WO2005053016A1 - 基板処理装置、基板保持具、及び半導体装置の製造方法 - Google Patents

基板処理装置、基板保持具、及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2005053016A1
WO2005053016A1 PCT/JP2004/017723 JP2004017723W WO2005053016A1 WO 2005053016 A1 WO2005053016 A1 WO 2005053016A1 JP 2004017723 W JP2004017723 W JP 2004017723W WO 2005053016 A1 WO2005053016 A1 WO 2005053016A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
support
ring
wafer
shaped plate
Prior art date
Application number
PCT/JP2004/017723
Other languages
English (en)
French (fr)
Inventor
Takatomo Yamaguchi
Kazuhiro Morimitsu
Original Assignee
Hitachi Kokusai Electric Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc. filed Critical Hitachi Kokusai Electric Inc.
Priority to US10/574,568 priority Critical patent/US7455734B2/en
Priority to JP2005515837A priority patent/JP4312204B2/ja
Publication of WO2005053016A1 publication Critical patent/WO2005053016A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/67303Vertical boat type carrier whereby the substrates are horizontally supported, e.g. comprising rod-shaped elements
    • H01L21/67309Vertical boat type carrier whereby the substrates are horizontally supported, e.g. comprising rod-shaped elements characterized by the substrate support
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • Substrate processing apparatus substrate holder, and method of manufacturing semiconductor device
  • the present invention relates to a substrate processing apparatus, a substrate holder, and a method for manufacturing a semiconductor device, and more particularly to a method for improving uniformity of a processing amount in a substrate surface.
  • a boat having a holder plate has been used as a substrate holder for holding a plurality of wafers (for example, Patent Document 1).
  • This boat has four vertical columns 32, as shown in Figures 15-16.
  • the support columns 32 are arranged in a substantially semicircular range so that the wafer can be taken in and out.
  • a ring-shaped quartz holder plate 33 is welded to the support 32 in multiple stages in a horizontal position in a groove (not shown) provided in the support 32, and a substrate mounting portion for mounting a wafer is mounted on the upper surface of the holder plate 33.
  • a plurality of support claws 34 are provided.
  • the quartz holder plate 33 makes the flow of the processing gas on the wafer surface uniform, so that only the film thickness at the wafer end is reduced. Thickness can be suppressed.
  • the wafer is held on the support pawls 34 provided on the holder plate 33 inside the four pillars 32 arranged on a substantially semicircle, the distance between the pillar 32 and the wafer is reduced. Since the distance is increased, the influence of the columns 32 is reduced, and the uniformity of the film thickness can be improved.
  • Patent Document 1 JP-A-11-140509 (FIGS. 5, 6, 7, and 10)
  • An object of the present invention is to solve the above-mentioned problems of the related art and configure a substrate holder.
  • a first invention provides a substrate holder capable of holding a plurality of substrates, a processing chamber for accommodating a substrate held by the substrate holder, a heating unit for heating the processing chamber, Gas supply means for supplying a processing gas to the processing chamber heated by the heating means to process the substrate, wherein the substrate holder has at least three columns provided substantially vertically, and the column A plurality of substrate mounting portions provided in multiple stages and mounting the plurality of substrates substantially horizontally at predetermined intervals; and a plurality of substrates mounted on the support posts and supported by the substrate mounting portion. And a plurality of ring-shaped plates provided substantially horizontally at intervals.
  • the substrate is held in the substrate holder and is processed by being stored in the processing chamber heated by the heating means.
  • the substrate holder for holding the substrate has at least three columns, the substrate can be stably held.
  • the support plate is provided with the ring-shaped plate, it is possible to suppress an increase in the throughput of the peripheral portion of the substrate.
  • the support and the substrate mounting portion are integrated into one, so that the substrate processing provided by the support and the substrate mounting portion is provided. The ability to reduce the adverse effect on volume can be achieved. Therefore, the in-plane uniformity of the substrate processing amount can be improved.
  • the predetermined interval of the “ring-shaped plate provided substantially horizontally at a predetermined interval with respect to the substrate” includes a value of 0, that is, that the upper surface of the substrate and the upper surface of the ring-shaped plate are aligned, that is, the upper surface is flush. .
  • a second invention is the substrate processing apparatus according to the first invention, wherein the substrate mounting section has a columnar shape or a substantially columnar cross-sectional shape.
  • the substrate mounting portion may be formed as a concave portion by providing a groove or the like in the column, but may be a convex portion protruding from the column.
  • the convex portion has a columnar shape or a substantially columnar semi-columnar shape.
  • the arc side is used as the substrate mounting surface. In this case, the contact with the substrate becomes a line contact, and the particles are emitted. Life can be reduced.
  • the substrate mounting portion may be formed separately from the column and attached to the column, or may be formed integrally with the column.
  • a third invention is the substrate processing apparatus according to the second invention, wherein the substrate mounting portion is inclined downward inward in a radial direction of the ring-shaped plate. .
  • the contact with the substrate becomes a point contact, and the generation of particles can be further reduced.
  • a fourth invention is the substrate processing apparatus according to the first invention, wherein an inner peripheral surface of the ring-shaped plate facing the support is cut off around the support. If the inner peripheral surface of the ring-shaped plate is notched around the column, the processing gas around the column becomes easier to flow, and the flow of the processing gas to the substrate is uniform between the portion with the column and the portion without the column. Can be achieved. Therefore, the in-plane uniformity of the substrate throughput can be improved.
  • a fifth invention is the substrate processing apparatus according to the fourth invention, wherein the substrate mounting section has a columnar shape or a substantially semi-cylindrical cross section. In this case, the contact with the substrate becomes a line contact, and the generation of particles can be reduced.
  • a sixth invention is the substrate processing apparatus according to the fifth invention, wherein the substrate mounting portion performs a force for rounding a tip or chamfering. In this case, the contact with the substrate becomes a line contact, and the generation of particles can be reduced.
  • a seventh invention is the substrate processing apparatus according to the sixth invention, wherein the substrate mounting portion is inclined downward inward in a radial direction of the ring-shaped plate. .
  • the contact with the substrate becomes a point contact, and the generation of particles can be further reduced.
  • the support is characterized in that the support has a substantially semi-cylindrical cross section, and the substrate mounting portion protrudes from a chord side of the support. Processing device. With this configuration, it is possible to reduce a gas flow obstruction caused by the support and the substrate mounting portion, and to increase a processing gas flow rate flowing near the support and the substrate mounting portion.
  • the support may be configured in a substantially half-pipe shape, and the substrate mounting portion may be protruded from the concave side.
  • a ninth invention is the substrate processing apparatus according to the eighth invention, wherein the chord side is recessed on a radially inner side of the ring-shaped plate. This makes it possible to further increase the flow rate of the processing gas flowing in the vicinity of the support and the substrate mounting portion.
  • a tenth invention is the substrate processing apparatus according to the fourth invention, wherein the support is provided inside an outer periphery of the ring-shaped plate. This makes it possible to more appropriately maintain the gap between the support and the processing chamber.
  • An eleventh invention is directed to a substrate holder capable of holding a plurality of substrates, a processing chamber for accommodating the substrate held by the substrate holder, a heating unit for heating the processing chamber, Gas supply means for supplying a processing gas to the processing chamber heated by the heating means to process the substrate, wherein the substrate holder is provided with at least three columns provided substantially vertically, A plurality of ring-shaped plates that surround at least three columns and are provided on the columns in multiple stages, and are provided substantially horizontally at predetermined intervals with respect to a substrate held by the substrate holder. An inner peripheral surface of the ring-shaped plate facing the support is cut off around the support.
  • the substrate holder for holding the substrate since the substrate holder for holding the substrate has at least three columns, the substrate can be stably held. Further, since the ring-shaped plate is provided on the support, it is possible to suppress an increase in the throughput of the peripheral portion of the substrate. In addition, since the inner peripheral surface of the ring-shaped plate is notched around the column, the processing gas around the column becomes easier to flow, and the flow of the processing gas to the substrate between the portion with the column and the portion without the column is increased. Uniformity can be achieved. Therefore, the in-plane uniformity of the substrate processing amount can be improved.
  • the predetermined interval of the “ring-shaped plate provided substantially horizontally at a predetermined interval with respect to the substrate” includes a value of 0, that is, that the upper surface of the substrate and the upper surface of the ring-shaped plate are aligned, that is, the upper surface is flush. .
  • the ring-shaped plate is provided with a hole for fitting a column, and the hole is opened on the inner peripheral surface side of the ring-shaped plate, so that the inner peripheral surface of the ring-shaped plate is formed around the column. It may be cut out.
  • the substrate mounting portion of the substrate holder capable of holding a plurality of substrates may be provided on a support or on a ring-shaped plate.
  • the support is configured to have a substantially semi-cylindrical cross section, and the substrate mounting portion is protruded from a chord side of the support. Device. In this way, the obstruction of the gas flow due to the support and the substrate mounting portion is reduced, and And the flow rate of the processing gas flowing in the vicinity of the substrate mounting portion can be increased.
  • a thirteenth invention is the substrate processing apparatus according to the eleventh invention, wherein the column is provided inside an outer periphery of the ring-shaped plate. In this way, it is possible to more appropriately maintain the gap between the support and the processing room.
  • a fourteenth invention is the substrate processing apparatus according to the twelfth invention, wherein the chord side is hollowed in a radially inner side of the ring-shaped plate. This makes it possible to further increase the flow rate of the processing gas flowing near the support and the substrate mounting portion.
  • a fifteenth invention is a substrate holder capable of holding a plurality of substrates, comprising at least three pillars provided substantially vertically, and the plurality of pillars provided on the pillars in multiple stages.
  • a plurality of substrate mounting portions for mounting substrates substantially horizontally at predetermined intervals, and a plurality of substrate mounting portions provided on the support and provided substantially horizontally at predetermined intervals with respect to the substrate supported by the substrate mounting portions.
  • a substrate holder having a ring-shaped plate.
  • the substrate holder for holding the substrate has at least three columns, the substrate can be stably held.
  • the support plate is provided with the ring-shaped plate, it is possible to suppress an increase in the throughput of the peripheral portion of the substrate.
  • the support and the substrate mounting portion are integrated into one to reduce the amount of substrate processing given by the support and the substrate mounting portion. Can be reduced. Therefore, the in-plane uniformity of the substrate throughput can be improved.
  • the predetermined interval of the “ring-shaped plate provided substantially horizontally at a predetermined interval with respect to the substrate” includes a value of 0, that is, that the upper surface of the substrate and the upper surface of the ring-shaped plate are aligned, that is, the upper surface is flush. .
  • a sixteenth invention is the substrate holder according to the fifteenth invention, wherein an inner peripheral surface of the ring-shaped plate facing the support is cut off around the support. . This makes it easier for the processing gas to flow around the column, and allows the flow of the processing gas to the substrate to be uniform between the portion having the column and the portion having no column.
  • a seventeenth invention is a substrate holder capable of holding a plurality of substrates, comprising at least three pillars provided substantially vertically, surrounding the at least three pillars, and A plurality of stages are provided on the support column, and the substrate is held by the substrate holder.
  • a plurality of ring-shaped plates provided substantially horizontally at a distance from each other, and an inner peripheral surface of the ring-shaped plate facing the support is cut out around the support. Tool.
  • the substrate holder that holds the substrate has at least three columns, so that the substrate can be stably held.
  • the support plate is provided with the ring-shaped plate, it is possible to suppress an increase in the throughput of the peripheral portion of the substrate.
  • the inner peripheral surface of the ring-shaped plate is cut off around the column, the processing gas around the column becomes easier to flow, and the portion where the column exists and the column does not exist, and the processing gas flows to the substrate at the portion. The flow can be made uniform. Therefore, the in-plane uniformity of the substrate throughput can be improved.
  • the predetermined interval of the “ring-shaped plate provided substantially horizontally at a predetermined interval with respect to the substrate” includes a value of 0, that is, that the upper surface of the substrate and the upper surface of the ring-shaped plate are aligned, that is, the upper surface is flush. .
  • An eighteenth invention provides a substrate holder capable of holding a plurality of substrates, a processing chamber for accommodating the substrate held by the substrate holder, a heating unit for heating the processing chamber, Gas supply means for supplying a processing gas to the processing chamber heated by the heating means to process the substrate, wherein the substrate holder has at least three columns provided substantially vertically, and the column A plurality of substrate mounting portions provided in multiple stages and mounting the plurality of substrates substantially horizontally at predetermined intervals; and a plurality of substrates mounted on the support posts and supported by the substrate mounting portion.
  • a semiconductor device including a step of carrying the processing chamber, a step of heating the processing chamber by the heating means, and a step of supplying a processing gas to the heated processing chamber to process the substrate. It is a manufacturing method.
  • the plurality of substrates are held by the substrate holder by being mounted on the substrate mounting portion.
  • a substrate holder holding a plurality of substrates is carried into the processing chamber.
  • the processing chamber is heated by the heating means, a processing gas is supplied to the heated processing chamber, and a plurality of substrates held by the substrate holder are processed.
  • the substrate holder for holding the substrate has at least three supports. Since the column is provided, the substrate can be stably held. In addition, since the ring-shaped plate is provided on the support, it is possible to suppress an increase in the throughput of the peripheral portion of the substrate.
