WO2005052955A1 - 自動車用電線 - Google Patents

自動車用電線 Download PDF

Info

Publication number
WO2005052955A1
WO2005052955A1 PCT/JP2004/017335 JP2004017335W WO2005052955A1 WO 2005052955 A1 WO2005052955 A1 WO 2005052955A1 JP 2004017335 W JP2004017335 W JP 2004017335W WO 2005052955 A1 WO2005052955 A1 WO 2005052955A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
wire
cross
peripheral
sectional area
Prior art date
Application number
PCT/JP2004/017335
Other languages
English (en)
French (fr)
Inventor
Koutarou Maeda
Original Assignee
Sumitomo Wiring Systems, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems, Limited filed Critical Sumitomo Wiring Systems, Limited
Publication of WO2005052955A1 publication Critical patent/WO2005052955A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0009Details relating to the conductive cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/08Several wires or the like stranded in the form of a rope
    • H01B5/10Several wires or the like stranded in the form of a rope stranded around a space, insulating material, or dissimilar conducting material
    • H01B5/102Several wires or the like stranded in the form of a rope stranded around a space, insulating material, or dissimilar conducting material stranded around a high tensile strength core
    • H01B5/104Several wires or the like stranded in the form of a rope stranded around a space, insulating material, or dissimilar conducting material stranded around a high tensile strength core composed of metallic wires, e.g. steel wires

