrate, a MEMS substrate, or a semiconductor substrate. , Which is preferably a package.
  • the refractive index of the substrate is preferably 1.57 or more, more preferably 1.60 or more.
  • the base material of the protective sheet contains an aromatic polymer or a silicone rubber. Since the above materials have a large refractive index at a wavelength of 546 nm, the refractive index ratio can be relatively easily adjusted to 1 or more.
  • the total binding energy which is the minimum value among the total values of the bonding energies of the atoms and the other atoms bonded to the carbon atom, AZ is one of the raw material components constituting the organic workpiece to be used.
  • the present invention relates to a method for manufacturing a laser-processed product, which includes a step of peeling a protective sheet for laser processing from an organic workpiece after processing.
  • the total binding energy A is the total value of the binding energies of one carbon atom in the resin component constituting the base material and another atom bonded to the carbon atom (total binding energy 1 ) Is the smallest value.
  • One carbon atom in a polymer is bonded to two or more other atoms, but the binding energies differ depending on the types of other atoms to be bonded. Therefore, the sum of the binding energies (total binding energy) ) Also differs depending on the bonding state of each carbon atom.
  • the total binding energy B is a total value of the binding energies of one carbon atom in a raw material component constituting the organic workpiece to be used and another atom bonded to the carbon atom (total Is the smallest among the binding energies!
  • total Is the smallest among the binding energies! attention is paid to the carbon atom having the lowest total binding energy among the carbon atoms in various bonding states in the raw material component, and the total binding energy B of the carbon atom is considered to be different from the laser processing property. We found that there was a correlation between them.
  • the present inventors select and use a protective sheet having the above total binding energy ratio of less than 1, thereby effectively suppressing the contamination of the surface of the organic workpiece by the decomposed product. I found that I can do it. Although it is not clear why there is a correlation between the total binding energy and the laser processability as described above, the bond between atoms having a small binding energy is likely to be cut as soon as the laser is irradiated and the processing threshold Also decrease. Therefore, the smaller the total bond energy between specific atoms in the material used, the more the laser processing It is thought that sex becomes large.
  • the reason for selecting and using a protective sheet having the above total binding energy ratio of less than 1 is that contamination of the surface of the organic workpiece by the decomposition product can be effectively suppressed. It can be considered as follows. Since the protective sheet with a total binding energy ratio of less than 1 has laser processing properties equal to or higher than that of the organic workpiece, the protective sheet is used simultaneously with the organic workpiece or before the organic workpiece. Is etched. As a result, the decomposition products of the organic workpiece efficiently scatter outside the etching force of the protective sheet, and enter the interface between the protective sheet and the organic workpiece. As a result, it is thought that contamination on the surface of the organic workpiece can be effectively suppressed.
  • the total binding energy ratio is preferably 0.9 or less, more preferably 0.8 or less. If the total binding energy specific force is not less than ⁇ , the etching of the organic workpiece proceeds before the protective sheet is cut or perforated. In this case, since there is no scattered path of the decomposed matter generated by the etching of the organic workpiece, the decomposed substance enters the interface between the protective sheet and the organic workpiece, and the surface of the organic workpiece is damaged. There is a risk of contamination. When the surface of the organic workpiece is contaminated with the decomposition product as described above, it becomes difficult to remove the protective sheet from the organic sheet after the laser processing of the organic workpiece, or the post-treatment. It tends to be difficult to remove decomposed materials in the process, and the processing accuracy of organic workpieces tends to decrease.
  • At least one pressure-sensitive adhesive layer is provided on a base material, and one carbon atom in a resin component constituting the base material is bonded to the carbon atom.
  • a protective sheet for laser processing in which the total binding energy A, which is the minimum value among the total values of the binding energies with other atoms, is less than 800 kJZmol, and apply it on the laser light incident surface side of the inorganic workpiece.
  • a method for producing a laser-processed product including a step of peeling the product from a laser.
  • the inorganic workpiece may be a circuit substrate, a semiconductor wafer, a glass substrate, a ceramic substrate, a metal substrate, a semiconductor laser light-emitting or light-receiving element substrate, It is preferably an MS substrate or a semiconductor package.
  • the present inventors found that a protective sheet having a base material having a total binding energy A of less than 800 kjZmol was obtained. It has been found that, when used, it has laser workability equal to or higher than that of the inorganic workpiece, so that contamination of the surface of the inorganic workpiece by decomposed substances can be effectively suppressed.
  • the total binding energy A is preferably 780 kjZmol or less, more preferably 760 kjZmol or less.
  • the protective sheet is provided on a laser light irradiation surface side (a laser beam irradiation side) of the workpiece before the workpiece is laser-processed by an ultraviolet absorbing laser beam.
  • the decomposed and scattered materials generated by the abrasion are also used to protect the surface of the workpiece.
  • a protective sheet having at least a pressure-sensitive adhesive layer on a substrate is used.
  • the adhesiveness at the interface between the protective sheet and the workpiece can be improved, so that the invasion of decomposed products to the interface can be suppressed, and as a result, decomposition It is possible to suppress contamination of the surface of the workpiece by the workpiece.
  • the base material preferably contains an aromatic polymer or a silicone rubber.
  • the processing is cutting or drilling.
  • the present invention also relates to a protective sheet for laser processing used in the method for producing a laser processed product.
  • the protective sheet is suitably used particularly when a semiconductor chip is manufactured by dicing a semiconductor wafer.
  • FIG. 1 is a schematic process diagram showing an example of a method for producing a laser-processed product according to the present invention.
  • FIG. 2 is a schematic process drawing showing another example of the method for producing a laser-processed product according to the present invention.
  • FIG. 3 is a schematic view showing a cross section of a laminate processed by ultraviolet absorption abrasion of laser light.
  • FIG. 4 is a schematic view showing an example of a dicing method for a semiconductor wafer.
  • the laser used in the present invention includes a thermal processing process in order to prevent the edge and the cut wall surface of the workpiece from deteriorating the accuracy and appearance due to thermal damage during laser processing.
  • a laser that can perform abrasion processing by ultraviolet light absorption, which is non-thermal processing that does not pass through the laser, is used.
  • a laser that can be subjected to abrasion processing by absorbing ultraviolet light and emits ultraviolet light of a specific wavelength is used. It is preferable to use a laser capable of condensing laser light into a narrow width of 20 m or less and emitting ultraviolet light of 355 nm.
  • a laser having an oscillation wavelength of 400 nm or less for example, a KrF excimer laser having an oscillation wavelength of 248 nm, a XeCI excimer laser having an oscillation wavelength of 308 nm, or a third laser of a YAG laser
  • a laser having a wavelength of 355 nm, the fourth harmonic (266 nm), or a wavelength of 400 nm or more it is possible to absorb light in the ultraviolet region through a multiphoton absorption process, and use multiphoton absorption ablation.
  • a titanium sapphire laser having a wavelength of about 750 to 800 nm which can perform cutting with a width of 20 m or less, or a laser having a pulse width of le- 9 seconds (0.000000001 seconds) or less.
  • the workpiece is not particularly limited as long as it can be processed by an ultraviolet absorption laser beam of the laser beam output from the laser.
  • various sheet materials, circuit boards, semiconductor wafers examples include a light emitting or light receiving element substrate such as a glass substrate, a ceramic substrate, a metal substrate, and a semiconductor laser, a MEMS (Micro Electro Mechanical System) substrate, a semiconductor package, cloth, leather, and paper.
  • a light emitting or light receiving element substrate such as a glass substrate, a ceramic substrate, a metal substrate, and a semiconductor laser
  • MEMS Micro Electro Mechanical System
  • the protective sheet or manufacturing method of the present invention is particularly applicable to processing of a sheet material, a circuit board, a semiconductor wafer, a glass substrate, a ceramic substrate, a metal substrate, a light emitting or light receiving element substrate of a semiconductor laser, a MEMS substrate, or a semiconductor package. Can be suitably used.
  • Examples of the various sheet materials include polyimide resin, polyester resin, epoxy resin, urethane resin, polystyrene resin, polyethylene resin, polyamide resin, and polycarbonate resin.
  • Polymer films and nonwoven fabrics that also have strength, such as resin-based resin, silicone resin, and fluorine-based resin, sheets and copper or aluminum, which have been given a physical or optical function by stretching or impregnating these resins.
  • the circuit board may be a single-sided, double-sided or multi-layer flexible printed board, a rigid board such as a glass epoxy, ceramic, or metal core board, an optical circuit formed on glass or polymer, or an optical-electric hybrid circuit board. And the like.
  • Examples of the metal-based material include semimetals and alloys, such as gold, SUS, copper, iron, aluminum, stainless steel, silicon, titanium, nickel, and tungsten, and processed products (semiconductors) using these. Wafer, metal substrate, etc.).
  • the organic material to be treated is not particularly limited as long as it can be processed by ultraviolet absorption ablation of the laser light output by the laser.
  • the organic material to be treated is not particularly limited as long as it can be processed by ultraviolet absorption ablation of the laser light output by the laser.
  • various sheet materials, cloth, leather, paper, and the like can be mentioned.
  • Examples of the various sheet materials include, for example, the polymer film and the nonwoven fabric, and sheets obtained by applying a physical or optical function to the resin by stretching or impregnating the resin.
  • the inorganic substance to be treated is not particularly limited as long as it can be processed by ultraviolet absorption ablation of the laser light output by the laser.
  • the circuit board, the semiconductor wafer, the glass substrate, the ceramic substrate, the metal material, the metal substrate, the semiconductor laser emitting or receiving element substrate, the MEM is not particularly limited as long as it can be processed by ultraviolet absorption ablation of the laser light output by the laser.
  • An S substrate, a semiconductor package, or the like is included.
  • Examples of the metal material include semimetals and alloys, for example, gold, SUS, copper, iron, aluminum, stainless steel, silicon, titanium, nickel, tungsten, and the like. Things.
  • the protective sheet of the present invention is a sheet to be used when a subject is calored by ultraviolet absorption abrasion of laser light.
  • the protective sheet of the first present invention has a light transmittance in a laser light (ultraviolet) absorption region.
  • the pressure-sensitive adhesive layer may be provided on the substrate, which may be formed only on the substrate.
  • the second protective sheet of the present invention has at least a pressure-sensitive adhesive layer provided on a substrate, and has an etching rate of 0.4 [( ⁇ m / pulse) / (j / cra)) or more.
  • a protective sheet having at least a pressure-sensitive adhesive layer on a substrate is used. Then, it is necessary to select and use a protective sheet having an absorption coefficient specific force of not less than ⁇ .
  • a metal material is laser-processed (fourth invention)
  • a protective sheet having at least an adhesive layer on a substrate is used. Then, it is necessary to use a protective sheet having the density ratio of 1 or more.
  • the tensile strength ratio the tensile strength of the protective sheet X the tensile strength of the workpiece to be used
  • a protective sheet having at least an adhesive layer on a substrate is used. Then, it is necessary to select and use a protective sheet having the specific heat ratio of less than 1.
  • a protective sheet having at least an adhesive layer on a substrate is used.
  • a protective sheet having a refractive index specific power of at least it is necessary to select and use a protective sheet having a refractive index specific power of at least.
  • a protective sheet having a base material having a refractive index of 1.53 or more at a wavelength of 546 ⁇ m. is necessary.
  • a protective sheet having at least an adhesive layer on a substrate is used.
  • the inorganic workpiece is laser-processed (the thirteenth invention)
  • the values of the total binding energies A and B are described in, for example, Chemical Handbook and technical literature (Cox, JD and PILCHER, G., Thermochemistry of organic and organometallic compounds, Academic Press, New York, 1970).
  • the binding energy value force can also be determined.
  • Examples of the material for forming the base material include polyethylene terephthalate, polyethylene naphthalate, polystyrene, polycarbonate, polyimide, (meth) acrylic polymer, and polyurethane. Forces include, but are not limited to, tin, silicone-based rubber, and polyolefin-based polymers such as polyethylene, polypropylene, and polyethylene oxide. One of the above materials may be used alone, or two or more thereof may be used in combination. Of these, it is preferable to use aromatic polymers, and particularly to use polyimide, polyethylene naphthalate, or polycarbonate.
  • polyimide polyethylene naphthalate
  • polystyrene polystyrene
  • a material having a high extinction coefficient such as an aromatic polymer such as polycarbonate and a silicone rubber, and the like.
  • a material having a relatively high density such as polyethylene naphthalate, polyurethane, polyimide, and silicone rubber.
  • an aromatic polymer or a silicone rubber especially polyimide, polyethylene naphthalate, polystyrene, or the like.
  • polycarbonate it is preferable to use polycarbonate.
  • a material having a relatively low specific heat such as polyethylene terephthalate, polyethylene naphthalate, polystyrene, polyurethane, and polycarbonate.
  • a material having a high refractive index at a wavelength of 546 nm such as an aromatic polymer such as polyimide, polyethylene naphthalate, polystyrene, or polycarbonate, or a silicon rubber, may be used. Is preferred,.
  • an aromatic polymer especially polyimide, polyethylene terephthalate, polyethylene naphthalate, polystyrene, or polycarbonate. It is preferable to use.
  • the filler is used to reduce the light transmittance of the laser light absorption region to less than 50% (first invention), to increase the etching rate to 0.4 or more (second invention), In order to increase the coefficient (third and fourth inventions), to increase the tensile strength of the substrate (the seventh and eighth inventions), or to increase the refractive index of the substrate (the tenth and eleventh inventions).
  • pigments, dyes, pigments, Au, Cu examples include metal fine particles such as Pt and Ag, and inorganic fine particles such as metal colloids and carbon.
  • the dye may be any dye that absorbs light of a specific wavelength (light in the ultraviolet region) of the laser used.
  • the dye include basic dyes, acid dyes, and direct dyes. Can be used.
  • the dye or pigment include a nitro dye, a nitroso dye, a stilbene dye, a pyrazolone dye, a thiazole dye, an azo dye, a polyazo dye, a dye, a dye, a quinoal dye, an indophenol dye, and an indoor dye.
  • Phosphorus dye indamine dye, quinone imine dye, azine dye, oxidation dye, oxazine dye, thiazine dye, ataridine dye, diphenylmethane dye, triphenylmethane dye, xanthene dye, thioxanthene dye, sulfurized dye, pyridine dye, pyridone dye, thiadiazole Dyes, thiophene dyes, benzoisothiazole dyes, dicyanoimidazole dyes, benzopyran dyes, benzodifuranone dyes, quinoline dyes, indigo dyes, thioindigo dyes, anthraquinone dyes, benzophenone dyes, benzoquinone dyes, nafu Quinone dyes, phthalocyanine dyes, cyanine dyes, methine dyes, polymethine dyes, azomethine dyes, condensed methine dyes, naphthal
  • the dye or pigment may be a nonlinear optical pigment.
  • the nonlinear optical dye is not particularly limited and may be a known nonlinear optical dye (for example, benzene-based nonlinear optical dye, stilbene-based nonlinear optical dye, cyanine-based nonlinear optical dye, azo-based nonlinear optical dye, rhodamine-based nonlinear optical dye And biphenyl-based nonlinear optical dyes, chalcone-based nonlinear optical dyes, and cyanocinnamic acid-based nonlinear optical dyes.
  • benzene-based nonlinear optical dye for example, stilbene-based nonlinear optical dye, cyanine-based nonlinear optical dye, azo-based nonlinear optical dye, rhodamine-based nonlinear optical dye And biphenyl-based nonlinear optical dyes, chalcone-based nonlinear optical dyes, and cyanocinnamic acid-based nonlinear optical dyes.
  • the functional dye is composed of, for example, a carrier generation material and a carrier transfer material.
  • the carrier generating material include perylene pigments, quinone pigments, squarium pigments, azulhenium pigments, thiapyrylium pigments, bisazo pigments, and the like.
  • the carrier transfer material include an oxaziazole derivative, an oxazole derivative, a pyrazoline derivative, a hydrazone derivative, and an arylamine derivative.
  • the amount of the filler to be added depends on the light transmittance of the base polymer used (first invention), the etching rate of the base polymer itself used (second invention), and the light absorption of the base polymer used. Coefficient and the extinction coefficient of the workpiece (third and fourth inventions), the relationship between the base polymer used itself and the tensile strength of the workpiece (the seventh and eighth inventions), or the base used A force that can be appropriately adjusted depending on the refractive index of the polymer and the refractive index of the object to be cured (the tenth and eleventh inventions). Usually, about 2 to 20 parts by weight with respect to 100 parts by weight of the base polymer. More preferably, it is about 2 to 10 parts by weight.
  • the substrate may be a single layer or multiple layers. Further, it can take various shapes such as a film shape and a mesh shape.
  • the thickness of the base material depends on the operability and workability in each step such as laminating on the material to be cured, cutting and drilling of the material to be cured, and peeling and collecting of the cut pieces. It can be adjusted appropriately within a range not to impair, but it is usually 500 ⁇ m or less, preferably about 3 to 300 ⁇ m, and more preferably 5 to 250 m.
  • the surface of the substrate may be treated with conventional surface treatments such as chromic acid treatment, ozone exposure, flame exposure, high piezo-electric exposure, and ionizing radiation treatment to enhance adhesion and retention to adjacent materials. Or physical treatment may be applied.
  • a known pressure-sensitive adhesive containing a (meth) acryl-based polymer, a rubber-based polymer, or the like can be used as a material for forming the pressure-sensitive adhesive layer.
  • the monomer component forming the (meth) acrylic polymer includes, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, isobutyl group, amyl group, isoamyl Group, hexyl group, heptyl group, cyclohexyl group, 2-ethylhexyl group, octyl group, isooctyl group, nonyl group, isononyl group, decyl group, isodecyl group, pendecyl group, lauryl group, tridecyl group, tetradecyl Alkyl (meth) acrylates having a linear or branched alkyl group having 30 or less carbon atoms, preferably 418 carbon atoms, such as a group, stearyl group, octadecyl group, and dodecyl Alky
  • a monomer component other than the above may be copolymerized for the purpose of modifying the adhesiveness, cohesive strength, heat resistance, and the like of the (meth) acrylic polymer.
  • Such monomer components include For example, carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid; maleic anhydride and anhydride.
  • a polyfunctional monomer or the like can be used as a comonomer component as needed for the purpose of crosslinking treatment of the (meth) acrylic polymer and the like.
  • polyfunctional monomer examples include hexanediol di (meth) acrylate, (poly) ethylene glycol di (meth) atalylate, (poly) propylene glycol di (meth) atalylate, and neopentyl glycol di.
  • (Meth) acrylate pentaerythritol di (meth) atalylate, trimethylolpropane tri (meth) acrylate, tetramethylol methane tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meta) ) Phthalate, dipentaerythritol monohydroxypenta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, epoxy (meth) acrylate, polyester (meth) phthalate, and urethane (meth) acrylate Etc., and the like. These polyfunctional monomers may be used alone or in combination of two or more.
  • the amount of the polyfunctional monomer used should be 30% by weight or less based on the total monomer components from the viewpoint of adhesive properties and the like. It is more preferably lower than 20% by weight.
  • the (meth) acrylic polymer is prepared, for example, by subjecting a mixture containing one or more monomer components to an appropriate method such as a solution polymerization method, an emulsion polymerization method, a bulk polymerization method, or a suspension polymerization method. Can be applied.
  • Examples of the polymerization initiator include peroxides such as hydrogen peroxide, benzoyl peroxide, and t-butyl peroxide. It is desirable to use it alone, but it can also be used as a redox polymerization initiator in combination with a reducing agent.
  • Examples of the reducing agent include ionic sulfites, bisulfites, salts of ions such as iron, copper, and cobalt salts, amines such as triethanolamine, and reducing sugars such as aldose and ketose. .
  • azoi conjugates are also preferred polymerization initiators, such as 2,2'-azobis 2-methylpropioamidine, 2,2'-azobis-2,4-dimethylvaleronitrile, and 2,2'-azobis Use N, N'-dimethylene isobutylamidate, 2,2, -azobisisobutymouth-tolyl, 2,2, -azobis-2-methyl-N- (2-hydroxyethyl) propionamide, etc. be able to. It is also possible to use two or more of the above polymerization initiators in combination.
  • the reaction temperature is usually about 50-85 ° C, and the reaction time is about 118 hours.
  • a solvent for the (meth) acrylic polymer which is preferably a solution polymerization method, is generally a polar solvent such as ethyl acetate and toluene.
  • the solution concentration is usually about 20-80% by weight.
  • a crosslinking agent may be appropriately added to the pressure-sensitive adhesive in order to increase the number average molecular weight of the (meth) acrylic polymer as the base polymer.
  • the crosslinking agent include a polyisocyanate compound, an epoxy conjugate, an aziridine conjugate, a melamine resin, a urea resin, an anhydrous compound, a polyamine, and a carboxyl group-containing polymer.
  • the amount of the cross-linking agent used is generally 0.01 to 5 parts by weight based on 100 parts by weight of the base polymer, considering that the peeling strength is not excessively reduced. Is preferred.
  • the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer may further contain, if necessary, conventional additives such as various known tackifiers, antioxidants, fillers, antioxidants, and coloring agents, in addition to the above components. It can be contained.
  • the pressure-sensitive adhesive may be a radiation such as an ultraviolet ray or an electron beam. It is preferable to use a radiation-curable pressure-sensitive adhesive that is cured by the following method.
  • a radiation-curable pressure-sensitive adhesive is used as the pressure-sensitive adhesive, the pressure-sensitive adhesive layer is irradiated with radiation after laser processing. Therefore, it is preferable that the substrate has sufficient radiation transmittance.
  • Examples of the radiation-curable pressure-sensitive adhesive include a radiation-curable pressure-sensitive adhesive obtained by mixing a radiation-curable monomer component or oligomer component with the above-mentioned (meth) acrylic polymer.
  • Examples of the radiation-curable monomer component or oligomer component to be blended include urethane (meth) atalylate oligomer, trimethylolpropane tri (meth) atalylate, tetramethylol methanetetra (meth) atalylate, and tetraethylene.
  • Glycol di (meth) acrylate pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol monohydroxy penta (meth) acrylate, dipentaerythritol hex (meth) acrylate, 1 Ester compounds consisting of (meth) atalic acid and polyhydric alcohols, such as 1,4-butylene glycol di (meth) atalylate and 1,6-hexanediol di (meth) atalylate; —Butyl isocyanurate and And isocyanurate conjugates such as tris (2-methacryloxyshethyl) isocyanurate. These may be used alone or in combination of two or more.
  • the amount of the radiation-curable monomer component or oligomer component is not particularly limited, but considering adhesiveness, 100 parts by weight of a base polymer such as a (meth) acrylic polymer that constitutes the adhesive. In contrast, the amount is preferably about 5 to 500 parts by weight, more preferably about 70 to 150 parts by weight.
  • a base polymer having a carbon-carbon double bond in a polymer side chain or in a main chain or at a main chain terminal can also be used.
  • a base polymer having a (meth) acrylic polymer as a basic skeleton is preferable.
  • the radiation-curable monomer component or oligomer component may be used without any particular addition.
  • the radiation-curable pressure-sensitive adhesive contains a photopolymerization initiator when it is cured by ultraviolet rays or the like.
  • the photopolymerization initiator include 4 (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, ⁇ -hydroxy ⁇ , a methylacetophenone , Methoxyacetophenone, 2,2-Dimethoxy-2-phenylacetophenone, 2,2-Jetoxyacetophenone, 1-Hydroxycyclohexylphenyl ketone, 2-Methyl-1- [4- (methylthio) phenyl Acetophenone compounds such as 2-morpholinopropane 1, benzoin ether compounds such as benzoethyl ether, benzoin isopropyl ether and azoin methyl ether, and ⁇ -ketol compounds such as 2-methyl-2-hydroxypropyl phenone Ketal compounds such as benzyl dimethyl ketal, aromatic sulfoyluclide
  • the amount of the photopolymerization initiator is preferably about 0.1 to 10 parts by weight based on 100 parts by weight of a base polymer such as a (meth) acrylic polymer constituting the pressure-sensitive adhesive. It is preferably about 0.5-5 parts by weight.
  • the protective sheet can be manufactured, for example, by applying a pressure-sensitive adhesive solution to the surface of a base material and drying (by heat-crosslinking as necessary) to form a pressure-sensitive adhesive layer.
  • a method of separately forming a pressure-sensitive adhesive layer on a release liner and then bonding the same to a substrate can be employed.
  • the pressure-sensitive adhesive layer may be a single layer or two or more layers. If necessary, a separator may be provided on the surface of the pressure-sensitive adhesive layer.
  • the pressure-sensitive adhesive layer preferably has a low content of a low-molecular-weight substance from the viewpoint of preventing contamination of a workpiece.
  • the number average molecular weight of the (meth) acrylic polymer is preferably 300,000 or more, more preferably 400,000 to 3,000,000, and particularly preferably 800 to 3,000,000.
  • the thickness of the pressure-sensitive adhesive layer is preferably about 5 to 300 m, more preferably about 10 to 100 m, and more preferably about 10 to 100 m, and particularly preferably about 10 to 100 m. It is about 50 / zm.
  • the adhesive strength of the pressure-sensitive adhesive layer is the adhesive strength to SUS304 at normal temperature (before laser irradiation).
  • the separator is provided as necessary for labeling or protecting the pressure-sensitive adhesive layer.
  • the constituent material of the separator include paper, synthetic resin films such as polyethylene, polypropylene, and polyethylene terephthalate.
  • the surface of the separator may be subjected to a release treatment such as a silicone treatment, a long-chain alkyl treatment, a fluorine treatment, or the like, as necessary, in order to enhance the releasability from the adhesive layer.
  • a protection sheet or the like for preventing ultraviolet rays from transmitting may be applied so that the protection sheet does not react with environmental ultraviolet rays.