  • the substrate holder for holding the substrate has at least three supports. Since the column is provided, the substrate can be stably held. In addition, since the ring-shaped plate is provided on the support, it is possible to suppress an increase in the throughput of the peripheral portion of the substrate. In addition, the substrate
  • the support and the substrate mounting part in one by providing the support on the support rather than on the ring-shaped plate, it is possible to reduce the adverse effect of the support and the substrate support on the substrate processing amount. it can. Therefore, the in-plane uniformity of the substrate processing amount can be improved.
  • the predetermined interval of the “ring-shaped plate provided substantially horizontally at a predetermined interval with respect to the substrate” includes a value of 0, that is, that the upper surface of the substrate and the upper surface of the ring-shaped plate are aligned, that is, the upper surface is flush. .
  • FIG. 11 is a schematic diagram of a semiconductor manufacturing apparatus having a vertical furnace
  • FIG. 12 is a cross-sectional view of a low pressure CVD processing furnace as a vertical furnace.
  • the cassette loader 6 is located on the front side inside the housing 10, and the cassette shelf 1 is provided on the rear side of the cassette loader 6.
  • a buffer cassette shelf 7 is provided above the cassette shelf 1, and a wafer transfer device 2 is provided behind the cassette shelf 1.
  • a boat elevator 8 for raising and lowering the boat 217 is provided behind the wafer transfer machine 2, and a vertical furnace 5 is provided above the boat elevator 8.
  • the vertical furnace 5 has an outer tube (hereinafter, an outer tube 205) and an inner tube (hereinafter, an inner tube 204).
  • the outer tube 205 is made of a heat-resistant material such as quartz (Si ⁇ 2), and has a cylindrical shape having an upper end closed and an opening at the lower end.
  • the inner tube 204 has a cylindrical shape having openings at both ends of an upper end and a lower end, and is coaxially arranged in the outer tube 205.
  • the space between the outer tube 205 and the inner tube 204 forms a cylindrical space 250.
  • the gas having an increased upper opening force of the inner tube 204 passes through the cylindrical space 250 and is exhausted from the exhaust pipe 231.
  • a manifold 209 made of, for example, stainless steel is engaged with lower ends of the outer tube 205 and the inner tube 204, and the outer tube 205 and the inner tube 204 are held by the manifold 209.
  • the manifold 209 is fixed to holding means (hereinafter referred to as a heater base 251).
  • Annular flanges are provided at the lower end of the outer tube 205 and the upper open end of the manifold 209, respectively, and an airtight member (hereinafter referred to as a ring 220) is arranged between these flanges. Sealed airtight.
  • a disc-shaped lid made of, for example, stainless steel (hereinafter referred to as a seal cap 219) is detachably attached to the lower end opening of the manifold 209 through a ring 220 so as to be hermetically sealed.
  • a gas supply pipe 232 as a gas supply means is provided through the seal cap 219.
  • the processing gas is supplied into the inner tube 204 by the gas supply pipe 232.
  • the gas supply pipe 232 is connected to a gas flow control means (hereinafter, mass flow controller (MFC) 241), and the MFC 241 is connected to a gas flow control unit 122 of the second control computer 120 to supply the gas.
  • MFC mass flow controller
  • APC242 an APC and an N2 ballast controller; hereinafter, referred to as APC242
  • APC242 an APC and an N2 ballast controller
  • a vacuum pump 246 connected to an exhaust device.
  • a pipe 231 is connected, exhausts gas flowing through the cylindrical space 250 between the outer tube 205 and the inner tube 204, and controls the pressure inside the outer tube 205 with the APC 242 to reduce the pressure to a predetermined reduced pressure atmosphere. This is detected by pressure detection means (hereinafter referred to as a pressure sensor 245), and is controlled by the pressure control unit 123 of the second control computer 120.
  • pressure detection means hereinafter referred to as a pressure sensor 245
  • a rotating means (hereinafter referred to as a rotating shaft 254) is connected to the seal cap 219, and the substrate holder (hereinafter referred to as a boat 217) and the wafer 200 held on the boat 217 are held by the rotating shaft 254. Rotate. Further, the seal cap 219 is connected to an elevating means (hereinafter referred to as a boat elevator 225) to raise and lower the boat 217.
  • the drive control unit 124 of the second control computer 120 controls the rotation shaft 254 and the boat elevator 225 to a predetermined speed.
  • a heating means (hereinafter referred to as a heater 207) is coaxially arranged around the outer periphery of the outer tube 205. Yes.
  • the heater 207 detects the temperature by the temperature detecting means (hereinafter, thermocouple 263) so that the temperature inside the outer tube 205 becomes a predetermined processing temperature, and controls the temperature by the temperature control unit 121 of the second control computer 120.
  • the inner tube 204, the outer tube 205, and the manifold 209 constitute a processing chamber 201 for storing and processing the wafer 200 supported by the boat 217.
  • the above-described second control computer 120 is totally controlled by the first control computer 110.
  • the first control computer 110 and the second control computer 120 are connected via respective interfaces 111 and 125.
  • FIG. 14 is a diagram illustrating a hardware configuration of the first control computer 110 illustrated in FIG.
  • the control computer 110 includes a CPU 300, a memory 304, a display / input unit 302 including keys and a display device, and a recording unit 303 such as a CD device or an HDD device.
  • the recording unit 306 is recorded via the recording medium 308.
  • the control computer 110 has a component as a computer that executes a program for controlling the semiconductor manufacturing apparatus and performs processing on a wafer.
  • the second control computer 120 also has one or more sets of components similar to those of the first control computer 110. Further, the second control computer 120 may be configured by each of the above-described temperature control unit 121, gas flow control unit 122, pressure control unit 123, and drive control unit 124, or may be a combination of two or more. Or various knitting.
  • FIG. 12 An example of a low-pressure CVD processing method using the processing furnace shown in FIG. 12 will be described.
  • the boat 217 is lowered from the boat elevator 225.
  • Boat 217 Holds multiple Ueno 200.
  • the temperature in the processing chamber 201 is set to a predetermined processing temperature while being heated by the heater 207.
  • the processing chamber 201 is filled with an inert gas in advance by the MFC 241 connected to the gas supply pipe 232, and the boat 217 is raised and moved into the processing chamber 201 by the boat elevator 225, and the internal temperature of the processing chamber 201 is reduced. Maintain at a given processing temperature.
  • the rotation shaft 254 rotates the wafers 200 held on the boats 217 and 217.
  • gas for processing is supplied from the gas supply pipe 232.
  • the supplied processing gas flows upward from the bottom in the inner tube 204 and And is evenly supplied to the wafer 200.
  • the inside of the processing chamber 201 during the decompression CVD process is exhausted through the exhaust pipe 231, the pressure is controlled by the APC 242 so that a predetermined vacuum is obtained, the decompression CVD process is performed for a predetermined time, and a thin film is formed on the wafer 200. Form.
  • the gas in the processing chamber 201 to be shifted to the next low-pressure CVD process for the wafer 200 is replaced with an inert gas, and the pressure is reduced to normal pressure.
  • the boat 217 is lowered by the boat elevator 225, and the boat 217 and the processed wafer 200 are taken out of the processing chamber 201.
  • the processed wafer 200 on the boat 217 taken out of the processing chamber 201 is replaced with an unprocessed wafer 200, and is raised again into the processing chamber 201 in the same manner as described above, and the reduced pressure CVD process is performed.
  • a ring-shaped plate as a support, similar to FIGS.
  • the boat does not protrude from the S-ring-shaped plate constituting the boat 217.
  • the gap between the boat 217 and the inner tube 204 during rotation can be more appropriately maintained, particularly by setting the strut inside the outer periphery of the ring-shaped plate.
  • the inner wall of the inner tube 204 can be rubbed against the generation of particles. Therefore, it is better that the struts do not protrude from the ring-shaped plate and that the outer shape of the ring-shaped plate does not deform or protrude.
  • the processing gas is flowing upward from the bottom in the inner tube 204 .
  • the flow of the processing gas is not limited to this.
  • the processing gas may flow across the inner tube 204.
  • FIG. 13 is an explanatory view of a main part of a processing furnace when such a processing gas flows across the inner tube 204.
  • the upper end of the inner tube 204 is closed, and a slit-shaped opening 214 is provided on one side surface thereof.
  • FIG. 13 (a) shows a case where the gap t between the inner tube 204 and the outer diameter of the boat 217 is small
  • FIG. 13 (b) shows a case where the gap is large.
  • the inner tube 204 and the outer diameter of the boat 217 are different from each other.
  • the gap t must be as small as possible.
  • This gas is introduced along the processing gas force ring-shaped plate 13, passes through the surface of the wafer 200, and is led out of the slit-shaped opening 214 provided in the inner tube 204 without disturbing the gas flow.
  • the pillars constituting the boat 217 should not protrude from the ring-shaped plate 13. If it is good, In addition, it is preferable that the outer shape of the ring-shaped plate 13 is not deformed even if the column does not protrude.
  • the structure of the inner tube 204 allows the processing gas to flow upward or downward across the inner tube 204 or to cross the inner tube 204 in order to meet the above demand.
  • the wafer support portion as the substrate mounting portion is not fixed to the ring-shaped plate 13, and the wafer support portion is directly fixed to the support 15. Further, the inner peripheral surface of the ring-shaped plate 13 facing the column was cut out around the column. As a result, in the semiconductor manufacturing apparatus, the in-plane uniformity of the wafer could be improved. Particularly, in a batch-type semiconductor manufacturing apparatus having a vertical furnace as in the embodiment, it is necessary to improve the film formation speed (improve the deposition rate) and the demand for improving the wafer quality.
  • FIG. 1 is an explanatory view of! Ring-shaped plates
  • (a) is a side view of the main part of the boat focusing on one ring-shaped plate
  • (b) is a plan view including struts.
  • FIG. 2 is an overall configuration diagram of the boat.
  • the boat 217 is made of, for example, quartz, and as shown in FIG. 2, a bottom disk 17 and a top disk 11 as two parallel plates, and a bottom disk 17 and a top disk 11 It has a plurality of, for example, three columns 15 provided substantially vertically between them.
  • the support 15 has a columnar shape. Ring plate In order to support 13 stably and simply, the number of the struts 15 is particularly preferably three, but may be three or more.
  • the three columns 15 are arranged and fixed to the bottom disk 17 in a substantially semicircular shape.
  • the top disk 11 is fixed to the upper ends of the three columns 15.
  • Circular holes 12 and 14 are formed in the central portions of the bottom disk 17 and the top disk 11, respectively, so that the processing gas can easily enter the inside of the boat 217.
  • a plurality of ring-shaped plates 13, which are provided at predetermined intervals in multiple stages in a substantially horizontal posture, are fixed to the columns 15.
  • a plurality of wafer supports 16 capable of mounting a plurality of wafers 200 substantially horizontally at predetermined intervals in a vertical direction are provided on each support 15 in multiple stages.
  • each wafer support portion 16 has a columnar shape, and protrudes toward the center of the boat 217, that is, the center of the ring-shaped plate 13.
  • each of the columns 15 is provided with one wafer support section 16.
  • three wafer support portions 16 are protruded from one stage.
  • the wafer 200 is placed on the three projecting wafer support portions 16 by supporting the outer periphery of the wafer 200. It is preferable that the level of the wafer support 16 is maintained. By maintaining the horizontal position, interference such as contact of the wafer with the wafer support 16 during wafer transfer can be avoided, and a uniform gas flow over the wafer with the wafer 200 mounted on the boat 217 can be secured. .
  • the above-described ring-shaped plate 13 is installed below each of the installation positions of the wafer support 16 of the support 15, and is substantially horizontal at a predetermined interval with respect to the wafer 200 supported by the wafer support 16. Is provided.
  • the ring-shaped plate 13 is formed in a substantially circular shape with an opening at the center, and surrounds the three columns 15 by placing the three columns 15 on the inner peripheral surface of the ring-shaped plate 13.
  • the three columns 15 are inserted into the inner peripheral surface of the ring-shaped plate 13 facing the columns 15, the inner peripheral surface close to the columns 15, or the inner peripheral surface immediately adjacent to the columns 15.
  • a notch 20 is formed around the column 15.
  • one notch 20 is provided on the center line 21 of the ring-shaped plate 13 on the side opposite to the wafer loading / unloading side.
  • a total of three pieces are formed one at a position symmetrical with respect to the center line 21.
  • the notch 20 is cut out from the inside so that the column 15 fits within the plate width of the ring-shaped plate 13. This notch 20 is not cut out to the outside.
  • the pillars 15 be provided between the inner and outer diameters of the ring-shaped plate 13.
  • the gap between the boat 217 and the inner tube 204 at the time of rotation can be more appropriately maintained, particularly by setting the strut inside the outer periphery of the ring-shaped plate.
  • the generation of particles due to the rubbing between the support and the inner wall of the inner tube 204 can be avoided. Therefore, it is better that the struts do not protrude from the ring-shaped plate, and that the outer shape of the ring-shaped plate is free from deformation and unevenness.
  • FIG. 3 is a perspective view showing the periphery of the column 15 near the wafer support 16 described above.
  • the column 15 has the columnar wafer support 16 protruding therefrom.
  • the wafer support 16 is provided on the support 15 by fixing the wafer support 16 separate from the support 15 to the support 15.
  • the ring-shaped plate 13 is installed below the installation position of the wafer support 16 of the column 15, and is provided substantially horizontally at a predetermined interval with respect to the wafer supported by the wafer support 16.
  • the notch 20 is cut out around the column 15 on the inner peripheral surface of the ring-shaped plate 13.
  • the notch 20 includes a substantially circular or substantially semicircular fitting portion 20 a as a hole into which the support 15 is fitted, and an opening 20 b for opening the fitting portion in the inner circumferential direction of the ring-shaped plate 13.
  • the opening 20b is Preferably, the opening 20b is located in the center of the opening 20b, and the opening width of the opening 20b is larger than the width of the wafer support 16.
  • the notch 20 When the notch 20 is provided with the opening 20b that opens in the inner circumferential direction of the ring-shaped plate 13 as described above, the gas that has hit the wafer support 16 from above flows to both sides of the wafer support 16 and remains there. Since the gas flows downward through the opening 20b, turbulence is unlikely to occur in the wafer support 16. Therefore, there is no difference in the flow of the processing gas between the portion where the column 15 with the wafer support is present and the portion where it is not present.
  • the opening 20b it is preferable that the opening 20b be opened in a sector shape toward the inner peripheral surface. If the opening 20b is open in a fan shape, the wafer support 16 This is because the flow becomes more difficult to occur, and the flow of the processing gas is less different between the portion where the column 15 with the wafer support is present and the portion where it is not present.
  • the tip of the columnar wafer support 16 may be rounded (R) or chamfered (C). Further, as shown in FIG. 5, the fixing angle of the columnar wafer support portion 16 to the support column 15 may be parallel to the wafer 200, or may be fixed by tilting downward downward as shown in FIG. .
