WO2005052663A1 - 光素子結合構造体 - Google Patents

光素子結合構造体 Download PDF

Info

Publication number
WO2005052663A1
WO2005052663A1 PCT/JP2004/017254 JP2004017254W WO2005052663A1 WO 2005052663 A1 WO2005052663 A1 WO 2005052663A1 JP 2004017254 W JP2004017254 W JP 2004017254W WO 2005052663 A1 WO2005052663 A1 WO 2005052663A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical fiber
face
coupling structure
optical waveguide
Prior art date
Application number
PCT/JP2004/017254
Other languages
English (en)
French (fr)
Inventor
Toshihiro Kuroda
Shigeyuki Yagi
Original Assignee
Hitachi Chemical Company, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Company, Ltd. filed Critical Hitachi Chemical Company, Ltd.
Priority to JP2005515766A priority Critical patent/JP4324167B2/ja
Publication of WO2005052663A1 publication Critical patent/WO2005052663A1/ja
Priority to US11/442,348 priority patent/US20060215964A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/25Preparing the ends of light guides for coupling, e.g. cutting

Definitions

  • the present invention relates to an optical element coupling structure, and more particularly, to an optical element coupling structure in which an optical fiber and an optical waveguide are coupled.
  • optical element coupling structure in which return light is reduced by inclining the end face of the optical fiber 1 and the end face of the optical waveguide that face each other with respect to the optical axis is known.
  • the latter type of optical element coupling structure is a type currently used in many optical element coupling structures.
  • FIG. 8 is a cross-sectional view of the optical element coupling structure.
  • the optical element coupling structure 50 includes an optical fiber array 52 extending to one end face 56 of the optical fiber along the optical axis 50a, and an optical fiber array 52 aligned in the direction of the optical axis 50a.
  • An optical waveguide 54 having an optical waveguide end face 58 facing the fiber end face 56.
  • the optical fiber end face 56 and the optical waveguide end face 58 are formed so as to be inclined with respect to the optical axis 50a and face each other.
  • a transparent resin 60 is filled between the optical fiber end face 56 and the optical waveguide end face 58, and the optical fiber array 52 and the optical waveguide 54 are coupled.
  • the transparent resin 60 is formed of a material that is not easily deformed, that is, a material having a relatively high elastic modulus, in order to prevent a displacement of the optical axis between the optical fiber array 52 and the optical waveguide 54.
  • light transmitted from the optical fiber array 52 to the optical waveguide 54 is reflected at one end surface 56 of the optical fiber inclined with respect to the optical axis 50a, and the reflected light is oblique to the optical axis 50a. Therefore, it is difficult to return light returning in the opposite direction along the optical axis 50a.
  • the transmitted light is directed obliquely to the optical axis 50a, and as a result, the return light at the optical waveguide end face 58 is reduced.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-107564 (FIG. 1)
  • Patent Document 2 JP 2001-281479 A (Paragraph 0017 and FIG. 1)
  • the optical element coupling structure 50 in which both the optical fiber end face 56 and the optical waveguide end face 58 are inclined with respect to the optical axis 50a reduces the return light on these end faces 56 and 58. If this is possible, there is an advantage, but there is a problem that the cost of manufacturing the optical element coupling structure 50 is increased.
  • the manufacturing cost of the optical waveguide 54 and the manufacturing cost of the optical fiber array 52 are almost the same, one optical waveguide 54 and two optical fiber arrays 52 coupled to the entrance and the exit thereof are combined. In the case of a general optical element coupling structure 50, the manufacturing cost is about three times the manufacturing cost of the optical waveguide 54.
  • the end face of the optical fiber or the optical fiber array 52 was obliquely cut or cut at a predetermined angle, and the end face was formed obliquely with the optical fiber or the optical fiber array 52 whose end face was processed obliquely.
  • Aligning the optical waveguide 54 with sub-micron accuracy consumes considerable time and effort, and as a practical matter, at present, the diagonal processing of the end face of the optical fiber or the optical fiber array 52 and the optical waveguide 54 is currently required. A special machine for alignment is required.
  • the cost of this dedicated device is 2000-10000 times or more of the manufacturing cost of the optical waveguide 54, and the cost of the dedicated device is added to the manufacturing cost of the optical element coupling structure 50.
  • an optical element coupling structure connecting an optical fiber and an optical waveguide is often used as an optical coupler or an optical splitter of an optical internet network arranged outdoors. Therefore, it is desired that return light can be sufficiently reduced even when the ambient temperature, that is, the temperature of the optical element coupling structure changes.
  • the present invention provides an optical element coupling structure in which an optical fiber and an optical waveguide are coupled together, which can be manufactured at low cost while reducing return light at one end face of the optical fiber and the end face of the optical waveguide.
  • the purpose is to provide the body.
  • the present invention can reduce the return light at one end face of the optical fiber and the end face of the optical waveguide even if the temperature changes, and can manufacture the optical fiber and the optical waveguide at low cost. It is an object of the present invention to provide an optical element coupling structure in which are combined.
  • an optical element coupling structure is an optical element coupling structure in which an optical fiber and an optical waveguide are coupled, and the optical fiber core extends along an optical axis.
  • An optical fiber having an optical fiber extending in the optical axis direction up to one end face of the optical fiber, an optical waveguide core aligned with one optical fiber core in the optical axis direction, and an optical waveguide end face facing the one end face of the optical fiber
  • a substrate that extends in the optical axis direction along the optical fiber and the optical waveguide has a support surface on which the optical fiber is supported and fixed, and is integrally formed with the optical waveguide.
  • the optical fiber and the optical waveguide are aligned in the optical axis direction when the optical fiber is brought into contact with the optical fiber, and the refractive index of the optical waveguide core is different from that of the optical fiber core.
  • One end of the fiber faces the optical axis.
  • the end face of the optical waveguide is formed so as to be inclined with respect to the plane perpendicular to the optical axis, and a gap is provided between one end face of the optical fiber and the end face of the optical waveguide. It is characterized by being filled with a refractive index adjusting agent having a refractive index substantially the same as that of one core, that is, a filler.
  • the optical element coupling structure configured as described above, for example, light is transmitted from the optical fiber 1 to the optical waveguide through the filler. Since the refractive index of the core of the optical fiber and the refractive index of the filler are substantially the same, the transmitted light is not reflected at the one end face of the optical fiber but is transmitted as it is. Therefore, no return light is generated on one end surface of the optical fiber. Further, since the end face of the optical waveguide is inclined with respect to the plane perpendicular to the optical axis, the light reflected from the end face of the optical waveguide is directed obliquely to the optical axis, and the optical axis is inverted. Return light in the direction It is difficult. As a result, return light at the end face of the optical waveguide can be reduced. The same applies to the case where light is transmitted from the optical waveguide through the filler to the optical waveguide.
  • the end of the optical fiber is cut or cut by a general-purpose optical fiber power cutter to form an end face of the optical fiber substantially perpendicular to the optical axis.
  • a general-purpose optical fiber power cutter to form an end face of the optical fiber substantially perpendicular to the optical axis.
  • an optical fiber having one end face of a strong optical fiber is supported on the support surface of the substrate, the optical fiber and the optical waveguide are automatically aligned. Therefore, as compared with the conventional optical element coupling structure, the manufacturing cost of the optical fiber array and the cost of the above-mentioned dedicated device are reduced.
  • the core of the optical fiber also becomes a quartz force, and the refractive index of the filler becomes 1.428- when the temperature changes between 40 ° C and + 85 ° C. 1. Within the range of 486.
  • the optical element coupling structure configured in this way, even if the temperature changes between 40 ° C and + 85 ° C, the return loss at the end face of the optical fiber is maintained at a value of 40 dB or less over the entire area. can do. As a result, even if the temperature changes, it is possible to secure the reduction of the return light at the end face of the optical fiber and the end face of the optical waveguide, and it is possible to manufacture the optical element coupling structure at low cost.
  • the value of the refractive index of the filler is a value after the filler has been cured.
  • the refractive index of the filler is in the range of 1.441-1.473 when the temperature changes between -40 ° C and + 85 ° C. And even more preferably in the range of 1.448-1.466.
  • the refractive index of the filler is in the range of 1.441-1.473, even if the temperature varies between 40 ° C. and + 85 ° C., the reflection at one end of the optical fiber is maintained over the entire area.
  • the attenuation rate can be kept below 45dB.
  • the refractive index of the filler is in the range of 1.441 to 1.473, even if the temperature varies between 40 ° C. and + 85 ° C. It is possible to maintain the return loss at one end of the optical fiber at 50dB or less over the entire area of the optical fiber.
  • the optical fiber is fixed to the support surface of the substrate by an adhesive having an elastic modulus sufficient to prevent a misalignment between the optical fiber and the optical waveguide. I have.
  • any resin for example, when used alone, is used.
  • the resin can cause misalignment between the optical fiber and the optical waveguide.
  • Resin can cause delamination from the optical fiber and Z or the optical waveguide.
  • the filler has a refractive index of 1.465 or less at + 25 ° C.
  • one core of the optical fiber also has a quartz force, and the filler has a linear expansion coefficient of 80 ppm / ° C. or less and a refractive index of 1.452-1 at + 25 ° C. It is in the range of 461.
  • the optical fiber core is made of quartz, and the filler has a linear expansion coefficient of 60 ppmZ ° C or less and a refractive index at + 25 ° C of 1.450—. 1. Within the range of 463.
  • the core of the optical fiber is made of quartz, and the filler has a linear expansion coefficient of 40 ppm / ° C.
  • the return loss at the one end surface of the optical fiber can be maintained at approximately ⁇ 47 dB or less.
  • the value of the coefficient of linear expansion of the filler is a value after the filler is cured.
  • the optical fiber is attached to the support surface of the substrate by an adhesive having an elastic modulus sufficient to prevent misalignment between the optical fiber and the optical waveguide. It is fixed.
  • the misalignment between the optical fiber and the optical waveguide is prevented by the adhesive, so that when selecting the filler, any resin, for example, alone, may be used. If used, it may cause misalignment between the optical fiber and the optical waveguide.
  • Resin may cause separation from the optical fiber and Z or the optical waveguide.
  • the optical element coupling structure for example, when light enters the waveguide at the end face of the optical fiber, the light is reflected by the end face of the optical waveguide and does not propagate to the side of the optical fiber. This makes it possible to reliably reduce return light at the end face of the optical waveguide. This is the same when light travels toward one side of the optical fiber.