  • the thickness of the separator is usually about 10 to 200 m, preferably about 25 to 100 m.
  • a method for producing a laser-processed product by ultraviolet absorption of laser light using the protective sheet of the present invention will be described.
  • a protective sheet 2 a workpiece (or a metal-based material) 1, and an adhesive sheet 3 are attached by a known means such as a roll laminator or a press.
  • the protective sheet-calorie target-adhesive sheet laminate 4 is placed on the adsorbing plate 6 of the adsorption stage 5, and a laser beam 7 output from a predetermined laser oscillator is protected on the laminate 4 by a lens.
  • the laser beam is focused on the sheet 2 and the laser irradiation position is moved along a predetermined processing line to perform a cutting process.
  • the adhesive sheet 3 provided on the laser light emitting surface side of the workpiece plays a role of supporting and fixing the workpiece before laser processing, and a role of preventing a cut workpiece from dropping after laser processing. Use a sheet with low laser workability.
  • a general pressure-sensitive adhesive layer having a pressure-sensitive adhesive layer laminated on a substrate can be used without any particular limitation.
  • a known laser processing method such as galvano scan, XY stage scan, or mask imaging method is used.
  • Laser processing conditions are such that the protective sheet 2 and the workpiece 1 are completely cut.
  • the energy condition for cutting the work 1 is preferably within twice as much.
  • the cutting margin (cutting groove) can be made narrower by narrowing the beam diameter of the laser beam condensing portion.
  • the cutting margin in order to increase the accuracy of the cut end face,
  • the adhesive sheet laminate 4 is placed on the suction plate 6 of the suction stage 5, and the laser light 7 output from a predetermined laser oscillator is placed on the protection sheet 2 by a lens on the laminate 4. Concentrate and irradiate to form holes.
  • the holes are formed by a known laser processing method using a galvano scan or an XY stage scan, a punching method using mask imaging, and the like.
  • the optimum laser processing conditions may be determined based on the abrasion threshold of the material to be processed.
  • the energy condition for perforating the workpiece 1 be within twice as much.
  • the semiconductor wafer 8 was cut by bonding one side of a semiconductor wafer 8 to an adhesive sheet 3 provided on an adsorption stage 5, and further installing a protective sheet 2 on the other side.
  • a laser beam 7 output from a predetermined laser oscillator is condensed and irradiated on the protective sheet 2 by a lens, and a cutting process is performed by moving the laser irradiation position along a predetermined processing line.
  • a known laser application method such as galvano scan or XY stage scan, mask, and imaging processing is used.
  • the processing conditions of the powerful semiconductor wafer are not particularly limited as long as the protective sheet 2 and the semiconductor wafer 8 are cut and the adhesive sheet 3 is not cut.
  • the protection sheet 2 is peeled off from the laser-processed product 10 after the completion of the laser processing.
  • the method of peeling is not limited, but it is important to prevent the laser processing product 10 from being subjected to a stress that would cause permanent deformation during peeling.
  • the pressure-sensitive adhesive layer is cured by irradiation with radiation depending on the type of the pressure-sensitive adhesive, thereby reducing the adhesiveness. By the irradiation, the adhesiveness of the pressure-sensitive adhesive layer is reduced by curing, and the peeling can be facilitated.
  • the means for irradiating the radiation is not particularly limited.
  • the irradiation may be performed by ultraviolet irradiation.
  • the decomposition product generated from the laser beam irradiation part is applied to the surface of the protective sheet covering the workpiece. Due to the adhesion, it is possible to effectively prevent the decomposition product from adhering to the surface of the workpiece.
  • a protective sheet with a high laser energy utilization efficiency with a light transmittance of less than 50% in the laser light absorption region is used, the protective sheet is eroded by the laser beam before the workpiece, and the protective sheet is eroded. After the laser beam irradiating part is eroded, the underlying workpiece is eroded. As a result, the decomposed product of the workpiece also scatters the erosion force of the protection sheet to the outside, so that contamination at the interface between the protection sheet and the workpiece can be suppressed.
  • the protective sheet having an etching rate of the substrate of 0.4 or more since the protective sheet having an etching rate of the substrate of 0.4 or more is used, the protective sheet is exposed to the laser beam before the workpiece. Immediately after the etching, the laser beam irradiated portion of the protective sheet is sufficiently etched, and then the underlying workpiece is etched. As a result, the decomposed product of the workpiece is efficiently scattered to the outside in the etching portion of the protective sheet, so that contamination of the interface between the protective sheet and the workpiece can be suppressed.
  • the protective sheet having an extinction coefficient ratio of 1 or more or a base material having an extinction coefficient of 20 cm- 1 or more at an ultraviolet region wavelength ⁇ .
  • Protection sheet which protects the workpiece (or metal-based material) more.
  • the sheet is more easily etched, and the lower layer of the object to be etched is etched after the laser beam irradiation portion of the protective sheet is sufficiently etched.
  • the decomposed product of the workpiece also efficiently scatters the etching force of the protective sheet to the outside, so that contamination at the interface between the protective sheet and the workpiece can be suppressed.
  • the protective sheet having the density ratio of 1 or more since the protective sheet having the density ratio of 1 or more is used, the protective sheet is more easily etched than the object to be cured, After the laser beam irradiating portion of the protective sheet is sufficiently etched, the lower layer workpiece is etched. Further, in the method for producing a laser-processed product according to the sixth aspect of the present invention, since the protective sheet having the base material having a density of 1.1 gZcm 3 or more is used, the protective sheet is etched more than the metallic material. After the laser beam irradiation part of the protective sheet is sufficiently etched, the underlying metal-based material is etched. Therefore, the decomposition product of the calorie target (metal-based material) is efficiently scattered to the outside of the etching portion of the protective sheet, so that contamination at the interface between the protective sheet and the workpiece (metal-based material) can be suppressed.
  • a protective sheet having a tensile strength ratio of 1 or more (or a protective sheet having a tensile strength of 100MPa or more) is used.
  • the protective sheet is more easily etched than the workpiece (or the metal-based material), and the underlying workpiece is etched after the laser beam irradiation portion of the protective sheet is sufficiently etched.
  • the decomposed product of the material to be processed effectively scatters the etching force of the protective sheet to the outside, so that contamination at the interface between the protective sheet and the material to be processed can be suppressed.
  • the ninth method for producing a laser-processed product of the present invention since the protective sheet having a specific heat ratio of less than 1 is used, the protective sheet is more likely to be etched than the target material, After the laser beam irradiating portion of the protective sheet is sufficiently etched, the lower layer workpiece is etched. As a result, the decomposed product of the material to be scattered efficiently scatters the etching force of the protective sheet to the outside, so that contamination at the interface between the protective sheet and the material to be processed can be suppressed.
  • a protective sheet having a refractive index ratio of 1 or more (or a base material having a refractive index of 1.53 or more at a wavelength of 546 nm) is used.
  • the protective sheet is more easily etched than the workpiece, and the underlying workpiece is etched after the laser beam irradiation portion of the protective sheet is sufficiently etched.
  • the decomposed material of the material to be processed also efficiently scatters the etching partial force of the protective sheet to the outside, so that contamination at the interface between the protective sheet and the material to be processed can be suppressed.
  • the protective sheet having a total binding energy ratio of less than 1 (or a substrate having a base material having a total binding energy A of less than 800 kjZmol) Since the protective sheet is used, the protective sheet is more easily etched than the workpiece, and the lower layer workpiece is etched after the laser beam irradiation portion of the protective sheet is sufficiently etched. Therefore, the decomposed product of the workpiece efficiently scatters the etching force of the protection sheet to the outside, so that the contamination of the interface between the protection sheet and the workpiece can be suppressed.
  • the number average molecular weight of the synthesized (meth) acrylic polymer was measured by the following method.
  • the synthesized (meth) acrylic polymer was dissolved in THF at 0.1%, and the number average molecular weight was measured by GPC (gel permeation chromatography) in terms of polystyrene.
  • GPC gel permeation chromatography
  • the substrate and the protective sheet were cut to an arbitrary size, and the light transmittance was measured at a measurement wavelength of 355 nm using U-3400 (manufactured by Hitachi, Ltd.) as a measuring device.
  • the adhesive layer side force was also measured.
  • Polyethylene naphthalate (weight of the aromatic rings in the repeating unit ratio: 64 wt 0/0) consisting of base material (thickness: 20 m, light transmittance at a wavelength of 355 nm: 0%) on, curable by UV Acrylic
  • the adhesive solution (1) was applied and dried to form an adhesive layer (thickness: 10 m) to obtain a protective sheet.
  • the light transmittance of this protective sheet at a wavelength of 355 nm was 0%.
  • the acrylic pressure-sensitive adhesive solution (1) was prepared by the following method. 100 parts by weight of an acrylic polymer having a number average molecular weight of 800,000, obtained by copolymerizing butyl acrylate Z-ethyl acrylate Z2-hydroxyethyl acrylate Z-acrylic acid at a weight ratio of 60Z40Z4 Z1, and dipenta as a photopolymerizable compound 90 parts by weight of erythritol monohydroxypentaatalylate, and 5 parts by weight of benzyl dimethyl ketal (Irgacure 651) as a photopolymerization initiator are added to 650 parts by weight of toluene, and the mixture is uniformly dissolved and mixed to obtain an acrylic adhesive solution (1). ) was prepared.
  • the above-prepared protective sheet was bonded to one side of a silicon wafer having a thickness of 100 ⁇ m with a roll laminator to produce a silicon wafer with a protective sheet. Then, the silicon wafer with the protective sheet was placed on the XY stage on which the suction plate made of glass epoxy resin was placed, with the protective sheet surface facing upward.
  • the third harmonic (355 nm) of a YAG laser with a wavelength of 355 nm, an average output of 5 W and a repetition frequency of 30 kHz is condensed to a 25 ⁇ m diameter on the surface of a silicon wafer with a protective sheet using an f f lens, and the laser beam is emitted by a galvano scanner.
  • Cutting was performed by scanning at a speed of 20 mmZ seconds. At this time, the protection sheet and silicon wafer are cut I confirmed that. After that, the protective sheet was peeled off, and the laser processing periphery of the silicon wafer protective sheet bonding surface (the laser light incident surface side) was observed. As a result, no decomposed matter (adhered matter) was observed.
  • Example 1 laser processing was performed on the silicon wafer in the same manner as in Example 1 except that a protective sheet was not provided on one side of the silicon wafer. After that, observation of the surface of the silicon wafer, on the side of the laser beam incident surface, revealed that a large amount of the scattered decomposed residue was adhered.
  • Example 2 In the same manner as in Example 1, except that a polybutyl alcohol sheet (thickness: 50 m, light transmittance at a wavelength of 355 nm: 84.4%) was used as a base material of the protective sheet. Laser processing was performed on the silicon wafer. As a result, the protective sheet was not sufficiently cut, the lower silicon wafer was laser-processed, and bubbles containing decomposed residues were generated between the protective sheet and the silicon wafer. When the protective sheet was peeled off and the vicinity of the opening on the side of the laser beam incident surface of the silicon wafer was observed, the decomposed residue of the silicon wafer was adhered.
  • a polybutyl alcohol sheet thickness: 50 m, light transmittance at a wavelength of 355 nm: 84.48%
  • the light transmittance of this protective sheet at a wavelength of 355 nm was 0%.
  • the acrylic pressure-sensitive adhesive solution (2) was prepared by the following method. Butyl phthalate Z-ethyl phthalate Z2-hydroxyethyl acrylate is copolymerized at a weight ratio of 50Z50Z16, and 100 parts by weight of an acrylic polymer having a number average molecular weight of 500,000 is 2-methacryloyloxyshethyl. 20 parts by weight of isocyanate was subjected to an addition reaction to introduce a carbon-carbon double bond into the inner chain of the polymer molecule (the side chain at this time was 13 atoms in length).
  • a circuit was formed on a two-layer substrate having a 18- ⁇ m-thick copper layer formed on a 25- ⁇ m-thick polyimide film by exposure, development, and etching steps to produce a flexible printed circuit board.
  • the produced flexible printed circuit board and the above protective film were bonded together by a roll laminator to produce a flexible printed circuit board with a protective sheet.
  • the flexible printed circuit board with the protective sheet was placed on the XY stage on which the ceramic suction plate made of alumina was placed, with the protective sheet face up.
  • the third harmonic (355 nm) of a YAG laser with a wavelength of 355 nm, an average output of 5 W, and a repetition frequency of 30 kHz is condensed to a 25 m diameter on the surface of a flexible printed circuit board with a protective sheet using an f0 lens, and the laser light is emitted by a galvano scanner.
  • the protective sheet and the flexible printed circuit board were cut.
  • the protective sheet was peeled off, and when observing the laser processing peripheral portion of the protective sheet bonding surface (the laser light incident surface side) of the flexible printed circuit board, no decomposed matter (adhered matter) was observed.
  • Example 2 a polyethylene terephthalate film (weight ratio of aromatic ring in the repeating unit: 41% by weight, thickness: 50 / ⁇ , light transmittance at a wavelength of 355 nm: 44.9%) was used as a base material of the protective sheet.
  • Laser processing was performed on the flexible printed circuit board in the same manner as in Example 2 except that) was used. As a result, it was confirmed that the protective sheet and the flexible printed circuit board were cut. After that, the protective sheet was peeled off, and the laser processing periphery of the protective sheet bonding surface (laser beam incident surface side) of the flexible printed circuit board was observed. As a result, no decomposed matter (adhered matter) was observed.
  • Example 2 a polycarbonate film (weight ratio of aromatic rings in the repeating unit: 61% by weight, thickness: 20 / ⁇ , light transmittance at a wavelength of 355 nm: 0%) was used as a base material of the protective sheet.
  • a laser beam was applied to the flexible printed circuit board in the same manner as in Example 2 except that it was used. As a result, it was confirmed that the protective sheet and the flexible printed circuit board were cut. Then, peel off the protective sheet and paste the protective sheet on the flexible printed circuit board. Observation of the laser processing periphery of the bonding surface (laser light incident surface side) revealed that no decomposed matter (adhered matter) was observed.
  • Example 2 the base material prepared above as a base material for the protective sheet (weight ratio of aromatic ring in repeating unit: 2.4% by weight, thickness: 10 / ⁇ , light transmittance at wavelength of 355 nm) : 5%), except that the flexible printed circuit board was subjected to laser processing in the same manner as in Example 2. As a result, it was confirmed that the protective sheet and the flexible printed circuit board were cut. After that, the protective sheet was peeled off, and the laser processing peripheral part of the surface of the flexible printed circuit board where the protective sheet was bonded (the laser light incident surface side) was observed. As a result, no decomposed product (attached material) was observed.
  • the measurement was performed in the same manner as in the first invention.
  • the third harmonic (wavelength: 355 nm) of a YAG laser (maximum output: 5 W, repetition frequency: 3 OkHz) beam-shaped into a top hat shape is condensed by an f ⁇ lens and applied to the substrate surface under the conditions of 50 pulses Irradiated. After the irradiation, the depth m) of the groove formed in the substrate was measured with an optical microscope.
  • the etching rate is calculated by the following equation.
  • Etching rate Groove depth ( ⁇ m) Z pulse number (pulse)
  • the energy fluence of the YAG laser was 5 (j / cm 2 ).
  • An acrylic pressure-sensitive adhesive solution (1) that can be cured by ultraviolet light is applied to a base material (thickness: 20 / zm, etching rate: 0.48) that also has polystyrene strength, and dried to form a pressure-sensitive adhesive layer (10 m thick). form To obtain a protective sheet.
  • the acrylic pressure-sensitive adhesive solution (1) was prepared by the following method. 100 parts by weight of an acrylic polymer having a number average molecular weight of 800,000, obtained by copolymerizing butyl acrylate Z-ethyl acrylate Z2-hydroxyethyl acrylate Z-acrylic acid at a weight ratio of 60Z40Z4 Z1, and dipenta as a photopolymerizable compound 90 parts by weight of erythritol monohydroxypentaatalylate, and 5 parts by weight of benzyl dimethyl ketal (Irgacure 651) as a photopolymerization initiator are added to 650 parts by weight of toluene, and the mixture is uniformly dissolved and mixed to obtain an acrylic adhesive solution (1). ) was prepared.
  • the protective sheet prepared above was bonded to one side of a silicon wafer having a thickness of 100 ⁇ m using a roll laminator to prepare a silicon wafer with a protective sheet. Then, the silicon wafer with the protective sheet was placed on the XY stage on which the suction plate made of glass epoxy resin was placed, with the protective sheet surface facing upward.
  • the third harmonic (355 nm) of a YAG laser with a wavelength of 355 nm, an average output of 5 W and a repetition frequency of 30 kHz is condensed to a 25 ⁇ m diameter on the surface of a silicon wafer with a protective sheet using an f f lens, and the laser beam is emitted by a galvano scanner.
  • Cutting was performed by scanning at a speed of 20 mmZ seconds. At this time, it was confirmed that the protective sheet and the silicon wafer were cut. After that, the protective sheet was peeled off, and the laser processing periphery of the silicon wafer protective sheet bonding surface (the laser light incident surface side) was observed. As a result, no decomposed matter (adhered matter) was observed.
  • Example 1 laser processing was performed on the silicon wafer in the same manner as in Example 1 except that a protective sheet was not provided on one side of the silicon wafer. After that, when observing the periphery of the silicon wafer, on the laser light incident surface side, a large amount of the scattered decomposed residue was adhered.
  • Example 1 a silicon wafer was subjected to laser processing in the same manner as in Example 1 except that a polyethylene sheet (thickness: 50 m, etching rate: 0) was used as a base material of the protective sheet. As a result, the protective sheet was not cut, the underlying silicon wafer was laser-processed, and bubbles containing decomposed residues were generated between the protective sheet and the silicon wafer. Was raw. When the protective sheet was peeled off and the periphery of the opening on the side of the laser beam incident surface of the silicon wafer was observed, a large amount of decomposed residue of the silicon wafer adhered.
  • a polyethylene sheet thickness: 50 m, etching rate: 0
  • a laser beam was applied to a silicon wafer in the same manner as in Example 1 except that a polyurethane sheet (thickness: 50 m, etching rate: 0.26) was used as the base material of the protective sheet.
  • the protective sheet was not cut, and the lower silicon wafer was laser-processed, and bubbles containing decomposed residue were generated between the protective sheet and the silicon wafer.
  • the protective sheet was peeled off and the periphery of the opening on the side of the laser beam incident surface of the silicon wafer was observed, a large amount of decomposed residue of the silicon wafer was adhered.
  • a UV-curable acrylic adhesive solution (2) is applied to a base material (thickness: 20 m, etching rate: 0.52) consisting of a silicon rubber sheet, and dried to form an adhesive layer (thickness: 10 m) was formed to obtain a protective sheet.
  • the acrylic pressure-sensitive adhesive solution (2) was prepared by the following method. Butyl phthalate Z-ethyl phthalate Z2-hydroxyethyl acrylate is copolymerized at a weight ratio of 50Z50Z16, and 100 parts by weight of an acrylic polymer having a number average molecular weight of 500,000 is 2-methacryloyloxyshethyl. 20 parts by weight of isocyanate was subjected to an addition reaction to introduce a carbon-carbon double bond into the inner chain of the polymer molecule (the side chain at this time was 13 atoms in length).
  • a circuit was formed on a two-layer substrate in which a copper layer having a thickness of 18 Pm was formed on a polyimide film having a thickness of 25 Pm by exposure, development, and etching steps, thereby producing a flexible printed board.
  • the produced flexible printed circuit board and the above protective film were bonded together by a roll laminator to produce a flexible printed circuit board with a protective sheet.
  • the flexible printed circuit board with the protective sheet was placed on the XY stage on which the ceramic suction plate made of alumina was placed, with the protective sheet face up.
  • F0 lens with the third harmonic (355nm) of YAG laser with wavelength 355nm, average output 5W, repetition frequency 30kHz was focused on the surface of a flexible printed circuit board with a protective sheet to a diameter of 25 m, and the laser beam was scanned at a speed of 20 mmZ seconds by a galvano scanner to perform cutting.
  • the protective sheet and the flexible printed circuit board were cut.
  • the protective sheet was peeled off, and when observing the laser processing peripheral portion of the protective sheet bonding surface (the laser light incident surface side) of the flexible printed circuit board, no decomposed matter (adhered matter) was observed.
  • Example 2 the polypropylene sheet (etching rate) was used as the base material of the protective sheet.
  • Example 2 Laser processing was performed on the silicon wafer in the same manner as in Example 2 except that 0.45) was used. After that, the protective sheet was peeled off, and when observing the periphery of the laser processing on the surface of the flexible printed circuit board where the protective sheet was bonded (the laser light incident surface side), no decomposed matter (adhered matter) was observed.
  • the measurement was performed in the same manner as in the first invention.
  • a polystyrene sheet (thickness: 100 / zm, extinction coefficient: 48 cm—) was used as a substrate to be coated.
  • Acrylic adhesive that was curable by ultraviolet light on a substrate that also had a polyurethane force (thickness: 20 / zm, extinction coefficient: 125 cm—)
  • the adhesive solution (1) was applied and dried to form an adhesive layer (thickness: 10 m) to prepare a protective sheet, and the extinction coefficient ratio was 2.6.
  • the acrylic pressure-sensitive adhesive solution (1) was prepared by the following method. Butyl phthalate Z-ethyl acrylate, Z2-hydroxyethyl acrylate, Acrylic acid copolymerized at a weight ratio of 60Z40 Z4Z1, 100 parts by weight of an acrylic polymer with a number average molecular weight of 800,000, and dipentaerythritol as a photopolymerizable compound 90 parts by weight of monohydroxypentaatalylate, 5 parts by weight of benzyl dimethyl ketal (Irgacure 651) as a photopolymerization initiator, and 2 parts by weight of polyisocyanate conjugate (Nippon Polyurethane Co., Ltd., Coronate L) are mixed with toluene. The resulting mixture was added to 650 parts by weight and uniformly dissolved and mixed to prepare an acrylic pressure-sensitive adhesive solution (1).
  • One side of the polystyrene sheet was bonded to the above-prepared protective sheet with a roll laminator to prepare a polystyrene sheet with a protective sheet.
  • a polystyrene sheet with a protective sheet was placed on an XY stage on which an adsorption plate made of glass epoxy resin was placed.
  • the third harmonic (355 nm) of a YAG laser with a wavelength of 355 nm, an average output of 5 W, and a repetition frequency of 30 kHz is condensed to a 25 m diameter on the surface of a polystyrene sheet with a protective sheet using an f f lens, and is then passed through a galvanometer scanner.
  • the laser beam was scanned at a speed of 20 mmZ seconds for cutting. At this time, it was confirmed that the protection sheet and the polystyrene sheet were cut.
  • the protective sheet was irradiated with ultraviolet rays to cure the pressure-sensitive adhesive layer. After that, when the protective sheet was peeled off and the laser processing periphery of the protective sheet attachment surface (laser light incident surface side) of the polystyrene sheet was observed, no decomposed matter (adhered matter) was observed.
  • Example 1 the polystyrene sheet was subjected to laser processing in the same manner as in Example 1, except that a protective sheet was not provided on one side of the polystyrene sheet. Then the police Observation of the processing periphery of the laser beam incident surface side of the styrene sheet revealed that a large amount of scattered decomposed residue was adhered.
  • a silicon wafer (thickness 100 / zm) was used as a material to be processed.
  • a silicon wafer with a protective sheet was produced in the same manner as in Example 1, except that a silicon rubber sheet (thickness 25 / ⁇ , extinction coefficient 20.7 cm—) was used as a base material of the protective sheet.
  • the above-mentioned acrylic pressure-sensitive adhesive solution (1) was applied onto a substrate (thickness: 100 m) which also has a polyethylene force, and dried to form a pressure-sensitive adhesive layer (thickness: 10 m).
  • the adhesive sheet was adhered to the back side of the silicon wafer with the protective sheet to produce a silicon wafer with a protective adhesive sheet.
  • the protective sheet was irradiated with ultraviolet rays to cure the pressure-sensitive adhesive layer.
  • the protective sheet was peeled off and the laser processing periphery of the silicon wafer protective sheet bonding surface (laser light incident surface side) was observed. As a result, no decomposed matter (adhered matter) was observed.
  • a silicon wafer with a protective 'adhesive sheet was prepared in the same manner as in Example 2 except that a polyethylene terephthalate sheet (thickness 25 m, extinction coefficient 8 Ocm-) was used as a base material of the protective sheet.
  • a polyethylene terephthalate sheet thickness 25 m, extinction coefficient 8 Ocm-
  • the protective sheet and the silicon wafer were cut, and the adhesive sheet was cut.
  • the protective sheet was irradiated with ultraviolet rays to cure the pressure-sensitive adhesive layer.
  • the protective sheet was peeled off, and the laser processing periphery of the silicon wafer protective sheet bonding surface (laser light incident surface side) was observed. As a result, no decomposed matter (adhered matter) was observed.
  • a silicon wafer with a protective 'adhesive sheet was produced in the same manner as in Example 2 except that an ethylene-butyl acetate copolymer sheet (thickness: 100 m, extinction coefficient: 19 cm) was used as a base material of the protective sheet.
  • the use of a protective sheet having an extinction coefficient specific force ⁇ or more can effectively suppress the contamination of the surface of a workpiece by a decomposition product.
  • a protective sheet having a base material having an absorption coefficient of 20 cm- 1 or more contamination of the metal-based material surface with decomposed products can be effectively suppressed.
  • the subsequent decomposition product removal process can be greatly simplified, not only can the environmental load be reduced, but also the productivity can be improved.
  • the measurement was performed in the same manner as in the first invention.
