WO2005045797A1 - 画素回路、表示装置、および画素回路の駆動方法 - Google Patents

画素回路、表示装置、および画素回路の駆動方法 Download PDF

Info

Publication number
WO2005045797A1
WO2005045797A1 PCT/JP2004/016640 JP2004016640W WO2005045797A1 WO 2005045797 A1 WO2005045797 A1 WO 2005045797A1 JP 2004016640 W JP2004016640 W JP 2004016640W WO 2005045797 A1 WO2005045797 A1 WO 2005045797A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
switch
potential
tft
pixel circuit
Prior art date
Application number
PCT/JP2004/016640
Other languages
English (en)
French (fr)
Inventor
Katsuhide Uchino
Junichi Yamashita
Tetsuro Yamamoto
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to US10/578,002 priority Critical patent/US7355572B2/en
Publication of WO2005045797A1 publication Critical patent/WO2005045797A1/ja

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0852Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor being a dynamic memory with more than one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0262The addressing of the pixel, in a display other than an active matrix LCD, involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependent on signals of two data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing

Definitions

  • the present invention relates to a pixel circuit having an electro-optical element whose brightness is controlled by a current value, such as an organic EL (Electroluminescence) display, and an image display device in which the pixel circuits are arranged in a matrix.
  • a current value such as an organic EL (Electroluminescence) display
  • the present invention relates to a so-called active matrix image display device in which the value of a current flowing through an electro-optical element is controlled by an insulated gate field effect transistor provided inside each pixel circuit, and to a method of driving a pixel circuit.
  • an image display device for example, a liquid crystal display or the like
  • an image is displayed by arranging a large number of pixels in a matrix and controlling light intensity for each pixel according to image information to be displayed.
  • Organic EL displays are so-called self-luminous displays that have a light-emitting element in each pixel circuit.
  • the image visibility is higher than that of a liquid crystal display. It has advantages such as no need for light and fast response speed.
  • each light emitting element is controlled by the value of the current flowing therethrough to obtain a color gradation, that is, when the light emitting element is of a current control type, it is significantly different from a liquid crystal display or the like.
  • organic EL displays can be driven by a simple matrix method or an active matrix method.
  • the former has a simple structure, but realizes a large and high-definition display.
  • the active matrix method in which the current flowing through the light-emitting elements inside each pixel circuit is controlled by an active element provided inside the pixel circuit, generally a TFT (Thin Film Transistor). Development is active.
  • TFT Thin Film Transistor
  • FIG. 1 is a block diagram showing a configuration of a general organic EL display device.
  • the display device 1 has a pixel array unit 2 in which pixel circuits (PXLC) 2a are arranged in an m ⁇ n matrix, a horizontal selector (HSEL) 3, a light scanner (WSCN) 4, a horizontal It has a data line D TL1 to DTLn selected by the selector 3 and supplied with a data signal corresponding to luminance information, and a scanning line WSL1 to WSLm selectively driven by the write scanner 4.
  • PXLC pixel circuits
  • HSEL horizontal selector
  • WSCN light scanner
  • the horizontal selector 3 and the light scanner 4 may be formed on polycrystalline silicon, or may be formed around a pixel by MOSIC or the like.
  • FIG. 2 is a circuit diagram showing one configuration example of the pixel circuit 2a of FIG.
  • the pixel circuit in FIG. 2 has the simplest circuit configuration among many proposed circuits, and is a so-called two-transistor drive circuit.
  • the pixel circuit 2a in FIG. 2 includes a p-channel thin film field effect transistor (hereinafter, referred to as TFT) 11 and a TFT 12, a capacitor Cl, and an organic EL element (OLED) 13 as a light emitting element.
  • TFT thin film field effect transistor
  • TFT 12 a p-channel thin film field effect transistor
  • OLED organic EL element
  • DTL indicates a data line
  • WSL indicates a scanning line.
  • OLEDs are often referred to as OLEDs (Organic Light Emitting Diodes) because they have rectifying properties in many cases, and the symbols of diodes are used as light emitting elements in Fig. 2 and others. It does not require rectification.
  • the source of the TFT 11 is connected to the power supply potential VCC
  • the power source (negative pole) of the light emitting element 13 is connected to the ground potential GND.
  • the operation of the pixel circuit 2a in FIG. 2 is as follows.
  • the scanning line WSL is set to the selected state (here, low level) and the write potential V data is applied to the data line DTL, the TFT 12 is turned on and the capacitor C11 is charged or discharged, and the gate potential of the TFT 11 becomes Vdata.
  • the scanning line WSL When the scanning line WSL is in a non-selected state (here, high level), the data line DTL is electrically disconnected from the TFT11, but the gate potential of the TFT11 is stabilized by the capacitor CI1. Retained.
  • the current flowing through the TFT 11 and the light emitting element 13 has a value corresponding to the gate-source voltage Vgs of the TFT 11, and the light emitting element 13 continues to emit light at a luminance corresponding to the current value.
  • writing The operation of selecting the scanning line WSL and transmitting the luminance information given to the data line to the inside of the pixel as in step ST1 above is hereinafter referred to as “writing”.
  • the light emitting element 13 continues to emit light at a constant luminance until the next rewriting.
  • the value of the current flowing through the EL light emitting element 13 is controlled by changing the voltage applied to the gate of the TFT 11, which is a drive transistor.
  • the source of the p-channel drive transistor is connected to the power supply potential VCC, and the TFT 11 always operates in the saturation region. Therefore, it is a constant current source having the value shown in Equation 1 below.
  • Ids l / 2- ⁇ (W / L) Cox (Vgs-
  • is the carrier mobility
  • Cox is the gate capacitance per unit area
  • W is the gate width
  • L is the gate length
  • Vgs is the gate-source voltage of TFT11
  • Vth is the TFT11 The threshold values are shown.
  • each light emitting element emits light only at a selected moment, whereas in the active matrix, as described above, the light emitting element continues to emit light even after writing is completed.
  • This is particularly advantageous for large-size, high-definition displays, in that the peak luminance and peak current of the light-emitting element can be reduced compared to a simple matrix.
  • FIG. 3 is a diagram showing a change over time in current-voltage (I-V) characteristics of the organic EL element.
  • I-V current-voltage
  • the two-transistor drive shown in Fig. 2 is not suitable for organic EL devices due to constant current drive. As described above, even if the constant current continues to flow and the IV characteristics of the organic EL element are deteriorated, the light emission luminance does not deteriorate with time.
  • the pixel circuit 2a in FIG. 2 can be constituted by an n-channel TFT constituted by a p-channel TFT, a conventional amorphous silicon (a- Si) process can be used. As a result, the cost of the TFT substrate can be reduced.
  • a- Si amorphous silicon
  • FIG. 4 is a circuit diagram showing a pixel circuit in which the p-channel TFT in the circuit of FIG. 2 is replaced with an n-channel TFT.
  • the pixel circuit 2b in FIG. 4 includes n-channel TFTs 21 and 22, a capacitor C21, and an organic EL element ( ⁇ LED) 23 that is a light emitting element.
  • ⁇ LED organic EL element
  • WSL indicate scanning lines, respectively.
  • the drain side of the TFT 21 as the drive transistor has the power supply potential V
  • the source is connected to CC, and the source is connected to the anode of the EL element 23, forming a source follower circuit.
  • FIG. 5 is a diagram showing operating points of a TFT 21 as a drive transistor and an EL element 23 in an initial state.
  • the horizontal axis represents the drain-source voltage Vds of the TFT 21, and the vertical axis represents the drain-source current Ids.
  • the source voltage is determined by the operating point of the drive transistor TFT21 and the EL element 23, and the voltage has a different value depending on the gate voltage.
  • Patent Document 1 USP5, 684, 365
  • Patent Document 2 JP-A-8-234683
  • the IV characteristics of the EL element similarly deteriorate with time. As shown in Fig. 6, the operating point fluctuates due to this aging, and the same gate voltage is applied. Also its source voltage fluctuates.
  • the gate-source voltage Vgs of the TFT 21 as the drive transistor changes, and the flowing current value changes.
  • the value of the current flowing through the EL element 23 also changes, so if the I-V characteristics of the EL element 23 deteriorate, the light emission luminance of the source follower circuit of FIG. 4 changes with time.
  • the source of the n-channel TFT 31 as a drive transistor is connected to the ground potential GND, the drain is connected to the power source of the EL element 33, and the anode of the EL element 33 is connected. Is also conceivable.
  • the source potential is fixed, and the TFT 31 operates as a constant current source as a drive transistor, similarly to the drive by the p-channel TFT in FIG.
  • the luminance change due to deterioration can be prevented.
  • TFT transistors Even if an organic EL element using an n-channel transistor has been developed without a change in luminance, TFT transistors generally have large variations in mobility ⁇ and threshold value Vth. Because of this feature, even if a voltage of the same value is applied to the gate of the driving transistor, the current value varies for each pixel depending on the mobility / threshold of the driving transistor and the threshold value Vth, and uniform image quality is obtained. I can't get it.
  • An object of the present invention is to provide a source follower output without luminance degradation even if the current-voltage characteristics of the light-emitting element change with time, thereby enabling a source follower circuit of an n-channel transistor.
  • the n-channel transistor can be used as a driving element for the electro-optical element while using the force source electrode.
  • uniform and high quality can be achieved regardless of variations in the threshold and mobility of the active element inside the pixel. It is to provide a pixel circuit capable of displaying an image, a display device, and a driving method of the pixel circuit.
  • a first aspect of the present invention is a pixel circuit for driving an electro-optical element whose luminance changes according to a flowing current, in which a data signal corresponding to luminance information is supplied.
  • a data line ; first, second, third, and fourth nodes; first and second reference potentials; reference current supply means for supplying a predetermined reference current;
  • a current supply line between the first terminal and the second terminal, and controlling the current flowing through the current supply line according to the potential of the control terminal connected to the second node; Connected between the transistor and the first and third nodes A first switch, a second switch connected between the third node and the fourth node, and a third switch connected between the first node and a fixed potential. A fourth switch connected between the second node and a predetermined potential line; a fifth switch connected between the data line and the fourth switch; and a fourth switch connected between the data line and the fourth switch. And a sixth switch connected between the third node and the reference current supply means, and a current supply line for the drive transistor is provided between the first reference potential and the second reference potential.
  • the first node, the third node, the first switch, and the electro-optical element are connected in series.
  • the electrical connection means includes a wiring for directly connecting the second node to the coupling capacitance element.
  • the electric connection means includes a seventh switch for selectively connecting the second node and the coupling capacitance element.
  • a seventh switch connected between the first node and the electro-optical element, and an eighth switch connected between the first node and the data line. And a switch. Further, a seventh switch connected between the first node and the electro-optical element, and an eighth switch connected between the first node and the fourth node, Including.
  • the predetermined potential line is shared with the data line.
  • the drive transistor is a field-effect transistor, a source is connected to the third node, and a drain is connected to the first reference potential.
  • the first and second stages are used as a first stage. While the fourth, fifth, and sixth switches are kept in a non-conductive state, the third switch is kept in a conductive state, the first node is connected to a fixed potential, and the second switch is connected to a fixed potential. As a stage, the second, fourth, and sixth switches are held in a conductive state, a predetermined potential is input to the second node, a reference current flows to the third node, and a pixel capacitance is set. The element is charged with a predetermined potential, and as a third stage, the second and sixth switches are held in a non-conductive state, the fourth switch is held in a non-conductive state, and the fifth switch is turned on.
  • the fifth switch is held in a non-conductive state, and the first switch is operated as a fourth stage. Is maintained in a conductive state, and the third switch is It is held in the conductive state.
  • the first, second, fourth, fifth, sixth, and seventh switches are kept in a non-conductive state as a first stage.
  • the third switch is maintained in a conductive state
  • the first node is connected to a fixed potential
  • the second, fourth, sixth, and seventh stages are used as a second stage.
  • the switch is held in a conductive state, a data potential transmitted through the data line is input to the second node, a reference current flows to the third node, and a pixel capacitor is charged to a predetermined potential, and
  • the second and sixth switches are held in a non-conductive state
  • the fourth switch is held in a non-conductive state
  • the fifth switch is held in a conductive state
  • the data line is held. Is transmitted to the second node via the fourth node.
  • the fifth and seventh switches are held in a non-conductive state, and as a fourth stage, the first switch is held in a conductive state and the third switch is turned off. Held in state.
  • a second aspect of the present invention relates to a plurality of pixel circuits arranged in a matrix, and data which is wired for each column in the matrix arrangement of the pixel circuits and is supplied with a data signal corresponding to luminance information.
  • a reference current supply unit having a line, first and second reference potentials, and supplying a predetermined reference current;
  • the pixel circuit includes: an electro-optical element whose luminance is changed by a flowing current; First, second, third, and fourth nodes, electrical connection means connected to the second node, and pixel capacitance connected between the first node and the second node A device, a coupling capacitor connected between the electrical connection means and the fourth node, A drive transistor for forming a current supply line between the first terminal and the second terminal, and controlling a current flowing through the current supply line in accordance with a potential of a control terminal connected to the second node; A first switch connected between the first node and the third node; a second switch connected between the third node and the fourth node; and a first switch connected between the third node and the fourth node.
  • a third switch connected between the node and the fixed potential, a fourth switch connected between the second node and a predetermined potential line, the data line and the fourth switch, And a sixth switch connected between the third node and the reference current supply means, and a fifth switch connected between the third reference node and the first reference potential.
  • a current supply line for the driving transistor, the first node, Serial third node, the first switch, and the electro-optical element are connected in series.
  • a third aspect of the present invention is directed to an electro-optical element whose luminance changes according to a flowing current, a data line to which a data signal according to luminance information is supplied, and first, second, third, and fourth elements.
  • a drive transistor for forming a current supply line and controlling a current flowing through the current supply line in accordance with a potential of a control terminal connected to the second node; and a drive transistor for controlling the first node and the third node.
  • a first switch connected between the third node and the fourth node.
  • a second switch connected between the second node and a predetermined potential line, a third switch connected between the first node and the fixed potential, and a third switch connected between the second node and a predetermined potential line.
  • the switch is kept off, the fourth switch is kept off, the fifth switch is kept on, and the data transmitted through the data line is input to the second node.
  • the fifth switch is held in a non-conductive state, the first switch is held in a conductive state, and the third switch is held in a non-conductive state.
  • the first switch when the electro-optical element is in a light emitting state, the first switch is kept in the on state (conductive state), and the second and seventh switches are in the off state (non-conductive state). Will be retained.
  • the drive (drive) transistor is designed to operate in the saturation region, and the current Ids flowing through the electro-optical element takes a value represented by the above equation (1).
  • the first switch is turned off, and the third switch is turned on while the second, fourth, and seventh switches are kept in the off state.
  • the second, fourth, sixth, and seventh switches are turned on while the third switch is kept on, and the first and fifth switches are kept off.
  • the predetermined potential V0 or the input voltage Vin propagated through the data line is input to the second node, and in parallel with this, the reference current flows to the third node by the reference current supply means.
  • the gate-source voltage Vgs of the driving transistor is charged in the coupling capacitance element.
  • the G'-source voltage Vgs of the driving transistor is a term including the mobility ⁇ and the threshold value Vth.
  • the pixel capacitance element is charged with V0 or Vin.
  • the second and sixth switches are turned off.
  • the source potential of the drive transistor (the potential of the third node) rises to, for example, (V0 or Vin-Vth).
  • the third and seventh switches are turned on, and the first, second, and sixth switches are turned on.
  • the fifth switch is turned on and the fourth switch is turned off while being kept in the off state.
  • the input voltage Vin propagated through the data line through the fifth switch couples the voltage ⁇ to the gate of the driving transistor through the coupling capacitance element.