  • the inclination angle of the end face of the optical waveguide with respect to a plane perpendicular to the optical axis is 416 degrees.
  • the return loss rate at the end face of the optical waveguide can be made smaller than approximately ⁇ 40 dB.
  • one optical waveguide and two optical fibers arranged on both sides in the optical axis direction are provided, and one optical fiber passes through the optical waveguide to the other.
  • the return loss of the light traveling to the first optical fiber is 40 dB or less.
  • optical element coupling structure configured as described above, it is possible to manufacture the optical element coupling structure such as an optical splitter or an optical coupler at low cost while reducing the return light.
  • the invention's effect is possible to manufacture the optical element coupling structure such as an optical splitter or an optical coupler at low cost while reducing the return light.
  • an optical element in which an optical fiber and an optical waveguide are coupled can be manufactured at low cost while reducing return light at one end face of the optical fiber and the end face of the optical waveguide.
  • a coupling structure can be provided.
  • the present invention even if the temperature changes, it is possible to secure the reduction of the return light at one end face of the optical fiber and the end face of the optical waveguide, and to manufacture the optical fiber and the optical waveguide at a low cost. Can be provided.
  • FIG. 1 is a partially sectional front view of an optical element coupling structure of an optical fiber and an optical waveguide according to an embodiment of the present invention
  • FIG. 2 is a sectional view taken along line 2-2 in FIG. It is a figure.
  • FIG. 3 is a diagram showing the relationship between one end face of the optical fiber, the end face of the optical waveguide, and the optical axis.
  • the refractive index, coefficient of linear expansion, and elastic modulus of the adhesive or filler shown in this specification are all values after the adhesive or filler is cured.
  • the optical element coupling structure 1 has an optical fiber 12 extending to one end face of the optical fiber in the optical axis la direction, and is aligned with the optical fiber 12 in the optical axis direction. It has an optical waveguide 4 and a substrate 6 extending in the optical axis la direction along the optical fiber 12 and the optical waveguide 4.
  • the optical fiber 12 includes an inlet-side optical fiber 2a disposed on the upstream side of the optical waveguide 4, that is, an inlet side, and an outlet-side optical fiber 12 disposed on the downstream side of the optical waveguide 4, that is, an outlet side. b.
  • the entrance-side optical fiber 1a, the exit-side optical fiber 1b, and the optical waveguide 4 are arranged so that the light transmitted through the entrance-side optical fiber 12a passes through the optical waveguide 4 to the exit-side optical fiber 2b. Have been.
  • the number of the input side optical fiber 1a and the number of the output side optical fiber 2b may be one, or a plurality of them may be provided in the lateral direction.
  • the optical element coupling structure 1 functions as an optical splitter, and there are plural entrance-side optical fibers 12a. If there is one exit-side optical fiber 1b, the optical element coupling structure 1 functions as an optical coupler. Since the structure on the entrance side and the structure on the exit side of the optical element coupling structure 1 are the same, only the structure on the entrance side will be described below, and the description of the structure on the exit side will be omitted.
  • the optical fiber 12a has an optical fiber core 8 extending along the optical axis la, an optical fiber clad 10 disposed therearound, and an end face on the optical waveguide 4 side, that is, an end face 12 of the optical fiber. have.
  • the one end face 12 of the optical fiber is formed substantially perpendicular to the optical axis la. Specifically, as shown in FIG. 3, in the vertical plane including the optical axis la, the distance from the optical axis la to the optical fiber end face 12 when the intersection of the optical axis la and the optical fiber end face 12 is the center.
  • the angle ⁇ is preferably from 85 to 95 degrees, more preferably from 85 to 92 degrees, and still more preferably. More preferably, it is 88-92 degrees.
  • the diameter of the optical fiber 12a is, for example, 125 m.
  • the optical fiber core 8 is formed of, for example, quartz.
  • the optical waveguide 4 includes an optical fiber core 14 aligned with the optical fiber core 8 in the direction of the optical axis la, an optical waveguide clad 16 disposed around the optical waveguide core 14, and an optical fiber end face 12. , That is, an optical waveguide end face 18.
  • the refractive index of the optical waveguide core 14 is preferably different from the refractive index of the optical fiber core 8, but may be the same.
  • the optical waveguide end face 18 is formed to be inclined with respect to the optical axis la, as will be described later in detail. The end face 18 of the optical waveguide is inclined in a direction approaching the optical fiber 12a as going downward.
  • the substrate 6 includes a base portion 20 extending in the optical axis direction, a waveguide portion 22 extending upward from the base portion 20 toward the optical waveguide 4 and having the optical waveguide 4 formed on the upper surface thereof, It has a waveguide section 22 and a spaced fiber section 24 extending upwardly from the base section 20 toward the optical fiber 12 to support the optical fiber 12.
  • the waveguide portion 22 has a waveguide side wall surface 22a connected to the waveguide end face 18 and facing the fiber portion 24, and the fiber portion 24 has a fiber side wall surface 24a facing the waveguide portion 22.
  • a recess 26 is formed by the waveguide side wall surface 22a, the fiber side wall surface 24a, and the upper surface 20a of the base portion 20 therebetween.
  • the waveguide side wall surface 22a extends downward from the waveguide end surface 18 in accordance with the inclination angle of the waveguide end surface 18, the upper surface 20a is formed perpendicular to the waveguide side wall surface 22a, and the fiber side wall surface 24a is
  • the shape of the force recess formed parallel to the waveguide side wall surface 22a is arbitrary.
  • the waveguide side wall surface 22a or the fiber side wall surface 24a extends perpendicularly to the optical axis la! /, Or may be !, and the upper surface 20a extends in the same direction as the optical axis la! /. Good.
  • the fiber portion 24 has a support surface 24b on which the optical fiber 12 is supported and fixed.
  • the support surface 24b is formed such that the optical fiber 12 and the optical waveguide 4 are aligned in the optical axis la direction when the optical fiber 12 is brought into contact with the support surface 24b.
  • a groove 28 having a V-shaped cross section that extends in the optical axis la direction and is open upward is formed on the upper surface 24c of the fiber portion 24.
  • the optical fiber 12 is disposed on the support surface 24b such that the one end surface 12 of the optical fiber projects into the concave portion 26, and is fixed by an adhesive or the like. Thereby, the optical fiber 12 and the optical waveguide 4 are aligned.
  • a gap 30 is formed between the optical fiber end face 12 perpendicular to the optical axis la and the optical waveguide end face 18 inclined with respect to the optical axis. It is preferable that the end face 12 of the optical fiber and the end face 18 of the optical waveguide are as close as possible. However, in practice, in order to facilitate the automatic assembly of the optical fiber 2, the end face of the optical fiber There is a gap of about 10 ⁇ between the portion near the end face 18 and the optical waveguide end face 18.
  • the adhesive for fixing the optical fiber 12 to the support surface 24b is preferably one having an elastic modulus large enough to prevent misalignment between the optical fiber 12 and the optical waveguide 4.
  • an adhesive having an excessively large elastic modulus is not preferable because the adhesive easily peels off from the optical fibers 12 and Z or the optical waveguide 4 due to stress.
  • the elastic modulus of the adhesive is preferably 2.0-3. OGPa.
  • the adhesive is, for example, UV-curable epoxy resin “WR8774” (modulus: 2.5 GPa) manufactured by Kyoritsu Chemical.
  • the recesses 26 and the gaps 30 are filled with a filler 32.
  • the filler 32 needs to be transparent to light because light transmitted from the optical fiber 12 to the optical waveguide 4 passes through the filler 32. Further, the refractive index of the filler 32 is preferably substantially the same as the refractive index of the core 8 of the optical fiber.
  • the return loss rate is preferably 40 dB or less, which is a general requirement, and the smaller the lower, the more preferable the return loss rate. More preferably, it is 50 dB or less.
  • the refractive index of the filler 32 is, for example, 1.428-1.486 in order to almost satisfy the return loss factor of 40 dB or less.
  • the ratio is more preferably 1.448-1.466.
  • this ratio is preferably 0.98-1.02 to almost satisfy the reflection attenuation factor of 40 dB or less. In order to almost satisfy the even more stringent requirement of the return loss factor of 50 dB or less, it is preferable that the ratio be 0.994-1.006. Furthermore, even if the temperature changes between 40 ° C. and + 85 ° C., it is preferable that the refractive index of the filler 32 be within the range of the refractive index in Table 1 corresponding to the desired return loss index. . The smaller the desired reflection attenuation rate is, the better. For example, the refractive index of the filler 32 is in the range of 1.448-1.466 even if the temperature changes between 40 ° C and + 85 ° C to almost satisfy the return loss of 50dB or less. Is preferred.
  • FIG. 5 shows the refractive index of the filler 32 at a temperature of + 25 ° C. and a temperature of 40 ° C. when the optical fiber core 8 is quartz (refractive index: 1.457).
  • C-- The relationship with the highest value of the return loss of the filler 32 (the value in the most positive direction, that is, the return loss when the return light is not reduced the least) when it changes over + 85 ° C, Filler with linear expansion coefficient of filler 32 FIG.
  • the filler has the same refractive index at a temperature of + 25 ° C and the linear expansion coefficient increases, the temperature rises from 40 ° C to + 85 ° C.
  • the maximum value of the return loss at the time of the change changes in the positive direction.
  • FIG. 4 is obtained using the following equations (1) and (2).
  • refractive index of the filler at a predetermined temperature
  • refraction of the filler at + 25 ° C.
  • Rate, a coefficient of linear expansion of the filler
  • R return loss rate
  • t temperature
  • the filler 32 has a linear expansion coefficient of 80 ppmZ ° C or less and a refractive index at + 25 ° C within the range of 1.452-1.461. It is preferable that there is.
  • the filler 32 has a linear expansion coefficient of S60 ppmZ ° C or less, and a refractive index at 25 ° C of 1.450-1.463. It is preferable to have Alternatively, as shown in the range surrounded by the thick line C in FIG. 5, the filler 32 has a linear expansion coefficient of 40 ppmZ ° C or less and a refractive index at 25 ° C within the range of 1.449-1.466. Is preferred.
  • the refractive index at + 25 ° C. is preferably 1.465 or less.
  • the filler 32 is preferably a photo-curable, thermo-curable, room-temperature-curable, or cationically-curable, acrylate resin, epoxy resin, or silicone resin.
  • these resins include the fluorinated epoxy conjugates described in Table 1 on page 90 of "Development and Application Technology of Optoelectronic Materials” (published by the Technical Information Association on February 9, 2001). Examples thereof include fluorinated epoxy atalylate conjugates described in Table 2 on page 91 of the same, and cation-curable silicone resins described in JP-A-2004-196977.
  • epoxy resin More specifically, as an epoxy resin,
  • n is preferably 0.1 to 1.0.