  • FIG. 3 shows an embodiment in which a columnar wafer support 16 separate from the column 15 is fixed to the column 15, but the present invention is not limited to this.
  • the support 15 and the wafer support 16 may be formed as an integral member 18.
  • the wafer support portion 16 is formed into a substantially triangular plate shape instead of a columnar shape, and the bottom side of the substantially triangular shape is integrated with the column 15 and the vertex side of the substantially triangular shape is formed. It should be directed inward in the radial direction of the ring-shaped plate 13.
  • the wafer support portion 16 is not limited to the case where it is parallel to the wafer, and may be processed by being inclined downward in the same manner as in FIG.
  • the ring plate 13 is temporarily fixed in multiple stages using a jig (not shown). Inner force of temporarily fixed multi-stage ring-shaped plate 13 Three pillars 15 are fitted into notches 20 and welded. That is, a plurality of ring-shaped plates 13 having notches 20 are prepared. A plurality of ring-shaped plates 13 are temporarily fixed with a jig in a state in which the notches 20 are aligned and stacked so that the notches 20 are vertically aligned with each other. The three columns 15 are arranged in a semicircular shape on the bottom disk 17 and fixed. At this time, the wafer support 16 protruding from the column 15 faces inward in the radial direction.
  • the support 15 is fitted into the notches 20 of the plurality of temporarily fixed ring-shaped plates 13, and the fitted support 15 is fixed to the ring-shaped plate 13 at the cutout portions.
  • the ring-shaped plate 13 is fixed so as to be located at an intermediate position between a plurality of wafer supports 16 provided in the vertical direction.
  • the top disk 11 is fixed to the column 15.
  • the fixing between the boat members including the fixing of the ring-shaped plate 13 is performed by welding quartz glass to each other.
  • the ring-shaped plate material—the support material, the top disk material, and the bottom disk material (that is, the members that make up the boat 217) are not particularly limited as long as they are heat-resistant. In addition to quartz, silicon carbide (SiC) , Alumina (A1 ⁇ ), ceramics and other heat-resistant materials Is preferred.
  • the wafer support portion and the support individually have an adverse effect on the film thickness of the wafer.
  • a notch is provided on the inner peripheral surface of the ring-shaped plate around the attachment. It is possible to reduce the adverse effects of the support. However, since this notch does not reduce the adverse effect of the column, it is impossible to reduce the adverse effect of the column with this notch.
  • the wafer support portion and the support which individually adversely affect the film thickness of the wafer, are aggregated.
  • a notch is provided on the inner peripheral surface of the ring-shaped plate around the mounting part of the wafer support where the support is fitted, so that the wafer support and the support are scattered as compared with the case where the support is scattered. The adverse effect on the film thickness of both the part and the pillar can be reduced to one.
  • a substrate holder called a normal boat was used to place wafers in multiple stages.
  • the normal boat has a shape in which a plurality of pillars arranged in an arc shape have grooves (mounting portions). Therefore, at the time of film formation, the film thickness around the column tends to be thin due to the influence of the column, and the film thickness at the peripheral portion of the wafer where there is no column tends to be large.
  • a ring provided with a support tab for mounting a wafer is placed on a support groove of a normal boat, and the wafer is separated from the support.
  • a boat was proposed. That is, in the ring boat, the wafer mounting portion is moved from the support to the ring.
  • the support pawl is provided at a position avoiding the support. The use of this ring boat has made it possible to improve the film thickness around the pillars, which was thinner in a normal boat.
  • the thickness of the peripheral portion of the wafer in the portion without pillars which tends to be thicker in a normal boat, can be improved.
  • the influence of the support pawl portion provided on the ring causes The non-uniform gas flow around the support claw has caused a new problem that the thickness of the wafer around the support claw becomes too thin.
  • the uneven gas flow due to the support cannot be completely wiped out.
  • the area around the ring boat support is thicker than the normal boat, and although it has been improved for some time, the degree of improvement is small. Not enough, it was still thin compared to the other parts.
  • the idea of the ring boat is that, in a normal boat in which a groove is provided in a column to support a wafer, a ring is provided inside the column in order to avoid a large influence of the column on the film thickness. The wafer is placed on the ring, and the wafer is separated from the column. Therefore, in a boat of the type that adopts a ring as a boat, it has been proposed based on the idea of moving the carrier support from the support to the ring.
  • the support and the wafer support which are two types of adverse effects on the film thickness of the wafer, are separated. Since they are combined into one, the adverse effect on the film thickness of the wafer can be reduced.
  • the inner peripheral surface of the ring-shaped plate 13 of the support portion is cut out, the influence of the support 15 and the wafer support portion 16 of the gas flow is suppressed in the portion where the support 15 and the wafer support portion 16 are present. The same film thickness can be obtained on the wafer 200 as in the portion without the wafer support 16 and the support 15.
  • FIG. 8 is a conceptual diagram of a gas flow when the processing gas flows from the wafer 200 toward the ring-shaped plate 13 and is exhausted downward when the processing gas crosses the inner tube.
  • FIG. 8A shows a gas flow in a portion where the support 15 and the wafer support 16 are not provided
  • FIG. 8B shows a gas flow in a portion where the support 15 and the wafer support 16 are provided.
  • the distance Lb between the column 15 at the portion where the column 15 and the wafer supporting portion 16 are present and the wafer end can be changed.
  • the conductance is increased by making the distance La between the inner peripheral surface of the ring-shaped plate 13 where there is no wafer supporting portion 16 and the edge of the wafer larger than La.
  • the film thickness of the wafer peripheral portion Wb where the support 15 and the wafer support 16 are not provided, and the thickness of the support 15 and the wafer It is possible to make the thickness of the portion where the support portion 16 is present equal to the thickness of the wafer peripheral portion Wa.
  • the processing gas flows upward from the bottom in the inner tube 204 or crosses the inner tube 204, it is possible to meet the above-mentioned demand for improving the uniformity of the film thickness in the wafer surface.
  • the ring-shaped plates are provided at predetermined intervals in the direction perpendicular to the column, the uniformity between the surfaces of the plurality of wafers can be improved.
  • the relationship between the distance between the ring-shaped plate 13 and the wafer 200 in the vertical direction is that the processing gas is formed on the upper surface of the wafer and the lower surface of the ring-shaped plate disposed above the wafer 200.
  • the gas directly hits the ring-shaped plate and the gas becomes turbulent. This will immediately adversely affect the film thickness uniformity. Therefore, it is preferable that the distance between the upper surface of the wafer and the lower surface of the ring-shaped plate disposed above the wafer 200 be large. In particular, as shown in FIG.
  • FIG. 10 shows a comparison result of evaluating film formation using the boat having the conventional shape shown in FIGS. 15 and 16 and the boat having the shape of the embodiment shown in FIGS. 1 and 2.
  • this evaluation Of the multiple wafers loaded on the boat 217, three wafers at the top (TOP), the center (CTR), and the bottom (BTM) were selected. The film thickness of the wafer at these positions after CVD processing was measured, and the in-plane uniformity was determined. The horizontal axis shows the wafer position, and the vertical axis shows the in-plane uniformity.
  • the in-plane uniformity where the film thickness is thin at the supporting pawls and the pillars was around 2.0%.
  • the boat having the shape according to the present embodiment the influence of the wafer support portion and the column is suppressed, and the in-plane uniformity is close to 1%, which is a good result.
  • the shape of the support 15 that fits into the notch 20 is a column, but the shape is not particularly limited to the column.
  • the shape of the support 15 is such that the notch 20 is not supported by the support 15, the opening 20 b near the fixing portion of the wafer support 16 is secured, and the support 15 flows near the support 15 and the wafer support 16.
  • the shape may be any shape that increases the processing gas flow rate.
  • the column 19 may have a substantially semi-cylindrical cross section, and the wafer support 16 may be attached to the center of the semicircle.
  • the wafer support 16 may be attached to the center of the semicircle.
  • the wafer support 16 may be attached to the center of the semicircle.
  • the wafer support 16 may be attached to the center of the semicircle.
  • the wafer support 16 may be protruded from the concave side. Similar effects can be obtained.
  • the wafer support portion 16 when the wafer support portion 16 is located at the center (vertically symmetric in FIG. 7) with respect to the columns 15, 19 or the notches 20, the effect is further enhanced.
  • the wafer support 16 since the wafer support 16 is fixed to the column 15, it is easy to increase the accuracy of the wafer mounting position. This is because the support 15 and the wafer support 16 and the support 15 and the bottom disk 17 can be welded together by machining them so that the surfaces with high precision can be applied. From this point, it is difficult for the conventional example shown in FIG. 16 to obtain the accuracy of the wafer mounting position. This means that when joining the support tabs 34 to the holder plate 33, the surface of the holder plate 33 is polished to a mirror surface and the support tabs 34 are crimped. Method) in many cases.
  • the holder plate 33 is inevitably introduced with a process of polishing a raw material having a thickness of 3 mm to a mirror-like plate having a thickness of 2 mm. Further, since the conventional example requires the above steps, it takes a very long time to manufacture, and the cost is high.
  • the wafer support is fixed to the support, and a simple structure ring-shaped plate having no wafer support is joined to the support provided with the wafer support. It can be omitted, the production time can be greatly reduced, and the cost can be reduced.
  • the number of the support 15 can be reduced to three which is the minimum number capable of holding the wafer 200 symmetrically.
  • the force is shown in FIG.
  • the column 15 can be provided so as to overlap the wafer support 16 provided on the center line of the ring-shaped plate 13 on the side opposite to the side of taking in and out the wafer. Therefore, when the wafer support 16 is provided on the support 15, the portion where the gas flow affects the wafer can be reduced to a minimum of three places.
  • the wafer can be held at three points and can be stably held.
  • the supporting pawl portion 14 and the wafer are in surface contact with each other, which causes particles to be generated due to sliding contact when the wafer is inserted. Also, for CVD processing, etc. In this case, a film cannot be formed on the back surface of the wafer because the surface of the supporting pawl portion 14 is in surface contact with the wafer contact portion. As a result, thermal distortion was generated between the film-deposited portion and the non-deposited portion on the back surface of the wafer, causing damage to the wafer itself and peeling of the film.
  • the fixing angle of the cylindrical wafer support 16 is made parallel to the wafer, and the tip of the wafer support 16 is rounded or chamfered to make contact. Since the surface is a line, particles generated by sliding contact can be significantly reduced. Further, since the wafer contact portion of the support pawl portion 14 is in line contact, the region where a film cannot be formed on the back surface of the wafer can be reduced. For this reason, it is possible to reduce the distortion caused by heat between the portion where the film is formed and the portion where the film is not formed on the back surface of the wafer, and it is possible to reduce the cause of damaging the wafer itself and the peeling of the film.
  • the boat according to the embodiment can improve the uniformity of the film thickness on the wafer surface by a simple configuration in which the wafer support portion is provided on the column, so that the boat size does not increase, and The size cannot be large. Therefore, the throughput does not deteriorate due to excessive heat.
  • the substrate processing apparatus of the present invention is particularly suitable for a vertical apparatus, but can be applied to other substrate processing apparatuses.
  • D-POLY film, Si3N4 film, HTO film (high-temperature oxide film), etc. it is naturally applicable to all CVD films, and it can be applied to other annealing furnaces and diffusion furnaces. Applicable.
  • the substrate processing apparatus of the present invention is effective as a method for improving the deposition rate in the CVD film because the deposition rate can be increased from 50 A / M1N to 20 A / min.
  • the substrate processing apparatus of the present invention can maintain uniformity within a wafer surface, between wafer surfaces, and between batches within ⁇ 3% of that of a conventional substrate processing apparatus using a normal boat or a ring boat. This is an effective method for improving wafer quality.
  • FIG. 1 is an explanatory view of a ring-shaped plate according to an embodiment, wherein (a) is a side view of a main portion of a boat focusing on one ring-shaped plate, and (b) is a ring-shaped plate including a support. It is a top view of a plate.
  • FIG. 2 is an overall configuration diagram of a boat as a substrate holder according to the embodiment.
  • FIG. 3 is a perspective view showing around a column near a wafer support according to the embodiment.
  • FIG. 4 is a perspective view showing around a column near a wafer support according to a modification of the embodiment.
  • FIG. 5 is an explanatory diagram showing a wafer mounted state of the boat according to the embodiment.
  • FIG. 6 is an explanatory view showing a state of mounting a wafer on a boat according to a modification of the embodiment.
  • FIG. 7 is a plan view of a main part in the vicinity of a column showing a modification of the column shape according to the embodiment, where (a) shows a case where the column is a circular column, and (b) and (c) show a cross-section of the column.
  • (d) is an explanatory view showing each modified example in the case of a pillar having a half pipe shape.
  • FIG. 8 is an explanatory view showing a gas flow according to the embodiment, wherein (a) is an explanatory view showing a gas flow in a portion where there is no wafer support and a support, and (b) is a view which has a wafer support and a support.
  • FIG. 4 is an explanatory diagram showing a gas flow in a portion.
  • FIG. 9 is an explanatory diagram showing a gas flow according to the embodiment, wherein (a) is an explanatory diagram showing a gas flow in a portion where there is no wafer support portion and no support, and (b) there is a wafer support portion and a support.
  • FIG. 4 is an explanatory diagram showing a gas flow in a portion.
  • FIG. 10 is a comparison diagram of the in-plane uniformity of wafers when processing is performed using the boat according to the embodiment and the boat according to the related art, respectively.
  • FIG. 11 is a perspective view showing an overall configuration of a semiconductor manufacturing apparatus as a substrate processing apparatus according to an embodiment.
  • FIG. 12 is a longitudinal sectional view of a reaction furnace including a control computer according to the embodiment.
  • FIG. 13 is an explanatory diagram showing the relationship between the distance between the inner tube and the ring-shaped plate and the gas flow when the processing gas according to the embodiment crosses the inner tube, where ( a ) shows the outer diameter of the inner tube and the boat. (B) shows a case where the gap is large.
  • FIG. 14 is a configuration diagram of a first control computer according to the embodiment.
  • FIG. 15 is an explanatory view of a conventional holder plate, in which (a) is a side view and (b) is a plan view.