Definitions

  • the present invention relates to an electric wire for automobiles, and more particularly to an electric wire for automobiles in which the tensile strength can be adjusted to various degrees without changing the conductor diameter according to needs.
  • FIG. 1 shows a typical conductor (wire assembly) of this type of electric wire.
  • reference numeral 1 denotes a conductor, which has a stranded wire structure in which six peripheral wires 3 are arranged around a single central wire 2 in a single layer and closely adhered to each other.
  • copper or a copper alloy has generally been used for both the central strand 2 and the peripheral strands 3 constituting such a stranded conductor.
  • the diameters of the central strand 2 and the peripheral strand 3 are the same in the diameter.
  • automotive electric wires such as those having a certain tensile strength depending on the application, those having a relatively high tensile strength, those having a relatively high tensile strength, and those requiring a higher tensile strength.
  • the automotive wire usually have standard provided in the conductor diameter (conductor size) (e.g., 0. 13mm 2, 0. 22mm 2 , etc.), to use a large wire more tensile strength This was dealt with by using one with the conductor diameter above the rank.
  • the use of conductors with a conductor diameter higher than that of the rank while running force is particularly against the trend of thinning and lightening automobile wires.
  • An object of the present invention is to provide an electric wire for automobiles that is rich in nori- sion and can adjust the tensile strength to various degrees without changing the conductor diameter.
  • a wire having a diameter larger than a diameter of the peripheral wire is used as the center wire, and a space factor of the conductor satisfies the following expression. .
  • Space factor of conductor ⁇ (A + B) / C ⁇ X 100 [%] ⁇ 85 [%]
  • A is the total cross-sectional area of the peripheral strand
  • B is the cross-sectional area of the central strand
  • C is the cross-sectional area of the conductor.
  • FIG. 1 is a cross-sectional view of a conventional stranded wire (uncompressed conductor) automotive wire conductor.
  • FIG. 2 is an explanatory sectional view of a conductor diameter.
  • FIG. 3 is a cross-sectional view of a configuration example of an electric wire conductor for an automobile according to the present invention.
  • FIG. 4 is a cross-sectional view of a configuration example when there are seven peripheral strands.
  • FIG. 5 is an explanatory diagram of parameters of an automobile electric wire according to the present invention.
  • the electric wire for an automobile according to the present invention is arranged such that seven or more peripheral wires made of copper or copper alloy are integrally and closely adhered to a single central wire made of stainless steel so as to surround the central wire.
  • a conductor having a diameter larger than the diameter of the peripheral wire is used as the center wire, and the space factor of the conductor is 85% or more. Or more than 90%.
  • the space factor of the conductor is represented by the following equation.
  • A is the total cross-sectional area of the peripheral strand
  • B is the cross-sectional area of the central strand
  • C is the cross-sectional area of the conductor.
  • the conductor diameter refers to the diameter of the conductor as shown in FIG. 2, and the cross-sectional area C of the conductor is represented by the following equation.
  • the conductor diameter is determined by the relationship between the diameters of the core wire and the peripheral wires and the selection of the number of the peripheral wires. Without changing, it becomes possible to increase the tensile strength according to needs and to make the value of the tensile strength various.
  • the conductor in the automotive wire according to the present invention may be a compressed conductor or an uncompressed conductor as long as the above conditions are satisfied.
  • FIG. 3 is a cross-sectional view showing an example of a configuration of an automobile electric wire according to the present invention (when the conductor is a compressed conductor) before, after, and after insulation coating of the conductor.
  • Peripheral wires These are three examples: Riki, 8 and 9.
  • FIG. 4 is a cross-sectional view showing a state before the conductor is compressed in an example having seven peripheral strands.
  • reference numeral 21 denotes a conductor (combination of strands) before compression, in which seven peripheral strands 23 that also have copper or copper alloy strength are superposed around a single central strand 22 that also has stainless steel strength. It is closely arranged in the circumferential direction and twisted to form a stranded wire structure. The diameter of the central strand 22 is set larger than the diameter of the peripheral strand 23. Such a set of strands is compressed in the center direction using, for example, a compression die or the like to obtain a compressed conductor. Then, an insulation coating is provided around the compressed conductor directly or via a shield layer to obtain an automobile electric wire.
  • the diameter of the central strand which also has the strength of stainless steel, is set to be larger than the diameter of the peripheral strand, which also has the strength of copper or copper alloy.
  • Various values can be set according to the strength.
  • a force having a configuration in which six peripheral wires of the same diameter are closely arranged around the central element wire in a single layer is used in the automotive electric wire of the present invention.
  • the number of peripheral strands is set to 7 or more because the diameter of the peripheral strand is set larger than the diameter of the peripheral strand. If the number of peripheral strands is less than 6, the tensile strength will decrease.
  • the number of peripheral wires can be set to an appropriate number as long as it is 7 or more. From the viewpoint of power productivity, 7-11 is more preferable, and 8 is particularly preferable.
  • the ratio between the diameter of the central element and the diameter of the peripheral element is set so that the peripheral element can be closely attached to the periphery of the central element.
  • the electric wire for automobiles of the present invention preferably has an electric wire breaking strength of 60N or more, more preferably 70N or more, in consideration of use as an electric wire for a wire harness. Such a range sufficiently satisfies the required strength of recent electric wires for automobile wiring harnesses.
  • Various stainless steels can be used as the stainless steel used for the center strand of the automobile electric wire of the present invention, and SUS304, SUS316, and the like having particularly high tensile strength can be preferably used.
  • the diameter of the central strand is appropriately set according to the use, the number of peripheral strands, and the like.
  • copper or copper alloy used for the peripheral strands can be of various types commonly used for electric wires. Pure copper, Cu—Ag alloy, Cu — Ni—Si alloys are preferred.
  • the diameter of the peripheral strand is also set appropriately according to the application and the number of arrangements.