  • the amount of coupling ⁇ is determined by the amount of voltage change between the first node and the second node (Vgs of the driving transistor), the pixel capacitance, the coupling capacitance, and the parasitic capacitance of the driving transistor. If the capacitance of the coupling capacitance element is increased compared to the element and the parasitic capacitance, almost all of the change will be coupled to the gate of the drive transistor, and the gate potential of the drive transistor will be (V0 or Vin + Vgs).
  • the fifth and seventh switches are turned off, the first switch is turned on, and the third switch is turned off.
  • the source potential of the driving transistor drops to the ground potential GND, then rises, and a current starts to flow to the electro-optical element.
  • the source potential of the driving transistor fluctuates, there is a pixel capacitance element between its gate and source, and by setting the capacitance of the pixel capacitance element larger than the parasitic capacitance of the driving transistor, the gate Is always kept at a constant value (Vin + Vgs).
  • the current value Ids flowing through the drive transistor becomes the value shown in Equation 1, which is determined by the gate-source voltage. This Ids also flows to the electro-optical element, and the electro-optical element emits light.
  • a source follower circuit of an n-channel transistor becomes possible, and it is possible to use the n-channel transistor as a driving element of an EL light emitting element while using the current anode 'cathode electrode.
  • a reference current is supplied to cancel the variation in the threshold value of the driving transistor. For this reason, it is not necessary to cancel the threshold value by setting the switch ON / OFF timing for each panel, so that an increase in the number of steps for setting the timing can be suppressed. Further, since the capacitance in the pixel can be easily designed and the capacitance can be reduced, the pixel area can be reduced, and the panel can be made higher definition.
  • the time during which the input voltage from the signal line is input to the pixel can be shortened, and writing to the pixel at high speed can be performed. It is also possible to support a driving method in which 1H is divided into several parts and written into pixels as in the three-time writing method.
  • a transistor of a pixel circuit can be configured with only n channels, and an a_Si process can be used in TFT fabrication. As a result, the cost of the TFT substrate can be reduced.
  • FIG. 1 is a block diagram showing a configuration of a general organic EL display device.
  • FIG. 2 is a circuit diagram showing a configuration example of a pixel circuit of FIG. 1.
  • FIG. 3 is a diagram showing a change over time in current-voltage (I-V) characteristics of the organic EL element.
  • FIG. 4 is a circuit diagram showing a pixel circuit in which the p-channel TFT in the circuit of FIG. 2 is replaced with an n-channel TFT.
  • FIG. 5 is a diagram showing operating points of a TFT as a drive transistor and an EL element in an initial state.
  • FIG. 6 is a diagram showing operating points of a TFT as a drive transistor and an EL element after aging.
  • FIG. 7 is a circuit diagram showing a pixel circuit in which a source of an n-channel TFT as a drive transistor is connected to a ground potential.
  • FIG. 8 is a block diagram showing a configuration of an organic EL display device employing the pixel circuit according to the first embodiment.
  • FIG. 9 is a circuit diagram showing a specific configuration of a pixel circuit according to the first embodiment in the organic EL display device of FIG.
  • FIG. 10A-I are timing charts for explaining a method of driving the circuit of FIG. 9.
  • 11A and 11B are diagrams for explaining an operation according to a driving method of the circuit in FIG. 9;
  • 12A and 12B are diagrams for explaining an operation according to a driving method of the circuit in FIG. 9;
  • FIG. 13 is a diagram for explaining an operation according to a method of driving the circuit of FIG. 9.
  • FIG. 14 is a diagram for explaining an operation according to a method of driving the circuit in FIG. 9.
  • Garden 15 is a diagram for explaining the reason for supplying the reference current to the source of the drive transistor.
  • FIG. 16 is a diagram for explaining a reason for supplying a reference current to a source of a driving transistor.
  • FIG. 17 is a diagram for explaining the reason for supplying the reference current to the source of the drive transistor.
  • FIG. 18 is a diagram for explaining a reason for supplying a reference current to a source of a driving transistor.
  • FIG. 19 is a circuit diagram showing a specific configuration of a pixel circuit according to the second embodiment.
  • FIG. 20A-I are timing charts for explaining a method of driving the circuit of FIG. 19.
  • FIG. 21 is a block diagram showing a configuration of an organic EL display device employing a pixel circuit according to a third embodiment.
  • FIG. 22 is a circuit diagram illustrating a specific configuration of a pixel circuit according to a third embodiment in the organic EL display device of FIG.
  • FIG. 23A H is a timing chart for explaining a method of driving the circuit of FIG. 22.
  • FIG. 24 is a circuit diagram showing a specific configuration of a pixel circuit according to a fourth embodiment.
  • FIG. 25A to FIG. 25H are timing charts for explaining a method of driving the circuit of FIG. 24.
  • FIG. 26 is a circuit diagram showing a specific configuration of a pixel circuit according to a fifth embodiment.
  • FIG. 27 is a circuit diagram showing a specific configuration of a pixel circuit according to a sixth embodiment.
  • FIG. 28A is a timing chart for explaining the operation of the circuit in FIG. 26.
  • FIG. 29A is a timing chart of the circuit in FIG. 27.
  • 30A and 30B are diagrams for explaining the operation of the circuit of FIG. 26.
  • FIG. 31A and FIG. 31B are diagrams for explaining the operation of the circuit of FIG. 26;
  • FIG. 32A and FIG. 32B are diagrams for explaining the operation of the circuit of FIG. 26;
  • FIG. 33A and FIG. 33B are diagrams for explaining the operation of the circuit of FIG. 26;
  • FIG. 34 is a diagram for explaining the reason for supplying the reference current to the source of the drive transistor in the circuit of FIG. 26;
  • FIG. 35 is a diagram for explaining the reason for supplying the reference current to the source of the drive transistor in the circuit of FIG.
  • FIG. 36 is a circuit diagram showing a specific configuration of a pixel circuit according to the seventh embodiment.
  • FIG. 37 is a circuit diagram showing a specific configuration of a pixel circuit according to the eighth embodiment.
  • FIG. 38A K is a timing chart for explaining the operation of the circuit of FIG. 36.
  • FIG. 39A K is a timing chart for explaining the operation of the circuit of FIG.
  • FIG. 40 is a circuit diagram showing a specific configuration of a pixel circuit according to a ninth embodiment. The
  • FIG. 41 is a circuit diagram showing a specific configuration of a pixel circuit according to a tenth embodiment.
  • FIG. 42A J is a timing chart illustrating the operation of the circuit of FIG. 40.
  • FIG. 43A J is a timing chart for explaining the operation of the circuit in FIG. 41.
  • FIG. 44 is a circuit diagram showing a specific configuration of a pixel circuit according to an eleventh embodiment.
  • FIG. 45 is a circuit diagram showing a specific configuration of a pixel circuit according to a twelfth embodiment.
  • FIG. 46A is a timing chart for explaining the operation of the circuit in FIG. 44.
  • FIG. 47A is a timing chart for explaining the operation of the circuit in FIG. 45; Explanation of symbols
  • 100, 100A-100J display device, 101: pixel circuit (PXLC), 102: pixel array unit, 103: horizontal selector (HSEL), 104: light scanner (WSCN), 105: first drive scanner ( DSCN1), 106... second drive scanner (DSCN2), 107... third drive scanner (DSCN3), 108... fourth drive scanner (DSCN4), 109... fifth drive scanner (DSCN5), 110... 6 drive scanner (DSCN6), DTL101 DTL 10 ⁇ ... Data line, WSL101— WSLlOm... Scan line, DSL101— DSLlOm, DSL1 11— DSLlm, DSL121 DSL12m, DSL131— DSL13m, DSL141— DSL14m, DSL151— DSL15m, DSL161 DSL16m ...
  • FIG. 8 is a block diagram showing a configuration of an organic EL display device employing the pixel circuit according to the first embodiment.
  • FIG. 9 is a circuit diagram showing a specific configuration of the pixel circuit according to the first embodiment in the organic EL display device of FIG.
  • the display device 100 includes a pixel array section 102 in which pixel circuits (PXLC) 101 are arranged in an m ⁇ n matrix, a horizontal selector (HSEL) 103, a light scanner (WSCN) 104, first drive scanner (DSCN1) 105, second drive scanner (DSCN2) 106, third drive scanner (DSCN3) 107, fourth drive scanner (DSCN4) 108, fifth drive Scanner (DSCN5) 109, sixth drive scanner (DS CN6) 110, reference constant current source (RCIS) 111, and data line DTL101—DTL10n, which is selected by horizontal selector 103 and is supplied with a data signal according to brightness information.
  • PXLC pixel circuits
  • HSEL horizontal selector
  • WSCN light scanner
  • DSCN1 first drive scanner
  • DSCN2 second drive scanner
  • DSCN3 third drive scanner
  • DSCN4 fourth drive scanner
  • DSCN5 fifth drive Scanner
  • DSCN6 sixth drive scanner
  • RCIS reference constant current
  • third de Drive line DSL121—DSL12m selectively driven by live scanner 107 drive line DSL131—DSL13m selectively driven by fourth drive scanner 108, drive line DSL141—DSL14m selectively driven by fifth drive scanner 109
  • the pixel circuits 101 are arranged in a matrix of m ⁇ n.
  • FIG. 9 also shows a specific configuration of one pixel circuit for simplification of the drawing.
  • the pixel circuit 101 includes a light emitting element including an ⁇ -channel TFT 111 and a TFT 118, capacitors Cll and C112, and an organic EL element ( ⁇ LED: electro-optical element). 119, the first node ND111, the second ND112, the third node ND113, And a fourth node ND114.
  • a light emitting element including an ⁇ -channel TFT 111 and a TFT 118, capacitors Cll and C112, and an organic EL element ( ⁇ LED: electro-optical element).
  • DTL 101 indicates a data line
  • WSL 101 indicates a scanning line
  • DSL101, DSL111, DSL121, DSL131, DSL141, and DSL151i indicate a line and a line.
  • the TFT 111 constitutes a field effect transistor (drive transistor) according to the present invention
  • the TFT 112 constitutes a first switch
  • the TFT 113 constitutes a second switch
  • the TFT 114 constitutes a second switch.
  • 3 constitutes a switch
  • TFT115 constitutes a fourth switch
  • TFT116 constitutes a fifth switch
  • TFT117 constitutes a sixth switch
  • TFT118 constitutes a seventh switch as an electrical connection means.
  • the capacitor C111 forms a pixel capacitance element according to the present invention
  • the capacitor C112 forms a coupling capacitance element according to the present invention.
  • the supply line (power supply potential) of the power supply voltage VCC corresponds to the first reference potential
  • the ground potential GND corresponds to the second reference potential
  • the data line and the predetermined potential line are shared.
  • a TFT 111 serving as a drive transistor and a third node are connected between a first reference potential (power supply potential VCC in this embodiment) and a second reference potential (ground potential GND in this embodiment).
  • An ND 113, a TFT 112 as a first switch, a first node ND 111, and a light emitting element (OLED) 119 are connected in series.
  • the power source of the light emitting element 119 is connected to the ground potential GND, the anode is connected to the first node ND111, the source of the TFT 112 is connected to the first node ND111, and the first node ND111 is connected to the first node ND111.
  • the source and drain of the TFT 112 are connected to the third node ND113, the source of the TFT 111 is connected to the third node ND113, and the drain of the TFT 111 is connected to the power supply potential VCC.
  • the gate of the TFT 111 is connected to the second node ND112, and the gate power of the TFT 112 is connected to the drive line DSL111 driven by the second drive scanner 106.
  • the source line and the drain of the TFT 113 as a second switch are connected between the third node ND113 and the fourth node ND114, and the gate of the TFT 113 is driven by a fifth drive scanner 109.
  • Connected to The drain of the TFT 114 serving as the third switch is connected to the first node ND111 and the first electrode of the capacitor C111, the source is connected to a fixed potential (the ground potential GND in this embodiment), and the gate of the TFT 114 is connected to the sixth node.
  • the gate driven by the drive scanner is connected to the drive line DSL151. Further, the second electrode of the capacitor C111 is connected to the second node ND112.
  • the source and drain of the TFT 118 as a seventh switch are connected to the second node ND112 and the first electrode of the capacitor C112, and the gate of the TFT 118 driven by the third drive scanner is connected to the drive line DLS121. .
  • the data line (predetermined potential line) DTL 101 and the second node ND 112 are connected to the source and drain of the TFT 115 as the fourth switch, respectively, and the gate of the TFT 115 is driven by the fourth drive scanner 108. It is connected to the.
  • the source'drain of the TFT 116 as a fifth switch is connected to the data line DTL101 and the fourth node ND114, respectively.
  • the gate of the TFT 116 is connected to the scanning line WSL101 driven by the light scanner 104.
  • the source and drain of the TFT 117 as a sixth switch are connected between the third node ND113 and the reference current supply line ISL101.
  • the gate of the TFT 117 is connected to the drive line DSL101 driven by the first drive scanner 105.
  • the capacitor C111 as the pixel capacitance is connected between the gate and the source of the TFT 111 as the drive transistor, and the source side potential of the TFT 111 is switched during the non-emission period. It is connected to a fixed potential via the TFT114 as a transistor, and a predetermined reference current (for example, 2 ⁇ A) Iref is supplied to the source of the TFT111 (third node ND13) at a predetermined timing to obtain a reference current.
  • a predetermined reference current for example, 2 ⁇ A
  • Iref is supplied to the source of the TFT111 (third node ND13) at a predetermined timing to obtain a reference current.
  • FIG. 10A shows the driving signal ds [4] applied to the driving line DSL131 in the first row of the pixel array
  • FIG.10B shows the scanning signal ws [applied to the operating line WSL101 in the first row of the pixel array
  • FIG. 10C shows the drive signal ds [3] applied to the drive line DSL121 in the first row of the pixel array
  • FIG. 10D shows the drive signal applied to the drive line DSL141 in the first row of the pixel array.
  • ds [5] shows the drive signal ds [6] applied to the first line drive line DSL151 of the pixel array
  • FIG. 10F shows the drive signal ds [6] applied to the first row of the pixel array.
  • FIG. 10A shows the driving signal ds [4] applied to the driving line DSL131 in the first row of the pixel array
  • FIG.10B shows the scanning signal ws [applied to the operating line WSL101 in the first row of the pixel array.
  • FIG. 10G shows the drive signal ds [2] applied to the drive line DSL101 in the first row of the pixel array
  • FIG. 10H shows the gate potential Vglll of the TFT 111 as a drive transistor
  • FIG. 101 indicates the potential VND111 of the first node ND111, respectively.
  • the scan signal ws [1] from the light scanner 104 to the scanning line WSL 101 is set to low level
  • the drive signal ds [1] to the drive line DSL101 is set to low level by the Eve scanner 105
  • the drive signal ds [3] to the drive line DSL121 is set to low level by the drive scanner 107, and driven by the drive scanner 108.
  • the drive signal ds [4] to the line DSL131 is set to low level
  • the drive signal ds [5] to the drive line DSL141 is set to low level by the drive scanner 109
  • ds [6] is set to low level, and only the drive signal ds [2] to the drive line DSL111 is selectively set to high level by the drive scanner 106.
  • the TFT 112 is kept in the on state (conduction state), and the TFTs 113 to 118 are kept in the off state (non-conduction state).
  • the drive transistor 111 is designed to operate in a saturation region, and the current Ids flowing through the EL light emitting element 119 takes a value represented by the above equation (1).
  • the scan signal ws [1] from the light scanner 104 to the scanning line WSL101 is held at a low level, and the drive scanner
  • the drive signal ds [1] to the drive line DSL101 is held at low level by 105
  • the drive signal ds [2] to the drive line DSL111 is held at low level by the drive scanner 106.
  • the drive signal ds [3] to the drive line DSL121 is held at the oral level by the drive scanner 107
  • the drive signal ds [4] to the drive line DSL131 is held at the low level by the drive scanner 108.
  • the drive signal ds [5] to the drive line DSL141 is held at low level by 109
  • the drive signal ds [6] to the drive line DSL151 is selectively set to high level by the drive scanner 110.
  • the TFT 112 is turned off, and the TFT 113, the TFT 115, and the TFT 118 are kept off and the TFT 114 is turned on.
  • the scan signal ws [l] from the write scanner 104 to the scan line WSL101 is held at a low level, and the drive scanner 106 drives the drive signal ds [2] to the drive line DSL111.
  • the drive signal ds [6] to the drive line DSL 151 by the drive scanner 110 is held at a high level
  • the drive signal ds [1] to the drive line DSL101 by the drive scanner 105 is
  • the drive signal ds [3] to the drive line DSL1 21 by the drive scanner 107, the drive signal ds [4] to the drive line DSL131 by the drive scanner 108, and the drive signal ds [5] to the drive line DSL141 by the drive scanner 109 are respectively Selectively set to high level.
  • the TFT 113, the TFT 115, the TFT 117, and the TFT 118 are turned on while the TFT 114 is kept on and the TFTs 112 and 116 are kept in the low state.
  • the input voltage Vin propagated through the data line DTL101 via the TFT 115 is input to the second node ND112, and in parallel with this, the reference current supplied to the reference current supply line ISL101 by the constant current source 111 Iref (for example, 2 ⁇ A) flows to the third node ND113.
  • the gate-source voltage Vgs of the TFT 111 as a drive transistor is charged in the capacitor C112.
  • T The gate-source voltage Vgs of the FT111 is a term including the mobility / i and the threshold Vth. At this time, Vin is charged in the capacitor C111.
  • Vgs Vth + ⁇ 2Ids / (x (W / L) Cox) ⁇ 2 ---(2)
  • the scan signal ws [1] to the scanning line WSL101 from the light scanner 104 is held at a low level, and the drive is driven.
  • the drive signal ds [2] to the drive line DSL111 is held at low level by the scanner 106
  • the drive signal ds [3] to the drive line DSL121 is held at high level by the drive scanner 107
  • the drive line by the drive scanner 108 The drive signal ds [4] to the DSL131 is held at the level
  • the drive signal ds [6] to the drive line DSL151 is held at the high level by the drive scanner 110
  • the drive line DSL101 is held by the drive scanner 105.
  • the drive signal ds [1] to the drive line DSL141 is selectively set to a low level
  • the drive signal ds [4] to the drive line DSL141 is selectively set to a low level by the drive scanner 109.
  • the TFTs 113 and 117 are turned off from the state shown in FIG. 12A.
  • the source potential of the TFT 111 (the potential of the third node ND113) rises to (Vin-Vth).
  • the scanning signal ws [1] to the scanning line WSL101 is switched to the high level from the write scanner 104, and the driving signal ds [4] to the driving line DSL131 is switched to the low level by the drive scanner 108. .