  • Those containing the fluorinated epoxy acrylate represented by the formula (4) as a main component are preferred, and those having the above formula (3) and n of 0.1 to 1.0 are particularly preferred.
  • Daikin's ultraviolet-curable acrylic resin mainly composed of a fluorinated epoxy atalylate represented by the above formula (3), wherein Rf in the above formula (4) is used.
  • UV2000J (modulus of elasticity: 1. lGPa, +25. Refractive index at wavelength 1.55111 at C: 1.462, coefficient of linear expansion: 31 ppm Z ° C, viscosity: 360 mPa's).
  • this “UV2000” may cause misalignment between the optical fiber 12 and the optical waveguide 4 if it is placed alone between the optical fiber 2 and the optical waveguide 4. Is not used in It is a powerful resin.
  • “UV2000” can maintain a return loss value of less than ⁇ 50 dB even when the temperature changes from 40 ° C. to + 85 ° C.
  • Daikin's ultraviolet-curable epoxy resin mainly composed of a fluorinated epoxy conjugate represented by the above formula (1), wherein Rf is represented by the above formula (3) "UV2100J (elasticity: 2.4 GPa, +25.
  • Rf is a fluorinated epoxy compound represented by the above formula (2) as a main component, UV-curable epoxy resin “GA700L” manufactured by NTT-AT (elastic modulus: 0.4 GPa, wavelength at + 25 ° C) 1. 55 m refractive index: 1.446, linear expansion coefficient: 140 ppm Z ° C, viscosity: 250 mPa's), mainly using a fluorinated epoxy compound represented by the above formula (1), wherein Rf is represented by the above formula (2).
  • NTT-AT UV-curable epoxy resin "GA700H” (elasticity: 1. OGPa, refractive index at 1.55 at + 25 ° C: 1.445, linear expansion coefficient: 90ppmZ ° C, Viscosity: 252 mPa's), and Kyoritsu Chemical's cationically curable silicone resin “ 1 ⁇ ⁇ 896211” (elasticity: 5. OGPa, refractive index at 1.55 / zm at + 25 ° C: 1.455, linear expansion coefficient: 300ppmZ ° C, viscosity: 2800 mPa • s).
  • ⁇ GA700L '' and ⁇ GA700H '' may cause misalignment between the optical fiber 12 and the optical waveguide 4 if placed alone between the optical fiber 12 and the optical waveguide 4.
  • it is a powerful resin that has not been used in this application.
  • "WR 8962HJ is a strong resin that has not been used in this application because WR 8962HJ may peel off due to stress when placed alone between the optical fiber 12 and the optical waveguide 4.
  • the return loss of each of these four fillers at + 25 ° C is less than 48dB, and as can be seen from Fig. 4, these four fillers have different temperatures.
  • 8 of the optical waveguide end face 18 is, as shown in FIG. 3, the optical axis at the intersection of the optical axis la and the optical waveguide end face 18 in the vertical plane including the optical axis la. plane P perpendicular to la
  • the force is also the angle up to the end face 12 of the optical waveguide.
  • the inclination angle of the optical waveguide end face 18 is The total reflection angle (cos- ⁇ r ⁇ Znl) with respect to the optical waveguide core 14 (refractive index nl) and the optical waveguide clad 16 (refractive index n2) is preferably 1Z2 or more.
  • the inclination angle j8 is preferably 5.7 degrees or more. This also applies when light travels from the waveguide 4 to the optical fiber 12 side.
  • FIG. 6 is a diagram showing the relationship between the inclination angle j8 of the optical waveguide end face 18 and the return loss rate.
  • the return loss factor is the ratio of the light (Pr) reflected at the waveguide end face 18 when light enters the waveguide 4 from the optical fiber 12 side or when light travels from the waveguide 4 to the optical fiber 12 side.
  • the ratio to the input light (Pi) expressed in decibels (IOlog (Pr / Pi)).
  • the inclination angle of the end face 18 of the optical waveguide is preferably 416 degrees in order to satisfy the generally required reflection decay rate of -40 dB or less. In order to satisfy the reflection attenuation rate of 50 dB or less, the angle is preferably 6 to 16 degrees. Considering that it is better that the distance between the optical fiber end face 12 and the optical waveguide end face 18 is short, the inclination angle
  • the optical element coupling structure 1 has one optical waveguide 4 and two optical fibers 1a and 2b arranged on both sides in the optical axis direction.
  • Type optical splitter or optical coupler The return loss of light traveling from one optical fiber 12a to the other optical fiber 2b through the optical waveguide 4 to the other optical fiber 2b is preferably smaller than 40 dB, more preferably less than 40 dB. Less than 50dB.
  • the light propagating in the entrance-side optical fiber 2a is reflected by the optical fiber end surface 12 of the entrance-side optical fiber 12a because the refractive index of the core 8 of the optical fiber and the refractive index of the filler 32 are almost the same. Instead, the light is transmitted as it is, and as a result, no return light is generated on the one end face 12 of the optical fiber.
  • the light propagating in the filler 32 is reflected by the optical waveguide end face 18. Since the end face 18 of the optical waveguide is inclined with respect to a plane perpendicular to the optical axis la, light is reflected obliquely with respect to the optical axis la. Fired.
  • the light that has propagated through the filler 32 on the exit side optical fiber 12b side has almost the same refractive index as the optical fiber core 8 of the exit side optical fiber 12b and the refractive index of the filler 32.
  • the exit side optical fiber 12b transmits through the optical fiber end surface 12b without being reflected on the one end surface 12, and as a result, no return light is generated on the one end surface 12 of the optical fiber.
  • a substrate 6 made of silicon, a polymer material, or the like is prepared, and a groove 28 having a V-shaped cross section is formed by performing anisotropic etching according to a resist pattern created by photolithography.
  • the optical waveguide 4 is formed on the substrate 6 on which the groove 28 having the V-shaped cross section is formed. More specifically, when the optical waveguide 4 is formed of a polymer material, after forming the cladding layer 16 and the core layer thereon by a spin coating method or the like, a process such as photolithography and reactive ion etching is performed.
  • the optical waveguide core 14 having a rectangular cross section is formed from the core layer by applying mechanical force such as embossing or embossing, and the cladding layer 16 is further covered by the same method as described above so as to cover the optical waveguide core 14. Then, the optical waveguide 4 is formed.
  • the optical waveguide 4 is formed of quartz
  • a quartz layer is formed on the substrate 6 by a flame deposition method, a CVD method, or the like, and is formed into a rectangular quartz core 14 by a process such as dry etching.
  • the cladding layer 16 is formed so as to cover the core 14, and the optical waveguide 4 is formed.
  • the step of forming the groove 28 having the V-shaped cross section and the step of forming the optical waveguide 4 are performed when the optical fiber 12 and the optical waveguide 4 are placed on the support surface 24b of the groove 28 with submicron accuracy. This is performed so that the positional relationship between the support surface 24b and the optical waveguide 4 can be obtained.
  • the optical waveguide end face 18 and the concave portion 26 are formed by dicing or the like. With the configuration of the concave portion 26 as in the present embodiment, the optical waveguide end face 18 and the concave portion 26 can be processed at one time.
  • the optical fiber 12 is arranged on the support surface 24b so that the one end surface 12 of the optical fiber projects into the concave portion 26.
  • the optical fiber 12 is adhered to the support surface with an adhesive or the like. Thereby, the optical fiber 12 and the optical waveguide 4 are aligned.
  • the filler 32 is filled into the gap 30 and the concave portion 26 between the one end face 12 of the optical fiber 12 and the end face 18 of the optical waveguide 4, thereby coupling the optical fiber 12 and the optical waveguide 4.
  • the refractive index of a film-like filler on a silicon wafer was measured using a measuring device “Model 2010 Prism Bra” manufactured by Metricon. Specifically, after a filler or the like having a predetermined thickness was formed on a silicon wafer by a spin coating method or the like, it was cured with ultraviolet rays. The predetermined film thickness was such that the film thickness of the filler and the like after curing was 0.5 to 15 m, and the actual film thickness was 115 / zm. Ultraviolet rays having a wavelength of 365 nm and an intensity of 100 mW were used.
  • the irradiation dose was 20j in the measurement of Daikin's UV-curable epoxy resin "UV2100", Daikin's UV-curable acrylic resin "UV200” and NTT-AT's UV-curable epoxy resin "GA700H”. / cm 2, and 5 jZcm 2 in the measurement of the UV-curable epoxy resin “GA 700L” manufactured by NTT-AT and the cation-curable silicone resin “WR8962H” manufactured by Kyoritsu Chemical.
  • the refractive index of the cured film-like filler was measured by the above-mentioned measuring device.
  • This measuring device excites the light beam in the film by adjusting the angle of the light beam incident on the prism by bringing the prism with the light refractive index close to the film of the filler etc. with a thin air layer between them.
  • the linear expansion coefficient was measured using the TMA (thermomechanical analysis) method.
  • the measurement condition is a tensile mode for 5 ° CZ.
  • the temperature was changed from 20 ° C to 100 ° C, and the measured value at 25 ° C was described.
  • the elastic modulus was measured in accordance with JIS-K7127 “Plastic film and sheet tensile test method”.
  • Substrate 6 was made of single crystal silicon that was easily anisotropically etched.
  • the optical waveguide 4 was formed on the substrate 6 with fluorinated polyimide (OPI manufactured by Hitachi Chemical).
  • the refractive index of the optical waveguide core 14 was 1.53, and the refractive index of the optical waveguide clad 16 was 1.52. Therefore, the total reflection angle of 1Z2 Is 3.28 degrees.
  • the machining angle of the optical waveguide end surface 18 was machined to 6 degrees by dicing, assuming that the machining accuracy of the die-sinking machine was ⁇ 2 degrees.
  • the optical fiber was made of quartz. Therefore, the refractive index at 1.31 / zm wavelength is 1.468.
  • Filler 32 Daikin's UV-curable acrylic resin "UV2000”, Daikin's UV-curable epoxy resin "UV2100”, NTT-AT's UV-curable epoxy resin "GA70 OL”, NTT -We conducted experiments on AT-based UV-curable epoxy resin "GA700H” and Kyoritsu Chemical's Zion-curable silicone resin "WR8962H”.
  • Table 2 shows the experimental values of the return loss of these fillers 32 at 40 ° C, -15 ° C, + 25 ° C, + 55 ° C and + 85 ° C.
  • Fig. 7 shows the experimental values of the reflection decay rate of these fillers and the calculations calculated using Equations (1) and (2) when the temperature was changed from 40 ° C to + 85 ° C. It is a figure showing a value.
  • AQ2140-AQ7310 manufactured by Ando Electric Co., Ltd. was used for measuring the return loss rate.
  • the materials used in this embodiment are examples, and any materials can be used as long as the requirements of the present invention are satisfied.
  • FIG. 1 is a partially sectional front view of an optical element coupling structure according to an embodiment of the present invention.
  • FIG. 2 is a sectional view taken along line 2-2 in FIG. 1.
  • FIG. 3 is a diagram showing a relationship between one end face of an optical fiber, an end face of an optical waveguide, and an optical axis.
  • FIG. 4 is a diagram showing the relationship between the refractive index of the filler and the return loss when the core of the optical fiber is quartz.
  • FIG. 7 is a diagram showing the relationship between the return loss ratio of 32 and the maximum value for each coefficient of linear expansion of the filler.
  • FIG. 6 is a diagram showing a relationship between an inclination angle of an end face of an optical waveguide and a return loss rate.
  • FIG. 7 is a diagram showing experimental and calculated values of the return loss of the filler when the temperature is changed from 40 ° C to + 85 ° C.
  • FIG. 8 is a front sectional view of a conventional optical element coupling structure.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