  • an insulating coating is provided around a conductor in a final product as an electric wire for an automobile, and the insulating coating may be a conventionally used polychlorinated vinyl (PVC), polyethylene, or the like. (Including foaming system), halogen-free materials, and various resin materials such as tetrafluoroethylene can be used.
  • the thickness of the insulating coating is appropriately set according to the finish outer diameter of the conductor. When a shield layer is provided, various materials having a conventionally known shield effect can be used.
  • the tensile strength can be increased according to needs, and the value of the tensile strength can be varied.
  • an electric wire of the same conductor size is almost the same as an electric wire of one rank higher. It is possible to obtain the above tensile strength.
  • Peripheral strands entire cross-sectional area 11. 146X10 one 2 (mm 2)
  • FIG. 5 shows the parameters of the cross-section of the structure of the automotive electric wire of the present invention before compression.
  • the center strand diameter is y
  • the peripheral strand diameter is d
  • the number of peripheral strands is n
  • the finish outer diameter before compression is D
  • the line connecting the conductor center and the center of one peripheral strand is ⁇
  • the adjacent periphery Assuming that the angle between the line connecting the centers of the strands is ⁇ , the following relationship is obtained.
  • Reference example 1 is the case of the reference example in Table 1
  • reference example 2 is the case where the center strand is also pure copper and the conductor size is 0.22 mm 2 which is one rank higher.
  • a center wire made of SUS 304 having the cross-sectional area shown in Configuration Example 1 in Table 1 was used as the center wire before compression, and a pure copper having a cross-sectional area shown in Configuration Example 1 in Table 1 was used as the peripheral wire before compression.
  • compression as shown in Configuration Example 1 in Table 2 is performed using a die, and then extrusion molding is performed using a halogen-free material (olefin-based; the same applies hereinafter) as a coating material.
  • a halogen-free material olefin-based; the same applies hereinafter
  • the tensile rupture strength of stainless steel was 720 MPa
  • the tensile rupture strength of copper wire was 230 MPa
  • other conditions were as shown in Configuration Example 1 in Table 1.
  • Table 3 shows the measurement results of the outer diameter, weight, and breaking load of these wires.
  • the space factor of the conductor was over 90%.
  • the center element wire composed of SUS 304 with the cross-sectional area shown in Configuration Example 2 in Table 1 is used as the central element wire before compression, and the pure copper having the cross-sectional area shown in Configuration Example 2 in Table 1 is used as the peripheral element element before compression.
  • compression as shown in Configuration Example 2 in Table 2 is performed with a die, and then insulation coating is performed by extrusion molding using a halogen-free material as a coating material, and the present invention is applied.
  • An electric wire for a car was obtained.
  • the tensile rupture strength of stainless steel was 720 MPa
  • the tensile rupture strength of copper wire was 230 MPa
  • Table 3 shows the measurement results of the wire outer diameter, wire weight, and breaking load of these wires.
  • the space factor of the conductor was over 90%.
  • the center element wire made of SUS 304 with the cross-sectional area shown in the reference example of Table 1 is used as the center element line before compression, and the pure copper force of the cross-sectional area shown in the reference example of Table 1 is used as the peripheral element element before compression.
  • compression is performed using a die as shown in Reference Example in Table 2, and then insulation coating is performed by extrusion molding using a halogen-free material as a coating material, and the automotive wire of Reference Example 1 is used.
  • the tensile strength at break of stainless steel was 720MPa
  • the tensile strength at break of copper wire was 230MPa
  • other conditions were as shown in the reference example of Table 1.
  • Table 3 shows the measurement results of the outer diameter, weight, and breaking load of these wires.
  • the space factor of the conductor was over 90%.
  • Both the center strand and the surrounding strands are made of pure copper strands, six peripheral strands are placed closely around the center strand, compressed, and then extruded using a halogen-free material as a coating.
  • the automobile electric wire of Reference Example 2 was obtained by insulating coating. Table 3 shows the measurement results of the outer diameter, weight, and breaking load of these wires.
  • the space factor of the conductor is 90% or more.
  • Example 2 Has made it possible to produce wires with the same strength reliability as conductors of one rank higher, using strands of pure copper only.
  • a center wire made of SUS 304 having the cross-sectional area shown in Configuration Example 1 in Table 1 was used as the center wire before compression, and a pure copper having a cross-sectional area shown in Configuration Example 1 in Table 1 was used as the peripheral wire before compression.
  • the tensile strength at break of stainless steel was 900 MPa
  • the tensile strength at break of copper wire was 230 MPa
  • the other conditions were as shown in Configuration Example 1 of Table 1.
  • Table 4 shows the measurement results of the outer diameter, weight, and breaking load of these wires. The space factor of the conductor was over 90%.
  • the center strand of SUS 304 with the cross-sectional area shown in Configuration Example 2 in Table 1 was used as the center strand before compression, and the pure strands with the cross-sectional area shown in Configuration Example 2 in Table 1 were used as the peripheral strands before compression.
  • compression is performed using a die as shown in Configuration Example 2 in Table 2, and then, using a halogen-free material as a coating material, extruding and insulatingly coating the automobile according to the present invention.
  • Electric wire was obtained.
  • the tensile strength at break of stainless steel was 900 MPa
  • the tensile strength at break of copper wire was 230 MPa
  • Table 4 shows the measurement results of the outer diameter, weight, and breaking load of these wires.
  • the space factor of the conductor was over 90%.
  • the center element wire made of SUS 304 with the cross-sectional area shown in the reference example of Table 1 is used as the center element line before compression, and the pure copper force of the cross-sectional area shown in the reference example of Table 1 is used as the peripheral element element before compression.
  • compression as shown in the reference example in Table 2 was performed with a die, and then insulation coating was performed by extrusion molding using a halogen-free material as the coating material.
  • the tensile rupture strength of stainless steel was 900 MPa
  • the tensile rupture strength of copper wire was 230 MPa
  • other conditions were as shown in the reference example in Table 1.
  • Table 4 shows the measurement results of the wire outer diameter, wire weight, and breaking load of these wires. Conductor Space factor was over 90%