  • the TFT 114 is turned on, the TFT 116 is turned on, and the TFT 115 is turned off while the TFT 112, TFT 113, and TFT 117 are kept off.
  • the input voltage Vin propagated through the data line DTL101 via the TFT 116 couples the voltage ⁇ to the gate of the TFT 111 through the capacitor CI12.
  • the amount of coupling ⁇ V is determined by the amount of voltage change (Vgs of TFTll) between the first node ND111 and the second node ND112 and the parasitic capacitance C113 of the capacitors Clll, C112 and TFT111, Compared to capacitor CI 11 and parasitic capacitance CI 13, If the capacitance is increased, almost all of the variation is coupled to the gate of the TFT 111, and the gate potential of the TFT 111 becomes (Vin + Vgs).
  • the scan signal ws [1] to the scanning line WSL101 is switched to low level by the write scanner 104, and the drive line 107 is driven to the drive line DSL121 by the drive scanner 107.
  • the signal ds [3] is switched to low level
  • the drive signal ds [2] to the drive line DSL111 is switched to high level by the drive scanner 106
  • the drive signal ds to the drive line DSL151 by the drive scanner 110. [6] is switched to low level.
  • the TFTs 116 and 118 are turned off, the TFT 112 is turned on, and the TFT 114 is turned off.
  • the source potential of the TFT 111 drops to the ground potential GND, then rises, and a current starts flowing to the EL light emitting element 119.
  • the source potential of the TFT 111 fluctuates, there is a capacitor C111 between its gate and source, and by making the capacitance of the capacitor C111 larger than the parasitic capacitance C113 of the TFT 111, the gate 'source potential is always ( Vin + Vgs) and the value is kept constant.
  • the current value Ids flowing through the TFT 111 becomes the value shown in Expression 1, which is determined by the gate-source voltage. This Ids also flows to the EL element 119, and the EL element 119 emits light.
  • the source potential of the TFT 111 rises to the gate potential at which the current Ids flows through the EL element 119. With this potential rise, the gate potential of the TFT 111 also rises through the capacitor C111.
  • the potential between the gate and the source of the TFT 111 is kept constant as described above.
  • the reference current Iref will be considered.
  • the voltage between the gate and the source of the TFT 111 is set to the value represented by Expression 2.
  • the gate-source voltage is not Vth. Because, even if the gate-source voltage becomes Vth, a slight leakage current flows through the TFT111. Therefore, as shown in FIG. 15, the source voltage of the TFT 111 rises to Vcc.
  • the TFT113 In order to set the gate-source voltage of the TFT11 to Vth, the TFT113 must be turned on and adjusted for a certain period, and turned off when the gate-source voltage reaches Vth. In, this timing must be adjusted for each panel.
  • the reference current Iref when the reference current Iref does not flow, even if the gate-source voltage can be set to Vth by adjusting the timing of the TFT 113, for example, in the pixels A and B having different mobilities, Even when the same input voltage Vin is applied, the variation of the current Ids occurs due to the mobility ⁇ according to Equation 1 as shown in FIG. 16 and the luminance of the pixel differs, as shown in FIG. In other words, a large current value flows, and as the brightness increases, the current value varies in mobility, the uniformity varies, and the image quality deteriorates.
  • the voltage can be determined to be a constant value shown in Equation 2, and the variation in the current Idslds can be suppressed even in the pixels A and B having different mobilities as shown in FIG. Can also be suppressed.
  • the circuit of the present embodiment will be considered based on the problem of the conventional source follower. Also in this circuit, the I-V characteristics of the EL light emitting element 119 deteriorate as the light emitting time increases. Therefore, even if the same current value flows through the TFT 111, the potential applied to the EL element 119 changes, and the potential VND111 at the first node ND111 falls. However, in this circuit, the potential VND111 of the first node ND111 falls while the potential between the gate and source of the TFT111 is kept constant, so that the current flowing through the TFT111 does not change.
  • the current flowing through the EL light emitting element 119 does not change, and even if the IV characteristics of the EL light emitting element 119 deteriorate, the current corresponding to the gate-source voltage always flows, and the conventional problem can be solved.
  • the gate of the TFT 111 as the drive transistor and the SOFT transistor are used.
  • the capacitor C 111 is connected between the source and the source (the first node ND 111) of the TFT 111 is connected to a fixed potential (GND in this embodiment) through the TFT 114, and the source (the Supplying a predetermined reference current (for example, 2 ⁇ A) Iref to node 3 (ND13) at a predetermined timing, maintaining a voltage corresponding to the reference current Iref, and coupling the input signal voltage around that voltage
  • a predetermined reference current for example, 2 ⁇ A
  • a source follower circuit of an n-channel transistor becomes possible, and it is possible to use the n-channel transistor as a driving element of an EL light emitting element while using the current anode 'cathode electrode.
  • a transistor of a pixel circuit can be configured with only n channels, and an a_Si process can be used in TFT fabrication. As a result, the cost of the TFT substrate can be reduced.
  • FIG. 19 is a circuit diagram showing a specific configuration of the pixel circuit according to the second embodiment.
  • FIG. 20 is a timing chart of the circuit of FIG.
  • the difference between the second embodiment and the first embodiment is that a predetermined potential line to which the TFT 115 as the fourth switch is connected is provided separately without being shared with the data line DTL. It is in that.
  • the reference current I When flowing ref, input the fixed voltage V0 instead of input voltage Vin to the gate voltage of TFT111.
  • the time during which Vin is input into the pixel can be shortened, and the pixel can be written at a high speed. If 1H is divided into several parts and written into pixels, it becomes possible to cope with any driving method.
  • FIG. 21 is a block diagram showing a configuration of an organic EL display device employing the pixel circuit according to the third embodiment.
  • FIG. 22 is a circuit diagram showing a specific configuration of the pixel circuit according to the third embodiment in the organic EL display device of FIG.
  • FIG. 23AH is a timing chart of the circuit of FIG.
  • the third embodiment is different from the first embodiment in that electrical connection means for connecting the first electrode of the capacitor C112 and the second node ND112 is selectively connected therebetween. Instead of using the switch 118, the connection is made directly by electric wiring. As a result, the third drive scanner 107 and the drive line DSL 121 are not required.
  • the other configuration is the same as that of the above-described second embodiment.
  • the third embodiment in addition to the effects of the first embodiment, there is an advantage that the number of elements in the pixel circuit can be reduced and the circuit configuration can be simplified.
  • FIG. 24 is a circuit diagram showing a specific configuration of the pixel circuit according to the fourth embodiment.
  • 25A to 25H are timing charts of the circuit in FIG.
  • the fourth embodiment is different from the third embodiment described above in that the fourth embodiment operates as a fourth switch.
  • the predetermined potential line to which the TFT 115 is connected is provided separately without being shared with the data line DTL.
  • the reference current I When flowing ref, input the fixed voltage V0 instead of input voltage Vin to the gate voltage of TFT111.
  • the time during which Vin is input into the pixel can be shortened, and the pixel can be written at a high speed. If 1H is divided into several parts and written into pixels, it becomes possible to cope with any driving method.
  • FIG. 26 is a circuit diagram showing a specific configuration of the pixel circuit according to the fifth embodiment.
  • FIG. 27 is a circuit diagram showing a specific configuration of the pixel circuit according to the sixth embodiment.
  • the fifth embodiment is different from the above-described first embodiment in that a TFT 120 as an eighth switch is inserted between the first node ND111 and the anode of the light emitting element 119, and The first node ND111 and the data line DTL101 are connected by a TFT121 as a ninth switch, and the source of the TFT114 is connected to a fixed potential VO.
  • the gate of the TFT 120 is connected to the drive line DSL161 (—16 m) driven by the seventh drive scanner (DSCN7) 122, and the gate of the TFT 121 is driven by the eighth drive scanner (DSCN8) 123. (— 17m).
  • the difference between the sixth embodiment and the fifth embodiment is that instead of the TFT 121 selectively connecting the first node ND111 to the data line DTL101, the first node ND111 is connected to the fourth node ND111. To selectively connect to the node ND114.
  • the fifth and sixth embodiments basically operate in the same manner.
  • Figures 28AK and 29AK show timing charts of the operation examples.
  • 28A and 29A show the drive signal ds [4] applied to the drive line DSL131 in the first row of the pixel array
  • FIGS.28B and 29B show the drive line dsl101 in the first row of the pixel array.
  • 28C and 29C show the drive signal ds [3] applied to the drive line DSL121 of the first row of the pixel array
  • FIGS. 28D and 29D show the pixel array.
  • the drive signal ds [5] applied to the drive line DSL141 in the first row of FIG. 28E and FIG. 29E show the drive signal ds [2] applied to the drive line DSL111 in the first row of the pixel array in FIG.
  • Figures 28F and 29F show the first pixel array.
  • the drive signal ds [l] applied to the drive line DSL101 in the row is shown in FIGS.28G and 29G.
  • the drive signal ds [7] applied to the drive line DSL161 in the first row of the pixel array is shown in FIG. 29H shows the driving signal ds [6] applied to the driving line DSL141 in the first row of the pixel array
  • FIGS. 281 and 291 show the driving signal applied to the driving line DSL171 in the first row of the pixel array.
  • 28J and 29J show the gate potential Vglll of the TFT 111 as a drive transistor
  • FIGS. 28K and 29 show the potential VND111 of the first node ND111.
  • the light emitting state of the normal EL light emitting element 119 is a state where the TFT 112 and the TFT 120 are turned on, as shown in FIG.
  • the TFT 120 is turned off while the TFT 112 is turned on as shown in FIG.
  • the input voltage (Vin) is input to the gate of the driving transistor TFT111 by using the keys F115, TFT118, F113, and TF117 as shown in FIG.
  • the gate-source voltage Vgs of the drive transistor is charged in the capacitors Cl ll and C112.
  • Vgs is a term including Vth as shown in Expression 3.
  • Vgs Vth + [2I / ( ⁇ (W / L) Cox] 1 / 2 ... (3)
  • the source potential of 111 rises to Vin-Vth.
  • the TFT 115 is turned off and the TFT 116 and the TFT 121 are turned on.
  • Turning on the TFTs 116 and 121 couples Vin to the gate of the driving transistor, TFT111, through the capacitors Clll, C112 and the voltage ⁇ .
  • the amount of coupling ⁇ is determined by the amount of voltage change (Vgs) at points ⁇ and B in the figure and the capacitances C1 and C1 of the capacitors Cl ll and C112.
  • the parasitic capacitance of C111 is determined by the ratio of the parasitic capacitance C3 of TFT111 (Equation 4). If the sum of Cl and C2 is made larger than C3, almost all of the change is coupled to the gate of TFT111, and the gate potential of TFT111 becomes Vin + Vgs.
  • the TFT 121 is turned off and the TFT 114 is turned on as shown in FIG. 32B.
  • the TFT 114 is connected to a fixed potential of V0, and when turned on, the voltage change (V0 ⁇ Vin) of the node ND112 is coupled to the gate of the TFT11 again through the capacitor CI11.
  • the amount of coupling A V is the sum of the voltage change at node ND112 and the sum of C1 and C3.
  • the TFT 116 and the TFT 118 are turned off, the TFT 112 and the TFT 120 are turned on, and the TFT 114 is turned off.
  • the source potential of the TFT 111 temporarily reaches the V0 level, and thereafter, a current starts to flow through the EL element 119.
  • the capacitance C1 of the capacitor C111 is made larger than the parasitic capacitance C3 so that the gate-source potential is always kept at a constant value .
  • the current value Ids flowing through the TFT 111 becomes the value shown in Expression 1, which is determined by the gate-source voltage. This Ids also flows to the EL element 119, and the EL element 119 emits light.
  • the source voltage of the TFT 111 rises to the gate potential at which the current Ids flows through the EL element 119. With this potential rise, the gate potential of the TFT 111 also rises via the capacitor C111. As a result, As described above, the gate-source potential of the TFT 111 is kept constant, and even if the EL light-emitting element 119 deteriorates with time and the source potential of the TFT 111 changes, the gate-source voltage flows to the EL light-emitting element 119 without change. The current value never changes.
  • the value of the current flowing through the TFT 111 becomes the value shown by Equation 1, and as shown in FIG. 34, the voltage between the gate and the source of the TFT 111 increases from the voltage flowing through Irei3 ⁇ 4r by a constant value (V0 ⁇ Vin), and the mobility increases. Even in the different pixels A and B, the variation in Ids can be suppressed to be small, so that the variation in uniformity can also be suppressed.
  • C1 + C2 If C1 + C2 is reduced, all the voltage changes at nodes ND111 and ND112 will not be coupled and will have gain. Assuming that this gain is; 3, the amount of current flowing through the TFT111 is expressed by Equation 6, and the voltage between the gate and source of T10 increases from the voltage flowing through Iref3 ⁇ 4r by Vin + (-1) Vgs. Because of the different values, the variation in Ids cannot be kept small ( Figure 35). Therefore, C1 + C2 must be larger than C3.
  • C1 must be much larger than the parasitic capacitance C3 of TFT111. If C1 is at the same level as C3, the change in the source potential of TFT114 will be coupled to the gate of TFT114 through capacitor CI11, and the voltage held in capacitor CI11 will fluctuate. . For this reason, the TFT 111 cannot pass a certain amount of current, and variations occur for each pixel. Therefore, C1 must be much larger than the parasitic capacitance C3 of TFT111.
  • C3 is the parasitic capacitance of the TFT 114, and its magnitude is on the order of several tens to several lOOfF.
  • the relationship between Cl, C2, and C3 is C2 >> C3, C1 >> C3, and Since C1 and C2 must be at the same level, Cl and C2 are each a few lOOfF—a few pF.
  • the capacitance can be easily set within a limited size within the pixel, and the current value varies for each pixel, which is a problem of the related art, and the pixel becomes uneven. Can be overcome.
  • FIG. 36 is a circuit diagram showing a specific configuration of the pixel circuit according to the seventh embodiment.
  • FIG. 37 is a circuit diagram showing a specific configuration of the pixel circuit according to the eighth embodiment.
  • the seventh embodiment is different from the above-described fifth embodiment in that a predetermined potential line to which the TFT 115 as the fourth switch is connected is provided separately without being shared with the data line DTL. Sometimes.
  • the eighth embodiment is different from the above-described sixth embodiment in that a predetermined potential line to which the TFT 115 as the fourth switch is connected is not shared with the data line DTL, but is separately provided.
  • a predetermined potential line to which the TFT 115 as the fourth switch is connected is not shared with the data line DTL, but is separately provided.
  • the seventh and eighth embodiments basically operate in the same manner.
  • FIGS 38AK and 39AK show timing charts of the operation examples.
  • the fixed voltage V 0 is input to the gate voltage of the TFT 111 instead of inputting the input voltage Vin.
  • the time during which Vin is input into the pixel can be shortened, and the pixel can be written at a high speed. If 1H is divided into several parts and written into pixels, it becomes possible to cope with any driving method.
  • FIG. 40 is a circuit diagram showing a specific configuration of the pixel circuit according to the ninth embodiment.
  • FIG. 41 is a circuit diagram showing a specific configuration of the pixel circuit according to the tenth embodiment.
  • the ninth embodiment differs from the fifth embodiment in that electrical connection means for connecting the first electrode of the capacitor C112 and the second node ND112 is selectively connected between the two. Instead of using the switch 118, the connection is made directly by electric wiring.
  • the tenth embodiment is different from the sixth embodiment in that an electrical connection means for connecting the first electrode of the capacitor C112 and the second node ND112 is provided with a switch 118 for selectively connecting the two. , Instead of being directly connected by electrical wiring. As a result, the third drive scanner 107 and the drive line DSL 121 are not required.
  • the ninth and tenth embodiments basically operate similarly.
  • Figures 42A-J and 43A-J show timing charts of the operation examples.
  • the number of elements in the pixel circuit can be reduced, and the circuit configuration can be simplified. There is an advantage that can be converted.
  • FIG. 44 is a circuit diagram showing a specific configuration of the pixel circuit according to the eleventh embodiment.
  • FIG. 45 is a circuit diagram showing a specific configuration of the pixel circuit according to the twelfth embodiment.
  • the difference of the eleventh embodiment from the seventh embodiment is that electrical connection means for connecting the first electrode of the capacitor C112 and the second node ND112 is selectively connected between the two. Instead of using the switch 118, the connection is made directly by electric wiring.
  • the twelfth embodiment is different from the eighth embodiment in that electrical connection means for connecting the first electrode of the capacitor C112 and the second node ND112 is provided by a switch 118 for selectively connecting the two. , Instead of being directly connected by electrical wiring. As a result, the third drive scanner 107 and the drive line DSL 121 are not required.
  • the eleventh and twelfth embodiments basically operate similarly.
  • Figures 46A-J and 47A-J show timing charts of the operation examples.
  • the number of elements in the pixel circuit can be reduced, and the circuit configuration can be simplified. There is an advantage that can be converted.
  • the pixel circuit, the display device, and the driving method of the pixel circuit according to the present invention can perform a source follower output without luminance degradation even if the current-voltage characteristics of the light-emitting element change with time, and can provide an n-channel transistor.
  • a source follower circuit is possible, and moreover, it is possible to display uniform and high-quality images irrespective of variations in threshold and mobility of active elements inside pixels. Assistant), personal computers, display devices for navigation, mobile phones, digital cameras, video cameras, and other electronic devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Thin Film Transistor (AREA)

