WO2005051582A1 - 防振切削工具 - Google Patents

防振切削工具 Download PDF

Info

Publication number
WO2005051582A1
WO2005051582A1 PCT/JP2004/017604 JP2004017604W WO2005051582A1 WO 2005051582 A1 WO2005051582 A1 WO 2005051582A1 JP 2004017604 W JP2004017604 W JP 2004017604W WO 2005051582 A1 WO2005051582 A1 WO 2005051582A1
Authority
WO
WIPO (PCT)
Prior art keywords
pocket
vibration
shank
holder
cutting
Prior art date
Application number
PCT/JP2004/017604
Other languages
English (en)
French (fr)
Inventor
Daisuke Murakami
Masanobu Ueda
Kazuhiko Kashima
Junya Okida
Norihide Kimura
Original Assignee
Sumitomo Electric Hardmetal Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Hardmetal Corp. filed Critical Sumitomo Electric Hardmetal Corp.
Priority to EP04819450.0A priority Critical patent/EP1693131B1/en
Priority to US10/580,553 priority patent/US7591209B2/en
Publication of WO2005051582A1 publication Critical patent/WO2005051582A1/ja
Priority to IL175859A priority patent/IL175859A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/002Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor with vibration damping means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B29/00Holders for non-rotary cutting tools; Boring bars or boring heads; Accessories for tool holders
    • B23B29/02Boring bars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B29/00Holders for non-rotary cutting tools; Boring bars or boring heads; Accessories for tool holders
    • B23B29/02Boring bars
    • B23B29/022Boring bars with vibration reducing means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T408/00Cutting by use of rotating axially moving tool
    • Y10T408/76Tool-carrier with vibration-damping means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T82/00Turning
    • Y10T82/25Lathe
    • Y10T82/2585Tool rest