 本発明による光素子結合構造体(1)は、光軸(1a)方向に延びる光ファイバー(2)と、光ファイバー(2)と光軸(1a)方向に整列し且つ光ファイバー(2)の端面(12)に面する端面(18)を有する光導波路(4)と、それらに連結された基板(6)とを有する。光ファイバー(2)の端面(12)は、光軸(1a)に対して垂直に形成され、光導波路(4)の端面(18)は、光軸(1a)と垂直な面に対して傾斜して形成される。光ファイバー(2)のコア(8)の屈折率と、光導波路(4)のコア(14)の屈折率とは異なり、光ファイバー(2)の端面(12)と光導波路(4)の端面(18)との間の隙間(30)に、光ファイバー(2)のコア(8)の屈折率とほぼ同じ屈折率を有する充填剤(32)が充填される。

Description

明 細 書
光素子結合構造体
技術分野
[0001] 本発明は、光素子結合構造体に関し、更に詳細には、光ファイバ一と光導波路とを 結合させた光素子結合構造体に関する。
背景技術
[0002] 従来から、 1本又は複数本の光ファイバ一の先端部を基板に固定して光ファイバ一 アレイとし、光ファイバ一アレイと光導波路とを結合させた光素子結合構造体が知ら れている(例えば、特許文献 1及び 2参照)。特許文献 1及び 2に開示された方式の光 素子結合構造体では、互いに対向している光ファイバ一アレイの端面、即ち、光ファ ィバーの端面と光導波路の端面とが、光軸に対してほぼ垂直である。この方式の場 合、伝送される光が光ファイバ一の端面及び光導波路の端面で反射して入射方向に 向かって逆方向に戻る戻り光が生じ、例えば、共振発光するレーザ光源に悪影響を 及ぼすという問題がある。この問題を解決するため、互いに対向する光ファイバ一の 端面及び光導波路の端面を光軸に対して傾斜させることにより、戻り光を軽減させる 方式の光素子結合構造体が知られている。後者の方式の光素子結合構造体は、現 在、多くの光素子結合構造体に採用されている方式である。
[0003] 後者の方式の光素子結合構造体の一例を、図 8を参照して説明する。図 8は、光素 子結合構造体の断面図である。図 8に示すように、光素子結合構造体 50は、光軸 50 aに沿って光ファイバ一端面 56まで延びる光ファイバ一アレイ 52と、光ファイバ一 52 と光軸 50a方向に整列し、光ファイバ一端面 56に面する光導波路端面 58を有する 光導波路 54とを有している。光ファイバ一端面 56及び前記光導波路端面 58は、光 軸 50aに対して傾斜して形成され且つ対向して 、る。光ファイバ一端面 56と光導波 路端面 58との間に透明榭脂 60が充填され、光ファイバ一アレイ 52と光導波路 54と が結合されている。透明榭脂 60は、光ファイバ一アレイ 52と光導波路 54との間の光 軸のずれを防止するために、変形しにくい材料、即ち、比較的高い弾性率を有する 材料で形成されている。 例えば、光ファイバ一アレイ 52側から光導波路 54に伝送される光は、光軸 50aに 対して傾斜した光ファイバ一端面 56で反射するが、この反射光は、光軸 50aに対し て斜め方向に差し向けられるので、光軸 50aを逆方向に戻る戻り光になりにくい。そ の結果、光ファイバ一端面 56における戻り光が軽減される。同様に、光導波路端面 5 8において、伝送される光は光軸 50aに対して斜め方向に差し向けられ、その結果、 光導波路端面 58における戻り光が軽減される。
[0004] 特許文献 1:特開 2002-107564号公報 (第 1図)
特許文献 2 :特開 2001— 281479号公報 (段落 0017及び図 1)
発明の開示
発明が解決しょうとする課題
[0005] 上述のように、光ファイバ一端面 56と光導波路端面 58が両方とも光軸 50aに対し て傾斜した光素子結合構造体 50は、これらの端面 56、 58における戻り光を軽減す ることができると!/、う利点を有して 、るが、かかる光素子結合構造体 50を製造するコ ストが高くなるという問題がある。
詳細には、光導波路 54の製造コストと、光ファイバ一アレイ 52の製造コストは、ほぼ 同じであるので、 1つの光導波路 54とその入口及び出口に結合された 2つの光フアイ バーアレイ 52とからなる一般的な光素子結合構造体 50の場合、その製造コストは、 光導波路 54の製造コストの約 3倍になる。
更に、光ファイバ一又は光ファイバ一アレイ 52の端面を所定の角度で斜めにカロェ 又は切断すること、及び、端面を斜めに加工した光ファイバ一又は光ファイバーァレ ィ 52と端面を斜めに形成した光導波路 54とをサブミクロンの精度で位置合わせする ことは、時間と労力を著しく消費するので、実際問題として、現在、光ファイバ一又は 光ファイバ一アレイ 52及び光導波路 54の端面の斜め加工及び整列を行う専用機が 必要である。この専用機の価格は、光導波路 54の製造コストの 2000— 10000倍以 上であり、専用機の価格相当分が光素子結合構造体 50の製造コストに上乗せされる
[0006] また、光ファイバ一と光導波路とを接続した光素子結合構造体は、しばしば、屋外 に配置される光インターネット回線網の光結合器又は光スプリッタとして使用されるの で、周囲温度、すなわち、光素子結合構造体の温度が変化しても、戻り光を十分に 軽減できることが望まれる。
[0007] そこで、本発明は、光ファイバ一端面と光導波路端面における戻り光を軽減しつつ 、低コストで製造することができる、光ファイバ一と光導波路とを結合させた光素子結 合構造体を提供することを目的とする。
また、本発明は、温度が変化しても光ファイバ一端面と光導波路端面における戻り 光の軽減を確保することができ、しかも、低コストで製造することができる、光ファイバ 一と光導波路とを結合させた光素子結合構造体を提供することを目的とする。
課題を解決するための手段
[0008] 上記目的を達成するために、本発明による光素子結合構造体は、光ファイバ一と 光導波路とを結合させた光素子結合構造体であって、光軸に沿って延びる光フアイ バーコアを有し、光ファイバ一端面まで光軸方向に延びる光ファイバ一と、光ファイバ 一コアと光軸方向に整列した光導波路コアと、光ファイバ一端面に面する光導波路 端面とを有する光導波路と、光ファイバ一及び光導波路に沿って光軸方向に延び、 光ファイバ一が支持され且つ固着される支持面を有し、光導波路と一体に構成され た基板と、を有し、支持面は、それに光ファイバ一を当接させたときに光ファイバ一と 光導波路とが光軸方向に整列するように形成され、光導波路コアの屈折率は、光フ アイバーコアの屈折率と異なり、光ファイバ一端面は、光軸に対してほぼ垂直に形成 され、光導波路端面は、光軸と垂直な面に対して傾斜して形成され、光ファイバ一端 面と光導波路端面との間に隙間が設けられ、この隙間に、光ファイバ一コアの屈折率 とほぼ同じ屈折率を有する屈折率調整剤、即ち、充填剤が充填されることを特徴とし ている。
このように構成された光素子結合構造体では、例えば、光力 光ファイバ一から充 填剤を通って光導波路に伝送される。光ファイバ一のコアの屈折率と充填剤の屈折 率とがほぼ同じであるので、光ファイバ一端面において、伝送される光は反射せず、 そのまま透過する。従って、光ファイバ一端面において戻り光は生じない。また、光導 波路端面が光軸と垂直な面に対して傾斜して 、るので、光導波路端面にぉ 、て反 射した光は光軸に対して斜め方向に差し向けられ、光軸を逆方向に戻る戻り光にな りにくい。その結果、光導波路端面における戻り光を軽減することができる。光が光導 波路から充填剤を通って光導波路に伝送される場合も同様である。
本発明の光素子結合構造体では、光ファイバ一の先端を汎用の光ファイバ一用力 ッタによってカ卩ェ又は切断することによって、光軸に対してほぼ垂直な光ファイバ一 端面を形成することができる。更に、力かる光ファイバ一端面を有する光ファイバ一を 基板の支持面で支持すれば、自動的に光ファイバ一と光導波路とが位置合わせされ る。従って、従来の方式の光素子結合構造体と比較して、光ファイバ一アレイの製造 コスト及び上述した専用機のコストが削減される。また、光ファイバ一端面を光軸に対 して垂直にすることによる反射減衰率への悪影響を、光ファイバ一コアの屈折率とほ ぼ同じ屈折率を有する充填剤を採用することにより軽減する。その結果、光ファイバ 一端面及び光導波路端面における戻り光を軽減しつつ、光素子結合構造体を低コ ストで製造することができる。
[0009] 本発明の実施形態において、好ましくは、光ファイバ一コアが石英力もなり、充填剤 の屈折率は、温度が 40°C— + 85°Cの間で変化したときに 1. 428-1. 486の範囲 内にある。
このように構成された光素子結合構造体では、温度が 40°C— + 85°Cの間で変化 しても、その全域にわたって、光ファイバ一端面における反射減衰率を 40dB以下 の値に維持することができる。その結果、温度が変化しても光ファイバ一端面と光導 波路端面における戻り光の軽減を確保することができ、し力も、光素子結合構造体を 低コストで製造することができる。
なお、充填剤の屈折率の値は、充填剤を硬化させた後の値である。
[0010] また、本発明の実施形態において、更に好ましくは、充填剤の屈折率は、温度が— 40°C— + 85°Cの間で変化したときに 1. 441—1. 473の範囲内にあり、更にいっそ う好ましくは、 1. 448-1. 466の範囲内にある。
充填剤の屈折率が 1. 441—1. 473の範囲内にある実施形態では、温度が 40°C 一 + 85°Cの間で変化しても、その全域にわたって、光ファイバ一端面における反射 減衰率を 45dB以下に維持することができる。また、充填剤の屈折率が 1. 441一 1 . 473の範囲内にある実施形態では、温度が 40°C— + 85°Cの間で変化しても、そ の全域にわたって、光ファイバ一端面における反射減衰率を 50dB以下に維持す ることがでさる。
[0011] また、本発明の実施形態において、好ましくは、光ファイバ一は、それと光導波路と の整列のずれを防止するのに十分な弾性率を有する接着剤によって基板の支持面 に固着されている。