Landscapes

  • Insulated Conductors (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

 ニーズに合わせて全導体面積を変えずに同径寸法の導体で引張強度を種々の程度に調整することができるバリエーションに富んだ自動車用電線であって、ステンレス鋼からなる単一の中心素線22の周囲に該中心素線22を包囲するように銅又は銅合金からなる7本以上の周辺素線23を一重にかつ互いに密着配置してなる導体を有し、該中心素線22として、その径寸法が該周辺素線23の径寸法よりも大きいものを用い、かつ、該導体の占積率が下記式を満足することを特徴とする自動車用電線を提供する。  導体の占積率={(A+B)/C}×100[%]≧85[%] (但し、上記式中、Aは周辺素線の断面積の合計、Bは中心素線の断面積、Cは導体の断面積である)

Description

明 細 書
自動車用電線
技術分野
[0001] 本発明は、自動車用電線に関し、特にニーズに合わせて導体径を変えずに引張強 度を種々の程度に調整することができる自動車用電線に関するものである。
背景技術
[0002] 自動車では、電装品等への電気的接続のために多数の電線を束ねたワイヤハー ネスが使用されている。このワイヤハーネスに用いられる電線の中には、複数本の素 線を撚りあわせた撚線構造の導体を有するものがある。この種の電線で典型的なも のの導体 (素線集合体)を図 1に示す。図中 1が導体であり、単一の中心素線 2の周り に 6本の周辺素線 3を一重にかつ互いに密着配置して撚りあわせた撚線構造となつ ている。従来、このような撚線構造の導体を構成する中心素線 2及び周辺素線 3には いずれも銅又は銅合金が使用されているのが一般的であった。また、中心素線 2及 び周辺素線 3の径寸法は 、ずれも同径のものが使用されて!、た。
[0003] ところで、自動車用電線では、用途に応じてその引張強度がある程度の値であれ ばよいもの、比較的大きいことが好ましいもの、より大きいことが必要なもの等、種々 のスペックのものを利用することを希望するニーズがある。ところが、自動車用電線に は、通常、その導体径 (導体サイズ)に規格が設けられており(例えば、 0. 13mm2, 0 . 22mm2等)、より引張強度の大きな電線を利用するには導体径がランクの上のもの を使用することで対処していた。し力しながら、導体径がランクの上のものを使用する ことは、特に自動車用電線の細線化、軽量ィ匕の流れに逆行することとなる。
[0004] そこで、ニーズに合わせて導体径を変えずに(導体径のランクの上のものを使用す ることなく)引張強度を種々の程度に調整することができる自動車用電線の実現が望 まれていた。
発明の開示
発明が解決しょうとする課題
[0005] 本発明は、このような従来技術の実情に鑑みてなされたもので、ニーズに合わせて 導体径を変えずに引張強度を種々の程度に調整することができるノリエーシヨンに 富んだ自動車用電線を提供することをその課題とする。
課題を解決するための手段
[0006] 本発明によれば、上記課題は下記の技術的手段により解決される。
(1)ステンレス鋼力 なる単一の中心素線の周囲に該中心素線を包囲するように銅 又は銅合金力 なる 7本以上の周辺素線を一重にかつ互いに密着配置してなる導 体を有し、該中心素線として、その径寸法が該周辺素線の径寸法よりも大きいものを 用い、かつ、該導体の占積率が下記式を満足することを特徴とする自動車用電線。 導体の占積率 = { (A+B) /C} X 100[%]≥85 [%]
(但し、上記式中、 Aは周辺素線の断面積の合計、 Bは中心素線の断面積、 Cは導 体の断面積である)
(2)該導体の占積率が 90%以上であることを特徴とする前記(1)に記載の自動車 用電線。
(3)該導体の断面積に対する該中心素線の占有断面積が 19. 5%以上であること を特徴とする前記(1)又は(2)に記載の自動車用電線。
(4)該導体の断面積が 0. 3mm2以下であることを特徴とする前記(1)一 (3)の 、ず れかに記載の自動車用電線。
(5)該導体が圧縮導体であることを特徴とする前記(1)一(4)の ヽずれかに記載の 自動車用電線。
(6)撚線構造であることを特徴とする前記(1)一 (5)の 、ずれかに記載の自動車用 発明の効果
[0007] 本発明によれば、前記構成を採用したので、ニーズに合わせて導体径を変えずに 引張強度を種々の程度に調整することができるバリエーションに富んだ自動車用電 線を提供することが可能となる。
図面の簡単な説明
[0008] [図 1]従来の撚線構造 (非圧縮導体)の自動車用電線導体の断面図である。
[図 2]導体径の説明断面図である。 [図 3]本発明による自動車用電線導体の構成例の断面図である。
[図 4]周辺素線が 7本の場合の構成例の断面図である。
[図 5]本発明による自動車用電線のパラメータ説明図である。
符号の説明
[0009] 21 導体
22 中心素線
23 周辺素線
発明を実施するための最良の形態
[0010] 以下、本発明の実施の形態を好ましい実施例により説明する。
本発明による自動車用電線は、ステンレス鋼力もなる単一の中心素線の周囲に該 中心素線を包囲するように銅又は銅合金力 なる 7本以上の周辺素線を一重にかつ 互いに密着配置してなる導体を有し、該中心素線として、その径寸法が該周辺素線 の径寸法よりも大きいものを用い、かつ、該導体の占積率が 85%以上であり、より好 ましくは 90%以上である。ここで導体の占積率は下記式で表される。
導体の占積率 = { (A+B) /C} X 100[%]
(但し、上記式中、 Aは周辺素線の断面積の合計、 Bは中心素線の断面積、 Cは導 体の断面積である)
本明細書中において、導体径とは図 2に示すように導体の直径のことをいい、導体 の断面積 Cは下記の式で表される。
C (mm2) = π X導体径 (mm) X導体径 (mm) ÷4
本発明の自動車用電線において、該導体の占積率を上記のように規定すると、中 心素線及び周辺素線の径寸法の関係と周辺素線の本数の選択とあいまって、導体 径を変えずに、ニーズに応じて引張強度を上げ、かつその引張強度の値を種々の程 度のものとすることが可能になる。
[0011] 本発明による自動車用電線における導体は、上記の条件を満足していれば、圧縮 導体であってもよいし、非圧縮導体であってもよい。