Definitions

  • the present invention relates to an anti-vibration cutting tool capable of effectively damping chatter vibration with a simple and inexpensive structure in cutting where chatter vibration is a problem.
  • a method of incorporating a damper or the like in a holder and using inertia to suppress chattering vibrations is well known.
  • a damper or the like in a holder and using inertia to suppress chattering vibrations.
  • the prior art of anti-vibration cutting tools is often related to boring bars. The following description will be mainly made by taking the boring bit as an example.
  • Patent Document 1 the method shown in FIG. 5, that is, a hole 21 is made in the holder 1 from the rear end, a damper 22 is provided at the tip of the hole near the cutting edge, Discloses a method of inserting a carbide core rod 23.
  • Patent Document 2 discloses a turning tool in which a deep hole is formed in the central portion of a holder, and a viscous fluid and a weight are arranged therein, and further, in Patent Document 3 below, a tool main body is provided.
  • a cutting tool in which a rod spring is inserted in the hole, a visco-elastic body is interposed between the rod spring and the hole, a cutting head is provided at the tip of the rod spring, and a friction absorber is disposed between the cutting head and the tool body.
  • the cutting tools described in Patent Documents 1 and 2 cancel chattering vibration using the inertia of the damper. Further, the cutting tool described in Patent Document 3 converts vibrational energy into frictional heat to reduce vibration propagating to the tool main body.
  • a balling bar is used to insert a damper made of a different material from the shank into a tapered hole in the insertion hole provided on the shank and use it to damp the vibration by utilizing the contact friction between the shank and the damper.
  • a damping material that absorbs vibrational energy into the interior of the tool body to damp the vibration (see Patents 5 and 6 below).
  • Patent Document 1-13 has a deep hole in the shank and inserts a damper in the hole, so in the case of a holder with a small diameter and a long shank, especially in the case of an internal diameter force holder.
  • Hole drilling It has to be done with a gun drill, etc., and the processing cost is high, which affects the cost.
  • the hollow portion into which the damper is inserted is made large, the rigidity of the holder is reduced.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-136301
  • Patent Document 2 Japanese Patent Application Laid-Open No. 6-31507
  • Patent Document 3 Patent No. 2979823
  • Patent Document 4 Japanese Patent Application Laid-Open No. 6-31505
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2001-96403
  • Patent Document 6 Japanese Unexamined Patent Application Publication No. 2003-62703
  • the present invention solves the above-mentioned problems found in conventional anti-vibration cutting tools, and is extremely inexpensive and highly effective in suppressing chattering. It also has a simple structure for a wide range of machining diameters and a wide range of cutting conditions. It is an object of the present invention to provide an anti-vibration cutting tool having a holder that can be used. Means to solve the problem
  • a pocket 4 is provided in the shank portion 2 of the holder 1 and the damping piece 5 is placed in the pocket 4 relative to the holder. It is inserted so that it can move and can not pop out.
  • the vibration control piece 5 collides alternately with the inner wall of the pocket in the opposing position by inertia, and the collision is per-face, per line at multiple locations, or multiple locations It happens as a point hit at a point so that the holder's vibration is damped.
  • this anti-vibration cutting tool is provided with a pocket having a first inner wall surface and a second inner wall surface, which are disposed opposite to each other, on the shank portion of the holder, and the pocket includes the first inner wall surface and the second inner wall.
  • a damping piece having a surface facing each of the wall surfaces is inserted so as not to pop out, and the first and second inner wall surfaces of the pocket and the surface of the damping piece facing these surfaces are plane.
  • a gap is provided between the first and second inner wall surfaces and the damping piece to make the damping piece movable. Conceivable.
  • Damping piece 5 may be divided into a plurality and inserted into a single pocket. Alternatively, a plurality of independent pockets may be provided, and the vibration control pieces divided into a plurality may be separately inserted into each pocket. Furthermore, this damping piece 5 should be in contact with the wall surface of the pocket 4 as wide as possible in order to obtain an effect that is effective even if the pocket 4 is lined or spotted at multiple points. .
  • the area perpendicular to the cross section in Fig. 1 (the shape that appears in the cross section of the shank) is rectangular, and the areas of faces 5a and 5b that are made to collide alternately with pocket wall faces 4a and 4b in the opposite arrangement If it is larger, it can meet the demand.
  • the vibration control piece 5 preferably has a rectangular shape in a cross section perpendicular to the axis.
  • the plan view shape of the vibration control piece 5 is not particularly limited, and any shape can be selected.
  • the damping piece 5 is preferably made of a material having a specific gravity larger than that of the material of the shank portion 2.
  • a material having a specific gravity larger than that of the material of the shank portion 2. for example, when the shank portion 2 is formed of steel, since the specific gravity of the steel is 7.8, it is preferable to form the cemented carbide or heavy metal having a specific gravity of 7.8 or more. It is also effective to use a material made of a material whose specific gravity is equal to or smaller than that of the material of the shank portion 2. However, if a large specific gravity material is used, the necessary weight can be secured by a small size piece it can.
  • the wall surfaces 4a and 4b should be surfaces that can be intersected with the vibration direction of the holder assumed at the time of cutting. More preferably, the surface is substantially perpendicular to the vibration direction.
  • pocket 4 is set such that its width w is 20% to 100% of shank diameter D or shank width W, and height h between wall surfaces 4a and 4b is 5% to 70% of shank height H That's good.
  • the width and height referred to here are the width and height in the cross section perpendicular to the shank, and so on.
  • the anti-vibration cutting tool to which force is applied is processed by processing the side force of the holder 1 on the pocket 4 provided on the shank portion 2 and providing sealing means such as piece holding means and lid 6 Form that holds damping piece 5 inserted in pocket 4 by means of the procedure in the pocket,
  • the pocket 4 is cut from the holder side la opposite to the side where the cutting edge 7a is disposed, and the pocket 4 is penetrated to the side lb at the side where the cutting edge 7a of the cutting tool is disposed.
  • the pocket 4 is cut from the holder side la opposite to the side where the cutting edge 7a is disposed, and the pocket 4 is penetrated to the side lb at the side where the cutting edge 7a of the cutting tool is disposed.
  • blind holes In the form of blind holes,
  • the shank 2 and the head 3 of the holder are separately formed, and the damping piece 5 is inserted into a pocket 4 provided open at the tip of the shank 2.
  • the head 3 may be joined to the tip of the tip to close the mouth of the pocket 4 at the tip of the shank.
  • the pocket 4 has an axial length c (see FIG. 1) of 50% to 250% of the shank diameter D (or shank height H), and this pocket 4 is a tool It is recommended that the tip end position be set such that the distance of the cutting edge force to the pocket installation point e (see Fig. 1) is approximately 50%-250% of the shank diameter D.
  • a more preferable value of the pocket length c is about 100% to 150% of the shank diameter D for the boring bit, and a more preferable value of the distance e from the cutting edge to the pocket installation point is 150% to 220% of the shank diameter D
  • the appropriate value changes depending on the cutting conditions etc.
  • the pocket w is a shank diameter D or 50%-100% of the shank width W, and a height h is 20% of the shank height H-for tools with internal diameter forces such as boring bars. 40% range Depending on the size of the power tool, which was particularly preferable to enclose it, dimensions outside the range may be acceptable, and effects can be expected.
  • a boring bit whose shank diameter D exceeds ⁇ 20 mm has a width w of pocket 4 of 0.
  • tools used for processing high hardness materials such as hardened steel and tools processed with a tip with a wiper have a width w of pocket 4 of 0.5D— 1. OD (0.5W— 1. OW ), Height h 0.4 H-
  • the width w of the pocket is 0.2D— 1. OD (0.2W— 1. OW), the height h is 0.5H— 0.2
  • the damping piece housed in the pocket vibrates by inertia and directly strikes the inner wall of the pocket.
  • the amplitude of the vibration control piece is in opposite phase to the amplitude of the holder, so that the vibration of the holder is canceled and the chattering vibration is reduced.
  • the damping piece since the damping piece is made to face the pocket, or because the line or point is hit at a plurality of points, the load of the damping piece is dispersed over a wide range. Then, it is added to the inner wall of the pocket, and this effectively acts to greatly suppress chattering vibrations.
  • the wall surface of the pocket to which the damping piece collides is oriented almost orthogonal to the vibration direction of the assumed holder, the energy from the damping piece (energy that cancels the holder vibration) is the shank without loss. Since the damping piece and the pocket are small, it is possible to reduce the reduction in the rigidity of the shank due to the installation of the pocket and to improve the suppressing effect of the chattering vibration.
  • the pocket can be side-force-processed on the holder, the manufacture can be facilitated, and the manufacturing cost can be significantly reduced, thereby providing a cheaper anti-vibration cutting tool. It becomes possible.
  • a pocket formed by forming the shank portion and the head portion of the holder separately and forming the shank portion Even if the tip end side force of the shank part is also inserted into the vibration control piece, it is possible to insert the most effective vibration control piece against chattering vibration, so it is not necessary to process a large damper insertion cavity. It is possible to reduce the cost of tools significantly by simplifying the structure while minimizing the reduction in the rigidity of the shank due to the installation.
  • the vibration damping effect is insufficient.
  • the damping piece is too large, the pocket becomes large and the rigidity of the shank is sacrificed.
  • the size of the pocket should be within the range mentioned above.
  • the pocket length c is 50% or less of the shank diameter D or the shank height H, the damping tooth becomes small and a sufficient effect can not be expected, while the length c is If it exceeds 250% of D or H, the reduction in rigidity of the shank becomes large, and chattering occurs in a general cutting form in which the amount of protrusion of the holder (the amount of protrusion from the support point to the cutting edge) is more than three times the shank diameter. It will be easier.
  • FIG. 1 A plan view showing one embodiment of a tool according to the present invention, (b) a sectional view of an X-X-ray portion of FIG. 1 (a)
  • FIG. 2 a tool according to the present invention Is a plan view showing another embodiment of the present invention, (b) a sectional view of the X-X-ray portion in FIG.
  • FIG. 3 (a) A plan view showing still another embodiment, (b) A sectional view of the X--X-ray portion of FIG. 3 (a)
  • FIG. 4 (a) A plan view showing still another embodiment, (b) A sectional view of the X--X-ray portion of FIG. 4 (a)
  • FIG. 5 (a) A plan view showing the basic structure of a conventional vibration proofing bit, (b) a sectional view of an X--X-ray portion in FIG. 5 (a)
  • FIG. 6 (a) A plan view showing an embodiment of a tool, (b) A sectional view of an X--X-ray portion of FIG. 6 (a)
  • FIG. 9 (a) A plan view of a tool according to another embodiment, (b) a cross-sectional view of the X-X-ray portion in FIG. 9 (a), (c) a cross-sectional view of the Y-Y-line portion
  • FIG. 14 (a) A plan view of a tool according to another embodiment, (b) a sectional view of the X-X-ray portion of FIG. 14 (a)
  • FIG. 15 (a) A plan view of a tool according to another embodiment, (b) a sectional view of the X-X-ray portion of FIG. 15 (a)
  • FIG. 16 A sectional view showing an example in which the pocket is also made eccentric to the shank central force
  • FIG. 17 (a) A plan view of a tool according to another embodiment, (b) A cross-sectional view of the X-X-ray portion in FIG. 17 (a)
  • FIG. 18 (a) A plan view of a tool according to another embodiment, (b) a side view of the same tool, and (f) a sectional view of an X--X-ray portion in FIG.
  • FIG. 22 (a) A plan view of a tool according to another embodiment, (b) a side view of the same tool, and (f) a sectional view of an X--X-ray portion in FIG.
  • FIG. 23 (a) A plan view of a tool according to still another embodiment, (b) a side view of the same tool
  • FIG. 24 (a) A plan view of a tool according to still another embodiment, (b) a side view of the same tool
  • FIG. 26 (a) A plan view of a tool according to another embodiment, (b) a side view of the same tool
  • FIG. 27 (a) A plan view of a tool according to still another embodiment, (b) a side view of the same tool
  • FIG. 32 (a) A diagram showing another example of the plane of the damping piece, (b) a diagram showing still another example of the plane of the damping piece
  • FIG. 6 shows an embodiment of the anti-vibration cutting tool according to the present invention.
  • the illustrated tool is a boring tool, and the slow way tip 7 is clamped at the tip of the holder 1 by a clamping means 8 and is detachably mounted.
  • a hole is made in the shank portion 2 of the holder 1 by means of a discharge caulk or the like to penetrate from one side to the other side, and the hole provided on the tip side of the holder 1 is made into a bokeh 4 and its pocket 4
  • a cemented carbide rectangular damping piece 5 having a specific gravity of 15.1 is inserted, and both ends of the pocket 4 are closed by a lid 6 so that the damping piece 5 does not protrude outside.
  • the pocket 4 is a pocket which has a rectangular shape in a cross section perpendicular to the axis, and has wall surfaces 4a and 4b in a parallel arrangement.
  • the shank portion 2 of the holder 1 has a circular cross section.
  • the shank portion of the tool to which the present invention is applied may have an angular cross section.
  • Damping piece 5 has height a and width f smaller than the size of pocket 4 by about 0.15 mm, and has flat surfaces 5a and 5b corresponding to pocket wall surfaces 4a and 4b. Between the and pocket 4 The movement within the range of the generated clearance (clearance) is allowed to be permitted.
  • this vibration control piece 5 is movable in the pocket 4, and if the relative movement with the holder 1 is not permitted by interference with the wall surface of the pocket 4, the effect of suppressing chattering is not exhibited. Yes.
  • the damping piece 5 is extremely small, the weight of the damping piece 5 is insufficient, and a satisfactory chattering suppression effect can not be obtained.
  • a relatively small diameter holder with a shank diameter D of ⁇ 20 mm or less has a clearance for moving the vibration control piece 5 smaller than about 0.5 mm with respect to the pocket 4. That is effective. If the gap between damping piece 5 and pocket 4 is smaller than 0.
  • holder 1 and damping piece 5 may be thermally deformed, for example, and damping piece 5 may not move within the pocket. It should be about 0.1 mm-about 0.5 mm. In particular, the effect is the highest when the damping piece 5 is reduced by about 0.1 mm to 0.3 mm with respect to the pocket 4. However, if the shank diameter D is larger than, for example, ⁇ 20 mm, the weight of the vibration control piece 5 can be secured without a shortage even if the gap with the pocket 4 is enlarged. Even smaller than 0.5 mm is effective.
  • the vibration control piece 5 is preferably formed of a material having a specific gravity of 7. 8 or more of the steel.
  • the specific gravity is advantageous because the larger the size, the smaller the packet size for achieving the same effect.
  • any material with a higher specific gravity than this may be used.
  • the size of the pocket 4 is too large, the rigidity of the holder 1 is reduced to deteriorate the processing accuracy (coral dimension and surface roughness) of the tool, or the tool is likely to be easily undone. . If the pocket 4 is too small, the damping piece 5 also becomes smaller and the effect of suppressing chattering is reduced. In addition, particularly when the height dimension h of the pocket 4 is too small, machining becomes difficult because the diameter of a tool such as an end mill for machining the pocket becomes small.
  • the length c of the pocket 4 and the distance e from the tool tip force to the pocket attachment point are 50%-250% force S of the shank diameter D.
  • the best effect is achieved when the length c of the pocket 4 is about 100% to about 150% of the shank diameter D and the distance e from the cutting edge to the pocket is about 150% to about 220%.
  • the shank diameter D is larger than ⁇ 20 mm, the vibration damping effect can be obtained even if the pocket 4 is small. Therefore, it is effective to reduce the width w of the pocket 4 to about 50% of the shank diameter D, in particular.
  • the installation angle ⁇ ⁇ ⁇ ⁇ of the pocket 4 shown in FIG. 7 may be appropriately set according to the direction in which the cutting force is applied.
  • general tools for internal force applications it is possible to achieve the purpose of suppressing chattering vibration sufficiently with the pockets where the wall surfaces 4a and 4b are horizontal.
  • tilt in the range of 0 °-45 ° with reference to the horizontal plane and the wall surfaces 4a and 4b are oriented at right angles to the combined force of cutting force and main force. It is more effective to provide the following pocket and insert the damping piece 5 there.
  • the pocket 4 vertical as shown in FIG. 8 For a general internal diameter processing tool, a pocket in this direction is provided Even though the effectiveness of chatter suppression, there is no point much meaning Example 2
  • FIG. 9 shows a form that is effective when machining accuracy is important.
  • the tool shown in FIG. 6 can increase the size of the vibration control piece 5 and improve the effect of suppressing chattering, while the pocket 4 penetrates the sink part 2 to reduce the rigidity of the holder 1 and thereby improve the processing accuracy. Is more likely to decline.
  • the anti-vibration cutting tool shown in FIG. 9 can solve the problem.
  • a pocket 4 is provided by caulking with an end mill from the side la opposite to the side where the cutting edge 7a is disposed, with an end mill! /. Both ends of the pocket 4 are transferred by the outer diameter of the end mill to form an arc shape, and the pocket 4 has a side lb on the side on which the cutting edge 7a is disposed to have a thickness of about 2 mm in order to suppress the rigidity decrease of the holder 1 Blind hole, side
  • the inlet on the la side is closed with a lid 6 as in the first embodiment to prevent the damping piece 5 from jumping out.
  • the lid 6 may be the same steel as the material of the holder 1, but if it is formed of cemented carbide and firmly attached to the holder 1, the reduction in the rigidity of the holder due to the pocket installation can be reduced.
  • the anti-vibration cutting tool shown in FIG. 9 has the pocket 4 as a blind hole, which is an important point in further enhancing the practicality of the tool.
  • the inventors first made a trial production of the tool of FIG. 6 and confirmed a very high chatter suppression effect. However, although the structure shown in Fig. 6 is highly effective in suppressing chattering, the decrease in the rigidity of the holder can not be avoided.
  • FIG. 10 A-D in the same figure represents the cross-sectional shape along the X-X line of the holder shown in FIG. 1 (a).
  • FIG. 10 the structure of FIG. 6 (A in FIG. 10) in which the pocket 4 is formed by a through hole is affected by the load compared to the internal diameter machining tool using a general steel shank without a vibration isolation mechanism. The amount of deformation increases by about 40%.
  • Fig. 9 B in Fig. 10
  • the amount of deformation due to the load is suppressed to about 9%, and the rigidity reduction due to the pocket installation is small, and stable processing accuracy can be achieved. This effect is not obtained in other structures as shown in Fig. 10!
  • the lid 6 is formed of cemented carbide and firmly fixed to the shank portion 2 so that the amount of deformation of the shank due to load is equal to that of a general steel shank without holes. It is also possible to
  • the damping piece 5 to be inserted into the pocket 4 whose both ends are arcs in a side view may have a rectangular parallelepiped shape as shown in FIG. If it is possible to secure the weight of the vibration control piece even if the both ends are flat, the rectangular vibration control piece in FIG. 13 is advantageous because the processing of the arc surface is omitted.
  • the cutting tools used in the experiments are the inventive product 16 and the comparative product 1-15 shown in FIG.
  • Inventive products 1 to 6 and comparative products 1 and 3 are the height and width of the pocket, the size of the vibration control piece and the material are changed, and the comparative product 2 is the clearance between the vibration control piece and the pocket being 0
  • the comparative product 4 uses a general steel shank holder, and the comparative product 5 is a shank made of cemented carbide.
  • the shank material of tools other than the comparative product 5 is steel.
  • a general alloy steel SCR420 as a work material is prepared, and this is used at a cutting speed of 80 mZ min, 160 m / min, a cutting amount of 0.2 mm, and a feed speed of 0.1 mm / rev.
  • each invention product is extremely effective in suppressing chattering.
  • the invention products 1, 3 and 5 have an effect of suppressing chattering better than the comparison product 5 in which the holder is formed of cemented carbide.
  • chatter suppression was also compared with one of several commercially available anti-vibration boring bars.
  • noise due to chattering vibration a metallic noise during processing
  • a force that made some noise at the beginning of processing was immediately absorbed by the noise, and processing was performed with almost no sound. Also, at the beginning, there was almost no sound until the end, and there was also a situation where cutting was in progress without a component.
  • FIG. 14 shows still another embodiment.
  • the shank portion 2 and the head portion 3 of the holder 1 are separately manufactured, and the both are integrally combined.
  • the head portion 3 may be irremovably joined to the shank portion 2 or may be detachably connected to enable replacement and repair when the head portion 3 is damaged.
  • This structure is formed by opening the pocket 4 at the tip of the shank portion 2, and by inserting the vibration control piece 5 into the pocket 4, the head portion 3 can be made to function as a lid.
  • the lid can be omitted.
  • shank part 2 can be formed of cemented carbide, and the effect of suppressing chatter vibration with high rigidity is extremely high.
  • the anti-vibration cutting tool for internal diameter processing can be obtained.
  • the pocket 4 is pressed from both sides of the holder 1 to leave the central meat of the shank.
  • the damping piece 5 force S becomes smaller compared to the other embodiments described above, so the effect of suppressing chattering is slightly reduced, but it extends in the axial direction to the remaining portion between the left and right pockets.
  • the anti-vibration cutting tool shown in FIG. 16 is provided by biasing the pocket 4 to the lower side (or upper side) from the center of the shank portion 2.
  • Refueling holes 9 can be formed there by securing them.
  • FIG. 17 is another example of the method for preventing the popping out of the vibration control piece 5 from the pocket 4.
  • the damping piece 5 is provided with the mounting hole 10 penetrating the damping piece up and down, and the mounting hole 10 is passed through a retaining pin 11 or the like smaller than the hole diameter.
  • This structure does not require a lid.
  • FIG. 18 shows still another embodiment of the anti-vibration cutting tool according to the present invention.
  • This tool shows an example in which the width w and height h of the pocket 4 formed in the shank portion 2 of the holder 1 in the boring bit are both 20%-50% of the shank diameter D.
  • the application target is the boring bit
  • the pocket 4 is not necessarily cut from the side of the shank.
  • the pocket 4 is machined from above (or below) in the shank portion 2, and the vibration control piece 5 is inserted into the pocket 4.
  • the lid 6 may be configured to close the inlet of the bokeh 4.
  • the lid 6 is preferably made of cemented carbide because it can compensate for the reduction in the rigidity of the steel shank due to the pocket arrangement.
  • the orientation of the vibration control piece 5 (the installation angle of the pocket 4) is such that the surfaces 5a, 5b are perpendicular to the direction in which the cutting force works, the surfaces 5a, 5b It is not always horizontal and may be inclined as shown in Fig. 20 (a).
  • the cross-sectional shape of damping piece 5 also need not be square. If the area of the faces 5a and 5b perpendicular to the direction in which the cutting force works is wider than the area of the faces 5c and 5d perpendicular to the faces, the vibration damping effect is high.
  • the vibration control piece 5 can be divided into a plurality of pieces and stored in the pocket 4, and even with this, a sufficient vibration damping effect can be obtained.
  • the position of the pocket 4 may be out of the center of the shank as shown in FIG. 20 (b). In this case, the pocket 4 may be easily processed, which may reduce the cost. Further, since the damping piece 5 collides with the pocket wall surface at a position where the shank central force is deviated and a twisting force is applied to the shank, the vibration damping effect is enhanced when the shank is subjected to a torsional vibration.
  • a pocket of the size shown in Fig. 21 (the center is at the center of the shank) is formed in the shank of ISO standard S16RSSKPR09 ((i) 16 mm), and the pocket is made of heavy metal with a specific gravity of 18.1.
  • Inventive product 2 and comparative products 1 and 2 both have a cutting edge force with a distance e to the pocket of 25 mm and a pocket length c of 20 mm!
  • Feeding speed: f 0. 15 mm / rev
  • Cutting depth: d 0.5 mm / rev
  • Cutting fluid water insoluble cutting fluid
  • Feeding speed: f 0.1 mm / rev
  • Cutting fluid water insoluble cutting fluid
  • test results are shown together in FIG.
  • ⁇ and X indicate the presence or absence of chattering.
  • Inventive products 1 and 2 show good results under cutting conditions 1 that are cutting conditions for general carbon steel and cutting conditions 2 that are finish cutting conditions when the hardness of the work material is high. It turns out that the control effect of chattering is exhibited in the almighty.
  • Comparative product 1 has poor results under cutting conditions 2 where the effective force is high under cutting conditions 1. Moreover, the comparative product 3 can not obtain vibration damping effect at all, so that the results under the cutting conditions 1 and 2 are both bad.
  • Fig. 22 shows an example in which the present invention is applied to a grooving tool
  • Figs. 23 and 24 show an example in which the present invention is applied to an outer diameter machining bit. Unlike internal diameter processing bytes, these tools are not subject to size restrictions, so the reduction in shank stiffness due to the increase in pocket size can be covered by increasing the shank size.
  • the cutting tool for the outer diameter cae mainly uses negative type chips, and in that case, since the cutting resistance becomes high, more vibration energy is generated. Therefore, a damping piece that can cancel larger vibrational energy is needed.
  • the pocket 4 has the same width w as the tool shown in FIG. 6 (50% to 100% of the shank width W) and the height h is 40% to 70% of the shank height H (or shank diameter D) It is possible to form a pocket of the preferred size / size if the tool is not subjected to the size restriction of the shank which is preferably enlarged to the size of the shank.
  • the results of the test to confirm the effect of Example 8 are shown in FIG. Grooving with a grooving tool also generates large vibrational energy similar to general outer diameter machining. Therefore, the damping condition of chattering vibration was examined using the grooved tool shown in FIG.
  • the test here is as shown in FIG. 25 on a steel shank (size: 25 mm x 25 mm) of a holder equipped with a K10-PVD coated cemented carbide triangular shaped vertical use wedge grooved insert (blade width 3 mm).
  • Invented products 1 and 2 and comparative products 1-13 and steel made by forming a pocket of the size shown and inserting a damping piece 0.2 mm smaller than the pocket size made of heavy metal with a specific gravity of 18.1 in the pocket.
  • a comparative product 4 without a shank and a pocket was prepared. Then, they used these to cut.
  • the test conditions at this time are shown below.
  • the distance e from the cutting edge to the pocket was 15 mm
  • the pocket length c was 30 mm.
  • Feeding speed: f 0.5 mm / rev
  • Cutting fluid water insoluble cutting fluid
  • Feeding speed: f 0.1 mm / rev
  • Cutting fluid water insoluble cutting fluid
  • Comparative Product 1 has a large effect on pocket installation because it has too large a reduction in the rigidity of the shank due to the pocket installation, and it is almost the same as Comparative Product 4.
  • Comparative products 2 and 3 are effective in light cutting. In heavy cutting, the effect of suppressing cracking is obtained.
  • FIG. 26 shows still another example of the cutting tool for outer diameter cutting.
  • the rigidity of the shank can be secured, large chattering vibrations that make a key sound do not easily occur.
  • minute chattering without sound is generated, which may cause minute chipping on the cutting edge or the coating film may peel off in a coated tool.
  • the width w of the pocket 4 is 20%-100% of the shank width W, and the height h is 5%-20% of the shank height H, and between the wall 4a and the wall 4b in this pocket 4 0.30-0 Insert the damping piece 5 with a gap of 5 mm, more preferably 0. 03-0.1 mm, and close the inlet of the pocket 4 with the lid 6 to prevent the damping piece 5 from popping out.
  • the tool shown in Fig. 26 is effective in processing high-speed carbon steel and stainless steel. The small vibration is suppressed by the vibration control effect by the vibration control piece 5, the chipping of the cutting edge etc. is reduced, and the durability is improved.
  • Shank part 2 is divided into upper and lower parts to produce parts, and processing of pocket 4 and fitting of lower part and upper part after insertion of damping piece 5, suitable method such as screwing, welding etc.
  • the lower part can be made to function as a lid when it is fixed to each other.
  • FIG. 28 The results of the test to confirm the effect of Example 9 are shown in FIG.
  • a pocket 4 of the size shown in FIG. 28 is formed in a 25 mm square steel shank, and the pocket 4 is 0.2 mm smaller than the pocket size formed of bimetallic with a specific gravity 18.1! /, Inventive products 1 and 2 and comparative products 1 and 2 and a steel shank having a structure shown in FIG. 26 in which the vibrating piece 5 was inserted, and a comparative product 3 without a pocket were prepared. And it cut using these.
  • the test conditions at this time are shown below. In each of Invention products 1 and 2 and Comparative products 1 and 2, the distance e to pocket 4 was 25 mm, and the length c of pocket 4 was 30 mm.
  • Cutting fluid water insoluble cutting fluid
  • a plurality of holes (whether through holes or blind holes) 12 extending in the shank width direction are provided on the tip side of the shank portion 2 with different positions in the shank longitudinal direction.
  • Each of the vibration control pieces 5 is inserted into the pocket 12 so as to move and prevent the hole force from popping out.
  • the vibration control pieces 5 are in line contact with the holder at a plurality of locations, it is possible to expect a vibration damping effect superior to existing vibration-proof cutting tools using dampers.
  • the holes 12 are provided in a dotted manner, the reduction in the rigidity of the holder can be suppressed more easily than in the case where a single pocket is provided.
  • the hole 12 a round hole and the damping piece 5 a round bar, it is possible to simplify the manufacture of the holder and to reduce the manufacturing cost.
  • the damping piece 5 can secure a wide contact area with the pocket wall surfaces 4a and 4b when the section perpendicular to the axis is square, but a polygonal shape as shown in FIG. 30 (a) or FIG. It may be an oval as shown in (b), and as shown in FIG. 30 (c) and FIG. 30 (d), the surfaces 5a and 5b are uneven, and the wall surfaces 4a and 4b of the pocket have a plurality of locations. It may be in the form of line contact or point contact.
  • a plurality of independent pockets 4 are provided on the shank portion 2 of the holder at different positions in the width direction, and the vibration control pieces 5 are also provided with the vibration control pieces 5 housed in each pocket 4.
  • Such a structure is also effective, since it is possible to make a line contact or face contact at multiple places with the wall 4a, 4b of the pocket.
  • the plan view shape of damping piece 5 is not particularly limited. In addition to square and rectangular shapes, any shape such as a circular shape (see Fig. 32 (a)) or a semi-elliptical shape (see Fig. 32 (b)) can be adopted. Even if the shape in plan view is not square, the cross section of the shank can be made square.
  • the present invention can be applied to internal diameter processing tools, grooving processing tools, thread cutting tools, general external diameter cutting tools, and the like in which chatter vibration easily occurs. Also, the present invention can be applied to boring tiles, drills, etc. which are attached to a milling machine, a machining center or the like without being limited to turning, and an excellent chattering suppression effect can be obtained.
  • the anti-vibration cutting tool according to the present invention is used by being mounted on a known boring machine, a lathe for outer diameter machining, a milling machine, a machining center or the like.
  • a known boring machine a lathe for outer diameter machining
  • a milling machine a machining center or the like.
  • members that are machined using this anti-vibration cutting tool can not have chatter marks on the cut surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

 安価でビビリ振動の抑制効果が極めて高く、また、幅広い加工径や切削条件に単純な構造で対応できるホルダを備えた防振切削工具を提供することを課題としている。  ホルダ1のシャンク部2に、ポケット4を設け、そのポケット4に制振ピース5をホルダ1に対して相対運動可能、かつ、飛び出し不可に挿入し、この制振ピース5が、切削加工時にホルダから運動エネルギーを受けてポケットの対向位置の内壁4a、4bに交番に衝突し、その衝突が、面当たり、複数箇所での線当たり、もしくは複数箇所での点当たりとして起こってホルダの振動が減衰されるようにした。

Description

明 細 書
防振切削工具
技術分野
[0001] この発明は、主にビビリ振動が問題となる切削加工において、そのビビリ振動を簡 素かつ安価な構造で効果的に減衰させることを可能にした防振切削工具に関する。 背景技術
[0002] ホルダ内にダンバなどを組み込み、慣性を利用してビビリ振動を抑制する方法はよ く知られている。特に、内径をカ卩ェするボーリングバイトでは、ホルダの大きさがワーク の穴径によって制約されるため、細いシャンクで突き出し量を長くせざるを得ず、ビビ リ振動が発生し易い。このため、防振切削工具の従来技術は、ボーリングバイトに関 するものが多い。以下の説明は、主にそのボーリングバイトを例に挙げて行う。
[0003] 例えば、下記特許文献 1には、図 5に示す方法、すなわち、ホルダ 1に後端から穴 2 1をあけて刃先に近い穴の先端部分にダンバ 22を設け、穴の中空部には超硬の芯 棒 23を挿入する方法が開示されている。また、下記特許文献 2には、ホルダの中央 部に深穴を形成し、その中に粘性流体とウェイトを配した旋削工具が開示され、さら に、下記特許文献 3には、工具本体に設けた孔にロッドばねを挿入し、このロッドば ねと孔間に粘弾性体を介在し、ロッドばねの先端にカッティングヘッドを設け、カッテ イングヘッドと工具本体間に摩擦吸振材を配置した切削工具が開示されて!、る。
[0004] 特許文献 1、 2に記載された切削工具は、ダンバの慣性を利用してビビリ振動を打 ち消す。また、特許文献 3に記載された切削工具は振動エネルギーを摩擦熱に変換 して工具本体に伝播する振動を低減させる。
[0005] これらのほかに、シャンクに設けた挿入孔にシャンクとは異材質のダンパをテーパ 嵌合させて挿入し、シャンクとダンバの接触摩擦を利用して振動を減衰させるボーリ ングバー(下記特許文献 4参照)や、工具本体の内部に振動エネルギーを吸収する 制振材を組み込んで振動を減衰させる工具もある(下記特許文献 5、 6参照)。
[0006] 特許文献 1一 3の防振切削工具は、シャンクに深穴をあけてその穴にダンバを挿入 しているので、小径でシャンク長が長い内径力卩ェ用ホルダの場合には特に、穴加工 をガンドリルなどで行わざるを得ず、加工コストが高くついてコストに影響する。また、 ダンパを挿入する中空部を大きくとっているためにホルダの剛性が低下する。さらに、 構造が複雑でこれもコストアップの要因になるなどの問題がある。
[0007] また、これらのホルダは、構造が複雑なためにシャンク径が規制され (そのために内 径加工では加工径が規制される)、防振効果を得る上での切削条件が限定されると いう問題もある。
[0008] 特許文献 4、 5が開示して ヽる工具も同様の問題を有して!/ヽる。また、振動エネルギ 一を制振材で吸収する方法は、制振材として減衰性能の高 ヽ Mn— Cu系制振合金 などを用いる必要がある力 このような合金は高価で力卩ェ性も良くないなどの問題を 力かえていることが多ぐ性能、コストの両面に優れる工具を実現するのが難しい。
[0009] また、制振材を使用するものは、コスト低減のために制振材の使用量を減らすと満 足な減衰効果が得られず、逆に、制振材の使用量を増やすと工具の剛性や強度が 低下して橈みの増大や耐久性の低下を招く。
[0010] このほか、シャンクとダンバの接触摩擦を利用して振動を減衰させる方法の場合、 振動減衰効果を高める目的で摩擦面積を広げると加工箇所の増加によるコスト増が 考えられるようになり、シャンクに対するダンバの密着性が悪い場合には剛性が低下 してかえって切削振動が大きくなる危険性もある。
特許文献 1:特開 2003— 136301号公報
特許文献 2:特開平 6 - 31507号公報
特許文献 3:特許第 2979823号公報
特許文献 4:特開平 6— 31505号公報
特許文献 5:特開 2001—96403号公報
特許文献 6:特開 2003— 62703号公報
発明の開示
発明が解決しょうとする課題
[0011] この発明は、従来の防振切削工具に見られる上記の課題を解決し、安価でビビリ振 動の抑制効果が極めて高ぐまた、幅広い加工径ゃ幅広い切削条件に簡単な構造 で対応できるホルダを備えた防振切削工具を提供することを課題としている。 課題を解決するための手段
[0012] 上記の課題を解決するため、この発明においては、図 1に示すように、ホルダ 1のシ ヤンク部 2にポケット 4を設け、そのポケット 4に制振ピース 5をホルダに対して相対移 動可能かつ飛び出し不可に挿入した。また、制振ピース 5が、切削加工に伴ってホル ダ 1が振動したときに慣性で対向位置のポケット内壁に交番に衝突し、その衝突が、 面当たり、複数箇所での線当たり、もしくは複数箇所での点当たりとして起こってホル ダの振動が減衰されるようにした。
[0013] この防振切削工具は、好ましい形態として、ホルダのシャンク部に対向配置の第 1 内壁面と第 2内壁面を有するポケットを設け、そのポケットに、前記第 1内壁面と第 2 内壁面の各々に対面させる面を備えた制振ピースを飛び出し不可に挿入し、前記ポ ケットの第 1内壁面と第 2内壁面およびこれらの面に対面させる制振ピースの面を平 面で構成して切削時に想定されるホルダの振動方向に対して交差する向きに配置し 、前記第 1、第 2内壁面と制振ピースとの間に制振ピースを可動となす隙間を設けた ものが考えられる。
[0014] 制振ピース 5は、複数個に分けてそれを単一のポケットに挿入してもよい。また、独 立したポケットを複数個設け、複数に分けた制振ピースを各ポケットに別々に挿入し てもよい。さらに、この制振ピース 5は、ポケット 4に複数箇所で線当たり、あるいは点 当たりさせても効果がある力 より良い効果を得るためになるべく広い面でポケット 4の 壁面に接触させるのがよ 、。図 1における軸直角断面形状 (シャンクの軸直角断面に 現れる形状)を方形にし、対向配置のポケット壁面 4a、 4bに交番に衝突させる面 5a、 5bの面積を、他の面 5c、 5dの面積よりも大きくするとその要求に応えることができる。
[0015] 制振ピース 5は、軸直角断面形状を方形にしたものが好ま 、。この制振ピース 5の 平面視形状は、特に限定されず任意の形状を選択することができる。
[0016] また、この制振ピース 5は、比重がシャンク部 2の材質よりも大き 、材料で形成する のがよい。例えば、シャンク部 2を鋼で形成する場合には、鋼の比重が 7. 8であるの で、比重が 7. 8以上ある超硬合金やヘビーメタルなどで形成すると好ましい。比重が シャンク部 2の材質と同等又はそれよりも小さい材料で形成したものも有効であるが、 比重の大き ヽ材料を使用すれば、必要な重さを小サイズのピースで確保することが できる。
[0017] 壁面 4a、 4bとそれらの壁面に衝突させる制振ピース 5との間の隙間は、 0. 01—
0. 5mm程度にするのがよい。また、壁面 4a、 4bは、切削時に想定されるホルダの振 動方向に対して交差角ができる面にする。より好ましくは、振動方向に対してほぼ直 交する面にするのがよい。
[0018] また、ポケット 4は、その幅 wをシャンク径 Dもしくはシャンク幅 Wの 20%— 100%、 壁面 4a、 4b間の高さ hをシャンク高さ Hの 5%— 70%に設定するのがよい。ここで言 う幅と高さは、シャンクの軸直角断面における幅と高さであり、これは以下も同じとする
[0019] 力かる防振切削工具は、図 2に示すように、シャンク部 2に設けるポケット 4をホルダ 1の側面力 加工し、ピース保持手段や蓋 6などの封印手段を備えさせてそれらの手 段でポケット 4に挿入した制振ピース 5をポケット内に保持する形態、
図 3に示すように、ポケット 4を、刃先 7aが配置される側とは反対側のホルダ側面 la からカ卩ェし、そのポケット 4を刃具の刃先 7aが配置される側の側面 lbに貫通していな い止まり穴にした形態、
或いは、図 4に示すように、ホルダのシャンク部 2とヘッド部 3を別々に形成し、シャ ンク部 2の先端に開放させて設けたポケット 4に制振ピース 5を挿入し、シャンク部 2の 先端にヘッド部 3を接合してシャンク部先端にあるポケット 4の口を塞ぐ形態などが考 えられる。
[0020] いずれの形態の工具も、ポケット 4は、軸方向長さ c (図 1参照)をシャンク径 D (又は シャンク高さ H)の 50%— 250%とし、このポケット 4を、工具の先端側に偏った位置、 具体的には、刃具の刃先力もポケット設置点までの距離 e (図 1参照)が、シャンク径 Dの 50%— 250%程度となる位置に設置するのがよい。ポケット長さ cのより好ましい 値は、ボーリングバイトについてはシャンク径 Dの 100%— 150%程度、刃先からポ ケット設置点までの距離 eのより好ましい値は、シャンク径 Dの 150%— 220%程度で あつたが、これらは切削条件等によって適正値が変わる。
[0021] なお、ポケット 4は、ボーリングバイトなどの内径力卩ェ用工具では、幅 wがシャンク径 Dもしくはシャンク幅 Wの 50%— 100%、高さ hがシャンク高さ Hの 20%— 40%の範 囲にすると特に好ましかった力 工具のサイズなどによっては、その範囲から外れた 寸法でも良 、効果を期待できる。
[0022] 例えば、シャンク径 Dが φ 20mmを越えるボーリングバイトは、ポケット 4の幅 wを 0.
2D— 0. 5D (0. 2W— 0. 5W)、高さ hを 0. 2H— 0. 5Hとしても高い効果が得られ た。
[0023] また、焼き入れ鋼など高硬度材の加工に用いる工具や、ワイパー付チップで加工を 行う工具は、ポケット 4の幅 wを 0. 5D— 1. OD (0. 5W— 1. OW)、高さ hを 0. 4H—
0. 7H程度にしたときの効果が高力つた。
[0024] さらに、ポケットの幅 wを 0. 2D— 1. OD (0. 2W— 1. OW)、高さ hを 0. 05H— 0. 2
H程度にしたものは、炭素鋼の高速力卩ェゃステンレス鋼の加工におけるビビリ振動の 抑制効果が高かった。
発明の効果
[0025] ホルダが振動すると、ポケットに収納した制振ピースが慣性で振動してポケットの内 壁を直接叩く。そのときの制振ピースの振幅はホルダの振幅とは逆位相となり、その ためにホルダの振動が打ち消されてビビリ振動が低減される。特に、この発明におい ては、ポケットに対して制振ピースが面当たりするようにしたので、あるいは複数箇所 で線当たりもしくは点当たりするようにしたので、制振ピースの荷重が広い範囲に分 散してポケットの内壁に加わり、このことが有効に作用してビビリ振動を大幅に抑制す ることが可能になる。
制振ピースを衝突させるポケットの壁面が想定されるホルダの振動方向に対してほ ぼ直交する向きになっていると、制振ピースからのエネルギー(ホルダ振動を打ち消 すエネルギー)がロス無くシャンクに伝わるので、制振ピースとポケットが小さくてよぐ ポケット設置によるシャンクの剛性低下を少なくしてビビリ振動の抑制効果を向上させ ることがでさる。
[0026] また、この発明によれば、ポケットをホルダの側面力 加工することができるので、製 造の容易化、それによる製造コストの大幅削減が図れ、より安価な防振切削工具を 提供することが可能になる。
[0027] さらに、ホルダのシャンク部とヘッド部を別々に形成し、シャンク部に形成したポケッ トにシャンク部の先端側力も制振ピースを挿入する構造にしても、ビビリ振動に対して 最も効果的な制振ピースを挿入できるため、大きなダンパ揷入用の空洞を加工する 必要がなぐポケット設置によるシャンクの剛性低下を最小限に抑えながら構造の簡 素化を図って工具コストを大幅に低減することが可能になる。
[0028] なお、制振ピースが小さくてその重量が不足すると防振効果が不十分になり、一方 、制振ピースが大きすぎるとポケットが大きくなつてシャンクの剛性が犠牲になる。この 不具合を回避するためにポケットの大きさは先に述べた範囲内に納めるのがよい。
[0029] また、ポケットの長さ cがシャンク径 D又はシャンク高さ Hの 50%以下であると制振ピ ースが小さくなつて十分な効果を期待できず、一方、その長さ cが Dまたは Hの 250% を越えるとシャンクの剛性低下が大きくなり、ホルダ突き出し量 (支持点から刃先まで の突き出し量)をシャンク径の 3倍以上にして行う一般的な切削形態でビビリが発生し 易くなる。
図面の簡単な説明
[0030] [図 1] (a)この発明の工具の一形態を示す平面図、(b)図 1 (a)の X— X線部の断面図 [図 2] (a)この発明の工具の他の形態を示す平面図、(b)図 2 (a)の X— X線部の断面 図
[図 3] (a)さらに他の形態を示す平面図、(b)図 3 (a)の X— X線部の断面図
[図 4] (a)さらに他の形態を示す平面図、(b)図 4 (a)の X— X線部の断面図
[図 5] (a)従来の防振バイトの基本構造を示す平面図、(b)図 5 (a)の X— X線部の断 面図
[図 6] (a)工具の実施形態を示す平面図、(b)図 6 (a)の X— X線部の断面図
[図 7] (a)図 6の工具のポケットを 0 ° 傾けた状態の平面図、(b)図 6の工具のポケット を θ。 傾けた状態の断面図
[図 8] (a)図 6の工具のポケットを 0 ° = 90° 傾けた状態の平面図、(b)図 6の工具 のポケットを 0 ° = 90° 傾けた状態の断面図
[図 9] (a)他の実施形態の工具の平面図、(b)図 9 (a)の X— X線部の断面図、(c)同じ く Y— Y線部の断面図
[図 10]ポケットの形状の違いによるホルダ変形量の比較図 [図 11]効果の確認実験に用いた工具の仕様を示す図
[図 12]図 11の工具の効果の確認試験結果を示す図
[図 13]図 9の工具の制振ピースを直方体形状のものに置き換えた図
[図 14] (a)他の実施形態の工具の平面図、(b)図 14 (a)の X— X線部の断面図
[図 15] (a)他の実施形態の工具の平面図、(b)図 15 (a)の X— X線部の断面図
[図 16]ポケットをシャンク中心力も偏心させた例を示す断面図
[図 17] (a)他の実施形態の工具の平面図、(b)図 17 (a)の X— X線部の断面図
[図 18] (a)他の実施形態の工具の平面図、(b)同上の工具の側面図、(じ)図18 (&) の X— X線部の断面図
圆 19]ポケットと制振ピースの変形例を示す平面図
圆 20]ポケットの配置状態を変えた例を示す断面図
[図 21]図 18の工具の効果の確認試験結果を示す図
[図 22] (a)他の実施形態の工具の平面図、(b)同上の工具の側面図、(じ)図22 (&) の X— X線部の断面図
[図 23] (a)さらに他の実施形態の工具の平面図、(b)同上の工具の側面図
[図 24] (a)さらに他の実施形態の工具の平面図、(b)同上の工具の側面図
[図 25]図 22の工具の効果の確認試験結果を示す図
[図 26] (a)他の実施形態の工具の平面図、(b)同上の工具の側面図
[図 27] (a)さらに他の実施形態の工具の平面図、(b)同上の工具の側面図
[図 28]図 26の工具の効果の確認試験結果を示す図
圆 29]更に他の実施形態を示す斜視図
圆 30] (a)制振ピースの断面の他の例を示す図、(b)—(d)制振ピースの断面のさら に他の例を示す図
圆 31]制振ピースの他の例を示す断面図
[図 32] (a)制振ピースの平面の他の例を示す図、(b)制振ピースの平面のさらに他の 例を示す図
符号の説明
1 ホノレダ 2 シャンク部
3 ヘッド部
4 ポケット
4a 第 1内壁面
4b 第 2内壁面
5 制振ピース
5a一 5f 平
6 蓋
7 スローァゥヱイチップ
8 クランプ手段
9 オイルホール
10 取付穴
11 止めピン
12 穴
発明を実施するための最良の形態
[0032] 以下に、この発明の防振切削工具の実施例を添付図面に基づいて説明する。
実施例 1
[0033] 図 6に、この発明の防振切削工具の一形態を示す。図示の工具は、ボーリングバイ トであり、ホルダ 1の先端にスローァウェイチップ 7をクランプ手段 8でクランプして着脱 自在に装着している。ホルダ 1のシャンク部 2に放電カ卩ェ等によって一方の側面から 他方の側面に貫通する穴をあけ、ホルダ 1の先端側に偏らせて設けたその穴をボケ ット 4にしてそのポケット 4に、比重が 15. 1の超硬合金製の直方体の制振ピース 5を 挿入し、ポケット 4の両端を蓋 6で封鎖して制振ピース 5が外部に飛び出さないように している。ポケット 4は、軸直角断面形状が方形になるポケットにしてあり、平行配置の 壁面 4a、 4bを有する。ホルダ 1のシャンク部 2は、円形断面のものを図示した力 この 発明を適用する工具のシャンク部は角断面であつてもよい。
[0034] 制振ピース 5は、高さ aと幅 fをポケット 4の寸法よりも 0. 15mm程度小さくし、ポケット の壁面 4a、 4bに対応させた平面 5a、 5bを備えさせてこれらの面とポケット 4との間に 生じた隙間(クリアランス)の範囲内での動きが許容されるようにしている。
[0035] この制振ピース 5は、ポケット 4内で可動であることが必須であり、ポケット 4の壁面と 干渉してホルダ 1との相対移動が許容されなければビビリ抑制の効果が発揮されな い。また、制振ピース 5が極端に小さいと、その制振ピース 5の重量が不足して満足な ビビリ抑制の効果が得られない。発明者らの研究によれば、シャンク径 Dが φ 20mm 以下の比較的小径のホルダでは制振ピース 5をポケット 4に対して 0. 5mm程度よりも 小さぐ制振ピース 5が動くクリアランスがあれば効果があることが分力 ている。制振 ピース 5とポケット 4との間の隙間は、 0. Olmmよりも小さいとホルダ 1や制振ピース 5 が熱変形するなどして制振ピース 5がポケット内で動かなくなることがあるので、 0. 01 mm— 0. 5mm程度にするのがよい。特に、ポケット 4に対して制振ピース 5を 0. lm m— 0. 3mm程度小さくしたときの効果が最も高い。ただし、シャンク径 Dが例えば φ 20mmより大きい場合には、ポケット 4との間の隙間を大きくしても制振ピース 5の重さ を不足なく確保できるので、制振ピース 5がポケット 4よりも 0. 5mm以上小さくても効 果がある。
[0036] 制振ピース 5は、ホルダ 1の材質が鋼である場合には鋼の比重 7. 8以上の比重を 有する材料で形成すると好ましい。その比重は、大きい方が同じ効果を得る上でのポ ケットサイズが小さくて済むので有利である。一般的には、比重が 14一 16の超硬合 金や、比重が 18程度のヘビーメタルが入手し易ぐ加工も容易で制振ピース 5の材 料として適している。勿論、これよりも比重の大きな材料があれば、それを使用しても よい。
[0037] ポケット 4の大きさは、大きすぎるとホルダ 1の剛性が低下して工具の加工精度 (カロ ェ寸法や面粗さ)が悪ィ匕したり、工具が逆にビビリ易くなつたりする。また、このポケッ ト 4が小さすぎると、制振ピース 5も小さくなつてビビリ抑制の効果が低下する。加えて 、ポケット 4の特に高さ寸法 hが小さすぎる場合には、ポケットを加工するエンドミルな どの工具の径が小さくなるため加工が困難になる。
[0038] これらの諸事情を考慮すると、ポケット 4は、その幅 wがシャンク径 D又はシャンク幅 Wの 20%— 100%、その高さ hがシャンク径 D又はシャンク高さ Hの 5%— 70%が適 当である。ビビリ防止効果と加工時のホルダの橈みに起因する加工精度の悪化、製 作の容易さなどを考慮して総合的に判断すると、シャンク径0= φ 20mm以下の比 較的小径のホルダでは、幅 wがシャンク径 D又はシャンク幅 Wの 50%— 100%、より 好ましくは 70%— 95%、高さ hがシャンク径 D又はシャンク高さ Hの 20%— 40%、よ り好ましくは 20%— 30%が適している。
[0039] また、ポケット 4の長さ cと、工具先端力もポケット設置点までの距離 eは、シャンク径 Dの 50%— 250%力 Sよ力つた。特に、ボーリングバイトではポケット 4の長さ cをシャン ク径 Dの 100%— 150%程度、刃先からポケットまでの距離 eを 150%— 220%程度 にしたときに最も効果が高力つた。シャンク径 Dが φ 20mmより大きい場合は、ポケッ ト 4が小さくても防振効果が得られるので、特にポケット 4の幅 wをシャンク径 Dの 50% 程度まで小さくしても効果がある。
[0040] 図 7に示すポケット 4の設置角 Θは、切削力の力かる方向に応じて適宜設定すれば よい。一般的な内径力卩ェ用工具では、壁面 4a、 4bを水平にしたポケットでビビリ振動 抑制の目的を十分に達成することができる。常に一定条件で切削するような場合に は、水平面を基準にして 0° — 45° の範囲で傾き、切削力の主分力と背分力の合力 に対して壁面 4a、 4bが直角向きになるポケットを設けてそこに制振ピース 5を挿入す ればより効果的である。また、背分力が極端に高くなる特殊な加工では、図 8に示す ようにポケット 4を垂直にすることも考えられる力 一般的な内径加工用工具について は、このような方向のポケットを設けてもビビリ抑制の効果力 、さぐあまり意味がない 実施例 2
[0041] 図 9は、加工精度が重視される場合に有効な形態を示している。図 6の工具は、制 振ピース 5を大きくすることができ、ビビリ抑制の効果を高め易い反面、ポケット 4がシ ヤンク部 2を貫通しているためにホルダ 1の剛性が低下して加工精度が低下する傾向 が高まる。図 9の防振切削工具はその問題を解決できる。
[0042] この図 9の防振切削工具は、刃先 7aが配置される側とは反対側の側面 laからシャ ンク部 2にポケット 4をエンドミルでカ卩ェして設けて!/、る。ポケット 4の両端はエンドミル の外径を転写して円弧形状にし、また、ホルダ 1の剛性低下を抑えるために、ポケット 4は、刃先 7aが配置される側の側面 lbを厚みで 2mm程度残した止まり穴にし、側面 la側にある入口を実施例 1と同様に蓋 6で塞いで制振ピース 5の飛び出しを防止す る構造にしている。蓋 6は、ホルダ 1の材料と同じ鋼でもよいが、超硬合金で形成して ホルダ 1に強固に貼り付けると、ポケット設置によるホルダの剛性低下を小さくすること ができる。
[0043] 図 9の防振切削工具はポケット 4を止まり穴にしており、このことが工具の実用性をさ らに高める上での重要なポイントになる。発明者らは、先ず図 6の工具を試作して非 常に高いビビリ抑制効果を確認した。ところが、図 6の構造はビビリの抑制効果は高 いが、ホルダの剛性低下が避けられないためにそれによる加工精度の悪ィ匕が懸念さ れた。
[0044] そこで、建築資材などに多用されている H型鋼の構造を応用したものなど数種類の 構造について剛性の違いを検討した。その結果を図 10に示す。同図の A— Dは、図 1 (a)に示すホルダの X— X線に沿った断面形状を表している。この図 10から分かる 通り、ポケット 4を貫通穴で形成する図 6 (図 10の A)の構造では、防振機構の無い一 般の鋼製シャンクを用いた内径加工用工具に比べて荷重による変形量が約 40%大 きくなる。これに対し、図 9の構造(図 10の B)は、荷重による変形量が約 9%に抑えら れ、ポケット設置による剛性低下が小さくて加工精度の安定ィ匕が図れる。この効果は 、図 10から分力るように他の構造では得られな!/、。
[0045] 図 9の構造は、蓋 6を超硬合金で形成してシャンク部 2に強固に固定することによつ て荷重によるシャンクの変形量を穴の無い一般的な鋼シャンクと同等にすることも可 能である。
[0046] なお、側面視で両端が円弧面になったポケット 4に挿入する制振ピース 5は、図 13 に示すような直方体形状であってもよ!、。両端を平坦にしても制振ピースの重量を不 足無く確保できる場合には、図 13の直方体形状の制振ピースの方が円弧面の加工 が省けて有利である。
[0047] 次に、この発明のビビリ抑制効果を確認するために、 ISO規格 S12M— STUPR11 03に準拠した形状のホルダを使った工具を試作して切削実験を行った。この工具の 寸法諸元は、図 1に示すシャンク径0= φ 12mm,工具先端力 ポケット設置点まで の距離 e = 21mm、ポケット長さ c = 15mm、ポケット幅 w=8mm、ポケット高さ h= 3 mm、図 1の(w— f) =0. 1mmである。また、図 10に示す tは 2mmにした。
[0048] 実験に供した切削工具は、図 11に示す発明品 1一 6と比較品 1一 5である。発明品 1一 6と比較品 1及び 3は、ポケットの高さと幅、制振ピースの大きさ、材質を変化させ たもの、比較品 2は制振ピースとポケット間のクリアランスを 0にしたもの、比較品 4は 一般的な鋼製シャンクのホルダを使用したもの、比較品 5はシャンクを超硬合金で形 成したものである。なお、比較品 5以外の工具のシャンク材質は鋼である。
[0049] 切削実験は、被削材として一般的な合金鋼 SCR420を準備し、これを切削速度 80 mZmin、 160m/min、切り込み量 0. 2mm、送り速度 0. lmm/revの条件でェ 具ホルダからの突き出し量を変化させて(突き出し量 =48mm、 60mm, 72mm, 84 mm)切削し、ビビリ発生の有無を調べた。
[0050] 図 12にその結果を示す。図 12にはビビリが発生しな力つたものを〇で、ビビリが発 生したものを Xで示している。この実験結果力も分力るように、各発明品はビビリ抑制 の効果が非常に高い。中でも発明品 1、 3、 5は、ホルダを超硬合金で形成した比較 品 5よりも優れたビビリ抑制の効果が得られている。
[0051] ビビリ抑制の効果につ 1、て市販の数社の防振型ボーリングバイトとの比較も行った 。同一条件で各工具による切削を実施したところ、市販品はいずれもビビリ振動によ る音 (加工中に金属音)が確認された。これに対し、発明品は、切削条件によっては 加工の初期に若干音が出た力 その音が直ぐにおさまってほぼ無音での加工がなさ れた。また、最初力も最後まで殆ど音が出ず、切削が進行しているのが分力もない状 況のときもあった。
実施例 3
[0052] 図 14にさらに他の実施形態を示す。この図 14の防振切削工具は、ホルダ 1のシャ ンク部 2とヘッド部 3を別々に製作し、その両者を一体的に組み合わせている。ヘッド 部 3は、シャンク部 2に対して取り外し不可能に接合してもよいし、着脱自在に接続し てヘッド部 3が破損したときの交換修理を可能にしてもよい。
[0053] この構造は、ポケット 4をシャンク部 2の先端に開口させて形成し、このポケット 4に制 振ピース 5を挿入することによってヘッド部 3を蓋として機能させることができるので、 専用の蓋を省くことができる。また、ポケット 4を放電加工等で形成すればシャンク部 2 を超硬合金で形成することができ、剛性が高ぐビビリ振動の抑制効果も極めて高い 内径加工用防振切削工具が得られる。
実施例 4
[0054] 図 15に示すように、ホルダ 1の両側面からポケット 4を力卩ェしてシャンクの中央の肉 を残すものも考えられる。この構造は、既述の他の実施形態と比較して制振ピース 5 力 S小さくなるためビビリ抑制の効果が若干低下するが、左右のポケット間に残された 肉部に、軸方向に延びる給油孔を形成して切削液を刃先先端にまで効果的に供給 することができる。
実施例 5
[0055] 図 16の防振切削工具は、ポケット 4をシャンク部 2の中心から下側(上側も可)に偏 らせて設けたものであり、この構造でもポケット 4の上側部分にスペースを確保してそ こに給油孔 9を形成することができる。
実施例 6
[0056] 図 17は、ポケット 4からの制振ピース 5の飛び出しを防止する手法の他の例である。
図のように制振ピース 5にその制振ピースを上下に貫通する取り付け孔 10を設け、そ の取り付け孔 10に孔径よりも細い止めピン 11などを通してそれで制振ピースの外れ を防止してもよぐこの構造は蓋を必要としない。
実施例 7
[0057] 図 18にこの発明の防振切削工具のさらに他の実施例を示す。この工具は、ボーリ ングバイトにおいてホルダ 1のシャンク部 2に形成するポケット 4の幅 wと高さ hを共に シャンク径 Dの 20%— 50%にした例を示している力 適用対象はボーリングバイトで ある必要はなぐポケットサイズもここに挙げた数値に限定されない。また、ポケット 4 は、必ずしもシャンクに横からカ卩ェする必要はなぐ図 18に示すようにシャンク部 2に 上方 (又は下方)より加工し、そのポケット 4に制振ピース 5を挿入した後、蓋 6でボケ ット 4の入口を塞ぐ構造にしてもよい。蓋 6は、超硬合金で形成したものがポケット設 置による鋼製シャンクの剛性低下を補うことができて好ましい。
[0058] ポケット 4は、エンドミルで加工すると前端と後端が図 19に示すように円弧状になる 。これに合わせて、制振ピース 5の長手方向両端を図 19 (b)に示す円弧や図 19 (c) に示す山形形状にすると、制振ピースの重量をより大きくすることができるが、制振ピ ース 5の長手方向両端は、図 19 (a)のように軸直角にカットしてもよ 、。
[0059] 制振ピース 5の向き(ポケット 4の設置角)は、切削抵抗が働く方向に対して面 5a、 5 bが垂直になる向きにするのがよぐそのために、面 5a、 5bは必ずしも水平にならず 図 20 (a)のように傾くことがあり得る。
[0060] 制振ピース 5の断面形状も、正方形である必要はない。切削力が働く方向に対して 垂直な面 5a、 5bの面積をそれらの面に対して直角な面 5c、 5dの面積よりも広くした 方が振動減衰の効果が高い。この制振ピース 5は、複数個に分割してポケット 4に収 納することができ、これでも十分な振動減衰効果が得られる。
[0061] また、ポケット 4の位置は、図 20 (b)のように、シャンクの中央から外れていてもよい 。この方がポケット 4の加工がし易くてカ卩ェコストを低減できる場合がある。また、制振 ピース 5がシャンク中心力 外れた位置でポケット壁面に衝突してシャンクにねじり力 が加わるので、シャンクにねじり振動が加わる場合の振動減衰効果が高まる。
[0062] この実施例 7の工具のビビリ抑制効果の確認試験結果を以下に記す。試験は、 IS O規格 S16RSSKPR09 ( (i) 16mm)のシャンクに図 21に示すサイズのポケット(重 心がシャンク中央にある)を形成し、そのポケットに比重が 18. 1のヘビーメタルで形 成されたポケットよりも縦、横のサイズが 0. 3mm小さい制振ピースを挿入して構成さ れる発明品 1、 2と比較品 1、 2及び鋼シャンク、ポケット無しの比較品 3を使用して下 記 1、 2の切削条件で行った。発明品 2、比較品 1、 2は、いずれも刃先力もポケット までの距離 eを 25mm、ポケット長さ cを 20mmにして!/、る。
[0063] 切削条件 1
使用チップ: ISO規格 SPMT090304N (モールドブレーカ付き)
ホルダ突き出し量: 80mm、
被削材: SCM415、
切削速度: V = 120m/min
送り速度: f=0. 15mm/rev
切り込み: d=0. 5mm/rev 切削液:不水溶性切削油剤
切削条件 2
使用チップ: ISO規格 SPMT090304N (モールドブレーカ付き)
ホルダ突き出し量: 80mm、
被削材: SUJ2
切削速度: V = 120m/min
送り速度: f=0. 1 mm/rev
切り込み: d=0. 5mm/rev
切削液:不水溶性切削油剤
[0064] 図 21に試験結果を併せて示す。同図の〇、 Xはビビリの有無を表す。発明品 1、 2 は、一般炭素鋼の切削条件である切削条件 1、被削材の硬度が高いときの仕上げ切 削条件である切削条件 2のどちらにおいても良好な結果が得られており、オールマイ ティーにビビリの抑制効果が発揮されることがわかる。
[0065] これに対し、比較品 1は、切削条件 1、 2での結果が共に悪い。制振ピースが軽すぎ たことにその原因があると思われる。比較品 2は切削条件 1では効果がある力 背分 力が高くなる切削条件 2での結果が悪い。また、比較品 3は、振動の減衰効果が全く 得られず、そのために、切削条件 1、 2での結果が共に悪い。
実施例 8
[0066] 図 22に、この発明を溝入れバイトに適用した例を、また、図 23、図 24にこの発明を 外径加工用バイトに適用した例をそれぞれ示す。これらのバイトは、内径加工用バイ トと違ってサイズ規制を受けないので、ポケットのサイズを大きくすることによるシャンク の剛性低下を、シャンクのサイズを大きくしてカバーすることができる。
[0067] 外径カ卩ェ用のバイトでは主にネガティブ型のチップが用いられ、その場合、切削抵 抗が高くなるため、より大きな振動エネルギーが発生する。従って、より大きな振動ェ ネルギーを打ち消し得る制振ピースが必要になる。このときのポケット 4は、幅 wは図 6 の工具と同じ(シャンク幅 Wの 50%— 100%)にして高さ hをシャンク高さ H (又はシャ ンク径 D)の 40%— 70%にまで拡大したものが好ましぐシャンクのサイズ規制を受 けな 、工具であれば、その好まし!/、サイズのポケットを形成することができる。 [0068] 実施例 8の効果の確認試験結果を図 25に示す。溝入れバイトによる溝入れ加工で も一般の外径加工と同様の大きな振動エネルギーが発生する。そこで、図 22の溝入 れバイトを使用してビビリ振動の減衰状況を調べた。
[0069] ここでの試験は、 K10-PVDコーテッド超硬合金製三角形状縦使 ヽ溝入れチップ( 刃幅 3mm)を装着したホルダの鋼製シャンク(サイズ: 25mm X 25mm)に、図 25に 示すサイズのポケットを形成し、そのポケットに比重 18. 1のヘビーメタルで形成され たポケットサイズよりも 0. 2mm小さい制振ピースを挿入した発明品 1、 2と比較品 1一 3及び鋼製シャンク、ポケット無しの比較品 4を準備した。そして、これらを使用して切 削を行った。このときの試験条件を下に示す。なお、発明品 2、比較品 1一 3は、い ずれも刃先からポケットまでの距離 eを 15mm、ポケットの長さ cを 30mmにした。
[0070] 切削条件 1
被削材: S45C
切削速度: V = 1 OOm/min
送り速度: f=0. 05mm/rev
切削液:不水溶性切削油剤
切削条件 2
被削材: S45C
切削速度: V = 200m/min
送り速度: f=0. 1 mm/rev
切削液:不水溶性切削油剤
[0071] 図 25に併記した結果からわ力るように、発明品 1、 2は切削条件 1、 2のどちらにお いてもビビリ振動が防止されている。これに対し、比較品 1はポケット設置によるシャン クの剛性低下が大きすぎるためにポケット設置が逆効果になって比較品 4と大差のな いものになっている。また、比較品 2、 3は、軽切削では効果がある力 重切削ではビ ピリ抑制の効果が得られて ヽな 、。
実施例 9
[0072] 図 26に外径切削用バイトのさらに他の例を示す。一般の外径カ卩ェでは、シャンクの 剛性を確保できるので、キーキーと音を立てるような大きなビビリ振動は発生し難い。 しかし、音の出ない微小なビビリは発生し、そのために刃先に微小なチッビングが発 生したり、コーティング工具ではコーティング膜が剥離したりすることがある。
[0073] この問題の原因になる微小ビビリに対しては、既述のものよりも小サイズの制振ピー スで対応することができる。ポケット 4の幅 wをシャンク幅 Wの 20%— 100%、高さ hを シャンク高さ Hの 5%— 20%とし、このポケット 4に、壁面 4a、 4bとの間に 0. 03— 0. 5mm、より好ましくは 0. 03-0. 1mmの隙間を持たせた制振ピース 5を挿入し、その 制振ピース 5の飛び出しを防止するためにポケット 4の入口を蓋 6で塞ぐ。この図 26の 工具は、炭素鋼の高速力卩ェゃステンレスの加工に効果がある。制振ピース 5による防 振効果で微小ビビリが抑制されて刃先のチッビングなどが減少し、耐久性が向上する
[0074] なお、シャンク部 2は、上下に別けて部品を製作し、ポケット 4の加工、制振ピース 5 の挿入後に下側部分と上側部分を嵌合、ネジ止め、溶接などの適当な方法で互い に固定すると、下側部分を蓋として機能させることができる。
[0075] ボーリングノイトも、シャンクの剛性を確保したものは大きなビビリ振動ではなく微小 ビビリを生じることがあり、そのボーリングバイトに対しては、図 26の外径切削用バイト に採用したものと同様のポケットと制振ピースが有効である。そのポケット 4と制振ピー ス 5を設けたボーリングバイトの実施形態を図 27に示す。
[0076] 実施例 9の効果の確認試験結果を図 28に示す。試験は、 25mm角の鋼製シャンク に図 28に示すサイズのポケット 4を形成し、そのポケット 4に比重 18. 1のへビーメタ ルで形成されたポケットサイズよりも 0. 2mm小さ!/、制振ピース 5を挿入した図 26に示 す構造の発明品 1、 2と比較品 1、 2及び鋼製シャンク、ポケット無しの比較品 3を準備 した。そして、これらを使用して切削を行った。このときの試験条件を下に示す。なお 、発明品 1、 2と比較品 1、 2は、いずれも刃先力もポケット 4までの距離 eを 25mm、ポ ケット 4の長さ cを 30mmとした。
[0077] 切削条件
被削材: SCM435
チップ: TNMG 160412 (モールドブレーカ付き)
切削速度: V = 300m/min 送り速度: f=0. 25mm/rev
切り込み: 1. 5mm
切削液:不水溶性切削油剤
[0078] 上記の条件で断続切削を行い、切れ刃が欠損に至るまでの衝撃回数を計測し、 10 回テストして、その平均値で評価した。その結果を図 28に示す。
[0079] この試験では、比較品 1、 2は切れ刃に微小チッビングが発生し、その微小チッピン グが集積して最終的に大きな欠損を生じた。これに対し発明品 1、 2は、微小チッピン グは起こらず、摩耗が増大して欠損に至った。この試験結果力 わ力るように、微小 チッビングの原因になる微小ビビリもこの発明によって抑制するこができる。
[0080] 図 29の防振切削工具は、シャンク部 2の先端側にシャンク幅方向に延びる穴(貫通 穴、止まり穴を問わない) 12をシャンク長手方向に位置をずらして複数設け、各穴 12 をポケットにしてそこにそれぞれ制振ピース 5を可動かつ穴力も飛び出さないように挿 入している。この構造も、制振ピース 5が複数箇所でホルダに線接触するので、ダン パを使用した既存の防振切削工具に勝る振動減衰効果を期待できる。この構造は、 穴 12を点在させて設けているので、単一のポケットを設けたものよりもホルダの剛性 低下を抑え易い。また、穴 12を丸穴、制振ピース 5を丸棒状にすることで、ホルダの 製作をより簡単にして製造コストも抑えることができる。
[0081] なお、制振ピース 5は、軸直角断面形状を方形にするとポケット壁面 4a、 4bに対す る接触面積を広く確保できるが、図 30 (a)に示すような多角形や、図 30 (b)に示す楕 円形などであってもよいし、図 30 (c)や図 30 (d)に示すように、面 5a、 5bに凹凸があ り、ポケットの壁面 4a、 4bに複数箇所で線接触又は点接触する形状であってもよい。
[0082] 図 31に示すように、ホルダのシャンク部 2に独立したポケット 4を幅方向に位置をず らして複数個設け、各ポケット 4に制振ピース 5を収納する構造でも制振ピース 5をポ ケットの壁面 4a、 4bに対して複数箇所で線当たり、あるいは、面当たりさせることがで き、このような構造も有効である。
[0083] 制振ピース 5の平面視形状は特に限定されない。方形、長方形のほか、円形(図 3 2 (a)参照)や半楕円に近い形状 (図 32 (b)参照)など、任意の形状を採用できる。平 面視形状が四角でないものも、シャンクの軸直角断面形状は方形にすることができる [0084] なお、この発明は、ビビリ振動が発生し易い内径加工用工具、溝入れ加工用工具、 ねじ切り用工具、一般外径旋削用工具などに適用できる。また、旋削加工に限らず、 フライス盤ゃマシユングセンタ等に取り付けて使用するボーリングタイルやドリル等に 適用しても優れたビビリ抑制の効果を得ることができる。
[0085] この発明の防振切削工具は、周知の中ぐり盤、外径加工用の旋盤、フライス盤、マ シユングセンタなどに装着して使用する。この防振切削工具を用いて加工を行うとカロ ェ不良による歩留まりの低下、再加工の実施による生産性の低下などが起こらない。 また、この防振切削工具を用いて加工される部材は、切削された面にビビリマークが できない。

Claims

請求の範囲
[1] ホルダのシャンク部にポケットを設けてそのポケットに制振ピースをホルダに対して 相対運動可能、かつ、飛び出し不可に挿入し、この制振ピースが、切削加工に伴つ てホルダが振動したときに慣性で対向位置のポケット内壁に交番に衝突し、その衝 突が、面当たり、複数箇所での線当たり、もしくは複数箇所での点当たりとして起こつ てホルダの振動が減衰されるようにした防振切削工具。
[2] ホルダのシャンク部に対向配置の第 1内壁面と第 2内壁面を有するポケットを設け、 そのポケットに、前記第 1内壁面と第 2内壁面の各々に対面させる面を備えた制振ピ ースを飛び出し不可に挿入し、前記ポケットの第 1内壁面と第 2内壁面およびこれら の面に対面させる制振ピースの面を平面で構成して切削時に想定されるホルダの振 動方向に対して交差する向きに配置し、前記第 1、第 2内壁面と制振ピースとの間に 制振ピースを可動となす隙間を設けた防振切削工具。
[3] 前記ポケットと制振ピースのシャンクの軸直角断面における形状を方形にし、前記 制振ピースの前記ポケット内壁に衝突する面の面積を他の面の面積よりも大きくした 請求項 1又は 2に記載の防振切削工具。
[4] 前記制振ピースとこの制振ピースを衝突させるポケット内壁との間の隙間を 0. 01— 0. 5mmの範囲に設定した請求項 1乃至 3のいずれかに記載の防振切削工具。
[5] シャンクの軸直角断面におけるポケット幅 wをシャンク径 Dもしくはシャンク幅 Wの 2
0%— 100%、制振ピースを衝突させる対向ポケット内壁間の高さ hをシャンク高さ H の 5%— 70%とした請求項 1乃至 4のいずれかに記載の防振切削工具。
[6] 前記ポケットの軸方向長さ cを、シャンク径 D又はシャンク高さ Hの 50%— 250%と なし、このポケットを、工具の先端側に偏った位置に設けた請求項 1乃至 5のいずれ かに記載の防振切削工具。
[7] 前記制振ピースを、比重がホルダのシャンク部の材質と同等またはそれよりも大き い材料で形成した請求項 1乃至 6のいずれかに記載の防振切削工具。
[8] 前記制振ピースを衝突させるポケット内壁を、想定されるホルダの切削時振動方向 に対してほぼ直交させた請求項 1乃至 7のいずれかに記載の防振切削工具。
[9] 前記制振ピースを複数個に分け、その複数個の制振ピースを単一のポケットもしく は独立した複数のポケットに挿入した請求項 1乃至 8のいずれかに記載の防振切削 工具。
[10] 前記ポケットをホルダの側面力 加工し、さらに、前記制振ピースをポケット内に保 持するピース保持手段もしくは封印手段を備えさせた請求項 1乃至 9のいずれかに 記載の防振切削工具。
[11] 前記ポケットをホルダの刃先配置側とは反対側の側面から加工し、刃先配置側の 側面に到達しな 、止まり穴にした請求項 10に記載の防振切削工具。
[12] ホルダのシャンク部とヘッド部を別々に形成し、前記ポケットをシャンク部の先端に 開放させ、このポケットに前記制振ピースを挿入し、シャンク部の先端に接合した前 記ヘッド部によってシャンク部先端のポケットの口を塞 、だ請求項 1乃至 11の 、ずれ かに記載の防振切削工具。
PCT/JP2004/017604 2003-11-26 2004-11-26 防振切削工具 WO2005051582A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04819450.0A EP1693131B1 (en) 2003-11-26 2004-11-26 Vibration-damping cutting tool
US10/580,553 US7591209B2 (en) 2003-11-26 2004-11-26 Vibration suppressing cutting tool
IL175859A IL175859A (en) 2003-11-26 2006-05-23 Vibration suppressing cutting tool

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-395827 2003-11-26
JP2003395827 2003-11-26
JP2004268812A JP4689997B2 (ja) 2003-11-26 2004-09-15 防振切削工具
JP2004-268812 2004-09-15

Publications (1)

Publication Number Publication Date
WO2005051582A1 true WO2005051582A1 (ja) 2005-06-09

Family

ID=34635606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017604 WO2005051582A1 (ja) 2003-11-26 2004-11-26 防振切削工具

Country Status (6)

Country Link
US (1) US7591209B2 (ja)
EP (1) EP1693131B1 (ja)
JP (1) JP4689997B2 (ja)
KR (1) KR20060127010A (ja)
IL (1) IL175859A (ja)
WO (1) WO2005051582A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112439928A (zh) * 2019-08-29 2021-03-05 肯纳金属公司 具有可调谐振动吸收器组合件的旋转式切削工具

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1535682A1 (en) * 2003-11-26 2005-06-01 Sumitomo Electric Hardmetal Corp. Vibration-suppressing cutting tool
JP4648072B2 (ja) * 2005-04-28 2011-03-09 株式会社日立プラントテクノロジー ダンパーを備えた工具及びそれを用いた流体機械の羽根車もしくは案内羽根の製造方法
NO328887B1 (no) * 2007-02-27 2010-06-07 Teeness Asa Demper for demping av vibrasjoner med et dempelegeme som promoterer skumdannelse
US8296919B2 (en) * 2007-06-04 2012-10-30 The Boeing Company Increased process damping via mass reduction for high performance milling
EP2056395A1 (en) * 2007-11-05 2009-05-06 Laird Technologies AB Antenna device and portable radio communication device comprising such antenna device
CN101966597B (zh) * 2009-07-27 2012-08-29 映钒企业有限公司 一种防振切削工具
JP5433346B2 (ja) * 2009-08-21 2014-03-05 新日本工機株式会社 旋削工具用ステー及びタービンロータ加工用旋盤
US8371776B2 (en) * 2009-11-17 2013-02-12 Ying-Fan Enterprise Co., Ltd. Damper for a cutting tool
CN102343446A (zh) * 2010-07-30 2012-02-08 映钒企业有限公司 切削工具的减震结构
US8784016B2 (en) 2011-07-01 2014-07-22 Kennametal Inc. Rotary cutting tool with vibration damping device
US9420713B2 (en) 2012-05-29 2016-08-16 Apple Inc. Double anodizing processes
KR101332467B1 (ko) * 2012-07-04 2013-11-25 한국야금 주식회사 절삭공구의 방진구조
US9586266B2 (en) * 2015-01-23 2017-03-07 Kennametal Inc. Toolholder with tunable passive vibration absorber assembly
JP6508012B2 (ja) * 2015-02-10 2019-05-08 株式会社デンソー 工具ホルダおよびその製造方法
WO2016129229A1 (ja) * 2015-02-10 2016-08-18 株式会社デンソー 工具ホルダとその製造方法
DE102015002483A1 (de) * 2015-02-27 2016-09-01 Rattunde & Co. Gmbh Verfahren zur Verringerung des regenerativen Ratterns von Zerspanungsmaschinen
US9574634B2 (en) * 2015-05-29 2017-02-21 Monkula Enterprise Co., Ltd. Damper for a cutting tool
US20160377140A1 (en) * 2015-06-26 2016-12-29 Kennametal Inc. Boring bars and methods of making the same
JP6502212B2 (ja) * 2015-08-26 2019-04-17 京セラ株式会社 切削工具用ホルダおよび切削工具、並びにそれらを用いた切削加工物の製造方法
JP1560554S (ja) * 2015-11-17 2016-10-11
DE102017116326A1 (de) 2017-07-19 2019-01-24 Wohlhaupter Gmbh Dämpfungsvorrichtung und Werkzeughaltevorrichtung mit einer solchen Dämpfungsvorrichtung
US10953471B2 (en) * 2018-04-16 2021-03-23 Iscar, Ltd. External turning tool having a cutting portion with a transverse elongated damping mechanism
CN110385449A (zh) * 2018-04-19 2019-10-29 苏州钰创工业新材料有限公司 一种细杆镗刀
US10500648B1 (en) * 2018-06-12 2019-12-10 Iscar, Ltd. Tool holder having integrally formed anti-vibration component and cutting tool provided with tool holder
JP6697131B1 (ja) * 2018-06-28 2020-05-20 株式会社アライドマテリアル リーマ
CN109482917A (zh) * 2018-11-19 2019-03-19 重庆工业职业技术学院 一种防震车刀
EP3708295B1 (de) * 2019-03-15 2021-07-14 Siemens Aktiengesellschaft Werkzeugmaschine mit optimierter orientierung von schwingungsdämpfern
JP7237698B2 (ja) * 2019-03-29 2023-03-13 オークマ株式会社 切削工具
DE102020115678B4 (de) * 2019-07-17 2022-03-03 Kennametal Inc. Schneidwerkzeugklingenhalter
EP3932594B1 (en) * 2020-06-30 2024-03-13 Seco Tools Tooling Systems Non-rotating boring tool for internal turning and a boring arrangement comprising such a boring tool
EP3932595A1 (en) * 2020-06-30 2022-01-05 Seco Tools Tooling Systems Boring bar and a non-rotating boring tool and a boring arrangement comprising such a boring bar
WO2022114166A1 (ja) * 2020-11-30 2022-06-02 京セラ株式会社 ホルダ、切削工具及び切削加工物の製造方法
CN112570742B (zh) * 2020-12-11 2022-05-24 株洲钻石切削刀具股份有限公司 一种抗震车削刀具

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59129602A (ja) 1983-01-12 1984-07-26 Mitsubishi Heavy Ind Ltd 切削用工具ホルダ
JPH0631507A (ja) 1992-07-16 1994-02-08 Mitsubishi Materials Corp 旋削工具
JPH0631505A (ja) 1992-07-21 1994-02-08 Mitsubishi Materials Corp ボーリングバー
EP0812641A1 (en) 1996-06-10 1997-12-17 Kabushiki Kaisha Kobe Seiko Sho Boring bar
JP2979823B2 (ja) 1992-02-21 1999-11-15 三菱マテリアル株式会社 切削工具
JP2001062612A (ja) * 1999-08-23 2001-03-13 Tasada Kosakusho:Kk 穴切削工具
JP2001096403A (ja) 1999-09-30 2001-04-10 Kyocera Corp 切削工具
JP2001328022A (ja) * 2000-05-24 2001-11-27 Mitsubishi Materials Corp 制振工具
WO2002020202A1 (fr) 2000-09-05 2002-03-14 Nt Engineering Kabushiki Kaisha Structure destinee a eviter le broutage d'une machine-outil
JP2003062703A (ja) 2001-08-21 2003-03-05 Mitsubishi Materials Corp 制振工具
JP2003062735A (ja) * 2001-06-13 2003-03-05 Mitsubishi Materials Corp 制振工具
JP2003136301A (ja) 2001-10-30 2003-05-14 Kyocera Corp 切削工具
US20030147707A1 (en) 2002-02-01 2003-08-07 Perkowski Randy M. Tunable Toolholder

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2426359A (en) * 1944-06-24 1947-08-26 Lankheet Sander Boring bar
US2699696A (en) * 1948-11-26 1955-01-18 Heald Machine Co Tool carrier and vibration-damping means therefor
US2641940A (en) * 1949-08-09 1953-06-16 White Dan Special boring bar
US2563559A (en) * 1949-12-22 1951-08-07 Meyers W F Co Circular saw having vibration damping means
US2656742A (en) * 1950-12-19 1953-10-27 Loyd Y Poole Boring bar
US2842014A (en) * 1954-05-17 1958-07-08 Paul H Miller Rigid boring bar
US3207009A (en) * 1964-04-08 1965-09-21 Kennametal Inc Vibration damping device
DE1920598A1 (de) * 1969-04-23 1970-11-05 Goetzewerke Einrichtung zur Daempfung von Drehschwingungen in freitragenden Maschinenteilen,insbesondere Werkzeugtraegern
US3642378A (en) * 1969-11-03 1972-02-15 Heald Machine Co Boring bar
NO128725B (ja) * 1972-01-21 1974-01-02 Trondhjems Nagle Spigerfab
US3774730A (en) * 1972-04-19 1973-11-27 Nl Industries Inc Tool holder
JPS5023085A (ja) * 1973-06-28 1975-03-12
US3923414A (en) * 1973-07-16 1975-12-02 Valeron Corp Vibration damping support
GB1578342A (en) * 1976-02-05 1980-11-05 Nat Res Dev Boring bars
US4553884A (en) * 1982-05-10 1985-11-19 Kennametal Inc. Boring tool and method of reducing vibrations therein
JPS62292306A (ja) * 1986-06-11 1987-12-19 Junichiro Kumabe 精密振動穴加工方法
US5170103A (en) * 1991-05-20 1992-12-08 University Of Kentucky Research Foundation Active vibration control device
JPH06179103A (ja) * 1992-07-07 1994-06-28 Mitsubishi Materials Corp 旋削工具
US5518347A (en) * 1995-05-23 1996-05-21 Design And Manufacturing Solutions, Inc. Tuned damping system for suppressing vibrations during machining
JPH10128635A (ja) * 1996-10-30 1998-05-19 Yamazaki Mazak Corp 防振ツールホルダ
SE519487C2 (sv) * 1998-10-22 2003-03-04 Rolf Zimmergren Metod och anordning för vibrationsstyrning vid borrande svarvning samt verktygshållare för borrande svarvning
US6443673B1 (en) * 2000-01-20 2002-09-03 Kennametal Inc. Tunable boring bar for suppressing vibrations and method thereof
SE522081C2 (sv) * 2000-12-06 2004-01-13 Sandvik Ab Verktyg för bearbetning i metalliska material
SE517878C2 (sv) * 2000-12-08 2002-07-30 Sandvik Ab Förfarande och anordning för vibrationsdämpning av metalliska verktyg för spånavskiljande bearbetning samt verktyg innefattande en dylik anordning
EP1535682A1 (en) * 2003-11-26 2005-06-01 Sumitomo Electric Hardmetal Corp. Vibration-suppressing cutting tool
US7234379B2 (en) * 2005-06-28 2007-06-26 Ingvar Claesson Device and a method for preventing or reducing vibrations in a cutting tool

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59129602A (ja) 1983-01-12 1984-07-26 Mitsubishi Heavy Ind Ltd 切削用工具ホルダ
JP2979823B2 (ja) 1992-02-21 1999-11-15 三菱マテリアル株式会社 切削工具
JPH0631507A (ja) 1992-07-16 1994-02-08 Mitsubishi Materials Corp 旋削工具
JPH0631505A (ja) 1992-07-21 1994-02-08 Mitsubishi Materials Corp ボーリングバー
EP0812641A1 (en) 1996-06-10 1997-12-17 Kabushiki Kaisha Kobe Seiko Sho Boring bar
JP2001062612A (ja) * 1999-08-23 2001-03-13 Tasada Kosakusho:Kk 穴切削工具
JP2001096403A (ja) 1999-09-30 2001-04-10 Kyocera Corp 切削工具
JP2001328022A (ja) * 2000-05-24 2001-11-27 Mitsubishi Materials Corp 制振工具
WO2002020202A1 (fr) 2000-09-05 2002-03-14 Nt Engineering Kabushiki Kaisha Structure destinee a eviter le broutage d'une machine-outil
JP2003062735A (ja) * 2001-06-13 2003-03-05 Mitsubishi Materials Corp 制振工具
JP2003062703A (ja) 2001-08-21 2003-03-05 Mitsubishi Materials Corp 制振工具
JP2003136301A (ja) 2001-10-30 2003-05-14 Kyocera Corp 切削工具
US20030147707A1 (en) 2002-02-01 2003-08-07 Perkowski Randy M. Tunable Toolholder

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1693131A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112439928A (zh) * 2019-08-29 2021-03-05 肯纳金属公司 具有可调谐振动吸收器组合件的旋转式切削工具
CN112439928B (zh) * 2019-08-29 2024-03-08 肯纳金属公司 具有可调谐振动吸收器组合件的旋转式切削工具

Also Published As

Publication number Publication date
JP4689997B2 (ja) 2011-06-01
EP1693131A1 (en) 2006-08-23
EP1693131B1 (en) 2014-01-08
US20070089574A1 (en) 2007-04-26
KR20060127010A (ko) 2006-12-11
IL175859A (en) 2011-07-31
US7591209B2 (en) 2009-09-22
EP1693131A4 (en) 2010-07-21
JP2005177973A (ja) 2005-07-07
IL175859A0 (en) 2006-10-05

Similar Documents

Publication Publication Date Title
WO2005051582A1 (ja) 防振切削工具
US7490536B2 (en) Vibration-suppressing cutting tool
KR102325174B1 (ko) 금속 가공물을 홈가공하는 블레이드, 공구 및 방법
CN103447591B (zh) 四角形的可转位的钻头镶片
EP1072345A2 (en) Milling cutter
GB1578342A (en) Boring bars
JP2001328022A (ja) 制振工具
EP2682211A1 (en) Guide pad, cutting tool body, and cutting tool
WO2021132357A1 (ja) ホルダ、切削工具及び切削加工物の製造方法
SK16802002A3 (sk) Dierovací vrták
JP4557663B2 (ja) 防振切削工具
JP6502212B2 (ja) 切削工具用ホルダおよび切削工具、並びにそれらを用いた切削加工物の製造方法
US8070396B2 (en) Broach tool and a broach insert
JP2008100332A (ja) 防振工具
JP3146417U (ja) 制震切削工具
JP2013013943A (ja) 切削工具用ホルダおよび切削工具ならびにそれを用いた被削材の切削方法
US10434581B2 (en) Vibration-damped high-speed tool holder
JP6923855B1 (ja) 切削インサート
WO2021205878A1 (ja) ホルダ、切削工具及び切削加工物の製造方法
JP7237698B2 (ja) 切削工具
JP3847139B2 (ja) 切削工具
JP2009050983A (ja) 切削時のびびり振動を抑制する減衰用部材、減衰装置及び切削工具
JP7040504B2 (ja) 切削用工具
WO2021132337A1 (ja) ホルダ、切削工具及び切削加工物の製造方法
JP2008100314A (ja) 切削工具および工作機械

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480034854.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 175859

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2007089574

Country of ref document: US

Ref document number: 10580553

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2004819450

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067012568

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004819450

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067012568

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10580553

Country of ref document: US