Abstract

 発光素子の電流−電圧特性が経時変化しても、輝度劣化の無いソースフォロワー出力が行え、nチャネルトランジスタのソースフォロワー回路が可能となり、しかも、画素内部の能動素子のしきい値や移動度のばらつきによらず均一で高品位の画像を表示することが可能な画素回路、表示装置、および画素回路の駆動方法であって、TFT111のゲートとソース間にキャパシタC111を接続し、TFT111のソース側をTFT114を通して固定電位(GND)に接続するようにし、かつ、TFT111のソースに所定の基準電流Irefを所定のタイミングで供給して、基準電流Irefに相当する電圧を保持し、その電圧を中心して入力信号電圧をカップリングさせることで、移動度のばらつきのセンター値を中心にEL発光素子19を駆動する。

Description

明 細 書
画素回路、表示装置、および画素回路の駆動方法
技術分野
[0001] 本発明は、有機 EL (Electroluminescence )ディスプレイなどの、電流値によって輝 度が制御される電気光学素子を有する画素回路、およびこの画素回路がマトリクス状 に配列された画像表示装置のうち、特に各画素回路内部に設けられた絶縁ゲート型 電界効果トランジスタによって電気光学素子に流れる電流値が制御される、いわゆる アクティブマトリクス型画像表示装置、並びに画素回路の駆動方法に関するものであ る。
背景技術
[0002] 画像表示装置、たとえば液晶ディスプレイなどでは、多数の画素をマトリクス状に並 ベ、表示すべき画像情報に応じて画素毎に光強度を制御することによって画像を表 示する。
これは有機 ELディスプレイなどにおいても同様である力 有機 ELディスプレイは各 画素回路に発光素子を有する、いわゆる自発光型のディスプレイであり、液晶ディス プレイに比べて画像の視認性が高レ、、バックライトが不要、応答速度が速い、等の利 点を有する。
また、各発光素子の輝度はそれに流れる電流値によって制御することによって発色 の階調を得る、すなわち発光素子が電流制御型であるとレ、う点で液晶ディスプレイな どとは大きく異なる。
[0003] 有機 ELディスプレイにおいては、液晶ディスプレイと同様、その駆動方式として単 純マトリクス方式とアクティブマトリクス方式とが可能である力 前者は構造が単純であ るものの、大型かつ高精細のディスプレイの実現が難しいなどの問題があるため、各 画素回路内部の発光素子に流れる電流を、画素回路内部に設けた能動素子、一般 には TFT (Thin Film Transistor,薄膜トランジスタ)によって制御する、アクティブマト リクス方式の開発が盛んに行われている。
[0004] 図 1は、一般的な有機 EL表示装置の構成を示すブロック図である。 この表示装置 1は、図 1に示すように、画素回路(PXLC) 2aが m X nのマトリクス状 に配列された画素アレイ部 2、水平セレクタ(HSEL) 3、ライトスキャナ(WSCN) 4、 水平セレクタ 3により選択され輝度情報に応じたデータ信号が供給されるデータ線 D TL1一 DTLn、およびライトスキャナ 4により選択駆動される走査線 WSL1— WSLm を有する。
なお、水平セレクタ 3、ライトスキャナ 4に関しては、多結晶シリコン上に形成する場 合や、 MOSIC等で画素の周辺に形成することもある。
[0005] 図 2は、図 1の画素回路 2aの一構成例を示す回路図である(たとえば特許文献 1、
2参照)。
図 2の画素回路は、多数提案されている回路のうちで最も単純な回路構成であり、 いわゆる 2トランジスタ駆動方式の回路である。
[0006] 図 2の画素回路 2aは、 pチャネル薄膜電界効果トランジスタ(以下、 TFTという) 11 および TFT12、キャパシタ Cl l、発光素子である有機 EL子(OLED) 13を有する。 また、図 42において、 DTLはデータ線を、 WSLは走査線をそれぞれ示している。 有機 EL素子は多くの場合整流性があるため、 OLED(Organic Light Emitting Diode)と呼ばれることがあり、図 2その他では発光素子としてダイオードの記号を用い ているが、以下の説明において OLEDには必ずしも整流性を要求するものではない 図 2では TFT11のソースが電源電位 VCCに接続され、発光素子 13の力ソード(陰 極)は接地電位 GNDに接続されている。図 2の画素回路 2aの動作は以下の通りで ある。
[0007] ステップ ST1 :
走査線 WSLを選択状態(ここでは低レベル)とし、データ線 DTLに書き込み電位 V dataを印加すると、 TFT12が導通してキャパシタ C11が充電または放電され、 TFT1 1のゲート電位は Vdataとなる。
[0008] ステップ ST2 :
走査線 WSLを非選択状態(ここでは高レベル)とすると、データ線 DTLと TFT11と は電気的に切り離されるが、 TFT11のゲート電位はキャパシタ CI 1によって安定に 保持される。
[0009] ステップ ST3 :
TFT11および発光素子 13に流れる電流は、 TFT11のゲート'ソース間電圧 Vgs に応じた値となり、発光素子 13はその電流値に応じた輝度で発光し続ける。
上記ステップ ST1のように、走査線 WSLを選択してデータ線に与えられた輝度情 報を画素内部に伝える操作を、以下「書き込み」と呼ぶ。
上述のように、図 2の画素回路 2aでは、一度 Vdataの書き込みを行えば、次に書き 換えられるまでの間、発光素子 13は一定の輝度で発光を継続する。
[0010] 上述したように、画素回路 2aでは、ドライブトランジスタである TFT11のゲート印加 電圧を変化させることで、 EL発光素子 13に流れる電流値を制御している。
このとき、 pチャネルのドライブトランジスタのソースは電源電位 VCCに接続されてお り、この TFT11は常に飽和領域で動作している。よって、下記の式 1に示した値を持 っ定電流源となっている。
[0011] (数 1)
Ids= l/2 - μ (W/L) Cox (Vgs- | Vth | Ϋ
[0012] ここで、 μはキャリアの移動度を、 Coxは単位面積当たりのゲート容量を、 Wはゲート 幅を、 Lはゲート長を、 Vgsは TFT11のゲート 'ソース間電圧を、 Vthは TFT11のしきい 値をそれぞれ示している。
[0013] 単純マトリクス型画像表示装置では、各発光素子は、選択された瞬間にのみ発光 するのに対し、アクティブマトリクスでは、上述したように、書き込み終了後も発光素子 が発光を継続するため、単純マトリクスに比べて発光素子のピーク輝度、ピーク電流 を下げられるなどの点で、とりわけ大型 '高精細のディスプレイでは有利となる。
[0014] 図 3は、有機 EL素子の電流一電圧 (I-V)特性の経時変化を示す図である。図 3に おいて、実線で示す曲線が初期状態時の特性を示し、破線で示す曲線が経時変化 後の特性を示している。
[0015] 一般的に、有機 EL素子の I一 V特性は、図 3に示すように、時間が経過すると劣化し てしまう。
し力、しながら、図 2の 2トランジスタ駆動は定電流駆動のために有機 EL素子には上 述したように定電流が流れ続け、有機 EL素子の I V特性が劣化してもその発光輝度 は経時劣化することはない。
[0016] ところで、図 2の画素回路 2aは、 pチャネルの TFTにより構成されている力 nチヤネ ルの TFTにより構成することができれば、 TFT作製にぉレ、て従来のアモルファスシリ コン(a— Si)プロセスを用いることができるようになる。これにより、 TFT基板の低コスト 化が可能となる。
[0017] 次に、トランジスタを nチャネル TFTに置き換えた画素回路について考察する。
[0018] 図 4は、図 2の回路の pチャネル TFTを nチャネル TFTに置き換えた画素回路を示 す回路図である。
[0019] 図 4の画素回路 2bは、 nチャネル TFT21および TFT22、キャパシタ C21、発光素 子である有機 EL素子(〇LED) 23を有する。また、図 4において、 DTLはデータ線を
、 WSLは走査線をそれぞれ示している。
[0020] この画素回路 2bでは、ドライブトランジスタとして TFT21のドレイン側が電源電位 V
CCに接続され、ソースは EL素子 23のアノードに接続されており、ソースフォロワ一回 路を形成している。
[0021] 図 5は、初期状態におけるドライブトランジスタとしての TFT21と EL素子 23の動作 点を示す図である。図 5において、横軸は TFT21のドレイン 'ソース間電圧 Vdsを、 縦軸はドレイン 'ソース間電流 Idsをそれぞれ示してレ、る。
[0022] 図 5に示すように、ソース電圧はドライブトランジスタである TFT21と EL素子 23との 動作点で決まり、その電圧はゲート電圧によって異なる値を持つ。
この TFT21は飽和領域で駆動されるので、動作点のソース電圧に対した Vgsに関 して上記式 1に示した方程式の電流値の電流 Idsを流す。
特許文献 1 : USP5, 684, 365
特許文献 2:特開平 8 - 234683号公報
発明の開示
発明が解決しょうとする課題
[0023] し力しながら、ここでも同様に EL素子の I V特性は経時劣化してしまう。図 6に示す ように、この経時劣化により動作点が変動してしまレ、、同じゲート電圧を印加していて もそのソース電圧は変動する。
これにより、ドライブトランジスタである TFT21のゲート'ソース間電圧 Vgsは変化し てしまい、流れる電流値が変動する。同時に EL素子 23に流れる電流値も変化する ので、 EL素子 23の I一 V特性が劣化すると、図 4のソースフォロワ一回路ではその発 光輝度は経時変化してしまう。
[0024] また、図 7に示すように、ドライブトランジスタとしての nチャネル TFT31のソースを接 地電位 GNDに接続し、ドレインを EL素子 33の力ソードに接続し、 EL素子 33のァノ ードを電源電位 VCCに接続する回路構成も考えられる。
[0025] この方式では、図 2の pチャネル TFTによる駆動と同様に、ソースの電位が固定され ており、ドライブトランジスタとして TFT31は定電流源として動作して、 EL素子 33の I - V特性の劣化による輝度変化も防止できる。
[0026] し力、しながら、この方式ではドライブトランジスタを EL素子の力ソード側に接続する 必要があり、この力ソード接続は新規にアノード '力ソードの電極の開発が必要であり 、現状の技術では非常に困難であるとされている。
以上より、従来の方式では輝度変化のない、 nチャネルトランジスタ使用の有機 EL 素子の開発はなされていなかった。
[0027] また、たとえ、輝度変化のなレ、、 nチャネルトランジスタ使用の有機 EL素子の開発が なされたとしても、 TFTトランジスタは一般的に移動度 μやしきい値 Vthのばらつきが 大きくことが特徴であることから、駆動トランジスタのゲートに同じ値の電圧が印加され ても、画素ごとに電流値は駆動トランジスタの移動度/ やしきい値 Vthによってばら っレ、てしまい、均一な画質を得ることができなレ、。
[0028] 本発明の目的は、発光素子の電流 -電圧特性が経時変化しても、輝度劣化の無い ソースフォロワ一出力が行え、 nチャネルトランジスタのソースフォロワ一回路が可能と なり、現状のアノード '力ソード電極を用いたままで、 nチャネルトランジスタを電気光 学素子の駆動素子として用いることができ、しかも、画素内部の能動素子のしきい値 や移動度のばらつきによらず均一で高品位の画像を表示することが可能な画素回路 、表示装置、および画素回路の駆動方法を提供することにある。
課題を解決するための手段 [0029] 上記目的を達成するため、本発明の第 1の観点は、流れる電流によって輝度が変 化する電気光学素子を駆動する画素回路であって、輝度情報に応じたデータ信号 が供給されるデータ線と、第 1、第 2、第 3、および第 4のノードと、第 1および第 2の基 準電位と、所定の基準電流を供給する基準電流供給手段と、上記第 2のノードに接 続された電気的接続手段と、上記第 1のノードと上記第 2のノードとの間に接続された 画素容量素子と、上記電気的接続手段と上記第 4のノードとの間に接続された結合 容量素子と、第 1端子と第 2端子間で電流供給ラインを形成し、上記第 2のノードに接 続された制御端子の電位に応じて上記電流供給ラインを流れる電流を制御する駆動 トランジスタと、上記第 1のノードと上記第 3のノードとの間に接続された第 1のスィッチ と、上記第 3のノードと上記第 4のノードとの間に接続された第 2のスィッチと、上記第 1のノードと固定電位との間に接続された第 3のスィッチと、上記第 2のノードと所定の 電位線との間に接続された第 4のスィッチと、上記データ線と上記第 4のスィッチとの 間に接続された第 5のスィッチと、上記第 3のノードと上記基準電流供給手段との間 に接続された第 6のスィッチと、を有し、上記第 1の基準電位と第 2の基準電位との間 に、上記駆動トランジスタの電流供給ライン、上記第 1のノード、上記第 3のノード、上 記第 1のスィッチ、および上記電気光学素子が直列に接続されている。
[0030] 好適には、上記電気的接続手段は、上記第 2のノードと上記結合容量素子とを直 接接続する配線を含む。
[0031] 好適には、上記電気的接続手段は、上記第 2のノードと上記結合容量素子とを選 択的に接続する第 7のスィッチを含む。
[0032] 好適には、上記第 1のノードと上記電気光学素子との間に接続された第 7のスイツ チと、上記第 1のノードと上記データ線との間に接続された第 8のスィッチと、を含む。 また、上記第 1のノードと上記電気光学素子との間に接続された第 7のスィッチと、 上記第 1のノードと上記第 4のノードとの間に接続された第 8のスィッチと、を含む。
[0033] 好適には、上記所定の電位線は、上記データ線と共用されている。
[0034] また、上記駆動トランジスタが電界効果トランジスタであり、ソースが上記第 3のノー ドに接続され、ドレインが上記第 1の基準電位に接続されている。
[0035] 好適には、上記電気光学素子を駆動する場合、第 1ステージとして、上記第 1、第 2 、第 4、第 5および第 6のスィッチが非導通状態に保持された状態で、上記第 3のスィ ツチが導通状態に保持されて、上記第 1のノードが固定電位に接続され、第 2ステー ジとして、上記第 2、第 4、および上記第 6のスィッチが導通状態に保持されて、所定 電位を上記第 2のノードに入力させ、基準電流を上記第 3のノードに流し、画素容量 素子に所定電位を充電し、第 3ステージとして、上記第 2および第 6のスィッチが非導 通状態に保持され、さらに第 4のスィッチが非導通状態に保持され、上記第 5のスイツ チが導通状態に保持されて上記データ線を伝播されるデータが上記第 2のノードに 入力された後、上記第 5のスィッチが非導通状態に保持され、第 4ステージとして、上 記第 1のスィッチが導通状態に保持され、上記第 3のスィッチが非導通状態に保持さ れる。
[0036] また、好適には、上記電気光学素子を駆動する場合、第 1ステージとして、上記第 1 、第 2、第 4、第 5、第 6、および第 7のスィッチが非導通状態に保持された状態で、上 記第 3のスィッチが導通状態に保持されて、上記第 1のノードが固定電位に接続され 、第 2ステージとして、上記第 2、第 4、第 6、および第 7のスィッチが導通状態に保持 されて、上記データ線を伝播されるデータ電位を上記第 2のノードに入力させ、基準 電流を上記第 3のノードに流し、画素容量素子に所定電位を充電し、第 3ステージと して、上記第 2および第 6のスィッチが非導通状態に保持され、さらに第 4のスィッチ が非導通状態に保持され、上記第 5のスィッチが導通状態に保持されて上記データ 線を伝播されるデータが上記第第 4のノードを介して第 2のノードに入力された後、上 記第 5および第 7のスィッチが非導通状態に保持され、第 4ステージとして、上記第 1 のスィッチが導通状態に保持され、上記第 3のスィッチが非導通状態に保持される。
[0037] 本発明の第 2の観点は、マトリクス状に複数配列された画素回路と、上記画素回路 のマトリクス配列に対して列毎に配線され、輝度情報に応じたデータ信号が供給され るデータ線と、第 1および第 2の基準電位と、を有し、所定の基準電流を供給する基 準電流供給手段と、上記画素回路は、流れる電流によって輝度が変化する電気光 学素子と、第 1、第 2、第 3、および第 4のノードと、上記第 2のノードに接続された電気 的接続手段と、上記第 1のノードと上記第 2のノードとの間に接続された画素容量素 子と、上記電気的接続手段と上記第 4のノードとの間に接続された結合容量素子と、 第 1端子と第 2端子間で電流供給ラインを形成し、上記第 2のノードに接続された制 御端子の電位に応じて上記電流供給ラインを流れる電流を制御する駆動トランジス タと、上記第 1のノードと上記第 3のノードとの間に接続された第 1のスィッチと、上記 第 3のノードと上記第 4のノードとの間に接続された第 2のスィッチと、上記第 1のノー ドと固定電位との間に接続された第 3のスィッチと、上記第 2のノードと所定の電位線 との間に接続された第 4のスィッチと、上記データ線と上記第 4のスィッチとの間に接 続された第 5のスィッチと、上記第 3のノードと上記基準電流供給手段との間に接続さ れた第 6のスィッチと、を有し、上記第 1の基準電位と第 2の基準電位との間に、上記 駆動トランジスタの電流供給ライン、上記第 1のノード、上記第 3のノード、上記第 1の スィッチ、および上記電気光学素子が直列に接続されている。