Abstract

基板保持具を構成する支柱や基板載置部などの影響による基板上の膜厚不均一部分 を無くし、基板の膜厚均一性を向上する。  基板処理装置は、ボート(基板保持具)に保持された複数のウェハ(基板)を処理室に収容し、加熱された処理室に処理ガスを供給して、ウェハを成膜処理する。ボートは、略垂直に設けられた少なくとも3本の支柱15と、支柱に多段に設けられて複数のウェハを所定の間隔で略水平に載置する複数のウェハ支持部16(基板載置部)と、支柱15に設置され、ウェハ支持部16に支持されるウェハに対して所定の間隔で略水平に設けられる複数のリング状プレート13とを有する。

Description

明 細 書
基板処理装置、基板保持具、及び半導体装置の製造方法
技術分野
[0001] 本発明は基板処理装置、基板保持具、及び半導体装置の製造方法に係り、特に 基板面内の処理量の均一性を改善したものに関する。
背景技術
[0002] 従来、縦型 CVD装置等において、複数のウェハを保持する基板保持具として、ホ ルダプレートを有するボートが用いられている(例えば、特許文献 1)。このボートは、 図 15—図 16に示すように、垂直に設けられた 4本の支柱 32を持つ。支柱 32はゥェ ハの出し入れが可能なように略半円周の範囲で配設されている。前記支柱 32にはリ ング状の石英製ホルダプレート 33が支柱 32に設けた溝部(図示省略)に水平姿勢で 多段に溶接され、ホルダプレート 33の上面にはウェハを載置する基板載置部として の支持つめ部 34が複数設けられている。
このようなボートを使用してウェハ処理、例えばウェハ上に成膜を行えば、石英製ホ ルダプレート 33がウェハ面上の処理ガスの流れを均一化することにより、ウェハ端の 膜厚だけが厚くなるのを抑制することができる。また、略半円周に配設された 4本の支 柱 32よりも内側のホルダプレート 33上に設けた支持つめ部 34の上に、ウェハを保持 するので、支柱 32とウェハとの距離が遠ざかることから、支柱 32の影響が少なくなり、 膜厚均一性を向上させることが可能となる。
特許文献 1 :特開平 11一 40509号公報(図 5、図 6、図 7、図 10)
発明の開示
発明が解決しょうとする課題
[0003] しかし、上述した従来のボートを使用しても、なお支柱やウェハ支持部が処理ガス の流れの不均一な部分を構成することとなるため、これらの支柱やウェハ支持部の影 響を無くすことはできず、ウェハ処理結果でも、この支柱やウェハ支持部に対応する ウェハ部分における処理量が少なくなる傾向にあった。
[0004] 本発明の課題は、上述した従来技術の問題点を解消して、基板保持具を構成する 支柱や基板載置部などの影響による基板処理量の基板面内不均一部分を無くし、 基板面内均一性を向上することが可能な基板処理装置、基板保持具、および半導 体装置の製造方法を提供することにある。
課題を解決するための手段
[0005] 第 1の発明は、複数の基板を保持することが可能な基板保持具と、前記基板保持 具に保持される基板を収容する処理室と、該処理室を加熱する加熱手段と、前記加 熱手段により加熱された処理室に処理ガスを供給して前記基板を処理するガス供給 手段とを備え、前記基板保持具は、略垂直に設けられた少なくとも 3本の支柱と、該 支柱に多段に設けられて前記複数の基板を所定の間隔で略水平に載置する複数の 基板載置部と、前記支柱に設置され、前記基板載置部に支持される基板に対して所 定の間隔で略水平に設けられる複数のリング状プレートとを有することを特徴とする 基板処理装置である。
[0006] 基板は基板保持具に保持された状態で、加熱手段によって加熱された処理室に収 容されて処理される。ここで、基板を保持する基板保持具は、少なくとも 3本の支柱を 有するので、基板を安定に保持できる。また、支柱にリング状プレートが設けられてい るので、基板の周縁部の処理量が多くなるのを抑制できる。また、基板載置部を、リン グ状プレートにではなく支柱に設けることによって、支柱と基板載置部とを 1つにまと めたことにより、支柱と基板載置部とが与える基板処理量への悪影響を低減すること 力 Sできる。したがって、基板処理量の面内均一性を改善できる。
なお、「基板に対して所定の間隔で略水平に設けられるリング状プレート」の所定の 間隔とは、 0値すなわち基板上面とリング状プレート上面とがー致、つまり面一になる ことも含む。
[0007] 第 2の発明は、第 1の発明において、前記基板載置部は、円柱状ないし略断面半 円柱状をしている基板処理装置である。
基板載置部は、支柱に溝などを設けて凹部とすることも可能であるが、支柱から突 設した凸部とするとよい。基板載置部を凸部で構成した場合、凸部は円柱状ないし 略断面半円柱状をしていることが好ましい。断面略半円柱状の場合は、円弧側を基 板載置面とする。このようにすると、基板との接触が線接触となり、パーティクルの発 生を低減できる。なお、支柱に基板載置部を突設する場合、基板載置部は支柱とは 別体に形成して支柱に取り付けるようにしてもよいが、支柱と一体に形成してもよい。
[0008] 第 3の発明は、第 2の発明において、前記基板載置部は、前記リング状プレートの 径方向内方に向かって下方に傾斜していることを特徴とする基板処理装置である。こ のようにすると、基板との接触が点接触となり、パーティクルの発生をより低減できる。
[0009] 第 4の発明は、第 1の発明において、前記リング状プレートの前記支柱に対向する 内周面が、前記支柱の周辺で切り欠いてあることを特徴とする基板処理装置である。 リング状プレートの内周面が支柱の周辺で切り欠いてあると、支柱の周辺での処理ガ スが流れやすくなり、支柱の有る部分と支柱が無い部分とで基板に対する処理ガス の流れの均一化を図ることができる。したがって、基板処理量の面内均一性を改善で きる。
[0010] 第 5の発明は、第 4の発明において、前記基板載置部は、円柱ないし略断面半円 柱状をしている基板処理装置である。このようにすると、基板との接触が線接触となり 、パーティクルの発生を低減できる。
[0011] 第 6の発明は、第 5の発明において、前記基板載置部は、先端をまるめる力もしくは 面取りが行われている基板処理装置である。このようにすると、基板との接触が線接 触となり、パーティクルの発生を低減できる。
[0012] 第 7の発明は、第 6の発明において、前記基板載置部は、前記リング状プレートの 径方向内方に向かって下方に傾斜していることを特徴とする基板処理装置である。こ のようにすると、基板との接触が点接触となり、パーティクルの発生をより低減できる。
[0013] 第 8の発明は、第 4の発明において、前記支柱は、断面略半円柱状で構成し、該支 柱の弦側に前記基板載置部を突設することを特徴とする基板処理装置である。この ようにすると、支柱及び基板載置部に起因するガス流の障害を低減して、支柱及び 基板載置部の近傍に流れる処理ガス流量を増加させることができる。なお、支柱を略 ハーフパイプ状で構成して、その凹部側に基板載置部を突設するようにしてもよい。
[0014] 第 9の発明は、第 8の発明において、前記弦側は、前記リング状プレートの径方向 内方側が抉れていることを特徴とする基板処理装置である。このようにすると、支柱及 び基板載置部の近傍に流れる処理ガス流量をより増加させることができる。 [0015] 第 10の発明は、第 4の発明において、前記支柱は、前記リング状プレートの外周よ り内側に設けることを特徴とする基板処理装置である。このようにすると、支柱と処理 室とのすき間をより適切に保つことが可能となる。
[0016] 第 11の発明は、複数の基板を保持することが可能な基板保持具と、前記基板保持 具に保持される基板を収容する処理室と、該処理室を加熱する加熱手段と、前記加 熱手段により加熱された処理室に処理ガスを供給して前記基板を処理するガス供給 手段とを備え、前記基板保持具は、略垂直に設けられた少なくとも 3本の支柱と、前 記少なくとも 3本の支柱を取り囲み、かつ前記支柱に多段に設けられて、前記基板保 持具に保持される基板に対して所定の間隔で略水平に設けられる複数のリング状プ レートとを有し、前記リング状プレートの前記支柱に対向する内周面が、前記支柱の 周辺で切り欠いてあることを特徴とする基板処理装置である。
[0017] ここで、基板を保持する基板保持具は、少なくとも 3本の支柱を有するので、基板を 安定に保持できる。また、支柱にリング状プレートが設けられているので、基板の周 縁部の処理量が多くなるのを抑制できる。また、リング状プレートの内周面が支柱の 周辺で切り欠いてあるため、支柱の周辺での処理ガスが流れやすくなり、支柱の有る 部分と支柱が無い部分とで基板に対する処理ガスの流れの均一化を図ることができ る。したがって、基板処理量の面内均一性を改善できる。
なお、「基板に対して所定の間隔で略水平に設けられるリング状プレート」の所定の 間隔とは、 0値すなわち基板上面とリング状プレート上面とがー致、つまり面一になる ことも含む。
また、第 11の発明において、リング状プレートに支柱をはめる孔を設け、その孔をリ ング状プレートの内周面側に開口させることにより、リング状プレートの内周面を前記 支柱の周辺で切り欠くようにしてもよい。また、複数の基板を保持することが可能な基 板保持具における基板載置部は、支柱に設けるようにしても、リング状プレートに設 けるようにしてもよレ、。
[0018] 第 12の発明は、第 11の発明において、前記支柱は、断面略半円柱状で構成し、 該支柱の弦側に前記基板載置部を突設することを特徴とする基板処理装置である。 このようにすると、支柱及び基板載置部に起因するガス流の障害を低減して、支柱及 び基板載置部の近傍に流れる処理ガス流量を増加させることができる。
[0019] 第 13の発明は、第 11の発明において、前記支柱は、前記リング状プレートの外周 より内側に設けることを特徴とする基板処理装置である。このようにすると、支柱と処 理室とのすき間をより適切に保つことが可能となる。
[0020] 第 14の発明は、第 12の発明において、前記弦側は、前記リング状プレートの径方 向内方側が抉れていることを特徴とする基板処理装置である。このようにすると、支柱 及び基板載置部の近傍に流れる処理ガス流量をより増加させることができる。
[0021] 第 15の発明は、複数の基板を保持することが可能な基板保持具であって、略垂直 に設けられた少なくとも 3本の支柱と、該支柱に多段に設けられて前記複数の基板を 所定の間隔で略水平に載置する複数の基板載置部と、前記支柱に設置され、前記 基板載置部に支持される基板に対して所定の間隔で略水平に設けられる複数のリン グ状プレートとを有することを特徴とする基板保持具である。
[0022] 基板を保持する基板保持具は、少なくとも 3本の支柱を有するので、基板を安定に 保持できる。また、支柱にリング状プレートが設けられているので、基板の周縁部の 処理量が多くなるのを抑制できる。また、基板載置部を、リング状プレートにではなく 支柱に設けることによって、支柱と基板載置部とを 1つにまとめたことにより、支柱と基 板載置部とが与える基板処理量への悪影響を低減することができる。したがって、基 板処理量の面内均一性を改善できる。
なお、「基板に対して所定の間隔で略水平に設けられるリング状プレート」の所定の 間隔とは、 0値すなわち基板上面とリング状プレート上面とがー致、つまり面一になる ことも含む。
[0023] 第 16の発明は、第 15の発明において、前記リング状プレートの前記支柱に対向す る内周面が、前記支柱の周辺で切り欠いてあることを特徴とする基板保持具である。 このようにすると、支柱の周辺での処理ガスが流れやすくなり、支柱の有る部分と支 柱が無い部分とで基板に対する処理ガスの流れの均一化を図ることができる。
[0024] 第 17の発明は、複数の基板を保持することが可能な基板保持具であって、略垂直 に設けられた少なくとも 3本の支柱と、前記少なくとも 3本の支柱を取り囲み、かつ前 記支柱に多段に設けられて、前記基板保持具に保持される基板に対して所定の間 隔で略水平に設けられる複数のリング状プレートとを有し、前記リング状プレートの前 記支柱に対向する内周面が、前記支柱の周辺で切り欠いてあることを特徴とする基 板保持具である。
[0025] 基板を保持する基板保持具は、少なくとも 3本の支柱を有するので、基板を安定に 保持できる。また、支柱にリング状プレートが設けられているので、基板の周縁部の 処理量が多くなるのを抑制できる。また、リング状プレートの内周面が支柱の周辺で 切り欠いてあるため、支柱の周辺での処理ガスが流れやすくなり、支柱の有る部分と 支柱が無レ、部分とで基板に対する処理ガスの流れの均一化を図ることができる。した がって、基板処理量の面内均一性を改善できる。
なお、「基板に対して所定の間隔で略水平に設けられるリング状プレート」の所定の 間隔とは、 0値すなわち基板上面とリング状プレート上面とがー致、つまり面一になる ことも含む。
[0026] 第 18の発明は、複数の基板を保持することが可能な基板保持具と、前記基板保持 具に保持される基板を収容する処理室と、該処理室を加熱する加熱手段と、前記加 熱手段により加熱された処理室に処理ガスを供給して前記基板を処理するガス供給 手段とを備え、前記基板保持具は、略垂直に設けられた少なくとも 3本の支柱と、該 支柱に多段に設けられて前記複数の基板を所定の間隔で略水平に載置する複数の 基板載置部と、前記支柱に設置され、前記基板載置部に支持される基板に対して所 定の間隔で略水平に設けられる複数のリング状プレートとを有する基板処理装置を 用いた半導体装置の製造方法において、前記基板保持具の基板載置部に前記基 板を載置する工程と、前記基板保持具の基板載置部に載置された基板を前記処理 室に搬入する工程と、前記加熱手段により前記処理室を加熱する工程と、前記加熱 された処理室に処理ガスを供給して前記基板を処理する工程とを含むことを特徴と する半導体装置の製造方法である。
[0027] 複数の基板は基板載置部に載置されることにより基板保持具に保持される。複数 の基板を保持した基板保持具が処理室に搬入される。処理室は加熱手段によって 加熱され、加熱された処理室に処理ガスが供給されて、基板保持具に保持された複 数の基板が処理される。ここで、基板を保持する基板保持具は、少なくとも 3本の支 柱を有するので、基板を安定に保持できる。また、支柱にリング状プレートが設けられ ているので、基板の周縁部の処理量が多くなるのを抑制できる。また、基板載置部を
、リング状プレートにではなく支柱に設けることによって、支柱と基板載置部とを 1つに まとめたことにより、支柱と基板載置部とが与える基板処理量への悪影響を低減する こと力 sできる。したがって、基板処理量の面内均一性を改善できる。
なお、「基板に対して所定の間隔で略水平に設けられるリング状プレート」の所定の 間隔とは、 0値すなわち基板上面とリング状プレート上面とがー致、つまり面一になる ことも含む。
発明の効果
[0028] 本発明によれば、基板保持具を構成する支柱や基板載置部などの影響による基板 処理量の基板面内不均一部分を無くし、基板面内均一性を向上することができる。し たがって、半導体装置の製造における歩留まり及び品質の向上を図ることができる。 発明を実施するための最良の形態
[0029] 以下に本発明の基板処理装置、基板保持具、及び半導体装置の製造方法を、縦 型炉を有する半導体製造装置に適用した実施の形態を説明する。
[0030] 図 11は縦型炉を有する半導体製造装置の概略図であり、図 12は縦型炉としての 減圧 CVD処理炉の断面図である。図 11に示すように、筐体 10内部の前側にカセッ トローダ 6が位置し、カセットローダ 6の後側にカセット棚 1が設けられる。カセット棚 1 の上方にバッファカセット棚 7が設けられ、カセット棚 1の後側にウェハ移載機 2が設け られる。ウェハ移載機 2の後側にボート 217を昇降させるボートエレベータ 8が設けら れ、ボートエレベータ 8の上方に縦型炉 5が設けられる。
[0031] 縦型炉 5は、図 12に示すように、外管(以下、ァウタチューブ 205)と内管(以下、ィ ンナチューブ 204)とを有する。ァウタチューブ 205は例えば石英(Si〇2)等の耐熱 性材料力 なり、上端が閉塞され、下端に開口を有する円筒状の形態である。インナ チューブ 204は、上端及び下端の両端に開口を有する円筒状の形態を有し、ァウタ チューブ 205内に同軸的に配置されている。ァウタチューブ 205とインナチューブ 20 4の間の空間は筒状空間 250を成す。インナチューブ 204の上部開口力も上昇した ガスは、筒状空間 250を通過して排気管 231から排気されるようになっている。 [0032] ァウタチューブ 205およびインナチューブ 204の下端には、例えばステンレス等より なるマ二ホールド 209が係合され、このマ二ホールド 209にァウタチューブ 205およ びインナチューブ 204が保持されている。このマ二ホールド 209は保持手段(以下ヒ ータベース 251)に固定される。ァウタチューブ 205の下端部およびマ二ホールド 20 9の上部開口端部には、それぞれ環状のフランジが設けられ、これらのフランジ間に は気密部材(以下、〇リング 220)が配置され、両者の間が気密にシールされている。