このように構成された実施形態では、光ファイバ一と光導波路の整列のずれが接着 剤によって防止されているので、充填剤を選択する際、任意の榭脂、例えば、単独で 用いた場合に光ファイバ一と光導波路との間の整列のずれを生じさせ得る榭脂ゃ光 ファイバー及び Z又は光導波路からの剥離が生じることがある榭脂を使用して、光フ アイバー端面における反射減衰率を軽減することが可能になる。
[0012] また、本発明の実施形態において、好ましくは、充填剤は、 +25°Cにおける屈折率 が 1. 465以下である。
[0013] また、本発明の実施形態において、光ファイバ一コアが石英力もなり、充填剤は、 線膨張係数が 80ppm/°C以下であり、 +25°Cにおける屈折率が 1. 452-1. 461 の範囲内にある。また、本発明の更に別の実施形態において、好ましくは、光フアイ バーコアが石英からなり、充填剤は、線膨張係数が 60ppmZ°C以下であり、 +25°C における屈折率が 1. 450—1. 463の範囲内にある。本発明の更に別の実施形態に おいて、好ましくは、光ファイバ一コアが石英カゝらなり、充填剤は、線膨張係数が 40p pmZ°C以下であり、 +25°Cにおける屈折率が 1. 449-1. 466の範囲内にある。 これら 3つの実施形態のいずれの場合でも、温度が 40°C— + 85°Cの間で変化し ても、光ファイバ一端面における反射減衰率をほぼ- 47dB以下に維持することがで きる。
なお、充填剤の線膨張係数の値は、充填剤を硬化させた後の値である。
[0014] また、上述の 3つの実施形態において、好ましくは、光ファイバ一は、それと光導波 路との整列のずれを防止するのに十分な弾性率を有する接着剤によって基板の支 持面に固着されている。
このように構成された実施形態では、光ファイバ一と光導波路の整列のずれが接着 剤によって防止されているので、充填剤を選択する際、任意の榭脂、例えば、単独で 用いた場合に光ファイバ一と光導波路との間の整列のずれを生じさせ得る榭脂ゃ光 ファイバー及び Z又は光導波路からの剥離が生じることがある榭脂を使用して、光フ アイバー端面における反射減衰率を軽減することが可能になる。
[0015] 本発明の実施形態において、好ましくは、光導波路は、更に、光導波路コアの周り に配置された光導波路クラッドを有し、光軸と垂直な面に対する光導波路端面の傾 斜角度は、前記光導波路コア及び前記光導波路クラッドに対する全反射角の 1Z2 以上である。
このように構成された光素子結合構造体では、導波路端面において、例えば、光フ アイバー側力も導波路に光が入るとき、光が光導波路端面で反射して光ファイバ一 側に伝搬しない。それにより、光導波路端面における戻り光を確実に軽減させること ができる。このことは、導波路力 光ファイバ一側に光が進むときも同様である。
[0016] 本発明の実施形態において、好ましくは、光軸と垂直な面に対する光導波路端面 の傾斜角度は、 4一 16度である。
このように構成された光素子結合構造体では、光導波路端面における反射減衰率 をほぼ- 40dBよりも小さくすることができる。
[0017] 本発明の実施形態において、好ましくは、 1つの光導波路と、その光軸方向両側に 配置された 2つの光ファイバ一を有し、一方の光ファイバ一から光導波路を通って他 方の光ファイバ一に進む光の反射減衰率は、 40dB以下である。
このように構成された光素子結合構造体では、光スプリッタ又は光結合器等の光素 子結合構造体の戻り光を軽減しつつ、それらを低コストで製造することができる。 発明の効果
[0018] 以上説明した通り、本発明により、光ファイバ一端面と光導波路端面における戻り 光を軽減しつつ、低コストで製造することができる、光ファイバ一と光導波路とを結合 させた光素子結合構造体を提供することができる。
また、本発明により、温度が変化しても光ファイバ一端面と光導波路端面における 戻り光の軽減を確保することができ、しかも、低コストで製造することができる、光ファ ィバーと光導波路とを結合させた光素子結合構造体を提供することができる。
発明を実施するための最良の形態 [0019] 以下、図面を参照して、本発明による光素子結合構造体の実施形態を詳細に説明 する。図 1は、本発明の実施形態である光ファイバ一及び光導波路の光素子結合構 造体の、部分的に断面にした正面図であり、図 2は、図 1の線 2-2における断面図で ある。また、図 3は、光ファイバ一端面及び光導波路端面と光軸との関係を示す図で ある。
なお、本明細書に示す接着剤又は充填剤の屈折率、線膨張係数、及び弾性率は すべて、接着剤又は充填剤を硬化した後の値である。
[0020] 図 1及び図 2に示すように、光素子結合構造体 1は、光軸 la方向に光ファイバ一端 面まで延びる光ファイバ一 2と、この光ファイバ一 2と光軸方向に整列した光導波路 4 と、光ファイバ一 2及び光導波路 4に沿って光軸 la方向に延びる基板 6とを有してい る。
光ファイバ一 2は、光導波路 4の上流側、即ち、入口側に配置された入口側光ファ ィバー 2aと、光導波路 4の下流側、即ち、出口側に配置された出口側光ファイバ一 2 bとを有している。入口側光ファイバ一 2a、出口側光ファイバ一 2b及び光導波路 4は 、入口側光ファイバ一 2aの中を伝わってきた光が光導波路 4を通って出口側光フアイ バー 2bに伝わるように配置されている。入口側光ファイバ一 2a及び出口側光フアイ バー 2bは、 1本でもあっても良いし、横方向に複数設けられていても良い。例えば、 入口側光ファイバ一 2aが 1本であり、出口側光ファイバ一 2bが複数であれば、光素 子結合構造体 1は光スプリッタとして機能し、入口側光ファイバ一 2aが複数であり出 口側光ファイバ一 2bが 1本であれば、光素子結合構造体 1は光結合器として機能す る。光素子結合構造体 1の入口側の構造と出口側の構造とは同様であるので、以下 、入口側の構造のみについて説明し、出口側の構造の説明は省略する。
[0021] 光ファイバ一 2aは、光軸 laに沿って延びる光ファイバ一コア 8と、その周りに配置さ れた光ファイバークラッド 10と、光導波路 4側の端面、即ち、光ファイバ一端面 12とを 有している。光ファイバ一端面 12は、光軸 laに対してほぼ垂直に形成されている。 具体的には、図 3に示すように、光軸 laを含む上下方向平面において、光軸 laと光 ファイバ一端面 12の交点を中心としたときの光軸 laから光ファイバ一端面 12までの 角度 αは、好ましくは、 85— 95度であり、更に好ましくは、 85— 92度であり、更に好 ましくは、 88— 92度である。光ファイバ一 2aの径は、例えば、 125 mである。光ファ ィバーコア 8は、例えば、石英で形成されている。
[0022] 光導波路 4は、光ファイバ一コア 8と光軸 la方向に整列した光導波路コア 14と、こ の光導波路コア 14の周りに配置された光導波路クラッド 16と、光ファイバ一端面 12 に面する端面、即ち、光導波路端面 18とを有している。光導波路コア 14の屈折率は 、光ファイバ一コア 8の屈折率と異なっていることが好ましいが、同じであっても良い。 光導波路端面 18は、後で詳細に説明するように、光軸 laに対して傾斜して形成され ている。光導波路端面 18は、下方に向かうに従い光ファイバ一 2aに近づく方向に傾 斜している。
[0023] 基板 6は、光軸方向に延びるベース部 20と、ベース部 20から光導波路 4に向かつ て上方に延び且つ上面に光導波路 4がー体に形成された導波路部 22と、光ファイバ 一 2を支持するためにベース部 20から光ファイバ一 2に向って上方に延び且つ導波 路部 22と間隔をおいたファイバ一部 24とを有する。導波路部 22は、導波路端面 18 と接続し且つファイバ一部 24に面する導波路側壁面 22aを有し、ファイバ一部 24は 、導波路部 22に面するファイバー側壁面 24aを有している。導波路側壁面 22aと、フ アイバー側壁面 24aと、それらの間のベース部 20の上面 20aと、によって、凹部 26が 構成されている。本実施形態では、導波路側壁面 22aは、導波路端面 18の傾斜角 度に合わせてそれから下方に延び、上面 20aは、導波路側壁面 22aと垂直に形成さ れ、ファイバー側壁面 24aは、導波路側壁面 22aと平行に形成されている力 凹部の 形状は任意である。例えば、導波路側壁面 22a又はファイバー側壁面 24aが光軸 la に対して垂直に延びて!/、ても良!、し、上面 20aが光軸 laと同方向に延びて!/、ても良 い。
[0024] ファイバ一部 24は、光ファイバ一 2が支持され且つ固着される支持面 24bを有して いる。支持面 24bは、それに光ファイバ一 2を当接させたときに光ファイバ一 2と光導 波路 4とが光軸 la方向に整列するように形成されている。本実施形態では、ファイバ 一部 24の上面 24cに、光軸 la方向に延び且つ上向きに開放した V字形断面の溝 2 8が形成されている。この溝 28は、既知の外径の光ファイバ一 2が 2つの溝面、即ち、 支持面 24bに当接したときに光ファイバ一 2と光導波路 4とがサブミクロンの精度で位 置合わせされるように形成されている。し力しながら、支持面 24bの形状は、これに限 らず、任意である。
光ファイバ一 2は、光ファイバ一端面 12が凹部 26に突出するように支持面 24bの上 に配置され、接着剤等によって固着されている。それにより、光ファイバ一 2と光導波 路 4とが整列している。光軸 laに対して垂直な光ファイバ一端面 12と光軸に対して 傾斜した光導波路端面 18との間には、隙間 30が形成されている。光ファイバ一端面 12と光導波路端面 18とは、できるだけ近接していることが好ましいが、実際には、光 ファイバー 2の自動組立てを容易にするために、光ファイバ一端面 12の最も光導波 路端面 18に近い部分と光導波路端面 18との間には、約 10— の隙間が生じ ている。