本発明の第 3の観点は、流れる電流によって輝度が変化する電気光学素子と、輝 度情報に応じたデータ信号が供給されるデータ線と、第 1、第 2、第 3、および第 4のノ ードと、第 1および第 2の基準電位と、所定の基準電流を供給する基準電流供給手 段と、上記第 2のノードに接続された電気的接続手段と、上記第 1のノードと上記第 2 のノードとの間に接続された画素容量素子と、上記電気的接続手段と上記第 4のノー ドとの間に接続された結合容量素子と、第 1端子と第 2端子間で電流供給ラインを形 成し、上記第 2のノードに接続された制御端子の電位に応じて上記電流供給ラインを 流れる電流を制御する駆動トランジスタと、上記第 1のノードと上記第 3のノードとの間 に接続された第 1のスィッチと、上記第 3のノードと上記第 4のノードとの間に接続され た第 2のスィッチと、上記第 1のノードと固定電位との間に接続された第 3のスィッチと 、上記第 2のノードと所定の電位線との間に接続された第 4のスィッチと、上記データ 線と上記第 4のスィッチとの間に接続された第 5のスィッチと、上記第 3のノードと上記 基準電流供給手段との間に接続された第 6のスィッチと、を有し、上記第 1の基準電 位と第 2の基準電位との間に、上記駆動トランジスタの電流供給ライン、上記第 1のノ ード、上記第 3のノード、上記第 1のスィッチ、および上記電気光学素子が直列に接 続されている画素回路の駆動方法であって、上記第 1、第 2、第 4、第 5および第 6の スィッチが非導通状態に保持した状態で、上記第 3のスィッチを導通状態に保持させ て、上記第 1のノードを固定電位に接続し、上記第 2、第 4、および上記第 6のスイツ チを導通状態に保持して、所定電位を上記第 2のノードに入力させ、基準電流を上 記第 3のノードに流し、画素容量素子に所定電位を充電し、上記第 2および第 6のス イッチを非導通状態に保持し、さらに第 4のスィッチを非導通状態に保持し、上記第 5 のスィッチを導通状態に保持し上記データ線を伝播されるデータを上記第 2のノード に入力させた後、上記第 5のスィッチを非導通状態に保持し、上記第 1のスィッチを 導通状態に保持し、上記第 3のスィッチを非導通状態に保持する。
[0039] 本発明によれば、たとえば電気光学素子の発光状態時は、第 1のスィッチがオン状 態 (導通状態)に保持され、第 2 第 7のスィッチがオフ状態 (非導通状態)に保持さ れる。
ドライブ (駆動)トランジスタは飽和領域で動作するように設計されており、電気光学 素子に流れる電流 Idsは、上記式 1で示される値をとる。
次に、第 1のスィッチがオフとなり、第 2、第 4一第 7のスィッチはオフ状態に保持さ れたままで、第 3のスィッチがオンする。
このとき、第 3のスィッチを介して電流が流れ、第 1のノードの電位は接地電位 GND まで下降する。そのため、電気光学素子に印加される電圧も OVとなり、電気光学素 子は発光しなくなる。
次に、第 3のスィッチがオン状態、第 1および第 5のスィッチがオフ状態に保持され たままで、第 2、第 4、第 6、第 7のスィッチがオンする。
これにより、たとえば所定電位 V0あるいはデータ線を伝播された入力電圧 Vinが 第 2のノードに入力し、これと並行して、基準電流供給手段により基準電流が第 3のノ ードに流れる。その結果、駆動トランジスタのゲート'ソース間電圧 Vgsが、結合容量 素子に充電される。
このとき、駆動トランジスタは飽和領域で動作することから、駆動トランジスタのグー ト 'ソース間電圧 Vgsは、移動度 μおよびしきい値 Vthを含んだ項となる。また、このと き、画素容量素子には V0または Vinが充電される。
[0040] 次に、第 2および第 6のスィッチがオフする。これによつて、駆動トランジスタのソース 電位(第 3のノードの電位)は、たとえば (V0または Vin— Vth)まで上昇する。
そして、さらに、第 3および第 7のスィッチがオン状態、第 1、第 2、第 6のスィッチが オフ状態に保持されたままで、第 5のスィッチがオンし、第 4のスィッチがオフする。第 5のスィッチがオンすることにより、第 5のスィッチを介してデータ線を伝播された入力 電圧 Vinが結合容量素子を通して駆動トランジスタのゲートに電圧 Δνをカップリング させる。
このカップリング量 Δνは、第 1のノードと第 2のノード間の電圧変化量 (駆動トランジ スタの Vgs)と、画素容量素子、結合容量素子、および駆動トランジスタの寄生容量に よって決まり、画素容量素子と寄生容量に比べて結合容量素子の容量を大きくすれ ば変化量のほぼ全てが駆動トランジスタのゲートにカップリングされ、駆動トランジスタ のゲート電位は(V0または Vin+Vgs)となる。
書き込み終了後、第 5および第 7のスィッチがオフし、さらに、第 1のスィッチがオン して、第 3のスィッチがオフする。
これによつて、駆動トランジスタのソース電位はー且接地電位 GNDに降下、その後 上昇し、電気光学素子にも電流が流れ始める。駆動トランジスタのソース電位は変動 するにも関わらず、そのゲート'ソース間には画素容量素子があり、また、画素容量素 子の容量を駆動トランジスタの寄生容量よりも大きくすることでゲート'ソース電位は常 に (Vin+Vgs)という一定値に保たれる。
このとき、駆動トランジスタは飽和領域で駆動するので、駆動トランジスタに流れる電 流値 Idsは式 1で示された値となり、それはゲート'ソース間電圧で決定される。この Id sは電気光学素子にも同様に流れ、電気光学素子は発光する。
発明の効果
本発明によれば、 EL発光素子の I一 V特性が経時変化しても、輝度劣化の無いソー スフォロワ一出力が行える。
nチャネルトランジスタのソースフォロワ一回路が可能となり、現状のアノード'カソー ド電極を用いたままで、 nチャネルトランジスタを EL発光素子の駆動素子として用い ること力 Sできる。
また、駆動トランジスタのしきい値のばらつきのみならず、移動度のばらつきも大幅 に抑えることができ、ュニフォーミティの均一な画質を得ることができる。
また、基準電流を流し駆動トランジスタのしきい値のばらつきのキャンセルを行って レ、ることらから、パネル毎にスィッチのオン、オフのタイミングの設定でしきい値をキヤ ンセルする必要がないため、タイミングの設定する工数を増加を抑えることができる。 また、画素内の容量設計が容易に行え、尚且つ容量は小さくすることができるので 画素面積を縮小することができ、パネルの高精細化が可能となる。
また、入力電圧を入力する時に電圧変化量のほぼ全てを駆動トランジスタのゲート にカップリングさせることができるので、画素ごとの電流値のバラツキを低減することが でき、均一な画質を得ることができる。
さらに駆動トランジスタのゲートに固定電位を入力して基準電流 Iref¾r流すことで画 素内に信号線からの入力電圧が入力されている時間を短くすることができ、画素に 高速に書き込むことができ、 3回書き込み方式のように 1Hを数分割して画素に書き込 むといった駆動方式にも対応することが可能となる。
また、 nチャネルのみで画素回路のトランジスタを構成することができ、 TFT作成に おいて a_Siプロセスを用いることができるようになる。これにより、 TFT基板の低コスト 化が可能となる。
図面の簡単な説明
[図 1]図 1は、一般的な有機 EL表示装置の構成を示すブロック図である。
[図 2]図 2は、図 1の画素回路の一構成例を示す回路図である。
[図 3]図 3は、有機 EL素子の電流一電圧 (I-V)特性の経時変化を示す図である。
[図 4]図 4は、図 2の回路の pチャネル TFTを nチャネル TFTに置き換えた画素回路を 示す回路図である。
[図 5]図 5は、初期状態におけるドライブトランジスタとしての TFTと EL素子の動作点 を示す図である。
[図 6]図 6は、経時変化後のドライブトランジスタとしての TFTと EL素子の動作点を示 す図である。
[図 7]図 7は、ドライブトランジスタとしての nチャネル TFTのソースを接地電位に接続 した画素回路を示す回路図である。
[図 8]図 8は、第 1の実施形態に係る画素回路を採用した有機 EL表示装置の構成を 示すブロック図である。 園 9]図 9は、図 8の有機 EL表示装置において第 1の実施形態に係る画素回路の具 体的な構成を示す回路図である。
[図 10]図 10A— Iは、図 9の回路の駆動方法を説明するためのタイミングチャートであ る。
[図 11]図 11Aおよび 11Bは、図 9の回路の駆動方法に係る動作を説明するための図 である。
[図 12]図 12Aおよび 12Bは、図 9の回路の駆動方法に係る動作を説明するための図 である。
[図 13]図 13は、図 9の回路の駆動方法に係る動作を説明するための図である。
[図 14]図 14は、図 9の回路の駆動方法に係る動作を説明するための図である。 園 15]図 15は、基準電流を駆動トランジスタのソースに供給する理由を説明するため の図である。
[図 16]図 16は、基準電流を駆動トランジスタのソースに供給する理由を説明するため の図である。
園 17]図 17は、基準電流を駆動トランジスタのソースに供給する理由を説明するため の図である。
[図 18]図 18は、基準電流を駆動トランジスタのソースに供給する理由を説明するため の図である。
園 19]図 19は、第 2の実施形態に係る画素回路の具体的な構成を示す回路図であ る。
[図 20]図 20A— Iは、図 19の回路の駆動方法を説明するためのタイミングチャートで ある。
[図 21]図 21は、第 3の実施形態に係る画素回路を採用した有機 EL表示装置の構成 を示すブロック図である。
園 22]図 21の有機 EL表示装置において第 3の実施形態に係る画素回路の具体的 な構成を示す回路図である。
[図 23]図 23A Hは、図 22の回路の駆動方法を説明するためのタイミングチャート である。 [図 24]図 24は、第 4の実施形態に係る画素回路の具体的な構成を示す回路図であ る。
[図 25]図 25A— Hは、図 24の回路の駆動方法を説明するためのタイミングチャート である。
[図 26]図 26は、第 5の実施形態に係る画素回路の具体的な構成を示す回路図であ る。
[図 27]図 27は、第 6の実施形態に係る画素回路の具体的な構成を示す回路図であ る。
[図 28]図 28A Kは、図 26の回路の動作を説明するためのタイミングチャートである
[図 29]図 29A Kは、図 27の回路のタイミングチャートである。
[図 30]図 30Aおよび 30Bは、図 26の回路の動作を説明するための図である。
[図 31]図 31Aおよび 31Bは、図 26の回路の動作を説明するための図である。
[図 32]図 32Aおよび 32Bは、図 26の回路の動作を説明するための図である。
[図 33]図 33Aおよび 33Bは、図 26の回路の動作を説明するための図である。
[図 34]図 34は、図 26の回路で基準電流を駆動トランジスタのソースに供給する理由 を説明するための図である。
園 35]図 35は、図 26の回路で基準電流を駆動トランジスタのソースに供給する理由 を説明するための図である。
園 36]図 36は、第 7の実施形態に係る画素回路の具体的な構成を示す回路図であ る。
園 37]図 37は、第 8の実施形態に係る画素回路の具体的な構成を示す回路図であ る。
[図 38]図 38A Kは、図 36の回路の動作を説明するためのタイミングチャートである [図 39]図 39A Kは、図 37の回路の動作を説明するためのタイミングチャートである
[図 40]図 40は、第 9の実施形態に係る画素回路の具体的な構成を示す回路図であ る。
[図 41]図 41は、第 10の実施形態に係る画素回路の具体的な構成を示す回路図で ある。
[図 42]図 42A Jは、図 40の回路の動作を説明するためのタイミングチャートである。
[図 43]図 43A Jは、図 41の回路の動作を説明するためのタイミングチャートである。
[図 44]図 44は、第 11の実施形態に係る画素回路の具体的な構成を示す回路図で ある。
[図 45]図 45は、第 12の実施形態に係る画素回路の具体的な構成を示す回路図で ある。
[図 46]図 46A Jは、図 44の回路の動作を説明するためのタイミングチャートである。
[図 47]図 47A Jは、図 45の回路の動作を説明するためのタイミングチャートである。 符号の説明
[0043] 100, 100A— 100J…表示装置、 101…画素回路(PXLC)、 102…画素アレイ部 、 103…水平セレクタ(HSEL)、 104…ライトスキャナ(WSCN)、 105…第 1のドライ ブスキャナ(DSCN1)、 106…第 2のドライブスキャナ(DSCN2)、 107…第 3のドライ ブスキャナ(DSCN3)、 108…第 4のドライブスキャナ(DSCN4)、 109…第 5のドライ ブスキャナ(DSCN5)、 110…第 6のドライブスキャナ(DSCN6)、 DTL101 DTL 10η…データ線、 WSL101— WSLlOm…走査線、 DSL101— DSLlOm, DSL1 11— DSLl lm, DSL121 DSL12m, DSL131— DSL13m, DSL141— DSL 14m, DSL151— DSL15m, DSL161 DSL16m…駆動線、 111…ドライブ(駆 動)トランジスタとしての TFT、 112…第 1のスィッチとしての TFT, 113…第 2のスイツ チとしての TFT、 114…第 3のスィッチとしての TFT, 115…第 4のスィッチとしての T FT, 116…第 5のスィッチとしての TFT、 117…第 6のスィッチとしての TFT、 118- · - 第 7のスィッチとしての TFT、 119…発光素子、 120…第 7または第 8のスィッチとして の TFT、 121…第 8または第 9のスィッチとしての TFT、 ND111…第 1のノード、 ND 112…第 2のノード、、 Νϋ113· · ·第 3のノード、 ND114…第 4のノード、。
発明を実施するための最良の形態
[0044] 以下、本発明の実施形態を添付図面に関連付けて説明する。 [0045] <第 1実施形態 >
図 8は、本第 1の実施形態に係る画素回路を採用した有機 EL表示装置の構成を 示すブロック図である。
図 9は、図 8の有機 EL表示装置において本第 1の実施形態に係る画素回路の具体 的な構成を示す回路図である。
[0046] この表示装置 100は、図 8および図 9に示すように、画素回路(PXLC) 101が m X nのマトリクス状に配列された画素アレイ部 102、水平セレクタ(HSEL) 103、ライトス キヤナ(WSCN) 104、第 1のドライブスキャナ(DSCN1) 105、第 2のドライブスキヤ ナ(DSCN2) 106、第 3のドライブスキャナ(DSCN3) 107、第 4のドライブスキャナ( DSCN4) 108、第 5のドライブスキャナ(DSCN5) 109、第 6のドライブスキャナ(DS CN6) 110、リファレンス定電流源(RCIS) 111、水平セレクタ 103により選択され輝 度情報に応じたデータ信号が供給されるデータ線 DTL101— DTL10n、ライトスキ ャナ 104により選択駆動される走査線 WSL101— WSL10m、第 1のドライブスキヤ ナ 105により選択駆動される駆動線 DSL101— DSL10m、第 2のドライブスキャナ 1 06により選択駆動される駆動線 DSL111— DSLl lm、第 3のドライブスキャナ 107 により選択駆動される駆動線 DSL121— DSL12m、第 4のドライブスキャナ 108によ り選択駆動される駆動線 DSL131— DSL13m、第 5のドライブスキャナ 109により選 択駆動される駆動線 DSL141— DSL14m、第 6のドライブスキャナ 110により選択 駆動される駆動線 DSL151— DSL15m、および定電流源 111による基準電流 Iref が供給される基準電流供給線 ISL 101— ISL 1 Onを有する。
[0047] なお、画素アレイ部 102において、画素回路 101は m X nのマトリクス状に配列され る力 図 8においては図面の簡単化のために 2 (=m) X 3 (=n)のマトリクス状に配列 した ί列を示している。
また、図 9においても、図面の簡単化のために一つの画素回路の具体的な構成を 示している。
[0048] 本第 1の実施形態に係る画素回路 101は、図 9に示すように、 ηチャネル TFT111 一 TFT118、キャパシタ Cl l l, C112、有機 EL素子(〇LED:電気光学素子)から なる発光素子 119、第 1のノード ND111、第 2の ND112、第 3のノード ND113、お よび第 4のノード ND114を有する。
また、図 9において、 DTL101はデータ線を、 WSL101は走査線を、 DSL101, D SL111 , DSL121 , DSL131 , DSL141 , DSL151 iま馬区動 ,線をそれぞれ示してレヽ る。
これらの構成要素のうち、 TFT111が本発明に係る電界効果トランジスタ(ドライブ( 駆動)トランジスタ)を構成し、 TFT112が第 1のスィッチを構成し、 TFT113が第 2の スィッチを構成し、 TFT114が第 3のスィッチを構成し、 TFT115が第 4のスィッチを 構成し、 TFT116が第 5のスィッチを構成し、 TFT117が第 6のスィッチを構成し、 T FT118が電気的接続手段としての第 7のスィッチを構成し、キャパシタ C111が本発 明に係る画素容量素子を構成し、キャパシタ C 112が本発明に係る結合容量素子を 構成している。
また、電源電圧 VCCの供給ライン (電源電位)が第 1の基準電位に相当し、接地電 位 GNDが第 2の基準電位に相当してレ、る。
また、本第 1の実施形態においては、データ線と所定電位線とが共用されている。 画素回路 101において、第 1の基準電位 (本実施形態では電源電位 VCC)と第 2の 基準電位 (本実施形態では接地電位 GND)との間に、ドライブトランジスタとしての T FT111、第 3のノード ND113、第 1のスィッチとしての TFT112、第 1のノード ND11 1、および発光素子(OLED) 119が直列に接続されてレ、る。
具体的には、発光素子 119の力ソードが接地電位 GNDに接続され、アノードが第 1のノード ND111に接続され、 TFT112のソースが第 1のノード ND111に接続され 、第 1のノード ND111と第 3のノード ND113との間に TFT112のソース'ドレインが 接続され、 TFT111のソースが第 3のノード ND113に接続され、 TFT111のドレイン が電源電位 VCCが接続されている。