[0033] マ二ホールド 209の下端開口部には、例えばステンレス等よりなる円盤状の蓋体( 以下シールキャップ 219)が〇リング 220を介して気密シール可能に着脱自在に取付 けられている。シールキャップ 219には、ガス供給手段としてのガス供給管 232が貫 通するよう設けられてレ、る。このガス供給管 232により、処理ガスがインナチューブ 20 4内に供給されるようになっている。このガス供給管 232はガスの流量制御手段(以 下マスフローコントローラ(MFC) 241)に連結されており、 MFC241は第 2の制御用 コンピュータ 120のガス流量制御部 122に接続されており、供給する処理ガスの流量 を所定の量に制御し得る。
[0034] マ二ホールド 209の上部には、圧力調節器 (例えば APC、 N2バラスト制御器があり 、以下ここでは APC242とする)及び、排気装置(以下真空ポンプ 246)に連結され たガスの排気管 231が接続されており、ァウタチューブ 205とインナチューブ 204との 間の筒状空間 250を流れるガスを排出し、ァウタチューブ 205内を APC242により圧 力を制御することにより、所定の圧力の減圧雰囲気にするよう圧力検出手段 (以下圧 力センサ 245)により検出し、第 2の制御用コンピュータ 120の圧力制御部 123により 制御する。
[0035] シールキャップ 219には、回転手段(以下回転軸 254)が連結されており、回転軸 2 54により、基板保持具 (以下ボート 217)及びボート 217上に保持されているウェハ 2 00を回転させる。又、シールキャップ 219は昇降手段(以下ボートエレベータ 225)に 連結されていて、ボート 217を昇降させる。回転軸 254、及びボートエレベータ 225を 所定のスピードにするように、第 2の制御用コンピュータ 120の駆動制御部 124により 制御する。
[0036] ァウタチューブ 205の外周には加熱手段(以下ヒータ 207)が同軸的に配置されて いる。ヒータ 207は、ァウタチューブ 205内の温度を所定の処理温度にするよう温度 検出手段(以下熱電対 263)により温度を検出し、第 2の制御用コンピュータ 120の 温度制御部 121により制御する。前述したインナチューブ 204、ァウタチューブ 205と 、マ二ホーノレド 209とで、ボート 217に支持されたウェハ 200を収納して処理するため の処理室 201を構成する。
[0037] 上述した第 2の制御用コンピュータ 120は、第 1の制御用コンピュータ 110によって 統括制御される。第 1の制御用コンピュータ 110と第 2の制御用コンピュータ 120とは 、それぞれのインタフェース 111、 125を介して接続される。
図 14は、図 12に示した第 1の制御用コンピュータ 110のハードウェア構成を示す図 である。図 14に示すように、制御用コンピュータ 110は、 CPU300、メモリ 304、キー 及び表示装置などを含む表示 ·入力部 302、及び CD装置、 HDD装置等の記録部 3 06から構成される。記録部 306は記録媒体 308を介して記録される。制御用コンビュ ータ 110は半導体製造装置を制御するプログラム等を実行し、ウェハに対する処理 を行わせるコンピュータとしての構成部分を備えている。
[0038] なお、第 2の制御用コンピュータ 120も、第 1の制御用コンピュータ 110と同様な構 成部分を 1組以上有している。また、第 2の制御用コンピュータ 120は、上述した温度 制御部 121、ガス流量制御部 122、圧力制御部 123、駆動制御部 124がそれぞれ 単独で構成されても良いし、 2つ以上を組合わせても良いし、種々の編成をなしても 良い。
[0039] 図 12に示した処理炉による減圧 CVD処理方法の一例を説明すると、まず、ボート エレベータ 225ίこよりボー卜 217を下降させる。ボー卜 217ίこ複数枚のウエノヽ 200を保 持する。次いで、ヒータ 207により加熱しながら、処理室 201内の温度を所定の処理 温度にする。ガス供給管 232に接続された MFC241により予め処理室 201内を不 活性ガスで充填しておき、ボートエレベータ 225により、ボート 217を上昇させて処理 室 201内に移し、処理室 201の内部温度を所定の処理温度に維持する。処理室 20 1内を所定の真空状態まで排気した後、回転軸 254により、ボート 217及びボート 21 7上に保持されているウェハ 200を回転させる。同時にガス供給管 232から処理用の ガスを供給する。供給された処理ガスは、インナチューブ 204内を下から上に向かつ て流れて、ウェハ 200に対して均等に供給される。
減圧 CVD処理中の処理室 201内は、排気管 231を介して排気され、所定の真空 になるよう APC242により圧力が制御され、所定時間減圧 CVD処理を行って、ゥェ ハ 200上に薄膜を形成する。
[0040] このようにして減圧 CVD処理が終了すると、次のウェハ 200の減圧 CVD処理に移 るべぐ処理室 201内のガスを不活性ガスで置換するとともに、圧力を常圧にし、その 後、ボートエレベータ 225によりボート 217を下降させて、ボート 217及び処理済のゥ ェハ 200を処理室 201力、ら取り出す。処理室 201から取り出されたボート 217上の処 理済のウェハ 200は、未処理のウェハ 200と交換され、再度前述同様にして処理室 2 01内に上昇され、減圧 CVD処理が成される。
[0041] 上述した減圧 CVD処理において、ウェハ 200上に形成される薄膜の膜厚の面内 均一性を向上するためには、好ましくは、図 15及び図 16と同様な、支柱にリング状 プレートを設ける構造のボートを使用する場合、ボート 217を構成する支柱力 Sリング 状プレートからはみ出さないようにすると良い。また、ボート 217は回転軸 254により、 回転させるため、特に支柱をリング状プレートの外周より内側にすることにより、回転 の際のインナチューブ 204とのすき間をより適切に保つことが可能となり、支柱とイン ナチューブ 204の内壁とのこすれによるパーティクル発生等を回避できる。したがつ て、支柱がリング状プレートからはみ出さず、またリング状プレートの外形が変形や出 っぱりのないほうが良い。
[0042] ところで、上述した処理炉では、処理ガスがインナチューブ 204内を下から上に向 力 て流れている場合を説明している。しかし、処理ガスの流れはこれに限定されな レ、。例えば、処理ガスがインナチューブ 204を横切って流れる場合もある。
[0043] 図 13はそのような処理ガスがインナチューブ 204を横切って流れる場合の処理炉 の要部説明図である。ここでは、インナチューブ 204は、その上端は閉じており、その 一側面にスリット状の開口 214が設けられるように構成されている。
インナチューブ 204内におけるガスの流れを説明する。図 13 (a)はインナチューブ 2 04とボート 217の外径との隙間 tが小さい場合、図 13 (b)は隙間が大きい場合を示 す。 [0044] 図 13 (a)に示すように、ウェハ 200面と平行な方向から処理ガスを噴射する場合、 処理ガスの流れを均一にするために、インナチューブ 204とボート 217の外径との隙 間 tを可能なかぎり小さくする必要がある。これは処理ガス力 リング状プレート 13に 沿って導入され、ウェハ 200の表面を通過した後、そのままガス流が乱されることなく 、インナチューブ 204に設けられたスリット状の開口 214から導出されて、空間 250か ら排気されるためである。これに対して図 13 (b)に示すように、隙間 tが大きいと、イン ナチューブ 204とボート 217の外径との空間 249で矢印で示すようなダウンフロー 21 8が発生し、処理室 201内の上下方向で排気が不均一となり、ウェハ 200の膜厚均 一性に影響を及ぼす。
[0045] この場合にも、上記隙間 tを可能な限り小さくして、膜厚のウェハ面内均一性を向上 するためには、ボート 217を構成する支柱がリング状プレート 13からはみ出さないよう にすると良レ、。また、支柱がはみ出していなくてもリング状プレート 13の外形が変形し ていないようにすると良い。
[0046] そこで、実施の形態のボート 217では、インナチューブ 204の構造によって、処理 ガスがインナチューブ 204を下から上に向かって流れるにせよ、インナチューブ 204 を横切るにせよ、上記要請に応えるために、リング状プレート 13に基板載置部として のウェハ支持部を固着するのではなぐ支柱 15に直接ウェハ支持部を固着するよう にした。また、リング状プレート 13の支柱に対向する内周面を支柱の周辺で切り欠く ようにした。これにより、半導体製造装置において、ウェハの面内均一性を向上するこ とができた。特に実施の形態のような縦型炉を有するバッチ式の半導体製造装置に おいては、成膜速度向上(デポレート向上)、およびウェハ品質向上の要求にも対応 することちでさた。
[0047] 以下、実施の形態のボートを図 1一図 2を用いて説明する。図 1は:!枚のリング状プ レートの説明図であって、(a)は 1枚のリング状プレートに着目したボートの要部側面 図、(b)は支柱を含めた平面図であり、図 2はボートの全体構成図である。
[0048] ボート 217は、例えば石英製であり、図 2に示すように、二枚の平行な板としての底 円板 17及び天円板 11と、底円板 17と天円板 11との間に略垂直に設けられた複数 本、例えば 3本の支柱 15と、を有する。支柱 15は円柱状をしている。リング状プレート 13を安定かつシンプルに支持するためには、支柱 15の数は特に 3本であることが好 ましいが、 3本以上であっても良い。
[0049] 3本の支柱 15は、底円板 17に略半円状に配列固定されている。天円板 11は、 3本 の支柱 15の上端部に固定されている。底円板 17及び天円板 11の中央部には、ボ ート 217の内部に処理ガスが入りやすくなるための円形穴 12、 14がそれぞれ形成さ れている。底円板 17と天円板 11との間には、所定の間隔で多段に略水平姿勢で設 けられた複数のリング状プレート 13が、支柱 15に固着されている。
[0050] 各支柱 15には、複数のウェハ 200を垂直方向に所定の間隔で略水平に載置する ことが可能な複数のウェハ支持部 16が多段に突設される。図 1に示すように、各ゥェ ハ支持部 16は円柱状をしており、ボート 217の中心、すなわちリング状プレート 13の 中心に向けて突設されている。この場合、支柱 15には、それぞれ 1つずつウェハ支 持部 16を設ける。すなわち、 1段に 3つのウェハ支持部 16が突設されている。この突 設された 3つのウェハ支持部 16上に、ウェハ 200の外周を支持させることにより、ゥェ ハ 200を載置するようになっている。このウェハ支持部 16は水平度が保たれているの が好ましい。水平を保つことにより、ウェハ搬送時にウェハがウェハ支持部 16に接触 する等の干渉を回避でき、またボート 217にウェハ 200が載置された状態でのウェハ 上に均一なガスの流れを確保できる。
[0051] 上述したリング状プレート 13は、支柱 15のウェハ支持部 16の各設置位置よりも下 方に設置され、ウェハ支持部 16に支持されるウェハ 200に対して所定の間隔で略水 平に設けられる。このリング状プレート 13は、中央が開口した略円形に形成され、リン グ状プレート 13の内周面に 3本の支柱 15を納めることにより、 3本の支柱 15を取り囲 むようになっている。本実施の形態のように、ウェハの全周に亘つて略円形に形成さ れたリングを設けることにより、ウェハの周縁部の膜厚が全周で厚くなる傾向を改善す ること力 Sできる。
[0052] リング状プレート 13の支柱 15に対向する内周面、あるいは支柱 15に近接する内周 面、ないしは支柱 15の直近にある内周面には、 3本の支柱 15を揷入するために、前 記支柱 15の周辺で切り欠いた切欠き 20が形成されている。切欠き 20は、図 1 (b)に 示すように、リング状プレート 13の中心線 21上のウェハの出し入れ側の反対側に 1個 、又中心線 21に対して左右対称位置に 1個ずつ計 3個形成される。切欠き 20は、支 柱 15がリング状プレート 13のプレート幅内に納まるように内側から切り欠かれている 。この切欠き 20は、外側までは切り欠かれていない。また、膜厚への悪影響を低減す るために、支柱 15はリング状プレート 13の内外径の幅間に設けることが好ましい。ま た、ボート 217は回転軸 254により、回転させるため、特に支柱をリング状プレートの 外周より内側にすることにより、回転の際のインナチューブ 204とのすき間をより適切 に保つことが可能となり、支柱とインナチューブ 204の内壁とのこすれによるパーティ クル発生等を回避できる。したがって、支柱がリング状プレートからはみ出さず、またリ ング状プレートの外形が変形や出つばりのないほうが良い。
[0053] 図 3は、上述したウェハ支持部 16近傍の支柱 15周りを示した斜視図である。既述し たように支柱 15に円柱状のウェハ支持部 16を突設している。ここでは、支柱 15とは 別体のウェハ支持部 16を支柱 15に固着することによって、支柱 15にウェハ支持部 1 6を突設している。リング状プレート 13は、支柱 15のウェハ支持部 16の設置位置より も下方に設置され、ウェハ支持部 16に支持されるウェハに対して所定の間隔で略水 平に設けられる。
[0054] また、切欠き 20は、リング状プレート 13の内周面の支柱 15の周辺で切り欠かれて いる。この切欠き 20は、支柱 15が嵌め込まれる孔としての略円形ないし略半円形の 嵌込み部 20aと、嵌め込み部をリング状プレート 13の内周方向に開放させる開口部 20bとから構成される。支柱 15を嵌込み部 20aに嵌めた状態で、この開口部 20bを 平面視して、この開口部 20b上にウェハ支持部 16を投影したとき、開口部 20bは、ゥ ェハ支持部 16が開口部 20bの中央に納まり、開口部 20bの開口幅がウェハ支持部 1 6の幅よりも大きくなつていることが好ましレ、。このように切欠き 20にリング状プレート 1 3の内周方向に開放す開口部 20bを設けると、上方からウェハ支持部 16に当たった ガスが、ウェハ支持部 16の両側に回り込んで、そのまま開口部 20bを通過して下方 に流れるので、ウェハ支持部 16で乱流が生じがたくなる。したがって、ウェハ支持部 付き支柱 15が存在する部分と、それが存在しない部分とで、処理ガスの流れに、差 異が生じなくなる。特に、図示例のように、開口部 20bは前記内周面側へ扇形に開く ようにすることが好ましい。開口部 20bが扇形に開いていると、ウェハ支持部 16で乱 流が一層生じがたくなり、ウェハ支持部付き支柱 15が存在する部分と、それが存在し ない部分とで、処理ガスの流れに、より差異が生じなくなるからである。
[0055] また、図 5に示すように、円柱状としたウェハ支持部 16の先端は、丸めるか (R)、も しくは面取り(C)を行うとよレ、。また、図 5に示すように、円柱状のウェハ支持部 16の 支柱 15への固着角度はウェハ 200と平行にしても、あるいは図 6のように、下方向に Θ傾けて固着しても良い。
[0056] なお、図 3は、支柱 15とは別体の円柱状のウェハ支持部 16を支柱 15に固着した実 施例であるが、本発明はこれに限定されなレ、。図 4のように、支柱 15とウェハ支持部 1 6を一体の部材 18としても良レ、。この場合、加工性を容易にするために、ウェハ支持 部 16を、円柱状ではなぐ略三角形をしたプレート状にして、略三角形の底辺側を支 柱 15と一体にし、略三角形の頂点側を、リング状プレート 13の径方向内方に向ける ようにするとよレ、。また、ウェハ支持部 16はウェハと平行である場合に限らず、図 6と 同様に、下方向に Θ傾けて加工しても良い。
[0057] 上述したボート 217を製作するには、ここでは、図示しない治具を用いてリング状プ レート 13を水平に多段に仮固定する。仮固定した多段のリング状プレート 13の内側 力 3本の支柱 15を、切欠き 20に嵌め込み、溶着するという方法をとつている。すな わち、切欠き 20を形成した複数のリング状プレート 13を用意する。複数のリング状プ レート 13を、各切欠き 20が互いに上下で合致するように揃えて積層させた状態で、 治具で仮固定する。底円板 17に 3本の支柱 15を半円状に配列して固定する。このと き、支柱 15に突設したウェハ支持部 16は径方向内方を向くようにする。支柱 15を、 仮固定した複数のリング状プレート 13の切欠き 20に嵌めて、嵌めた支柱 15を切欠き 部分でリング状プレート 13に固定する。リング状プレート 13は、垂直方向に設けられ た複数のウェハ支持部 16間のちょうど中間位置に、それぞれ位置するように固定す る。支柱 15に天円板 11を固定する。治具を取り外すと、多数枚のウェハを多段に積 載するボートが完成する。なお、リング状プレート 13の固定を含めたボート部材間の 固定は、石英ガラス同士の溶着で行なう。リング状プレート材ゃ支持材、天円板材、 底円板材 (つまり、ボート 217を構成する部材)は、耐熱性であれば特に限定されな いが、石英の他に、炭化ケィ素(SiC)、アルミナ (A1〇)、セラミック等の耐熱性材料 が好ましい。