[0012] 図 3は、本発明による自動車用電線の一構成例 (導体が圧縮導体である場合)にお ける導体の圧縮前、圧縮後、絶縁被覆後の状態を断面図で示すもので、周辺素線 力 本、 8本、 9本の 3例である。また、図 4は周辺素線が 7本の例で導体の圧縮前の 状態を示す断面図である。
図 4において 21は圧縮前の導体 (素線の集合形態)で、ステンレス鋼力もなる単一 の中心素線 22の周囲に、銅又は銅合金力もなる 7本の周辺素線 23がー重に周方向 に密着配置され、撚り合わされ撚線構造となっており、中心素線 22の径寸法は周辺 素線 23の径寸法より大きく設定されている。このような素線の集合形態を例えば圧縮 ダイス等を用いて中心方向に圧縮して圧縮導体とする。そして、この圧縮導体の周り に直接又はシールド層を介して絶縁被覆を設けて、自動車用電線とする。
[0013] 本発明では、ステンレス鋼力もなる中心素線の径寸法を、銅又は銅合金力もなる周 辺素線の径寸法より大きく設定するが、中心素線の径寸法は、要求される引張強度 に応じて種々の値とすることができる。本発明では、中心素線の径寸法を、全導体断 面積に対して中心素線の占有断面積が 19. 5%以上となるように設定することが好ま しぐ 19. 5— 29. 1%となるように設定することがより好ましい。中心素線の占有断面 積が小さすぎると引張強度を上げることが難しぐ大きすぎると電気抵抗が上昇する。 背景技術の項で前記した通常の自動車用電線では、中心素線の周りに同径の周 辺素線を 6本一重に密着配置した構成をとる力 本発明の自動車用電線では、中心 素線の径寸法を周辺素線の径寸法より大きく設定する関係から、周辺素線の本数を 7本以上に設定する。周辺素線の本数が 6本以下では引張強度が低下する。周辺素 線の本数は 7本以上であれば適宜の数に設定できる力 生産性の観点からは、 7— 1 1本がより好ましぐ 8本が特に好ましい。
本発明では、中心素線の径寸法と周辺素線の径寸法との割合は、中心素線の周 囲に周辺素線が密着配置できるように設定される。
[0014] 本発明の自動車用電線は、ワイヤハーネス用電線として用いることを考慮して、電 線破断強度が 60N以上が好ましぐ 70N以上がより好ましい。このような範囲のもの は近年の自動車用ワイヤハーネス用電線の必要強度を十分満足するものである。
[0015] 通常、自動車用のワイヤハーネスに使用される電線は、その導体サイズに規格があ り、種々のサイズのものが使用可能である力 0. 13-0. 3mm2程度のものが好まし く使用される。このようなサイズのものはワイヤハーネス用電線としてのニーズに十分 沿うことができるものである。
[0016] 本発明の自動車用電線の中心素線に使用されるステンレス鋼としては、各種のもの が使用可能であるが、特に引張強度が大きい SUS304、 SUS316等が好ましく使用 できる。中心素線の直径は、用途、周辺素線の本数等に応じて適宜設定される。 また、周辺素線に使用される銅又は銅合金は、通常電線に使用される各種のタイ プのものが使用できる力 導電性、引張強度、伸び等の観点から純銅、 Cu— Ag合金 、 Cu— Ni— Si合金等の使用が好ましい。周辺素線の直径も、用途、配置本数に応じ て適宜設定される。
[0017] 本発明では、自動車用電線としての最終製品には導体の周りに絶縁被覆が設けら れるが、その絶縁被覆としては、従来使用されているポリ塩ィ匕ビニル (PVC)、ポリエ チレン (発泡系を含む)、ハロゲンフリー材、テトラフロロエチレン等の各種榭脂材料を 用いることができる。絶縁被覆の厚さは導体の仕上外径に応じて適宜設定される。 また、シールド層を設ける場合には、従来公知のシールド効果を有する各種材料が 使用できる。
[0018] 上記のような構成とすることにより、ニーズに応じて引張強度を上げ、かつその引張 強度の値を種々の程度のものとすることができる。そして、中心素線の径寸法、材料 等、周辺素線の本数、径寸法、材料等を適切に設定することにより、同じ導体サイズ の電線でも 1ランク上の大きさの電線とほぼ同じかそれ以上の引張強度を得ることが でさるよう〖こなる。
[0019] 次に、本発明における導体の占積率の測定方法について述べる。
(1)導体 lmの中心素線 (ステンレス鋼)の重量 (gZm)及び周辺素線 (銅又は銅合 金)全体の重量 (gZm)を実測する。
(2)次式カゝら中心素線及び周辺素線全体の断面積を算出する。
中心素線の断面積 (mm2)
=中心素線の質量 (gZm) ÷中心素線比重 (gZcm3) · ' ·Ι
周辺素線全体の断面積 (mm2)
=周辺素線全体の質量 (gZm) ÷周辺素線比重 (gZcm3) · · -II
(3)次式から導体断面積を算出 導体断面積 (mm2) = π X導体径 (mm) X導体径 (mm) ÷4 · · -III
(4)占積率 = { (I+II) ÷111} X 100[%]
[0020] ここで一例として、中心素線に SUS304、周辺素線に純銅を用い、中心素線の周り に周辺素線を 8本配置した圧縮導体の場合の占積率を求めた例を挙げる。
(1)中心素線重量 =0. 2767 (g/m)
周辺素線全体重量 =0. 9920 (g/m)
中心素線比重 =7. 9 (g/cm3)
周辺素線比重 =8. 9 (g/cm3)
(2)よって
中心素線断面積 =3. 503X10— 2 (mm2)
周辺素線全体断面積 =11. 146X10一2 (mm2)
(3)導体径ニ 。.46 (実測値)
導体断面積 =15. 904X10— 2 (mm2)
(4)占積率 ={(3. 503 + 11. 146) ÷ 15. 904} X 100
= 92. 1[%]
[0021] 次に、本発明の自動車用電線の導体構成例 (圧縮導体の場合の例)を述べる。図 5に本発明の自動車用電線の圧縮前の構造断面のパラメータを示す。中心素線径を y、周辺素線径を d、周辺素線の数を n、圧縮前の仕上外径を D、導体中心と一つの 周辺素線の中心とを結ぶ線と、隣接した周辺素線の中心同士を結ぶ線とのなす角度 を Θとすると、次のような関係がある。
y={(l/cos0)-l}Xd
D=y+2d
Figure imgf000008_0001
[0022] 導体サイズが 0. 13mm2の場合の構成例における圧縮前構成を表 1に、圧縮後構 成を表 2に示す。なお、参考例は周辺素線の数が 6つの場合である。