そして、 TFT111のゲートが第 2のノード ND112に接続され、 TFT112のゲート力 S 第 2のドライブスキャナ 106により駆動される駆動線 DSL111に接続されてレ、る。 第 3のノード ND113と第 4のノード ND114との間に第 2のスィッチとしての TFT11 3のソース'ドレインが接続され、 TFT113のゲートが第 5のドライブスキャナ 109によ り駆動される駆動線 DSL141に接続されてレ、る。 第 3のスィッチとしての TFT114のドレインが第 1のノード ND111およびキャパシタ C111の第 1電極に接続され、ソースが固定電位 (本実施形態では接地電位 GND) に接続され、 TFT114のゲートが第 6のドライブスキャナにより駆動されるゲートが駆 動線 DSL151に接続されている。また、キャパシタ C111の第 2電極が第 2のノード N D112に接続されている。
第 2のノード ND112とキャパシタ C112の第 1電極に第 7のスィッチとしての TFT11 8のソース'ドレインが接続され、 TFT118の第 3のドライブスキャナにより駆動される ゲートが駆動線 DLS121に接続されている。
データ線(所定電位線) DTL101と第 2のノード ND112に第 4のスィッチとしての T FT115のソース'ドレインがそれぞれ接続され、 TFT115のゲートが第 4のドライブス キヤナ 108に駆動される駆動線 DSL131に接続されている。
データ線 DTL101と第 4のノード ND114に第 5のスィッチとしての TFT116のソー ス 'ドレインがそれぞれ接続されている。そして、 TFT116のゲートがライトスキャナ 10 4により駆動される走査線 WSL101に接続されている。
さらに、第 3のノード ND113と基準電流供給線 ISL101との間に第 6のスィッチとし ての TFT117のソース'ドレインがそれぞれ接続されている。そして、 TFT117のゲ 一トが第 1のドライブスキャナ 105により駆動される駆動線 DSL101に接続されている
[0050] このように、本実施形態に係る画素回路 101は、ドライブトランジスタとしての TFT1 11のゲート'ソース間に画素容量としてのキャパシタ C111が接続され、非発光期間 に TFT111のソース側電位をスィッチトランジスタとしての TFT114を介して固定電 位に接続し、かつ、 TFT111のソース(第 3のノード ND13)に所定の基準電流(たと えば 2 μ A) Irefを所定のタイミングで供給して、基準電流 Irefに相当する電圧を保持 し、その電圧を中心して入力信号電圧をカップリングさせることで、移動度のばらつき のセンター値を中心に EL発光素子 19を駆動し、ドライブトランジスタとしての TFT11 1の移動度ばらつきによりュニフォーミティばらつきを抑制した画質を得るように構成 されている。
[0051] 次に、上記構成の動作を、画素回路の動作を中心に、図 10A— I並びに図 11,図 12A, B、および図 13,図 14に関連付けて説明する。
なお、図 10Aは画素配列の第 1行目の駆動線 DSL131に印加される駆動信号 ds〔 4〕を、図 10Bは画素配列の第 1行目の操作線 WSL101に印加される走査信号 ws〔 1]を、図 10Cは画素配列の第 1行目の駆動線 DSL121に印加される駆動信号 ds〔3 〕を、図 10Dは画素配列の第 1行目の駆動線 DSL141に印加される駆動信号 ds [5] を、図 10Eは画素配列の第 1行目の駆動線 DSL151に印加される駆動信号 ds〔6〕 を、図 10Fは画素配列の第 1行目の駆動線 DSL111に印加される駆動信号 ds [2] を、図 10Gは画素配列の第 1行目の駆動線 DSL101に印加される駆動信号 ds〔l〕 を、図 10Hはドライブトランジスタとしての TFT111のゲート電位 Vgl l lを、図 101は 第 1のノード ND111の電位 VND111をそれぞれ示してレ、る。
[0052] まず、通常の EL発光素子 119の発光状態時は、図 10A— Gに示すように、ライトス キヤナ 104より走査線 WSL101への走查信号 ws〔1〕がローレベルに設定され、ドラ イブスキャナ 105により駆動線 DSL101への駆動信号 ds〔1〕がローレベルに設定さ れ、ドライブスキャナ 107により駆動線 DSL121への駆動信号 ds〔3〕がローレベルに 設定され、ドライブスキャナ 108により駆動線 DSL131への駆動信号 ds〔4〕がローレ ベルに設定され、ドライブスキャナ 109により駆動線 DSL141への駆動信号 ds〔5〕が ローレベルに設定され、ドライブスキャナ 110により駆動線 DSL151への駆動信号 ds 〔6〕がローレベルに設定され、ドライブスキャナ 106により駆動線 DSL111への駆動 信号 ds〔2〕のみが選択的にハイレベルに設定される。
その結果、画素回路 101においては、図 11Aに示すように、 TFT112がオン状態( 導通状態)に保持され、 TFT113— TFT118がオフ状態(非導通状態)に保持され る。
ドライブトランジスタ 111は飽和領域で動作するように設計されており、 EL発光素子 119に流れる電流 Idsは、上記式 1で示される値をとる。
[0053] 次に、 EL発光素子 119の非発光期間において、図 10A Gに示すように、ライトス キヤナ 104より走査線 WSL101への走查信号 ws〔1〕がローレベルに保持され、ドラ イブスキャナ 105により駆動線 DSL101への駆動信号 ds〔1〕がローレベルに保持さ れ、ドライブスキャナ 106により駆動線 DSL111への駆動信号 ds〔2〕がローレベルに 切り替えられ、ドライブスキャナ 107により駆動線 DSL121への駆動信号 ds〔3〕が口 一レベルに保持され、ドライブスキャナ 108により駆動線 DSL131への駆動信号 ds〔 4〕がローレベルに保持され、ドライブスキャナ 109により駆動線 DSL141への駆動信 号 ds〔5〕がローレベルに保持され、ドライブスキャナ 110により駆動線 DSL151への 駆動信号 ds〔6〕が選択的にハイレベルに設定される。
その結果、画素回路 101においては、図 11Bに示すように、 TFT112がオフとなり 、 TFT113, TFT115— TFT118はオフ状態に保持されたままで、 TFT114がオン する。
このとき、 TFT114を介して電流が流れ、図 10H,Iに示すように、第 1のノード ND1 11の電位 VNDlllは接地電位 GNDまで下降する。そのため、 EL発光素子 119に 印加される電圧も 0Vとなり、 EL発光素子 119は発光しなくなる。
次に、図 10A— Gに示すように、ライトスキャナ 104より走査線 WSL101への走查 信号 ws〔l〕がローレベルに保持され、ドライブスキャナ 106により駆動線 DSL111へ の駆動信号 ds〔2〕がローレベルに保持され、ドライブスキャナ 110により駆動線 DSL 151への駆動信号 ds〔6〕がハイレベルに保持された状態で、ドライブスキャナ 105に よる駆動線 DSL101への駆動信号 ds〔1〕、ドライブスキャナ 107による駆動線 DSL1 21への駆動信号 ds〔3〕、ドライブスキャナ 108による駆動線 DSL131への駆動信号 ds〔4〕、ドライブスキャナ 109により駆動線 DSL141への駆動信号 ds〔5〕がそれぞれ 選択的にハイレベルに設定される。
その結果、画素回路 101においては、図 12Aに示すように、 TFT114がオン状態、 TFT112, 116力 S才フ状態に保持されたままで、 TFT113, TFT115, TFT117, T FT118がオンする。
これにより、 TFT115を介してデータ線 DTL101を伝播された入力電圧 Vinが第 2 のノード ND112に入力し、これと並行して、定電流源 111により基準電流供給線 IS L101に供給された基準電流 Iref (たとえば 2 μ A)が第 3のノード ND113に流れる。 その結果、ドライブトランジスタとしての TFT111のゲート'ソース間電圧 Vgsが、キヤ パシタ C112に充電される。
このとき、 TFT111は飽和領域で動作することから、下記の式(2)で示すように、 T FT111のゲート'ソース間電圧 Vgsは、移動度/ iおよびしきい値 Vthを含んだ項とな る。また、このとき、キャパシタ C111には Vinが充電される。
[0055] (数 2)
Vgs =Vth+ { 2Ids/ ( x (W/L) Cox) }2 - - - (2)
[0056] 次に、キャパシタ C111には Vinが充電された後、図 10A Gに示すように、ライトス キヤナ 104より走査線 WSL101への走查信号 ws〔1〕がローレベルに保持され、ドラ イブスキャナ 106により駆動線 DSL111への駆動信号 ds〔2〕がローレベルに保持さ れ、ドライブスキャナ 107により駆動線 DSL121への駆動信号 ds〔3〕がハイレベルに 保持され、ドライブスキャナ 108により駆動線 DSL131への駆動信号 ds〔4〕カ 、ィレ ベルに保持され、ドライブスキャナ 110により駆動線 DSL151への駆動信号 ds〔6〕が ハイレベルに保持された状態で、ドライブスキャナ 105により駆動線 DSL101への駆 動信号 ds〔1〕がローレベルに、ドライブスキャナ 109により駆動線 DSL141への駆動 信号 ds〔4〕がローレベルにそれぞれ選択的に設定される。
その結果、画素回路 101においては、図 12Aの状態から、 TFT113, TFT117力 S オフする。これによつて、 TFT111のソース電位(第 3のノード ND113の電位)は、 ( Vin— Vth)まで上昇する。
[0057] そして、さらに、ライトスキャナ 104より走査線 WSL101への走査信号 ws〔1〕がハイ レベルに切り替えられ、ドライブスキャナ 108により駆動線 DSL131への駆動信号 ds 〔4〕がローレベルに切り替えられる。
その結果、画素回路 101においては、図 12Bに示すように、 TFT114, TFT118 がオン状態、 TFT112, TFT113, TFT117がオフ状態に保持されたままで、 TFT 116力オンし、 TFT115がオフする。
TFT116がオンすることにより、 TFT116を介してデータ線 DTL101を伝播された 入力電圧 Vinがキャパシタ CI 12を通して TFT111のゲートに電圧 Δνをカップリン グさせる。
このカップリング量 Δ Vは、第 1のノード ND111と第 2のノード ND112間の電圧変 ィ匕量(TFTl l lの Vgs)と、キャパシタ Cl l l、 C112、および TFT111の寄生容量 C 113によって決まり、キャパシタ CI 11と寄生容量 CI 13に比べてキャパシタ CI 12の 容量を大きくすれば変化量のほぼ全てが TFT111のゲートにカップリングされ、 TFT 111のゲート電位は(Vin + Vgs)となる。
[0058] 書き込み終了後、図 10A— Gに示すように、ライトスキャナ 104より走査線 WSL10 1への走查信号 ws〔1〕がローレベルに切り替えられ、ドライブスキャナ 107により駆動 線 DSL121への駆動信号 ds〔3〕がローレベルに切り替えられ、さらに、ドライブスキヤ ナ 106により駆動線 DSL111への駆動信号 ds〔2〕がハイレベルに切り替えられ、ドラ イブスキャナ 110により駆動線 DSL151への駆動信号 ds〔6〕がローレベルに切り替 られる。
これにより、画素回路 101におレヽて ίま、図 13に示すように、 TFT116, TFT118力 S オフし、さらに、 TFT112がオンして、 TFT114がオフする。
これによつて、 TFT111のソース電位はー且接地電位 GNDに降下、その後上昇し 、 EL発光素子 119にも電流が流れ始める。 TFT111のソース電位は変動するにも関 わらず、そのゲート'ソース間にはキャパシタ C111があり、また、キャパシタ C111の 容量を TFT111の寄生容量 C113よりも大きくすることでゲート'ソース電位は常に( Vin+Vgs)とレ、う一定値に保たれる。
このとき、 TFT111は飽和領域で駆動するので、 TFT111に流れる電流値 Idsは式 1で示された値となり、それはゲート'ソース間電圧で決定される。この Idsは EL発光 素子 119にも同様に流れ、 EL発光素子 119は発光する。
[0059] この EL発光素子 119を含む画素回路 101の等価回路は図 14に示すようになって いるため、 TFT111のソース電位は、 EL発光素子 119に電流 Idsが流れるゲート電 位まで上昇する。この電位上昇に伴い、キャパシタ C111を介して TFT111のゲート 電位も同様に上昇する。
これにより、前述した通り TFT111のゲート'ソース間電位は一定に保たれる。
[0060] ここで、基準電流 Irefについて考える。
上述したように、基準電流 Irefを流すことによって、 TFT111のゲート'ソース間電 圧を式 2で表された値とする。
し力、し、 lref = 0のときは、ゲート'ソース間電圧は Vthとはならなレ、。なぜなら、ゲー ト 'ソース間電圧が Vthとなっても、 TFT111にはわずかにリーク電流が流れてしまう ため、図 15に示すように、 TFT111のソース電圧は Vccまで上昇してしまうからである
TFT1 11のゲート'ソース間電圧を Vthとするには、 TFT113をオンしてレ、る期間を 調節してゲート'ソース間電圧が Vthとなったところでオフしなくてはならず、実デバイ スにおいてこのタイミングはパネル毎に調節しなければならない。
本実施形態にように、基準電流 Irefを流さない場合には、 TFT113のタイミングを 調節して、ゲート'ソース間電圧を Vthに設定できたとしても、たとえば移動度が異な る画素 Aと Bにおいて、同じ入力電圧 Vinが印加されているときも、式 1に従い移動度 μによって、図 16に示すように、電流 Idsのばらつきが発生しその画素の輝度が異な つてしまう。つまり、電流値が多く流れ、明るくなるにつれて電流値は移動度のバラッ キを受けてしまい、ュニフォーミティはバラつき、画質は悪化してしまう。
し力、しながら、本実施形態にように、一定量の基準電流 Irefを電流を流すことで、図 17に示すように、 TFT113のオン 'オフのタイミングによらず TFT111のゲート'ソー ス間電圧を式 2に示される一定値に決定することができ、移動度が異なる画素 Aと B においても、図 18に示すように、電流 Idsldsのばらつきを小さく抑えることができるの で、ュニフォーミティのバラツキも抑えることができる。
[0061] さらに、従来のソースフォロアの問題点に踏まえて本実施形態の回路について考え る。本回路においても、 EL発光素子 119は発光時間が長くなるに従レ、、その I-V特 性は劣化する。そのため TFT111が同じ電流値を流したとしても、 EL発光素子 119 に印加される電位は変化し、第 1のノード ND111の電位 VND111は下降する。 し力 ながら、本回路では、 TFT111のゲート'ソース間電位が一定に保たれたまま 第 1のノード ND111の電位 VND111は下降するので、 TFT111に流れる電流は変 化しない。
よって、 EL発光素子 119に流れる電流も変化せず、 EL発光素子 119の I - V特性 が劣化しても、ゲート'ソース間電圧に相当した電流が常に流れつづけ、従来の問題 は解決できる。
[0062] 以上説明したように、本第 1の実施形態によれば、電圧駆動型 TFTアクティブマトリ タス有機 ELディスプレイにおレ、て、ドライブトランジスタとしての TFT111のゲートとソ ース間にキャパシタ C 111を接続し、 TFT111のソース側(第 1のノード ND 111 )を T FT114を通して固定電位(本実施形態では GND)に接続するようにし、かつ、 TFT 111のソース(第 3のノード ND13)に所定の基準電流(たとえば 2 μ A) Irefを所定の タイミングで供給して、基準電流 Irefに相当する電圧を保持し、その電圧を中心して 入力信号電圧をカップリングさせることで、移動度のばらつきのセンター値を中心に E L発光素子 19を駆動するように構成したことから、以下の効果を得ることができる。
[0063] すなわち、 EL発光素子の I一 V特性が経時変化しても、輝度劣化の無いソースフォ ロワ一出力が行える。
nチャネルトランジスタのソースフォロワ一回路が可能となり、現状のアノード'カソー ド電極を用いたままで、 nチャネルトランジスタを EL発光素子の駆動素子として用い ること力 Sできる。
また、駆動トランジスタのしきい値のばらつきのみならず、移動度のばらつきも大幅 に抑えることができ、ュニフォーミティの均一な画質を得ることができる。
また、基準電流を流し駆動トランジスタのしきい値のばらつきのキャンセルを行って レヽること力ら、パネル毎にスィッチのオン、オフのタイミングの設定でしきい値をキャン セルする必要がないため、タイミングの設定する工数を増加を抑えることができる。 また、 nチャネルのみで画素回路のトランジスタを構成することができ、 TFT作成に おいて a_Siプロセスを用いることができるようになる。これにより、 TFT基板の低コスト 化が可能となる。
[0064] <第 2実施形態 >
図 19は、本第 2の実施形態に係る画素回路の具体的な構成を示す回路図である。 また、図 20は、図 19の回路のタイミングチャートである。
[0065] 本第 2の実施形態が上述した第 1の実施形態と異なる点は、第 4のスィッチとしての TFT115が接続される所定の電位線をデータ線 DTLと共用せずに、別に設けたこと にある。
[0066] その他の構成は第 1の実施形態と同様であり、ここでは、構成および機能に関する 詳細な説明は省略する。
[0067] 本第 2の実施形態では、ドライバトランジスタとしての TFT111のソースに基準電流 I refを流す際に TFT111のゲート電圧に入力電圧 Vinを入力するのではなぐ固定電 位 V0を入力する。固定電位 V0を入力して基準電流 Irefを流すことによって画素内に Vinが入力されている時間を短くすることができ、画素に高速に書き込むことができる このため、たとえば 3回書き込み方式のように 1Hを数分割して画素に書き込むとい つた駆動方式にも対応することができるようになる。
[0068] ぐ第 3実施形態 >
図 21は、本第 3の実施形態に係る画素回路を採用した有機 EL表示装置の構成を 示すブロック図である。