  • the density of the substrate and workpiece used for the protective sheet was measured.
  • a polycarbonate sheet (thickness 100 / zm, density 1.20 g / cm 3 ) was used as an object to be cured.
  • An acrylic pressure-sensitive adhesive solution (1) curable by ultraviolet light is applied on a substrate (thickness 20 / zm, density 1.36 gZcm 3 ) made of polyethylene naphthalate so that the density ratio becomes 1 or more.
  • the cloth was dried to form an adhesive layer (thickness: 10 m) to prepare a protective sheet.
  • the density ratio was 1.13.
  • the acrylic pressure-sensitive adhesive solution (1) was prepared by the following method. Butyl phthalate Z-ethyl acrylate, Z2-hydroxyethyl acrylate, Acrylic acid copolymerized at a weight ratio of 65Z35 Z4Z1, 100 parts by weight of an acrylic polymer with a number average molecular weight of 700,000, and dipentaerythritol as a photopolymerizable compound 90 parts by weight of monohydroxypentaatalylate, 5 parts by weight of benzyl dimethyl ketal (Irgacure 651) as a photopolymerization initiator, and 2 parts by weight of polyisocyanate conjugate (Nippon Polyurethane Co., Ltd., Coronate L) are mixed with toluene. The resulting mixture was added to 650 parts by weight and uniformly dissolved and mixed to prepare an acrylic pressure-sensitive adhesive solution (1).
  • the above-prepared protective sheet was bonded to one surface of the polycarbonate sheet using a roll laminator to produce a polycarbonate sheet with a protective sheet.
  • a polycarbonate sheet with a protective sheet was placed on an XY stage on which an adsorption plate made of glass epoxy resin was placed, with the protective sheet surface facing up.
  • the third harmonic (355 nm) of a YAG laser with a wavelength of 355 nm, an average output of 5 W and a repetition frequency of 30 kHz is condensed to a 25 m diameter on the surface of a polycarbonate sheet with a protective sheet by an f f lens, and the laser is irradiated by a galvano scanner. The light was scanned and cut at a speed of 20 mmZ seconds. At this time, it was confirmed that the protective sheet and the polycarbonate sheet were cut.
  • the protective sheet was irradiated with ultraviolet rays to cure the pressure-sensitive adhesive layer. After that, the protective sheet was peeled off, and the laser processing peripheral portion of the polycarbonate sheet bonded to the protective sheet (the laser beam incident surface side) was observed. As a result, no decomposed matter (adhered matter) was observed.
  • Example 1 a polycarbonate sheet was subjected to laser processing in the same manner as in Example 1, except that a protective sheet was not provided on one side of the polycarbonate sheet. After that, when the processing peripheral portion of the polycarbonate sheet on the laser beam incident surface side was observed, a large amount of the scattered decomposed residue was adhered.
  • a polycarbonate sheet was prepared in the same manner as in Example 1 except that a polynorbornene-based sheet (thickness: 100 ⁇ m, density: 1.OOgZcm 3 ) was used as the base material of the protective sheet. Laser processing. The density ratio was 0.83.
  • the protective sheet was not cut, the lower polycarbonate sheet was laser-processed, and bubbles containing decomposed residues were generated between the protective sheet and the polycarbonate sheet. Then, the protective sheet was irradiated with ultraviolet rays to cure the pressure-sensitive adhesive layer. Thereafter, the protective sheet was peeled off, and when observing the vicinity of the opening on the side of the laser beam incident surface of the polycarbonate sheet, a large amount of the decomposition product residue of the polycarbonate adhered.
  • a polystyrene sheet (thickness: 100 / zm, density: 1.04 gZcm 3 ) was used as the target.
  • a polystyrene sheet with a protective sheet was produced in the same manner as in Example 1, except that a polyimide sheet (thickness: 20 m, density: 1.5 gZcm 3 ) was used as a base material for the protective sheet. The density ratio was 1.44.
  • the acrylic pressure-sensitive adhesive solution (1) is applied on a base material (thickness: 75 m) made of polybutyl alcohol, and dried to form a pressure-sensitive adhesive layer (thickness: 10 m) to produce a pressure-sensitive adhesive sheet. did.
  • the pressure-sensitive adhesive sheet was adhered to the back side of the polystyrene sheet with the protective sheet to prepare a protective polystyrene sheet with a pressure-sensitive adhesive sheet. Thereafter, when the sheet was cut in the same manner as in Example 1, the protective sheet and the polystyrene sheet were cut, but the pressure-sensitive adhesive sheet was not cut. Then, the protective sheet was irradiated with ultraviolet rays to cure the pressure-sensitive adhesive layer. Thereafter, the protective sheet was peeled off, and the laser processing peripheral portion of the surface of the polystyrene sheet to which the protective sheet was bonded (the laser light incident surface side) was observed. As a result, no decomposed matter (adhered matter) was observed.
  • a silicon wafer with a protective 'adhesive sheet was produced in the same manner as in Example 2 except that a silicon wafer (100 m thick) was used instead of the polystyrene sheet. After that, when cutting was performed in the same manner as in Example 1, the protective sheet and the silicon wafer were cut, but the pressure-sensitive adhesive sheet was not cut. Then, the protective sheet was irradiated with ultraviolet rays to cure the pressure-sensitive adhesive layer. After that, the protective sheet was peeled off, and the laser processing peripheral portion of the silicon wafer protective sheet bonding surface (laser light incident surface side) was observed. As a result, no decomposed matter (adhered matter) was observed.
  • Comparative Example 3 A silicon wafer with a protective 'adhesive sheet was prepared in the same manner as in Example 3, except that a polynorbornene-based sheet (thickness: 100 ⁇ m, density: 1.OOg / cm 3 ) was used as a base material of the protective sheet.
  • the use of a protective sheet having a density ratio of 1 or more or a protective sheet having a base material having a density of 1. lgZcm 3 or more allows decomposition. It is possible to effectively suppress contamination of the surface of the workpiece by the workpiece. Since the subsequent decomposition product removal process can be greatly simplified, not only can the environmental load be reduced, but also productivity can be improved.
  • the measurement was performed in the same manner as in the first invention.
  • the tensile strength of the used protective film and the workpiece was measured using Tensilon (Shimadzu Autograph AGS50-D). The measurement conditions are as follows.
  • a polystyrene sheet (thickness: 100 m, tensile strength: 44 MPa) was used as an object to be cured. Apply a UV-curable acrylic adhesive solution (1) onto a polyethylene naphthalate substrate (50 m thick) so that the tensile strength ratio is 1 or more, and then dry the adhesive layer. (Thickness: 10 ⁇ m) to form a protective sheet (tensile strength: 282 MPa). The tensile strength ratio was 6.4. [0220] The acrylic pressure-sensitive adhesive solution (1) was prepared by the following method.
  • the above-prepared protective sheet was bonded to one surface of the polystyrene sheet using a roll laminator to prepare a polystyrene sheet with a protective sheet.
  • a polystyrene sheet with a protective sheet was placed on an XY stage on which an adsorption plate made of glass epoxy resin was placed.
  • the third harmonic (355 nm) of a YAG laser with a wavelength of 355 nm, an average output of 5 W, and a repetition frequency of 30 kHz is condensed to a 25 m diameter on the surface of a polystyrene sheet with a protective sheet using an f f lens, and is then passed through a galvanometer scanner.
  • the laser beam was scanned at a speed of 20 mmZ seconds for cutting. At this time, it was confirmed that the protection sheet and the polystyrene sheet were cut.
  • the protective sheet was irradiated with ultraviolet rays to cure the pressure-sensitive adhesive layer. After that, when the protective sheet was peeled off and the laser processing periphery of the protective sheet attachment surface (laser light incident surface side) of the polystyrene sheet was observed, no decomposed matter (adhered matter) was observed.
  • Example 1 the polystyrene sheet was subjected to laser processing in the same manner as in Example 1, except that a protective sheet was not provided on one side of the polystyrene sheet. After that, when the processing periphery of the polystyrene sheet on the side of the laser beam incident surface was observed, a large amount of the scattered decomposition product residue was adhered.
  • Example 1 a polystyrene sheet was subjected to laser processing in the same manner as in Example 1 except that an ethylene-butyl acetate copolymer sheet (thickness 100 / zm) was used as a base material of the protective sheet.
  • the protective sheet had a tensile strength of 17 MPa and a tensile strength ratio of 0.4.
  • the protective sheet was not cut, and the lower polystyrene sheet was It was processed one by one, and bubbles containing decomposed product residues were generated between the protective sheet and the polystyrene sheet.
  • the protective sheet was irradiated with ultraviolet rays to cure the pressure-sensitive adhesive layer. Thereafter, the protective sheet was peeled off, and when observing the periphery of the opening on the laser light incident surface side of the polystyrene sheet, a large amount of the decomposed product residue of polystyrene was adhered.
  • a silicon wafer (100 m thick) was used as the material to be processed.
  • a silicon wafer with a protective sheet was produced in the same manner as in Example 1 except that a polyimide sheet (25 m thick) was used as the base material of the protective sheet.
  • the tensile strength of the protective film was 340 MPa.
  • the acrylic pressure-sensitive adhesive solution (1) was applied on a substrate (thickness: 100 m) which also has polyethylene strength, and dried to form a pressure-sensitive adhesive layer (thickness: 10 m).
  • the adhesive sheet was adhered to the back side of the silicon wafer with the protective sheet to produce a silicon wafer with a protective adhesive sheet. Thereafter, when cutting was performed in the same manner as in Example 1, the protective sheet and the silicon wafer had been cut, but the pressure-sensitive adhesive sheet had not been cut. Then, the protective sheet was irradiated with ultraviolet rays to cure the pressure-sensitive adhesive layer. After that, when the protective sheet was peeled off and the laser processing peripheral part of the silicon wafer protective sheet bonding surface (laser light incident surface side) was observed, no decomposed matter (adhered matter) was observed.
  • a silicon wafer with a protective 'adhesive sheet was produced in the same manner as in Example 2, except that a polyethylene terephthalate sheet (25 m thick) was used as a base material of the protective sheet.
  • the tensile strength of the protective film was 140 MPa.
  • the protective sheet and the silicon wafer were cut, but the adhesive sheet was not cut.
  • the protective sheet was irradiated with ultraviolet light to cure the pressure-sensitive adhesive layer. Thereafter, when the protective sheet was peeled off and the laser processing peripheral portion of the silicon wafer protective sheet bonding surface (the laser-light-incident surface side) was observed, no decomposed matter (adhered matter) was observed.
  • Ethylene butyl acetate copolymer sheet (thickness: 100 ⁇ m) used as a base material for the protective sheet
  • a silicon wafer with a protective 'adhesive sheet was produced in the same manner as in Example 2 except for the above.
  • the tensile strength of the protective sheet was 17 MPa.
  • the protective sheet was not cut, and the lower silicon wafer was laser-processed. Bubbles containing residues were generated.
  • the protective sheet was irradiated with ultraviolet rays to cure the pressure-sensitive adhesive layer. After that, the protective sheet was peeled off, and the vicinity of the opening on the side of the laser beam incident surface of the silicon wafer was observed.
  • the protective sheet having a tensile strength specific force of not less than ⁇ .
  • the measurement was performed in the same manner as in the first invention.
  • the specific heat of the substrate and the workpiece used for the protective sheet was measured. The measurement was performed at a heating rate of 10 ° CZmin, and three DSC curves were obtained for an empty container, a sample, and a reference (water). Then, the specific heat was determined by the following equation.
  • Example 1 A polyimide sheet (thickness: 100 / zm, specific heat: 1. ljZ (g'K)) was used as the object to be cured.
  • An acrylic pressure-sensitive adhesive solution (ultraviolet curable) was applied on a polyethylene naphthalate substrate (thickness 50 / ⁇ , specific heat 0.75j / (g'K)) so that the specific heat ratio was less than 1. 1) was applied and dried to form an adhesive layer (thickness: 10 m) to prepare a protective sheet.
  • the specific heat ratio is 0.68.
  • the acrylic pressure-sensitive adhesive solution (1) was prepared by the following method. Butyl acrylate Z-ethyl acrylate Z2-Hydroxyethyl acrylate Z-acrylic acid copolymerized at a weight ratio of 65Z35 Z4Z1 Acrylic polymer with a number average molecular weight of 700,000 100 parts by weight, dipentaerythritol as a photopolymerizable compound 90 parts by weight of monohydroxypentaatalylate, 5 parts by weight of benzyl dimethyl ketal (Irgacure 651) as a photopolymerization initiator, and 2 parts by weight of a polyisocyanate compound (Coronate L, manufactured by Nippon Polyurethane Co.) To 650 parts by weight, and uniformly dissolved and mixed to prepare an acrylic pressure-sensitive adhesive solution (1).
  • the above-prepared protective sheet was adhered to one surface of the polyimide sheet using a roll laminator to produce a polyimide sheet with a protective sheet.
  • a polyimide sheet with a protective sheet was placed on an XY stage on which an adsorption plate made of glass epoxy resin was placed, with the protective sheet face up.
  • the third harmonic (355 nm) of a YAG laser with a wavelength of 355 nm, an average output of 5 W, and a repetition frequency of 30 kHz is condensed to a 25-m diameter on the surface of the polyimide sheet with a protective sheet by an f ⁇ lens, and lasered by a galvano scanner.
  • One light was scanned and cut at a speed of 20 mmZ seconds. At this time, it was confirmed that the protective sheet and the polyimide sheet were cut.
  • the protective sheet was irradiated with ultraviolet rays to cure the pressure-sensitive adhesive layer. Thereafter, the protective sheet was peeled off, and the laser processing peripheral portion of the surface of the polyimide sheet to which the protective sheet was bonded (the laser light incident surface side) was observed.
  • Example 1 laser processing was performed on the polyimide sheet in the same manner as in Example 1 except that a protective sheet was not provided on one side of the polyimide sheet. After that, when the processing periphery of the polyimide sheet on the laser beam incident surface side was observed, a large amount of the scattered decomposed residue was adhered. [0236] Comparative Example 2
  • Example 1 was repeated in the same manner as in Example 1 except that an ethylene / vinyl acetate copolymer sheet (thickness 100 / ⁇ , specific heat 2.2j / (g'K)) was used as the base material of the protective sheet. Laser processing was applied to the polyimide sheet. The specific heat ratio was 2.0.
  • the protective sheet was not cut, the lower polyimide sheet was laser-processed, and bubbles containing decomposed residues were generated between the protective sheet and the polyimide sheet. Then, the protective sheet was irradiated with ultraviolet rays to cure the pressure-sensitive adhesive layer. Thereafter, the protective sheet was peeled off, and when observing the vicinity of the opening on the laser beam incident surface side of the polyimide sheet, a large amount of polyimide decomposed residue was adhered.
  • a silicon wafer with a protective sheet was produced in the same manner as in Example 1 except that a silicon wafer (thickness: 100 m, specific heat: 0.77j / (g'K)) was used as the object to be cured.
  • the specific heat ratio was 0.97.
  • the acrylic pressure-sensitive adhesive solution (1) was applied on a polyethylene-based substrate (thickness: 100 m) and dried to form a pressure-sensitive adhesive layer (thickness: 10 m).
  • the adhesive sheet was adhered to the back side of the silicon wafer with the protective sheet to produce a silicon wafer with a protective adhesive sheet. Thereafter, when cutting was performed in the same manner as in Example 1, the protective sheet and the silicon wafer had been cut, but the pressure-sensitive adhesive sheet had not been cut. Then, the protective sheet was irradiated with ultraviolet rays to cure the pressure-sensitive adhesive layer. After that, when the protective sheet was peeled off and the laser processing peripheral part of the silicon wafer protective sheet bonding surface (laser light incident surface side) was observed, no decomposed matter (adhered matter) was observed.
  • a silicon wafer with an adhesive was prepared. The specific heat ratio was 0.62.
  • the protective sheet and the silicon wafer were cut, and the adhesive sheet was not cut.
  • the protective sheet was irradiated with ultraviolet rays to cure the pressure-sensitive adhesive layer. After that, peel off the protective sheet and attach the protective sheet to the silicon wafer When observing the periphery of the laser processing on the surface (on the side of the laser beam incident surface), no decomposed product (adhered material) was observed.
  • the measurement was performed in the same manner as in the first invention.
  • the refractive indices of the used base material and the organic workpiece were measured using an Abbe refractometer (DR-M4, manufactured by ATAGO).
  • the measurement wavelength is 546 nm.
  • a polypropylene sheet (thickness: 60 m, refractive index: 1.51) was used as an object to be cured.
  • a UV-curable acrylic pressure-sensitive adhesive solution (1) is applied to a substrate (20 m thick, refractive index: 1.59) that also has polystyrene strength, and dried to form a pressure-sensitive adhesive layer (10 m thick). Was formed to form a protective sheet.
  • the refractive index ratio was 1.05.
  • the acrylic pressure-sensitive adhesive solution (1) was prepared by the following method. Butyl phthalate Z-ethyl acrylate, Z2-hydroxyethyl acrylate, Acrylic acid copolymerized at a weight ratio of 60Z40 Z4Z1, 100 parts by weight of an acrylic polymer with a number average molecular weight of 800,000, and dipentaerythritol as a photopolymerizable compound 90 parts by weight of monohydroxypentaatalylate, 5 parts by weight of benzyl dimethyl ketal (Irgacure 651) as a photopolymerization initiator, and 2 parts by weight of polyisocyanate conjugate (Nippon Polyurethane Co., Ltd., Coronate L) are mixed with toluene. The resulting mixture was added to 650 parts by weight and uniformly dissolved and mixed to prepare an acrylic pressure-sensitive adhesive solution (1).
  • the protective sheet prepared above was bonded to one surface of the polypropylene sheet using a roll laminator to prepare a polypropylene sheet with a protective sheet.
  • a polypropylene sheet with a protective sheet was placed on an XY stage on which an adsorption plate made of glass epoxy resin was placed.
  • the third harmonic (355 nm) of a YAG laser with a repetition frequency of 30 kHz is focused on the surface of a polypropylene sheet with a protective sheet to a diameter of 25 m using a f ⁇ lens, and the laser beam is scanned at a speed of 20 mmZ seconds with a galvano scanner. Cut. At this time, it was confirmed that the protection sheet and the polypropylene sheet were cut.
  • the protective sheet was irradiated with ultraviolet rays to cure the pressure-sensitive adhesive layer.
  • the protective sheet was peeled off, and the laser processing periphery of the protective sheet bonding surface (laser light incident surface side) of the polypropylene sheet was observed. As a result, no decomposed matter (adhered matter) was observed.
  • Example 1 laser processing was performed on the polypropylene sheet in the same manner as in Example 1 except that a protective sheet was not provided on one side of the polypropylene sheet. After that, when the processing periphery of the laser beam incident surface side of the polypropylene sheet was observed, a large amount of the scattered decomposed residue was adhered.
  • a polypropylene sheet was laser-processed in the same manner as in Example 1 except that a polymethylpentene sheet (thickness: 100 m, refractive index: 1.46) was used as the base material of the protective sheet in Example 1. .
  • the refractive index ratio was 0.97.
  • the protective sheet was not cut, the lower layer polypropylene sheet was laser-processed, and bubbles containing decomposed residues were generated between the protective sheet and the polypropylene sheet.
  • the protective sheet was irradiated with ultraviolet rays to cure the pressure-sensitive adhesive layer. Thereafter, the protective sheet was peeled off, and when observing the vicinity of the opening of the polypropylene sheet on the side of the laser beam incident surface, a large amount of decomposed product residues of polypropylene adhered.
  • a polycarbonate sheet (thickness: 100 m, refractive index: 1.59) was used as an object to be cured.
  • a polycarbonate sheet with a protective sheet was produced in the same manner as in Example 1, except that a polyethylene terephthalate sheet (thickness: 20 / zm, refractive index: 1.66) was used as a base material of the protective sheet.
  • the refractive index ratio was 1.04.
  • the acrylic pressure-sensitive adhesive solution (1) was applied on a substrate (thickness: 100 m) which also has a polyethylene force, and dried to form a pressure-sensitive adhesive layer (thickness: 10 m). Manufactured. The viscosity The adhesive sheet was attached to the back side of the polycarbonate sheet with the protective sheet to prepare a polycarbonate sheet with a protective adhesive sheet. After that, when the sheet was cut in the same manner as in Example 1, the protective sheet and the polycarbonate sheet were cut, and the adhesive sheet was not cut. Then, the protective sheet was irradiated with ultraviolet rays to cure the pressure-sensitive adhesive layer.
  • the protective sheet was peeled off and the laser processing peripheral portion of the surface of the polycarbonate sheet to which the protective sheet was bonded (the laser light incident surface side) was observed. As a result, no decomposed product (adhered material) was observed.
  • a silicon wafer with a protective 'adhesive sheet was produced in the same manner as in Example 2, except that a silicon wafer (thickness: 100 ⁇ m) was used instead of the polycarbonate sheet. Thereafter, when cutting was performed in the same manner as in Example 1, the protective sheet and the silicon wafer were cut, but the pressure-sensitive adhesive sheet was not cut. Then, the protective sheet was irradiated with ultraviolet light to cure the pressure-sensitive adhesive layer. After that, when the protective sheet was peeled off and the laser processing periphery of the protective sheet bonding surface (laser light incident surface side) of the silicon wafer was observed, no decomposed matter (adhered matter) was observed.
  • a silicon wafer with a protective 'adhesive sheet was prepared in the same manner as in Example 3, except that a polypropylene sheet (thickness: 60 m, refractive index: 1.51) was used as a base material of the protective sheet. After that, when cutting was performed in the same manner as in Example 1, the protective sheet was not cut, and the lower silicon wafer was laser-processed, so that decomposed residue remained between the protective sheet and the silicon wafer. Containing air bubbles were generated. Then, the protective sheet was irradiated with ultraviolet rays to cure the pressure-sensitive adhesive layer. Thereafter, the protective sheet was peeled off, and when observing the vicinity of the opening on the side of the laser beam incident surface of the silicon wafer, a large amount of decomposed product residue was attached.
  • a polypropylene sheet thickness: 60 m, refractive index: 1.51
  • the measurement was performed in the same manner as in the first invention.
  • a polycarbonate sheet (100 ⁇ m thick, total binding energy B: 720 kJ / ol) was used as the material to be cured.
  • Acrylic pressure-sensitive adhesive solution curable by ultraviolet light on a polyethylene naphthalate substrate (thickness 50 / ⁇ ⁇ , total binding energy A: 692kjZmol) such that the total binding energy ratio is less than 1. (1) was applied and dried to form an adhesive layer (thickness: 10 m) to prepare a protective sheet. The total binding energy ratio was 0.96.
  • the acrylic pressure-sensitive adhesive solution (1) was prepared by the following method. Butyl phthalate Z-ethyl acrylate, Z2-hydroxyethyl acrylate, Acrylic acid copolymerized at a weight ratio of 65Z35 Z4Z1, 100 parts by weight of an acrylic polymer with a number average molecular weight of 700,000, and dipentaerythritol as a photopolymerizable compound 90 parts by weight of monohydroxypentaatalylate, 5 parts by weight of benzyl dimethyl ketal (Irgacure 651) as a photopolymerization initiator, and 2 parts by weight of polyisocyanate conjugate (Nippon Polyurethane Co., Ltd., Coronate L) are mixed with toluene. The resulting mixture was added to 650 parts by weight and uniformly dissolved and mixed to prepare an acrylic pressure-sensitive adhesive solution (1).
  • the above-prepared protective sheet was adhered to one surface of the polycarbonate sheet using a roll laminator to produce a polycarbonate sheet with a protective sheet.
  • the polycarbonate sheet with the protective sheet was placed on the XY stage on which the adsorption plate made of glass epoxy resin was placed, with the protective sheet face up.
  • the third harmonic (355 nm) of a YAG laser with a wavelength of 355 nm, an average output of 5 W and a repetition frequency of 30 kHz is condensed to a 25 m diameter on the surface of a polycarbonate sheet with a protective sheet by an f f lens, and the laser is irradiated by a galvano scanner. The light was scanned and cut at a speed of 20 mmZ seconds. At this time, it was confirmed that the protective sheet and the polycarbonate sheet were cut.
  • Example 1 a polycarbonate sheet was subjected to laser processing in the same manner as in Example 1, except that a protective sheet was not provided on one side of the polycarbonate sheet. After that, when the processing peripheral portion of the polycarbonate sheet on the laser beam incident surface side was observed, a large amount of the scattered decomposed residue was adhered.
  • a silicon wafer with a protective sheet was produced in the same manner as in Example 1 except that a silicon wafer (thickness: 100 m) was used as a material to be processed.
  • the above-mentioned acrylic pressure-sensitive adhesive solution (1) was applied on a substrate (thickness: 100 m) which also has a polyethylene strength, and dried to form a pressure-sensitive adhesive layer (thickness: 10 m). Manufactured. The adhesive sheet was adhered to the back side of the silicon wafer with the protective sheet to produce a silicon wafer with a protective adhesive sheet.
  • Example 2 After that, when cutting was performed in the same manner as in Example 1, the protective sheet and the silicon wafer were cut, but the pressure-sensitive adhesive sheet was not cut. Then, the protective sheet was irradiated with ultraviolet rays to cure the pressure-sensitive adhesive layer. After that, the protective sheet was peeled off, and the laser processing periphery of the silicon wafer's protective sheet bonding surface (laser light incident surface side) was observed. As a result, no decomposed matter (adhered matter) was observed.
  • Example 3 A silicon wafer with a protective 'adhesive sheet was produced in the same manner as in Example 2 except that a polyethylene terephthalate sheet (25 m thick, total binding energy A: 692 kjZmol) was used as a base material of the protective sheet.
  • Example 2 After that, when cutting was performed in the same manner as in Example 1, the protective sheet and the silicon wafer were cut, but the pressure-sensitive adhesive sheet was not cut. Then, the protective sheet was irradiated with ultraviolet rays to cure the pressure-sensitive adhesive layer. After that, the protective sheet was peeled off, and the laser processing periphery of the silicon wafer's protective sheet bonding surface (laser light incident surface side) was observed. As a result, no decomposed matter (adhered matter) was observed.
  • a silicon wafer with an adhesive sheet was protected in the same manner as in Example 2, except that an ethylene-butyl acetate copolymer sheet (thickness 100 m, total binding energy A: 962 kjZmol) was used as a base material of the protective sheet. Produced.
  • a protective sheet having a total binding energy ratio of less than 1 or a protective sheet having a base material having a total binding energy A of less than 800 kJZmol was selected.
  • the protective sheet for laser processing of the present invention is used when processing an object to be processed by ultraviolet absorption abrasion of laser light. Also, the present invention is obtained by subjecting various workpieces to cutting, drilling, marking, grooving, scribing, trimming, or the like with a laser beam ultraviolet absorption abrasion. And a method of manufacturing a processed laser product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Laser Beam Processing (AREA)