[0023] [表 1] 構) 1 横 Hi?ぉ圍り mpxvi o •g> (I 周辺素線数 7 8 9 10 11 6 周辺素線径 0. 155 0. 140 0. 130 0. 120 0. 110 0. 175 中心素線径 0. 202 0. 226 0. 250 0. 268 0. 280 0. 175 仕上外径 0. 513 0. 505 0. 510 0. 510 0. 500 0. 525
Θ 64. 29 67. 50 70. 00 72. 00 73. 64 60. 00
Θのラジアン 1. 12 1. 18 1. 22 1. 26 1. 29 1. 05
COS Θ 0. 43 0. 38 0. 34 0. 31 0. 28 0. 50 y / d 1. 305 1. 613 1. 924 2. 236 2. 549 1. 000
[0024] [表 2]
Figure imgf000009_0001
[0025] 次に、本発明の自動車用電線の作製例を述べる。参考例 1は表 1の参考例の場合 、参考例 2は中心素線も純銅力 なるもので導体サイズが 1ランク上の 0. 22mm2の 場合である。
[0026] 実施例 1
圧縮前の中心素線として表 1の構成例 1で示す断面積の SUS 304からなる中心素 線を用いるとともに、圧縮前の周辺素線として表 1の構成例 1で示す断面積の純銅か らなる周辺素線を 7本一重に密着配置した後、ダイスにより表 2の構成例 1で示す圧 縮を行い、その後、ハロゲンフリー材 (ォレフイン系;以下同様)を被覆材として用い押 し出し成形で絶縁被覆して本発明による自動車用電線を得た。ステンレス鋼の引張 破断強度は 720MPa、銅線の引張破断強度は 230MPaであり、その他の条件は表 1の構成例 1で示すとおりとした。これらの電線の電線外径、電線重量、及び破断荷 重の測定結果を表 3に示す。導体の占積率は 90%以上であった。
[0027] 実施例 2
圧縮前の中心素線として表 1の構成例 2で示す断面積の SUS 304からなる中心素 線を用いるとともに、圧縮前の周辺素線として表 1の構成例 2で示す断面積の純銅か らなる周辺素線を 8本一重に密着配置した後、ダイスにより表 2の構成例 2で示す圧 縮を行い、その後、ハロゲンフリー材を被覆材として用い押し出し成形で絶縁被覆し て本発明による自動車用電線を得た。ステンレス鋼の引張破断強度は 720MPa、銅 線の引張破断強度は 230MPaであり、その他の条件は表 1の構成例 2で示すとおり とした。これらの電線の電線外径、電線重量、及び破断荷重の測定結果を表 3に示 す。導体の占積率は 90%以上であった。
[0028] 参考例 1
圧縮前の中心素線として表 1の参考例で示す断面積の SUS 304からなる中心素線 を用いるとともに、圧縮前の周辺素線として表 1の参考例で示す断面積の純銅力 な る周辺素線を 6本一重に密着配置した後、ダイスにより表 2の参考例で示す圧縮を行 い、その後、ハロゲンフリー材を被覆材として用い押し出し成形で絶縁被覆して参考 例 1の自動車用電線を得た。ステンレス鋼の引張破断強度は 720MPa、銅線の引張 破断強度は 230MPaであり、その他の条件は表 1の参考例で示すとおりとした。これ らの電線の電線外径、電線重量、及び破断荷重の測定結果を表 3に示す。導体の 占積率は 90%以上であった。
[0029] 参考例 2
中心素線及び周辺素線ともに純銅の素線を用い、中心素線の周囲に周辺素線を 6 本密着配置させて圧縮を行い、その後、ハロゲンフリー材を被覆材として用い押し出 し成形で絶縁被覆して参考例 2の自動車用電線を得た。これらの電線の電線外径、 電線重量、及び破断荷重の測定結果を表 3に示す。導体の占積率は 90%以上であ つ 7こ。
[0030] [表 3]
Figure imgf000010_0001
[0031] 表 3より、本発明の自動車用電線の優位性が確認された。特に実施例 2の場合 は純銅のみの素線を用いた 1ランク上の導体サイズのものと同じ強度信頼性を有する 電線を製作することが可能となることがわ力つた。
[0032] 実施例 3
圧縮前の中心素線として表 1の構成例 1で示す断面積の SUS 304からなる中心素 線を用いるとともに、圧縮前の周辺素線として表 1の構成例 1で示す断面積の純銅か らなる周辺素線を 7本一重に密着配置した後、ダイスにより表 2の構成例 1で示す圧 縮を行い、その後、ハロゲンフリー材を被覆材として用い押し出し成形で絶縁被覆し て本発明による自動車用電線を得た。ステンレス鋼の引張破断強度は 900MPa、銅 線の引張破断強度は 230MPaであり、その他の条件は表 1の構成例 1で示すとおり とした。これらの電線の電線外径、電線重量、及び破断荷重の測定結果を表 4に示 す。導体の占積率は 90%以上であった。
[0033] 実施例 4
圧縮前の中心素線として表 1の構成例 2で示す断面積の SUS 304からなる中心素 線を用いるとともに、圧縮前の周辺素線として表 1の構成例 2で示す断面積の純銅か らなる周辺素線を 8本一重に密着配置した後、ダイスにより表 2の構成例 2で示す圧 縮を行い、その後、ハロゲンフリー材を被覆材として用い押し出し成形で絶縁被覆し て本発明による自動車用電線を得た。ステンレス鋼の引張破断強度は 900MPa、銅 線の引張破断強度は 230MPaであり、その他の条件は表 1の構成例 2で示すとおり とした。これらの電線の電線外径、電線重量、及び破断荷重の測定結果を表 4に示 す。導体の占積率は 90%以上であった。
[0034] 参考例 3
圧縮前の中心素線として表 1の参考例で示す断面積の SUS 304からなる中心素線 を用いるとともに、圧縮前の周辺素線として表 1の参考例で示す断面積の純銅力 な る周辺素線を 6本一重に密着配置した後、ダイスにより表 2の参考例で示す圧縮を行 い、その後、ハロゲンフリー材を被覆材として用い押し出し成形で絶縁被覆して参考 例 3の自動車用電線を得た。ステンレス鋼の引張破断強度は 900MPa、銅線の引張 破断強度は 230MPaであり、その他の条件は表 1の参考例で示すとおりとした。これ らの電線の電線外径、電線重量、及び破断荷重の測定結果を表 4に示す。導体の 占積率は 90%以上であった
[0035] [表 4]
Figure imgf000012_0001
[0036] 表 4より、本発明の自動車用電線の優位性が確認された。実施例 3の場合には純 銅のみの素線を用いた 1ランク上の導体サイズのものとほぼ同じ、実施例 4の場合は それより大きな強度信頼性を有する電線を製作することが可能となることがわ力つた。