図 22は、図 21の有機 EL表示装置において本第 3の実施形態に係る画素回路の 具体的な構成を示す回路図である。また、図 23A Hは、図 22の回路のタイミング チャートである。
[0069] 本第 3の実施形態が第 1の実施形態と異なる点は、キャパシタ C112の第 1電極と 第 2のノード ND112とを接続する電気的接続手段を、両者間を選択的に接続するス イッチ 118により構成する代わり、電気配線により直接接続するようにしたことにある。 その結果、第 3のドライブスキャナ 107と駆動線 DSL121が不要となっている。
[0070] その他の構成は、上述した第 2の実施形態と同様である。
[0071] 本第 3の実施形態によれば、上述した第 1の実施形態の効果に加えて、画素回路 内の素子数を低減することができ、回路構成を簡単化できる利点がある。
[0072] <第 4実施形態 >
図 24は、本第 4の実施形態に係る画素回路の具体的な構成を示す回路図である。 また、図 25A— Hは、図 24の回路のタイミングチャートである。
[0073] 本第 4の実施形態が上述した第 3の実施形態と異なる点は、第 4のスィッチとしての
TFT115が接続される所定の電位線をデータ線 DTLと共用せずに、別に設けたこと にある。
[0074] その他の構成は第 1の実施形態と同様であり、ここでは、構成および機能に関する 詳細な説明は省略する。
[0075] 本第 4の実施形態では、ドライバトランジスタとしての TFT111のソースに基準電流 I refを流す際に TFT111のゲート電圧に入力電圧 Vinを入力するのではなぐ固定電 位 V0を入力する。固定電位 V0を入力して基準電流 Irefを流すことによって画素内に Vinが入力されている時間を短くすることができ、画素に高速に書き込むことができる このため、たとえば 3回書き込み方式のように 1Hを数分割して画素に書き込むとい つた駆動方式にも対応することができるようになる。
[0076] ぐ第 5実施形態および第 6実施形態 >
図 26は、本第 5の実施形態に係る画素回路の具体的な構成を示す回路図である。 また、図 27は、本第 6の実施形態に係る画素回路の具体的な構成を示す回路図で ある。
[0077] 本第 5の実施形態が上述した第 1の実施形態と異なる点は、第 1のノード ND111と 発光素子 119のアノードとの間に第 8のスィッチとしての TFT120を揷入し、かつ、第 1のノード ND111とデータ線 DTL101を第 9のスィッチとしての TFT121により接続 し、 TFT114のソースを固定電位 VOに接続したことにある。
そして、 TFT120のゲートが第 7のドライブスキャナ(DSCN7) 122により駆動され る駆動線 DSL161 (— 16m)に接続され、 TFT121のゲートが第 8のドライブスキャナ (DSCN8) 123により駆動される駆動線 DSL171 (— 17m)に接続されている。
[0078] また、第 6の実施形態と第 5の実施形態が異なる点は、 TFT121が第 1のノード ND 111をデータ線 DTL101と選択的に接続する代わりに、第 1のノード ND111を第 4 のノード ND114と選択的に接続するようにしたことにある。
[0079] 第 5および第 6の実施形態は基本的には、同様に動作する。
図 28A Kおよび図 29A Kにその動作例のタイミングチャートを示す。 なお、図 28A,図 29Aは画素配列の第 1行目の駆動線 DSL131に印加される駆 動信号 ds〔4〕を、図 28B,図 29Bは画素配列の第 1行目の操作線 WSL101に印加 される走查信号 ws〔l〕を、図 28C,図 29Cは画素配列の第 1行目の駆動線 DSL12 1に印加される駆動信号 ds〔3〕を、図 28D,図 29Dは画素配列の第 1行目の駆動線 DSL141に印加される駆動信号 ds〔5〕を、図 28E,図 29Eは画素配列の第 1行目の 駆動線 DSL111に印加される駆動信号 ds〔2〕を、図 28F,図 29Fは画素配列の第 1 行目の駆動線 DSL101に印加される駆動信号 ds〔l〕を、図 28G,図 29Gは画素配 列の第 1行目の駆動線 DSL161に印加される駆動信号 ds〔7〕を、図 28H,図 29H は画素配列の第 1行目の駆動線 DSL141に印加される駆動信号 ds〔6〕を、図 281, 図 291は画素配列の第 1行目の駆動線 DSL171に印加される駆動信号 ds〔8〕を、図 28J,図 29Jはドライブトランジスタとしての TFT111のゲート電位 Vgl l lを、図 28K, 図 29Κは第 1のノード ND111の電位 VND111をそれぞれ示している。
[0080] 以下に、図 26の回路の動作を図 30Α, Β、図 31A, Β、図 32Α, Β、および図 33Α , Βに関連付けて説明する。
[0081] まず、通常の EL発光素子 119の発光状態は図 30Αに示すように、 TFT112と TF T120がオンした状態である。
次に、 EL発光素子 119の非発光期間において、図 30Βに示すように、 TFT112を オンしたままで TFT120をオフする
このとき、 EL発光素子 119には電流が供給されなくなり、発光しなくなる。
[0082] 次に、図 31Αίこ示すよう ίこ、丁 F115、 TFT118,丁 F丁 113、および TF丁 117を才ン して駆動トランジスタである TFT111のゲートに入力電圧(Vin)を入力し、電流源から 電流 Iref¾r流すことによって、駆動トランジスタのゲートソース間電圧 Vgsをキャパシタ Cl l l , C112に充電する。このとき、 TFT114は飽和領域で動作するので、 Vgsは式 3で示すように 、 Vthを含んだ項となる。
[0083] (数 3)
Vgs=Vth+[2I/( μ (W/L)Cox]1/2 …(3)
[0084] キャパシタ Cl l l, C112に Vgsが充電された後に TFT113, TFT112オフする。こ れによってキャパシタ CI 11, CI 12に充電されてレ、る電圧を Vgsに確定させる。 その後、図 31Bに示すように、 TFT117をオフして電流の供給を止めることで TFT
111のソース電位は Vin- Vthまで上昇する。
さらに、図 32Aに示すように、 TFT115をオフして TFT116と TFT121をオンする。 TFT116と TFT121をオンすることで Vinをキャパシタ Cl l l, C112を通して駆動ト ランジスタである TFT111のゲートに電圧 Δνをカップリングさせる。このカップリング 量 ΔΥは図中 Α点、 B点の電圧変化量 (Vgs)とキャパシタ Cl l l , C112の容量 C1 , C2の禾 TFT111の寄生容量 C3の比によって決まり(式 4)、 C3に比べて Cl、 C2 の和を大きくすれば変化量のほぼ全てが TFT111のゲートにカップリングされ、 TFT 111のゲート電位は Vin+Vgsとなる。
[0085] (数 4)
A V= A V + A V = { (Cl + C2) / (C1 + C2 + C3) } -Vgs
1 2
…(
[0086] 書き込みが終了した後に、図 32Bに示すように、 TFT121をオフして TFT114をォ ンする。
TFT1 14は V0という固定電位に接続されており、オンすることによってノード ND11 2の電圧変化量 (V0-Vin)をキャパシタ CI 11を通して TFT11のゲートに再びカップ リングさせる。このカップリング量 A Vはノード ND112の電圧変化量と C1と C3の和と
3
C2との比によって決まる(式 5)。この比をひとすると、 TFT1 11のゲート電位は(1- α ) Vin+Vgs+ a VOとなり、キャパシタ CI 11に保持されている電圧は Vgs力ら(1_ α ) (V in-VO)だけ増加する。
[0087] (数 5)
A V= { C1/ (C1 + C2 + C3) } - (V —V ) = a …(5)
0 in
[0088] その後、図 33Aに示すように、 TFT116, TFT118をオフして、 TFT112, TFT12 0をオン、 TFT1 14をオフする。これによつて TFT111のソース電位は一旦 V0レベル になり、その後 EL発光素子 119に電流が流れ始める。 TFT111のソース電位は変 動するにも関わらず、ゲートソース間にはキャパシタ C111があり、キャパシタ C11 1の 容量 C1を寄生容量 C3よりも大きくすることでゲートソース電位は常に一定値に保た れる。
このとき、 TFT111は飽和領域で駆動するので、 TFT111に流れる電流値 Idsは式 1で示された値となり、それはゲートソース間電圧で決定される。この Idsは EL発光素 子 119にも同様に流れ、 EL発光素子 119は発光する。
素子の等価回路は図 33Bに示すようになつているため、 TFT11 1のソース電圧は E L発光素子 119に電流 Idsが流れるゲート電位まで上昇する。この電位上昇に伴い、 キャパシタ C111を介して TFT111のゲート電位も同様に上昇する。これにより、前述 した通り TFT111のゲートソース電位は一定に保たれることになり、 EL発光素子 119 が経時劣化して TFT111のソース電位が変化してもゲートソース間電圧は一定のま まで EL発光素子 119に流れる電流値は変化することはなレ、。
[0089] ここで、キャパシタ C111 ,〇112の容量〇1、 C2について考える。
まず C1と C2の和は、 C1+C2》C3としなくてはならなレ、。 C3に比べ非常に大きくす ることでノード ND111、 ND112の電位変化量の全てを TFT111のゲートにカツプリ ングさせることができる。
このとき、 TFT111に流れる電流値は式 1で示される値となり、図 34のように TFT1 11のゲートソース間電圧は Irei¾r流す電圧からひ (V0-Vin)という一定値だけ大きく なり、移動度が異なる画素 Aと Bにおいても、 Idsのバラツキを小さく抑えることができる ので、ュニフォーミティのバラツキも抑えることができる。
し力、し、 C1+C2を小さくしてしまうと、ノード ND111、 ND112の電圧変化量は全て カップリングされず、ゲインをもってしまう。このゲインを ;3とすると、 TFT111に流れる 電流量は式 6で表され、 T10のゲートソース間電圧は Iref¾r流す電圧から Vin+ ( -1) Vgsという値だけ大きくなるのだ力 Vgsは画素ごとに異なる値であるために、 Idsのバ ラツキを小さく抑えることができなくなる(図 35)。これより、 C1+C2は C3に比べ大きくと らなければならない。
[0090] (数 6)
A V= {C1/ (C1 +C2 + C3) } -V …(6)
gs
[0091] 次に C1の大きさについて考える。
C1は TFT111の寄生容量 C3に比べて非常に大きくなければならない。もし C1が C3と同じレベルならば、 TFT114のソース電位の変動がキャパシタ CI 11を通じて T FT114のゲートにカップリングされてしまレ、、キャパシタ CI 11に保持されてレ、る電圧 が変動してしまう。このため、 TFT111は一定量の電流を流すことができなくなり、画 素ごとにバラツキが生じてしまう。これより、 C1は TFT111の寄生容量 C3に比べて非 常に大きくとらなければならない。
[0092] さらに、 C2について考える。 C2》C1であるとすると、 TFT114をオンして V0_Vinと レ、う電圧変化をキャパシタ CI 11を通して TFT111のゲートにカップリングさせる際に 、キャパシタ CI 11に保持されてレ、る電位差は Iref¾rTFTl 11に流して保持された V gsとレ、う電位力 Vin-VOとレ、う一定値だけ増加するので、移動度が異なる画素 Aと B においても、 Idsのバラツキを小さく抑えることができ、ュニフォーミティのバラツキも抑 えることができる。
しかしながら、 C2》C1とすると、 Idsのバラツキを小さく抑えることができず、ュニフ ォーミティのバラツキも抑えることができなレ、。
次に、 C2《C1とすると TFT114をオンした際に、 V0_Vinという電圧変化が全てキ ャパシタ C111を通して TFT111のゲートにカップリングされてしまうので、キャパシタ C111に保持されている電圧は Vgsから全く変化しない。これより、 EL発光素子 119 には入力電圧に関わらず Irefという一定電流しか流すことができないので画素はラス ター表示しかできない。
以上より、 C1と C2の大きさは同レベルに設定し、 TFT114をオンすることによるカツ プリングにおいて一定のゲインを持たせる必要がある。
ここで前述のように C3は TFT114の寄生容量であり、その大きさは数 10—数 lOOfF のオーダーであるが、 Cl、 C2、 C3の関係は、 C2》C3、 C1》C3であり、且つ C1と C 2は同レベルでなければならないので Cl、 C2はそれぞれ数 lOOfF—数 pFという大き さでよレ、。これより、画素内という限られた大きさの中に容量を容易に設定することが でき、従来の問題点であった画素ごとに電流値がばらついてしまい画素ムラとなって しまうという問題点も克服することができる。
[0093] <第 7実施形態および第 8実施形態 >
図 36は、本第 7の実施形態に係る画素回路の具体的な構成を示す回路図である。 図 37は、本第 8の実施形態に係る画素回路の具体的な構成を示す回路図である。
[0094] 本第 7の実施形態が上述した第 5の実施形態と異なる点は、第 4のスィッチとしての TFT115が接続される所定の電位線をデータ線 DTLと共用せずに、別に設けたこと ある。
同様に、本第 8の実施形態が上述した第 6の実施形態と異なる点は、第 4のスィッチ としての TFT115が接続される所定の電位線をデータ線 DTLと共用せずに、別に設 けたことある。 [0095] その他の構成は第 5および第 6の実施形骸と同様であり、ここでは、構成および機 能に関する詳細な説明は省略する。
[0096] 第 7および第 8の実施形態は基本的には、同様に動作する。
図 38A Kおよび図 39A Kにその動作例のタイミングチャートを示す。
[0097] 本第 4の実施形態では、ドライバトランジスタとしての TFT111のソースに基準電流 I refを流す際に TFT111のゲート電圧に入力電圧 Vinを入力するのではなぐ固定電 位 V0を入力する。固定電位 V0を入力して基準電流 Irefを流すことによって画素内に Vinが入力されている時間を短くすることができ、画素に高速に書き込むことができる このため、たとえば 3回書き込み方式のように 1Hを数分割して画素に書き込むとい つた駆動方式にも対応することができるようになる。
[0098] ぐ第 9実施形態および第 10実施形態 >
図 40は、本第 9の実施形態に係る画素回路の具体的な構成を示す回路図である。 図 41は、本第 10の実施形態に係る画素回路の具体的な構成を示す回路図である。
[0099] 本第 9の実施形態が第 5の実施形態と異なる点は、キャパシタ C112の第 1電極と 第 2のノード ND112とを接続する電気的接続手段を、両者間を選択的に接続するス イッチ 118により構成する代わり、電気配線により直接接続するようにしたことにある。 本第 10の実施形態が第 6の実施形態と異なる点は、キャパシタ C112の第 1電極と 第 2のノード ND112とを接続する電気的接続手段を、両者間を選択的に接続するス イッチ 118により構成する代わり、電気配線により直接接続するようにしたことにある。 その結果、第 3のドライブスキャナ 107と駆動線 DSL121が不要となっている。
[0100] その他の構成は、上述した第 5および第 6の実施形態と同様である。
第 9および第 10の実施形態は基本的には、同様に動作する。
図 42A Jおよび図 43A— Jにその動作例のタイミングチャートを示す。
[0101] 本第 9および第 10の実施形態によれば、上述した第 5および第 6の実施形態の効 果に加えて、画素回路内の素子数を低減することができ、回路構成を簡単化できる 利点がある。
[0102] ぐ第 11実施形態および第 12実施形態 > 図 44は、本第 11の実施形態に係る画素回路の具体的な構成を示す回路図である 。図 45は、本第 12の実施形態に係る画素回路の具体的な構成を示す回路図である
[0103] 本第 11の実施形態が第 7の実施形態と異なる点は、キャパシタ C112の第 1電極と 第 2のノード ND112とを接続する電気的接続手段を、両者間を選択的に接続するス イッチ 118により構成する代わり、電気配線により直接接続するようにしたことにある。 本第 12の実施形態が第 8の実施形態と異なる点は、キャパシタ C112の第 1電極と 第 2のノード ND112とを接続する電気的接続手段を、両者間を選択的に接続するス イッチ 118により構成する代わり、電気配線により直接接続するようにしたことにある。 その結果、第 3のドライブスキャナ 107と駆動線 DSL121が不要となっている。
[0104] その他の構成は、上述した第 7および第 8の実施形態と同様である。
[0105] その他の構成は、上述した第 7および第 8の実施形態と同様である。
第 11および第 12の実施形態は基本的には、同様に動作する。
図 46A— Jおよび図 47A— Jにその動作例のタイミングチャートを示す。
[0106] 本第 11および第 12の実施形態によれば、上述した第 7および第 8の実施形態の効 果に加えて、画素回路内の素子数を低減することができ、回路構成を簡単化できる 利点がある。
産業上の利用分野
[0107] 本発明の画素回路、表示装置、および画素回路の駆動方法は、発光素子の電流 - 電圧特性が経時変化しても、輝度劣化の無いソースフォロワ一出力が行え、 nチヤネ ノレトランジスタのソースフォロワ一回路が可能となり、しかも、画素内部の能動素子の しきい値や移動度のばらつきによらず均一で高品位の画像を表示することが可能で あること力 、携帯情報端末 (Personal Digital Assistant),パーソナルコンピュータ、力 一ナビゲーシヨン用の表示装置、携帯電話、デジタルカメラ、ビデオカメラ等の電子 機器に適用可能である。