光ファイバ一 2を支持面 24bに固着させるための接着剤は、光ファイバ一 2と光導波 路 4との間の整列のずれを防止するのに十分に大きい弾性率を有するものが好まし いが、弾性率が大きすぎる接着剤は、応力により接着剤が光ファイバ一 2及び Z又は 光導波路 4から剥離しやすくなるので好ましくない。具体的には、接着剤の弾性率は 、 2. 0-3. OGPaであることが好ましい。接着剤は、例えば、協立化学製紫外線硬化 型エポキシ系榭脂「WR8774」(弾性率: 2. 5GPa)である。
凹部 26及び隙間 30には、充填剤 32が充填されている。充填剤 32は、光ファイバ 一 2から光導波路 4へ伝送される光が通過するため、光に対して透明であることが必 要である。また、充填剤 32の屈折率は、光ファイバ一コア 8の屈折率とほぼ同じ屈折 率を有することが好ましい。
図 4及び表 1を参照して、充填剤 32の好ましい屈折率を説明する。図 4及び表 1は それぞれ、光ファイバ一コア 8が石英 (屈折率 1. 457)である場合における、充填剤 3 2の屈折率と反射減衰率との関係を示す図と表である。反射減衰率は、光ファイバ一 2からそれと隣接した充填剤 32に光が入ってきたとき、又は、充填剤 32から光フアイ バー 2に光が入ってきたとき、光ファイバ一 2と充填剤 32との間の境界面、即ち、光フ アイバー端面 12で反射した光のパワー(Pr)の、入力光のパワー(Pi)に対する割合 をデシベル単位で表したもの(lOlog (Pr/Pi) )である。反射減衰率の値が小さ!/、、
10
即ち、マイナス方向にあるほど、光ファイバ一端面 12における戻り光が軽減されること を意味する。
[0026] [表 1]
Figure imgf000012_0001
[0027] 戻り光を軽減するためには、反射減衰率は、一般的な要求である 40dB以下であ ることが好ましぐ更に、小さければ小さいほど好ましぐ更に厳しい要求である反射 減衰率カ 50dB以下であることが更に好ましい。表 1及び図 4に示すように、充填剤 32の屈折率は、例えば、反射減衰率 40dB以下をほぼ満たすためには、 1. 428— 1. 486であることが好ましぐ更に厳しい要求である反射減衰率 50dB以下をほぼ 満たすためには、 1. 448—1. 466であることが更に好ましい。石英の屈折率 1. 457 に対する充填剤 32の屈折率の比で換算すれば、この比は、反射減衰率 40dB以 下をほぼ満たすためには、 0. 98-1. 02であることが好ましぐ更に厳しい要求であ る反射減衰率 50dB以下をほぼ満たすためには、 0. 994—1. 006であることが好 ましい。更に、温度が 40°C— + 85°Cの間で変化しても、充填剤 32の屈折率が、所 望の反射減衰率に対応する表 1の屈折率の範囲内にあることが好ましい。所望の反 射減衰率は小さければ小さいほど好ましい。例えば、反射減衰率 50dB以下をほぼ 満たすために、温度が 40°C— + 85°Cの間で変化しても、充填剤 32の屈折率が 1. 448—1. 466の範囲内にあることが好ましい。
[0028] また、図 5は、光ファイバ一コア 8が石英 (屈折率 1. 457)である場合における、温 度が + 25°Cのときの充填剤 32の屈折率と、温度が 40°C— + 85°Cにわたつて変化 したときの充填剤 32の反射減衰率の最高値 (最もプラス方向になる値、即ち、戻り光 が最も軽減されないときの反射減衰率)との関係を、充填剤 32の線膨張係数ごと〖こ 示した図である。図 5から分力るように、温度が + 25°Cのときの屈折率が同じ充填剤 であっても、その線膨張係数が大きくなると、温度が 40°C— + 85°Cにわたつて変 化したときの反射減衰率の最高値がプラス方向に変化する。
なお、図 4は、以下の式(1)及び式(2)を用いて求められる。
dn/dt=-3a x (n 1) · · ·式(1)
25
R=— 10 x log {(n— 1. 457)2Ζ(η+ 1. 457)2} · · ·式 (2)
10
ここで、 η:所定温度における充填剤の屈折率、 η : +25°Cにおける充填剤の屈折
25
率、 a:充填剤の線膨張係数、 R:反射減衰率、 t:温度である。
図 5の太線 Aで囲まれた範囲に示すように、充填剤 32は、線膨張係数が 80ppmZ °C以下であり、 +25°Cにおける屈折率が 1. 452-1. 461の範囲内にあることが好 ましい。又は、図 5の太線 Bで囲まれた範囲に示すように、充填剤 32は、線膨張係数 力 S60ppmZ°C以下であり、 25°Cにおける屈折率が 1. 450—1. 463の範囲内にあ ることが好ましい。又は、図 5の太線 Cで囲まれた範囲に示すように、充填剤 32は、線 膨張係数が 40ppmZ°C以下であり、 25°Cにおける屈折率が 1. 449—1. 466の範 囲内にあることが好ましい。
また、 +25°Cにおける屈折率が 1. 465以下であることが好ましい。
充填剤 32は、光硬化型、熱硬化型、室温硬化型、又はカチオン硬化型の、アタリ ル系榭脂、エポキシ系榭脂又はシリコーン系榭脂等であることが好ましい。これらの 榭脂の具体例としては、「オプトエレクトロニクス材料の開発と応用技術」(2001年 2 月 9日株式会社技術情報協会発行) 90頁の表 1に記載されたフッ素化エポキシィ匕合 物、同 91頁の表 2に記載されたフッ素化エポキシアタリレートイ匕合物、特開 2004— 1 96977記載のカチオン硬化型シリコーン榭脂等が挙げられる。
さらに具体的には、エポキシ系榭脂としては、
[化 1] (式 1 )
Figure imgf000013_0001
で表されるフッ素化エポキシ化合物を主成分とするものが好ましぐ特に Rfが a
式 2)
Figure imgf000014_0001
または
[化 3]
Figure imgf000014_0002
であり、 nが 0. 1-1. 0であるものが好ましい,
アクリル系榭脂としては、
[化 4]
Figure imgf000014_0003
(式 4) で表されるフッ素化エポキシアタリレートを主成分とするものが好ましぐ特に Rfが上 記式(3)であり、 nが 0. 1-1. 0であるものが好ましい。
充填剤 32の市販品の具体例としては、上記式 (4)で Rfが上記式(3)で表されるフ ッ素化エポキシアタリレートを主成分とするダイキン製紫外線硬化型アクリル系榭脂「
UV2000J (弾'性率: 1. lGPa、 + 25。Cにおける波長 1. 55 111の屈折率:1. 462、 線膨張係数: 31ppmZ°C、粘度: 360mPa' s)が挙げられる。この「UV2000」は、光 ファイバー 2と光導波路 4との間に単独で配置されると光ファイバ一 2と光導波路 4と の間の整列にずれを生じさせることがあるため、従来、この用途では使用されていな 力つた榭脂である。図 4に示すように、「UV2000」は、温度が 40°C— + 85°Cにわ たって変化しても、— 50dBよりも小さい反射減衰率の値を維持することができる。 充填剤 32の他の市販品の具体例として、上記式(1)で Rfが上記式(3)で表される フッ素化エポキシィ匕合物を主成分とするダイキン製紫外線硬化型エポキシ系榭脂「 UV2100J (弾'性率: 2. 4GPa、 + 25。Cにおける波長 1. 55 /z mの屈折率: 1. 466、 線膨張係数: 107ppmZ°C、粘度: 250mPa' s)、上記式(1)で Rfが上記式(2)で表 されるフッ素化エポキシ化合物を主成分とする NTT— AT製紫外線硬化型エポキシ 系榭脂「GA700L」(弾性率: 0. 4GPa、 + 25°Cにおける波長 1. 55 mの屈折率: 1. 446、線膨張係数: 140ppmZ°C、粘度: 250mPa' s)、上記式(1)で Rfが上記 式(2)で表されるフッ素化エポキシ化合物を主成分とする NTT - AT製紫外線硬化 型エポキシ系榭脂「GA700H」(弾性率: 1. OGPa、 + 25°Cにおける波長 1. 55 の屈折率: 1. 445、線膨張係数: 90ppmZ°C、粘度: 252mPa' s)、及び協立化学 製カチオン硬化型シリコーン榭脂「1\^896211」(弾性率: 5. OGPa、 + 25°Cにおけ る波長 1. 55 /z mの屈折率: 1. 455、線膨張係数: 300ppmZ°C、粘度: 2800mPa • s)が挙げられる。「GA700L」及び「GA700H」は、光ファイバ一 2と光導波路 4との 間に単独で配置されると光ファイバ一 2と光導波路 4との間の整列にずれを生じさせ ることがあるため、従来、この用途では使用されていな力つた榭脂である。また、「WR 8962HJは、光ファイバ一 2と光導波路 4との間に単独で配置されると応力により剥離 することがあるため、従来、この用途では使用されていな力つた榭脂である。図 3に示 すように、これら 4つの充填剤の + 25°Cにおける反射減衰率は、いずれも 48dB以 下である。また、図 4から分かるように、これら 4つの充填剤は、温度が 40°C— + 85 °Cにわたつて変化した場合、—50dB以下の反射減衰率を維持することはできな 、が 、「UV2100」の場合 44dB以下の反射減衰率、「GA700L」の場合 41dB以下の 反射減衰率、「GA700H」の場合 43dB以下の反射減衰率、「WR8962H」の場合 -40dB以下の反射減衰率を維持することができる。
次に、図 3を参照して、光導波路端面 18の傾斜角度について詳細に説明する。光 導波路端面 18の傾斜角度 |8は、図 3に示すように、光軸 laを含む上下方向平面に おいて、光軸 laと光導波路端面 18の交点を中心としたときの、光軸 laと垂直な面 P 力も光導波路端面 12までの角度である。例えば、光ファイバ一 2側から導波路 4に光 が入るときに光が光導波路端面 18で反射して光ファイバ一 2側に伝搬しないようにす るために、光導波路端面 18の傾斜角度 は、光導波路コア 14 (屈折率 nl)及び光 導波路クラッド 16 (屈折率 n2)に対する全反射角(cos— ^r^Znl) )の 1Z2以上であ ることが好ましい。例えば、コア 14の屈折率が 1. 53であり、クラッド 16の屈折率が 1. 50のとき、傾斜角度 j8は、 5. 7度以上であることが好ましい。このことは、導波路 4か ら光ファイバ一 2側に光が進むときにも当てはまる。