Claims

請求の範囲
[1] ステンレス鋼力 なる単一の中心素線の周囲に該中心素線を包囲するように銅又 は銅合金力 なる 7本以上の周辺素線を一重にかつ互いに密着配置してなる導体を 有し、該中心素線として、その径寸法が該周辺素線の径寸法よりも大きいものを用い 、かつ、該導体の占積率が下記式を満足することを特徴とする自動車用電線。
導体の占積率 = { (A+B) /C} X 100[%]≥85 [%]
(但し、上記式中、 Aは周辺素線の断面積の合計、 Bは中心素線の断面積、 Cは導 体の断面積である)
[2] 該導体の占積率が 90%以上であることを特徴とする請求項 1に記載の自動車用電 線。
[3] 該導体の断面積に対する該中心素線の占有断面積が 19. 5%以上であることを特 徴とする請求項 1又は 2に記載の自動車用電線。
[4] 該導体の断面積が 0. 3mm2以下であることを特徴とする請求項 1一 3のいずれか に記載の自動車用電線。
[5] 該導体が圧縮導体であることを特徴とする請求項 1一 4の ヽずれかに記載の自動 車用電線。
[6] 撚線構造であることを特徴とする請求項 1一 5のいずれかに記載の自動車用電線。
PCT/JP2004/017335 2003-11-25 2004-11-22 自動車用電線 WO2005052955A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003394523A JP2005158450A (ja) 2003-11-25 2003-11-25 自動車用電線
JP2003-394523 2003-11-25

Publications (1)

Publication Number Publication Date
WO2005052955A1 true WO2005052955A1 (ja) 2005-06-09

Family

ID=34587582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017335 WO2005052955A1 (ja) 2003-11-25 2004-11-22 自動車用電線

Country Status (3)