Claims

請求の範囲
[1] 流れる電流によって輝度が変化する電気光学素子を駆動する画素回路であって、 輝度情報に応じたデータ信号が供給されるデータ線と、
第 1、第 2、第 3、および第 4のノードと、
第 1および第 2の基準電位と、
所定の基準電流を供給する基準電流供給手段と、
上記第 2のノードに接続された電気的接続手段と、
上記第 1のノードと上記第 2のノードとの間に接続された画素容量素子と、 上記電気的接続手段と上記第 4のノードとの間に接続された結合容量素子と、 第 1端子と第 2端子間で電流供給ラインを形成し、上記第 2のノードに接続された制 御端子の電位に応じて上記電流供給ラインを流れる電流を制御する駆動トランジス タと、
上記第 1のノードと上記第 3のノードとの間に接続された第 1のスィッチと、 上記第 3のノードと上記第 4のノードとの間に接続された第 2のスィッチと、 上記第 1のノードと固定電位との間に接続された第 3のスィッチと、
上記第 2のノードと所定の電位線との間に接続された第 4のスィッチと、 上記データ線と上記第 4のノードとの間に接続された第 5のスィッチと、 上記第 3のノードと上記基準電流供給手段との間に接続された第 6のスィッチと、を 有し、
上記第 1の基準電位と第 2の基準電位との間に、上記駆動トランジスタの電流供給 ライン、上記第 1のノード、上記第 3のノード、上記第 1のスィッチ、および上記電気光 学素子が直列に接続されている
画素回路。
[2] 上記電気的接続手段は、上記第 2のノードと上記結合容量素子とを直接接続する 配線を含む
請求項 1記載の画素回路。
[3] 上記電気的接続手段は、上記第 2のノードと上記結合容量素子とを選択的に接続 する第 7のスィッチを含む 請求項 1記載の画素回路。
[4] 上記第 1のノードと上記電気光学素子との間に接続された第 7のスィッチと、
上記第 1のノードと上記データ線との間に接続された第 8のスィッチと、を含む 請求項 1記載の画素回路。
[5] 上記第 1のノードと上記電気光学素子との間に接続された第 7のスィッチと、
上記第 1のノードと上記第 4のノードとの間に接続された第 8のスィッチと、を含む 請求項 1記載の画素回路。
[6] 上記第 1のノードと上記電気光学素子との間に接続された第 8のスィッチと、
上記第 1のノードと上記データ線との間に接続された第 9のスィッチと、を含む 請求項 3記載の画素回路。
[7] 上記第 1のノードと上記電気光学素子との間に接続された第 8のスィッチと、
上記第 1のノードと上記第 4のノードとの間に接続された第 9のスィッチと、を含む 請求項 3記載の画素回路。
[8] 上記所定の電位線は、上記データ線と共用されている
請求項 1記載の画素回路。
[9] 上記駆動トランジスタが電界効果トランジスタであり、ソースが上記第 3のノードに接 続され、ドレインが上記第 1の基準電位に接続されている
請求項 1記載の画素回路。
[10] 上記電気光学素子を駆動する場合、
第 1ステージとして、上記第 1、第 2、第 4、第 5および第 6のスィッチが非導通状態 に保持された状態で、上記第 3のスィッチが導通状態に保持されて、上記第 1のノー ドが固定電位に接続され、
第 2ステージとして、上記第 2、第 4、および上記第 6のスィッチが導通状態に保持さ れて、所定電位を上記第 2のノードに入力させ、基準電流を上記第 3のノードに流し 、画素容量素子に所定電位を充電し、
第 3ステージとして、上記第 2および第 6のスィッチが非導通状態に保持され、さら に第 4のスィッチが非導通状態に保持され、上記第 5のスィッチが導通状態に保持さ れて上記データ線を伝播されるデータが上記第 2のノードに入力された後、上記第 5 のスィッチが非導通状態に保持され、
第 4ステージとして、上記第 1のスィッチが導通状態に保持され、上記第 3のスイツ チが非導通状態に保持される
請求項 2記載の画素回路。
[11] 上記電気光学素子を駆動する場合、
第 1ステージとして、上記第 1、第 2、第 4、第 5、第 6、および第 7のスィッチが非導 通状態に保持された状態で、上記第 3のスィッチが導通状態に保持されて、上記第 1 のノードが固定電位に接続され、
第 2ステージとして、上記第 2、第 4、第 6、および第 7のスィッチが導通状態に保持 されて、上記データ線を伝播されるデータ電位を上記第 2のノードに入力させ、基準 電流を上記第 3のノードに流し、画素容量素子に所定電位を充電し、
第 3ステージとして、上記第 2および第 6のスィッチが非導通状態に保持され、さら に第 4のスィッチが非導通状態に保持され、上記第 5のスィッチが導通状態に保持さ れて上記データ線を伝播されるデータが上記第第 4のノードを介して第 2のノードに 入力された後、上記第 5および第 7のスィッチが非導通状態に保持され、
第 4ステージとして、上記第 1のスィッチが導通状態に保持され、上記第 3のスイツ チが非導通状態に保持される
請求項 3記載の画素回路。
[12] マトリクス状に複数配列された画素回路と、
上記画素回路のマトリクス配列に対して列毎に配線され、輝度情報に応じたデータ 信号が供給されるデータ線と、
第 1および第 2の基準電位と、を有し、
所定の基準電流を供給する基準電流供給手段と、
上記画素回路は、
流れる電流によって輝度が変化する電気光学素子と、
第 1、第 2、第 3、および第 4のノードと、
上記第 2のノードに接続された電気的接続手段と、
上記第 1のノードと上記第 2のノードとの間に接続された画素容量素子と、 上記電気的接続手段と上記第 4のノードとの間に接続された結合容量素子と、 第 1端子と第 2端子間で電流供給ラインを形成し、上記第 2のノードに接続され た制御端子の電位に応じて上記電流供給ラインを流れる電流を制御する駆動トラン ジスタと、
上記第 1のノードと上記第 3のノードとの間に接続された第 1のスィッチと、 上記第 3のノードと上記第 4のノードとの間に接続された第 2のスィッチと、 上記第 1のノードと固定電位との間に接続された第 3のスィッチと、
上記第 2のノードと所定の電位線との間に接続された第 4のスィッチと、 上記データ線と上記第 4のスィッチとの間に接続された第 5のスィッチと、 上記第 3のノードと上記基準電流供給手段との間に接続された第 6のスィッチと 、を有し、
上記第 1の基準電位と第 2の基準電位との間に、上記駆動トランジスタの電流供 給ライン、上記第 1のノード、上記第 3のノード、上記第 1のスィッチ、および上記電気 光学素子が直列に接続されている
表示装置。
流れる電流によって輝度が変化する電気光学素子と、
輝度情報に応じたデータ信号が供給されるデータ線と、
第 1、第 2、第 3、および第 4のノードと、
第 1および第 2の基準電位と、
所定の基準電流を供給する基準電流供給手段と、
上記第 2のノードに接続された電気的接続手段と、
上記第 1のノードと上記第 2のノードとの間に接続された画素容量素子と、 上記電気的接続手段と上記第 4のノードとの間に接続された結合容量素子と、 第 1端子と第 2端子間で電流供給ラインを形成し、上記第 2のノードに接続された制 御端子の電位に応じて上記電流供給ラインを流れる電流を制御する駆動トランジス タと、
上記第 1のノードと上記第 3のノードとの間に接続された第 1のスィッチと、 上記第 3のノードと上記第 4のノードとの間に接続された第 2のスィッチと、 上記第 1のノードと固定電位との間に接続された第 3のスィッチと、
上記第 2のノードと所定の電位線との間に接続された第 4のスィッチと、 上記データ線と上記第 4のスィッチとの間に接続された第 5のスィッチと、 上記第 3のノードと上記基準電流供給手段との間に接続された第 6のスィッチと、を 有し、
上記第 1の基準電位と第 2の基準電位との間に、上記駆動トランジスタの電流供給 ライン、上記第 1のノード、上記第 3のノード、上記第 1のスィッチ、および上記電気光 学素子が直列に接続されている画素回路の駆動方法であって、
上記第 1、第 2、第 4、第 5および第 6のスィッチが非導通状態に保持した状態で、 上記第 3のスィッチを導通状態に保持させて、上記第 1のノードを固定電位に接続し 上記第 2、第 4、および上記第 6のスィッチを導通状態に保持して、所定電位を上記 第 2のノードに入力させ、基準電流を上記第 3のノードに流し、画素容量素子に所定 電位を充電し、
上記第 2および第 6のスィッチを非導通状態に保持し、さらに第 4のスィッチを非導 通状態に保持し、上記第 5のスィッチを導通状態に保持し上記データ線を伝播され るデータを上記第 2のノードに入力させた後、上記第 5のスィッチを非導通状態に保 持し、
上記第 1のスィッチを導通状態に保持し、上記第 3のスィッチを非導通状態に保持 する
画素回路の駆動方法。
PCT/JP2004/016640 2003-11-10 2004-11-10 画素回路、表示装置、および画素回路の駆動方法 WO2005045797A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/578,002 US7355572B2 (en) 2003-11-10 2004-11-10 Pixel circuit, display device, and method of driving pixel circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-380171 2003-11-10
JP2003380171A JP4131227B2 (ja) 2003-11-10 2003-11-10 画素回路、表示装置、および画素回路の駆動方法

Publications (1)

Publication Number Publication Date
WO2005045797A1 true WO2005045797A1 (ja) 2005-05-19

Family

ID=34567224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016640 WO2005045797A1 (ja) 2003-11-10 2004-11-10 画素回路、表示装置、および画素回路の駆動方法

Country Status (6)

Country Link
US (1) US7355572B2 (ja)
JP (1) JP4131227B2 (ja)
KR (1) KR101065950B1 (ja)
CN (1) CN100416639C (ja)
TW (1) TWI244633B (ja)
WO (1) WO2005045797A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101251978B (zh) * 2007-02-20 2010-06-02 索尼株式会社 显示装置和其驱动方法
CN103996379A (zh) * 2014-06-16 2014-08-20 深圳市华星光电技术有限公司 有机发光二极管的像素驱动电路及像素驱动方法

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5044883B2 (ja) * 2004-03-31 2012-10-10 日本電気株式会社 表示装置、電気回路の駆動方法、及び表示装置の駆動方法
KR101080350B1 (ko) * 2004-04-07 2011-11-04 삼성전자주식회사 표시 장치 및 그 구동 방법
KR100590068B1 (ko) * 2004-07-28 2006-06-14 삼성에스디아이 주식회사 발광 표시 장치와, 그 표시 패널 및 화소 회로
JP2006285116A (ja) 2005-04-05 2006-10-19 Eastman Kodak Co 駆動回路
TWI449009B (zh) * 2005-12-02 2014-08-11 Semiconductor Energy Lab 顯示裝置和使用該顯示裝置的電子裝置
JP5124985B2 (ja) * 2006-05-23 2013-01-23 ソニー株式会社 画像表示装置
US8654045B2 (en) * 2006-07-31 2014-02-18 Sony Corporation Display and method for manufacturing display
KR100805596B1 (ko) * 2006-08-24 2008-02-20 삼성에스디아이 주식회사 유기전계발광 표시장치
JP2008134346A (ja) * 2006-11-27 2008-06-12 Toshiba Matsushita Display Technology Co Ltd アクティブマトリクス型表示装置
JP4470960B2 (ja) * 2007-05-21 2010-06-02 ソニー株式会社 表示装置及びその駆動方法と電子機器
JP4479755B2 (ja) * 2007-07-03 2010-06-09 ソニー株式会社 有機エレクトロルミネッセンス素子、及び、有機エレクトロルミネッセンス表示装置
JP2009031620A (ja) * 2007-07-30 2009-02-12 Sony Corp 表示装置及び表示装置の駆動方法
JP2010008987A (ja) * 2008-06-30 2010-01-14 Canon Inc 駆動回路
KR101525807B1 (ko) 2009-02-05 2015-06-05 삼성디스플레이 주식회사 표시 장치및 그 구동 방법
JP5360684B2 (ja) 2009-04-01 2013-12-04 セイコーエプソン株式会社 発光装置、電子機器および画素回路の駆動方法
BR112012005098A2 (pt) * 2009-09-07 2016-05-03 Sharp Kk circuito de pixel e dispositivo de exibição
KR101058111B1 (ko) * 2009-09-22 2011-08-24 삼성모바일디스플레이주식회사 디스플레이 패널의 화소 회로, 그 구동방법, 및 이를 포함하는 유기 발광 표시 장치
KR101030002B1 (ko) * 2009-10-08 2011-04-20 삼성모바일디스플레이주식회사 화소 회로 및 이를 이용한 유기전계발광 표시 장치
TWI413040B (zh) * 2009-12-10 2013-10-21 Au Optronics Corp 畫素陣列
KR101117733B1 (ko) * 2010-01-21 2012-02-24 삼성모바일디스플레이주식회사 화소 회로, 이를 이용한 표시 장치 및 표시 장치 구동 방법
JP2011170616A (ja) * 2010-02-18 2011-09-01 On Semiconductor Trading Ltd 静電容量型タッチセンサ
CN102270425B (zh) * 2010-06-01 2013-07-03 北京大学深圳研究生院 一种像素电路及显示设备
US8743027B2 (en) * 2011-08-30 2014-06-03 E Ink Holdings Inc. OLED driving circuit and method of the same used in display panel
JP6228753B2 (ja) * 2012-06-01 2017-11-08 株式会社半導体エネルギー研究所 半導体装置、表示装置、表示モジュール、及び電子機器
US9401112B2 (en) 2012-07-31 2016-07-26 Sharp Kabushiki Kaisha Display device and method of driving the same
WO2014021159A1 (ja) * 2012-07-31 2014-02-06 シャープ株式会社 画素回路、それを備える表示装置、およびその表示装置の駆動方法
US9648263B2 (en) * 2012-11-28 2017-05-09 Infineon Technologies Ag Charge conservation in pixels
JP6157178B2 (ja) * 2013-04-01 2017-07-05 ソニーセミコンダクタソリューションズ株式会社 表示装置
CN104537997B (zh) * 2015-01-04 2017-09-22 京东方科技集团股份有限公司 一种像素电路及其驱动方法和显示装置
JP6733361B2 (ja) * 2016-06-28 2020-07-29 セイコーエプソン株式会社 表示装置及び電子機器
JP6732822B2 (ja) * 2018-02-22 2020-07-29 株式会社Joled 画素回路および表示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002514320A (ja) * 1997-04-23 2002-05-14 サーノフ コーポレイション アクティブマトリックス発光ダイオードピクセル構造及び方法
JP2003173165A (ja) * 2001-09-29 2003-06-20 Toshiba Corp 表示装置
JP2003195809A (ja) * 2001-12-28 2003-07-09 Matsushita Electric Ind Co Ltd El表示装置とその駆動方法および情報表示装置
JP2003216109A (ja) * 2002-01-28 2003-07-30 Sanyo Electric Co Ltd 表示装置およびその表示の制御方法
JP2003271095A (ja) * 2002-03-14 2003-09-25 Nec Corp 電流制御素子の駆動回路及び画像表示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684365A (en) 1994-12-14 1997-11-04 Eastman Kodak Company TFT-el display panel using organic electroluminescent media
US6229506B1 (en) * 1997-04-23 2001-05-08 Sarnoff Corporation Active matrix light emitting diode pixel structure and concomitant method
US7012597B2 (en) * 2001-08-02 2006-03-14 Seiko Epson Corporation Supply of a programming current to a pixel
JP4075505B2 (ja) * 2001-09-10 2008-04-16 セイコーエプソン株式会社 電子回路、電子装置、及び電子機器
GB2384100B (en) * 2002-01-09 2005-10-26 Seiko Epson Corp An electronic circuit for controlling the current supply to an element
JP2003216019A (ja) 2002-01-18 2003-07-30 Katsuhiro Hidaka ギター運指練習機
EP2348502B1 (en) * 2002-01-24 2013-04-03 Semiconductor Energy Laboratory Co. Ltd. Semiconductor device and method of driving the semiconductor device
JP4920871B2 (ja) * 2002-03-05 2012-04-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 情報を記録する装置、記録担体、及び方法
JP2004145278A (ja) * 2002-08-30 2004-05-20 Seiko Epson Corp 電子回路、電子回路の駆動方法、電気光学装置、電気光学装置の駆動方法及び電子機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002514320A (ja) * 1997-04-23 2002-05-14 サーノフ コーポレイション アクティブマトリックス発光ダイオードピクセル構造及び方法
JP2003173165A (ja) * 2001-09-29 2003-06-20 Toshiba Corp 表示装置
JP2003195809A (ja) * 2001-12-28 2003-07-09 Matsushita Electric Ind Co Ltd El表示装置とその駆動方法および情報表示装置
JP2003216109A (ja) * 2002-01-28 2003-07-30 Sanyo Electric Co Ltd 表示装置およびその表示の制御方法
JP2003271095A (ja) * 2002-03-14 2003-09-25 Nec Corp 電流制御素子の駆動回路及び画像表示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101251978B (zh) * 2007-02-20 2010-06-02 索尼株式会社 显示装置和其驱动方法
CN103996379A (zh) * 2014-06-16 2014-08-20 深圳市华星光电技术有限公司 有机发光二极管的像素驱动电路及像素驱动方法
CN103996379B (zh) * 2014-06-16 2016-05-04 深圳市华星光电技术有限公司 有机发光二极管的像素驱动电路及像素驱动方法

Also Published As

Publication number Publication date
TW200527378A (en) 2005-08-16
JP4131227B2 (ja) 2008-08-13
US7355572B2 (en) 2008-04-08
US20070052644A1 (en) 2007-03-08
KR101065950B1 (ko) 2011-09-19
JP2005141163A (ja) 2005-06-02
KR20060120083A (ko) 2006-11-24
CN1879141A (zh) 2006-12-13
TWI244633B (en) 2005-12-01
CN100416639C (zh) 2008-09-03

Similar Documents

Publication Publication Date Title
US12112698B2 (en) Pixel circuit, display device, and method of driving pixel circuit
JP4131227B2 (ja) 画素回路、表示装置、および画素回路の駆動方法
JP3901105B2 (ja) 画素回路、表示装置、および画素回路の駆動方法
JP4049018B2 (ja) 画素回路、表示装置、および画素回路の駆動方法
JP4062179B2 (ja) 画素回路、表示装置、および画素回路の駆動方法
JP4168836B2 (ja) 表示装置
JP4049037B2 (ja) 表示装置およびその駆動方法
JP4590831B2 (ja) 表示装置、および画素回路の駆動方法
JP5034208B2 (ja) 表示装置および表示装置の駆動方法
JP2005181920A (ja) 画素回路、表示装置およびその駆動方法
JP4547873B2 (ja) 画素回路、表示装置、および画素回路の駆動方法
JP4581337B2 (ja) 画素回路、表示装置、および画素回路の駆動方法
JP4639730B2 (ja) 画素回路、表示装置、および画素回路の駆動方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480032999.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007052644

Country of ref document: US

Ref document number: 10578002

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067008943

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020067008943

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10578002

Country of ref document: US