Description

明 細 書
レーザー加工用保護シート及びレーザー加工品の製造方法
技術分野
[0001] 本発明は、レーザー光の紫外吸収アブレーシヨンにより被加工物を加工する際に 使用するレーザー加工用保護シートに関する。また本発明は、シート材料、回路基 板、半導体ウェハ、ガラス基板、セラミック基板、金属基板、半導体レーザー等の発 光あるいは受光素子基板、 MEMS基板、半導体パッケージ、布、皮、又は紙などの 各種被加工物に、レーザー光の紫外吸収アブレーシヨンにより切断、孔あけ、マーキ ング、溝加工、スクライビング加工、又はトリミングカ卩ェなどの形状力卩ェを施すことによ つて得られるレーザー加工品の製造方法に関する。
背景技術
[0002] 最近の電気'電子機器の小型化等に伴って部品の小型化'高精細化が進んでいる 。そのため、各種材料の外形カ卩ェについても、加工精度が ± 50 /z mあるいはそれ以 下の高精細'高精度化が求められてきている。し力しながら、従来のプレス加工等の 打ち抜き加工では精度がせいぜい ± 100 m程度であり、近年の高精度化の要求 には対応できなくなってきている。また、各種材料の孔あけについても、高精細'高精 度化が求められており、従来のドリルや金型による孔あけでは対応が不可能となって きている。
[0003] 近年、その解決方法としてレーザー光を用いた各種材料の加工方法が注目されて いる。特に、熱ダメージが少なぐ高精細の加工が可能であるレーザー光の紫外吸収 アブレーシヨンによる加工方法は、精密な外形加工方法ゃ微細孔あけ方法として注 目されている。
[0004] 上記技術としては、例えば、被カ卩ェ物のダイシング方法として、被加工物をダイシン グシートに支持固定して、レーザー光線により被加工物をダイシングする方法が提案 されている(特許文献 1)。また、ウォーターマイクロジェットとレーザーを組み合わせて 半導体ウェハをダイシングする方法も提案されている(特許文献 2)。前記特許文献 に記載のダイシングシートは、被加工物のレーザー光出射面側に設けられ、ダイシン グ時及びその後の各工程で被加工物(レーザー加工品)を支持固定するために用い られるちのである。
[0005] ところで、レーザー光を用いた場合には、レーザー加工時に発生するカーボン等の 分解物が被加工物の表面に付着するため、それを除去するデスミアといわれる後処 理が必要となる。分解物の付着強度は、レーザー光のパワーに比例して強固となる ため、レーザー光のパワーを高くすると後処理での分解物の除去が困難になるという 問題があった。特に、被加工物の加工テーブル又は粘着シートに接する面側(レー ザ一光出射面側)は、被加工物の分解物のみならず、レーザー光照射による加工テ 一ブル又は粘着シートの分解物が被カ卩ェ物の表面に強固に付着する傾向にある。 そのため、加工のスループット向上を妨げたり、切断ゃ孔あけの信頼性を低下させて しまうという問題があった。
特許文献 1:特開 2002— 343747号公報
特許文献 2:特開 2003— 34780号公報
発明の開示
発明が解決しょうとする課題
[0006] 本発明は、レーザー光の紫外吸収アブレーシヨンにより被加工物を加工する場合 に、分解物による被加工物表面の汚染を効果的に抑制することのできるレーザー加 ェ用保護シートを提供することを目的とする。また本発明は、レーザー光の紫外吸収 アブレーシヨンにより被加工物を加工する際に、分解物による被加工物表面の汚染 を効果的に抑制でき、かつ加工精度を高くすることのできるレーザー加工用保護シ ートを用いたレーザー加工品の製造方法を提供することを目的とする。
課題を解決するための手段
[0007] 本発明者らは前記課題を解決すべく鋭意検討を重ねた結果、下記レーザー加工 用保護シート (以下、保護シートともいう)、及び保護シートを用いたレーザー加工品 の製造方法により上記目的を達成できることを見出し本発明を完成するに至った。
[0008] すなわち、第 1の本発明は、レーザー光の紫外吸収アブレーシヨンにより被力卩ェ物 を加工する際に、被加工物のレーザー光入射面側に設けられるレーザー加工用保 護シートに関する。 [0009] 保護シートは、レーザー光の紫外吸収アブレーシヨンにより被力卩ェ物をレーザー加 ェする前に、被加工物のレーザー光入射面側(レーザー光照射面側)に積層され、 アブレーシヨンによって発生する分解物や飛散物から被加工物表面を保護するため に用いられるものである。そして、保護シートはレーザー光の紫外吸収アブレーシヨン により被加工物と共に加工される。該保護シートを用いることにより、レーザー光照射 部から発生した分解物が被加工物を被覆している保護シート表面に付着するため、 被加工物表面に分解物が付着することを効果的に防止することができる。
[0010] 前記保護シートは、レーザー光吸収領域における光透過率が 50%未満であること が好ましい。光透過率が 50%未満の保護シートを使用することにより、保護シートと 被加工物との界面に分解物が侵入してその界面部分で分解物が付着することを効 果的に防止することができる。その結果、レーザー加工後に被加工物から保護シート を容易に剥離できるだけでなぐ被加工物のレーザー加工精度を向上させることがで きる。
[0011] 前記保護シートを用いることにより、分解物による界面部分の汚染を抑制することが できる理由としては、以下のように考えらる。保護シートのレーザー光吸収領域にお ける光透過率が 50%未満の場合には、保護シートのレーザーエネルギー利用効率 が大きいため被加工物よりも先に保護シートがレーザー光により侵食される。保護シ ートのレーザー光照射部が侵食された後に下層の被加工物が侵食されるが、被加工 物の分解物は保護シートの侵食部分力も外部に効率的に飛散されるため、保護シー トと被加工物との界面部分の汚染を抑制できると考えられる。
[0012] 前記保護シートのレーザー光吸収領域における光透過率は、 40%以下であること が好ましぐさらに好ましくは 30%以下、特に好ましくは 0%である。前記光透過率が 50%以上の場合には、光エネルギー吸収体である被カ卩ェ物へのエネルギー伝達が 増加し、保護シートがレーザー光により侵食される前に、保護シートを透過したレー ザ一光により被加工物の侵食が進行する傾向にある。その場合には、被加工物の侵 食により生じた分解物の飛散経路がないため、保護シートと被加工物との間に分解 物が入り込んで被加工物表面を汚染すると考えられる。つまり、保護シートがレーザ 一アブレーシヨンで破断または穿孔されない限り、被加工物の分解時のガス圧が高 いため保護シートと被加工物との間にガス状分解物が滞留し、その分解物が被加工 物表面を汚染することになる。前記のように被加工物表面が分解物によって汚染され ると、被加工物をレーザー加工した後に、保護シートを被加工物力 剥離することが 困難になったり、後処理での分解物除去が困難になったり、被加工物の加工精度が 低下する傾向にある。
[0013] 前記保護シートは、基材上に粘着剤層が設けられているものであることが好ましい。
保護シートに粘着性を付与することにより、保護シートと被加工物との界面の密着性 を向上させることができるため、分解物の界面への侵入を抑制することができ、その 結果分解物による被加工物表面の汚染を抑制することが可能となる。
[0014] また、第 1の本発明においては、前記基材が、芳香族系ポリマーを含有してなるも のであることが好ましい。基材の形成材料として芳香族系ポリマーを用いることにより 、レーザー光吸収領域における光透過率を小さくすることができ、保護シートのエツ チング速度を大きくすることができる。
[0015] また、前記芳香族系ポリマーを構成する繰り返し単位中の芳香環の重量比は 41重 量%以上であることが好ましぐさらに好ましく 50重量%以上である。芳香環の重量 比が 41重量%未満の場合には、レーザー光吸収領域における光透過率を十分に 小さくすることができないため、保護シートのエッチング速度を十分に高めることが困 難になる傾向にある。
[0016] 第 2の本発明は、レーザー光の紫外吸収アブレーシヨンにより被加工物を加工する 際に使用するレーザー加工用保護シートであり、前記保護シートは、基材上に少なく とも粘着剤層が設けられて ヽるものであり、かつ基材のエッチング率 (エッチング速度 Zエネルギーフルエンス)が 0. 4〔 m/pulse) / (j/cm2)〕以上であることを特 徴とするレーザー加工用保護シートに関する。
[0017] 基材のエッチング速度( μ m/pulse)を、使用するレーザーのエネルギーフルェン ス (jZcm2)で割った値であるエッチング率は、基材のレーザー加工性の程度を示す ものであり、該エッチング率が大きいほどエッチングされやすいことを示す。前記エツ チング率の算出方法は詳しくは実施例の記載による。
[0018] 第 2の本発明においては、基材のエッチング率が 0. 4以上である保護シートを用い ることにより、分解物による被加工物表面の汚染を効果的に抑制することができる。そ の理由としては、以下のように考えらる。基材のエッチング率が 0. 4以上の場合には 、基材のレーザーエネルギー利用効率が大きいため被加工物よりも先に基材がレー ザ一光によりエッチングされる。保護シートのレーザー光照射部がエッチングされた 後に下層の被加工物がエッチングされるが、被加工物の分解物は保護シートのエツ チング部分力も外部に効率的に飛散するため、保護シートと被加工物との界面部分 に進入しにくくなり、その結果、被加工物表面の汚染を抑制できると考えられる。
[0019] 前記基材のエッチング率は、 0. 5以上であることが好ましぐさらに好ましくは 0. 6 以上である。エッチング率が 0. 4未満の場合には、光エネルギー吸収体である被カロ ェ物へのエネルギー伝達が増加し、基材がレーザー光により十分にエッチングされ る前に、保護シートを透過したレーザー光により被加工物のエッチングが進行する。 そして、その場合には、被カ卩ェ物のエッチングにより生じた分解物の飛散経路がない ため、保護シートと被加工物との界面部分に分解物が入り込んで被加工物表面を汚 染する恐れがある。前記のように被加工物表面が分解物によって汚染されると、被カロ ェ物をレーザー加工した後に、保護シートを被加工物力 剥離することが困難になつ たり、後処理での分解物除去が困難になったり、被加工物の加工精度が低下する傾 I口」にある。
[0020] 保護シートは、基材上に少なくとも粘着剤層が設けられているものである。保護シー トに粘着性を付与することにより、保護シートと被加工物との界面の密着性を向上さ せることができるため、分解物の界面への侵入を抑制することができ、その結果分解 物による被加工物表面の汚染を抑制することが可能となる。
[0021] 第 2の本発明においては、前記基材が、芳香族系ポリマー又はシリコン系ゴムを含 有してなるものであることが好ま ヽ。基材の形成材料として芳香族系ポリマー又は シリコン系ゴムを用いることにより、基材のエッチング率を 0. 4以上に調整しやすくな る。
[0022] また、本発明は、被加工物のレーザー光入射面側に前記レーザー加工用保護シ ートを設置する工程(1)、レーザー光を照射してレーザー加工用保護シート及び被 加工物を加工する工程(2)、レーザー加工用保護シートを加工後の被加工物から剥 離する工程 (3)を含むレーザー加工品の製造方法に関する。
[0023] 前記被加工物は、シート材料、回路基板、半導体ウェハ、ガラス基板、セラミック基 板、金属基板、半導体レーザーの発光あるいは受光素子基板、 MEMS基板、又は 半導体パッケージであることが好ましい。また、前記加工は、被加工物を切断又は孔 あけする加工であることが好まし 、。
[0024] 前記本発明の保護シートは、特に半導体ウェハをダイシングして半導体チップを製 造する場合に好適に用いられる。
[0025] 第 3の本発明は、基材上に少なくとも粘着剤層を有しており、かつ使用する被加工 物の紫外領域波長 λにおける吸光係数に対する前記基材の紫外領域波長 λにお ける吸光係数 (吸光係数比 =レーザー加工用保護シートの基材の紫外領域波長え における吸光係数 Ζ使用する被加工物の紫外領域波長 λにおける吸光係数)が 1 以上であるレーザー加工用保護シートを使用し、前記被加工物のレーザー光入射面 側に該レーザー加工用保護シートの粘着剤層を貼付する工程、レーザー光を照射し てレーザー加工用保護シート及び被加工物を加工する工程、レーザー加工用保護 シートを加工後の被加工物から剥離する工程を含むレーザー加工品の製造方法、 に関する。
[0026] 第 3の本発明の製造方法においては、使用する被加工物の紫外領域波長 λにお ける吸光係数に対する前記基材の紫外領域波長 λにおける吸光係数 (吸光係数比 =保護シートの基材の紫外領域波長 λにおける吸光係数 Ζ使用する被加工物の紫 外領域波長 λにおける吸光係数)が 1以上である保護シートを選択して使用すること が必要である。本発明者らは、吸光係数とレーザー加工性との間に相関関係があり、 前記吸光係数比が 1以上である保護シートを用いることにより、分解物による被加工 物表面の汚染を効果的に抑制することができることを見出した。前記紫外領域波長 λは、 355nmであることが好ましい。
[0027] 吸光係数比は、保護シートの基材と使用する被加工物とのレーザー加工性に関し て重要なパラメータである。ある波長における固体の吸光係数が小さいほど、光エネ ルギ一の吸収は小さい。つまり、固体中での光吸収は、光の侵入長(固体表面からの 有効距離: 1Z吸光係数)で起こり、吸光係数が小さい場合には、光の侵入長が長く なるため体積当たりの蓄積エネルギーが小さくなる。そのため、吸光係数が小さい材 料はレーザー加工されにくくなる。
[0028] 第 3の本発明のように、吸光係数比が 1以上である保護シートを用いることにより、 被加工物におけるレーザー光の侵入長よりも基材におけるレーザー光の侵入長を短 くすることができる。そのため、被カ卩ェ物よりも基材における光エネルギーの吸収が大 きくなり、よりレーザー加工されやすくなつたと考えられる。
[0029] そして、前記吸光係数比が 1以上の保護シートを使用することにより、分解物による 被力卩ェ物表面の汚染を効果的に抑制することができる理由としては、以下のように考 えられる。吸光係数比力 ^以上である保護シートは、被加工物と同等又はそれ以上の レーザー加工性を有するため、被カ卩ェ物と同時又は被カ卩ェ物よりも先にレーザー光 によりエッチングされる。そのため、被加工物の分解物は保護シートのエッチング部 分力も外部に効率的に飛散し、保護シートと被加工物との界面部分に進入しに《な る。その結果、被加工物表面の汚染を効果的に抑制できると考えられる。
[0030] 前記吸光係数比は、 1. 5以上であることが好ましぐさらに好ましくは 2以上である。
吸光係数比が 1未満の場合には、保護シートが切断されたり穿孔される前に被加工 物のエッチングが進行する。その場合には、被カ卩ェ物のエッチングにより生じた分解 物の飛散経路がないため、保護シートと被加工物との界面部分に分解物が入り込ん で被加工物表面を汚染する恐れがある。前記のように被加工物表面が分解物によつ て汚染されると、被加工物をレーザー加工した後に、保護シートを被加工物から剥離 することが困難になったり、後処理での分解物除去が困難になったり、被加工物の加 ェ精度が低下する傾向にある。
[0031] また、前記基材は、芳香族系ポリマー又はシリコン系ゴムを含有するものであること が好ましい。上記材料は、紫外領域波長えにおける吸光係数が大きいため、比較的 容易に吸光係数比を 1以上に調整することができる。
[0032] 第 4の本発明は、基材上に少なくとも粘着剤層を有しており、かつ前記基材の紫外 領域波長 λにおける吸光係数が 20cm— 1以上であるレーザー加工用保護シートを使 用し、金属系材料のレーザー光入射面側に該レーザー加工用保護シートの粘着剤 層を貼付する工程、レーザー光を照射してレーザー加工用保護シート及び金属系材 料を加工する工程、レーザー加工用保護シートを加工後の金属系材料から剥離する 工程を含むレーザー加工品の製造方法、に関する。
[0033] 特に、金属系材料を加工する場合、金属系材料の吸光係数を測定することは困難 である。しかし、保護シートの基材の紫外領域波長えにおける吸光係数を 20cm— 1以 上にすることにより、分解物による金属系材料表面の汚染を効果的に抑制することが できた。前記基材の紫外領域波長えにおける吸光係数は 50cm— 1以上であることが 好ましぐさらに好ましくは 80cm— 1以上である。前記紫外領域波長えは、 355nmで あることが好ましい。
[0034] 第 5の本発明は、基材上に少なくとも粘着剤層を有しており、かつ使用する被加工 物の密度に対する前記基材の密度 (密度比 =レーザー加工用保護シートの基材の 密度 Z使用する被加工物の密度)が 1以上であるレーザー加工用保護シートを使用 し、前記被加工物のレーザー光入射面側に該レーザー加工用保護シートの粘着剤 層を貼付する工程、レーザー光を照射してレーザー加工用保護シート及び被加工物 を加工する工程、レーザー加工用保護シートを加工後の被加工物から剥離する工程 を含むレーザー加工品の製造方法、に関する。
[0035] 第 5の本発明の製造方法においては、使用する被加工物の密度に対する前記基 材の密度 (密度比 =レーザー加工用保護シートの基材の密度 Z使用する被加工物 の密度)力 ^以上である保護シートを選択して使用することが必要である。本発明者ら は、材料の密度とレーザー加工性との間に相関関係があり、密度が大きいほどアブ レーシヨンが生じやすぐレーザー加工性が高いことを見出した。そして、密度比が 1 以上である保護シートを選択して用いることにより、分解物による被加工物表面の汚 染を効果的に抑制することができることを見出した。前記のように密度とレーザー加 ェ性との間に相関関係が生じる理由は明らかではないが、密度が大きい材料は原子 の充填率が高ぐ照射面積当たりでのレーザー光が原子に衝突する確率が高くなる と考えられる。レーザー光の紫外吸収アブレーシヨンとは、物質が光子を吸収して電 子を励起し、それにより原子間の結合が切断される現象である。そのため、レーザー 光の光子吸収断面積が大きい(つまり、密度が大きい)ほど、レーザー加工されやす くなると考えられる。 [0036] また、前記密度比が 1以上である保護シートを選択して使用することにより、分解物 による被加工物表面の汚染を効果的に抑制することができる理由としては、以下のよ うに考えられる。密度比が 1以上である保護シートは、被加工物と同等又はそれ以上 のレーザー加工性を有するため、被加工物と同時又は被加工物よりも先にレーザー 光によりエッチングされる。そのため、被カ卩ェ物の分解物は保護シートのエッチング 部分力も外部に効率的に飛散し、保護シートと被加工物との界面部分に進入しに《 なる。その結果、被加工物表面の汚染を効果的に抑制できると考えられる。
[0037] 前記密度比は、 1. 1以上であることが好ましぐさらに好ましくは 1. 4以上である。
密度比が 1未満の場合には、保護シートが切断されたり穿孔される前に被加工物の エッチングが進行する。その場合には、被カ卩ェ物のエッチングにより生じた分解物の 飛散経路がないため、保護シートと被加工物との界面部分に分解物が入り込んで被 加工物表面を汚染する恐れがある。前記のように被加工物表面が分解物によって汚 染されると、被加工物をレーザー加工した後に、保護シートを被加工物から剥離する ことが困難になったり、後処理での分解物除去が困難になったり、被加工物の加工 精度が低下する傾向にある。
[0038] 前記保護シートの基材は、密度が高 、と 、う観点力 芳香族系ポリマー又はシリコ ン系ゴムを含有するものであることが好まし 、。
[0039] 第 6の本発明は、基材上に少なくとも粘着剤層を有しており、かつ前記基材の密度 が 1. lgZcm3以上であるレーザー加工用保護シートを使用し、金属系材料のレー ザ一光入射面側に該レーザー加工用保護シートの粘着剤層を貼付する工程、レー ザ一光を照射してレーザー加工用保護シート及び金属系材料を加工する工程、レー ザ一加工用保護シートを加工後の金属系材料から剥離する工程を含むレーザー加 ェ品の製造方法、に関する。
[0040] 特に、金属系材料をレーザー加工する場合には、前記密度比が 1以上であっても 保護シートが切断されたり穿孔される前に金属系材料のエッチングが進行する場合 がある。そして、金属系材料のエッチングにより生じた分解物の飛散経路がないため 、保護シートと金属系材料との界面部分に分解物が入り込んで金属系材料表面を汚 染する恐れがある。上記現象が生じる原因としては、高分子材料等と金属系材料との アブレーシヨンプロセスの違いが考えられる。すなわち、金属系材料の場合、光エネ ルギーを注入することにより発生した熱に起因する熱化学反応的プロセスを経由する 。そのため、高分子材料等の加工効率と金属系材料の加工効率とを単純に比較する ことはできない。
[0041] 本発明者らは、シリコン等の金属系材料の加工レートと保護シートの基材の加エレ 一トとを比較検討した結果、基材の密度が 1. lgZcm3以上である場合には、金属系 材料と同等又はそれ以上のレーザー加工性を有するため、分解物による金属系材 料表面の汚染を効果的に抑制することができることを見出した。前記基材の密度は 1
. 3gZcm3以上であることが好ましぐより好ましくは 1. 5gZcm3以上である。
[0042] 前記保護シートの基材は、密度が高 、と 、う観点力 芳香族系ポリマー又はシリコ ン系ゴムを含有するものであることが好まし 、。
[0043] 第 7の本発明は、基材上に少なくとも粘着剤層を有しており、かつ使用する被加工 物の引張強度に対するレーザー加工用保護シートの引張強度(引張強度比 =レー ザ一加工用保護シートの引張強度 Z使用する被加工物の引張強度)が 1以上である レーザー加工用保護シートを使用し、前記被加工物のレーザー光入射面側に該レ 一ザ一加工用保護シートの粘着剤層を貼付する工程、レーザー光を照射してレーザ 一加工用保護シート及び被加工物を加工する工程、レーザー加工用保護シートを加 ェ後の被加工物から剥離する工程を含むレーザー加工品の製造方法、に関する。
[0044] 第 7の本発明の製造方法においては、使用する被加工物の引張強度に対する保 護シートの引張強度 (引張強度比 =保護シートの引張強度 Z使用する被加工物の 引張強度)が 1以上である保護シートを選択して使用することが必要である。本発明 者らは、機械的物性である引張強度とレーザー加工性との間に相関関係があり、前 記引張強度比が 1以上である保護シートを選択して用いることにより、分解物による 被加工物表面の汚染を効果的に抑制することができることを見出した。前記のように 引張強度とレーザー加工性との間に相関関係が生じる理由は明らかではないが、引 張強度が高い材料は、一般的に芳香族系や線状構造をしているものが多ぐそのよ うな剛直な構造を有する分子は、互いの環状原子やへテロ原子の電子により分子間 力が強くなるため整列している。そのため、レーザーエネルギーを吸収した原子間の 衝突確率が高くなり、レーザー加工性が大きくなると考えられる。
[0045] そして、前記引張強度比が 1以上の保護シートを選択して使用することにより、分解 物による被加工物表面の汚染を効果的に抑制することができる理由としては、以下 のように考えられる。引張強度比力 ^以上である保護シートは、被加工物と同等又は それ以上のレーザー加工性を有するため、被カ卩ェ物と同時又は被カ卩ェ物よりも先に レーザー光によりエッチングされる。そのため、被カ卩ェ物の分解物は保護シートのェ ツチング部分力 外部に効率的に飛散し、保護シートと被加工物との界面部分に進 入しに《なる。その結果、被加工物表面の汚染を効果的に抑制できると考えられる
[0046] 前記引張強度比は、 2以上であることが好ましぐさらに好ましくは 5以上である。引 張強度比が 1未満の場合には、保護シートが切断されたり穿孔される前に被加工物 のエッチングが進行する。その場合には、被カ卩ェ物のエッチングにより生じた分解物 の飛散経路がないため、保護シートと被加工物との界面部分に分解物が入り込んで 被加工物表面を汚染する恐れがある。前記のように被加工物表面が分解物によって 汚染されると、被加工物をレーザー加工した後に、保護シートを被加工物から剥離す ることが困難になったり、後処理での分解物除去が困難になったり、被加工物の加工 精度が低下する傾向にある。
[0047] 第 8の本発明は、基材上に少なくとも粘着剤層を有しており、かつ引張強度が 100 MPa以上であるレーザー加工用保護シートを使用し、金属系材料のレーザー光入 射面側に該レーザー加工用保護シートの粘着剤層を貼付する工程、レーザー光を 照射してレーザー加工用保護シート及び金属系材料を加工する工程、レーザー加 ェ用保護シートを加工後の金属系材料から剥離する工程を含むレーザー加工品の 製造方法、に関する。
[0048] 特に、金属系材料をレーザー加工する場合には、前記引張強度比が 1以上であつ ても保護シートが切断されたり穿孔される前に金属系材料のエッチングが進行する場 合がある。そして、金属系材料のエッチングにより生じた分解物の飛散経路がないた め、保護シートと金属系材料との界面部分に分解物が入り込んで金属系材料表面を 汚染する恐れがある。上記現象が生じる原因としては、高分子材料等と金属系材料 とのアブレーシヨンプロセスの違いが考えられる。すなわち、金属系材料の場合、光 エネルギーを注入することにより発生した熱に起因する熱化学反応的プロセスを経 由する。そのため、高分子材料等の加工効率と金属系材料の加工効率とを単純に比 較することはできない。
[0049] 本発明者らは、シリコン等の金属系材料の加工レートと保護シートの基材の加エレ 一トとを比較検討した結果、保護シートの引張強度が lOOMPa以上である場合には 、金属系材料と同等又はそれ以上のレーザー加工性を有するため、分解物による金 属系材料表面の汚染を効果的に抑制することができることを見出した。前記保護シ 一トの引張強度は 120MPa以上であることが好ましぐより好ましくは 140MPa以上、 特に好ましくは 200MPaである。
[0050] 第 9の本発明は、基材上に少なくとも粘着剤層を有しており、かつ使用する被加工 物の比熱に対する前記基材の比熱 (比熱比 =レーザー加工用保護シートの基材の 比熱 Z使用する被加工物の比熱)が 1未満であるレーザー加工用保護シートを使用 し、前記被加工物のレーザー光入射面側に該レーザー加工用保護シートの粘着剤 層を貼付する工程、レーザー光を照射してレーザー加工用保護シート及び被加工物 を加工する工程、レーザー加工用保護シートを加工後の被加工物から剥離する工程 を含むレーザー加工品の製造方法、に関する。
[0051] 第 9の本発明の製造方法においては、使用する被加工物の比熱に対する前記基 材の比熱 (比熱比 =レーザー加工用保護シートの基材の比熱 Z使用する被加工物 の比熱)が 1未満である保護シートを選択して使用することが必要である。本発明者ら は、材料の比熱とレーザー加工性との間に相関関係があり、比熱が小さいほどアブレ ーシヨンが生じやすぐレーザー加工性が高いことを見出した。そして、比熱比が 1未 満である保護シートを選択して用いることにより、分解物による被加工物表面の汚染 を効果的に抑制することができることを見出した。前記のように比熱とレーザー加工 性との間に相関関係が生じる理由は明らかではないが、アブレーシヨンは、光子が材 料中の電子を励起してクーロン爆発を生じさせる機構と、熱的に材料を分解する機 構と〖こより起こると考えられる。そして、材料の比熱が小さい場合には、熱を吸収して 温度上昇しやすくなり、熱的分解が起こりやすくなるためレーザー加工性が高くなると 考えられる。
[0052] また、前記比熱比が 1未満である保護シートを選択して使用することにより、分解物 による被加工物表面の汚染を効果的に抑制することができる理由としては、以下のよ うに考えられる。比熱比が 1未満である保護シートは、被加工物と同等又はそれ以上 のレーザー加工性を有するため、被加工物と同時又は被加工物よりも先にレーザー 光によりエッチングされる。そのため、被カ卩ェ物の分解物は保護シートのエッチング 部分力も外部に効率的に飛散し、保護シートと被加工物との界面部分に進入しに《 なる。その結果、被加工物表面の汚染を効果的に抑制できると考えられる。
[0053] 前記比熱比は、 0. 9以下であることが好ましぐさらに好ましくは 0. 8以下である。
比熱比が 1以上の場合には、保護シートが切断されたり穿孔される前に被加工物の エッチングが進行する。その場合には、被カ卩ェ物のエッチングにより生じた分解物の 飛散経路がないため、保護シートと被加工物との界面部分に分解物が入り込んで被 加工物表面を汚染する恐れがある。前記のように被加工物表面が分解物によって汚 染されると、被加工物をレーザー加工した後に、保護シートを被加工物から剥離する ことが困難になったり、後処理での分解物除去が困難になったり、被加工物の加工 精度が低下する傾向にある。
[0054] 第 3、 5、 7及び 9の本発明のレーザー加工品の製造方法においては、前記被加工 物が、シート材料、回路基板、半導体ウェハ、ガラス基板、セラミック基板、金属基板 、半導体レーザーの発光あるいは受光素子基板、 MEMS基板、又は半導体パッケ ージであることが好ましい。
[0055] 第 4、 6及び 8の本発明のレーザー加工品の製造方法においては、前記金属系材 料が、半導体ウェハ又は金属基板であることが好ましい。
[0056] 第 10の本発明は、基材上に少なくとも粘着剤層を有しており、かつ使用する有機 系被加工物の波長 546nmにおける屈折率に対する前記基材の波長 546nmにおけ る屈折率 (屈折率比 =レーザー加工用保護シートの基材の波長 546nmにおける屈 折率 Z使用する有機系被加工物の波長 546nmにおける屈折率)が 1以上であるレ 一ザ一加工用保護シートを使用し、前記有機系被加工物のレーザー光入射面側に 該レーザー加工用保護シートの粘着剤層を貼付する工程、レーザー光を照射してレ 一ザ一加工用保護シート及び有機系被加工物を加工する工程、レーザー加工用保 護シートを加工後の有機系被加工物から剥離する工程を含むレーザー加工品の製 造方法、に関する。
[0057] 第 10の本発明の製造方法においては、使用する有機系被加工物の波長 546nm における屈折率に対する前記基材の波長 546nmにおける屈折率 (屈折率比 =レー ザ一加工用保護シートの基材の波長 546nmにおける屈折率 Z使用する有機系被 加工物の波長 546nmにおける屈折率)が 1以上である保護シートを選択して使用す ることが必要である。本発明者らは、屈折率とレーザー加工性との間に相関関係があ り、前記屈折率比力 ^以上である保護シートを用いることにより、分解物による有機系 被加工物表面の汚染を効果的に抑制することができることを見出した。
[0058] 屈折率比は、保護シートの基材と使用する有機系被加工物とのレーザー加工性に 関して重要なパラメータである。ある波長における固体の屈折率が大きいほど、その 固体中を進む光の速さは遅くなり、光子吸収が起こる確率が高くなる。レーザーアブ レーシヨンの発生メカニズムは、光子吸収による電子励起に起因するので、固体中を 進む光の速さが遅くなる(つまり、屈折率が大きい)ほどレーザー加工性が高くなると 考えられる。
[0059] 本発明のように、屈折率比力 ^以上である保護シートを用いることにより、有機系被 加工物よりも基材での光子吸収が大きくなり、基材の方がよりレーザー加工されやす くなつたと考えられる。
[0060] そして、前記屈折率比が 1以上の保護シートを使用することにより、分解物による有 機系被加工物表面の汚染を効果的に抑制することができる理由としては、以下のよう に考えられる。屈折率比が 1以上である保護シートは、有機系被加工物と同等又はそ れ以上のレーザー加工性を有するため、有機系被加工物と同時又は有機系被加工 物よりも先にレーザー光によりエッチングされる。そのため、有機系被加工物の分解 物は保護シートのエッチング部分力も外部に効率的に飛散し、保護シートと有機系 被加工物との界面部分に進入しに《なる。その結果、有機系被加工物表面の汚染 を効果的に抑制できると考えられる。
[0061] 前記屈折率比は、 1. 05以上であることが好ましぐさらに好ましくは 1. 1以上、特に 好ましくは 1. 2以上である。屈折率比が 1未満の場合には、保護シートが切断された り穿孔される前に有機系被加工物のエッチングが進行する。その場合には、有機系 被加工物のエッチングにより生じた分解物の飛散経路がないため、保護シートと有機 系被加工物との界面部分に分解物が入り込んで有機系被加工物表面を汚染する恐 れがある。前記のように有機系被加工物表面が分解物によって汚染されると、有機系 被加工物をレーザー加工した後に、保護シートを有機系被加工物から剥離すること が困難になったり、後処理での分解物除去が困難になったり、有機系被加工物の加 ェ精度が低下する傾向にある。
[0062] 第 11の本発明は、基材上に少なくとも粘着剤層を有しており、かつ前記基材の波 長 546nmにおける屈折率が 1. 53以上であるレーザー加工用保護シートを使用し、 無機系被加工物のレーザー光入射面側に該レーザー加工用保護シートの粘着剤層 を貼付する工程、レーザー光を照射してレーザー加工用保護シート及び無機系被カロ ェ物を加工する工程、レーザー加工用保護シートを加工後の無機系被加工物から 剥離する工程を含むレーザー加工品の製造方法、に関する。
[0063] 本発明にお ヽては、前記無機系被加工物が、回路基板、半導体ウェハ、ガラス基 板、セラミック基板、金属基板、半導体レーザーの発光あるいは受光素子基板、 ME MS基板、又は半導体パッケージであることが好ま 、。
[0064] 無機系被加工物を用いる場合には、その屈折率を測定することは困難であるが、 保護シートの基材の屈折率を 1. 53以上にすることにより、分解物による無機系被カロ ェ物表面の汚染を効果的に抑制することができる。基材の屈折率は 1. 57以上であ ることが好ましぐより好ましくは 1. 60以上である。
[0065] また、本発明において、前記保護シートの基材は、芳香族系ポリマー又はシリコン 系ゴムを含有するものであることが好ましい。上記材料は、波長 546nmにおける屈折 率が大きいため、比較的容易に屈折率比を 1以上に調整することができる。
[0066] 第 12の本発明は、基材上に少なくとも粘着剤層を有しており、かつ総結合エネル ギー比 (総結合エネルギー比 =基材を構成する榭脂成分中のある 1つの炭素原子と 、該炭素原子に結合する他の原子との結合エネルギーの合計値のうちで最小値であ る総結合エネルギー AZ使用する有機系被加工物を構成する原料成分中のある 1 つの炭素原子と、該炭素原子に結合する他の原子との結合エネルギーの合計値のう ちで最小値である総結合エネルギー B)が 1未満であるレーザー加工用保護シートを 使用し、前記有機系被加工物のレーザー光入射面側に該レーザー加工用保護シー トの粘着剤層を貼付する工程、レーザー光を照射してレーザー加工用保護シート及 び有機系被加工物を加工する工程、レーザー加工用保護シートを加工後の有機系 被加工物から剥離する工程を含むレーザー加工品の製造方法、に関する。
[0067] 第 12の本発明の製造方法においては、前記総結合エネルギー比が 1未満である 保護シートを選択して使用することが必要である。
[0068] ここで、総結合エネルギー Aは、基材を構成する榭脂成分中のある 1つの炭素原子 と、該炭素原子に結合する他の原子との結合エネルギーの合計値 (総結合エネルギ 一)のなかで最も小さい値である。ポリマー中のある 1つの炭素原子は、 2以上の他の 原子と結合して 、るが、結合する他の原子の種類によって結合エネルギーはそれぞ れ異なるため、その結合エネルギーの和(総結合エネルギー)も各炭素原子の結合 状態によって異なる。本発明においては、ポリマー中で種々の結合状態にある炭素 原子のうちで最も総結合エネルギーの低い炭素原子に注目し、該炭素原子の総結 合エネルギー Aはレーザー加工性との間に相関関係があることを見出した。
[0069] また、総結合エネルギー Bは、使用する有機系被加工物を構成する原料成分中の ある 1つの炭素原子と、該炭素原子に結合する他の原子との結合エネルギーの合計 値 (総結合エネルギー)のなかで最も小さ!、値である。本発明にお 、ては、原料成分 中で種々の結合状態にある炭素原子のうちで最も総結合エネルギーの低い炭素原 子に注目し、該炭素原子の総結合エネルギー Bはレーザー加工性との間に相関関 係があることを見出した。
[0070] そして、本発明者らは、前記総結合エネルギー比が 1未満である保護シートを選択 して用 、ることにより、分解物による有機系被加工物表面の汚染を効果的に抑制す ることができることを見出した。前記のように総結合エネルギーとレーザー加工性との 間に相関関係が生じる理由は明らかではないが、結合エネルギーが小さい原子間の 結合は、レーザーが照射された際に切断されやすぐ加工の閾値も低下する。そのた め、使用する材料中の特定原子間の総結合エネルギーが小さいほどレーザー加工 性が大きくなると考えられる。
[0071] そして、前記総結合エネルギー比が 1未満の保護シートを選択して使用することに より、分解物による有機系被加工物表面の汚染を効果的に抑制することができる理 由としては、以下のように考えられる。総結合エネルギー比が 1未満である保護シート は、有機系被加工物と同等又はそれ以上のレーザー加工性を有するため、有機系 被加工物と同時又は有機系被加工物よりも先にレーザー光によりエッチングされる。 そのため、有機系被加工物の分解物は保護シートのエッチング部分力 外部に効率 的に飛散し、保護シートと有機系被加工物との界面部分に進入しに《なる。その結 果、有機系被加工物表面の汚染を効果的に抑制できると考えられる。
[0072] 前記総結合エネルギー比は、 0. 9以下であることが好ましぐさらに好ましくは 0. 8 以下である。総結合エネルギー比力 ^以上の場合には、保護シートが切断されたり穿 孔される前に有機系被加工物のエッチングが進行する。その場合には、有機系被加 ェ物のエッチングにより生じた分解物の飛散経路がないため、保護シートと有機系被 加工物との界面部分に分解物が入り込んで有機系被加工物表面を汚染する恐れが ある。前記のように有機系被加工物表面が分解物によって汚染されると、有機系被 加工物をレーザー加工した後に、保護シートを有機系被加工物力も剥離することが 困難になったり、後処理での分解物除去が困難になったり、有機系被加工物の加工 精度が低下する傾向にある。
[0073] 第 13の本発明は、基材上に少なくとも粘着剤層を有しており、かつ前記基材を構 成する榭脂成分中のある 1つの炭素原子と、該炭素原子に結合する他の原子との結 合エネルギーの合計値のうちで最小値である総結合エネルギー Aが 800kjZmol未 満であるレーザー加工用保護シートを使用し、無機系被加工物のレーザー光入射面 側に該レーザー加工用保護シートの粘着剤層を貼付する工程、レーザー光を照射し てレーザー加工用保護シート及び無機系被加工物を加工する工程、レーザー加工 用保護シートを加工後の無機系被加工物から剥離する工程を含むレーザー加工品 の製造方法、に関する。
[0074] 本発明にお ヽては、前記無機系被加工物が、回路基板、半導体ウェハ、ガラス基 板、セラミック基板、金属基板、半導体レーザーの発光あるいは受光素子基板、 ME MS基板、又は半導体パッケージであることが好ま 、。
[0075] 無機系被カ卩ェ物の場合には、光エネルギーを注入することにより発生した熱に起 因する熱化学反応的プロセスを経由する。つまり、無機系被加工物と有機系被加工 物とのアブレーシヨンプロセスは大きく異なる。そのため、有機系材料の加工効率と 無機系材料の加工効率とを単純に比較することはできない。
[0076] 本発明者らは、無機系被加工物の加工レートと保護シートの基材の加工レートとを 比較検討した結果、総結合エネルギー Aが 800kjZmol未満である基材を有する保 護シートを使用した場合には、無機系被加工物と同等又はそれ以上のレーザー加工 性を有するため、分解物による無機系被加工物表面の汚染を効果的に抑制すること ができることを見出した。前記総結合エネルギー Aは、 780kjZmol以下であることが 好ましぐより好ましくは 760kjZmol以下である。
[0077] 第 3— 13の本発明において、前記保護シートは、レーザー光の紫外吸収アブレ一 シヨンにより被加工物をレーザー加工する前に、被加工物のレーザー光照射面側(レ 一ザ一光入射面側)に積層され、アブレーシヨンによって発生する分解物や飛散物 力も被加工物表面を保護するために用いられるものである。
[0078] 保護シートとしては、基材上に少なくとも粘着剤層を有するものを用いる。保護シー トに粘着性を付与することにより、保護シートと被加工物との界面の密着性を向上さ せることができるため、分解物の界面への侵入を抑制することができ、その結果分解 物による被加工物表面の汚染を抑制することが可能となる。
[0079] 第 3— 13の本発明においては、前記基材は、芳香族系ポリマー又はシリコン系ゴム を含有するものであることが好まし 、。
[0080] 第 3— 13の本発明においては、前記加工が、切断又は孔あけであることが好ましい
[0081] また、本発明は、前記レーザー加工品の製造方法に用いられるレーザー加工用保 護シート、に関する。前記保護シートは、特に半導体ウェハをダイシングして半導体 チップを製造する場合に好適に用いられる。
図面の簡単な説明
[0082] [図 1]本発明におけるレーザー加工品の製造方法の例を示す概略工程図である。 圆 2]本発明におけるレーザー加工品の製造方法の他の例を示す概略工程図である
[図 3]レーザー光の紫外吸収アブレーシヨンにより加工された積層体の断面を示す概 略図である。
[図 4]半導体ウェハのダイシング方法の例を示す概略図である。
符号の説明
1 被加工物
2 レーザー加工用保護シート
3 粘着シート
4 積層体
5 吸着ステージ
6 吸着板
7 レーザー光
8 半導体ウェハ
9 ダイシングフレーム
10 レーザー加工品
発明を実施するための最良の形態
[0084] 本発明で用いられるレーザーとしては、レーザー加工時の熱的なダメージにより被 加工物の孔のエッジや切断壁面の精度及び外見を悪ィ匕させな 、ために、熱加工プ 口セスを経由しない非熱的加工である紫外光吸収によるアブレーシヨン加工が可能 なレーザーを用いる。特に、レーザー光を 20 m以下の細い幅に集光でき、 400nm 以下の紫外線を放射するレーザーを用いることが好ま U、。
[0085] 特に、第 3及び 4の本発明で用いられるレーザーとしては、紫外光吸収によるアブレ ーシヨン加工が可能で、特定波長えの紫外線を放射するレーザーを用いる。そして、 レーザー光を 20 m以下の細い幅に集光でき、 355nmの紫外線を放射するレーザ 一を用いることが好ましい。
[0086] 具体的には、 400nm以下に発振波長を持つレーザー、例えば、発振波長 248nm の KrFエキシマレーザー、 308nmの XeCIエキシマレーザー、 YAGレーザーの第三 高調波(355nm)や第四高調波(266nm)、又は 400nm以上の波長を持つレーザ 一の場合には、多光子吸収過程を経由した紫外線領域の光吸収が可能で、かつ多 光子吸収アブレーシヨンにより 20 m以下の幅の切断加工などが可能である波長 7 50— 800nm付近のチタンサフアイャレーザー等でパルス幅が le— 9秒(0. 0000000 01秒)以下のレーザーなどが挙げられる。
[0087] 被加工物としては、上記レーザーにより出力されたレーザー光の紫外吸収アブレ一 シヨンにより加工できるものであれば特に限定されるものではなぐ例えば、各種シー ト材料、回路基板、半導体ウェハ、ガラス基板、セラミック基板、金属基板、半導体レ 一ザ一等の発光あるいは受光素子基板、 MEMS (Micro Electro Mechanical System)基板、半導体パッケージ、布、皮、及び紙などが挙げられる。
[0088] 本発明の保護シート又は製造方法は、特にシート材料、回路基板、半導体ウェハ、 ガラス基板、セラミック基板、金属基板、半導体レーザーの発光あるいは受光素子基 板、 MEMS基板、又は半導体パッケージの加工に好適に用いることができる。
[0089] 前記各種シート材料としては、例えば、ポリイミド系榭脂、ポリエステル系榭脂、ェポ キシ系榭脂、ウレタン系榭脂、ポリスチレン系榭脂、ポリエチレン系榭脂、ポリアミド系 榭脂、ポリカーボネート系榭脂、シリコーン系榭脂、フッ素系榭脂等力もなる高分子フ イルムゃ不織布、それらの榭脂を延伸加工、含浸加工等により物理的あるいは光学 的な機能を付与したシート、銅、アルミニウム、ステンレス等の金属シート、又は上記 高分子フィルム及び Z又は金属シートを直接あるいは接着剤等を介して積層したも のなどが挙げられる。
[0090] 前記回路基板としては、片面、両面あるいは多層フレキシブルプリント基板、ガラス エポキシ、セラミック、又は金属コア基板等力 なるリジッド基板、ガラスまたはポリマ 一上に形成された光回路あるいは光一電気混成回路基板などが挙げられる。
[0091] 前記金属系材料としては、半金属や合金も含み、例えば金、 SUS、銅、鉄、アルミ ユウム、ステンレス、シリコン、チタン、ニッケル、及びタングステンなど、並びにこれら を用いた加工物(半導体ウェハ、金属基板など)が挙げられる。
[0092] 第 10及び 12の本発明において、有機系被カ卩ェ物としては、上記レーザーにより出 力されたレーザー光の紫外吸収アブレーシヨンにより加工できるものであれば特に限 定されるものではなぐ例えば、各種シート材料、布、皮、及び紙などが挙げられる。
[0093] 前記各種シート材料としては、例えば、前記高分子フィルムゃ不織布、それらの榭 脂を延伸加工、含浸加工等により物理的あるいは光学的な機能を付与したシートな どが挙げられる。
[0094] 第 11及び 13の本発明において、無機系被カ卩ェ物としては、上記レーザーにより出 力されたレーザー光の紫外吸収アブレーシヨンにより加工できるものであれば特に限 定されるものではなぐ例えば、前記回路基板、半導体ウェハ、ガラス基板、セラミック 基板、金属材料、金属基板、半導体レーザーの発光あるいは受光素子基板、 MEM
S基板、又は半導体パッケージなどが挙げられる。
[0095] 前記金属材料としては、半金属や合金も含み、例えば金、 SUS、銅、鉄、アルミ- ゥム、ステンレス、シリコン、チタン、ニッケル、及びタングステンなど、並びにこれらを 用いたカ卩ェ物が挙げられる。
[0096] 本発明の保護シートは、レーザー光の紫外吸収アブレーシヨンにより被力卩ェ物をカロ ェする際に使用するシートである。
[0097] 第 1の本発明の保護シートは、レーザー光 (紫外線)吸収領域における光透過率が
50%未満のものであることが好ましい。保護シートは、基材のみ力も形成されていて もよぐ基材上に粘着剤層が設けられていてもよい。
[0098] 第 2の本発明の保護シートは、基材上に少なくとも粘着剤層が設けられているもの であり、かつ基材のエッチング率が 0. 4 [ ( μ m/pulse) / (j/cra )〕以上であること を特徴とする。
[0099] 第 3の本発明においては、基材上に少なくとも粘着剤層を有する保護シートを用い る。そして、吸光係数比力 ^以上となる保護シートを選択して使用することが必要であ る。一方、金属系材料をレーザー加工する場合 (第 4の本発明)には、紫外領域波長 λにおける吸光係数が 20cm— 1以上である基材を有する保護シートを選択して使用 することが必要である。
[0100] 第 5の本発明のレーザー加工品の製造方法においては、基材上に少なくとも粘着 剤層を有する保護シートを用いる。そして、前記密度比が 1以上である保護シートを 使用することが必要である。一方、金属系材料を加工する場合 (第 6の本発明)には、 密度が 1. lgZcm3以上である基材を有する保護シートを使用することが必要である
[0101] 第 7の本発明のレーザー加工品の製造方法においては、基材上に少なくとも粘着 剤層を有する保護シートを用いる。そして、使用する被加工物の引張強度に対する 保護シートの引張強度 (引張強度比 =保護シートの引張強度 Z使用する被加工物 の引張強度)力 ^以上となる保護シートを選択して使用することが必要である。一方、 金属系材料をレーザー加工する場合 (第 8の本発明)には、引張強度が lOOMPa以 上である保護シートを選択して使用することが必要である。
[0102] 第 9の本発明のレーザー加工品の製造方法においては、基材上に少なくとも粘着 剤層を有する保護シートを用いる。そして、前記比熱比が 1未満である保護シートを 選択して使用することが必要である。
[0103] 第 10の本発明のレーザー加工品の製造方法においては、基材上に少なくとも粘着 剤層を有する保護シートを用いる。そして、有機系被加工物をレーザー加工する場 合には、屈折率比力 ^以上となる保護シートを選択して使用することが必要である。 一方、無機系被加工物をレーザー加工する場合 (第 11の本発明)には、波長 546η mにおける屈折率が 1. 53以上である基材を有する保護シートを選択して使用するこ とが必要である。
[0104] 第 12の本発明のレーザー加工品の製造方法においては、基材上に少なくとも粘着 剤層を有する保護シートを用いる。そして、有機系被加工物をレーザー加工する場 合には、総結合エネルギー比が 1未満となる保護シートを選択して使用することが必 要である。一方、無機系被加工物をレーザー加工する場合 (第 13の本発明)には、 総結合エネルギー Aが 800kjZmol未満である基材を有する保護シートを選択して 使用することが必要である。前記総結合エネルギー A、 Bの値は、例えば、化学便覧 、技術文献(Cox, J. D. and PILCHER, G. , Thermochemistry of organic and organometallic compounds, Academic Press, New York, 1970) 等に記載されている各結合エネルギー値力も求めることができる。
[0105] 基材の形成材料としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタ レート、ポリスチレン、ポリカーボネート、ポリイミド、(メタ)アクリル系ポリマー、ポリウレ タン、シリコン系ゴム、及びポリエチレン、ポリプロピレン、ポリエチレンオキサイドなど のポリオレフイン系ポリマーなどが挙げられる力 これらに限定されるものではない。 上記材料は 1種を単独で用いてもよぐ 2種以上を併用してもよい。これらのうち、芳 香族系ポリマーを用いることが好ましぐ特にポリイミド、ポリエチレンナフタレート、又 はポリカーボネートを用いることが好まし 、。
[0106] 第 3及び 4の本発明にお!/、ては、ポリイミド、ポリエチレンナフタレート、ポリスチレン
、及びポリカーボネートなどの芳香族系ポリマーや、シリコン系ゴムなどの吸光係数の 高 、材料を用いることが好まし 、。
[0107] 第 5及び 6の本発明においては、ポリエチレンナフタレート、ポリウレタン、ポリイミド、 及びシリコン系ゴムなどの比較的密度の大き 、材料を用いることが好ま 、。
[0108] 第 7及び 8の本発明においては、基材の引張強度を高くするために、芳香族系ポリ マーやシリコン系ゴムを用いることが好ましぐ特にポリイミド、ポリエチレンナフタレー ト、ポリスチレン、又はポリカーボネートを用いることが好ましい。
[0109] 第 9の本発明にお!/、ては、ポリエチレンテレフタレート、ポリエチレンナフタレート、 ポリスチレン、ポリウレタン、及びポリカーボネートなどの比較的比熱の小さい材料を 用いることが好ましい。
[0110] 第 10及び 11の本発明においては、ポリイミド、ポリエチレンナフタレート、ポリスチレ ン、及びポリカーボネートなどの芳香族系ポリマーや、シリコン系ゴムなどの波長 546 nmにおける屈折率の高 、材料を用いることが好ま 、。
[0111] 第 12及び 13の本発明においては、総結合エネルギー Aの値を小さくするために、 芳香族系ポリマーを用いることが好ましぐ特にポリイミド、ポリエチレンテレフタレート 、ポリエチレンナフタレート、ポリスチレン、又はポリカーボネートを用いることが好まし い。
[0112] 基材には充填剤を添加することが好ましい。充填剤とは、レーザー光吸収領域の光 透過率を 50%未満にするため(第 1の本発明)、エッチング率を 0. 4以上にするため (第 2の本発明)、基材の吸光係数を高くするため(第 3及び 4の本発明)、基材の引 張強度を高くするため(第 7及び 8の本発明)、又は基材の屈折率を高くするため(第 10及び 11の本発明)に添加する材料であり、例えば、顔料、染料、色素、 Au、 Cu、 Pt、 Ag等の金属微粒子、及び金属コロイド、カーボン等の無機微粒子などが挙げら れる。
[0113] 色素は、使用するレーザーの特定波長の光 (紫外領域波長えの光)を吸収するも のであればよぐまた染料としては、塩基性染料、酸性染料、直接染料などの各種染 料を用いることができる。前記染料又は色素としては、例えば、ニトロ染料、ニトロソ染 料、スチルベン染料、ピラゾロン染料、チアゾール染料、ァゾ染料、ポリアゾ染料、力 ルポ-ゥム染料、キノア-ル染料、インドフエノール染料、インドア-リン染料、インダミ ン染料、キノンィミン染料、ァジン染料、酸化染料、ォキサジン染料、チアジン染料、 アタリジン染料、ジフエニルメタン染料、トリフエ-ルメタン染料、キサンテン染料、チォ キサンテン染料、硫化染料、ピリジン染料、ピリドン染料、チアジアゾール染料、チォ フェン染料、ベンゾイソチアゾール染料、ジシァノイミダゾール染料、ベンゾピラン染 料、ベンゾジフラノン染料、キノリン染料、インジゴ染料、チォインジゴ染料、アントラキ ノン染料、ベンゾフエノン染料、ベンゾキノン染料、ナフトキノン染料、フタロシアニン 染料、シァニン染料、メチン染料、ポリメチン染料、ァゾメチン染料、縮合メチン染料、 ナフタルイミド染料、ペリノン染料、トリアリールメタン染料、ザンセン染料、アミノケトン 染料、ォキシケトン染料、及びインジゴイド染料などが挙げられる。これらは 1種単独 で用いてもよぐ 2種以上を併用してもよい。
[0114] また、染料又は色素は、非線形光学色素であってもよい。非線形光学色素としては 、特に制限されず、公知の非線形光学色素 (例えば、ベンゼン系非線形光学色素、 スチルベン系非線形光学色素、シァニン系非線形光学色素、ァゾ系非線形光学色 素、ローダミン系非線形光学色素、ビフエニル系非線形光学色素、カルコン系非線 形光学色素、及びシァノ桂皮酸系非線形光学色素など)が挙げられる。
[0115] さらに、染料又は色素としては、いわゆる「機能性色素」も用いることができる。前記 機能性色素は、例えば、キャリアー生成材料とキャリアー移動材料とで構成されてい る。キャリアー生成材料としては、例えば、ペリレン系顔料、キノン系顔料、スクァリリウ ム色素、ァズレニウム色素、チアピリリウム色素、ビスァゾ系顔料などが挙げられる。キ ャリア一移動材料としては、例えば、ォキサジァゾール誘導体、ォキサゾール誘導体 、ピラゾリン誘導体、ヒドラゾン誘導体、及びァリールァミン誘導体などが挙げられる。 [0116] 前記充填剤の添加量は、使用するベースポリマーの光透過率 (第 1の本発明)、使 用するベースポリマー自体のエッチング率 (第 2の本発明)、使用するベースポリマー の吸光係数や被加工物の吸光係数 (第 3及び 4の本発明)、使用するベースポリマー 自体の引張強度や被加工物の引張強度との関係 (第 7及び 8の本発明)、又は使用 するベースポリマーの屈折率や被カ卩ェ物の屈折率 (第 10及び 11の本発明)などによ つて適宜調整することができる力 通常ベースポリマー 100重量部に対して 2— 20重 量部程度であることが好ましぐさらに好ましくは 2— 10重量部程度である。
[0117] 基材は単層であってもよく複層であってもよい。また、膜状やメッシュ状など種々の 形状を取り得る。
[0118] 基材の厚さは、被力卩ェ物上への貼り合わせ、被カ卩ェ物の切断ゃ孔あけ、及び切断 片の剥離や回収などの各工程における操作性や作業性を損なわない範囲で適宜調 整することができるが、通常 500 μ m以下であり、好ましくは 3— 300 μ m程度であり、 さらに好ましくは 5— 250 mである。基材の表面は、隣接する材料との密着性、保 持性などを高めるために慣用の表面処理、例えば、クロム酸処理、オゾン曝露、火炎 曝露、高圧電撃曝露、及びイオン化放射線処理などの化学的又は物理的処理が施 されていてもよい。
[0119] 粘着剤層の形成材料としては、(メタ)アクリル系ポリマーやゴム系ポリマーなどを含 む公知の粘着剤を用いることができる。
[0120] (メタ)アクリル系ポリマーを形成するモノマー成分としては、例えば、メチル基、ェチ ル基、 n プロピル基、イソプロピル基、 n ブチル基、 t ブチル基、イソブチル基、アミ ル基、イソアミル基、へキシル基、ヘプチル基、シクロへキシル基、 2—ェチルへキシ ル基、ォクチル基、イソォクチル基、ノニル基、イソノニル基、デシル基、イソデシル基 、ゥンデシル基、ラウリル基、トリデシル基、テトラデシル基、ステアリル基、ォクタデシ ル基、及びドデシル基などの炭素数 30以下、好ましくは炭素数 4一 18の直鎖又は分 岐のアルキル基を有するアルキル (メタ)アタリレートが挙げられる。これらアルキル (メ タ)アタリレートは 1種単独で用いてもよぐ 2種以上を併用してもよい。
[0121] (メタ)アクリル系ポリマーの粘着性や凝集力や耐熱性などを改質することを目的とし て、上記以外のモノマー成分を共重合させてもよい。そのようなモノマー成分としては 、例えば、アクリル酸、メタクリル酸、カルボキシェチル (メタ)アタリレート、カルボキシ ペンチル (メタ)アタリレート、ィタコン酸、マレイン酸、フマール酸、及びクロトン酸など のカルボキシル基含有モノマー、無水マレイン酸や無水ィタコン酸などの酸無水物 モノマー、(メタ)アクリル酸 2—ヒドロキシェチル、(メタ)アクリル酸 2—ヒドロキシプロピ ル、(メタ)アクリル酸 4ーヒドロキシブチル、(メタ)アクリル酸 6—ヒドロキシへキシル、(メ タ)アクリル酸 8—ヒドロキシォクチル、(メタ)アクリル酸 10—ヒドロキシデシル、(メタ)ァ クリル酸 12—ヒドロキシラウリル、及び(4ーヒドロキシメチルシクロへキシル)メチル (メタ )アタリレートなどのヒドロキシル基含有モノマー、スチレンスルホン酸、ァリルスルホン 酸、 2— (メタ)アクリルアミド— 2—メチルプロパンスルホン酸、(メタ)アクリルアミドプロパ ンスルホン酸、スルホプロピル (メタ)アタリレート、及び (メタ)アタリロイルォキシナフタ レンスルホン酸などのスルホン酸基含有モノマー、 2—ヒドロキシェチルアタリロイルホ スフエートなどのリン酸基含有モノマー、(メタ)アクリルアミド、(メタ)アクリル酸 N-ヒド ロキシメチルアミド、(メタ)アクリル酸アルキルアミノアルキルエステル(例えば、ジメチ ルアミノエチルメタタリレート、 t ブチルアミノエチルメタタリレートなど)、 N ビュルピ 口リドン、アタリロイルモルホリン、酢酸ビュル、スチレン、及びアクリロニトリルなどが挙 げられる。これらモノマー成分は 1種単独で用いてもよぐ 2種以上を併用してもよい。
[0122] また、(メタ)アクリル系ポリマーの架橋処理等を目的に多官能モノマーなども必要 に応じて共重合モノマー成分として用いることができる。
[0123] 多官能モノマーとしては、例えば、へキサンジオールジ (メタ)アタリレート、(ポリ)ェ チレングリコールジ (メタ)アタリレート、(ポリ)プロピレングリコールジ (メタ)アタリレート 、ネオペンチルグリコールジ (メタ)アタリレート、ペンタエリスリトールジ (メタ)アタリレー ト、トリメチロールプロパントリ(メタ)アタリレート、テトラメチロールメタンテトラ (メタ)ァク リレート、ペンタエリスリトールトリ(メタ)アタリレート、ペンタエリスリトールテトラ(メタ)ァ タリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アタリレート、ジペンタエリ スリトールへキサ (メタ)アタリレート、エポキシ (メタ)アタリレート、ポリエステル (メタ)ァ タリレート、及びウレタン (メタ)アタリレートなどが挙げられる。これら多官能モノマーは 1種単独で用いてもよぐ 2種以上を併用してもよい。
[0124] 多官能モノマーの使用量は、粘着特性等の観点より全モノマー成分の 30重量%以 下であることが好ましぐさらに好ましくは 20重量%以下である。
[0125] (メタ)アクリル系ポリマーの調製は、例えば 1種又は 2種以上のモノマー成分を含む 混合物を溶液重合方式、乳化重合方式、塊状重合方式、又は懸濁重合方式等の適 宜な方式を適用して行うことができる。
[0126] 重合開始剤としては、過酸化水素、過酸化べンゾィル、 t ブチルパーオキサイドな どの過酸ィ匕物系が挙げられる。単独で用いるのが望ましいが、還元剤と組み合わせ てレドックス系重合開始剤として使用することもできる。還元剤としては、例えば、亜硫 酸塩、亜硫酸水素塩、鉄、銅、コバルト塩などのイオンィ匕の塩、トリエタノールアミン等 のァミン類、アルドース、ケトース等の還元糖などを挙げることができる。また、ァゾィ匕 合物も好ましい重合開始剤であり、 2, 2'—ァゾビス 2—メチルプロピオアミジン酸塩、 2, 2'—ァゾビス— 2, 4—ジメチルバレロニトリル、 2, 2'—ァゾビス N, N'—ジメチレン イソブチルアミジン酸塩、 2, 2,ーァゾビスイソブチ口-トリル、 2, 2,ーァゾビス— 2—メチ ルー N— (2—ヒドロキシェチル)プロピオンアミド等を使用することができる。また、上記 重合開始剤を 2種以上併用して使用することも可能である。
[0127] 反応温度は通常 50— 85°C程度、反応時間は 1一 8時間程度とされる。また、前記 製造法のなかでも溶液重合法が好ましぐ(メタ)アクリル系ポリマーの溶媒としては一 般に酢酸ェチル、トルエン等の極性溶剤が用いられる。溶液濃度は通常 20— 80重 量%程度とされる。
[0128] 前記粘着剤には、ベースポリマーである (メタ)アクリル系ポリマーの数平均分子量 を高めるため、架橋剤を適宜に加えることもできる。架橋剤としては、ポリイソシァネー ト化合物、エポキシィ匕合物、アジリジンィ匕合物、メラミン榭脂、尿素樹脂、無水化合物 、ポリアミン、カルボキシル基含有ポリマーなどがあげられる。架橋剤を使用する場合 、その使用量は引き剥がし粘着力が下がり過ぎないことを考慮し、一般的には、上記 ベースポリマー 100重量部に対して、 0. 01— 5重量部程度配合するのが好ましい。 また粘着剤層を形成する粘着剤には、必要により、前記成分のほかに、従来公知の 各種の粘着付与剤、老化防止剤、充填剤、老化防止剤、着色剤等の慣用の添加剤 を含有させることができる。
[0129] 被加工物力ゝらの剥離性を向上させるため、粘着剤は、紫外線、電子線等の放射線 により硬化する放射線硬化型粘着剤とすることが好ましい。なお、粘着剤として放射 線硬化型粘着剤を用いる場合には、レーザー加工後に粘着剤層に放射線が照射さ れるため、前記基材は十分な放射線透過性を有するものが好まし ヽ。
[0130] 放射線硬化型粘着剤としては、例えば、前述の (メタ)アクリル系ポリマーに放射線 硬化性のモノマー成分やオリゴマー成分を配合した放射線硬化性粘着剤が挙げら れる。
[0131] 配合する放射線硬化性のモノマー成分やオリゴマー成分としては、例えば、ウレタ ン (メタ)アタリレートオリゴマー、トリメチロールプロパントリ (メタ)アタリレート、テトラメ チロールメタンテトラ (メタ)アタリレート、テトラエチレングリコールジ (メタ)アタリレート、 ペンタエリスリトールトリ(メタ)アタリレート、ペンタエリスリトールテトラ (メタ)アタリレート 、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アタリレート、ジペンタエリスリトール へキサ(メタ)アタリレート、 1, 4—ブチレングリコールジ (メタ)アタリレート、及び 1, 6- へキサンジオールジ (メタ)アタリレートなどの(メタ)アタリ酸と多価アルコールとからな るエステル化合物、 2 プロべ-ルー 3—ブテュルイソシァヌレート、及びトリス(2—メタク リロキシェチル)イソシァヌレートなどのイソシァヌレートイ匕合物などが挙げられる。こ れらは 1種単独で用いてもよぐ 2種以上を併用してもよい。
[0132] 放射線硬化性のモノマー成分やオリゴマー成分の配合量は、特に制限されるもの ではないが、粘着性を考慮すると、粘着剤を構成する (メタ)アクリル系ポリマー等の ベースポリマー 100重量部に対して、 5— 500重量部程度であることが好ましぐさら に好ましくは 70— 150重量部程度である。
[0133] また、放射線硬化型粘着剤としては、ベースポリマーとして、炭素 炭素二重結合を ポリマー側鎖または主鎖中もしくは主鎖末端に有するものを用いることもできる。この ようなベースポリマーとしては、(メタ)アクリル系ポリマーを基本骨格とするものが好ま しい。この場合においては、放射線硬化性のモノマー成分やオリゴマー成分を特に 加えなくてもよぐその使用は任意である。
[0134] 前記放射線硬化型粘着剤には、紫外線線等により硬化させる場合には光重合開 始剤を含有させる。光重合開始剤としては、例えば、 4 (2—ヒドロキシエトキシ)フエ -ル(2—ヒドロキシー 2—プロピル)ケトン、 α—ヒドロキシー α , a メチルァセトフエノン 、メトキシァセトフエノン、 2, 2—ジメトキシー 2—フエニルァセトフエノン、 2, 2—ジェトキ シァセトフエノン、 1ーヒドロキシシクロへキシルフエ-ルケトン、 2—メチルー 1—〔4— (メチ ルチオ)フエ-ル〕— 2—モルホリノプロパン 1などのァセトフエノン系化合物、ベンゾィ ンェチルエーテル、ベンゾインイソプロピルエーテル、ァ-ゾインメチルエーテルの如 きべンゾインエーテル系化合物、 2—メチルー 2—ヒドロキシプロピルフエノンなどの α— ケトール系化合物、ベンジルジメチルケタールなどのケタール系化合物、 2—ナフタレ ンスルホ-ルクロリドなどの芳香族スルホユルク口リド系化合物、 1 フエノン 1, 1ープ 口パンジオン 2— (ο エトキシカルボ-ル)ォキシムなどの光活性ォキシム系化合物 、ベンゾフエノン、ベンゾィル安息香酸、 3, 3 '—ジメチルー 4ーメトキシベンゾフエノンな どのべンゾフエノン系化合物、チォキサンソン、 2—クロ口チォキサンソン、 2—メチルチ ォキサンソン、 2, 4 ジメチルチオキサンソン、イソプロピルチォキサンソン、 2, 4—ジ クロ口チォキサンソン、 2, 4 ジェチルチオキサンソン、 2, 4—ジイソプロピルチオキサ ンソンなどのチォキサンソン系化合物、カンファーキノン、ハロゲン化ケトン、ァシルホ スフイノキシド及びァシルホスフオナートなどが挙げられる。
[0135] 光重合開始剤の配合量は、粘着剤を構成する (メタ)アクリル系ポリマー等のベー スポリマー 100重量部に対して、 0. 1— 10重量部程度であることが好ましぐさらに 好ましくは 0. 5— 5重量部程度である。
[0136] 前記保護シートは、例えば、基材の表面に粘着剤溶液を塗布し、乾燥させて (必要 に応じて加熱架橋させて)粘着剤層を形成することにより製造することができる。また 、別途、剥離ライナーに粘着剤層を形成した後、それを基材に貼り合せる方法等を 採用することができる。粘着剤層は 1層であってもよぐ 2層以上であってもよい。必要 に応じて粘着剤層の表面にセパレータを設けてもよい。
[0137] 粘着剤層は、被加工物への汚染防止等の点より低分子量物質の含有量が少ない ことが好ましい。力かる点より(メタ)アクリル系ポリマーの数平均分子量は 30万以上 であることが好ましぐさらに好ましくは 40万一 300万、特に好ましくは 80万一 300万 である。
[0138] 粘着剤層の厚さは、被加工物から剥離しない範囲で適宜選択できる力 5-300 ^ m程度であることが好ましぐさらに好ましくは 10— 100 m程度、特に好ましくは 10 一 50 /z m程度である。
[0139] また粘着剤層の接着力は、 SUS304に対する常温 (レーザー照射前)での接着力
(90度ピール値、剥離速度 300mmZ分)に基づいて、 20NZ20mm以下であること が好ましぐさらに好ましくは 0. 001— 10NZ20mm、特に好ましくは 0. 01-8N/ 20mmである。
[0140] 前記セパレータは、ラベル加工または粘着剤層を保護するために必要に応じて設 けられる。セパレータの構成材料としては、紙、ポリエチレン、ポリプロピレン、ポリェチ レンテレフタレート等の合成樹脂フィルム等が挙げられる。セパレータの表面には粘 着剤層からの剥離性を高めるため、必要に応じてシリコーン処理、長鎖アルキル処 理、フッ素処理等の剥離処理が施されていてもよい。また、必要に応じて、保護シー トが環境紫外線によって反応してしまわな 、ように、紫外線透過防止処理等が施され ていてもよい。セパレータの厚みは、通常 10— 200 m、好ましくは 25— 100 m程 度である。
[0141] 以下、本発明の前記保護シートを用いたレーザー光の紫外吸収アブレーシヨンに よるレーザー加工品の製造方法を説明する。例えば、切断加工の場合、図 1及び図 3に示した如く保護シート 2と被加工物 (又は金属系材料) 1と粘着シート 3とをロール ラミネーターやプレスといった公知の手段で貼り合わせて得られた保護シート-被カロ ェ物ー粘着シート積層体 4を吸着ステージ 5の吸着板 6上に配置し、該積層体 4上に 、所定のレーザー発振器より出力されるレーザー光 7をレンズにて保護シート 2上に 集光 '照射するとともに、そのレーザー照射位置を所定の加工ライン上に沿って移動 させることにより切断加工を行う。なお、被加工物のレーザー光出射面側に設けられ る粘着シート 3は、レーザー加工前は被加工物を支持固定する役割を果たし、レーザ 一加工後は、切断物の落下を防止する役割を果たすものであり、レーザー加工性の 低いシートを用いる。粘着シート 3としては、基材上に粘着剤層が積層されている一 般的なものを特に制限なく使用することができる。
[0142] レーザー光の移動手段としては、ガルバノスキャンあるいは X— Yステージスキャン、 マスクイメージングカ卩ェといった公知のレーザー加工方法が用いられる。
[0143] レーザーの加工条件は、保護シート 2及び被加工物 1が完全に切断される条件で あれば特に限定はされないが、粘着シート 3まで切断されることを回避するため、被 加工物 1が切断されるエネルギー条件の 2倍以内とすることが好ましい。
[0144] また、切りしろ (切断溝)はレーザー光の集光部のビーム径を絞ることにより細くでき るが、切断端面の精度を出すために、
ビーム径( m) > 2 X (レーザー光移動速度( μ m/sec) Zレーザー光の繰り返し 周波数 (Hz) )を満たして 、ることが好ま 、。
[0145] また、孔あけ加工の場合、図 2に示した如く保護シート 2と被加工物 1と粘着シート 3 とをロールラミネーターやプレスといった公知の手段で貼り合わせて得られた保護シ 一トー被加工物 粘着シート積層体 4を吸着ステージ 5の吸着板 6上に配置し、該積 層体 4上に、所定のレーザー発振器より出力されるレーザー光 7をレンズにて保護シ ート 2上に集光 ·照射して孔を形成する。
[0146] 孔は、ガルバノスキャンあるいは X— Yステージスキャン、マスクイメージングによるパ ンチングカ卩ェと 、つた公知のレーザー加工方法により形成する。レーザーの加工条 件は、被カ卩工材料のアブレーシヨン閾値を元に最適値を決定すればよい。粘着シー ト 3まで穿孔されることを回避するため、被加工物 1が穿孔されるエネルギー条件の 2 倍以内とすることが好ましい。
[0147] また、ヘリウム、窒素、酸素等のガスをレーザー加工部に吹き付けることにより、分解 物の飛散除去を効率ィ匕することもできる。
[0148] また、半導体ウェハの切断加工は、図 4の如く半導体ウェハ 8の片面を吸着ステー ジ 5上に設けられた粘着シート 3に貼り合わせ、さらに他面側に保護シート 2を設置し 、所定のレーザー発振器より出力されるレーザー光 7をレンズにて保護シート 2上に 集光 '照射するとともに、そのレーザー照射位置を所定の加工ライン上に沿って移動 させることにより切断加工を行う。レーザー光の移動手段としては、ガルバノスキャン あるいは X— Yステージスキャン、マスク、イメージング加工といった公知のレーザー加 ェ方法が用いられる。力かる半導体ウェハの加工条件は、保護シート 2及び半導体 ウェハ 8が切断され、かつ粘着シート 3が切断されな 、条件であれば特に限定されな い。
[0149] このような半導体ウェハの切断加工においては、個々の半導体チップに切断後、 従来より知られるダイボンダ一などの装置により-一ドルと呼ばれる突き上げピンを用 いてピックアップする方法、或いは、特開 2001— 118862号公報に示される方式など 公知の方法で個々の半導体チップをピックアップして回収することができる。
[0150] 本発明のレーザー加工品の製造方法においては、レーザー加工終了後に保護シ ート 2をレーザー加工品 10から剥離する。剥離する方法は制限されないが、剥離時 にレーザー加工品 10が永久変形するような応力が力からないようにすることが肝要 である。例えば、粘着剤層に放射線硬化型粘着剤を用いた場合には、粘着剤の種 類に応じて放射線照射により粘着剤層を硬化させ粘着性を低下させる。放射線照射 により、粘着剤層の粘着性が硬化により低下して剥離を容易化させることができる。 放射線照射の手段は特に制限されないが、例えば、紫外線照射等により行われる。
[0151] 第 1の本発明のレーザー加工品の製造方法では、前記保護シートを用いることによ り、レーザー光照射部から発生した分解物が被加工物を被覆している保護シート表 面に付着するため、被加工物表面に分解物が付着することを効果的に防止すること ができる。また、レーザー光吸収領域における光透過率が 50%未満であるレーザー エネルギー利用効率が大きい保護シートを用いた場合には、被加工物よりも先に保 護シートがレーザー光により侵食され、保護シートのレーザー光照射部が侵食された 後に下層の被加工物が侵食される。そのため被加工物の分解物は保護シートの侵 食部分力も外部に飛散されるため、保護シートと被加工物との界面部分の汚染を抑 制できる。
[0152] 第 2の本発明のレーザー加工品の製造方法では、基材のエッチング率が 0. 4以上 である保護シートを用いているため、被加工物よりも先に保護シートがレーザー光に よりエッチングされやすぐ保護シートのレーザー光照射部が十分にエッチングされ た後に下層の被加工物がエッチングされる。そのため被加工物の分解物は保護シー トのエッチング部分力 効率的に外部に飛散するため、保護シートと被カ卩ェ物との界 面部分の汚染を抑制できる。
[0153] 第 3 (又は第 4)の本発明のレーザー加工品の製造方法では、吸光係数比が 1以上 である保護シート (又は紫外領域波長 λにおける吸光係数が 20cm— 1以上である基 材を有する保護シート)を使用して ヽるため、被加工物 (又は金属系材料)よりも保護 シートの方がエッチングされやすくなり、保護シートのレーザー光照射部が十分にェ ツチングされた後に下層の被カ卩ェ物がエッチングされる。そのため被加工物の分解 物は保護シートのエッチング部分力も効率的に外部に飛散するため、保護シートと被 加工物との界面部分の汚染を抑制できる。
[0154] 第 5の本発明のレーザー加工品の製造方法では、密度比が 1以上である保護シー トを使用しているため、被カ卩ェ物よりも保護シートのほうがエッチングされやすくなり、 保護シートのレーザー光照射部が十分にエッチングされた後に下層の被加工物がェ ツチングされる。また、第 6の本発明のレーザー加工品の製造方法では、密度が 1. 1 gZcm3以上である基材を有する保護シートを使用しているため、金属系材料よりも 保護シートのほうがエッチングされやすくなり、保護シートのレーザー光照射部が十 分にエッチングされた後に下層の金属系材料がエッチングされる。そのため被カロェ 物 (金属系材料)の分解物は保護シートのエッチング部分力 効率的に外部に飛散 するため、保護シートと被加工物 (金属系材料)との界面部分の汚染を抑制できる。
[0155] 第 7 (又は第 8)の本発明のレーザー加工品の製造方法では、引張強度比が 1以上 である保護シート(又は引張強度が lOOMPa以上である保護シート)を使用している ため、被加工物 (又は金属系材料)よりも保護シートのほうがエッチングされやすくなり 、保護シートのレーザー光照射部が十分にエッチングされた後に下層の被加工物が エッチングされる。そのため被カ卩ェ物の分解物は保護シートのエッチング部分力も効 率的に外部に飛散するため、保護シートと被加工物との界面部分の汚染を抑制でき る。
[0156] 第 9の本発明のレーザー加工品の製造方法では、比熱比が 1未満である保護シー トを使用しているため、被カ卩ェ物よりも保護シートのほうがエッチングされやすくなり、 保護シートのレーザー光照射部が十分にエッチングされた後に下層の被加工物がェ ツチングされる。そのため被カ卩ェ物の分解物は保護シートのエッチング部分力も効率 的に外部に飛散するため、保護シートと被加工物との界面部分の汚染を抑制できる
[0157] 第 10 (又は第 11)の本発明のレーザー加工品の製造方法では、屈折率比が 1以上 である保護シート(又は波長 546nmにおける屈折率が 1. 53以上である基材を有す る保護シート)を使用しているため、被加工物よりも保護シートのほうがエッチングされ やすくなり、保護シートのレーザー光照射部が十分にエッチングされた後に下層の被 加工物がエッチングされる。そのため被カ卩ェ物の分解物は保護シートのエッチング 部分力も効率的に外部に飛散するため、保護シートと被加工物との界面部分の汚染 を抑制できる。
[0158] 第 12 (又は第 13)の本発明のレーザー加工品の製造方法では、総結合エネルギ 一比が 1未満である保護シート(又は総結合エネルギー Aが 800kjZmol未満である 基材を有する保護シート)を使用しているため、被加工物よりも保護シートのほうがェ ツチングされやすくなり、保護シートのレーザー光照射部が十分にエッチングされた 後に下層の被加工物がエッチングされる。そのため被加工物の分解物は保護シート のエッチング部分力も効率的に外部に飛散するため、保護シートと被カ卩ェ物との界 面部分の汚染を抑制できる。
[0159] したがって、前記製造方法によると保護シートと被加工物(レーザー加工品)との界 面部分に分解物が付着することがないため、被加工物をレーザー加工した後に保護 シートをレーザー加工品から容易に剥離することができ、また被加工物のレーザー加 ェ精度を向上させることができる。
実施例
[0160] 以下に、実施例によって本発明を具体的に説明するが、本発明はこれら実施例に よって限定されるものではない。
[0161] (第 1の発明)
〔数平均分子量の測定〕
合成した (メタ)アクリル系ポリマーの数平均分子量は以下の方法で測定した。合成 した(メタ)アクリル系ポリマーを THFに 0. 1 %で溶解させて、 GPC (ゲルパーミエ ーシヨンクロマトグラフィー)を用いてポリスチレン換算により数平均分子量を測定した 。詳しい測定条件は以下の通りである。
GPC装置:東ソー製、 HLC—8120GPC
カラム:東ソー製、(GMHHR— H) + (GMHHR-H) + (G2000HHR) 濃度: 0. lwt%
注入量: 100 1
カラム温度: 40°C
溶離液: THF
〔光透過率の測定〕
基材及び保護シートを任意の大きさに切断し、測定装置として U-3400 (日立製作 所製)を使用し、測定波長 355nmにて光透過率を測定した。なお、保護シートにつ Vヽては粘着剤層側力も測定を行った。
[0162] 実施例 1
ポリエチレンナフタレート (繰り返し単位中の芳香環の重量比: 64重量0 /0)からなる 基材 (厚さ:20 m、波長 355nmにおける光透過率: 0%)上に、紫外線により硬化 可能なアクリル系粘着剤溶液 (1)を塗布、乾燥して粘着剤層 (厚さ 10 m)を形成し て保護シートを得た。この保護シートの波長 355nmにおける光透過率は 0%であつ た。
[0163] なお、アクリル系粘着剤溶液(1)は以下の方法で調製した。ブチルアタリレート Zェ チルアタリレート Z2—ヒドロキシェチルアタリレート Zアクリル酸を重量比 60Z40Z4 Z1で共重合させてなる数平均分子量 80万のアクリル系ポリマー 100重量部、光重 合性化合物としてジペンタエリスリトールモノヒドロキシペンタアタリレート 90重量部、 及び光重合開始剤としてべンジルジメチルケタール (ィルガキュア 651) 5重量部をト ルェン 650重量部に加え、均一に溶解混合してアクリル系粘着剤溶液(1)を調製し た。
[0164] 厚み 100 μ mのシリコンウェハの片面に上記作製した保護シートをロールラミネー ターにて貼り合わせて保護シート付きシリコンウェハを作製した。そして、ガラスェポ キシ榭脂製吸着板をのせた XYステージ上に、保護シート面を上にして保護シート付 きシリコンウェハを配置した。波長 355nm、平均出力 5W、繰り返し周波数 30kHzの YAGレーザーの第三高調波(355nm)を f Θレンズにより保護シート付きシリコンゥェ ハ表面に 25 μ m径に集光して、ガルバノスキャナ一によりレーザー光を 20mmZ秒 の速度でスキャンして切断加工した。このとき、保護シート及びシリコンウェハが切断 していることを確認した。その後、保護シートを剥離してシリコンウェハの保護シート 貼り合わせ面(レーザー光入射面側)のレーザー加工周辺部を観察したところ、分解 物 (付着物)は観察されなカゝつた。
[0165] 比較例 1
実施例 1において、シリコンウェハの片面に保護シートを設けな力つた以外は実施 例 1と同様の方法でシリコンウェハにレーザー加工を施した。その後、シリコンウエノ、 のレーザー光入射面側の表面を観察したところ、飛散した分解物残渣が多量に付着 していた。
[0166] 参考例 1
実施例 1にお 、て、保護シートの基材としてポリビュルアルコールシート(厚さ: 50 ^ m,波長 355nmにおける光透過率: 84. 4%)を用いた以外は実施例 1と同様の 方法でシリコンウェハにレーザー加工を施した。その結果、保護シートは十分に切断 されておらず、下層のシリコンウェハがレーザー加工されており、保護シートとシリコン ウェハとの間に分解物残渣を含む気泡が発生していた。保護シートを剥離し、シリコ ンウェハのレーザー光入射面側の開口部周辺を観察すると、シリコンウェハの分解 物残渣が付着していた。
[0167] 実施例 2
ポリイミド (繰り返し単位中の芳香環の重量比: 64重量%)力 なる基材 (厚さ: 13 m、波長 355nmにおける光透過率: 0%)上に、紫外線により硬化可能なアクリル系 粘着剤溶液 (2)を塗布、乾燥して粘着剤層 (厚さ 10 m)を形成して保護シートを得 た。この保護シートの波長 355nmにおける光透過率は 0%であった。
[0168] なお、アクリル系粘着剤溶液 (2)は以下の方法で調製した。ブチルアタリレート Zェ チルアタリレート Z2—ヒドロキシェチルアタリレートを重量比 50Z50Z16で共重合さ せてなる数平均分子量 50万のアクリル系ポリマー 100重量部に対して、 2—メタクリロ ィルォキシェチルイソシァネート 20重量部を付加反応させ、ポリマー分子内側鎖に 炭素 炭素二重結合を導入した (この時の側鎖の長さは原子数で 13個)。このポリマ 一 100重量部、ポリイソシァネート系架橋剤(コロネート L) 1重量部、及び光重合開始 剤として α -ヒドロキシケトン (ィルガキュア 184) 3重量部をトルエン 350重量部に加 え、均一に溶解混合してアクリル系粘着剤溶液 (2)を調製した。
[0169] 厚み 25 μ mのポリイミドフィルム上に厚さ 18 μ mの銅層を形成した 2層基板に、露 光 ·現像 ·エッチング工程により回路を形成してフレキシブルプリント基板を作製した。 作製したフレキシブルプリント基板と上記保護フィルムをロールラミネーターにて貼り 合わせて保護シート付きフレキシブルプリント基板を作製した。
[0170] そして、アルミナ製のセラミック吸着板をのせた XYステージ上に、保護シート面を上 にして保護シート付きフレキシブルプリント基板を配置した。波長 355nm、平均出力 5W、繰り返し周波数 30kHzの YAGレーザーの第三高調波(355nm)を f 0レンズ により保護シート付きフレキシブルプリント基板表面に 25 m径に集光して、ガルバ ノスキャナ一によりレーザー光を 20mmZ秒の速度でスキャンして切断加工した。こ のとき、保護シート及びフレキシブルプリント基板が切断していることを確認した。その 後、保護シートを剥離してフレキシブルプリント基板の保護シート貼り合わせ面 (レー ザ一光入射面側)のレーザー加工周辺部を観察したところ、分解物 (付着物)は観察 されなかった。
[0171] 実施例 3
実施例 2において、保護シートの基材としてポリエチレンテレフタレートフィルム (繰 り返し単位中の芳香環の重量比: 41重量%、厚さ:50 /ζ πι、波長 355nmにおける光 透過率: 44. 9%)を用いた以外は実施例 2と同様の方法でフレキシブルプリント基板 にレーザー加工を施した。その結果、保護シート及びフレキシブルプリント基板が切 断していることを確認した。その後、保護シートを剥離してフレキシブルプリント基板 の保護シート貼り合わせ面(レーザー光入射面側)のレーザー加工周辺部を観察し たところ、分解物 (付着物)は観察されな力つた。
[0172] 実施例 4
実施例 2にお 、て、保護シートの基材としてポリカーボネートフィルム (繰り返し単位 中の芳香環の重量比: 61重量%、厚さ:20 /ζ πι、波長 355nmにおける光透過率: 0 %)を用いた以外は実施例 2と同様の方法でフレキシブルプリント基板にレーザー加 ェを施した。その結果、保護シート及びフレキシブルプリント基板が切断していること を確認した。その後、保護シートを剥離してフレキシブルプリント基板の保護シート貼 り合わせ面(レーザー光入射面側)のレーザー加工周辺部を観察したところ、分解物 (付着物)は観察されなカゝつた。
[0173] 実施例 5
4ーメチルー 1 ペンテン /1 , 4 ビス { 2— [4 (N, N—ジ(p—トリル)ァミノ)フエ-ル] ビュル }ベンゼンを重量比 97Z3で共重合させてなるポリマーをキャストによりシート 状にして保護シート用の基材を作製した。
[0174] 実施例 2において、保護シートの基材として上記作製した基材 (繰り返し単位中の 芳香環の重量比: 2. 4重量%、厚さ: 10 /ζ πι、波長 355nmにおける光透過率: 5%) を用いた以外は実施例 2と同様の方法でフレキシブルプリント基板にレーザー加工を 施した。その結果、保護シート及びフレキシブルプリント基板が切断していることを確 認した。その後、保護シートを剥離してフレキシブルプリント基板の保護シート貼り合 わせ面(レーザー光入射面側)のレーザー加工周辺部を観察したところ、分解物 (付 着物)は観察されな力つた。
[0175] (第 2の発明)
〔数平均分子量の測定〕
第 1の発明と同様の方法で測定した。
[0176] 〔エッチング率の測定〕
トップハット形状にビーム整形した YAGレーザー(最大出力 5W、繰り返し周波数 3 OkHz)の第三高調波(波長 355nm)を f Θレンズにより集光し、パルス数 50 (pulse) の条件で基材表面に照射した。照射後、基材に形成された溝の深さ m)を光学顕 微鏡で測定した。エッチング速度は下記式により算出される。
エッチング速度 =溝深さ( μ m) Zパルス数 (pulse)
また前記 YAGレーザーのエネルギーフルエンスは 5 (j/cm2)であった。エツチン グ率は、上記エッチング速度とエネルギーフルエンスとから下記式により算出される。 エッチング率 =エッチング速度( μ m/pulse) /エネルギーフルエンス(j/cm2) 実施例 1
ポリスチレン力もなる基材 (厚さ 20 /z m エッチング率: 0. 48)上に、紫外線により 硬化可能なアクリル系粘着剤溶液 ( 1)を塗布、乾燥して粘着剤層 (厚さ 10 m)を形 成して保護シートを得た。
[0177] なお、アクリル系粘着剤溶液(1)は以下の方法で調製した。ブチルアタリレート Zェ チルアタリレート Z2—ヒドロキシェチルアタリレート Zアクリル酸を重量比 60Z40Z4 Z1で共重合させてなる数平均分子量 80万のアクリル系ポリマー 100重量部、光重 合性化合物としてジペンタエリスリトールモノヒドロキシペンタアタリレート 90重量部、 及び光重合開始剤としてべンジルジメチルケタール (ィルガキュア 651) 5重量部をト ルェン 650重量部に加え、均一に溶解混合してアクリル系粘着剤溶液(1)を調製し た。
[0178] 厚み 100 μ mのシリコンウェハの片面に上記作製した保護シートをロールラミネー ターにて貼り合わせて保護シート付きシリコンウェハを作製した。そして、ガラスェポ キシ榭脂製吸着板をのせた XYステージ上に、保護シート面を上にして保護シート付 きシリコンウェハを配置した。波長 355nm、平均出力 5W、繰り返し周波数 30kHzの YAGレーザーの第三高調波(355nm)を f Θレンズにより保護シート付きシリコンゥェ ハ表面に 25 μ m径に集光して、ガルバノスキャナ一によりレーザー光を 20mmZ秒 の速度でスキャンして切断加工した。このとき、保護シート及びシリコンウェハが切断 していることを確認した。その後、保護シートを剥離してシリコンウェハの保護シート 貼り合わせ面(レーザー光入射面側)のレーザー加工周辺部を観察したところ、分解 物 (付着物)は観察されなカゝつた。
[0179] 比較例 1
実施例 1において、シリコンウェハの片面に保護シートを設けな力つた以外は実施 例 1と同様の方法でシリコンウェハにレーザー加工を施した。その後、シリコンウエノ、 のレーザー光入射面側の加工周辺部を観察したところ、飛散した分解物残渣が多量 に付着していた。
[0180] 比較例 2
実施例 1において、保護シートの基材としてポリエチレンシート (厚さ 50 m、エッチ ング率: 0)を用いた以外は実施例 1と同様の方法でシリコンウェハにレーザー加工を 施した。その結果、保護シートは切断されておらず、下層のシリコンウェハがレーザ 一加工されており、保護シートとシリコンウェハとの間に分解物残渣を含む気泡が発 生していた。保護シートを剥離し、シリコンウェハのレーザー光入射面側の開口部周 辺を観察すると、シリコンウェハの分解物残渣が多量に付着して 、た。
[0181] 比較例 3
実施例 1において、保護シートの基材としてポリウレタンシート (厚さ 50 m、エッチ ング率: 0. 26)を用いた以外は実施例 1と同様の方法でシリコンウェハにレーザー加 ェを施した。その結果、保護シートは切断されておらず、下層のシリコンウェハがレー ザ一加工されており、保護シートとシリコンウェハとの間に分解物残渣を含む気泡が 発生していた。保護シートを剥離し、シリコンウェハのレーザー光入射面側の開口部 周辺を観察すると、シリコンウェハの分解物残渣が多量に付着していた。
[0182] 実施例 2
シリコンゴムシートからなる基材 (厚さ 20 m、エッチング率: 0. 52)上に、紫外線に より硬化可能なアクリル系粘着剤溶液 (2)を塗布、乾燥して粘着剤層 (厚さ 10 m) を形成して保護シートを得た。
[0183] なお、アクリル系粘着剤溶液 (2)は以下の方法で調製した。ブチルアタリレート Zェ チルアタリレート Z2—ヒドロキシェチルアタリレートを重量比 50Z50Z16で共重合さ せてなる数平均分子量 50万のアクリル系ポリマー 100重量部に対して、 2—メタクリロ ィルォキシェチルイソシァネート 20重量部を付加反応させ、ポリマー分子内側鎖に 炭素 炭素二重結合を導入した (この時の側鎖の長さは原子数で 13個)。このポリマ 一 100重量部、ポリイソシァネート系架橋剤(コロネート L) 1重量部、及び光重合開始 剤として α -ヒドロキシケトン(ィルガキュア 184) 3重量部をトルエン 400重量部〖こカロ え、均一に溶解混合してアクリル系粘着剤溶液 (2)を調製した。
[0184] 厚み 25 μ mのポリイミドフィルム上に厚さ 18 μ mの銅層を形成した 2層基板に、露 光 ·現像 ·エッチング工程により回路を形成してフレキシブルプリント基板を作製した。 作製したフレキシブルプリント基板と上記保護フィルムをロールラミネーターにて貼り 合わせて保護シート付きフレキシブルプリント基板を作製した。
[0185] そして、アルミナ製のセラミック吸着板をのせた XYステージ上に、保護シート面を上 にして保護シート付きフレキシブルプリント基板を配置した。波長 355nm、平均出力 5W、繰り返し周波数 30kHzの YAGレーザーの第三高調波(355nm)を f 0レンズ により保護シート付きフレキシブルプリント基板表面に 25 m径に集光して、ガルバ ノスキャナ一によりレーザー光を 20mmZ秒の速度でスキャンして切断加工した。こ のとき、保護シート及びフレキシブルプリント基板が切断していることを確認した。その 後、保護シートを剥離してフレキシブルプリント基板の保護シート貼り合わせ面 (レー ザ一光入射面側)のレーザー加工周辺部を観察したところ、分解物 (付着物)は観察 されなかった。
[0186] 実施例 3
実施例 2において、保護シートの基材としてポリイミドフィルム (厚さ 13 /ζ πι、エッチ ング率: 0. 95)を用いた以外は実施例 2と同様の方法でフレキシブルプリント基板に レーザー加工を施した。その結果、保護シート及びフレキシブルプリント基板が切断 していることを確認した。その後、保護シートを剥離してフレキシブルプリント基板の 保護シート貼り合わせ面 (レーザー光入射面側)のレーザー加工周辺部を観察したと ころ、分解物 (付着物)は観察されなカゝつた。
[0187] 実施例 4
ポリプロピレン 99重量部とカーボンブラック 1重量部とを混合し、溶融押出しにより 厚さ 20 μ mのポリプロピレンシートを作製した。
[0188] 実施例 2にお 、て、保護シートの基材として前記ポリプロピレンシート(エッチング率
: 0. 45)を用いた以外は実施例 2と同様の方法でシリコンウェハにレーザー加工を施 した。その後、保護シートを剥離してフレキシブルプリント基板の保護シート貼り合わ せ面 (レーザー光入射面側)のレーザー加工周辺部を観察したところ、分解物 (付着 物)は観察されな力つた。
[0189] 上記実施例及び比較例から明らかなように、基材のエッチング率が 0. 4以上の保 護シートを用いることにより、分解物による被加工物表面の汚染を効果的に抑制する ことができる。
[0190] (第 3及び 4の発明)
〔数平均分子量の測定〕
第 1の発明と同様の方法で測定した。
[0191] 〔吸光係数の測定〕 使用した基材及び被加工物の吸光係数は、分光光度計(日立製作所製、 U - 341 0)を用いて波長 355nmにおける吸光度を測定し、その吸光度の値から算出した。
[0192] 実施例 1
被カ卩ェ物としてポリスチレンシート(厚さ 100 /z m 吸光係数 48cm— を用いた。ポ リウレタン力もなる基材 (厚さ 20 /z m 吸光係数 125cm— 上に、紫外線により硬化可 能なアクリル系粘着剤溶液 (1)を塗布、乾燥して粘着剤層 (厚さ 10 m)を形成して 保護シートを作製した。吸光係数比は 2. 6であった。
[0193] なお、前記アクリル系粘着剤溶液(1)は以下の方法で調製した。ブチルアタリレート Zェチルアタリレート Z2—ヒドロキシェチルアタリレート Zアクリル酸を重量比 60Z40 Z4Z1で共重合させてなる数平均分子量 80万のアクリル系ポリマー 100重量部、光 重合性化合物としてジペンタエリスリトールモノヒドロキシペンタアタリレート 90重量部 、光重合開始剤としてべンジルジメチルケタール (ィルガキュア 651) 5重量部、及び ポリイソシァネートイ匕合物(日本ポリウレタン社製、コロネート L) 2重量部をトルエン 65 0重量部に加え、均一に溶解混合してアクリル系粘着剤溶液(1)を調製した。
[0194] 前記ポリスチレンシートの片面に上記作製した保護シートをロールラミネーターにて 貼り合わせて保護シート付きポリスチレンシートを作製した。
[0195] そして、ガラスエポキシ榭脂製吸着板をのせた XYステージ上に、保護シート面を上 にして保護シート付きポリスチレンシートを配置した。波長 355nm、平均出力 5W、繰 り返し周波数 30kHzの YAGレーザーの第三高調波(355nm)を f Θレンズにより保 護シート付きポリスチレンシート表面に 25 m径に集光して、ガルバノスキャナ一によ りレーザー光を 20mmZ秒の速度でスキャンして切断した。このとき、保護シート及び ポリスチレンシートが切断していることを確認した。そして、保護シートに紫外線を照 射して粘着剤層を硬化させた。その後、保護シートを剥離してポリスチレンシートの保 護シート貼り合わせ面(レーザー光入射面側)のレーザー加工周辺部を観察したとこ ろ、分解物 (付着物)は観察されなカゝつた。
[0196] 比較例 1
実施例 1において、ポリスチレンシートの片面に保護シートを設けな力つた以外は 実施例 1と同様の方法でポリスチレンシートにレーザー加工を施した。その後、ポリス チレンシートのレーザー光入射面側の加工周辺部を観察したところ、飛散した分解 物残渣が多量に付着して 、た。
[0197] 比較例 2
実施例 1において、保護シートの基材としてエチレン 酢酸ビュル共重合体シート( 厚さ 100 /z m、吸光係数 19cm— を用いた以外は実施例 1と同様の方法でポリスチ レンシートにレーザー加工を施した。吸光係数比は 0. 4であった。その結果、保護シ ートは切断されておらず、下層のポリスチレンシートがレーザー加工されており、保護 シートとポリスチレンシートとの間に分解物残渣を含む気泡が発生していた。そして、 保護シートに紫外線を照射して粘着剤層を硬化させた。その後、保護シートを剥離し 、ポリスチレンシートのレーザー光入射面側の開口部周辺を観察すると、ポリスチレン の分解物残渣が多量に付着して 、た。
[0198] 実施例 2
加工する材料として、シリコンウェハ (厚さ 100 /z m)を用いた。保護シートの基材と してシリコンゴムシート (厚さ 25 /ζ πι、吸光係数 20. 7cm— を用いた以外は実施例 1 と同様の方法により保護シート付きシリコンウェハを作製した。
[0199] また、ポリエチレン力もなる基材 (厚さ 100 m)上に、前記アクリル系粘着剤溶液( 1)を塗布、乾燥して粘着剤層 (厚さ 10 m)を形成して粘着シートを製造した。該粘 着シートを前記保護シート付きシリコンウェハの裏面側に貼付けて、保護'粘着シート 付きシリコンウェハを作製した。その後、実施例 1と同様の方法で切断加工をしたとこ ろ、保護シート及びシリコンウェハは切断されていた力 粘着シートは切断されていな かった。そして、保護シートに紫外線を照射して粘着剤層を硬化させた。その後、保 護シートを剥離してシリコンウェハの保護シート貼り合わせ面 (レーザー光入射面側) のレーザー加工周辺部を観察したところ、分解物 (付着物)は観察されなカゝつた。
[0200] 実施例 3
保護シートの基材としてポリエチレンテレフタレートシート (厚さ 25 m、吸光係数 8 Ocm— を用いた以外は実施例 2と同様の方法により保護'粘着シート付きシリコンゥ ェハを作製した。その後、実施例 1と同様の方法で切断加工をしたところ、保護シート 及びシリコンウェハは切断されていた力 粘着シートは切断されていな力つた。そして 、保護シートに紫外線を照射して粘着剤層を硬化させた。その後、保護シートを剥離 してシリコンウェハの保護シート貼り合わせ面(レーザー光入射面側)のレーザー加 工周辺部を観察したところ、分解物 (付着物)は観察されなカゝつた。
[0201] 比較例 3
保護シートの基材としてエチレン 酢酸ビュル共重合体シート (厚さ 100 m、吸光 係数 19cm— を用いた以外は実施例 2と同様の方法により保護'粘着シート付きシリ コンウェハを作製した。
[0202] その後、実施例 1と同様の方法で切断加工をしたところ、保護シートは切断されて おらず、下層のシリコンウェハがレーザー加工されており、保護シートとシリコンゥェ ノ、との間に分解物残渣を含む気泡が発生していた。そして、保護シートに紫外線を 照射して粘着剤層を硬化させた。その後、保護シートを剥離し、シリコンウェハのレー ザ一光入射面側の開口部周辺を観察すると、分解物残渣が多量に付着していた。
[0203] 上記実施例及び比較例力も明らかなように、吸光係数比力 ^以上である保護シート を使用することにより、分解物による被加工物表面の汚染を効果的に抑制することが できる。また、金属系材料を加工する場合には、吸光係数が 20cm— 1以上である基材 を有する保護シートを用いることにより、分解物による金属系材料表面の汚染を効果 的に抑制することができる。そして、その後の分解物除去工程を大幅に簡素化できる ため、環境負荷低減に寄与できるだけでなく生産性の向上をも図ることができる。
[0204] (第 5及び 6の発明)
〔数平均分子量の測定〕
第 1の発明と同様の方法で測定した。
[0205] 〔密度測定〕
ピクノメータと水を用いて保護シートに用いる基材及び被加工物の密度を測定した
[0206] 実施例 1
被カ卩ェ物としてポリカーボネートシート(厚さ 100 /z m 密度 1. 20g/cm3)を用い た。密度比が 1以上になるように、ポリエチレンナフタレートからなる基材 (厚さ 20 /z m 、密度 1. 36gZcm3)上に、紫外線により硬化可能なアクリル系粘着剤溶液(1)を塗 布、乾燥して粘着剤層 (厚さ 10 m)を形成して保護シートを作製した。密度比は 1. 13であった。
[0207] なお、前記アクリル系粘着剤溶液(1)は以下の方法で調製した。ブチルアタリレート Zェチルアタリレート Z2—ヒドロキシェチルアタリレート Zアクリル酸を重量比 65Z35 Z4Z1で共重合させてなる数平均分子量 70万のアクリル系ポリマー 100重量部、光 重合性化合物としてジペンタエリスリトールモノヒドロキシペンタアタリレート 90重量部 、光重合開始剤としてべンジルジメチルケタール (ィルガキュア 651) 5重量部、及び ポリイソシァネートイ匕合物(日本ポリウレタン社製、コロネート L) 2重量部をトルエン 65 0重量部に加え、均一に溶解混合してアクリル系粘着剤溶液(1)を調製した。
[0208] 前記ポリカーボネートシートの片面に上記作製した保護シートをロールラミネーター にて貼り合わせて保護シート付きポリカーボネートシートを作製した。
[0209] そして、ガラスエポキシ榭脂製吸着板をのせた XYステージ上に、保護シート面を上 にして保護シート付きポリカーボネートシートを配置した。波長 355nm、平均出力 5 W、繰り返し周波数 30kHzの YAGレーザーの第三高調波(355nm)を f Θレンズに より保護シート付きポリカーボネートシート表面に 25 m径に集光して、ガルバノスキ ャナ一によりレーザー光を 20mmZ秒の速度でスキャンして切断した。このとき、保護 シート及びポリカーボネートシートが切断していることを確認した。そして、保護シート に紫外線を照射して粘着剤層を硬化させた。その後、保護シートを剥離してポリカー ボネートシートの保護シート貼り合わせ面(レーザー光入射面側)のレーザー加工周 辺部を観察したところ、分解物 (付着物)は観察されなカゝつた。
[0210] 比較例 1
実施例 1において、ポリカーボネートシートの片面に保護シートを設けな力つた以外 は実施例 1と同様の方法でポリカーボネートシートにレーザー加工を施した。その後 、ポリカーボネートシートのレーザー光入射面側の加工周辺部を観察したところ、飛 散した分解物残渣が多量に付着して 、た。
[0211] 比較例 2
実施例 1において、保護シートの基材としてポリノルボルネン系シート(厚さ 100 μ m 、密度 1. OOgZcm3)を用いた以外は実施例 1と同様の方法でポリカーボネートシ一 トにレーザー加工を施した。密度比は 0. 83であった。
[0212] その結果、保護シートは切断されておらず、下層のポリカーボネートシートがレーザ 一加工されており、保護シートとポリカーボネートシートとの間に分解物残渣を含む気 泡が発生していた。そして、保護シートに紫外線を照射して粘着剤層を硬化させた。 その後、保護シートを剥離し、ポリカーボネートシートのレーザー光入射面側の開口 部周辺を観察すると、ポリカーボネートの分解物残渣が多量に付着していた。
[0213] 実施例 2
被カロェ物としてポリスチレンシート(厚さ 100 /z m 密度 1. 04gZcm3)を用いた。保 護シートの基材としてポリイミドシート (厚さ 20 m、密度 1. 5gZcm3)を用いた以外 は実施例 1と同様の方法により保護シート付きポリスチレンシートを作製した。密度比 は 1. 44であった。また、ポリビュルアルコールからなる基材 (厚さ 75 m)上に、前記 アクリル系粘着剤溶液 (1)を塗布、乾燥して粘着剤層 (厚さ 10 m)を形成して粘着 シートを製造した。該粘着シートを前記保護シート付きポリスチレンシートの裏面側に 貼付けて、保護'粘着シート付きポリスチレンシートを作製した。その後、実施例 1と同 様の方法で切断加工をしたところ、保護シート及びポリスチレンシートは切断されて いたが、粘着シートは切断されていな力つた。そして、保護シートに紫外線を照射し て粘着剤層を硬化させた。その後、保護シートを剥離してポリスチレンシートの保護 シート貼り合わせ面(レーザー光入射面側)のレーザー加工周辺部を観察したところ 、分解物 (付着物)は観察されなカゝつた。
[0214] 実施例 3
ポリスチレンシートの代わりに、シリコンウェハ (厚さ 100 m)を用いた以外は実施 例 2と同様の方法により保護'粘着シート付きシリコンウェハを作製した。その後、実 施例 1と同様の方法で切断加工をしたところ、保護シート及びシリコンウェハは切断さ れていたが、粘着シートは切断されていな力つた。そして、保護シートに紫外線を照 射して粘着剤層を硬化させた。その後、保護シートを剥離してシリコンウェハの保護 シート貼り合わせ面(レーザー光入射面側)のレーザー加工周辺部を観察したところ 、分解物 (付着物)は観察されなカゝつた。
[0215] 比較例 3 保護シートの基材としてポリノルボルネン系シート(厚さ 100 μ m、密度 1. OOg/c m3)を用いた以外は実施例 3と同様の方法により保護'粘着シート付きシリコンウェハ を作製した。
[0216] その後、実施例 1と同様の方法で切断加工をしたところ、保護シートは切断されて おらず、下層のシリコンウェハがレーザー加工されており、保護シートとシリコンゥェ ノ、との間に分解物残渣を含む気泡が発生していた。そして、保護シートに紫外線を 照射して粘着剤層を硬化させた。その後、保護シートを剥離し、シリコンウェハのレー ザ一光入射面側の開口部周辺を観察すると、分解物残渣が多量に付着していた。
[0217] 上記実施例及び比較例力も明らかなように、密度比が 1以上である保護シート、又 は密度が 1. lgZcm3以上である基材を有する保護シートを使用することにより、分 解物による被加工物表面の汚染を効果的に抑制することができる。そして、その後の 分解物除去工程を大幅に簡素化できるため、環境負荷低減に寄与できるだけでなく 生産性の向上をも図ることができる。
[0218] (第 7及び 8の発明)
〔数平均分子量の測定〕
第 1の発明と同様の方法で測定した。
[0219] 〔引張強度の測定〕
使用した保護フィルム及び被加工物の引張強度は、テンシロン(島津オートグラフ AGS50-D)を用いて測定した。測定条件は下記の通りである。
I張速度: 20mmZmin
チャック間距離: 100mm
サンプル幅: 10mm
実施例 1
被カ卩ェ物としてポリスチレンシート(厚さ 100 m、引張強度 44MPa)を用いた。引 張強度比が 1以上になるように、ポリエチレンナフタレートからなる基材 (厚さ 50 m) 上に、紫外線により硬化可能なアクリル系粘着剤溶液(1)を塗布、乾燥して粘着剤層 (厚さ 10 μ m)を形成して保護シート(引張強度 282MPa)を作製した。引張強度比 は 6. 4であった。 [0220] なお、前記アクリル系粘着剤溶液(1)は以下の方法で調製した。ブチルアタリレート Zェチルアタリレート Z2—ヒドロキシェチルアタリレート Zアクリル酸を重量比 65Z35 Z4Z1で共重合させてなる数平均分子量 70万のアクリル系ポリマー 100重量部、光 重合性化合物としてジペンタエリスリトールモノヒドロキシペンタアタリレート 90重量部 、光重合開始剤としてべンジルジメチルケタール (ィルガキュア 651) 5重量部、及び ポリイソシァネートイ匕合物(日本ポリウレタン社製、コロネート L) 2重量部をトルエン 65 0重量部に加え、均一に溶解混合してアクリル系粘着剤溶液(1)を調製した。
[0221] 前記ポリスチレンシートの片面に上記作製した保護シートをロールラミネーターにて 貼り合わせて保護シート付きポリスチレンシートを作製した。
[0222] そして、ガラスエポキシ榭脂製吸着板をのせた XYステージ上に、保護シート面を上 にして保護シート付きポリスチレンシートを配置した。波長 355nm、平均出力 5W、繰 り返し周波数 30kHzの YAGレーザーの第三高調波(355nm)を f Θレンズにより保 護シート付きポリスチレンシート表面に 25 m径に集光して、ガルバノスキャナ一によ りレーザー光を 20mmZ秒の速度でスキャンして切断した。このとき、保護シート及び ポリスチレンシートが切断していることを確認した。そして、保護シートに紫外線を照 射して粘着剤層を硬化させた。その後、保護シートを剥離してポリスチレンシートの保 護シート貼り合わせ面(レーザー光入射面側)のレーザー加工周辺部を観察したとこ ろ、分解物 (付着物)は観察されなカゝつた。
[0223] 比較例 1
実施例 1において、ポリスチレンシートの片面に保護シートを設けな力つた以外は 実施例 1と同様の方法でポリスチレンシートにレーザー加工を施した。その後、ポリス チレンシートのレーザー光入射面側の加工周辺部を観察したところ、飛散した分解 物残渣が多量に付着して 、た。
[0224] 比較例 2
実施例 1において、保護シートの基材としてエチレン 酢酸ビュル共重合体シート( 厚さ 100 /z m)を用いた以外は実施例 1と同様の方法でポリスチレンシートにレーザ 一加工を施した。なお、保護シートの引張強度は 17MPaであり、引張強度比は 0. 4 であった。その結果、保護シートは切断されておらず、下層のポリスチレンシートがレ 一ザ一加工されており、保護シートとポリスチレンシートとの間に分解物残渣を含む 気泡が発生していた。そして、保護シートに紫外線を照射して粘着剤層を硬化させた 。その後、保護シートを剥離し、ポリスチレンシートのレーザー光入射面側の開口部 周辺を観察すると、ポリスチレンの分解物残渣が多量に付着していた。
[0225] 実施例 2
加工する材料としてシリコンウェハ (厚さ 100 m)を用いた。保護シートの基材とし てポリイミドシート (厚さ 25 m)を用いた以外は実施例 1と同様の方法により保護シ ート付きシリコンウェハを作製した。前記保護フィルムの引張強度は 340MPaであつ た。
[0226] また、ポリエチレン力もなる基材 (厚さ 100 m)上に、前記アクリル系粘着剤溶液( 1)を塗布、乾燥して粘着剤層 (厚さ 10 m)を形成して粘着シートを製造した。該粘 着シートを前記保護シート付きシリコンウェハの裏面側に貼付けて、保護'粘着シート 付きシリコンウェハを作製した。その後、実施例 1と同様の方法で切断加工をしたとこ ろ、保護シート及びシリコンウェハは切断されていた力 粘着シートは切断されていな かった。そして、保護シートに紫外線を照射して粘着剤層を硬化させた。その後、保 護シートを剥離してシリコンウェハの保護シート貼り合わせ面 (レーザー光入射面側) のレーザー加工周辺部を観察したところ、分解物 (付着物)は観察されなカゝつた。
[0227] 実施例 3
保護シートの基材としてポリエチレンテレフタレートシート (厚さ 25 m)を用いた以 外は実施例 2と同様の方法により保護'粘着シート付きシリコンウェハを作製した。前 記保護フィルムの引張強度は 140MPaであった。その後、実施例 1と同様の方法で 切断加工をしたところ、保護シート及びシリコンウェハは切断されていたが、粘着シー トは切断されていな力つた。そして、保護シートに紫外線を照射して粘着剤層を硬化 させた。その後、保護シートを剥離してシリコンウェハの保護シート貼り合わせ面 (レ 一ザ一光入射面側)のレーザー加工周辺部を観察したところ、分解物 (付着物)は観 察されなかった。
[0228] 比較例 3
保護シートの基材としてエチレン 酢酸ビュル共重合体シート (厚さ 100 μ m)を用 いた以外は実施例 2と同様の方法により保護'粘着シート付きシリコンウェハを作製し た。前記保護シートの引張強度は 17MPaであった。その後、実施例 1と同様の方法 で切断加工をしたところ、保護シートは切断されておらず、下層のシリコンウェハがレ 一ザ一加工されており、保護シートとシリコンウェハとの間に分解物残渣を含む気泡 が発生していた。そして、保護シートに紫外線を照射して粘着剤層を硬化させた。そ の後、保護シートを剥離し、シリコンウェハのレーザー光入射面側の開口部周辺を観 察すると、分解物残渣が多量に付着していた。
[0229] 上記実施例及び比較例力も明らかなように、引張強度比力 ^以上である保護シート
(又は引張強度が lOOMPa以上である保護シート)を選択して使用することにより、分 解物による被加工物 (又は金属系材料)表面の汚染を効果的に抑制することができ る。そして、その後の分解物除去工程を大幅に簡素化できるため、環境負荷低減に 寄与できるだけでなく生産性の向上をも図ることができる。
[0230] (第 9の発明)
〔数平均分子量の測定〕
第 1の発明と同様の方法で測定した。
[0231] 〔比熱測定〕
熱分析システム(セィコ一インスツルメンッ社製、 DSC EXSTAR6000)を用 、て 保護シートに用いる基材及び被加工物の比熱を測定した。昇温速度 10°CZminで 測定し、空容器、サンプル、及びリファレンス(水)の 3つの DSC曲線を求めた。そし て、下記式により比熱を求めた。
Cps= (Ys/Yr) X (Mr/Ms) X Cpr
Cps :サンプルの比熱
Cpr:リファレンスの比熱(水: 4. 2j/ (g-K) )
Ys:サンプルと空容器の DSC曲線差
Yr:リファレンスと空容器の DSC曲線差
Ms :サンプルの質量
Mr:リファレンスの質量
実施例 1 被カ卩ェ物としてポリイミドシート (厚さ 100 /z m 比熱 1. ljZ(g'K) )を用いた。比熱 比が 1未満になるように、ポリエチレンナフタレートからなる基材 (厚さ 50 /ζ πι、比熱 0 . 75j/ (g'K) )上に、紫外線により硬化可能なアクリル系粘着剤溶液(1)を塗布、乾 燥して粘着剤層 (厚さ 10 m)を形成して保護シートを作製した。比熱比は 0. 68で めつに。
[0232] なお、前記アクリル系粘着剤溶液(1)は以下の方法で調製した。ブチルアタリレート Zェチルアタリレート Z2—ヒドロキシェチルアタリレート Zアクリル酸を重量比 65Z35 Z4Z1で共重合させてなる数平均分子量 70万のアクリル系ポリマー 100重量部、光 重合性化合物としてジペンタエリスリトールモノヒドロキシペンタアタリレート 90重量部 、光重合開始剤としてべンジルジメチルケタール (ィルガキュア 651) 5重量部、 及びポリイソシァネートイ匕合物(日本ポリウレタン社製、コロネート L) 2重量部をトルェ ン 650重量部に加え、均一に溶解混合してアクリル系粘着剤溶液(1)を調製した。
[0233] 前記ポリイミドシートの片面に上記作製した保護シートをロールラミネーターにて貼 り合わせて保護シート付きポリイミドシートを作製した。
[0234] そして、ガラスエポキシ榭脂製吸着板をのせた XYステージ上に、保護シート面を上 にして保護シート付きポリイミドシートを配置した。波長 355nm、平均出力 5W、繰り 返し周波数 30kHzの YAGレーザーの第三高調波(355nm)を f Θレンズにより保護 シート付きポリイミドシート表面に 25 m径に集光して、ガルバノスキャナ一によりレ 一ザ一光を 20mmZ秒の速度でスキャンして切断した。このとき、保護シート及びポ リイミドシートが切断していることを確認した。そして、保護シートに紫外線を照射して 粘着剤層を硬化させた。その後、保護シートを剥離してポリイミドシートの保護シート 貼り合わせ面(レーザー光入射面側)のレーザー加工周辺部を観察したところ、分解 物 (付着物)は観察されなカゝつた。
[0235] 比較例 1
実施例 1において、ポリイミドシートの片面に保護シートを設けな力つた以外は実施 例 1と同様の方法でポリイミドシートにレーザー加工を施した。その後、ポリイミドシート のレーザー光入射面側の加工周辺部を観察したところ、飛散した分解物残渣が多量 に付着していた。 [0236] 比較例 2
実施例 1において、保護シートの基材としてエチレン 酢酸ビュル共重合体シート( 厚さ 100 /ζ πι、比熱 2. 2j/ (g'K) )を用いた以外は実施例 1と同様の方法でポリイミ ドシートにレーザー加工を施した。比熱比は 2. 0であった。
[0237] その結果、保護シートは切断されておらず、下層のポリイミドシートがレーザー加工 されており、保護シートとポリイミドシートとの間に分解物残渣を含む気泡が発生して いた。そして、保護シートに紫外線を照射して粘着剤層を硬化させた。その後、保護 シートを剥離し、ポリイミドシートのレーザー光入射面側の開口部周辺を観察すると、 ポリイミドの分解物残渣が多量に付着して 、た。
[0238] 実施例 2
被カ卩ェ物としてシリコンウェハ(厚さ 100 m、比熱 0. 77j/ (g'K) )を用いた以外 は実施例 1と同様の方法により保護シート付きシリコンウェハを作製した。比熱比は 0 . 97であった。
[0239] また、ポリエチレン力もなる基材 (厚さ 100 m)上に、前記アクリル系粘着剤溶液( 1)を塗布、乾燥して粘着剤層 (厚さ 10 m)を形成して粘着シートを製造した。該粘 着シートを前記保護シート付きシリコンウェハの裏面側に貼付けて、保護'粘着シート 付きシリコンウェハを作製した。その後、実施例 1と同様の方法で切断加工をしたとこ ろ、保護シート及びシリコンウェハは切断されていた力 粘着シートは切断されていな かった。そして、保護シートに紫外線を照射して粘着剤層を硬化させた。その後、保 護シートを剥離してシリコンウェハの保護シート貼り合わせ面 (レーザー光入射面側) のレーザー加工周辺部を観察したところ、分解物 (付着物)は観察されなカゝつた。
[0240] 実施例 3
比熱比が 1未満になるように、保護シートの基材としてポリウレタンシート (厚さ 25 m、 0. 48jZ (g'K) )を用いた以外は実施例 2と同様の方法により保護 ·粘着シート 付きシリコンウェハを作製した。比熱比は 0. 62であった。その後、実施例 1と同様の 方法で切断加工をしたところ、保護シート及びシリコンウェハは切断されていた力 粘 着シートは切断されていな力つた。そして、保護シートに紫外線を照射して粘着剤層 を硬化させた。その後、保護シートを剥離してシリコンウェハの保護シート貼り合わせ 面 (レーザー光入射面側)のレーザー加工周辺部を観察したところ、分解物 (付着物 )は観察されな力つた。
[0241] 上記実施例及び比較例力も明らかなように、比熱比が 1未満である保護シートを使 用することにより、分解物による被加工物表面の汚染を効果的に抑制することができ る。そして、その後の分解物除去工程を大幅に簡素化できるため、環境負荷低減に 寄与できるだけでなく生産性の向上をも図ることができる。
[0242] (第 10及び 11の発明)
〔数平均分子量の測定〕
第 1の発明と同様の方法で測定した。
[0243] 〔屈折率の測定〕
使用した基材及び有機系被加工物の屈折率は、アッベ屈折計 (ATAGO製、 DR- M4)を用いて測定した。測定波長は 546nmである。
[0244] 実施例 1
被カ卩ェ物としてポリプロピレンシート (厚さ 60 m、屈折率 1. 51)を用いた。ポリス チレン力もなる基材 (厚さ 20 m、屈折率 1. 59)上に、紫外線により硬化可能なァク リル系粘着剤溶液 (1)を塗布、乾燥して粘着剤層 (厚さ 10 m)を形成して保護シー トを作製した。屈折率比は 1. 05であった。
[0245] なお、前記アクリル系粘着剤溶液(1)は以下の方法で調製した。ブチルアタリレート Zェチルアタリレート Z2—ヒドロキシェチルアタリレート Zアクリル酸を重量比 60Z40 Z4Z1で共重合させてなる数平均分子量 80万のアクリル系ポリマー 100重量部、光 重合性化合物としてジペンタエリスリトールモノヒドロキシペンタアタリレート 90重量部 、光重合開始剤としてべンジルジメチルケタール (ィルガキュア 651) 5重量部、及び ポリイソシァネートイ匕合物(日本ポリウレタン社製、コロネート L) 2重量部をトルエン 65 0重量部に加え、均一に溶解混合してアクリル系粘着剤溶液(1)を調製した。
[0246] 前記ポリプロピレンシートの片面に上記作製した保護シートをロールラミネーターに て貼り合わせて保護シート付きポリプロピレンシートを作製した。
[0247] そして、ガラスエポキシ榭脂製吸着板をのせた XYステージ上に、保護シート面を上 にして保護シート付きポリプロピレンシートを配置した。波長 355nm、平均出力 5W、 繰り返し周波数 30kHzの YAGレーザーの第三高調波(355nm)を f Θレンズにより 保護シート付きポリプロピレンシート表面に 25 m径に集光して、ガルバノスキャナ 一によりレーザー光を 20mmZ秒の速度でスキャンして切断した。このとき、保護シ ート及びポリプロピレンシートが切断していることを確認した。そして、保護シートに紫 外線を照射して粘着剤層を硬化させた。その後、保護シートを剥離してポリプロピレ ンシートの保護シート貼り合わせ面(レーザー光入射面側)のレーザー加工周辺部を 観察したところ、分解物 (付着物)は観察されなカゝつた。
[0248] 比較例 1
実施例 1において、ポリプロピレンシートの片面に保護シートを設けな力つた以外は 実施例 1と同様の方法でポリプロピレンシートにレーザー加工を施した。その後、ポリ プロピレンシートのレーザー光入射面側の加工周辺部を観察したところ、飛散した分 解物残渣が多量に付着して 、た。
[0249] 比較例 2
実施例 1において、保護シートの基材としてポリメチルペンテンシート (厚さ 100 m 、屈折率 1. 46)を用いた以外は実施例 1と同様の方法でポリプロピレンシートにレー ザ一加工を施した。屈折率比は 0. 97であった。その結果、保護シートは切断されて おらず、下層のポリプロピレンシートがレーザー加工されており、保護シートとポリプロ ピレンシートとの間に分解物残渣を含む気泡が発生していた。そして、保護シートに 紫外線を照射して粘着剤層を硬化させた。その後、保護シートを剥離し、ポリプロピ レンシートのレーザー光入射面側の開口部周辺を観察すると、ポリプロピレンの分解 物残渣が多量に付着して 、た。
[0250] 実施例 2
被カ卩ェ物としてポリカーボネートシート(厚さ 100 m、屈折率 1. 59)を用いた。保 護シートの基材としてポリエチレンテレフタレートシート (厚さ 20 /z m 屈折率 1. 66) を用いた以外は実施例 1と同様の方法により保護シート付きポリカーボネートシートを 作製した。屈折率比は 1. 04であった。
[0251] また、ポリエチレン力もなる基材 (厚さ 100 m)上に、前記アクリル系粘着剤溶液( 1)を塗布、乾燥して粘着剤層 (厚さ 10 m)を形成して粘着シートを製造した。該粘 着シートを前記保護シート付きポリカーボネートシートの裏面側に貼付けて、保護'粘 着シート付きポリカーボネートシートを作製した。その後、実施例 1と同様の方法で切 断加工をしたところ、保護シート及びポリカーボネートシートは切断されていた力 粘 着シートは切断されていな力つた。そして、保護シートに紫外線を照射して粘着剤層 を硬化させた。その後、保護シートを剥離してポリカーボネートシートの保護シート貼 り合わせ面(レーザー光入射面側)のレーザー加工周辺部を観察したところ、分解物 (付着物)は観察されなカゝつた。
[0252] 実施例 3
ポリカーボネートシートの代わりに、シリコンウェハ(厚さ 100 μ m)を用いた以外は 実施例 2と同様の方法により保護'粘着シート付きシリコンウェハを作製した。その後 、実施例 1と同様の方法で切断加工をしたところ、保護シート及びシリコンウェハは切 断されていたが、粘着シートは切断されていな力つた。そして、保護シートに紫外線 を照射して粘着剤層を硬化させた。その後、保護シートを剥離してシリコンウェハの 保護シート貼り合わせ面 (レーザー光入射面側)のレーザー加工周辺部を観察したと ころ、分解物 (付着物)は観察されなカゝつた。
[0253] 比較例 3
保護シートの基材としてポリプロピレンシート (厚さ 60 m、屈折率 1. 51)を用いた 以外は実施例 3と同様の方法により保護'粘着シート付きシリコンウェハを作製した。 その後、実施例 1と同様の方法で切断加工をしたところ、保護シートは切断されてお らず、下層のシリコンウェハがレーザー加工されており、保護シートとシリコンウェハと の間に分解物残渣を含む気泡が発生していた。そして、保護シートに紫外線を照射 して粘着剤層を硬化させた。その後、保護シートを剥離し、シリコンウェハのレーザー 光入射面側の開口部周辺を観察すると、分解物残渣が多量に付着していた。
[0254] 上記実施例及び比較例力も明らかなように、屈折率比力 以上である保護シート、 又は波長 546nmにおける屈折率が 1. 53以上である基材を有する保護シートを使 用することにより、分解物による被加工物表面の汚染を効果的に抑制することができ る。そして、その後の分解物除去工程を大幅に簡素化できるため、環境負荷低減に 寄与できるだけでなく生産性の向上をも図ることができる。 [0255] (第 12及び 13の発明)
〔数平均分子量の測定〕
第 1の発明と同様の方法で測定した。
[0256] 実施例 1
被カ卩ェ物としてポリカーボネートシート(厚さ 100 μ m、総結合エネルギー B : 720kJ / ol)を用い 7こ。
[0257] 総結合エネルギー比が 1未満になるように、ポリエチレンナフタレートからなる基材( 厚さ 50 /ζ πι、総結合エネルギー A: 692kjZmol)上に、紫外線により硬化可能なァ クリル系粘着剤溶液 ( 1)を塗布、乾燥して粘着剤層 (厚さ 10 m)を形成して保護シ ートを作製した。総結合エネルギー比は 0. 96であった。
[0258] なお、前記アクリル系粘着剤溶液(1)は以下の方法で調製した。ブチルアタリレート Zェチルアタリレート Z2—ヒドロキシェチルアタリレート Zアクリル酸を重量比 65Z35 Z4Z1で共重合させてなる数平均分子量 70万のアクリル系ポリマー 100重量部、光 重合性化合物としてジペンタエリスリトールモノヒドロキシペンタアタリレート 90重量部 、光重合開始剤としてべンジルジメチルケタール (ィルガキュア 651) 5重量部、及び ポリイソシァネートイ匕合物(日本ポリウレタン社製、コロネート L) 2重量部をトルエン 65 0重量部に加え、均一に溶解混合してアクリル系粘着剤溶液(1)を調製した。
[0259] 前記ポリカーボネートシートの片面に上記作製した保護シートをロールラミネーター にて貼り合わせて保護シート付きポリカーボネートシートを作製した。
[0260] そして、ガラスエポキシ榭脂製吸着板をのせた XYステージ上に、保護シート面を上 にして保護シート付きポリカーボネートシートを配置した。波長 355nm、平均出力 5 W、繰り返し周波数 30kHzの YAGレーザーの第三高調波(355nm)を f Θレンズに より保護シート付きポリカーボネートシート表面に 25 m径に集光して、ガルバノスキ ャナ一によりレーザー光を 20mmZ秒の速度でスキャンして切断した。このとき、保護 シート及びポリカーボネートシートが切断していることを確認した。そして、保護シート に紫外線を照射して粘着剤層を硬化させた。その後、保護シートを剥離してポリカー ボネートシートの保護シート貼り合わせ面(レーザー光入射面側)のレーザー加工周 辺部を観察したところ、分解物 (付着物)は観察されなカゝつた。 [0261] 比較例 1
実施例 1において、ポリカーボネートシートの片面に保護シートを設けな力つた以外 は実施例 1と同様の方法でポリカーボネートシートにレーザー加工を施した。その後 、ポリカーボネートシートのレーザー光入射面側の加工周辺部を観察したところ、飛 散した分解物残渣が多量に付着して 、た。
[0262] 比較例 2
実施例 1において、保護シートの基材としてエチレン 酢酸ビュル共重合体シート( 厚さ 100 /z m、総結合エネルギー A: 962kjZmol)を用いた以外は実施例 1と同様 の方法でポリカーボネートシートにレーザー加工を施した。総結合エネルギー比は 1 . 34であった。その結果、保護シートは切断されておらず、下層のポリカーボネートシ ートがレーザー加工されており、保護シートとポリカーボネートシートとの間に分解物 残渣を含む気泡が発生していた。そして、保護シートに紫外線を照射して粘着剤層 を硬化させた。その後、保護シートを剥離し、ポリカーボネートシートのレーザー光入 射面側の開口部周辺を観察すると、ポリカーボネートの分解物残渣が多量に付着し ていた。
[0263] 実施例 2
加工する材料として、シリコンウェハ (厚さ 100 m)を用いた以外は実施例 1と同様 の方法で保護シート付きシリコンウェハを作製した。
[0264] また、ポリエチレン力もなる基材 (厚さ 100 m)上に、前記アクリル系粘着剤溶液( 1)を塗布、乾燥して粘着剤層 (厚さ 10 m)を形成して粘着シートを製造した。該粘 着シートを前記保護シート付きシリコンウェハの裏面側に貼付けて、保護'粘着シート 付きシリコンウェハを作製した。
[0265] その後、実施例 1と同様の方法で切断加工をしたところ、保護シート及びシリコンゥ ェハは切断されていたが、粘着シートは切断されていな力つた。そして、保護シート に紫外線を照射して粘着剤層を硬化させた。その後、保護シートを剥離してシリコン ウェハの保護シート貼り合わせ面(レーザー光入射面側)のレーザー加工周辺部を 観察したところ、分解物 (付着物)は観察されなカゝつた。
[0266] 実施例 3 保護シートの基材としてポリエチレンテレフタレートシート (厚さ 25 m、総結合エネ ルギー A: 692kjZmol)を用いた以外は実施例 2と同様の方法により保護'粘着シー ト付きシリコンウェハを作製した。
[0267] その後、実施例 1と同様の方法で切断加工をしたところ、保護シート及びシリコンゥ ェハは切断されていたが、粘着シートは切断されていな力つた。そして、保護シート に紫外線を照射して粘着剤層を硬化させた。その後、保護シートを剥離してシリコン ウェハの保護シート貼り合わせ面(レーザー光入射面側)のレーザー加工周辺部を 観察したところ、分解物 (付着物)は観察されなカゝつた。
[0268] 比較例 3
保護シートの基材としてエチレン-酢酸ビュル共重合体シート (厚さ 100 m、総結 合エネルギー A: 962kjZmol)を用いた以外は実施例 2と同様の方法により保護 '粘 着シート付きシリコンウェハを作製した。
[0269] その後、実施例 1と同様の方法で切断加工をしたところ、保護シートは切断されて おらず、下層のシリコンウェハがレーザー加工されており、保護シートとシリコンゥェ ノ、との間に分解物残渣を含む気泡が発生していた。そして、保護シートに紫外線を 照射して粘着剤層を硬化させた。その後、保護シートを剥離し、シリコンウェハのレー ザ一光入射面側の開口部周辺を観察すると、分解物残渣が多量に付着していた。
[0270] 上記実施例及び比較例から明らかなように、総結合エネルギー比が 1未満である保 護シート、又は総結合エネルギー Aが 800kjZmol未満である基材を有する保護シ ートを選択して使用することにより、分解物による被加工物表面の汚染を効果的に抑 制することができる。そして、その後の分解物除去工程を大幅に簡素化できるため、 環境負荷低減に寄与できるだけでなく生産性の向上をも図ることができる。
[0271] 産業上の利用可能性
本発明のレーザー加工用保護シートは、レーザー光の紫外吸収アブレーシヨンに より被加工物を加工する際に使用するものである。また本発明は、各種被加工物に、 レーザー光の紫外吸収アブレーシヨンにより切断、孔あけ、マーキング、溝加工、スク ライビング力卩ェ、又はトリミングカ卩ェなどの形状力卩ェを施すことによって得られるレー ザ一加工品の製造方法に関する。

Claims

請求の範囲
[1] レーザー光の紫外吸収アブレーシヨンにより被力卩ェ物をカ卩ェする際に、被加工物の レーザー光入射面側に設けられるレーザー加工用保護シート。
[2] レーザー光吸収領域における光透過率が 50%未満である請求項 1記載のレーザー 加工用保護シート。
[3] 前記保護シートは、基材上に粘着剤層が設けられているものである請求項 1又は 2記 載のレーザー加工用保護シート。
[4] 前記基材が、芳香族系ポリマーを含有してなるものである請求項 3記載のレーザー 加工用保護シート。
[5] 前記芳香族系ポリマーを構成する繰り返し単位中の芳香環の重量比が 41重量%以 上である請求項 4記載のレーザー加工用保護シート。
[6] レーザー光の紫外吸収アブレーシヨンにより被力卩ェ物をカ卩ェする際に使用するレー ザ一加工用保護シートであり、前記保護シートは、基材上に少なくとも粘着剤層が設 けられて 、るものであり、かつ基材のエッチング率(エッチング速度 Zエネルギーフル エンス)が 0. 4 [ ( μ m/pulse) / Q/cm2)〕以上であることを特徴とするレーザー加 ェ用保護シート。
[7] 前記基材が、芳香族系ポリマー又はシリコン系ゴムを含有してなるものである請求項 6記載のレーザー加工用保護シート。
[8] 被加工物のレーザー光入射面側に請求項 1一 7のいずれかに記載のレーザー加工 用保護シートを設置する工程(1)、レーザー光を照射してレーザー加工用保護シー ト及び被加工物を加工する工程(2)、レーザー加工用保護シートを加工後の被加工 物から剥離する工程 (3)を含むレーザー加工品の製造方法。
[9] 前記被加工物が、シート材料、回路基板、半導体ウェハ、ガラス基板、セラミック基板 、金属基板、半導体レーザーの発光あるいは受光素子基板、 MEMS基板、又は半 導体パッケージである請求項 8記載のレーザー加工品の製造方法。
[10] 基材上に少なくとも粘着剤層を有しており、かつ使用する被加工物の紫外領域波長 λにおける吸光係数に対する前記基材の紫外領域波長えにおける吸光係数(吸光 係数比 =レーザー加工用保護シートの基材の紫外領域波長 λにおける吸光係数 Ζ 使用する被加工物の紫外領域波長 λにおける吸光係数)が 1以上であるレーザー加 ェ用保護シートを使用し、前記被加工物のレーザー光入射面側に該レーザー加工 用保護シートの粘着剤層を貼付する工程、レーザー光を照射してレーザー加工用保 護シート及び被加工物を加工する工程、レーザー加工用保護シートを加工後の被カロ ェ物から剥離する工程を含むレーザー加工品の製造方法。
[11] 基材上に少なくとも粘着剤層を有しており、かつ前記基材の紫外領域波長 λにおけ る吸光係数が 20cm— 1以上であるレーザー加工用保護シートを使用し、金属系材料 のレーザー光入射面側に該レーザー加工用保護シートの粘着剤層を貼付する工程
、レーザー光を照射してレーザー加工用保護シート及び金属系材料を加工する工程
、レーザー加工用保護シートを加工後の金属系材料から剥離する工程を含むレーザ 一加工品の製造方法。
[12] 前記紫外領域波長 λが 355nmである請求項 10又は 11記載のレーザー加工品の 製造方法。
[13] 基材上に少なくとも粘着剤層を有しており、かつ使用する被加工物の密度に対する 前記基材の密度 (密度比 =レーザー加工用保護シートの基材の密度 Z使用する被 加工物の密度)が 1以上であるレーザー加工用保護シートを使用し、前記被加工物 のレーザー光入射面側に該レーザー加工用保護シートの粘着剤層を貼付する工程
、レーザー光を照射してレーザー加工用保護シート及び被加工物を加工する工程、 レーザー加工用保護シートを加工後の被加工物から剥離する工程を含むレーザー 加工品の製造方法。
[14] 基材上に少なくとも粘着剤層を有しており、かつ前記基材の密度が 1. lgZcm3以上 であるレーザー加工用保護シートを使用し、金属系材料のレーザー光入射面側に該 レーザー加工用保護シートの粘着剤層を貼付する工程、レーザー光を照射してレー ザ一加工用保護シート及び金属系材料を加工する工程、レーザー加工用保護シー トを加工後の金属系材料力 剥離する工程を含むレーザー加工品の製造方法。
[15] 基材上に少なくとも粘着剤層を有しており、かつ使用する被加工物の引張強度に対 するレーザー加工用保護シートの引張強度(引張強度比 =レーザー加工用保護シ 一トの引張強度 Z使用する被加工物の引張強度)が 1以上であるレーザー加工用保 護シートを使用し、前記被加工物のレーザー光入射面側に該レーザー加工用保護 シートの粘着剤層を貼付する工程、レーザー光を照射してレーザー加工用保護シー ト及び被加工物を加工する工程、及びレーザー加工用保護シートを加工後の被カロ ェ物から剥離する工程を含むレーザー加工品の製造方法。
[16] 基材上に少なくとも粘着剤層を有しており、かつ引張強度が lOOMPa以上であるレ 一ザ一加工用保護シートを使用し、金属系材料のレーザー光入射面側に該レーザ 一加工用保護シートの粘着剤層を貼付する工程、レーザー光を照射してレーザー加 ェ用保護シート及び金属系材料を加工する工程、レーザー加工用保護シートを加工 後の金属系材料から剥離する工程を含むレーザー加工品の製造方法。
[17] 基材上に少なくとも粘着剤層を有しており、かつ使用する被加工物の比熱に対する 前記基材の比熱 (比熱比 =レーザー加工用保護シートの基材の比熱 Z使用する被 加工物の比熱)が 1未満であるレーザー加工用保護シートを使用し、前記被加工物 のレーザー光入射面側に該レーザー加工用保護シートの粘着剤層を貼付する工程
、レーザー光を照射してレーザー加工用保護シート及び被加工物を加工する工程、 レーザー加工用保護シートを加工後の被加工物から剥離する工程を含むレーザー 加工品の製造方法。
[18] 前記被加工物が、シート材料、回路基板、半導体ウェハ、ガラス基板、セラミック基板 、金属基板、半導体レーザーの発光あるいは受光素子基板、 MEMS基板、又は半 導体パッケージである請求項 10、 13、 15又は 17記載のレーザー加工品の製造方 法。
[19] 前記金属系材料が、半導体ウェハ又は金属基板である請求項 11、 14又は 16記載 のレーザー加工品の製造方法。
[20] 基材上に少なくとも粘着剤層を有しており、かつ使用する有機系被加工物の波長 54 6nmにおける屈折率に対する前記基材の波長 546nmにおける屈折率 (屈折率比 = レーザー加工用保護シートの基材の波長 546nmにおける屈折率 Z使用する有機 系被加工物の波長 546nmにおける屈折率)が 1以上であるレーザー加工用保護シ ートを使用し、前記有機系被加工物のレーザー光入射面側に該レーザー加工用保 護シートの粘着剤層を貼付する工程、レーザー光を照射してレーザー加工用保護シ ート及び有機系被加工物を加工する工程、レーザー加工用保護シートを加工後の 有機系被加工物から剥離する工程を含むレーザー加工品の製造方法。
[21] 基材上に少なくとも粘着剤層を有しており、かつ前記基材の波長 546nmにおける屈 折率が 1. 53以上であるレーザー加工用保護シートを使用し、無機系被加工物のレ 一ザ一光入射面側に該レーザー加工用保護シートの粘着剤層を貼付する工程、レ 一ザ一光を照射してレーザー加工用保護シート及び無機系被加工物を加工するェ 程、レーザー加工用保護シートを加工後の無機系被加工物から剥離する工程を含 むレーザー加工品の製造方法。
[22] 基材上に少なくとも粘着剤層を有しており、かつ総結合エネルギー比(総結合エネル ギー比 =基材を構成する榭脂成分中のある 1つの炭素原子と、該炭素原子に結合 する他の原子との結合エネルギーの合計値のうちで最小値である総結合エネルギー AZ使用する有機系被加工物を構成する原料成分中のある 1つの炭素原子と、該炭 素原子に結合する他の原子との結合エネルギーの合計値のうちで最小値である総 結合エネルギー B)が 1未満であるレーザー加工用保護シートを使用し、前記有機系 被加工物のレーザー光入射面側に該レーザー加工用保護シートの粘着剤層を貼付 する工程、レーザー光を照射してレーザー加工用保護シート及び有機系被加工物を 加工する工程、レーザー加工用保護シートを加工後の有機系被加工物から剥離す る工程を含むレーザー加工品の製造方法。
[23] 基材上に少なくとも粘着剤層を有しており、かつ前記基材を構成する榭脂成分中の ある 1つの炭素原子と、該炭素原子に結合する他の原子との結合エネルギーの合計 値のうちで最小値である総結合エネルギー Aが 800kjZmol未満であるレーザー加 ェ用保護シートを使用し、無機系被加工物のレーザー光入射面側に該レーザー加 ェ用保護シートの粘着剤層を貼付する工程、レーザー光を照射してレーザー加工用 保護シート及び無機系被加工物を加工する工程、レーザー加工用保護シートを加工 後の無機系被加工物から剥離する工程を含むレーザー加工品の製造方法。
[24] 前記無機系被加工物が、回路基板、半導体ウェハ、ガラス基板、セラミック基板、金 属基板、半導体レーザーの発光あるいは受光素子基板、 MEMS基板、又は半導体 ノ ッケージである請求項 21又は 23記載のレーザー加工品の製造方法。
[25] 前記基材は、芳香族系ポリマー又はシリコン系ゴムを含有する請求項 10— 24のい ずれかに記載のレーザー加工品の製造方法。
[26] 前記加工が、切断又は孔あけである請求項 10— 25のいずれかに記載のレーザー 加工品の製造方法。
[27] 請求項 10— 26のいずれかに記載のレーザー加工品の製造方法に用いられるレー ザ一加工用保護シート。
PCT/JP2004/016268 2003-12-25 2004-11-02 レーザー加工用保護シート及びレーザー加工品の製造方法 WO2005063435A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/584,825 US7586060B2 (en) 2003-12-25 2004-11-02 Protective sheet for laser processing and manufacturing method of laser processed parts
AT04799471T ATE553638T1 (de) 2003-12-25 2004-11-02 Verfahren zur herstellung durch laser werkstücke
CN2004800387428A CN1898056B (zh) 2003-12-25 2004-11-02 激光加工用保护片以及激光加工品的制造方法
EP04799471A EP1714730B1 (en) 2003-12-25 2004-11-02 Method of manufacturing by laser workpieces
KR1020067010058A KR101102728B1 (ko) 2003-12-25 2004-11-02 레이저 가공용 보호 시트 및 레이저 가공품의 제조 방법

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP2003430451A JP4685346B2 (ja) 2003-12-25 2003-12-25 レーザー加工用保護シートを用いたレーザー加工品の製造方法
JP2003430463A JP2005186110A (ja) 2003-12-25 2003-12-25 レーザー加工用保護シート及びこれを用いたレーザー加工品の製造方法
JP2003-430451 2003-12-25
JP2003-430463 2003-12-25
JP2004-100127 2004-03-30
JP2004100141A JP4781635B2 (ja) 2004-03-30 2004-03-30 レーザー加工品の製造方法及びレーザー加工用保護シート
JP2004100127A JP2005279754A (ja) 2004-03-30 2004-03-30 レーザー加工品の製造方法及びレーザー加工用保護シート
JP2004-100281 2004-03-30
JP2004-100141 2004-03-30
JP2004100112A JP4780695B2 (ja) 2004-03-30 2004-03-30 レーザー加工品の製造方法及びレーザー加工用保護シート
JP2004-100112 2004-03-30
JP2004100281A JP2005279758A (ja) 2004-03-30 2004-03-30 レーザー加工品の製造方法及びレーザー加工用保護シート
JP2004-099896 2004-03-30
JP2004100199A JP2005279757A (ja) 2004-03-30 2004-03-30 レーザー加工品の製造方法及びレーザー加工用保護シート
JP2004-100199 2004-03-30
JP2004099896A JP4781634B2 (ja) 2004-03-30 2004-03-30 レーザー加工品の製造方法及びレーザー加工用保護シート

Publications (1)

Publication Number Publication Date
WO2005063435A1 true WO2005063435A1 (ja) 2005-07-14

Family

ID=34744036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016268 WO2005063435A1 (ja) 2003-12-25 2004-11-02 レーザー加工用保護シート及びレーザー加工品の製造方法

Country Status (6)

Country Link
US (1) US7586060B2 (ja)
EP (1) EP1714730B1 (ja)
KR (1) KR101102728B1 (ja)
AT (1) ATE553638T1 (ja)
TW (1) TW200529962A (ja)
WO (1) WO2005063435A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7586060B2 (en) 2003-12-25 2009-09-08 Nitto Denko Corporation Protective sheet for laser processing and manufacturing method of laser processed parts
US7708855B2 (en) * 2005-07-29 2010-05-04 Disco Corporation Method for processing a semiconductor wafer
US8168030B2 (en) 2005-01-14 2012-05-01 Nitto Denko Corporation Manufacturing method of laser processed parts and adhesive sheet for laser processing
US8624156B2 (en) 2005-01-14 2014-01-07 Nitto Denko Corporation Manufacturing method of laser processed parts and protective sheet for laser processing
US8778118B2 (en) 2003-04-25 2014-07-15 Nitto Denko Corporation Manufacturing method of laser processed parts, and pressure-sensitive adhesive sheet for laser processing used for the same
US20220324058A1 (en) * 2021-04-09 2022-10-13 INTERLAS GmbH & Co. KG Microperforation method with a moving web

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI408203B (zh) 2005-06-27 2013-09-11 Nitto Denko Corp 雷射加工用表面保護片材
JP2008117945A (ja) 2006-11-06 2008-05-22 Nitto Denko Corp ウォータージェットレーザダイシング用粘着シート
DE102007004247A1 (de) * 2007-01-23 2008-07-24 Breyer Gmbh Maschinenfabrik Verfahren zum Bearbeiten von extrudierten Kunststoffplatten
JP2009297734A (ja) * 2008-06-11 2009-12-24 Nitto Denko Corp レーザー加工用粘着シート及びレーザー加工方法
US20100078418A1 (en) * 2008-09-26 2010-04-01 Electro Scientific Industries, Inc. Method of laser micro-machining stainless steel with high cosmetic quality
TWI417017B (zh) * 2009-07-30 2013-11-21 Unimicron Technology Corp 線路板的基材及其鑽孔方法
WO2012077471A1 (ja) * 2010-12-06 2012-06-14 株式会社きもと レーザーダイシング用補助シート
DE102011100608B4 (de) * 2011-03-03 2024-03-28 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Suspension zum Schutz eines Halbleitermaterials und Verfahren zur Herstellung eines Halbleiterkörpers
FR2988476B1 (fr) * 2012-03-20 2015-06-26 Eads Europ Aeronautic Defence Procede et dispositif de controle d'un materiau composite par ultrasons laser
EP2925482A1 (en) 2012-11-29 2015-10-07 Corning Incorporated Sacrificial cover layers for laser drilling substrates and methods thereof
WO2014103467A1 (ja) * 2012-12-28 2014-07-03 リンテック株式会社 ダイシングシート用基材フィルムおよびダイシングシート
WO2014113508A2 (en) 2013-01-15 2014-07-24 Microfabrica Inc. Methods of forming parts using laser machining
US20140299356A1 (en) * 2013-04-04 2014-10-09 Chong Zhang Protective film with dye materials for laser absorption enhancement for via drilling
KR101795327B1 (ko) * 2013-11-14 2017-11-07 미쓰비시덴키 가부시키가이샤 레이저 가공 방법 및 레이저 가공 장치
TW201521097A (zh) * 2013-11-19 2015-06-01 Hon Hai Prec Ind Co Ltd 膠體之去除方法
US20150143849A1 (en) * 2013-11-26 2015-05-28 Corning Incorporated Method and system of laser cutting a sheet material
JP6753631B2 (ja) * 2014-09-09 2020-09-09 リケンテクノス株式会社 フィルムの加工方法
JP6401043B2 (ja) * 2014-12-24 2018-10-03 株式会社きもと レーザーダイシング用補助シート
US10376985B2 (en) 2015-12-18 2019-08-13 General Electric Company System and method for shaping a ceramic matrix composite (CMC) sheet
US10410883B2 (en) 2016-06-01 2019-09-10 Corning Incorporated Articles and methods of forming vias in substrates
US10794679B2 (en) 2016-06-29 2020-10-06 Corning Incorporated Method and system for measuring geometric parameters of through holes
US10134657B2 (en) 2016-06-29 2018-11-20 Corning Incorporated Inorganic wafer having through-holes attached to semiconductor wafer
JP6711228B2 (ja) 2016-09-30 2020-06-17 日亜化学工業株式会社 基板の製造方法
US10580725B2 (en) 2017-05-25 2020-03-03 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
KR102178118B1 (ko) 2017-09-25 2020-11-13 주식회사 엘지화학 액정 배향용 필름의 제조방법
WO2019090729A1 (zh) * 2017-11-10 2019-05-16 深圳市柔宇科技有限公司 柔性显示屏及其切割修边方法
CN111386172B (zh) * 2017-11-27 2022-06-17 日东电工株式会社 塑料膜的激光加工方法和塑料膜
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
CN110512172A (zh) 2018-05-21 2019-11-29 鸿富锦精密工业(深圳)有限公司 蒸镀遮罩的制造方法及有机发光材料的蒸镀方法
TWI694164B (zh) * 2018-05-21 2020-05-21 鴻海精密工業股份有限公司 蒸鍍遮罩的製造方法及有機發光材料的蒸鍍方法
US11911850B2 (en) * 2018-06-28 2024-02-27 Panasonic Intellectual Property Management Co., Ltd. Pillar delivery method, method for manufacturing glass panel unit, and pillar delivery apparatus
KR20200129225A (ko) 2019-05-07 2020-11-18 삼성디스플레이 주식회사 결합 부재, 표시 모듈 및 표시 장치의 제조 방법
CN113618192B (zh) * 2021-10-13 2021-12-24 深圳荣耀智能机器有限公司 电路板组件焊接装置及电路板组件焊接方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09136421A (ja) * 1995-11-16 1997-05-27 Matsushita Electric Ind Co Ltd インクジェット記録ヘッドの製造方法
JP2002338911A (ja) * 2001-05-21 2002-11-27 Nitto Denko Corp 半導体ウエハ加工用保護シート

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5169678A (en) * 1989-12-26 1992-12-08 General Electric Company Laser ablatable polymer dielectrics and methods
JP3181284B2 (ja) * 1990-01-12 2001-07-03 旭電化工業株式会社 エネルギー線反応性粘着剤組成物
US5538789A (en) * 1990-02-09 1996-07-23 Toranaga Technologies, Inc. Composite substrates for preparation of printed circuits
JPH05330046A (ja) 1992-06-01 1993-12-14 Canon Inc 液体記録ヘッド及び液体記録ヘッドの製造方法
JPH06163687A (ja) 1992-11-18 1994-06-10 Mitsubishi Electric Corp 半導体装置のダイシング方法及び装置
JPH06170822A (ja) 1992-12-02 1994-06-21 Ngk Spark Plug Co Ltd シート加工品及びその製造方法
US5460921A (en) * 1993-09-08 1995-10-24 International Business Machines Corporation High density pattern template: materials and processes for the application of conductive pastes
JPH07168386A (ja) 1993-12-14 1995-07-04 Nippon Kakoh Seishi Kk レーザープリンター用粘着シートおよびその製造方法
US5493096A (en) * 1994-05-10 1996-02-20 Grumman Aerospace Corporation Thin substrate micro-via interconnect
JPH09188854A (ja) * 1996-01-09 1997-07-22 Nitto Denko Corp 床養生シート固定テープ
JPH10305420A (ja) 1997-03-04 1998-11-17 Ngk Insulators Ltd 酸化物単結晶からなる母材の加工方法、機能性デバイスの製造方法
US5981145A (en) * 1997-04-30 1999-11-09 Clariant Finance (Bvi) Limited Light absorbing polymers
JP4165922B2 (ja) * 1998-03-17 2008-10-15 Azエレクトロニックマテリアルズ株式会社 光吸収性ポリマーおよびその反射防止膜への応用
JP3669196B2 (ja) 1998-07-27 2005-07-06 日東電工株式会社 紫外線硬化型粘着シート
DE69914418T2 (de) * 1998-08-10 2004-12-02 Lintec Corp. Dicing tape und Verfahren zum Zerteilen einer Halbleiterscheibe
US6413839B1 (en) * 1998-10-23 2002-07-02 Emcore Corporation Semiconductor device separation using a patterned laser projection
WO2001041968A2 (en) * 1999-11-18 2001-06-14 Main Tape Company, Inc. Process for forming film covered sheet metal material and sheet metal material so covered
JP2001323075A (ja) 1999-12-16 2001-11-20 Matsushita Electric Ind Co Ltd 離型性フィルム、フイルム付き基材、離型性フィルムの形成方法および回路基板の製造方法
US6824849B2 (en) * 2000-08-07 2004-11-30 3M Innovative Properties Company Laser-cuttable multi-layer sheet material
TW574261B (en) * 2000-08-28 2004-02-01 Ube Industries Method of producing through-hole in aromatic polyimide film
JP4234896B2 (ja) * 2000-10-04 2009-03-04 三菱樹脂株式会社 耐熱性フィルム及びこれを基材とするプリント配線基板並びにこれらの製造方法
JP4605888B2 (ja) * 2000-10-30 2011-01-05 イビデン株式会社 多層プリント配線板および多層プリント配線板の製造方法
US6864459B2 (en) * 2001-02-08 2005-03-08 The Regents Of The University Of California High precision, rapid laser hole drilling
JP2002322438A (ja) 2001-04-23 2002-11-08 Sekisui Chem Co Ltd マスキングテープ
JP4087144B2 (ja) 2001-04-23 2008-05-21 古河電気工業株式会社 レーザーダイシング用粘着テープ
JP4886937B2 (ja) 2001-05-17 2012-02-29 リンテック株式会社 ダイシングシート及びダイシング方法
DE10125397B4 (de) * 2001-05-23 2005-03-03 Siemens Ag Verfahren zum Bohren von Mikrolöchern mit einem Laserstrahl
JP4759172B2 (ja) 2001-07-05 2011-08-31 リコーマイクロエレクトロニクス株式会社 基板製造方法
US6797404B2 (en) * 2001-09-07 2004-09-28 Siemens Vdo Automotive Corporation Anti-spatter coating for laser machining
US6811888B2 (en) * 2001-09-07 2004-11-02 Siemens Vdo Automotive Corporation Anti-spatter coating for laser machining
JP2003113355A (ja) 2001-10-03 2003-04-18 Bridgestone Corp 光硬化型仮固定用シート
JP2003211277A (ja) 2002-01-22 2003-07-29 Sumitomo Heavy Ind Ltd レーザを用いたグリーンシート穴あけ加工方法及び加工装置
JP4137471B2 (ja) * 2002-03-04 2008-08-20 東京エレクトロン株式会社 ダイシング方法、集積回路チップの検査方法及び基板保持装置
US6580054B1 (en) * 2002-06-10 2003-06-17 New Wave Research Scribing sapphire substrates with a solid state UV laser
JP3834528B2 (ja) * 2002-07-11 2006-10-18 ポリマテック株式会社 熱伝導性高分子成形体の製造方法
JP4550355B2 (ja) 2002-08-30 2010-09-22 株式会社共和 粘着テープ巻回体
JP2005279696A (ja) 2004-03-29 2005-10-13 Nitto Denko Corp レーザー加工品の製造方法、およびそれに用いるレーザー加工用粘着シート
JP2005279698A (ja) 2004-03-29 2005-10-13 Nitto Denko Corp レーザー加工品の製造方法、およびそれに用いるレーザー加工用粘着シート
JP4301500B2 (ja) 2003-12-25 2009-07-22 日東電工株式会社 レーザー加工用粘着シート及びこれを用いたレーザー加工品の製造方法
JP2004322157A (ja) 2003-04-25 2004-11-18 Nitto Denko Corp 被加工物の加工方法、及びこれに用いる粘着シート
EP1634673A4 (en) 2003-04-25 2009-04-08 Nitto Denko Corp METHOD FOR PRODUCING A LASER-TREATED PRODUCT AND AN ADHESIVE SHEET FOR A LASER TREATMENT USED FOR THIS PRODUCT
JP4666569B2 (ja) 2004-03-29 2011-04-06 日東電工株式会社 レーザー加工品の製造方法、およびそれに用いるレーザー加工用粘着シート
JP2005279680A (ja) 2004-03-29 2005-10-13 Nitto Denko Corp レーザー加工品の製造方法、およびそれに用いるレーザー加工用粘着シート
JP4676711B2 (ja) 2004-03-29 2011-04-27 日東電工株式会社 レーザー加工品の製造方法、およびそれに用いるレーザー加工用粘着シート
JP4676712B2 (ja) 2004-03-29 2011-04-27 日東電工株式会社 レーザー加工品の製造方法、およびそれに用いるレーザー加工用粘着シート
TWI269684B (en) * 2003-08-08 2007-01-01 Hon Hai Prec Ind Co Ltd A process for laser machining
JP4781634B2 (ja) 2004-03-30 2011-09-28 日東電工株式会社 レーザー加工品の製造方法及びレーザー加工用保護シート
JP2005279754A (ja) 2004-03-30 2005-10-13 Nitto Denko Corp レーザー加工品の製造方法及びレーザー加工用保護シート
JP4685346B2 (ja) 2003-12-25 2011-05-18 日東電工株式会社 レーザー加工用保護シートを用いたレーザー加工品の製造方法
JP4781635B2 (ja) 2004-03-30 2011-09-28 日東電工株式会社 レーザー加工品の製造方法及びレーザー加工用保護シート
JP2005279757A (ja) 2004-03-30 2005-10-13 Nitto Denko Corp レーザー加工品の製造方法及びレーザー加工用保護シート
KR101102728B1 (ko) 2003-12-25 2012-01-05 닛토덴코 가부시키가이샤 레이저 가공용 보호 시트 및 레이저 가공품의 제조 방법
JP4780695B2 (ja) 2004-03-30 2011-09-28 日東電工株式会社 レーザー加工品の製造方法及びレーザー加工用保護シート
JP2005279758A (ja) 2004-03-30 2005-10-13 Nitto Denko Corp レーザー加工品の製造方法及びレーザー加工用保護シート
JP2005186110A (ja) 2003-12-25 2005-07-14 Nitto Denko Corp レーザー加工用保護シート及びこれを用いたレーザー加工品の製造方法
JP4439990B2 (ja) * 2004-04-28 2010-03-24 株式会社ディスコ レーザー加工方法
JP4854061B2 (ja) 2005-01-14 2012-01-11 日東電工株式会社 レーザー加工品の製造方法及びレーザー加工用保護シート
JP4873863B2 (ja) * 2005-01-14 2012-02-08 日東電工株式会社 レーザー加工品の製造方法及びレーザー加工用粘着シート

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09136421A (ja) * 1995-11-16 1997-05-27 Matsushita Electric Ind Co Ltd インクジェット記録ヘッドの製造方法
JP2002338911A (ja) * 2001-05-21 2002-11-27 Nitto Denko Corp 半導体ウエハ加工用保護シート

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8778118B2 (en) 2003-04-25 2014-07-15 Nitto Denko Corporation Manufacturing method of laser processed parts, and pressure-sensitive adhesive sheet for laser processing used for the same
US7586060B2 (en) 2003-12-25 2009-09-08 Nitto Denko Corporation Protective sheet for laser processing and manufacturing method of laser processed parts
US8168030B2 (en) 2005-01-14 2012-05-01 Nitto Denko Corporation Manufacturing method of laser processed parts and adhesive sheet for laser processing
US8624156B2 (en) 2005-01-14 2014-01-07 Nitto Denko Corporation Manufacturing method of laser processed parts and protective sheet for laser processing
US7708855B2 (en) * 2005-07-29 2010-05-04 Disco Corporation Method for processing a semiconductor wafer
US20220324058A1 (en) * 2021-04-09 2022-10-13 INTERLAS GmbH & Co. KG Microperforation method with a moving web

Also Published As

Publication number Publication date
TWI332875B (ja) 2010-11-11
EP1714730A1 (en) 2006-10-25
EP1714730B1 (en) 2012-04-11
KR20060126479A (ko) 2006-12-07
US7586060B2 (en) 2009-09-08
TW200529962A (en) 2005-09-16
EP1714730A4 (en) 2008-11-05
ATE553638T1 (de) 2012-04-15
KR101102728B1 (ko) 2012-01-05
US20070181543A1 (en) 2007-08-09

Similar Documents

Publication Publication Date Title
WO2005063435A1 (ja) レーザー加工用保護シート及びレーザー加工品の製造方法
JP4854061B2 (ja) レーザー加工品の製造方法及びレーザー加工用保護シート
JP4873863B2 (ja) レーザー加工品の製造方法及びレーザー加工用粘着シート
KR101070069B1 (ko) 레이저 가공품의 제조방법, 및 이에 이용하는 레이저가공용 점착 시이트
JP5537789B2 (ja) レーザー加工用粘着シート及びレーザー加工方法
JP4781635B2 (ja) レーザー加工品の製造方法及びレーザー加工用保護シート
JP2005186110A (ja) レーザー加工用保護シート及びこれを用いたレーザー加工品の製造方法
JP4873843B2 (ja) レーザー加工品の製造方法
JP4676711B2 (ja) レーザー加工品の製造方法、およびそれに用いるレーザー加工用粘着シート
JP4854060B2 (ja) レーザー加工用保護シートを用いたレーザー加工品の製造方法
JP4854059B2 (ja) レーザー加工用保護シートを用いたレーザー加工品の製造方法
JP4781634B2 (ja) レーザー加工品の製造方法及びレーザー加工用保護シート
JP2006111659A (ja) レーザー加工用粘着シート及びこれを用いたレーザー加工品の製造方法
JP4685346B2 (ja) レーザー加工用保護シートを用いたレーザー加工品の製造方法
JP2005279757A (ja) レーザー加工品の製造方法及びレーザー加工用保護シート
JP4780695B2 (ja) レーザー加工品の製造方法及びレーザー加工用保護シート
JP2006176725A (ja) レーザー加工用粘着シート
JP2005279758A (ja) レーザー加工品の製造方法及びレーザー加工用保護シート
JP2005279698A (ja) レーザー加工品の製造方法、およびそれに用いるレーザー加工用粘着シート
JP4666569B2 (ja) レーザー加工品の製造方法、およびそれに用いるレーザー加工用粘着シート
JP4301500B2 (ja) レーザー加工用粘着シート及びこれを用いたレーザー加工品の製造方法
JP4676712B2 (ja) レーザー加工品の製造方法、およびそれに用いるレーザー加工用粘着シート
JP2005279754A (ja) レーザー加工品の製造方法及びレーザー加工用保護シート
JP2005279680A (ja) レーザー加工品の製造方法、およびそれに用いるレーザー加工用粘着シート
JP2005279696A (ja) レーザー加工品の製造方法、およびそれに用いるレーザー加工用粘着シート

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480038742.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067010058

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10584825

Country of ref document: US

Ref document number: 2007181543

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2004799471

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004799471

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067010058

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10584825

Country of ref document: US