Country Link
US (1) US20050109530A1 (ja)
JP (1) JP2005158450A (ja)
WO (1) WO2005052955A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7060907B2 (en) * 2004-07-15 2006-06-13 Sumitomo Wiring Systems, Ltd. Electric wire for automobile
JP2007059113A (ja) * 2005-08-23 2007-03-08 Sumitomo Wiring Syst Ltd 自動車用電線
JP4735127B2 (ja) * 2005-08-23 2011-07-27 住友電装株式会社 自動車用電線
JP2008135196A (ja) * 2006-11-27 2008-06-12 Yazaki Corp 耐燃性ポリエチレン絶縁電線
JP2008159403A (ja) * 2006-12-25 2008-07-10 Sumitomo Wiring Syst Ltd 電線導体および絶縁電線
JP5337518B2 (ja) * 2009-02-09 2013-11-06 矢崎総業株式会社 極細電線の導体製造方法及び極細電線
WO2011001833A1 (ja) * 2009-06-30 2011-01-06 ダイキン工業株式会社 組成物及びその製造方法、並びに、粉体塗料、ペレット、樹脂成形品、及び電線
US8403519B2 (en) * 2009-11-25 2013-03-26 Griplock Systems, Llc Conductive cable system for suspending a low voltage luminaire assembly
JP2012119073A (ja) * 2010-11-29 2012-06-21 Yazaki Corp 絶縁電線用撚線導体
JP5708045B2 (ja) * 2011-03-04 2015-04-30 トヨタ紡織株式会社 布材
KR101929582B1 (ko) * 2012-04-19 2018-12-14 엘에스전선 주식회사 압축도체, 이를 포함하는 케이블 및 그 제조방법
EP3149747A4 (en) 2014-05-30 2018-05-02 WireCo WorldGroup Inc. Jacketed torque balanced electromechanical cable
JP5950249B2 (ja) * 2014-08-08 2016-07-13 住友電気工業株式会社 銅合金線、銅合金撚線、被覆電線、及び端子付き電線
CN107112090B (zh) * 2015-09-30 2019-06-21 住友电气工业株式会社 多芯电缆用芯电线和多芯电缆
JP2019114447A (ja) * 2017-12-25 2019-07-11 古河電気工業株式会社 圧縮撚線導体およびその製造方法
JP7137139B2 (ja) * 2018-11-28 2022-09-14 住友電気工業株式会社 電力ケーブル

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206220U (ja) * 1985-06-14 1986-12-26
JPH01225006A (ja) * 1988-03-04 1989-09-07 Yazaki Corp ワイヤハーネス用圧縮導体
JPH0215510A (ja) * 1987-08-22 1990-01-19 Lucas Ind Plc ケーブルハーネス
JP2002100241A (ja) * 2000-09-21 2002-04-05 Sumitomo Wiring Syst Ltd 圧縮導体及びその圧縮導体を含む電線
JP2004207079A (ja) * 2002-12-25 2004-07-22 Sumitomo Electric Ind Ltd 自動車用導体
JP2004207080A (ja) * 2002-12-25 2004-07-22 Sumitomo Electric Ind Ltd 自動車用導体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3719163B2 (ja) * 2001-05-25 2005-11-24 日立電線株式会社 可動部配線材用撚線導体及びそれを用いたケーブル

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206220U (ja) * 1985-06-14 1986-12-26
JPH0215510A (ja) * 1987-08-22 1990-01-19 Lucas Ind Plc ケーブルハーネス
JPH01225006A (ja) * 1988-03-04 1989-09-07 Yazaki Corp ワイヤハーネス用圧縮導体
JP2002100241A (ja) * 2000-09-21 2002-04-05 Sumitomo Wiring Syst Ltd 圧縮導体及びその圧縮導体を含む電線
JP2004207079A (ja) * 2002-12-25 2004-07-22 Sumitomo Electric Ind Ltd 自動車用導体
JP2004207080A (ja) * 2002-12-25 2004-07-22 Sumitomo Electric Ind Ltd 自動車用導体

Also Published As

Publication number Publication date
JP2005158450A (ja) 2005-06-16
US20050109530A1 (en) 2005-05-26

Similar Documents

Publication Publication Date Title
WO2005052955A1 (ja) 自動車用電線
JP2004288625A (ja) 自動車用電線
EP1814126B1 (en) Composite twisted wire conductor
WO2006008982A1 (ja) 自動車用電線
WO2019176001A1 (ja) 電線導体、被覆電線、ワイヤーハーネス、および電線導体の製造方法
WO2006008981A1 (ja) 自動車用電線
JP2007042475A (ja) 自動車用電線
JP6114331B2 (ja) 耐屈曲電線及びワイヤハーネス
JP2010506368A (ja) 電気制御ケーブル及びその製造方法
JP2003303515A (ja) 通電用複合撚線導体
JP6089141B1 (ja) 複合型電線
JP2010282748A (ja) ワイヤーハーネス
JP2000228116A (ja) ハーネス用電線導体
JP2007311106A (ja) 電気ケーブル
JP4735127B2 (ja) 自動車用電線
JP7265324B2 (ja) 絶縁電線、ケーブル
JPH11329084A (ja) 自動車用の銅合金を基材とする高機械強度のたわみ電気導体及びその取得方法
JP2005093301A (ja) 自動車用電線
JP2017134925A (ja) 信号用ケーブル
JP4182850B2 (ja) 自動車用電線
JP2005158451A (ja) 自動車用複合電線
JP2006032081A (ja) 自動車用電線
JPH0660739A (ja) 自動車用電線導体
JP2008218273A (ja) 絶縁電線
JP4748499B2 (ja) 自動車用アルミケーブル

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase