WO2005049701A1 - 二軸延伸ポリエステルフィルム - Google Patents

二軸延伸ポリエステルフィルム Download PDF

Info

Publication number
WO2005049701A1
WO2005049701A1 PCT/JP2004/017087 JP2004017087W WO2005049701A1 WO 2005049701 A1 WO2005049701 A1 WO 2005049701A1 JP 2004017087 W JP2004017087 W JP 2004017087W WO 2005049701 A1 WO2005049701 A1 WO 2005049701A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
polyester
film
thickness
melting point
Prior art date
Application number
PCT/JP2004/017087
Other languages
English (en)
French (fr)
Inventor
Takashi Suzuki
Akira Sato
Original Assignee
Mitsubishi Polyester Film Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003387402A external-priority patent/JP4610179B2/ja
Priority claimed from JP2004034489A external-priority patent/JP4693087B2/ja
Application filed by Mitsubishi Polyester Film Corporation filed Critical Mitsubishi Polyester Film Corporation
Priority to EP04818928A priority Critical patent/EP1686148A4/en
Publication of WO2005049701A1 publication Critical patent/WO2005049701A1/ja
Priority to US11/436,146 priority patent/US7833614B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/023Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets using multilayered plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/91Product with molecular orientation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/254Polymeric or resinous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/269Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension including synthetic resin or polymer layer or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]

Definitions

  • the present invention relates to a biaxially stretched polyester film. More specifically, the present invention relates to a biaxially stretched polyester film which is suitable as a constituent material of packaging materials for industrial materials, pharmaceuticals, sanitary materials, foods, etc., has a small thickness fluctuation, and has good hand cutting properties.
  • packaging materials such as industrial materials, pharmaceuticals, sanitary materials, and foods are often required to have good hand-cutting properties.
  • packaging materials for small bags such as confectionery and powdered medicine require good hand-cutting properties.
  • a film obtained by coating cellophane or cellophane with a salted-dwelling vinyl acetate copolymer that is, a film obtained by coating a so-called moisture-proof cellophane or a cellophane with a salted-idling bi-lidene ( K coat cellophane) etc. are used!
  • cellophane, moisture-proof cellophane, K-coated cellophane and the like have excellent hand-cutting properties, but the characteristics of the film change depending on the humidity, and the printing characteristics deteriorate.
  • Cellophane, which is a base material is expensive, and there is concern about supply in the future.
  • K-coat cellophane is difficult to use due to environmental issues (possibility of generating dioxin during combustion).
  • environmentally friendly aluminum foil is also refraining from using it.
  • Polyester film is used as a packaging material due to its excellent properties such as mechanical properties, dimensional stability, heat resistance, water resistance, and transparency. It has the problem of being bad.
  • a uniaxially oriented polyester film for example, a uniaxially oriented polyester film (see Patent Document 2), a polyester resin obtained by copolymerizing a diethylene glycol component and the like are used.
  • Film (see Patent Document 3) A polyester film using a small amount of polyester resin (see Patent Document 4) has been proposed.
  • a polyester film that is uniaxially oriented while applying a force easily breaks linearly in the orientation direction, but has a problem that it is difficult to cut in other directions than the orientation direction.
  • Polyester films using styrene have the disadvantage that the original properties are lost by copolymerization. Further, a polyester film using a low molecular weight polyester resin is liable to cause a problem of film breakage in a stretching process, has a drawback, and is not practical!
  • Patent Document 1 Japanese Unexamined Patent Publication No. 5-104618
  • Patent Document 2 Japanese Patent Publication No. 55-8551
  • Patent Document 3 Japanese Patent Publication No. 56-50692
  • Patent Document 4 Japanese Patent Publication No. 55-20514
  • Patent Document 5 Japanese Patent Publication No. 5-104618
  • Patent Document 6 Japanese Patent Application No. 2002-371183
  • Patent Document 7 Special Publication 2003-155403
  • Patent Document 8 Special Publication 2003-220678
  • Patent Document 9 Japanese Patent Application No. 2002-300428 Disclosure of the invention
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a biaxially stretched polyester film having a small thickness runout and good cutability, for example, suitable for packaging. is there.
  • the gist of the first invention is a biaxially stretched polyester film having a polyester layer (A layer) containing polybutylene terephthalate and at least one of a copolymerized polyester and an amorphous polyester, wherein the polyester layer (A Layer) has one melting point measured by DSC temperature rise, and both the longitudinal and width end row resistance values of the polyester film are 100 N or less.
  • the gist of the second invention is to provide a biaxially stretched polyester film having a polyester layer (A layer) containing polybutylene terephthalate and at least one of a copolymerized polyester and an amorphous polyester, the maximum average number of length 1 mu m or more non-miscible in port polybutylene terephthalate mass is at 100 m 2 per 1.0 or less, and the longitudinal direction and the width direction of the end columns of the polyester film present in the A biaxially stretched polyester film having a resistance value of 100 N or less.
  • the gist of the third invention is a biaxially stretched polyester film having a polyester layer (Afi) containing polybutylene terephthalate and a copolymerized polyester, wherein the melting point of the A layer is 245 ° C. or lower, and A biaxially oriented polyester film characterized in that the end row resistance in the longitudinal direction of the film is 30-100N.
  • the invention's effect it is possible to obtain a biaxially stretched polyester film having a small thickness runout, good hand-cutting properties, and excellent film forming stability, workability and mechanical properties.
  • the polybutylene terephthalate contained in the layer A is represented by a polyester composed of terephthalic acid as an acid component and 1,4-butanediol as a glycol component, and can be produced by a known production method.
  • the powerful polymer may be a homopolymer or a copolymer of the third component.
  • the copolymerized polyester is represented by a polyester comprising terephthalic acid or isophthalic acid as an acid component and ethylene glycol as a glycol component, and can be produced by a known production method. Further, another copolymerization component may be copolymerized.
  • Acid components as other copolymer components include aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid and decanedicarboxylic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, and 2,7-naphthalenedicarboxylic acid.
  • aromatic carboxylic acids such as acid, 1,5 naphthalenedicarboxylic acid, diphenoxyethanedicarboxylic acid, diphenyldicarboxylic acid, diphenyletherdicarboxylic acid, and anthracenedicarboxylic acid.
  • the alcohol component examples include aliphatic diols such as diethylene glycol, propylene glycol, neopentyl glycol, butanediol, pentanediol, and hexanediol, and polyalkylene glycols such as polyethylene glycol, polypropylene glycol, and polytetramethylene glycol. Is mentioned. These can be used alone or in combination of two or more.
  • the amorphous polyester refers to a polyester resin that does not substantially exhibit crystallinity. That is, it is a polyester having a crystallinity of 5% or less when the resin is allowed to stand in a temperature range where the glass transition temperature is also up to the melting point.
  • Examples of such an amorphous polyester include an amorphous copolymer polyester obtained by modifying polyethylene terephthalate by acid modification and Z or diol modification.
  • the acid-modified component used Terephthalic acid isophthalic acid, adipic acid, azelaic acid, sebacic acid, 2,6-naphthalenedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, and the like.
  • diol-modified component examples include ethylene glycol, 1,4-butanediol, diethylene glycol, triethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol, and polyethylene glycol.
  • a dibasic acid component mainly composed of terephthalic acid and 10-70 mol of 1,4-cyclohexanedimethanol are used.
  • the biaxially stretched polyester film of the present invention may be a film having a single-layer structure of only the A layer, or a polyester layer (B layer) having a melting point higher than the melting point of the A layer on at least one surface of the A layer. It may be a film having a multilayer structure. By laminating the layer B, the mechanical properties of the biaxially stretched polyester film can be improved.
  • the polyester constituting the layer B refers to a polymer containing an ester group obtained by polycondensation from a dicarboxylic acid and a diol or hydroxycarboxylic acid.
  • Dicarboxylic acids include terephthalic acid, isophthalic acid, adipic acid, azelaic acid, sebacic acid, 2,6-naphthalenedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, and the like.
  • Diols include ethylene glycol, 1, 4 Butanediol, diethylene glycol, triethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol, polyethylene glycol, and the like.
  • hydroxycarboxylic acids include p-hydroxybenzoic acid and 6-hydroxy-2 naphthoic acid.
  • diol component examples include dali cornole, ethylene glycolone, 1,4-butanediol, diethylene glycol, triethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol, and polyethylene glycol.
  • the production method for example, the ability to cause a transesterification reaction between a lower alkyl ester of an aromatic dicarboxylic acid and a glycol, a method for substantially esterifying an aromatic dicarboxylic acid and dalicol directly or substantially A method is employed in which a bisdalicol ester of an aromatic dicarboxylic acid or a low polymer thereof is formed, and the low polymer obtained in the following step is heated under reduced pressure to perform polycondensation.
  • Typical examples of powerful polymers include polyethylene terephthalate and polyethylene terephthalate. And 6 naphthalate. These polymers may be homopolymers or those obtained by copolymerizing a third component.
  • the melting point of the layer B is usually higher than the melting point of the layer A, preferably higher by 10 ° C or more. Specifically, the melting point of layer B is usually above 245 ° C.
  • the thickness of the layer B is usually 8 m or less, preferably 2 to 6 m. In the case of a multilayer structure in which a plurality of layers B are stacked, the total thickness of the layer B is usually 8 m or less or 50% or less of the thickness of the A layer.
  • the polyester film of the present invention preferably contains fine particles in order to improve workability in a film winding step, a coating step, a vapor deposition step, and the like.
  • the fine particles used include inorganic particles such as calcium carbonate, magnesium carbonate, calcium sulfate, barium sulfate, lithium phosphate, magnesium phosphate, calcium phosphate, lithium fluoride, aluminum oxide, silicon oxide, kaolin, and acrylic particles. Examples thereof include organic particles such as fats and guanamine resins, and precipitated particles obtained by converting catalyst residues into particles, but are not limited thereto. The particle size and amount of these particles can be appropriately determined according to the purpose.
  • the fine particles to be contained may be a single component or two or more components may be used simultaneously.
  • the method of blending each of the particles with the raw polyester is not particularly limited.
  • a method of adding each particle to the polyester polymerization step, a method of melting and kneading each particle with the raw polyester are preferable.
  • various stabilizers, lubricants, antistatic agents and the like can be appropriately added.
  • the biaxially stretched polyester film of the present invention is obtained by supplying the above-mentioned polyester raw material to a known melt extruder represented by an ethtruder, heating it to a temperature equal to or higher than the melting point of the polymer, and then melting the polyester. While extruding the molten polymer from the die, it is rapidly cooled and solidified to a temperature below the glass transition temperature in the form of a rotary cooling drum to form a substantially amorphous unoriented sheet. It is obtained by stretching in the direction to form a film and heat setting. In this case, the stretching method may be sequential biaxial stretching or simultaneous biaxial stretching. Further, if necessary, the film may be stretched in the vertical and Z directions or the horizontal direction again before or after the heat setting.
  • the stretching ratio is usually 9 times or more, preferably 12 times or more as an area ratio.
  • the heat treatment temperature after the stretching of the present invention is usually at least a temperature lower by 15 ° C than the melting start temperature of the layer A, preferably at least the melting start temperature and not more than the melting point. If the heat treatment temperature is less than 15 ° C lower than the melting start temperature of layer A, sufficient tearability may not be obtained, and if the heat treatment temperature exceeds the melting point of layer A, the film Since the film is torn too much, the film may be easily broken at the time of winding or slitting at the time of film formation or at the time of processing.
  • the thickness of the biaxially stretched polyester film of the present invention obtained as described above is usually 9.1 to 50 ⁇ m, preferably 12 to 38 ⁇ m.
  • the first invention is a polyester layer containing polybutylene terephthalate and at least one of a copolymerized polyester and an amorphous polyester (
  • Biaxially stretched polyester film having an A layer wherein the polyester layer (A) has one melting point as measured by DSC heating, and the polyester film has a longitudinal direction (MD) and a width direction (TD).
  • MD longitudinal direction
  • TD width direction
  • the ratio of polybutylene terephthalate, which is the polyester raw material of the layer A, to the copolymerized polyester and Z or the amorphous polyester is adjusted. Design so that there is only one melting point based on DSC temperature rise measurement.
  • the biaxially oriented polyester film has an end row resistance in the longitudinal direction and the width direction of 100N or less, and the end row resistance in the longitudinal direction is preferably 30-100N. If the end row resistance exceeds 100 N, the tearability of the film may be impaired. If the longitudinal resistance of the film is less than 30N, the film may easily tear too much and break during processing.
  • the aforementioned tearing property is achieved by performing a heat treatment after the uniaxial stretching, usually at a temperature 15 ° C. lower than the melting start temperature of the layer A, at a temperature higher than the temperature, preferably at a temperature higher than the melting start temperature and lower than the melting point.
  • the melting point of the layer A is usually 245 ° C or lower.
  • the biaxially stretched polyester film of the first invention having the above-mentioned properties is a film having small thickness fluctuation and good hand-cutting properties.
  • the thickness fluctuation of the biaxially stretched polyester film of the first invention is an average value (the thickness fluctuation Rp) of the difference between the maximum thickness and the minimum thickness in the longitudinal direction, and is preferably 5% or less of the film thickness.
  • the average value (difference in thickness Rv) of the difference between the maximum thickness and the minimum thickness in the width direction is preferably 5% or less of the film thickness.
  • a second invention is a biaxially stretched polyester film having a polyester layer (A layer) containing polybutylene terephthalate and at least one of a copolymerized polyester and an amorphous polyester, wherein Length: The average number of incompatible polybutylene terephthalate blocks having a length of L m or more is 1.0 or less per 100 m 2 , and the end of the polyester film in the machine direction (MD) and width direction (TD). The column resistance value is 100N or less.
  • the average number of missing compatible for ⁇ mass with a 1 mu m or more of the maximum length is 1.0 or less per 100 m 2. : If the average number of unmiscible PBT lumps having a maximum length of L m or more exceeds 1.0, the thickness run-out may be large, hand-cutting properties may be poor, and some parts may be present. There is.
  • the maximum length present in the cross section of the layer A to the average number of 1 m length or more non-miscible in PBT masses 1.0 or less 1 00 m 2 per can, the polyester starting components of the A layer Is achieved by using chips that have been pre-melted and mixed.
  • the biaxially stretched polyester film has an end row resistance in the longitudinal direction and the width direction of 100N or less, preferably 20-80N. If the end row resistance exceeds 100N, the tear property of the film may be impaired. If the row resistance is less than 20N, the film may easily tear too much and break during processing.
  • the above-mentioned tearability is achieved by performing heat treatment after uniaxial stretching, usually at a temperature lower by 15 ° C. than the melting start temperature of the layer A, preferably at a temperature higher than the melting start temperature and lower than the melting point.
  • the melting point of the layer A is preferably 240 ° C. or less.
  • the biaxially stretched polyester film of the second invention having the above-mentioned properties is a film having small thickness fluctuation and good hand-cutting properties.
  • the thickness deflection of the biaxially stretched polyester film of the second invention is an average value of the difference between the maximum thickness and the minimum thickness in the longitudinal direction (thickness deflection Rp), and is preferably 5% or less of the film thickness.
  • the average value (difference in thickness Rv) of the difference between the maximum thickness and the minimum thickness in the width direction is preferably 5% or less of the film thickness.
  • the third invention is a biaxially stretched polyester film having a polyester layer (A) containing polybutylene terephthalate and a copolymerized polyester, wherein the melting point of the A layer is 245 ° C. or lower and the film is in the longitudinal direction (MD). ) Is 30 It is characterized by being 100N.
  • the blending ratio of polybutylene terephthalate and the copolymerized polyester is adjusted so that the melting point of layer A is usually 245 ° C or lower, preferably 240 ° C or lower, more preferably 200 to 235 ° C. design.
  • the end resistance in the longitudinal direction of the biaxially stretched polyester film is usually 30 to 100N, preferably 30 to 80N. If the end row resistance exceeds 100N, the tearability of the film may be impaired.If the end resistance is less than 30N, the film may be easily torn too easily and break during processing, causing it to break as a packaging material. Not suitable. On the other hand, the end row resistance in the film width direction (TD) is usually 100N or less.
  • the above-mentioned tearability is achieved by performing a heat treatment at a temperature of 15 ° C lower than the melting start temperature of the layer A, preferably at a temperature higher than the melting start temperature and lower than the melting point after the uniaxial stretching.
  • the biaxially stretched polyester film of the present invention can be used as a packaging material having good hand-cut properties by printing the film to give a design property and then laminating the film with a sealant layer.
  • a typical example is a small package of medicine.
  • the polyester film of the present invention is provided with a layer of metal or metal oxide which is also a metal oxide film by vapor deposition, or a gas layer film coated with an existing layer of gas is a gas-noori packaging material having good hand-cutting properties.
  • a material laminated with aluminum foil can also be used as a gas barrier wrapping material having good hand-cutting properties.
  • the thickness of 10 films was measured by the micrometer method, and the obtained value was divided by 10. The average value was obtained as the film thickness.
  • a small piece of the film was fixed and molded with an epoxy resin, cut with a microtome, and the cross section of the film was observed with a transmission electron microscope photograph. Of the cross sections, two are almost parallel to the film surface, and the interface is observed by light and dark. The distance between the two interfaces and the film surface was also measured for the photographic power of 10 sheets, and the average value was taken as the laminated thickness.
  • the melting onset temperature (Tim) and the melting point (Tpm) were measured using a Perkin Elmer Unique Differential Scanning Calorimeter DSC7.
  • the DSC measurement conditions are as follows. That is, 6 mg of the sample film was set in a DSC device, melted and held at a temperature of 300 ° C. for 5 minutes, and then rapidly cooled with liquid nitrogen. The temperature of the quenched sample was raised from 0 ° C at a rate of 10 ° CZ, and the melting point was detected according to the reading method of the JIS K7121 DSC curve.
  • a sample film of 50 mm in length (between chucks) and 15 mm in width was cut into 200 mmZ The film was pulled at the strain rate, the load at the time of film break was measured, and the tensile strength at break was determined by the following equation.
  • the average value was determined as the end row resistance value by the measurement method of JIS C2318-1975.
  • the film piece was fixed and molded with epoxy resin, it was cut with a microtome, incinerated with a low-temperature plasma incinerator, and the cross section of the film was observed with a transmission electron micrograph. PBT mass non miscible out of the cross-section of its is observed by light and dark was measured the number of 1 m length or more PBT mass when observed in 100 m 2 minutes. This was performed for 10 locations of the film, and the average value was used as the number of PBT lumps.
  • Polyester raw materials used in Examples and Comparative Examples described later were produced by the following methods.
  • terephthalic acid as a dicarboxylic acid component and 1.4 butanediol as a polyhydric alcohol component, they were produced by a conventional melt polycondensation method.
  • the limiting viscosity ([r?]) Of the obtained polyester raw material was 0.80 dlZg, and the melting start temperature (Tim) and melting point (Tpm) of the polyester film from which the raw material was obtained were 213 ° C and 222 ° C, respectively. .
  • Isophthalic acid and terephthalic acid were used as the dicarboxylic acid component, and ethylene glycol was used as the polyhydric alcohol component, respectively, and produced by a conventional melt polycondensation method.
  • the isophthalic acid content in the dicarboxylic acid component is 22 moles 0 /. Met.
  • the limiting viscosity ([r?]) Of this polyester raw material was 0.69 dlZg, and the polyester film obtained from this raw material had a melting onset temperature (Tim) of 175 ° C and a melting point (Tpm) of 196 ° C.
  • Isophthalic acid and terephthalic acid were used as the dicarboxylic acid component, and ethylene glycol was used as the polyhydric alcohol component, respectively, and produced by a conventional melt polycondensation method.
  • the isophthalic acid content in the dicarboxylic acid component is 15 moles 0 /. Met.
  • the limiting viscosity ([r?]) Of this polyester raw material was 0.69 dlZg, and the polyester film obtained from this raw material had a melting start temperature (Tim) of 198 ° C and a melting point (Tpm) of 220 ° C.
  • PETG (“EASTAR 6763” (trade name) manufactured by Eastman Chemical Company) was used.
  • the limiting viscosity ([]) of this polyester raw material was 0.75 dlZg, and the content of 1,4-cyclohexanedimethanol (CHDM) was 32 mol%.
  • a polyester chip having an intrinsic viscosity ([7?]) Of 0.70 dl / g was obtained.
  • the melting start temperature (Tim) and melting point (Tpm) of the polyester film from which the raw material strength was obtained were 242 ° C and 254 ° C.
  • polyester 1 After blending 50 parts of polyester 1 and 50 parts of polyester 2, the mixture was melt-mixed with a twin-screw extruder to form chips.
  • the amount of polybutylene terephthalate contained in polyester 6 was 50%, and the content of isophthalic acid in the dicarboxylic acid component was 11 mol%.
  • the melting start temperature (Tim) of the polyester film obtained from this raw material was 202 ° C, and the melting point (Tpm) was a double peak at 213 ° C and 222 ° C.
  • polyester 3 50 parts of polyester 3 and 50 parts of polyester 6 were blended.
  • the amount of polybutylene terephthalate contained in polyester 7 was 25%, and the content of isophthalic acid in the dicarboxylic acid component was 13 mol%.
  • the melting start temperature (Tim) and melting point (Tpm) of the polyester film from which the raw material strength was obtained were 195 ° C and 215 ° C, respectively.
  • polyester film obtained from this raw material had a melting onset temperature (Tim) of 195 ° C. and a melting point (T pm) of 217 ° C.
  • polyester 9 After blending 50 parts of polyester 1 and 50 parts of polyester 4, the mixture was melt-mixed with a twin screw extruder to form chips.
  • the amount of polybutylene terephthalate contained in polyester 9 was 50%, and the content of 1,4-cyclohexanedimethanol in the diol component was 16 moles 0 /. Met.
  • the melting start temperature (Tim) and melting point (Tpm) of the polyester film from which the raw material strength was obtained were 150 ° C and 200 ° C, respectively.
  • polyester 1 After blending 25 parts of polyester 1, 50 parts of polyester 3 and 25 parts of polyester 4, the mixture was melt-mixed with a twin-screw extruder and chipped. 25% the amount of the polybutylene terephthalate which contained the polyester 10, isophthalic acid content in the dicarboxylic acid component 7.5 mole 0/0, Cyclohexanedicarboxylic methanol content to 1, 4 Shikuro in di O Lumpur component 8 mol% Met.
  • the raw material strength The melting start temperature (Tim) of the obtained polyester film is 170 ° C and the melting point (Tpm) is 200. C.
  • Polyesternole 2 was blended with 25 ⁇
  • Polyestenole 5 was blended with 25 ⁇
  • Polyestenole 6 was blended with 50 ⁇ .
  • the amount of polybutylene terephthalate contained in polyester 11 was 25%
  • the amount of isophthalic acid in dicarboxylic acid was 11 moles 0 /. Met.
  • the melting start temperature (Tim) of the polyester film obtained from this raw material was 195 ° C
  • the melting point (Tpm) was a double peak at 212 ° C and 233 ° C.
  • polyester 1 25 parts of polyester 1 and 75 parts of polyester 3 were blended.
  • the amount of polybutylene terephthalate contained in polyester 12 was 25%, and the amount of isophthalic acid in dicarboxylic acid was 11 mol%.
  • This raw material power The melting start temperature (Tim) of the obtained polyester film was 195 ° C, and the melting point (Tpm) was 219 ° C.
  • polyester 1 25 parts of polyester 1, 50 parts of polyester 2 and 25 parts of polyester 5 were blended.
  • the amount of polybutylene terephthalate contained in polyester 13 was 25%, and the amount of isophthalic acid in dicarboxylic acid was 11 moles 0 /. Met.
  • the onset of melting temperature (Tim) of the polyester film obtained from this raw material was 195 ° C, and the melting point (Tpm) was a double peak at 212 ° C and 233 ° C. there were.
  • isophthalic acid and terephthalic acid as the dicarboxylic acid component and ethylene glycol as the polyhydric alcohol component, they were produced by a conventional melt polycondensation method.
  • the isophthalic acid content in the dicarboxylic acid component is 8 moles 0 /. Met.
  • the limiting viscosity ([ ⁇ ]) of this polyester raw material was 0.69 dlZg, and the polyester film obtained from this raw material had a melting onset temperature (Tim) of 213 ° C and a melting point (Tpm) of 222 ° C.
  • polyester 1 and 50 parts of polyester 2 were blended.
  • the amount of polybutylene terephthalate contained in the obtained polyester 15 was 50%, and the content of isophthalic acid in the dicarboxylic acid component was 11 mol%.
  • the onset of melting temperature (Tim) of the polyester film obtained from the raw material was 195 ° C, and the melting point (Tpm) was 218 ° C.
  • polyester 1 25 parts of polyester 1 and 75 parts of polyester 14 were blended.
  • the amount of polybutylene terephthalate contained in the obtained polyester 16 was 25%, and the content of isophthalic acid in the dicarboxylic acid component was 6 mol%.
  • the melting start temperature (Tim) of the polyester film obtained from the raw material was 210 ° C and the melting point (Tpm) was 232 ° C.
  • polyester 1 and 50 parts of polyester 5 were blended.
  • the amount of polybutylene terephthalate contained in the obtained polyester 17 was 50%, and the content of isophthalic acid in the dicarboxylic acid component was 0 mol%.
  • the melting start temperature (Tim) of the polyester film obtained from the raw material was 224 ° C, and the melting point (Tpm) was 238 ° C.
  • polyester 1 10 parts of polyester 1, 10 parts of polyester 3 and 80 parts of polyester 5 were blended.
  • the amount of polybutylene terephthalate contained in the obtained polyester 18 was 10%, and the content of isophthalic acid in the dicarboxylic acid component was 1.5 mol%.
  • the melting start temperature (Tim) of the polyester film obtained from this raw material (Tim) was 234 ° C and the melting point (Tpm) was 248 ° C.
  • Pellets of polyester 5 and polyester 7 are melted in separate extruders, and two types of polyester 5 (layer B) Z polyester 7 (layer A) Z polyester 5 (layer B) are formed using a laminating die.
  • the layer-laminated polyester resin was extruded into a cooling drum having a surface temperature of 30 ° C and quenched to obtain an unstretched film having a thickness of about 250 m.
  • the film is pre-heated (heat treated) in a tenter, then stretched by a factor of 4.3 at 80 ° C, and then at 200 ° C for 5 seconds.
  • the thickness composition of the B layer, the ZA layer, and the ZB layer was 2 ⁇ m / 12 ⁇ m / 2 ⁇ m.
  • the properties of the obtained film are shown in Table 1 below. This film was a film with a small thickness fluctuation and good hand-cutting property, and also excellent in film formation stability.
  • Layer B of the Polyester Film ZA Layer A laminated polyester film was prepared in the same manner as in Example 11, except that the thickness configuration of the ZB layer was 4 ⁇ m / 8 ⁇ m / 4 ⁇ m.
  • the properties of the obtained film are shown in Table 1 below. This film was a film with small thickness fluctuation and good hand-cutting property, and also excellent in film-forming stability.
  • the polyester 7 pellets were melted in an extruder, and the polyester resin was extruded into a cooling drum having a surface temperature of 25 ° C. using a single-layer die and rapidly cooled to obtain an unstretched film having a thickness of about 250 ⁇ m.
  • the properties of the resulting film are shown in Table 2 below. This film was a film with small thickness fluctuation and good hand-cutting property, and also excellent in film formation stability.
  • a laminated polyester film was prepared in the same manner as in Example 11 except that polyester 8 was used as a raw material for the A layer.
  • the properties of the obtained film are shown in Table 2 below. This film is a film with good thickness and small runout, and has excellent film forming stability. I was
  • a laminated polyester film was prepared in the same manner as in Example 11 except that polyester 9 was used as a raw material of the A layer and the heat treatment temperature after the transverse stretching was 190 ° C.
  • the properties of the obtained film are shown in Table 3 below. This film was a film with small thickness fluctuation and good hand-cutting properties, and also excellent in film-forming stability.
  • a laminated polyester film was obtained in the same manner as in Example 1-1, except that polyester 10 was used as a raw material of the A layer and the heat treatment temperature after the transverse stretching was 190 ° C.
  • the properties of the obtained film are shown in Table 3 below. This film was a film with small thickness fluctuation and good hand-cutting properties, and also excellent in film-forming stability.
  • a laminated polyester film was prepared in the same manner as in Example 11 except that polyester 6 was used as a raw material of the A layer.
  • the properties of the obtained film are shown in Table 4 below. This film had good hand-cutting strength and great thickness fluctuation.
  • a laminated polyester film was prepared in the same manner as in Example 11 except that polyester 11 was used as a raw material of the A layer.
  • the properties of the obtained film are shown in Table 4 below. This film had good hand-cutting strength and great thickness fluctuation.
  • a laminated polyester film was prepared in the same manner as in Example 11 except that polyester 3 was used as a raw material of the A layer and the heat treatment temperature after the transverse stretching was 225 ° C.
  • the properties of the obtained film are shown in Table 5 below. This film has good hand-cutting properties and low thickness fluctuation.
  • a polyester film was obtained in the same manner as in Example 1-3, except that polyester 5 was used as a raw material of the layer A and the heat treatment temperature after the transverse stretching was 225 ° C.
  • the properties of the obtained film are shown in Table 5 below. This film had low thickness runout and poor hand-cutting properties. [0085] [Table 1]
  • Example 1-3 Example 1-4 Composition B / A / B Thickness (B layer / A layer / B layer) ( ⁇ ) 16 2/12/2
  • Copolymer ⁇ (1: 1) PBT / PET / IPA22
  • Example 1-5 Example 1-6 Structure B / A / B B / A / B Thickness (B layer / A layer / B layer) ( ⁇ ) 2/12/2 2/12/2
  • Comparative Example 1 Comparative Example 2 Configuration B / A / B B / A / B Thickness (B layer / A layer / B layer) 2/12/2 2/12/2
  • composition of A-layer resin Copolymer PE (1: 1) Kneading chips 50 parts + Kneading chips 100 parts IPA 22 mol% copolymer
  • Composition of layer B resin PET PET Heat treatment temperature (° C) 200 200
  • Thickness (layer B / layer A / layer B) ( ⁇ ) 2/12/2 16
  • Pellets of polyester 5 and polyester 7 are melted in separate single-screw extruders, and polyester 5 (layer B) Z polyester 7 (layer A) Z polyester 5 (layer B) using a stacking die.
  • the seed three-layer laminated polyester resin was extruded into a cooling drum having a surface temperature of 30 ° C and quenched to obtain an unstretched film having a thickness of about 250 m.
  • the film is stretched 3.6 times in the longitudinal direction at 70 ° C, then, through a preheating (heat treatment) process in a tenter, is stretched 4.3 times at 80 ° C, and then at 200 ° C for 5 seconds.
  • the heat treatment was performed to obtain a laminated polyester film having a thickness of 16 ⁇ m.
  • the thickness composition of the B layer, the ZA layer, and the ZB layer was 2 ⁇ / 12 ⁇ m / 2 ⁇ m.
  • the resulting fill Table 6 below shows the characteristics of the system. This film was a film with small thickness fluctuation and good hand-cutting properties, and also excellent in film-forming stability.
  • Layer B of Polyester Film ZA Layer A laminated polyester film was prepared in the same manner as in Example 2-1 except that the thickness composition of the ZB layer was 4 ⁇ m / 8 ⁇ m / 4 ⁇ m. Table 6 below shows the properties of the obtained film. This film was a film with small thickness fluctuation and relatively good hand-cutting properties.
  • the polyester 7 pellets are melted with a single screw extruder, and the polyester resin is extruded using a single-layer die into a cooling drum with a surface temperature of 25 ° C and quenched to obtain an unstretched film with a thickness of about 250 m.
  • the film is stretched 3.6 times in the longitudinal direction at 65 ° C, then, through a preheating (heat treatment) process in a tenter, stretched transversely 4.3 times at 80 ° C and then at 200 ° C for 5 seconds. Heat treatment was performed to obtain a polyester film having a thickness of 16 m.
  • the properties of the obtained film are shown in Table 7 below. This film was a film having a small thickness fluctuation and a good hand-cutting property, and also excellent in film formation stability.
  • a laminated polyester film was prepared in the same manner as in Example 2-1 except that polyester 8 was used as a raw material of the A layer.
  • the properties of the resulting film are shown in Table 7 below. This film was a film with a small thickness fluctuation and good hand-cutting properties, and also excellent in film formation stability.
  • a laminated polyester film was prepared in the same manner as in Example 2-1 except that polyester 9 was used as a raw material of the layer A and the heat treatment temperature after the transverse stretching was 190 ° C.
  • the properties of the obtained film are shown in Table 8 below. This film was a film with small thickness fluctuation and good hand-cutting properties, and also excellent in film-forming stability.
  • a laminated polyester film was obtained in the same manner as in Example 2-1 except that polyester 10 was used as a raw material of the A layer and the heat treatment temperature after the transverse stretching was 190 ° C.
  • the resulting film The characteristics of are shown in Table 8 below. This film was a film with small thickness fluctuation and good hand-cutting properties, and also excellent in film-forming stability.
  • a laminated polyester film was prepared in the same manner as in Example 2-1 except that polyester 12 was used as a raw material for the A layer, and pellets of polyester 12 were melted by a twin-screw extruder.
  • the properties of the obtained film are shown in Table 9 below. This film was a film with small thickness fluctuation and good hand-cutting property, and also excellent in film-forming stability.
  • a laminated polyester film was prepared in the same manner as in Example 2-7, except that polyester 12 was used as a raw material of the layer A and the pellets of the polyester 12 were melted by a single screw extruder.
  • the properties of the resulting film are shown in Table 10 below. This film had good hand-cutting properties, but had a large thickness run-out.
  • a laminated polyester film was prepared in the same manner as in Example 2-1 except that polyester 13 was used as a raw material for the A layer.
  • the properties of the resulting film are shown in Table 10 below. This film had good hand-cutting strength and great thickness runout.
  • Example 2-1 Example 2-2 Configuration ⁇ / ⁇ / ⁇ B / A / B Thickness (B layer / A layer / B layer) ( ⁇ ) 2/12/2 4/8/4
  • Example 2-5 Example 2-6 Configuration B / A / BB / A / B Thickness ( ⁇ ////) ( ⁇ ) 2/12/2 2/12/2
  • Comparative Example 5 Comparative Example 6 Structure B / A / B B / A / B Thickness (B layer / A layer / B layer) ( ⁇ ) 2/12/2 2/12/2
  • polyester 5 and polyester 12 are melted in separate extruders, and laminated 5 is used to form polyester 5 (layer B) Z polyester 12 (layer A) Z polyester 5 (layer B)
  • the layer-laminated polyester resin was extruded into a cooling drum having a surface temperature of 30 ° C and rapidly cooled to obtain an unstretched film having a thickness of about 250 m. Next, after stretching 3.8 times in the machine direction at 75 ° C, it is pre-heated (heat treated) in a tenter and then stretched 4.1 times at 80 ° C. Heat treatment was performed at 205 ° C. for 5 seconds to obtain a 16 ⁇ m-thick laminated polyester film.
  • Layer B Layer ZA Layer ZB layer had a thickness of 2 ⁇ m / 12 ⁇ m / 2 ⁇ m.
  • the characteristics of the obtained film are shown in Table 11 below. This film was a film with a small thickness fluctuation and good hand-cutting property, and also excellent in film formation stability.
  • Layer B of Polyester Film ZA Layer A laminated polyester film was prepared in the same manner as in Example 3-1 except that the thickness configuration of the ZB layer was 4 ⁇ m / 8 ⁇ m / 4 ⁇ m.
  • the properties of the obtained film are shown in Table 11 below. This film was a film having a small thickness runout and a good hand cutting property, and also excellent in film formation stability.
  • a laminated polyester film was prepared in the same manner as in Example 3-1 except that polyester 15 was used as a raw material for the layer A.
  • the properties of the resulting film are shown in Table 12 below. This film was a film with small thickness fluctuation and good hand-cutting property, and also excellent in film formation stability.
  • the polyester 15 pellets were melted by an extruder, and the polyester resin was extruded using a single-layer die into a cooling drum having a surface temperature of 25 ° C. and rapidly cooled to obtain an unstretched film having a thickness of about 250 ⁇ m.
  • pre-heat (heat treatment) process in the tenter was stretched 4.1 times at 80 ° C, then heat-treated at 190 ° C for 5 seconds.
  • the properties of the resulting film are shown in Table 12 below. This film was a film having a small thickness runout and a good hand cutting property, and also excellent in film formation stability.
  • a laminated polyester film was prepared in the same manner as in Example 3-1 except that polyester 16 was used as a raw material of the layer A and the heat treatment temperature after the transverse stretching was 225 ° C.
  • the properties of the obtained film are shown in Table 13 below. This film was a film having a small thickness runout and a good hand cutting property, and also excellent in film formation stability.
  • Example 3-6 A laminated polyester film was obtained in the same manner as in Example 3-1 except that the heat treatment temperature after the transverse stretching was 190 ° C. The properties of the resulting film are shown in Table 13 below. This film was a film with a small thickness fluctuation and good hand-cutting properties, and also excellent in film formation stability.
  • a laminated polyester film was prepared in the same manner as in Example 3-6, except that polyester 3 was used as the raw material of the A layer.
  • the properties of the resulting film are shown in Table 14 below. This film was not easy to cut.
  • a laminated polyester film was prepared in the same manner as in Example 3-1 except that polyester 17 was used as a raw material of the layer A and the heat treatment temperature after the transverse stretching was 220 ° C. Table 14 shows the properties of the obtained film. This film had poor hand-cutting properties.
  • a laminated polyester film was prepared in the same manner as in Example 3-1 except that polyester 18 was used as a raw material of the layer A and the heat treatment temperature after the transverse stretching was 230 ° C.
  • the characteristics of the obtained film are shown in Table 15 below. This film had poor hand-cutting properties.
  • a laminated polyester film was obtained in the same manner as in Example 3-1 except that the heat treatment temperature after the transverse stretching was 230 ° C.
  • the properties of the obtained film are shown in Table 15 below.
  • This film was a film with very good hand-cutting properties. Since the force film was easily torn too easily, the winding process was easily broken in the SLT process, and it was very difficult to wind the film into a roll.
  • Layer B of Polyester Film ZA Layer A laminated polyester film was prepared in the same manner as in Example 3-1 except that the thickness composition of the ZB layer was 5 ⁇ m / 6 ⁇ m / 5 ⁇ m. The properties of the obtained film are shown in Table 16 below. This film had poor hand-cutting properties.
  • Example 3-1 Example 3-2 Configuration B / A / BB / A / B Thickness (B layer / A layer / B layer) ( ⁇ ) 2/12/2 4/8/4
  • Example 3-3 Example 3-4 Configuration B / A / B ⁇ ⁇ Thickness (B layer / A layer / B layer) ( ⁇ ) 2/12/2 16
  • Example 3-5 Example 3 6 Configuration B / A / B B / A / B Thickness (B layer / A layer / B layer) ( ⁇ ) 2/12/2 2/12/2
  • Comparative Example 7 Comparative Example 8 Configuration B / A / B B / A / B Thickness (B layer / A layer / B layer) ( ⁇ ) 2/12/2 2/12/2
  • Comparative Example 9 Comparative Example 10 Structure B / A / B B / A / B Thickness (B layer / A layer / B layer) (jum) 2/12/2 2/12/2
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • IP A is isophthalic acid
  • CHDM 1, 4 Cyclohexanedicarboxylic methanol to Shikuro
  • PETG was polymerized CHDM 32 mole 0/0 both 1, 4-cyclohexylene Xanthimethanol and PETG mean “EASTAR 6763” (trade name) manufactured by Eastman Chemical Company, respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

 ポリブチレンテレフタレートと共重合ポリエステルまたは非晶性ポリエステルの少なくとも一種とを含むポリエステル層(A層)を有する二軸延伸ポリエステルフィルムであって、(1)又は(2)の項目を満足することを特徴とする。(1)ポリエステル層(A層)のDSC昇温測定による融点が1つ存在し、ポリエステルフィルムの長手方向および幅方向の端列抵抗値が共に100N以下である。(2)最大長さが1μm以上の未相溶のポリブチレンテレフタレート塊であって、A層の断面に存在するポリブチレンテレフタレート塊の平均個数が100μm2当たり1.0個以下であり、且つ、ポリエステルフィルムの長手方向および幅方向の端列抵抗値が100N以下である。係るフィルムは、厚さ振れが少なく、且つ、手切れ性が良く、工業資材、医薬品、衛生資材、食品などの包装材料として好適である。

Description

明 細 書
二軸延伸ポリエステルフィルム
技術分野
[0001] 本発明は二軸延伸ポリエステルフィルムに関する。詳しくは、工業資材、医薬品、衛 生資材、食品などの包装材料の構成材料として好適であり、且つ、厚さ振れが少な いと共に、手切れ性が良い性質を有する二軸延伸ポリエステルフィルムに関する。 背景技術
[0002] 従来、工業資材、医薬品、衛生資材、食品などの包装材で手切れ性が良いことを 求められることが多ぐ例えば、菓子、粉薬などの小袋包装材では、手切れ性が良い と内容物を取出しやす ヽと 、う大きなメリットがある。
[0003] こうした手切れ性を出す材料としては、セロハン、セロハンに塩ィ匕ビュル 酢酸ビュル 共重合体をコーティングした、所謂、防湿セロハン、セロハンに塩ィ匕ビ -リデンをコ一 ティングしたフィルム (Kコートセロハン)等が使用されて!、る。
[0004] しカゝしながら、セロハン、防湿セロハン、 Kコートセロハン等は優れた手切れ性を有 するものの、湿度によってフィルムの特性が変わったり、印刷特性が悪力つたりする。 また、基材であるセロハンは、高価であり、将来的に供給面での不安もある。さらに、 Kコートセロハンについては、環境面の問題 (燃焼時ダイォキシンの発生の可能性) から、使い難い状況となっている。さらに、アルミニウム箔についても環境面力もその 使用を控える傾向となって 、る。
[0005] こうした流れの中で、セロハンの代わりにポリエステルフィルムを手切れ性の良い包 材として使うことが提案されている(特許文献 1参照)。ポリエステルフィルムは、機械 的特性、寸法安定性、耐熱性、耐水性、透明性など優れた特性により包装材料とし て使用されているが、その優れた機械的特性が災いして、手切れ性が悪いという問 題点を有している。
[0006] ポリエステルフィルムの手切れ性が悪 ヽと ヽぅ問題点を解決するために、例えば、 一軸方向に配向したポリエステルフィルム(特許文献 2参照)、ジエチレングリコール 成分などを共重合させたポリエステル榭脂から成るフィルム (特許文献 3参照)、低分 子量のポリエステル榭脂を使用したポリエステルフィルム (特許文献 4参照)などが提 案されている。し力しながら、一軸方向に配向したポリエステルフィルムは、配向方向 へは直線的に容易に切れるが配向方向以外には切れにくい問題点があり、ジェチレ ングリコール成分などを共重合させたポリエステル榭脂を使用したポリエステルフィル ムは、共重合により本来の特性が失われるという欠点を有している。また、低分子量 のポリエステル榭脂を使用したポリエステルフィルムは、延伸工程でのフィルム破断 のトラブルが発生しやす 、欠点を有し、実用的ではな!/、。
[0007] また、配向を崩壊させた層を介在させる方法も提案されて ヽる (特許文献 5及び 6参 照)。し力しながら、この方法では、配向崩壊速度を均一にコントロールすることが困 難であるため、ポリエチレンテレフタレート(PET)単体の二軸延伸ポリエステルフィル ム(PETフィルム)に比べて厚さ振れが大きくなる問題点がある。
[0008] さらに、非晶性ポリエステルを混合する方法 (特許文献 7参照)や非晶性ポリエステ ル層を介在させる方法も提案されている(特許文献 8参照)。しカゝしながら、非晶性ポ リエステルは、フィルム化した場合、結晶化ポリエステルよりも厚さ振れが大きいので、 これらの方法も PETフィルムと同等の厚さ振れのフィルムを得ることが困難である。
[0009] また、結晶性が高 ヽポリブチレンテレフタレート(PBT)を混合する方法が提案され ている(特許文献 9参照)。し力しながら、この方法の様にポリブチレンテレフタレートと 他のポリエステルを単純に混合するだけでは厚さ振れ力 SpETフィルムと同等までに は改善されない問題がある。
[0010] 特許文献 1:特開平 5— 104618号公開公報
特許文献 2:特公昭 55 - 8551号公報
特許文献 3:特公昭 56 - 50692号公報
特許文献 4:特公昭 55— 20514号公報
特許文献 5:特公開 5— 104618号公報
特許文献 6:特願平 2002-371183号公報
特許文献 7:特公開 2003—155403号公報
特許文献 8:特公開 2003— 220678号公報
特許文献 9:特願平 2002 - 300428号公報 発明の開示
発明が解決しょうとする課題
[0011] 本発明は上記実情に鑑みなされたものであり、その目的は、厚さ振れが少なぐ手 切れ性が良い、例えば、包装用として好適な二軸延伸ポリエステルフィルムを提供す ることにある。
課題を解決するための手段
[0012] 本本発明者らは、これらの課題を解決すべく鋭意検討した結果、特定の構成から 成る二軸延伸ポリエステルフィルム力 厚さ振れが少なぐ且つ、手切れ性が良いと の知見を得、本発明を完成するに至った。
[0013] 本発明は、上記の知見に基づき完成されたものであり、本発明の前記の目的は、 以下の第 1発明および第 2発明によって達成される。
[0014] 第 1発明の要旨は、ポリブチレンテレフタレートと共重合ポリエステルまたは非晶性 ポリエステルの少なくとも一種とを含むポリエステル層(A層)を有する二軸延伸ポリェ ステルフィルムであって、ポリエステル層(A層)が DSC昇温測定による融点を 1つ有 し、且つ、ポリエステルフィルムの長手方向および幅方向の端列抵抗値が共に 100N 以下であることを特徴とする二軸延伸ポリエステルフィルムに存する。
[0015] 第 2発明の要旨は、ポリブチレンテレフタレートと共重合ポリエステルまたは非晶性 ポリエステルの少なくとも一種とを含むポリエステル層(A層)を有する二軸延伸ポリェ ステルフィルムであって、 A層の断面に存在する最大長さが 1 μ m以上の未相溶のポ リブチレンテレフタレート塊の平均個数が 100 m2当たり 1. 0個以下であり、且つ、 ポリエステルフィルムの長手方向および幅方向の端列抵抗値が 100N以下であること を特徴とする二軸延伸ポリエステルフィルムに存する。
[0016] 第 3発明の要旨は、ポリブチレンテレフタレートと共重合ポリエステルを含むポリエス テル層 (Afi)を有する二軸延伸ポリエステルフィルムであって、 A層の融点が 245°C 以下であり、且つ、フィルム長手方向の端列抵抗値が 30— 100Nであることを特徴と する二軸延伸ポリエステルフィルムに存する。
発明の効果 [0017] 本発明によれば、厚さ振れの少なぐ且つ、手切れ性の良いと共に、製膜安定性、 加工性および機械的特性に優れた二軸延伸ポリエステルフィルムを得ることが出来 る。
発明を実施するための最良の形態
[0018] 以下、本発明を詳細に説明する。先ず、前記の各発明において、使用される A層の ポリエステルフィルムに含まれる各成分について説明する。
[0019] A層に含まれるポリブチレンテレフタレートとは、酸成分としてのテレフタル酸とグリコ ール成分としての 1, 4 ブタンジオールとから成るポリエステルで代表され、公知の 製法で製造することが出来る。力かるポリマーは、ホモポリマーであってもよぐまた第 3成分を共重合させたものでもよ 、。
[0020] 共重合ポリエステルとは、酸成分としてのテレフタル酸またはイソフタル酸とグリコー ル成分としてのエチレングリコールと力 成るポリエステルで代表され、公知の製法で 製造することが出来る。また、他の共重合成分を共重合させてもよい。
[0021] 他の共重合成分としての酸成分としては、アジピン酸、ァゼライン酸、セバシン酸、 デカンジカルボン酸などの脂肪族ジカルボン酸、フタル酸、 2, 6 ナフタレンジカル ボン酸、 2, 7 ナフタレンジカルボン酸、 1, 5 ナフタレンジカルボン酸、ジフエノキシ エタンジカルボン酸、ジフエ-ルジカルボン酸、ジフエ-ルエーテルジカルボン酸、ァ ンスラセンジカルボン酸などの芳香族カルボン酸などが挙げられる。また、アルコー ル成分としては、ジエチレングリコール、プロピレングリコール、ネオペンチルグリコー ル、ブタンジオール、ペンタンジオール、へキサンジオール等の脂肪族ジオール、ポ リエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリ アルキレングリコール等が挙げられる。これらは単独あるいは 2種以上を使用すること が出来る。
[0022] 非晶性ポリエステルとは、実質的に結晶性を示さないポリエステル榭脂を指す。す なわち、ガラス転移温度力も融点までの温度領域において、その榭脂を放置した際 に、結晶化度が 5%以下のポリエステルのことである。このような非晶性ポリエステルと しては、例えば、ポリエチレンテレフタレートを酸変性および Zまたはジオール変性し て得られる非晶性共重合ポリエステルが挙げられる。使用される酸変性成分としては 、テレフタル酸、イソフタル酸、アジピン酸、ァゼライン酸、セバシン酸、 2, 6 ナフタレ ンジカルボン酸、 1, 4ーシクロへキサンジカルボン酸などが挙げられる。また、ジォー ル変性成分としては、エチレングリコール、 1, 4 ブタンジオール、ジエチレングリコー ル、トリエチレングリコール、ネオペンチルグリコール、 1, 4ーシクロへキサンジメタノー ル、ポリエチレングリコール等が挙げられる。前述の非晶性ポリエステル榭脂の中でも 、耐熱性、力学的特性、透明性などの観点から、テレフタル酸を主とする二塩基酸成 分と 1, 4ーシクロへキサンジメタノールを 10— 70モル0 /0含むジオール成分とからと成 るポリエステル榭脂が好適である。
[0023] 本発明の二軸延伸ポリエステルフィルムは、 A層のみの単層構造のフィルムでもよく 、又は、 A層の少なくとも片面に A層の融点より高い融点を有するポリエステル層 (B 層)を積層した多層構造のフィルムであってもよい。 B層を積層することにより、二軸 延伸ポリエステルフィルムの機械的特性を向上させることが出来る。
[0024] B層を構成するポリエステルとしては、ジカルボン酸と、ジオール又はヒドロキシカル ボン酸とから重縮合によって得られるエステル基を含むポリマーを指す。ジカルボン 酸としては、テレフタル酸、イソフタル酸、アジピン酸、ァゼライン酸、セバシン酸、 2, 6 ナフタレンジカルボン酸、 1, 4ーシクロへキサンジカルボン酸などが挙げられ、ジ オールとしては、エチレングリコール、 1, 4 ブタンジオール、ジエチレングリコール、 トリエチレングリコール、ネオペンチルグリコール、 1, 4ーシクロへキサンジメタノール、 ポリエチレングリコール等が挙げられ、ヒドロキシカルボン酸としては、 p—ヒドロキシ安 息香酸、 6—ヒドロキシー 2 ナフトェ酸などが挙げられる。ジオール成分としては、ダリ コーノレ、エチレングリコーノレ、 1, 4 ブタンジオール、ジエチレングリコール、トリェチ レングリコール、ネオペンチルグリコール、 1, 4ーシクロへキサンジメタノール、ポリエ チレングリコール等が挙げられる。その製法としては、例えば、芳香族ジカルボン酸 の低級アルキルエステルとグリコールとの間でエステル交換反応をさせる力、ある ヽ は、芳香族ジカルボン酸とダリコールとを直接エステルイ匕させるかして、実質的に芳 香族ジカルボン酸のビスダリコールエステル又はその低重合体を形成し、次 、で得ら れた低重合体を減圧下、加熱して重縮合させる方法が採用される。
[0025] 力かるポリマーの代表的なものとして、ポリエチレンテレフタレート、ポリエチレン一 2 、 6ナフタレート等が挙げられる。これらのポリマーは、ホモポリマーであってもよぐま た第 3成分を共重合させたものでもよ 、。
[0026] B層の融点は、通常 A層の融点より高ぐ好ましくは 10°C以上高い温度である。具 体的には、 B層の融点は、通常 245°Cを超える温度である。
[0027] また、 B層の厚みは、通常 8 m以下、好ましくは 2— 6 mである。複数層の B層を 積層した多層構造の場合には、 B層の総厚みは、通常 8 m以下または A層の厚み の 50%以下である。
[0028] 本発明のポリエステルフィルムには、微粒子を含有させること力 フィルムの卷上げ 工程、塗工工程、蒸着工程などでの作業性を向上させる上で好ましい。使用される 微粒子としては、炭酸カルシウム、炭酸マグネシウム、硫酸カルシウム、硫酸バリウム 、リン酸リチウム、リン酸マグネシウム、リン酸カルシウム、フッ化リチウム、酸化アルミ- ゥム、酸化珪素、カオリン等の無機粒子、アクリル榭脂、グアナミン榭脂などの有機粒 子、触媒残差を粒子化させた析出粒子などを挙げることが出来るが、これらに限定さ れるものではない。これら粒子の粒径や量は、目的に応じ適宜決めることができる。 含有させる微粒子は、単成分でもよぐまた、 2成分以上を同時に使用してもよい。原 料ポリエステルに対する前記各粒子の配合方法は、特に限定されないが、例えば、 ポリエステルの重合工程に各粒子を添加する方法、原料ポリエステルと各粒子を溶 融混練する方法などが好適である。また、適宜、各種安定剤、潤滑剤、帯電防止剤 などを加えることも出来る。
[0029] 本発明の二軸延伸ポリエステルフィルムは、上述のポリエステル原料をエタストルー ダ一に代表される周知の溶融押出装置に供給し、当該ポリマーの融点以上の温度 に加熱して溶融し、次いでスリット状のダイより溶融ポリマーを押出しながら、回転冷 却ドラム状でガラス転移温度以下の温度になるよう急冷固化して実質的に非晶状態 の未配向シートを形成し、得られたシートを 2軸方向に延伸してフィルム化し、熱固定 を施して得られる。この場合、延伸方法は、逐次 2軸延伸でも同時 2軸延伸でもよい。 また、必要に応じて、熱固定を施す前または後に再度縦方向および Zまたは横方向 に延伸してもよい。本発明においては、包装材料として十分な寸法安定性、腰を得る ため、その延伸倍率は、面積倍率として通常 9倍以上、好ましくは 12倍以上である。 [0030] 本発明の延伸後の熱処理温度は、通常 A層の融解開始温度より 15°C低い温度以 上、好ましくは融解開始温度以上で融点以下である。熱処理温度が A層の融解開始 温度より 15°C低い温度未満の場合は、十分な引裂性が得られないことがあり、また、 熱処理温度が A層の融点を超える場合は、フィルムが容易に引裂けすぎるため、製 膜時の卷取り工程やスリット工程または加工時に容易に破断することがある。
[0031] 上述のようにして得られた本発明の二軸延伸ポリエステルフィルムの厚みは、通常 9一 50 μ m、好ましくは 12— 38 μ mである。
[0032] 次に、第 1発明について説明する。第 1発明は、ポリブチレンテレフタレートと共重 合ポリエステルまたは非晶性ポリエステルの少なくとも一種とを含むポリエステル層(
A層)を有する二軸延伸ポリエステルフィルムであって、ポリエステル層(A )が DSC 昇温測定による融点を 1つ有し、且つ、ポリエステルフィルムの長手方向(MD)およ び幅方向(TD)の端列抵抗値が共に 100N以下であることを特徴とする。
[0033] A層の DSC昇温測定による融点を 1つにするには、 A層のポリエステル原料である ポリブチレンテレフタレートと共重合ポリエステルおよび Zまたは非晶性ポリエステル との割合を調整して、フィルムにしたときの DSC昇温測定による融点が 1つだけ存在 する様に設計する。
[0034] 二軸延伸ポリエステルフィルムの長手方向および幅方向の端列抵抗は、 100N以 下であり、その長手方向の端列抵抗は、 30— 100Nが好適である。端列抵抗が 100 Nを超える場合は、フィルムの引裂性が損なわれることがある。フィルムの長手方向の 端列抵抗が 30N未満の場合は、フィルムが容易に引裂け過ぎて、加工時に破断した りすることがある。そして、前述の引裂性は、 1軸延伸後、通常 A層の融解開始温度よ り 15°C低!、温度以上、好ましくは融解開始温度以上で融点以下で熱処理を行うこと により達成される。なお、 A層の融点は、通常 245°C以下である。
[0035] 上述の特性を有する第 1発明の二軸延伸ポリエステルフィルムは、厚さ振れが少な ぐ且つ、手切れ性が良いフィルムである。特に、第 1発明の二軸延伸ポリエステルフ イルムの厚さ振れは、長手方向の最大厚みと最小厚みの差の平均値 (厚さ振れ Rp) で、好ましくはフィルムの厚みの 5%以下であり、幅方向の最大厚みと最小厚みの差 の平均値 (厚さ振れ Rv)で、好ましくはフィルムの厚みの 5%以下である。 [0036] 第 2発明について説明する。第 2発明は、ポリブチレンテレフタレートと共重合ポリェ ステルまたは非晶性ポリエステルの少なくとも一種とを含むポリエステル層(A層)を有 する二軸延伸ポリエステルフィルムであって、 A層の断面に存在する最大長さが: L m以上の未相溶のポリブチレンテレフタレート塊の平均個数が 100 m2当たり 1. 0 個以下であり、且つ、ポリエステルフィルムの長手方向(MD)および幅方向(TD)の 端列抵抗値が 100N以下であることを特徴とする。
[0037] A層の断面を観察したとき、 1 μ m以上の最大長さを有する未相溶の ΡΒΤ塊の平 均個数が 100 m2当たり 1. 0個以下である。: L m以上の最大長さを有する未相溶 の PBT塊の平均個数が 1. 0個を超える場合は、厚さ振れが大きくなつたり、手切れ 性の悪 、箇所が存在したりすることがある。
[0038] A層の断面に存在する最大長さが 1 m長以上の未相溶の PBT塊の平均個数を 1 00 m2当たり 1. 0個以下にするには、 A層のポリエステル原料成分を事前に溶融 混合させたチップを使用することにより達成される。
[0039] 二軸延伸ポリエステルフィルムの長手方向および幅方向の端列抵抗は、 100N以 下、好ましくは 20— 80Nである。端列抵抗が 100Nを超える場合は、フィルムの引裂 性が損なわれることがある。端列抵抗が 20N未満の場合は、フィルムが容易に引裂 け過ぎて、加工時に破断したりすることがある。そして、前述の引裂性は、 1軸延伸後 、通常 A層の融解開始温度より 15°C低い温度以上、好ましくは融解開始温度以上で 融点以下で熱処理を行うことにより達成される。なお、 A層の融点は、好ましくは 240 °C以下である。
[0040] 上述の特性を有する第 2発明の二軸延伸ポリエステルフィルムは、厚さ振れが少な く、且つ、手切れ性が良いフィルムである。特に、第 2発明の二軸延伸ポリエステルフ イルムの厚さ振れは、長手方向の最大厚みと最小厚みの差の平均値 (厚さ振れ Rp) で、好ましくはフィルムの厚みの 5%以下であり、幅方向の最大厚みと最小厚みの差 の平均値 (厚さ振れ Rv)で、好ましくはフィルムの厚みの 5%以下である。
[0041] 第 3発明について説明する。第 3発明は、ポリブチレンテレフタレートと共重合ポリェ ステルを含むポリエステル層(A )を有する二軸延伸ポリエステルフィルムであって、 A層の融点が 245°C以下であり、且つ、フィルム長手方向(MD)の端列抵抗値が 30 一 100Nであることを特徴とする。
[0042] ポリブチレンテレフタレートと共重合ポリエステルの配合割合を調整して、 A層の融 点を通常 245°C以下、好ましく 240°C以下、より好ましくは 200— 235°Cの範囲となる 様に設計する。
[0043] 二軸延伸ポリエステルフィルムの長手方向の端列抵抗は、通常 30— 100N、好まし くは 30— 80Nである。端列抵抗が 100Nを超える場合は、フィルムの引裂性が損な われことがあり、また、 30N未満の場合は、フィルムが容易に引裂け過ぎて、加工時 に破断したりして包装材料として適さない。一方、フィルム幅方向(TD)の端列抵抗 は、通常 100N以下である。そして、前述の引裂性は、 1軸延伸後、通常 A層の融解 開始温度より 15°C低い温度以上、好ましくは融解開始温度以上で融点以下で熱処 理を行うことにより達成される。
[0044] 本発明の二軸延伸ポリエステルフィルムは、フィルムに意匠性を付与する印刷を施 し、その後、シーラント層とラミネートすることにより、手切れ性の良い包装材として使 用することが出来る。その代表的な例としては、薬の小袋包装を挙げることが出来る。 また、本発明のポリエステルフィルムに金属または金属酸ィ匕物力もなるノ リア一層を 蒸着によって設けたり、既存のノ リア一層をコートしたガスノ リア一フィルムは、手切 れ性の良いガスノ リーア包材として使用することが出来る。また、アルミニウム箔とラミ ネートしたものも、手切れ性の良いガスバリーァ包材として使用することが出来る。 実施例
[0045] 以下、本発明を実施例により更に詳細に説明するが、本発明はその要旨を超えな い限り、以下の実施例に限定されるものではない。なお、実施例および比較例中「部 」および「%」とあるのは「重量部」および「重量%」をそれぞれ示す。また、以下の諸 例で使用した測定法は次の通りである。
[0046] (1)ポリマーの極限粘度 [ η ] (dl/g)の測定方法:
ポリマー lgをフエノール Zテトラクロロェタン =50Z50 (重量比)の混合溶媒 100m 1中に溶解させ、ウベローデ型粘度計にて 30°Cで測定した。
[0047] (2)フィルム厚みの測定方法:
フィルムを 10枚重ねてマイクロメータ法にて厚さを測定し、得られた値を 10で除し て平均値を求めフィルム厚みとした。
[0048] (3)積層ポリエステル層の厚みの測定方法:
フィルム小片をエポキシ榭脂にて固定成形した後、ミクロトームで切断し、フィルム の断面を透過型電子顕微鏡写真にて観察した。その断面のうちフィルム表面とほぼ 平行に 2本、明暗によって界面が観察される。その 2本の界面とフィルム表面までの 距離を 10枚の写真力も測定し、平均値を積層厚さとした。
[0049] (4)融解開始温度、融点の測定方法:
融解開始温度 (Tim)融点 (Tpm)の測定はパーキンエルマ一性示差走査カロリー メーター DSC7型を使用して測定した。 DSC測定条件は以下の通りである。すなわ ち、試料フィルム 6mgを DSC装置にセットし、 300°Cの温度で 5分間溶融保持した後 、液体窒素にて急冷した。急冷試料を 0°Cより 10°CZ分の速度で昇温し、 JIS K71 21の DSC曲線の読み方に従い融点を検知した。
[0050] (5)引張破断強度の測定方法:
引張り試験機モデル 2001型((株)インテスコ製)を使用し、温度 23°C、湿度 50% RHに調節された室内において、長さ(チャック間) 50mm、幅 15mmの試料フィルム を 200mmZ分の歪み速度で引張り、フィルム破断時の荷重を測定し、下記式により 引張破断強度を求めた。
引張破断強度 (MPa) =切断時の荷重 (N) Z試料フィルムの断面積 (mm2)
[0051] (6)厚さ振れの測定方法:
安立電気社製連続厚み測定機を使用して、長手方向に 9mのフィルムの厚みを測 定し、 3m毎の最大厚みと最小厚みの差の平均値を Rp3、幅方向 lm分を最大厚み と最小厚みの差の 10点平均値を Rvとした。
[0052] (7)端列抵抗の測定方法:
JIS C2318— 1975の測定方法で平均値を端列抵抗値とした。
[0053] (8)引裂性の測定方法:
フィルムに切れ込みを入れずに、スムーズに手で引き裂けるかどうかを以下の基準 で評価した。評価は、長手方向(MD)および幅方向(TD)に対して、それぞれ行った 評価 A:容易に手で引き裂くことができるもの、
評価 B:比較的容易には手で引き裂くことができるもの、
評価 C:容易には手で引き裂くことができな 、もの、
[0054] (9) PBT塊の測定方法:
フィルム小片をエポキシ榭脂にて固定成形した後、ミクロトームで切断し、低温ブラ ズマ灰化装置で灰化後、フィルムの断面を透過型電子顕微鏡写真にて観察した。そ の断面のうち未相溶の PBT塊は明暗によって観察され、 100 m2分の観察したとき の 1 m長以上の PBT塊の個数を計測した。これをフィルム 10箇所について行い、 平均値を PBT塊の個数とした。
[0055] 後述の実施例および比較例にて使用したポリエステル原料は、次の方法にて製造 した。
[0056] <ポリエステル 1の製造法 >
ジカルボン酸成分としてテレフタル酸、多価アルコール成分として 1. 4ブタンジォ ールをそれぞれ使用し、常法の溶融重縮合法で製造した。得られたポリエステル原 料の極限粘度([ r? ])は 0. 80dlZgで、原料力も得られるポリエステルフィルムの融解 開始温度 (Tim)は 213°C、融点 (Tpm)は 222°Cであった。
[0057] <ポリエステル 2の製造法 >
ジカルボン酸成分としてイソフタル酸およびテレフタル酸、多価アルコール成分とし てエチレングリコールをそれぞれ使用し、常法の溶融重縮合法で製造した。ジカルボ ン酸成分中のイソフタル酸含量は 22モル0 /。であった。このポリエステル原料の極限 粘度([ r? ])は 0. 69dlZgで、この原料力 得られるポリエステルフィルムの融解開始 温度(Tim)は 175°C、融点(Tpm)は 196°Cであった。
[0058] <ポリエステル 3の製造法 >
ジカルボン酸成分としてイソフタル酸およびテレフタル酸、多価アルコール成分とし てエチレングリコールをそれぞれ使用し、常法の溶融重縮合法で製造した。ジカルボ ン酸成分中のイソフタル酸含量は 15モル0 /。であった。このポリエステル原料の極限 粘度([ r? ])は 0. 69dlZgで、この原料力 得られるポリエステルフィルムの融解開始 温度(Tim)は 198°C、融点(Tpm)は 220°Cであった。 [0059] <ポリエステル 4の製造法 >
PETG (イーストマンケミカル社製 「EASTAR 6763」(商品名))を使用した。こ のポリエステル原料の極限粘度([ ])は、 0. 75dlZg、 1, 4ーシクロへキサンジメタノ ール(CHDM)の含有量は 32モル%であった。
[0060] <ポリエステル 5の製造法 >
ジカルボン酸成分としてテレフタル酸、多価アルコール成分としてエチレングリコール をそれぞれ使用し、常法の溶融重縮合法にて、平均粒径 2. 5 /z mの非晶質シリカを 0. 18部含有する、極限粘度([ 7? ])が 0. 70dl/gのポリエステルチップを得た。この 原料力も得られるポリエステルフィルムの融解開始温度 (Tim)は 242°C、融点 (Tpm )は 254°Cであった。
[0061] <ポリエステル 6の製造法 >
ポリエステル 1を 50部とポリエステル 2を 50部ブレンドした後、二軸押出機で溶融混 鍊しチップ化した。ポリエステル 6に含まれるポリブチレンテレフタレートの量は 50%、 ジカルボン酸成分中のイソフタル酸含量は 11モル%であった。この原料から得られ るポリエステルフィルムの融解開始温度 (Tim)は 202°C、融点 (Tpm)は 213°C、 22 2°Cのダブルピークであった。
[0062] <ポリエステル 7の製造法 >
ポリエステル 3を 50部とポリエステル 6を 50部ブレンドした。ポリエステル 7に含まれ るポリブチレンテレフタレートの量は 25%、ジカルボン酸成分中のイソフタル酸含量 は 13モル%であった。この原料力も得られるポリエステルフィルムの融解開始温度( Tim)は 195°C、融点(Tpm)は 215°Cであった。
[0063] <ポリエステル 8の製造法 >
ポリエステル 1を 25部とポリエステル 2を 50部とポリエステル 5を 25部ブレンドした後 、二軸押出機で溶融混鍊しチップィ匕した。ポリエステル 8に含まれるポリブチレンテレ フタレートの量は 25%、ジカルボン酸成分中のイソフタル酸含量は 11モル%であつ た。この原料得られるポリエステルフィルムの融解開始温度 (Tim)は 195°C、融点 (T pm)は 217°Cであった。
[0064] <ポリエステル 9の製造法 > ポリエステル 1を 50部とポリエステル 4を 50部ブレンドした後、二軸押出機で溶融混 鍊しチップ化した。ポリエステル 9に含まれるポリブチレンテレフタレートの量は 50%、 ジオール成分中の 1, 4ーシクロへキサンジメタノール含量は 16モル0 /。であった。この 原料力も得られるポリエステルフィルムの融解開始温度 (Tim)は 150°C、融点 (Tpm )は 200°Cであった。
[0065] <ポリエステル 10の製造法 >
ポリエステル 1を 25部とポリエステル 3を 50部とポリエステル 4を 25部ブレンドした後 、二軸押出機で溶融混鍊しチップィ匕した。ポリエステル 10に含まれるポリブチレンテ レフタレートの量は 25%、ジカルボン酸成分中のイソフタル酸量は 7. 5モル0 /0、ジォ ール成分中の 1, 4ーシクロへキサンジメタノール含量は 8モル%であった。この原料 力 得られるポリエステルフィルムの融解開始温度 (Tim)は 170°C、融点 (Tpm)は 2 00。Cであった。
[0066] くポリエステル 11の製造法 >
ポリエステノレ 2を 25咅とポリエステノレ 5を 25咅とポリエステノレ 6を 50咅ブレンド、した。 ポリエステル 11に含まれるポリブチレンテレフタレートの量は 25%、ジカルボン酸中 のイソフタル酸量は 11モル0 /。であった。この原料から得られるポリエステルフィルムの 融解開始温度 (Tim)は 195°C、融点 (Tpm)は 212°C、 233°Cのダブルピークであつ た。
[0067] <ポリエステル 12の製造法 >
ポリエステル 1を 25部とポリエステル 3を 75部ブレンドした。ポリエステル 12に含ま れるポリブチレンテレフタレートの量は 25%、ジカルボン酸中のイソフタル酸量は 11 モル%であった。この原料力 得られたポリエステルフィルムの融解開始温度 (Tim) は 195°C、融点(Tpm)は 219°Cであった。
[0068] <ポリエステル 13の製造法 >
ポリエステル 1を 25部とポリエステル 2を 50部とポリエステル 5を 25部ブレンドした。 ポリエステル 13に含まれるポリブチレンテレフタレートの量は 25%、ジカルボン酸中 のイソフタル酸量は 11モル0 /。であった。この原料から得られたポリエステルフィルム の融解開始温度 (Tim)は 195°C、融点 (Tpm)は 212°C、 233°Cのダブルピークで あった。
[0069] <ポリエステル 14の製造法 >
ジカルボン酸成分としてイソフタル酸およびテレフタル酸、多価アルコール成分とし てエチレングリコールを使用し、常法の溶融重縮合法で製造した。ジカルボン酸成分 中のイソフタル酸含量は 8モル0 /。であった。このポリエステル原料の極限粘度([ η ]) =0. 69dlZgで、この原料力 得られるポリエステルフィルムの融解開始温度 (Tim) = 213°C、融点(Tpm) = 222°Cであった。
[0070] <ポリエステル 15の製造法 >
ポリエステル 1を 50部とポリエステル 2を 50部ブレンドした。得られたポリエステル 15 に含まれるポリブチレンテレフタレートの量は 50%、ジカルボン酸成分中のイソフタル 酸含量は 11モル%であった。この原料カゝら得られるポリエステルフィルムの融解開始 温度 (Tim) = 195°C、融点(Tpm) = 218°Cであった。
[0071] くポリエステル 16の製造法〉
ポリエステル 1を 25部とポリエステル 14を 75部ブレンドした。得られたポリエステル 1 6に含まれるポリブチレンテレフタレートの量は 25%、ジカルボン酸成分中のイソフタ ル酸含量は 6モル%であった。この原料得られるポリエステルフィルムの融解開始温 度 (Tim) = 210°C、融点(Tpm) = 232°Cであった。
[0072] <ポリエステル 17の製造法 >
ポリエステル 1を 50部とポリエステル 5を 50部ブレンドした。得られたポリエステル 17 に含まれるポリブチレンテレフタレートの量は 50%、ジカルボン酸成分中のイソフタル 酸含量は 0モル%であった。この原料カゝら得られるをポリエステルフィルムの融解開 始温度 (Tim) = 224°C、融点(Tpm) = 238°Cであった。
[0073] <ポリエステル 18の製造法 >
ポリエステル 1を 10部とポリエステル 3を 10部とポリエステル 5を 80部ブレンドした。 得られたポリエステル 18に含まれるポリブチレンテレフタレートの量は 10%、ジカル ボン酸成分中のイソフタル酸含量は 1. 5モル%であった。この原料得られるポリエス テルフィルムの融解開始温度 (Tim) = 234°C、融点(Tpm) = 248°Cであった。
[0074] <実施例 1 1一 1 6及び比較例 1一 4 > これらの諸例は第 1発明の実施態様の説明のためのものである。
[0075] 実施例 1 1 :
ポリエステル 5とポリエステル 7のペレットをそれぞれ別の押出機で溶融し、積層ダイ を使用してポリエステル 5 (B層) Zポリエステル 7 (A層) Zポリエステル 5 (B層)の構 成の 2種 3層積層ポリエステル榭脂を表面温度 30°Cの冷却ドラムに押出し、急冷し、 厚さ約 250 mの未延伸フィルムを得た。次いで、 70°Cにて縦方向に 3. 6倍延伸し た後、テンター内で予熱 (熱処理)工程を経て 80°Cで 4. 3倍の横延伸し、次いで 20 0°Cで 5秒間の熱処理を行い、厚さ 16 μ mの積層ポリエステルフィルムを得た。 B層 ZA層 ZB層の厚み構成は、 2 μ mm/ 12 μ m/2 μ mだった。得られたフィルムの 特性を下記表 1に示す。このフィルムは、厚さ振れが少なぐ手切れ性の良いフィルム であり、且つ、製膜安定性にも優れていた。
[0076] 実施例 1 2 :
ポリエステルフィルムの B層 ZA層 ZB層の厚み構成を 4 μ m/8 μ m/4 μ mとし た以外は実施例 1 1と同じ方法で積層ポリエステルフィルムを作成した。得られたフ イルムの特性を下記表 1に示す。このフィルムは、厚さ振れが少なぐ手切れ性の良 いフィルムであり、且つ、製膜安定性にも優れていた。
[0077] 実施例 1 3 :
ポリエステル 7のペレットを押出機に溶融し、単層ダイを使用してポリエステル榭脂 を表面温度 25°Cの冷却ドラムに押出して急冷し、厚さ約 250 μ mの未延伸フィルム を得た。次いで、 65°Cにて縦方向に 3. 6倍延伸した後、テンター内で予熱 (熱処理) 工程を経て 80°Cで 4. 3倍の横延伸し、次いで 200°Cで 5秒間の熱処理を行い、厚さ 16 mのポリエステルフィルムを得た。得られたフィルムの特性を下記表 2に示す。こ のフィルムは、厚さ振れが少なぐ手切れ性の良いフィルムであり、且つ、製膜安定性 にも優れていた。
[0078] 実施例 1 4 :
A層の原料にポリエステル 8を使用した以外は実施例 1 1と同じ方法で積層ポリエ ステルフィルムを作成した。得られたフィルムの特性を下記表 2に示す。このフィルム は、厚さ振れが少なぐ手切れ性の良いフィルムであり、且つ、製膜安定性にも優れ ていた。
[0079] 実施例 1 5 :
A層の原料にポリエステル 9を使用し、横延伸後の熱処理温度を 190°Cとした以外 は実施例 1 1と同じ方法で積層ポリエステルフィルムを作成した。得られたフィルム の特性を下記表 3に示す。このフィルムは、厚さ振れが少なぐ手切れ性の良いフィ ルムであり、且つ、製膜安定性にも優れていた。
[0080] 実施例 1 6 :
A層の原料にポリエステル 10を使用し、横延伸後の熱処理温度を 190°Cとした以 外は実施例 1—1と同様の方法で積層ポリエステルフィルムを得た。得られたフィルム の特性を下記表 3に示す。このフィルムは、厚さ振れが少なぐ手切れ性の良いフィ ルムであり、且つ、製膜安定性にも優れていた。
[0081] 比較例 1 :
A層の原料にポリエステル 6を使用した以外は実施例 1 1と同じ方法で積層ポリエ ステルフィルムを作成した。得られたフィルムの特性を下記表 4に示す。このフィルム は、手切れ性は良力つた力 厚さ振れが大き力つた。
[0082] 比較例 2:
A層の原料にポリエステル 11を使用した以外は実施例 1 1と同じ方法で積層ポリ エステルフィルムを作成した。得られたフィルムの特性を下記表 4に示す。このフィル ムは、手切れ性は良力つた力 厚さ振れが大き力つた。
[0083] 比較例 3 :
A層の原料にポリエステル 3を使用し、横延伸後の熱処理温度を 225°Cとした以外 は実施例 1 1と同じ方法で積層ポリエステルフィルムを作成した。得られたフィルム の特性を下記表 5に示す。このフィルムは、手切れ性は良力つた力 厚さ振れが悪か つ 7こ。
[0084] 比較例 4:
A層の原料にポリエステル 5を使用し、横延伸後の熱処理温度を 225°Cとした以外 は実施例 1—3と同様の方法でポリエステルフィルムを得た。得られたフィルムの特性 を下記表 5に示す。このフィルムは、厚さ振れは少な力つた、手切れ性が悪力つた。 [0085] [表 1]
Figure imgf000018_0001
[0086] [表 2] 実施例 1-3 実施例 1 - 4 構成 B/A/B 厚み(B層/ A層/ B層) (μπι) 16 2/12/2
PBT/IPA22モル%
共重合 ΡΕΤ(1:1) PBT/PET/IPA22モ
Α層樹脂の構成 混練りチップ 50部 + ル%共重合 PET(1:1:2)
IPA15七ル%共虽合 混練りチッフ 100咅 [5 PET50部
B層樹脂の構成 PET 熱処理温度(nc) 200 200
A層 PBT濃度(モル%) 25 25
A層 IPA濃度(モル%) 13 11
A層 CHDM濃度(モル%) 0 0
A Φ艇開 度
Figure imgf000019_0001
1 1Q5
Α φ ώ 91 i 7
1 no 弓 謹 ff強 jr ]? (TD) (MPa) 80 105 端列抵抗(MD)(N) 45 65 端列抵抗(TD)(N) 40 60 引裂き性 A A 厚さ振れ Rp3( m) 0.65 0.55 厚さ振れ Rv ( xm) 0.64 0.53
実施例 1-5 実施例 1-6 構成 B/A/B B/A/B 厚み(B層/ A層/ B層) (μπι) 2/12/2 2/12/2
PBT/PETG 1/IPA15モ
PBT/PETG(1:1)
Α層樹脂の構成 ル%共重合 PET(1:1:2) iiwm.リ ノ— ノ ノ 丄 ρ
混練りチップ 100部
B層樹脂の構成 PET PET 熱処理温度(°c) 190 190
A層 PBT濃度(モル%) 50 25
A層 IPA濃度(モル%) 0 7.5
A層 CHDM濃度(モル%) 16 8
A層融解開始温度(°C) 150 170
A層融点(°C) 200 200
B層融点(°C) 254 254 引張破断強度(MD) (MPa) 70 70 引張破断強度 (TD) (MPa) 80 80 端列抵抗(MD)(N) 50 50 端列抵抗 (TD)(N) 40 40 引裂き性 A A 厚さ振れ Rp3 ( m) 0.60 0.65 厚さ振れ Rv ( /x ni) 0.66 0.64 ]
比較例 1 比較例 2 構成 B/A/B B/A/B 厚み(B層/ A層/ B層) 2/12/2 2/12/2
PBT/IPA22モル%
Figure imgf000021_0001
A層樹脂の構成 共重合 PE (1: 1) 混練りチップ 50部 + 混練りチップ 100部 IPA22モル%共重合
PET25部 +PET25咅!^
B層樹脂の構成 PET PET 熱処理温度(°C) 200 200
A層 PBT濃度(モル%) 50 25
A層 IPA濃度(モル%) 11 11
A層 CHDM濃度(モル%) 0 0
A層融解開始温度(°C) 202 195
A層融点(°C) 213 222 212, 233
B層融点(°C) 254 254 引張破断強度(MD) (MPa) 80 110 引張破断強度 (TD) (MPa) 85 115 端列抵抗(MD)(N) 50 70 端列抵抗 (TDXN) 40 65 引裂き性 A A 厚さ振れ Rp3 ( β ΐτύ 1.25 1.70 厚さ振れ Rv z m) 1.08 1.56 ]
比較例 3 比較例 4
構成 B/A/B 賴
厚み(B層/ A層/ B層) (μΐη) 2/12/2 16
IPA15モル%共重合
Α肩樹脂の構成 PRT100部
PET100部
Β層樹脂の構成 PET ― 熱処理温度(°c) 225 225
A層 PBT濃度(モル%) 0 0
A層 IPA濃度(モル%) 15 0
A層 CHDM濃度(モル%) 0 0
A層融解開始温度(°C) 198 242
A層融点(°C) 220 254
B層融点(°C) 254 ― 引張破断強度(MD) (MPa) 70 220 引張破断強度 (TD) (MPa) 80 220 端列抵抗(MD)(N) 45 120 端列抵抗 (TDXN) 40 110 引裂き性 A C 厚さ振れ Rp3 (/x m) 1.09 0.65 厚さ振れ Rv ( m) 0.95 0.60
[0090] <実施例 2— 1 2— 7及び比較例 5— 6 >
これらの諸例は第 2発明の実施態様の説明のためのものである。
[0091] 実施例 2— 1:
ポリエステル 5とポリエステル 7のペレットをそれぞれ別の単軸押出機で溶融し、積 層ダイを使用してポリエステル 5 (B層) Zポリエステル 7 (A層) Zポリエステル 5 (B層) の構成の 2種 3層積層ポリエステル榭脂を表面温度 30°Cの冷却ドラムに押出して急 冷し、厚さ約 250 mの未延伸フィルムを得た。次いで、 70°Cにて縦方向に 3. 6倍 延伸した後、テンター内で予熱 (熱処理)工程を経て 80°Cで 4. 3倍の横延伸し、次 いで 200°Cで 5秒間の熱処理を行い、厚さ 16 μ mの積層ポリエステルフィルムを得た B層 ZA層 ZB層の厚み構成は、 2 μ ηι/12 μ m/2 μ mだった。得られたフィル ムの特性を下記表 6に示す。このフィルムは、厚さ振れが少なぐ手切れ性の良いフィ ルムであり、且つ、製膜安定性にも優れていた。
[0092] 実施例 2— 2 :
ポリエステルフィルムの B層 ZA層 ZB層の厚み構成を 4 μ m/8 μ m/4 μ mとし た以外は実施例 2— 1と同じ方法で積層ポリエステルフィルムを作成した。得られたフ イルムの特性を下記表 6に示す。このフィルムは、厚さ振れが少なく比較的手切れ性 の良 、フィルムであった。
[0093] 実施例 2— 3 :
ポリエステル 7のペレットを単軸押出機で溶融し、単層ダイを使用してポリエステル 榭脂を表面温度 25°Cの冷却ドラムに押出して急冷し、厚さ約 250 mの未延伸フィ ルムを得た。次いで、 65°Cにて縦方向に 3. 6倍延伸した後、テンター内で予熱 (熱 処理)工程を経て 80°Cで 4. 3倍の横延伸し、次いで 200°Cで 5秒間の熱処理を行い 、厚さ 16 mのポリエステルフィルムを得た。得られたフィルムの特性を下記表 7に示 す。このフィルムは、厚さ振れが少なぐ手切れ性の良いフィルムであり、且つ、製膜 安定性にも優れていた。
[0094] 実施例 2— 4 :
A層の原料にポリエステル 8を使用した以外は実施例 2— 1と同じ方法で積層ポリエ ステルフィルムを作成した。得られたフィルムの特性を下記表 7に示す。このフィルム は、厚さ振れが少なぐ手切れ性の良いフィルムであり、且つ、製膜安定性にも優れ ていた。
[0095] 実施例 2— 5 :
A層の原料にポリエステル 9を使用し、横延伸後の熱処理温度を 190°Cとした以外 は実施例 2— 1と同じ方法で積層ポリエステルフィルムを作成した。得られたフィルム の特性を下記表 8に示す。このフィルムは、厚さ振れが少なぐ手切れ性の良いフィ ルムであり、且つ、製膜安定性にも優れていた。
[0096] 実施例 2— 6 :
A層の原料にポリエステル 10を使用し、横延伸後の熱処理温度を 190°Cとした以 外は実施例 2— 1と同様の方法で積層ポリエステルフィルムを得た。得られたフィルム の特性を下記表 8に示す。このフィルムは、厚さ振れが少なぐ手切れ性の良いフィ ルムであり、且つ、製膜安定性にも優れていた。
[0097] 実施例 2— 7 :
A層の原料にポリエステル 12を使用し、ポリエステル 12のペレットを二軸押出機で 溶融させた以外は実施例 2— 1と同じ方法で積層ポリエステルフィルムを作成した。得 られたフィルムの特性を下記表 9に示す。このフィルムは、厚さ振れが少なぐ手切れ 性の良いフィルムであり、且つ、製膜安定性にも優れていた。
[0098] 比較例 5 :
A層の原料にポリエステル 12を使用し、ポリエステル 12のペレットを単軸押出機で 溶融させた以外は実施例 2— 7と同じ方法で積層ポリエステルフィルムを作成した。得 られたフィルムの特性を下記表 10に示す。このフィルムは、手切れ性は良かったが、 厚さ振れが大きかった。
[0099] 比較例 6 :
A層の原料にポリエステル 13を使用した以外は実施例 2— 1と同じ方法で積層ポリ エステルフィルムを作成した。 得られたフィルムの特性を下記表 10に示す。このフィ ルムは、手切れ性は良力つた力 厚さ振れが大き力つた。
[0100] [表 6]
実施例 2-1 実施例 2-2 構成 Β/Α/Β B/A/B 厚み(B層/ A層/ B層) (μπι) 2/12/2 4/8/4
ΡΒΤ/ΙΡΑ22モル% PBT/IPA22モル% 共重合 ΡΕ (1:1) 共重合 PE (1:1)
•M A / IS胃尉 Λ B§の摔 mPXi {ΰύΧ-W*. Y 'ソ)キノ 、ノリ—ノf V S口R Ρ Γ- li¾b站 3* V 'ン)千ノ 、ノ、>つノ。 ςηK) ¾ n|? 1_
IPA15モル%共重合 IPA15モル%共重合 ΡΕΤ50 ¾ PET50部
B層樹脂の構成 PET PET 押出機 単軸押出機 単軸押出機 熱処理温度(°c) 200 200
A層 PBT濃度(モル%) 25 25
A層 IPA濃度(モル%) 13 13
A層 CHDM濃度(モル%) 0 0
A層融解開始温度(°C) 195 195
A層融点(°C) 215 215
B層融点(°C) 254 254 引張破断強度(MD) (MPa) 95 130 引張破断強度 (TD) (MPa) 100 140 端列抵抗(MD)(N) 55 85 端列抵抗 (TD)(N) 50 75 引裂き性 A B
PBT塊(個/ 100 u rn 2) 0.0 0.0 厚さ振れ Rp3 ( m) 0.52 0.60 厚さ振れ Κν (μ πι) 0.56 0.52 ] 実施例 2-3 実施例 2 4 構成 B/A/B 厚み(B層/ A層/ B層) (μΐτι) 16 2/12/2
PBT/IPA22モル%
共重合 PET(1:1) PBT/PET/IPA22モ
/苜 月曰 ン 冉; 3乂 itB铺!f*りリ千 J フ。 en
ン ノ g[? - ノ Jし ¾ ±k重合 PFTil · 1 · , 9})
IPA15モル%共重合 混練りチップ 100部 PET50部
B層樹脂の構成 一 PET 押出機 単軸押出機 単軸押出機 熱処理温度(°c) 200 200
A層 PBT濃度(モル%) 25 25
A層 IPA濃度(モル%) 13 11
A層 CHDM濃度(モル%) 0 0
A層融解開始温度(°C) 195 195
A層融点(°C) 215 217
B層融点(°C) ― 254 引張破断強度(MD) (MPa) 75 100 引張破断強度 (TD) (MPa) 80 105 端列抵抗(MD)(N) 45 65 端列抵抗 (TDXN) 40 60 引裂き性 A A
PBT塊(個/ 100 m 2) 0.0 0.0 厚さ振れ Rp3 ( u rn) 0.65 0.55 厚さ振れ Rv ( m) 0.64 0.53 ] 実施例 2 5 実施例 2-6 構成 B/A/B B/A/B 厚み(Β層/ Α層/ Β層) (μπι) 2/12/2 2/12/2
PBT25咅 1VPETG25
P T/PETG(l-i ) nl /IPA15モ Jレ
Α層樹脂の構成
混練りチップ 100部 合 PET50部(1:1:2) 混練りチップ 100部
B層樹脂の構成 PET PET 押出機 単軸押出機 単軸押出機 熱処理温度(°C) 190 190
A層 PBT濃度(モル%) 50 25
A層 IPA濃度(モル%) 0 7.5
A層 CHDM濃度(モル%) 16 8
A層融解開始温度(°C) 150 170
A層融点(°C) 200 200
B層融点(°C) 254 254 引張破断強度(MD) (MPa) 70 70 引張破断強度 (TD) (MPa) 80 80 端列抵抗(MD)(N) 50 50 端列抵抗 (TDXN) 40 40 引裂き性 A A
PBT塊(個/ 100 m ^) 0.0 0.0 厚さ振れ Rp3 ( x m) 0.60 0.65 厚さ振れ Rv ( ^ m) 0.66 0.64 ]
Figure imgf000028_0001
J3/ Ir J
手 \X-> ) / )m / 眉ノ 、)1Π1_ノ 9/1 /9
PBT25咅 I5+IPA15モル
A層樹脂の構成
%共重合 PET75 ρβ
D •b)請掛 ¾T 機
曰の稱成 丄 抓屮'機 一直由梅 HH纏 埶机理 度 (V)
Α i層 PBT濃度(モリレ%) 25
A肩 IPA濃度(モリレ%) 11 r . H丄 U V丄 j V "― /0ノ πリ
AJ曽 牛開 59显皮 しリ iyt>
A/lral,a (し) O 1 τ
l (
B jgi¾5, し
引張 iRI#r茧度(ML) (M a
OCT
oO
顺グ U:K饥 UV UNノ DU
W^UffiixL、丄リノ 、ノ
引裂き性 A
PBT塊(個/ 100 ΜΙΏ 2) 0.2 厚さ振れ Rp3 (urn) 0.80 厚さ振れ Rv zm) 0.85
比較例 5 比較例 6 構成 B/A/B B/A/B 厚み(B層/ A層/ B層) (μπι) 2/12/2 2/12/2
PBT25部 +IPA22モ
ΡΒΤ25部 +IPA15モ
Α層樹脂の構成 ル%共重合 PET50部 ル%共重合 ΡΕΤ75部
+PET25
B層樹脂の構成 PET PET 押出機 単軸押出機 単軸押出機 熱処理温度(°c) 200 200
A層 PBT濃度(モル%) 25 25
A層 IPA濃度(モル%) 11 11
A層 CHDM濃度(モル%) 0 0
A層融解開始温度(°C) 195 195
A層融点(°C) 219 212, 233
B層融点(°C) 254 254 引張破断強度(MD) (MPa) 80 110 引張破断強度 (TD) (MPa) 85 115 端列抵抗(MD)(N) 50 70 端列抵抗 (TDXN) 40 65 引裂き性 A A
PBT塊(個/ 100 w m 2) 2.5 10.0 厚さ振れ Rp3 ( m) 1.35 1.70 厚さ振れ Rv ( x m) 1.40 1.56
[0105] <実施例 3—1— 1 6及び比較例 7— 11 >
これらの諸例は第 3発明の実施態様の説明のためのものである。
[0106] 実施例 3— 1:
ポリエステル 5とポリエステル 12のペレットをそれぞれ別の押出機で溶融し、積層ダ ィを使用してポリエステル 5 (B層) Zポリエステル 12 (A層) Zポリエステル 5 (B層)の 構成の 2種 3層積層ポリエステル樹脂を表面温度 30°Cの冷却ドラムに押出して急冷 し、厚さ約 250 mの未延伸フィルムを得た。次いで、 75°Cにて縦方向に 3. 8倍延 伸した後、テンター内で予熱 (熱処理)工程を経て 80°Cで 4. 1倍、横延伸し、次いで 205°Cで 5秒間の熱処理を行い、厚さ 16 μ mの積層ポリエステルフィルムを得た。 B 層 ZA層 ZB層の厚み構成は 2 μ m/12 μ m/2 μ mだった。得られたフィルムの特 性を下記表 11に示す。このフィルムは、厚さ振れが少なぐ手切れ性の良いフィルム であり、且つ、製膜安定性にも優れていた。
[0107] 実施例 3— 2 :
ポリエステルフィルムの B層 ZA層 ZB層の厚み構成を 4 μ m/8 μ m/4 μ mとし た以外は実施例 3—1と同じ方法でに積層ポリエステルフィルムを作成した。得られた フィルムの特性を下記表 11に示す。このフィルムは、厚さ振れが少なぐ手切れ性の 良いフィルムであり、且つ、製膜安定性にも優れていた。
[0108] 実施例 3— 3 :
A層の原料にポリエステル 15を使用した以外は実施例 3—1と同じ方法で積層ポリ エステルフィルムを作成した。得られたフィルムの特性を下記表 12に示す。このフィ ルムは、厚さ振れが少なぐ手切れ性の良いフィルムであり、且つ、製膜安定性にも 優れていた。
[0109] 実施例 3— 4 :
ポリエステル 15のペレットを押出機で溶融し、単層ダイを使用してポリエステル榭脂 を表面温度 25°Cの冷却ドラムに押出して急冷し、厚さ約 250 μ mの未延伸フィルム を得た。次いで、 65°Cにて縦方向に 3. 8倍延伸した後、テンター内で予熱 (熱処理) 工程を経て 80°Cで 4. 1倍、横延伸し、次いで 190°Cで 5秒間の熱処理を行い、厚さ 16 mのポリエステルフィルムを得た。得られたフィルムの特性を下記表 12に示す。 このフィルムは、厚さ振れが少なぐ手切れ性の良いフィルムであり、且つ、製膜安定 性にも優れていた。
[0110] 実施例 3— 5 :
A層の原料にポリエステル 16を使用し、横延伸後の熱処理温度を 225°Cにした以 外は実施例 3— 1と同じ方法で積層ポリエステルフィルムを作成した。得られたフィル ムの特性を下記表 13に示す。このフィルムは、厚さ振れが少なぐ手切れ性の良いフ イルムであり、且つ、製膜安定性にも優れていた。
[0111] 実施例 3— 6 : 横延伸後の熱処理温度を 190°Cとした以外は実施例 3— 1と同様の方法で積層ポリ エステルフィルムを得た。得られたフィルムの特性を下記表 13に示す。このフィルム は、厚さ振れが少なぐ手切れ性の良いフィルムであり、且つ、製膜安定性にも優れ ていた。
[0112] 比較例 7 :
A層の原料にポリエステル 3を使用した以外は実施例 3— 6と同じ方法で積層ポリエ ステルフィルムを作成した。得られたフィルムの特性を下記表 14に示す。このフィル ムは、手切れ性が悪力 た。
[0113] 比較例 8 :
A層の原料にポリエステル 17を使用し、横延伸後の熱処理温度を 220°Cとした以 外は実施例 3— 1と同じ方法で積層ポリエステルフィルムを作成した。得られたフィル ムの特性を下記表 14に示す。このフィルムは、手切れ性が悪カゝつた。
[0114] 比較例 9 :
A層の原料にポリエステル 18を使用し、横延伸後の熱処理温度を 230°Cとした以 外は実施例 3— 1と同じ方法で積層ポリエステルフィルムを作成した。得られたフィル ムの特性を下記表 15に示す。このフィルムは、手切れ性が悪カゝつた。
[0115] 比較例 10
横延伸後の熱処理温度を 230°Cとした以外は実施例 3— 1と同様の方法で積層ポリ エステルフィルムを得た。得られたフィルムの特性を下記表 15に示す。このフィルム は、手切れ性の非常に良いフィルムであった力 フィルムが容易に引き裂け過ぎるた め、巻き取り工程は SLT工程で容易く破断し、ロール状に巻き取ることが非常に困難 であった。
[0116] 比較例 11
ポリエステルフィルムの B層 ZA層 ZB層の厚み構成を 5 μ m/6 μ m/5 μ mとし た以外は実施例 3—1と同じ方法で積層ポリエステルフィルムを作成した。得られたフ イルムの特性を下記表 16に示す。このフィルムは、手切れ性が悪かった。
[0117] [表 11] 実施例 3 - 1 実施例 3-2 構成 B/A/B B/A/B 厚み(B層/ A層/ B層) (μπΐ) 2/12/2 4/8/4
PBT25部 +IPA15モ PBT25部 +IPA15モ
Α層樹旨 ω構成
ル%共重合 PET75部 ル%共重合 PET75部
B層樹脂の構成 PET PET 熱処理温度(°c) 205 205
A層 PBT濃度(モル%) 25 25
A層 IPA濃度(モル%) 11 11
A層融解開始温度 CC) 195 195
A層融点(°C) 217 217
B層融点(°C) 254 254 引張破断強度(MD) (MPa) 100 130 引張破断強度 (TD) (MPa) 100 140 端列抵抗(MDXN) 70 90 端列抵抗 (TDXN) 70 80 引裂き性 A B 製膜安定性 良好 良好 2]
実施例 3-3 実施例 3-4 構成 B/A/B 賴 厚み(B層/ A層/ B層) (μπι) 2/12/2 16
PBT50部 + IPA22モ PBT50部 + IPA22モ
Α層樹脂の構成
ル%共重合 PET50部 ル%共重合 PET50部
B層樹脂の構成 PET ― 熱処理温度(°c) 205 190
A層 PBT濃度(モル%) 50 50
A層 IPA濃度(モル%) 11 11
A層融解開始温度(°C) 195 195
A層融点(°C) 218 218
B層融点(°C) 254 ― 引張破断強度(MD) (MPa) 110 90 引張破断強度 (TD) (MPa) 110 90 端列抵抗(MD)(N) 60 60 端列抵抗 (TDXN) 60 60 引裂き性 A A 製膜安定性 良好 良好 3]
実施例 3 - 5 実施例 3 6 構成 B/A/B B/A/B 厚み(B層/ A層/ B層) (μπι) 2/12/2 2/12/2
PBT25部 +IPA8モル PBT25部 + IPA15モ
Α層樹脂の構成
%共重合 PET75邰 ル%共重合 ΡΕΤ75咅
B層樹脂の構成 PET PET 熱処理温度(°c) 225 190
A層 PBT濃度(モル%) 25 25
A層 IPA濃度(モル%) 6 11
A層融解開始温度(°C) 210 195
A層融点(°C) 232 217
B層融点(°C) 254 254 引張破断強度(MD) (MPa) 120 140 引張破断強度 (TO) (MPa) 130 150 端列抵抗(MDXN) 70 95 端列抵抗 (TDXN) 65 90 引裂き性 A A 製膜安定性 良好 良好 4]
比較例 7 比較例 8 構成 B/A/B B/A/B 厚み (B層/ A層/ B層) (μηι) 2/12/2 2/12/2
IPA15モル%共重合
■ Δx )層m J ΐ#¾ι脂曰の "ン拷 1丹 J
PET
B層樹脂の構成 PET PET 熱処理温度(°C) 190 220
A層 PBT濃度(モル%) 0 50
A層 IPA濃度(モル%) 15 0
A層融解開始温度(°C) 198 224
A層融点(°C) 220 238
B層融点(°C) 254 254 引張破断強度(MD) (MPa) 220 220 引張破断強度 (TD) (MPa) 230 230 端列抵抗(MDXN) 150 140 端列抵抗 (TDXN) 140 130 引裂き性 C C 製膜安定性 良好 良好 5]
比較例 9 比較例 10 構成 B/A/B B/A/B 厚み(B層/ A層/ B層) (jum) 2/12/2 2/12/2
PBT10部 +IPA15モ
PBT25部 +IPA15モ
A層樹脂の構成 ル%共重合 PET10部
ル%共重合 PET75部
Figure imgf000036_0001
B層樹脂の構成 PET PET 熱処理温度(°C) 230 230
A層 PBT濃度(モル%) 10 25
A層 IPA濃度(モル%) 1.5 11
A層融解開始温度(°C) 234 195
A層融点(°C) 248 217
B層融点(°C) 254 254 引張破断強度(MD) (MPa) 210 75 引張破断強度 (TD) (MPa) 220 75 端列抵抗(MD)(N) 150 25 端列抵抗 (TD)(N) 140 25 引裂き性 C A 製膜安定性 巻取工程、 スリットェ 良好
程で破断して製膜困難 6]
Figure imgf000037_0001
各表中、 PETはポリエチレンテレフタレート、 PBTはポリブチレンテレフタレート、 IP Aはイソフタル酸、 CHDMは 1, 4ーシクロへキサンジメタノール、 PETGは CHDMを 32モル0 /0共重合した 1, 4-シクロへキサンジメタノール、 PETGはイーストマンケミカ ル社製 「EASTAR 6763」(商品名))をそれぞれ意味する。

Claims

請求の範囲 [1] ポリブチレンテレフタレートと共重合ポリエステルまたは非晶性ポリエステルの少なく とも一種とを含むポリエステル層(A層)を有する二軸延伸ポリエステルフィルムであつ て、以下の何れかの項目を満足することを特徴とする二軸延伸ポリエステルフィルム
(1)ポリエステル層(A層)の DSC昇温測定による融点が 1つ存在し、ポリエステルフ イルムの長手方向および幅方向の端列抵抗値が共に 100N以下である。
(2) A層の断面に存在する最大長さが 1 μ m以上の未相溶のポリブチレンテレフタレ ート塊の平均個数が 100 /z m2当たり 1. 0個以下であり、且つ、ポリエステルフィルム の長手方向および幅方向の端列抵抗値が 1 OON以下である。
[2] A層がポリブチレンテレフタレートと共重合ポリエステルとを含むポリエステル層で、 その融点が 245°C以下であり、且つ、ポリエステルフィルム長手方向の端列抵抗値が
30— 100Nである請求項 1に記載のフィルム。
[3] A層の少なくとも片面に A層の融点より高い融点を有するポリエステル層(B層)を積 層する請求項 1又は 2に記載のフィルム。
[4] B層の厚みが 8 μ m以下である請求項 3に記載のフィルム。
[5] B層の融点が A層の融点より 10°C以上高い請求項 3又は 4に記載のフィルム。
[6] A層の融点が 245°C以下である請求項 1に記載のフィルム。
[7] ポリエステルフィルムの長手方向および幅方向の端列抵抗値が共に 30— 100Nで ある請求項 1又は 2に記載のフィルム。
PCT/JP2004/017087 2003-11-18 2004-11-17 二軸延伸ポリエステルフィルム WO2005049701A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04818928A EP1686148A4 (en) 2003-11-18 2004-11-17 BI-ORIENT POLYESTER FILM
US11/436,146 US7833614B2 (en) 2003-11-18 2006-05-16 Biaxially stretched polyester film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003387402A JP4610179B2 (ja) 2003-11-18 2003-11-18 二軸延伸ポリエステルフィルム
JP2003-387402 2003-11-18
JP2004034489A JP4693087B2 (ja) 2004-02-12 2004-02-12 二軸延伸ポリエステルフィルム
JP2004-034489 2004-02-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/436,146 Continuation-In-Part US7833614B2 (en) 2003-11-18 2006-05-16 Biaxially stretched polyester film

Publications (1)

Publication Number Publication Date
WO2005049701A1 true WO2005049701A1 (ja) 2005-06-02

Family

ID=34622162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017087 WO2005049701A1 (ja) 2003-11-18 2004-11-17 二軸延伸ポリエステルフィルム

Country Status (3)

Country Link
US (1) US7833614B2 (ja)
EP (1) EP1686148A4 (ja)
WO (1) WO2005049701A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016569A1 (ja) * 2004-08-11 2006-02-16 Mitsubishi Polyester Film Corporation 二軸延伸ポリエステルフィルム
JP2007160577A (ja) * 2005-12-11 2007-06-28 Mitsubishi Polyester Film Copp 二軸延伸ポリエステルフィルム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004073983A1 (ja) * 2003-02-24 2004-09-02 Mitsubishi Polyester Film Corporation 二軸延伸積層ポリエステルフィルム及び蓋材用ポリエステルフィルム
JP5481858B2 (ja) * 2007-06-07 2014-04-23 東レ株式会社 白色ポリエステルフィルムおよびそれを用いた面光源
FR2925060B1 (fr) * 2007-12-13 2012-12-21 Essilor Int Procede de preparation d'un materiau polymere transparent comprenant un polycarbonate thermoplastique et des nanoparticules minerales.
JP2012046734A (ja) * 2010-07-30 2012-03-08 Fujifilm Corp ポリエステルシートの製造方法、並びに、ポリエステルフィルム及びポリエステルフィルムの製造方法
US9656447B2 (en) * 2012-08-31 2017-05-23 Toray Plastics (America), Inc. Lidding structure based on aromatic polyester film, extrusion-coated with a sealable/peelable copolyester layer
US10639873B1 (en) * 2017-07-26 2020-05-05 Toray Plastics (America), Inc. Heat sealing polyester films with low coefficient of friction

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0127981A2 (en) * 1983-06-06 1984-12-12 Hoechst Celanese Corporation Molding composition
JPH07299857A (ja) * 1994-04-29 1995-11-14 Daicel Chem Ind Ltd 易引裂き性フィルムおよびその製造方法
JPH07299856A (ja) * 1994-04-29 1995-11-14 Daicel Chem Ind Ltd 易引裂き性フィルムおよびその製造方法
JPH09324057A (ja) * 1996-06-05 1997-12-16 Unitika Ltd 易引裂性ポリエステルフィルム及びその製造方法
JPH11302405A (ja) * 1998-04-20 1999-11-02 Unitika Ltd 易引裂性ポリエステルフィルム
JP2002254508A (ja) * 2001-03-01 2002-09-11 Teijin Ltd 延伸ポリエステルフィルム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5308668A (en) * 1990-05-14 1994-05-03 Kuriron Kasei Ltd. Multilayer film made of synthetic resin
EP0644226B1 (en) * 1992-11-06 1999-03-10 Daicel Chemical Industries, Ltd. Easily tearable film and method of manufacturing the same
ID18216A (id) * 1996-10-09 1998-03-12 Unitika Ltd Film poliester berorientasi dua poros yang mudah dirobek
JPH115283A (ja) * 1997-06-16 1999-01-12 Unitika Ltd レトルト用積層フィルム
JPH11227135A (ja) * 1998-02-12 1999-08-24 Unitika Ltd 易引裂性積層フィルム
US6432527B1 (en) * 1999-12-14 2002-08-13 3M Innovative Properties Company Embossed film having controlled tear
JP2001246714A (ja) * 2000-03-07 2001-09-11 Unitika Ltd 易引裂性積層フィルム
JP2002003623A (ja) * 2000-06-22 2002-01-09 Mitsubishi Polyester Film Copp 二軸配向ポリエステルフィルム
JP4102584B2 (ja) * 2002-04-10 2008-06-18 ユニチカ株式会社 積層体およびそれを用いた包装袋
JP4386386B2 (ja) * 2002-12-24 2009-12-16 三菱樹脂株式会社 易引裂性積層ポリエステルフィルム
WO2004073983A1 (ja) * 2003-02-24 2004-09-02 Mitsubishi Polyester Film Corporation 二軸延伸積層ポリエステルフィルム及び蓋材用ポリエステルフィルム
EP1806380A4 (en) * 2004-08-11 2010-06-16 Mitsubishi Polyester Film Corp BIAXIALLY ORIENTED POLYESTER FOIL

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0127981A2 (en) * 1983-06-06 1984-12-12 Hoechst Celanese Corporation Molding composition
JPH07299857A (ja) * 1994-04-29 1995-11-14 Daicel Chem Ind Ltd 易引裂き性フィルムおよびその製造方法
JPH07299856A (ja) * 1994-04-29 1995-11-14 Daicel Chem Ind Ltd 易引裂き性フィルムおよびその製造方法
JPH09324057A (ja) * 1996-06-05 1997-12-16 Unitika Ltd 易引裂性ポリエステルフィルム及びその製造方法
JPH11302405A (ja) * 1998-04-20 1999-11-02 Unitika Ltd 易引裂性ポリエステルフィルム
JP2002254508A (ja) * 2001-03-01 2002-09-11 Teijin Ltd 延伸ポリエステルフィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1686148A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016569A1 (ja) * 2004-08-11 2006-02-16 Mitsubishi Polyester Film Corporation 二軸延伸ポリエステルフィルム
JP2007160577A (ja) * 2005-12-11 2007-06-28 Mitsubishi Polyester Film Copp 二軸延伸ポリエステルフィルム

Also Published As

Publication number Publication date
EP1686148A4 (en) 2007-03-21
US7833614B2 (en) 2010-11-16
EP1686148A1 (en) 2006-08-02
US20060275601A1 (en) 2006-12-07

Similar Documents

Publication Publication Date Title
JP4405120B2 (ja) ヒートシール性を有するポリ乳酸系二軸延伸積層フィルム
KR20040091572A (ko) 공압출, 열시일성, 필러블 폴리에스테르 필름, 그 제조방법 및 그 용도
KR20040091573A (ko) 쉬운 필특성을 갖는 공압출, 열시일성, 필러블폴리에스테르 필름, 그 제조 방법 및 그 용도
KR20040091574A (ko) 강한 필특성을 갖는 공압출, 열시일성, 필러블폴리에스테르 필름, 그 제조 방법 및 그 용도
KR20040091591A (ko) 공압출, 열시일성, 필러블 폴리에스테르 필름, 그 제조방법 및 그 용도
US7833614B2 (en) Biaxially stretched polyester film
KR20040091576A (ko) 공압출, 열시일성 및 필러블 폴리에스테르 필름, 그 제조공정 및 그 용도
JP2002146071A (ja) 白色ポリ乳酸フィルム
JP2003268131A (ja) ポリエステルフィルム
JPWO2005105440A1 (ja) 易引裂き性2軸延伸ポリエステル系フィルム
JP2007176521A (ja) カップ型食品包装蓋材
JP4386386B2 (ja) 易引裂性積層ポリエステルフィルム
JPH11302405A (ja) 易引裂性ポリエステルフィルム
JP4885419B2 (ja) 二軸延伸ポリエステルフィルム
JP4693087B2 (ja) 二軸延伸ポリエステルフィルム
US20070160818A1 (en) Biaxially stretched polyester film
JP2005146112A (ja) 板紙用貼合せフィルム
JP4610179B2 (ja) 二軸延伸ポリエステルフィルム
JP2011126056A (ja) ポリエステル系積層フィルム、それを用いた蒸着フィルム、ラミネート体、および包装体
JP2004051888A (ja) 熱収縮性ポリエステル系フィルム
JP2006175624A (ja) 二軸延伸ポリエステルフィルム
JP2004216824A (ja) 手切れ性に優れた積層二軸延伸ポリエステルフィルム
JP5640973B2 (ja) ポリエステル系積層フィルム、それを用いた蒸着フィルム、ラミネート体、および包装体
JP2008194945A (ja) 二軸延伸ポリエステルフィルム
JP4156337B2 (ja) 積層ポリエステルフィルム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004818928

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11436146

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2004818928

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11436146

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2004818928

Country of ref document: EP