また、図 6は、光導波路端面 18の傾斜角度 j8と反射減衰率との関係を示す図であ る。反射減衰率は、光ファイバ一 2側から導波路 4に光が入るとき、又は、導波路 4か ら光ファイバ一 2側に光が進むとき、導波路端面 18で反射した光 (Pr)の、入力光 (Pi )に対する割合をデシベル単位で表したもの( lOlog (Pr/Pi) )である。反射減衰率
10
の値が小さいほど、導波路端面 18における戻り光が軽減されることを意味する。図 6 に示すように、光導波路端面 18の傾斜角度 は、一般的に要求されている反射減 衰率ー 40dB以下を満たすためには、 4一 16度であることが好ましぐ更に厳しい要求 である反射減衰率 50dB以下を満たすためには、 6— 16度であることが好ましい。ま た、光ファイバ一端面 12と光導波路端面 18との間の距離が短い方が良いことを考慮 すれば、光導波路端面 18の傾斜角度 |8は、 6— 10度であることが更に好ましい。
[0032] 上述したように、光素子結合構造体 1は、 1つの光導波路 4と、その光軸方向両側 に配置された 2つの光ファイバ一 2a、 2bを有しており、例えば、光導波路型光スプリ ッタまたは光結合器である。一方の光ファイバ一 2aから光導波路 4を通って他方の光 ファイバー 2bに進む光の、光素子結合構造体 1全体における反射減衰率は、好まし くは、 40dBよりも小さく、更に好ましくは、 50dBよりも小さい。
[0033] 次に、本発明の実施形態による光素子結合構造体の作用を説明する。入口側光フ アイバー 2aの中を伝搬してきた光は、光ファイバ一コア 8の屈折率と充填剤 32の屈折 率とがほぼ同じなので、入口側光ファイバ一 2aの光ファイバ一端面 12で反射せずに 、そのまま透過し、その結果、光ファイバ一端面 12において戻り光は生じない。次い で、充填剤 32の中を伝搬した光は、光導波路端面 18で反射される。光導波路端面 18が光軸 laと垂直な面に対して傾斜しているので、光は光軸 laに対して斜めに反 射される。この反射光は、光軸 laに対して斜め方向に差し向けられるので、光軸 la を逆方向に戻る戻り光になりにくい。その結果、光導波路端面 18における戻り光が著 しく軽減される。次いで、光導波路 4の中を伝搬した光は、出口側光ファイバ一 2bの 光導波路端面 18で反射される。この反射光も、光軸 laと垂直な面に対して斜め方向 に差し向けられるので、光軸 laを逆方向に戻る戻り光になりにくい。その結果、光ファ ィバ一端面 18における戻り光が著しく軽減される。次いで、出口側光ファイバ一 2b側 の充填剤 32の中を伝搬した光は、出口側光ファイバ一 2bの光ファイバ一コア 8の屈 折率と充填剤 32の屈折率とがほぼ同じなので、出口側光ファイバ一 2bの光ファイバ 一端面 12で反射せずに、そのまま透過し、その結果、光ファイバ一端面 12において 戻り光は生じない。
次に、本発明の実施形態による光素子結合構造体 1の製造方法の一例を説明する 。シリコン、高分子材料等で作られた基板 6を準備し、 V字形断面の溝 28を、フォトリ ソグラフィにより作成したレジストパターンに従って異方性エッチングを施すことによつ て形成する。次いで、 V字形断面の溝 28を形成した基板 6に光導波路 4を形成する。 詳細に説明すると、光導波路 4を高分子材料で形成する場合には、スピン塗布ゃ铸 型などによりクラッド層 16及びその上のコア層を形成した後、フォトリソグラフィ、反応 性イオンエッチングなどのプロセスカ卩ェや、型押し等の機械力卩ェを施してコア層から 矩形断面の光導波路コア 14を形成し、更に、上記と同様の方法により光導波路コア 14を覆うようにクラッド層 16を形成して、光導波路 4を形成する。また、光導波路 4を 石英で形成する場合には、火炎堆積法や CVD法などにより基板 6の上に石英層を 形成し、ドライエッチングなどのプロセスカ卩ェにより矩形の石英コア 14にした後、コア 14を覆うようにクラッド層 16を形成して、光導波路 4を形成する。 V字形断面の溝 28 の形成工程及び光導波路 4の形成工程は、光ファイバ一 2を溝 28の支持面 24bに載 せたときに光ファイバ一 2と光導波路 4とがサブミクロンの精度で位置合わせされるよ うな支持面 24bと光導波路 4との位置関係が得られるように行われる。次いで、ダイシ ング加工等により、光導波路端面 18及び凹部 26を形成する。本実施形態のような凹 部 26の構成にすれば、光導波路端面 18及び凹部 26を一度に加工することができる 。光ファイバ一端面 12が凹部 26に突出するように光ファイバ一 2を支持面 24bに配 置し、接着剤等により光ファイバ一 2を支持面に接着させる。それにより、光ファイバ 一 2と光導波路 4とが整列する。次いで、充填剤 32を、光ファイバ一端面 12光導波路 4端面 18との間の隙間 30及び凹部 26に充填し、それにより、光ファイバ一 2と光導波 路 4とを結合させる。
[0035] 次に、充填剤及び接着剤の屈折率、線膨張係数、弾性率の測定方法を説明する。
最初に、充填剤等の屈折率の測定方法を説明する。屈折率については、メトリコン 社製の測定装置「モデル 2010プリズム力ブラ」を用いて、シリコンウェハ上の膜状の 充填剤等の屈折率を測定した。具体的には、所定の膜厚の充填剤等をスピンコート 法等によってシリコンウェハ上に形成した後、それを紫外線で硬化させた。所定の膜 厚は、硬化後の充填剤等の膜厚が 0. 5— 15 mになるようにし、実際の膜厚は、 1 一 5 /z mであった。紫外線は、波長 365nm、強度 lOOmWのものを使用した。照射 量は、ダイキン製紫外線硬化型エポキシ系榭脂「UV2100」、ダイキン製紫外線硬化 型アクリル系榭脂「UV200」及び NTT— AT製紫外線硬化型エポキシ系榭脂「GA7 00H」の測定では、 20j/cm2とし、 NTT-AT製紫外線硬化型エポキシ系榭脂「GA 700L」及び協立化学製カチオン硬化型シリコーン榭脂「WR8962H」の測定では、 5jZcm2とした。次いで、硬化した膜状の充填剤の屈折率を上記測定装置によって 測定した。この測定装置は、光屈折率を持ったプリズムを薄い空気層をはさんで充填 剤等の膜に接近させ、プリズムに入射する光ビームの角度を調整することにより、光 ビームを膜内で励振させることを利用して、屈折率を測定する装置である。
[0036] 次に、充填剤等の線膨張係数の測定方法を説明する。線膨張係数は、 TMA (熱 機械分析)法を用いて測定した。測定条件は、 5°CZ分の引張りモードである。温度 を 20°Cから 100°Cまで変化させ、 25°Cのときの測定値を記載した。
[0037] 次に、充填剤等の弾性率の測定方法を説明する。弾性率は、 JIS— K7127「プラス チックフィルム及びシートの引張試験方法」に従って測定した。
[0038] 上述した実施形態についての実施例を以下に説明する。基板 6は、単結晶であり 異方性エッチングが容易なシリコンを使用した。基板 6にフッ素化ポリイミド(日立化成 製 OPI)で光導波路 4を形成した。光導波路コア 14の屈折率は、 1. 53であり、光導 波路クラッド 16の屈折率は、 1. 52であった。従って、光導波路の全反射角の 1Z2 は、 3. 28度である。また、ダイシンダカ卩ェによる加工精度を ± 2度と見込んで、光導 波路端面 18の傾斜角度 γをダイシング加工によって 6度に加工した。光ファイバ一 は、石英製とした。従って、 1. 31 /z m波長の屈折率は、 1. 468である。充填剤 32と して、ダイキン製紫外線硬化型アクリル系榭脂「UV2000」、ダイキン製紫外線硬化 型エポキシ系榭脂「UV2100」、 NTT— AT製紫外線硬化型エポキシ系榭脂「GA70 OL」、 NTT-AT製紫外線硬化型エポキシ系榭脂「GA700H」、及び協立化学製力 チオン硬化型シリコーン榭脂「WR8962H」について実験を行った。表 2は、これらの 充填剤 32の 40°C、— 15°C、 + 25°C、 + 55°C及び +85°Cにおける反射減衰率の 実験値である。また、図 7は、温度を 40°C— + 85°Cまで変化させたときの、これらの 充填剤の反射減衰率の実験値と式 (1)及び式 (2)を用いて計算した計算値を示す 図である。反射減衰率の測定には、安藤電気株式会社製 AQ2140-AQ7310を使 用した。
[0039] [表 2]
Figure imgf000019_0001
[0040] 以上、本発明による実施形態である光ファイバ一及び光導波路の光素子結合構造 体を説明したけれども、本発明は、この実施形態に限定されることなぐ特許請求の 範囲に記載された発明の範囲内での種々の変更が可能であり、それらも本発明の範 囲内に包含されることは言うまでもない。
本実施形態で使用されている材料は、例示であり、本発明の要件を満たす限り、任 意の材料を使用することができる。
図面の簡単な説明 [図 1]本発明の実施形態である光素子結合構造体の、部分的に断面にした正面図で ある。
[図 2]図 1の線 2-2における断面図である。
[図 3]光ファイバ一端面及び光導波路端面と光軸との関係を示す図である。
[図 4]光ファイバ一コアが石英である場合における、充填剤の屈折率と反射減衰率と の関係を示す図である。
[図 5]光ファイバ一コアが石英である場合における、温度が 25°Cのときの充填剤の屈 折率と、温度が 40°C— + 85°Cにわたつて変化したときの充填剤 32の反射減衰率 の最高値との関係を、充填剤の線膨張係数ごとに示す図である。
[図 6]光導波路端面の傾斜角度と反射減衰率との関係を示す図である。
[図 7]温度を 40°C— + 85°Cまで変化させたときの、充填剤の反射減衰率の実験値 と計算値を示す図である
[図 8]従来技術の光素子結合構造体の正面断面図である。

Claims

請求の範囲
[1] 光ファイバ一と光導波路とを結合させた光素子結合構造体であって、
光軸に沿って延びる光ファイバ一コアを有し、光ファイバ一端面まで光軸方向に延 びる光ファイバ一と、
光ファイバ一コアと光軸方向に整列した光導波路コアと、前記光ファイバ一端面に 面する光導波路端面と、を有する光導波路と、
前記光ファイバ一及び前記光導波路に沿って光軸方向に延び、前記光ファイバ一 が支持され且つ固着される支持面を有し、前記光導波路と一体に構成された基板と 、を有し、
前記支持面は、それに前記光ファイバ一を当接させたときに前記光ファイバ一と前 記光導波路とが光軸方向に整列するように形成され、
前記光導波路コアの屈折率は、前記光ファイバ一コアの屈折率と異なり、 前記光ファイバ一端面は、前記光軸に対してほぼ垂直に形成され、前記光導波路 端面は、前記光軸と垂直な面に対して傾斜して形成され、前記光ファイバ一端面と 前記光導波路端面との間に隙間が設けられ、
前記隙間に、前記光ファイバ一コアの屈折率とほぼ同じ屈折率を有する充填剤が 充填されることを特徴とする光素子結合構造体。
[2] 前記光ファイバ一コアが石英力 なり、前記充填剤の屈折率は、温度が 40°C—
+ 85°Cの間で変化したときに 1. 428-1. 486の範囲内にあることを特徴とする、請 求項 1に記載の光素子結合構造体。
[3] 前記充填剤の屈折率は、温度が 40°C— + 85°Cの間で変化したときに 1. 441一
1. 473の範囲内にあることを特徴とする、請求項 2に記載の光素子結合構造体。
[4] 前記充填剤の屈折率は、温度が 40°C— + 85°Cの間で変化したときに 1. 448—
1. 466の範囲内にあることを特徴とする、請求項 3に記載の光素子結合構造体。
[5] 前記光ファイバ一は、それと前記光導波路との整列のずれを防止するのに十分な 弾性率を有する接着剤によって前記基板の支持面に固着される、請求項 2— 4の何 れか 1項に記載の光素子結合構造体。
[6] 前記充填剤は、 +25°Cにおける屈折率が 1. 465以下であることを特徴とする、請 求項 2— 5の何れか 1項に記載の光素子結合構造体。
[7] 前記光ファイバ一コアが石英力もなり、前記充填剤は、線膨張係数が 80ppmZ°C 以下であり、 +25°Cにおける屈折率が 1. 452-1. 461の範囲内にあることを特徴と する、請求項 1に記載の光素子結合構造体。
[8] 前記光ファイバ一コアが石英力もなり、前記充填剤は、線膨張係数が 60ppmZ°C 以下であり、 +25°Cにおける屈折率が 1. 450—1. 463の範囲内にあることを特徴と する、請求項 1に記載の光素子結合構造体。
[9] 前記光ファイバ一コアが石英力もなり、前記充填剤は、線膨張係数が 40ppmZ°C 以下であり、 +25°Cにおける屈折率が 1. 449—1. 466の範囲内にあることを特徴と する、請求項 1に記載の光素子結合構造体。
[10] 前記光ファイバ一は、それと前記光導波路との整列のずれを防止するのに十分な 弾性率を有する接着剤によって前記基板の支持面に固着される、請求項 7— 9の何 れか 1項に記載の光素子結合構造体。
[11] 前記光導波路は、更に、前記光導波路コアの周りに配置された光導波路クラッドを 有し、前記光軸と垂直な面に対する前記光導波路端面の傾斜角度は、前記光導波 路コア及び前記光導波路クラッドに対する全反射角の 1Z2以上であることを特徴と する請求項 1一 10の何れか 1項に記載の光素子結合構造体。
[12] 前記光軸と垂直な面に対する前記光導波路端面の傾斜角度が 4一 16度であること を特徴とする請求項 1一 10の何れか 1項に記載の光素子結合構造体。
[13] 1つの前記光導波路と、その光軸方向両側に配置された 2つの前記光ファイバ一を 有し、一方の前記光ファイバ一から前記光導波路を通って他方の前記光ファイバ一 に進む光の反射減衰率は、 - 40dB以下であることを特徴とする請求項 1一 10の何れ 力 1項に記載の光素子結合構造体。
PCT/JP2004/017254 2003-11-28 2004-11-19 光素子結合構造体 WO2005052663A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005515766A JP4324167B2 (ja) 2003-11-28 2004-11-19 光素子結合構造体
US11/442,348 US20060215964A1 (en) 2003-11-28 2006-05-30 Optical element combination structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003399287 2003-11-28
JP2003-399287 2003-11-28
JP2004-095477 2004-03-29
JP2004095477 2004-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/442,348 Continuation US20060215964A1 (en) 2003-11-28 2006-05-30 Optical element combination structure

Publications (1)

Publication Number Publication Date
WO2005052663A1 true WO2005052663A1 (ja) 2005-06-09

Family

ID=34635632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017254 WO2005052663A1 (ja) 2003-11-28 2004-11-19 光素子結合構造体

Country Status (5)

Country Link
US (1) US20060215964A1 (ja)
JP (1) JP4324167B2 (ja)
KR (1) KR100846241B1 (ja)
TW (1) TWI341936B (ja)
WO (1) WO2005052663A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012510079A (ja) * 2008-11-24 2012-04-26 コーニング インコーポレイテッド 溶接接合方法及び溶接接合されたコンポーネントを有するデバイス
JP2015175980A (ja) * 2014-03-14 2015-10-05 日立金属株式会社 光ファイバコネクタ及びその製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200532274A (en) * 2004-03-31 2005-10-01 Hitachi Chemical Co Ltd Optical element bonded structure and optical fibre structural body
JP4735599B2 (ja) * 2007-05-08 2011-07-27 日立電線株式会社 光ファイバ実装導波路素子及びその製造方法
US7738753B2 (en) * 2008-06-30 2010-06-15 International Business Machines Corporation CMOS compatible integrated dielectric optical waveguide coupler and fabrication
EP3418784B1 (en) 2017-06-21 2021-09-08 ADVA Optical Networking SE Photonic chip/optical device for aligning and connecting an optical fiber and a photonic integrated waveguide and method of its production
US11275211B2 (en) * 2019-06-18 2022-03-15 Cisco Technology, Inc. Fiber array unit with unfinished endface

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410582A (ja) * 1990-04-27 1992-01-14 Anritsu Corp 半導体光素子
JPH05188234A (ja) * 1992-01-13 1993-07-30 Nippon Hoso Kyokai <Nhk> 光ファイバ接続方法
JPH09297235A (ja) * 1996-05-07 1997-11-18 Hitachi Cable Ltd 光導波路及びその製造方法並びにそれを用いた光導波路モジュール
JPH11167035A (ja) * 1997-12-04 1999-06-22 Oki Electric Ind Co Ltd 光機能素子と光結合方法
JP2002519711A (ja) * 1998-06-20 2002-07-02 インスティテュト.フュル.ミクロテクニック.マインツ.ゲゼルシャフト.ミット.ベシュレンクテル.ハフツング 光結合素子
JP2003227962A (ja) * 2002-02-06 2003-08-15 Oki Electric Cable Co Ltd 光導波路モジュール

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3994559A (en) * 1975-12-22 1976-11-30 International Business Machines Corporation Bidirectional guided mode optical film-fiber coupler
US4130343A (en) * 1977-02-22 1978-12-19 Bell Telephone Laboratories, Incorporated Coupling arrangements between a light-emitting diode and an optical fiber waveguide and between an optical fiber waveguide and a semiconductor optical detector
US5208878A (en) * 1990-11-28 1993-05-04 Siemens Aktiengesellschaft Monolithically integrated laser-diode-waveguide combination
DE4344179C1 (de) * 1993-12-23 1994-10-27 Krone Ag Koppelvorrichtung zwischen einer Glasfaser und einem auf einem Substrat integrierten dielektrischen Wellenleiter
JPH0829638A (ja) * 1994-05-12 1996-02-02 Fujitsu Ltd 光導波路・光ファイバ接続構造及び光導波路・光ファイバ接続方法並びに光導波路・光ファイバ接続に使用される光導波路基板及び同基板の製造方法並びに光導波路・光ファイバ接続に使用されるファイバ基板付き光ファイバ
JP4158866B2 (ja) * 1997-08-15 2008-10-01 古河電気工業株式会社 感度可変導波路型の半導体受光素子
JP2001021775A (ja) * 1999-07-09 2001-01-26 Sumitomo Electric Ind Ltd 光学装置
GB2384620A (en) * 2002-01-25 2003-07-30 Denselight Semiconductors Pte A high speed waveguide photodetector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410582A (ja) * 1990-04-27 1992-01-14 Anritsu Corp 半導体光素子
JPH05188234A (ja) * 1992-01-13 1993-07-30 Nippon Hoso Kyokai <Nhk> 光ファイバ接続方法
JPH09297235A (ja) * 1996-05-07 1997-11-18 Hitachi Cable Ltd 光導波路及びその製造方法並びにそれを用いた光導波路モジュール
JPH11167035A (ja) * 1997-12-04 1999-06-22 Oki Electric Ind Co Ltd 光機能素子と光結合方法
JP2002519711A (ja) * 1998-06-20 2002-07-02 インスティテュト.フュル.ミクロテクニック.マインツ.ゲゼルシャフト.ミット.ベシュレンクテル.ハフツング 光結合素子
JP2003227962A (ja) * 2002-02-06 2003-08-15 Oki Electric Cable Co Ltd 光導波路モジュール

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012510079A (ja) * 2008-11-24 2012-04-26 コーニング インコーポレイテッド 溶接接合方法及び溶接接合されたコンポーネントを有するデバイス
JP2015175980A (ja) * 2014-03-14 2015-10-05 日立金属株式会社 光ファイバコネクタ及びその製造方法

Also Published As

Publication number Publication date
TWI341936B (en) 2011-05-11
KR20060093734A (ko) 2006-08-25
JPWO2005052663A1 (ja) 2007-06-21
JP4324167B2 (ja) 2009-09-02
TW200533968A (en) 2005-10-16
KR100846241B1 (ko) 2008-07-16
US20060215964A1 (en) 2006-09-28

Similar Documents

Publication Publication Date Title
JP4048564B2 (ja) 光素子結合構造体及び光ファイバー構造体
KR0139133B1 (ko) 광파이버와 광도파로의 결합구조
US7386213B2 (en) Bidirectional communication optical waveguide and manufacturing method thereof
JPH10300961A (ja) 光路変換素子と、その作製方法、および光路変換素子作製用のブレード
JP2008009098A (ja) 光接続装置と実装方法
JP2007072007A (ja) 光導波路モジュール
US20060215964A1 (en) Optical element combination structure
US20090067786A1 (en) Optical waveguide device and light outputting module
JP2002148187A (ja) 光導波路型spr現象計測チップ、その製造方法およびspr現象計測方法
JP4251853B2 (ja) 光伝送構造体、および、光導波路の形成方法
US20230251432A1 (en) Optical Module
JP2007183467A (ja) ミラー付光導波路及びその製造方法
WO2003032030A1 (fr) Module de filtre optique et son procede de fabrication
WO2021100150A1 (ja) 光モジュール
JPH10300956A (ja) 光分岐導波路および光導波路回路
US11237334B2 (en) Fiber module
JP3910846B2 (ja) 二次元光学部材アレイ及び二次元導波路装置並びにそれらの製造方法
WO2022038763A1 (ja) 光モジュール
JP3279438B2 (ja) 光ファイバと光導波路の結合構造
US7044649B2 (en) Optical filter module, and manufacturing method thereof
JP2003270461A (ja) 光通信部品、積層型光通信モジュール、およびその製造方法
JP2008003637A (ja) 光素子結合構造体及び光ファイバー構造体
WO2011119106A1 (en) A multi-layer structure and a method of forming the same
JP2002107564A (ja) 光導波路モジュール
JP2004004349A (ja) 光実装基板、光デバイス、光デバイスの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480034985.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005515766

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067010542

Country of ref document: KR

Ref document number: 11442348

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 1020067010542

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 11442348

Country of ref document: US

122 Ep: pct application non-entry in european phase