[0058] リング状プレートを用いても、ウェハ支持部と支柱とが、ウェハの膜厚に対して個々 に悪影響を与えている。この場合、リング状プレートにウェハ支持部を取り付けて、ゥ ェハ支持部を支柱と重ならないように散在させる場合、取付け部周辺のリング状プレ 一トの内周面に切欠きを設けることにより、ゥヱハ支持部の悪影響を低減することは可 能である。しかし、この切欠きは支柱の悪影響を低減するものではないので、この切 欠きでもってしても支柱の悪影響を低減することは不可能である。
この点で、本実施の形態によれば、支柱にウェハ支持部を設けることによって、ゥェ ハの膜厚に対して個々に悪影響を与えているウェハ支持部と支柱とを集約させるよう にしたうえで、支柱を嵌め込んだウェハ支持部取付け部周辺のリング状プレートの内 周面に切欠きを設けるようにしたので、ウェハ支持部と支柱とを散在させた場合に比 ベて、ウェハ支持部と支柱との両方の膜厚に与える悪影響を 1つにまとめて低減する ことが可能となる。
[0059] ところで、いままで、支柱にウェハの載置部を設けていなかつたのは、次の理由によ る。
当初、ウェハを多段に載置するものとしてノーマルボートと呼ばれる基板保持具が 用いられていた。このノーマルボートは、円弧状に配設された複数本の支柱に溝 (ゥ ヱハ載置部)を設けている形状となっている。そのため、成膜時、支柱周辺の膜厚が 支柱の影響により薄くなり、支柱の無い部分のウェハ周縁部の膜厚が厚くなる傾向が あった。
[0060] そこで、膜厚に対する支柱の影響を減らすために、ウェハを載置するための支持つ め部を設けたリングをノーマルボートの支柱溝にのせて、ウェハを支柱から離すように したリングボートが提案された。すなわち、リングボートは、ウェハ載置部を支柱からリ ングに移設したものである。支持つめ部の周辺のウェハ上の成膜の膜厚に対する支 柱の影響を減らすために、支持つめ部は支柱を避ける箇所に設けるようにしている。 このリングボートの採用により、ノーマルボートでは薄くなつていた支柱周辺部分の膜 厚を厚く改善できるようになった。さらに、ノーマルボートでは厚くなる傾向にあった支 柱の無い部分のウェハの周縁部の膜厚を薄く改善できるようになった。 [0061] しかしながら、このリングボートにあっては、折角、支柱の無い部分のウェハの周縁 部の膜厚を薄く改善できるようになったものの、リングに設けられた支持つめ部の影 響により、支持つめ部周辺のガスの流れが不均一になることで、この支持つめ部周辺 のウェハの膜厚が薄くなり過ぎてしまうという問題が新たに生じてしまった。さらに、支 柱の影響でガスの流れが不均一になることも完全には拭い切れず、リングボート支柱 周辺は、ノーマルボートに比べて厚くなつて、一応改善されてはいるものの、改善度 は十分とは言えず、まだ他の部分の厚さと比べて薄かった。
[0062] このように、リングボートの発想は、支柱に溝を設けてウェハを支持するノーマルボ ートでは、膜厚に対する支柱の影響が大きぐそれを回避するために、支柱の内側に リングを配置して、そのリング上にウェハを載置することにより、ウェハを支柱から離そ うとするものである。従って、ボートにリングを採用するタイプのボートにあっては、ゥヱ ハ支持部を支柱からリングに移設するという発想に基づいて提案されているものであ る。
[0063] 上述したように、本実施の形態では、支柱 15にウェハ支持部 16を固着することによ つて、ウェハの膜厚に及ぶ悪影響の 2種類の要因である支柱とウェハ支持部とを 1つ にまとめたので、ウェハの膜厚への悪影響を低減することができる。また、支柱部分の リング状プレート 13の内周面を切り欠くようにしたので、支柱 15及びウェハ支持部 16 の有る部分において、ガス流の支柱 15及びウェハ支持部 16の影響が抑制されて、 ウェハ支持部 16及び支柱 15の無い部分と同様な膜厚をウェハ 200上に得ることがで きるようになった。
これを図 8を用いて具体的に説明する。図 8は、処理ガスがインナチューブを横切る 場合において、処理ガスがウェハ 200からリング状プレート 13の方向へ流れ、下部へ 排気される場合のガス流れの概念図である。図 8 (a)は支柱 15及びウェハ支持部 16 が無い部分のガス流れ、図 8 (b)は支柱 15及びウェハ支持部 16が有る部分のガス流 れを示す。 CVD処理等において、石英表面でも処理ガスによる成膜反応が起こるこ とは周知の事実である力 S、本来ウェハ 200で反応すべき処理ガスが石英表面で反応 してしまうことにより、支柱 15及びウェハ支持部 16近傍のウェハ部へ供給される処理 ガスの量が少なくなる。その結果として、支柱 15及びウェハ支持部 16近傍のウェハ 部の膜厚が薄くなつてしまう傾向にある。
[0064] 実施の形態では、図 8において、リング状プレート 13に切欠き 20を設けることにより 、支柱 15及びウェハ支持部 16が有る部分の支柱 15とウェハ端との距離 Lbを、支柱 15及びウェハ支持部 16が無い部分のリング状プレート 13の内周面とウェハ端との距 離 Laより大きくすることによりコンダクタンスを大きくする。これによつて、支柱 15及び ウェハ支持部 16が有る部分に流れる処理ガスの量を増やすことにより、支柱 15及び ウェハ支持部 16が無い部分のウェハ周縁部 Wbの膜厚と、支柱 15及びウェハ支持部 16が有る部分のウェハ周縁部 Waとの膜厚を同等とすることができる。
なお、図 8では、処理ガスがインナチューブを横切る場合において、処理ガスがゥェ ハ 200からリング状プレート 13方向へ流れる場合を説明した力 処理ガスがリング状 プレート 13からウェハ方向へ流れる場合や、処理ガスが下から上へ流れる場合も同 様である。
したがって、処理ガスがインナチューブ 204を下から上に向かって流れるにせよ、ィ ンナチューブ 204を横切るにせよ、膜厚のウェハ面内均一性を向上するという前述し た要請に応えることができる。また、リング状プレートは、支柱に垂直方向に複数所定 の間隔で設けられるので、複数のウェハの面間の均一性も改善できる。
[0065] また、図 8に示すように、リング状プレート 13とウェハ 200との垂直方向の距離の関 係は、処理ガスは、ウェハ上面とウェハ 200より上部に配置されたリング状プレート下 面との間を流すように供給するため、例えばウェハ上面とウェハ 200より上部に配置さ れたリング状プレート下面との距離がせまいと、リング状プレートに直接ガスがあたり、 ガスが乱流になりやすぐ膜厚均一性に悪影響を及ぼすことになつてしまう。したがつ て、ウェハ上面とウェハ 200より上部に配置されたリング状プレート下面との距離は大 きくなるように配置することが好ましい。とりわけ、図 9に示すように、ウェハ上面とリン グ状プレートの上面とがー致する、つまり面一になるように配置すると、面内膜厚均一 性よりいっそう良好となる。また、高い成膜速度を維持することができ、つまり成膜速 度も改善できることとなる。
[0066] 図 10に、図 15及び図 16に示した従来形状のボートと、図 1及び図 2に示した実施 の形態の形状のボートとによる成膜の評価を行った比較結果を示す。本評価では、 ボート 217に積載された複数のウェハのうち、頂部 (TOP)、中央部(CTR)、及び底 部(BTM)の 3力所にある 3枚のウェハを対象とした。これらの位置にある CVD処理後 のウェハの膜厚を測定し、面内均一性を求めた。横軸にウェハ位置、縦軸に面内均 一性を示すが、従来形状のボートでは支持つめ部及び支柱の部分で膜厚が薄ぐ面 内均一性は 2. 0%近傍であった。これに対して、本実施の形態の形状のボートでは 、ウェハ支持部及び支柱の影響が抑制され、面内均一性は 1%近傍であり、良好な 結果となっている。
[0067] なお、この評価を行なったときのガス種、ガス量、圧力、温度、時間等の成膜条件は 、 DPOLY膜(ドープトポリシリコン膜)で、シラン(SlH4) 400cc、ホスフィン(PH3) 5 Occ、圧力 300Pa、処理室内温度 530°C、成膜時間(デポ時間) 30minであり、図 8 ( a)に示す支柱が無い部分のリング状プレート 13とウェハ 200との距離 La = 4mmのと き、図 8 (b)に示す支柱 15が有る部分の支柱 15とウェハ 200との距離 Lb = 8. 5mm とした時の結果である。
[0068] また、 Laの最適値を実験により評価したところ、直径 300mmウェハの成膜評価に おいては、 Laが 2mm未満ではウェハ周縁部の膜厚がウェハ中心の膜厚より薄くなり 、逆に Laが 7mmを超えるとウェハ周縁部の膜厚がウェハ中心の膜厚より厚くなること がわかった。このことより、ウェハ直径 300mmサイズで、距離 Laは 2— 7mmが最適 であると言える。また、 Lbは、 Laく Lbであることが必須である。これはガス流の障害と なる支柱 15とウェハ支持部 16の有る側のガス流路のコンダクタンスを大きくする必要 があるからである。
[0069] なお、上記実施の形態では、図 7 (a)に示すように、切欠き 20に嵌まる支柱 15の形 状を円柱状としたが、特に円柱状に限定されなレ、。支柱 15の形状は、支柱 15によつ て切欠き 20が坦まらずに、ウェハ支持部 16の固着部近傍の開口部 20bが確保され て、支柱 15及びウェハ支持部 16の近傍に流れる処理ガス流量が増加する形状であ ればよい。例えば、図 7 (b)、(c)に示すように、支柱 19を略断面半円柱状にして、半 円中心部にウェハ支持部 16を取り付けるようにしてもよい。さらに、支柱断面のウェハ 側が抉れている形状であっても良レ、。この場合、例えば、図 7 (d)に示すように、支柱 19を略ハーフパイプ形状とし、その凹部側にウェハ支持部 16を突設するようにしても 同様の効果が得られる。
また、好ましくは、図 7に示すようにウェハ支持部 16は、支柱 15、 19または、切欠き 20に対し、中心部(図 7で言えば上下対称)となると、より一層効果が得られる。
[0070] また、実施の形態では、支柱 15にウェハ支持部 16を固着するようにしたので、ゥェ ハ載置位置の精度を出すのは容易である。これは、支柱 15とウェハ支持部 16、支柱 15と底円板 17は、ともに機械加工されて精度の出た面をあてて溶接をすることがで きるからである。この点で、図 16に示す従来例のものは、ウェハ載置位置の精度を出 すのは難しい。これは、ホルダプレート 33に支持つめ部 34を接合する際に、ホルダ プレート 33の表面を鏡面状態に磨き上げて支持つめ部 34を圧着 (鏡面状態の部材 同士を熱と力をかけて接合する方法)する工程を採用する場合が多い。これにともな つて、ホルダプレート 33は、例えば厚さ 3mmの原材料から厚さ 2mmの鏡面のプレー トへ磨かなければならない工程が必然的に導入されるからである。 また、従来例の ものは、上記工程を必要と摺るため、非常に製作時間がかかり、コストも高くなつてい た。これに対して本実施の形態では、支柱にウェハ支持部を固着し、このウェハ支持 部を設けた支柱にウェハ支持部の存在しない単純構造のリング状プレートを接合す るだけなので、上記工程を省くことができ、製作時間を大幅に短縮でき、コストダウン を実現できる。
[0071] また、支柱 15にウェハ支持部 16を固着していることにより、支柱 15の本数を、対称 形でウェハ 200を保持できる最少本数である 3本とすることができる。ガス流れがゥェ ハに影響しないようにするために、リング状プレート 13の中心線に対して左右対称位 置に支柱 15を設ける必要がある力 実施の形態では、図 1 (b)に示すように、リング 状プレート 13の中心線上のウェハの出し入れ側の反対側に設けたウェハ支持部 16 に、重ねて支柱 15を設けることができるからである。したがって、支柱 15にウェハ支 持部 16を設ける場合には、ガス流れがウェハに影響する部分を、最少の 3ケ所とする こと力 Sできる。また、ウェハ支持部 16を 3つとすることにより、 3点支持にてウェハを保 持でき、安定した保持が可能となる。
[0072] また、従来のホルダボートでは支持つめ部 14とウェハが面接触しており、ウェハ揷 入時の摺接等でパーティクルが発生する原因となっていた。また、 CVD処理等の場 合、支持つめ部 14のウェハ接触部分では面接触となっているため、ウェハ裏面に成 膜できない。このため、ウェハ裏面において成膜された部分とされない部分との間で 熱による歪が発生し、ウェハ自体にダメージを与えたり、膜が剥離する原因でもあつ た。
この点で、本実施の形態では、図 5に示すように、円柱状のウェハ支持部 16の固着 角度をウェハと平行にして、ウェハ支持部 16の先端は丸めるか、もしくは面取りを行 つて接触面を線としたので、摺接して発生するパーティクルを大幅に低減することが できる。また、支持つめ部 14のウェハ接触部分が線接触であるため、ウェハ裏面に成 膜できない領域を減らすことができる。このため、ウェハ裏面において成膜された部 分とされない部分との間で熱により発生する歪を軽減することができ、ウェハ自体にダ メージを与えたり、膜が剥離する原因を低減できる。
また、図 6のように、円柱状のウェハ支持部 16の固着角度を、下方向に Θ傾けた場 合は、ウェハとウェハ支持部 16は点接触となるので、更にパーティクルを低減するこ とができる。
[0073] また、実施の形態のボートは、支柱にウェハ支持部を設けるという簡単な構成によつ て、ウェハ面内の膜厚の均一性を改善できるので、ボートサイズが大きくならず、装置 サイズも大きくなることがなレ、。したがって、熱量過多でスループットが悪化するという こともない。
[0074] なお、本発明の基板処理装置は、特に縦型装置に好適であるが、その他の基板処 理装置にも適用可能である。また、対象膜種、 D—POLY膜、 Si3N4膜、 HTO膜 (高 温酸化膜)などの他、 CVD膜全般にわたっては当然適用可能であり、その他のァニ 一ル炉、拡散炉等にも適用可能である。
特に、本発明の基板処理装置は、 CVD膜において、デポレートが従来 20 A/mi nであったのを 50A/M1Nに向上できるので、デポレートを向上する方法として有効 である。また CVD膜において、本発明の基板処理装置は、ウェハ面内、ウェハ面間、 バッチ間の均一性を、ノーマルボートないしリングボートを用いる従来の基板処理装 置の ± 3%以内から ± 1 %以内に向上できるので、ウェハ品質を向上する方法として も有効である。 図面の簡単な説明
[図 1]実施の形態によるリング状プレートの説明図であって、(a)は 1枚のリング状プレ 一トに着目したボートの要部側面図、(b)は支柱を含めたリング状プレートの平面図 である。
[図 2]実施の形態による基板保持具としてのボートの全体構成図である。
[図 3]実施の形態によるウェハ支持部近傍の支柱周りを示した斜視図である。
[図 4]実施の形態の変形例によるウェハ支持部近傍の支柱周りを示した斜視図である
[図 5]実施の形態によるボートのウェハ載置状態を示す説明図である。
[図 6]実施の形態の変形例によるボートのウェハ載置状態を示す説明図である。
[図 7]実施の形態による支柱形状の変形例を示す支柱部近傍の要部平面図であつ て、(a)は支柱が円柱である場合、(b) , (c)は支柱が断面略半円状である場合、(d) は支柱がハーフパイプ状である場合の各変形例を示す説明図である。
[図 8]実施の形態によるガス流れを示す説明図であって、(a)はウェハ支持部及び支 柱が無い部分のガス流れを示す説明図、 (b)はウェハ支持部及び支柱が有る部分の ガスの流れを示す説明図である。
[図 9]実施の形態によるガス流れを示す説明図であって、(a)はウェハ支持部及び支 柱が無い部分のガスの流れを示す説明図、(b)ウェハ支持部及び支柱が有る部分の ガスの流れを示す説明図である。
[図 10]実施の形態のボートと従来例のボートとを用いてそれぞれ処理したときのゥェ ハの面内均一性の比較図である。
[図 11]実施の形態による基板処理装置としての半導体製造装置の全体構成を示す 斜視図である。
[図 12]実施の形態による制御用コンピュータを含めた反応炉の縦断面図である。
[図 13]実施の形態による処理ガスがインナーチューブを横切る場合の、内管とリング 状プレート間の距離とガス流れの関係を示す説明図で、(a)は内管とボートの外径と の隙間 tが小さい場合、(b)は隙間が大きい場合を示す。
[図 14]実施の形態による第 1の制御用コンピュータの構成図である。 [図 15]従来例のホルダプレートの説明図であって、(a)は側面図、(b)は平面図であ る。
園 16]従来例のボートの全体構成図である。
符号の説明
13 リング状プレート
15 支柱
16 ウェハ支持部 (基板載置部)
200 ウェハ(基板)
201 処理室
207 ヒータ(加熱手段)
217 ボート (基板保持具)
232 ガス供給管 (ガス供給手段)

Claims

請求の範囲
[1] 複数の基板を保持することが可能な基板保持具と、前記基板保持具に保持される 基板を収容する処理室と、該処理室を加熱する加熱手段と、前記加熱手段により加 熱された処理室に処理ガスを供給して前記基板を処理するガス供給手段とを備え、 前記基板保持具は、
略垂直に設けられた少なくとも 3本の支柱と、
該支柱に多段に設けられて前記複数の基板を所定の間隔で略水平に載置する複 数の基板載置部と、
前記支柱に設置され、前記基板載置部に支持される基板に対して所定の間隔で 略水平に設けられる複数のリング状プレートと
を有することを特徴とする基板処理装置。
[2] 前記基板載置部は、円柱ないし略断面半円柱状をしている請求項 1に記載の基板 処理装置。
[3] 前記基板載置部は、前記リング状プレートの径方向内方に向かって下方に傾斜し ていることを特徴とする請求項 2に記載の基板処理装置。
[4] 前記リング状プレートの前記支柱に対向する内周面力 前記支柱の周辺で切り欠 いてあることを特徴とする請求項 1に記載の基板処理装置。
[5] 前記基板載置部は、円柱ないし略断面半円柱状をしている請求項 4に記載の基板 処理装置。
[6] 前記基板載置部は、先端をまるめる力もしくは面取りが行われている請求項 5に記 載の基板処理装置。
[7] 前記基板載置部は、前記リング状プレートの径方向内方に向かって下方に傾斜し ていることを特徴とする請求項 6に記載の基板処理装置。
[8] 前記支柱は、断面略半円柱状で構成し、該支柱の弦側に前記基板載置部を突設 することを特徴とする請求項 4に記載の基板処理装置。
[9] 前記弦側は、前記リング状プレートの径方向内方側が抉れていることを特徴とする 請求項 8に記載の基板処理装置。
[10] 前記支柱は、前記リング状プレートの外周より内側に設けることを特徴とする請求項 4に記載の基板処理装置。
[11] 複数の基板を保持することが可能な基板保持具と、前記基板保持具に保持される 基板を収容する処理室と、該処理室を加熱する加熱手段と、前記加熱手段により加 熱された処理室に処理ガスを供給して前記基板を処理するガス供給手段とを備え、 前記基板保持具は、
略垂直に設けられた少なくとも 3本の支柱と、
前記少なくとも 3本の支柱を取り囲み、かつ前記支柱に多段に設けられて、前記基 板保持具に保持される基板に対して所定の間隔で略水平に設けられる複数のリング 状プレートとを有し、
前記リング状プレートの前記支柱に対向する内周面力 S、前記支柱の周辺で切り欠 レ、てあることを特徴とする基板処理装置。
[12] 前記支柱は、断面略半円柱状で構成し、該支柱の弦側に前記基板載置部を突設 することを特徴とする請求項 11に記載の基板処理装置。
[13] 前記支柱は、前記リング状プレートの外周より内側に設けることを特徴とする請求項
11に記載の基板処理装置。
[14] 前記弦側は、前記リング状プレートの径方向内方側が抉れていることを特徴とする 請求項 12に記載の基板処理装置。
[15] 複数の基板を保持することが可能な基板保持具であって、
略垂直に設けられた少なくとも 3本の支柱と、
該支柱に多段に設けられて前記複数の基板を所定の間隔で略水平に載置する複 数の基板載置部と、
前記支柱に設置され、前記基板載置部に支持される基板に対して所定の間隔で 略水平に設けられる複数のリング状プレートと
を有することを特徴とする基板保持具。
[16] 前記リング状プレートの前記支柱に対向する内周面力 前記支柱の周辺で切り欠 レ、てあることを特徴とする請求項 15に記載の基板保持具。
[17] 複数の基板を保持することが可能な基板保持具であって、
略垂直に設けられた少なくとも 3本の支柱と、 前記少なくとも 3本の支柱を取り囲み、かつ前記支柱に多段に設けられて、前記基 板保持具に保持される基板に対して所定の間隔で略水平に設けられる複数のリング 状プレートとを有し、
前記リング状プレートの前記支柱に対向する内周面力 S、前記支柱の周辺で切り欠 レヽてあることを特徴とする基板保持具。
複数の基板を保持することが可能な基板保持具と、前記基板保持具に保持される 基板を収容する処理室と、該処理室を加熱する加熱手段と、前記加熱手段により加 熱された処理室に処理ガスを供給して前記基板を処理するガス供給手段とを備え、 前記基板保持具は、
略垂直に設けられた少なくとも 3本の支柱と、該支柱に多段に設けられて前記複数 の基板を所定の間隔で略水平に載置する複数の基板載置部と、前記支柱に設置さ れ、前記基板載置部に支持される基板に対して所定の間隔で略水平に設けられる 複数のリング状プレートとを有する基板処理装置を用いた半導体装置の製造方法に おいて、
前記基板保持具の基板載置部に前記基板を載置する工程と、
前記基板保持具の基板載置部に載置された基板を前記処理室に搬入する工程と 前記加熱手段により前記処理室を加熱する工程と、
前記加熱された処理室に処理ガスを供給して前記基板を処理する工程とを含むこ とを特徴とする半導体装置の製造方法。
PCT/JP2004/017723 2003-11-27 2004-11-29 基板処理装置、基板保持具、及び半導体装置の製造方法 WO2005053016A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/574,568 US7455734B2 (en) 2003-11-27 2004-11-29 Substrate processing apparatus, substrate holder, and manufacturing method of semiconductor device
JP2005515837A JP4312204B2 (ja) 2003-11-27 2004-11-29 基板処理装置、基板保持具、及び半導体装置の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003397743 2003-11-27
JP2003-397743 2003-11-27

Publications (1)

Publication Number Publication Date
WO2005053016A1 true WO2005053016A1 (ja) 2005-06-09

Family

ID=34631548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017723 WO2005053016A1 (ja) 2003-11-27 2004-11-29 基板処理装置、基板保持具、及び半導体装置の製造方法

Country Status (5)

Country Link
US (1) US7455734B2 (ja)
JP (1) JP4312204B2 (ja)
KR (1) KR100891259B1 (ja)
CN (1) CN100435312C (ja)
WO (1) WO2005053016A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027159A (ja) * 2005-07-12 2007-02-01 Hitachi Kokusai Electric Inc 基板処理装置
WO2012013528A1 (fr) * 2010-07-27 2012-02-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dispositif de stockage d'articles sous atmosphere controlee
CN103074610A (zh) * 2012-08-28 2013-05-01 光达光电设备科技(嘉兴)有限公司 衬底支撑结构、含有上述衬底支撑结构的反应腔室
US8940096B2 (en) 2008-09-05 2015-01-27 Tokyo Electron Limited Vertical thermal processing apparatus and substrate supporter
JP2019004096A (ja) * 2017-06-19 2019-01-10 東京エレクトロン株式会社 基板保持具及びこれを用いた基板処理装置
KR20210018149A (ko) 2019-08-09 2021-02-17 가부시키가이샤 코쿠사이 엘렉트릭 기판 처리 장치, 반도체 장치의 제조 방법, 기판 보유 지지구 및 프로그램
US11118267B2 (en) * 2018-05-22 2021-09-14 Tokyo Electron Limited Substrate processing method

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100946994B1 (ko) 2005-10-04 2010-03-10 가부시키가이샤 히다치 고쿠사이 덴키 기판 처리 장치 및 반도체 장치의 제조 방법
WO2007099786A1 (ja) * 2006-02-23 2007-09-07 Hitachi Kokusai Electric Inc. 基板処理装置及び半導体装置の製造方法
US7632354B2 (en) * 2006-08-08 2009-12-15 Tokyo Electron Limited Thermal processing system with improved process gas flow and method for injecting a process gas into a thermal processing system
US8688254B2 (en) * 2007-06-15 2014-04-01 Taiwan Semiconductor Manufacturing Company, Ltd. Multiple tools using a single data processing unit
US7900579B2 (en) * 2007-09-26 2011-03-08 Tokyo Electron Limited Heat treatment method wherein the substrate holder is composed of two holder constituting bodies that move relative to each other
US8662886B2 (en) * 2007-11-12 2014-03-04 Micrel, Inc. System for improved pressure control in horizontal diffusion furnace scavenger system for controlling oxide growth
WO2010026955A1 (ja) * 2008-09-08 2010-03-11 芝浦メカトロニクス株式会社 基板保持部材、基板処理装置、基板処理方法
JP2010153467A (ja) * 2008-12-24 2010-07-08 Hitachi Kokusai Electric Inc 基板処理装置および半導体装置の製造方法
JP5250109B2 (ja) 2009-06-12 2013-07-31 アルプス・グリーンデバイス株式会社 磁気平衡式電流センサ
WO2012026255A1 (ja) 2010-08-23 2012-03-01 アルプス・グリーンデバイス株式会社 磁気平衡式電流センサ
JP5565242B2 (ja) * 2010-09-29 2014-08-06 東京エレクトロン株式会社 縦型熱処理装置
CN102796992B (zh) * 2011-05-27 2014-05-28 北京北方微电子基地设备工艺研究中心有限责任公司 反应腔装置及具有其的基片处理设备
CN102953051A (zh) * 2011-08-31 2013-03-06 北京北方微电子基地设备工艺研究中心有限责任公司 腔室装置和具有它的基片处理设备
TWI541928B (zh) * 2011-10-14 2016-07-11 晶元光電股份有限公司 晶圓載具
JP6054213B2 (ja) * 2013-03-11 2016-12-27 東京エレクトロン株式会社 支持部材及び半導体製造装置
CN103280418B (zh) * 2013-05-07 2016-04-13 上海华力微电子有限公司 高温氧化设备
CN104195629A (zh) * 2014-08-20 2014-12-10 中国科学院半导体研究所 塔式多片外延生长装置
DE102015014903A1 (de) * 2015-11-18 2017-05-18 Centrotherm Photovoltaics Ag Waferboot und Plasma-Behandlungsvorrichtung für Wafer
WO2017138185A1 (ja) * 2016-02-10 2017-08-17 株式会社日立国際電気 基板処理装置、基板保持具及び載置具
JP6469046B2 (ja) * 2016-07-15 2019-02-13 クアーズテック株式会社 縦型ウエハボート
CN108695138A (zh) * 2017-03-29 2018-10-23 株式会社日立国际电气 衬底支承件、衬底处理装置及半导体器件的制造方法
US10829866B2 (en) * 2017-04-03 2020-11-10 Infineon Technologies Americas Corp. Wafer carrier and method
CN109423626B (zh) * 2017-08-30 2021-07-09 胜高股份有限公司 成膜装置、成膜用托盘、成膜方法、成膜用托盘的制造方法
CN111373523B (zh) * 2018-04-11 2023-09-08 株式会社爱发科 基板保持装置、基板保持方法和成膜装置
CN110295356B (zh) * 2019-07-03 2021-03-02 京东方科技集团股份有限公司 一种基板垫块、基板传送设备和成膜系统
JP7361005B2 (ja) * 2020-09-18 2023-10-13 株式会社Kokusai Electric 基板処理装置、基板保持具、半導体装置の製造方法、及び、プログラム
CN112794715B (zh) * 2020-12-29 2022-07-08 中南大学 一种多料柱式cvi炉及飞机刹车盘制造方法
CN115404462A (zh) * 2022-09-20 2022-11-29 江苏微导纳米科技股份有限公司 基片载具及炉管镀膜设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042118A (ja) * 1990-04-18 1992-01-07 Tokyo Electron Ltd Cvd膜の形成方法及び形成装置
JPH0992623A (ja) * 1995-07-13 1997-04-04 Semiconductor Energy Lab Co Ltd 減圧cvd装置
JPH1041236A (ja) * 1996-07-25 1998-02-13 M Ii M C Kk Cvd膜成膜用のボートおよびcvd膜成膜方法
JPH10233368A (ja) * 1997-02-20 1998-09-02 Toshiba Ceramics Co Ltd 縦型ウエハボート
JP2001168175A (ja) * 1999-12-07 2001-06-22 Semiconductor Leading Edge Technologies Inc 熱処理用基板保持具、基板熱処理装置および基板の熱処理方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61191015A (ja) * 1985-02-20 1986-08-25 Hitachi Ltd 半導体の気相成長方法及びその装置
US5169684A (en) * 1989-03-20 1992-12-08 Toyoko Kagaku Co., Ltd. Wafer supporting jig and a decompressed gas phase growth method using such a jig
US5429498A (en) * 1991-12-13 1995-07-04 Tokyo Electron Sagami Kabushiki Kaisha Heat treatment method and apparatus thereof
JP3234617B2 (ja) * 1991-12-16 2001-12-04 東京エレクトロン株式会社 熱処理装置用基板支持具
US5820683A (en) * 1995-05-26 1998-10-13 Tokyo Electron Limited Object-supporting boat
US5743967A (en) * 1995-07-13 1998-04-28 Semiconductor Energy Laboratory Co. Low pressure CVD apparatus
JP4169813B2 (ja) 1997-07-22 2008-10-22 株式会社日立国際電気 半導体製造装置及びボート及び半導体製造方法
JP4255091B2 (ja) * 1999-04-07 2009-04-15 株式会社日立国際電気 半導体製造方法
US6287112B1 (en) * 2000-03-30 2001-09-11 Asm International, N.V. Wafer boat
JP2003124284A (ja) * 2001-10-11 2003-04-25 Hitachi Kokusai Electric Inc 基板処理装置および半導体装置の製造方法
KR100491161B1 (ko) * 2002-11-26 2005-05-24 주식회사 테라세미콘 반도체 제조장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042118A (ja) * 1990-04-18 1992-01-07 Tokyo Electron Ltd Cvd膜の形成方法及び形成装置
JPH0992623A (ja) * 1995-07-13 1997-04-04 Semiconductor Energy Lab Co Ltd 減圧cvd装置
JPH1041236A (ja) * 1996-07-25 1998-02-13 M Ii M C Kk Cvd膜成膜用のボートおよびcvd膜成膜方法
JPH10233368A (ja) * 1997-02-20 1998-09-02 Toshiba Ceramics Co Ltd 縦型ウエハボート
JP2001168175A (ja) * 1999-12-07 2001-06-22 Semiconductor Leading Edge Technologies Inc 熱処理用基板保持具、基板熱処理装置および基板の熱処理方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027159A (ja) * 2005-07-12 2007-02-01 Hitachi Kokusai Electric Inc 基板処理装置
US8940096B2 (en) 2008-09-05 2015-01-27 Tokyo Electron Limited Vertical thermal processing apparatus and substrate supporter
WO2012013528A1 (fr) * 2010-07-27 2012-02-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dispositif de stockage d'articles sous atmosphere controlee
FR2963327A1 (fr) * 2010-07-27 2012-02-03 Air Liquide Dispositif de stockage d'articles sous atmosphere controlee
CN103026481A (zh) * 2010-07-27 2013-04-03 乔治洛德方法研究和开发液化空气有限公司 用于在受控气氛中储存物品的设备
US9863655B2 (en) 2010-07-27 2018-01-09 L'Air Liquide, Société Anonyme l'Etude et l'Exploitation des Procédés Georges Claude Device for storing articles in controlled atmosphere
CN103074610A (zh) * 2012-08-28 2013-05-01 光达光电设备科技(嘉兴)有限公司 衬底支撑结构、含有上述衬底支撑结构的反应腔室
JP2019004096A (ja) * 2017-06-19 2019-01-10 東京エレクトロン株式会社 基板保持具及びこれを用いた基板処理装置
US11118267B2 (en) * 2018-05-22 2021-09-14 Tokyo Electron Limited Substrate processing method
KR20210018149A (ko) 2019-08-09 2021-02-17 가부시키가이샤 코쿠사이 엘렉트릭 기판 처리 장치, 반도체 장치의 제조 방법, 기판 보유 지지구 및 프로그램

Also Published As

Publication number Publication date
JPWO2005053016A1 (ja) 2007-12-06
CN1886829A (zh) 2006-12-27
CN100435312C (zh) 2008-11-19
KR20060061860A (ko) 2006-06-08
KR100891259B1 (ko) 2009-04-01
US20070007646A1 (en) 2007-01-11
US7455734B2 (en) 2008-11-25
JP4312204B2 (ja) 2009-08-12

Similar Documents

Publication Publication Date Title
WO2005053016A1 (ja) 基板処理装置、基板保持具、及び半導体装置の製造方法
US11495477B2 (en) Substrate processing apparatus
KR102165123B1 (ko) 기판 처리 장치, 반응관, 반도체 장치의 제조 방법 및 기록 매체
JP5189294B2 (ja) オートドーピングおよび裏面堆積を減少させるための基板支持システム
JP5188326B2 (ja) 半導体装置の製造方法、基板処理方法、及び基板処理装置
US11104995B2 (en) Substrate processing apparatus
TW201104748A (en) Substrate processing apparatus
KR20010090517A (ko) 기판 처리 장치 및 기판 처리 방법
US20210043485A1 (en) Substrate processing apparatus and substrate holder
JP6916766B2 (ja) 基板処理装置及び半導体装置の製造方法
JPWO2020026445A1 (ja) 基板処理装置およびデバイス製造方法
US6861321B2 (en) Method of loading a wafer onto a wafer holder to reduce thermal shock
US20230055506A1 (en) Substrate processing apparatus, method of manufacturing semiconductor device, method of processing substrate, and gas injector
JP2011165964A (ja) 半導体装置の製造方法
JPWO2004003995A1 (ja) 基板処理装置および半導体装置の製造方法
US20200312631A1 (en) Reaction tube and method of manufacturing semiconductor device
US9957616B2 (en) Substrate processing apparatus and heating unit
JP4282539B2 (ja) 基板処理装置および半導体装置の製造方法
KR20220103156A (ko) 기판 처리 장치, 단열재 어셈블리 및 반도체 장치의 제조 방법
JP3114063B2 (ja) 半導体製造装置
JP2020092163A (ja) 基板処理装置及び半導体装置の製造方法
JP2007048771A (ja) 基板処理装置及び基板保持具
JP2000252350A (ja) 基板受け渡し装置
JP2005285819A (ja) 基板処理装置
JP2005228991A (ja) 基板処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480034610.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515837

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067007466

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 1020067007466

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007007646

Country of ref document: US

Ref document number: 10574568

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10574568

Country of ref document: US