WO2005038852A1 - X線装置 - Google Patents

X線装置 Download PDF

Info

Publication number
WO2005038852A1
WO2005038852A1 PCT/JP2004/015386 JP2004015386W WO2005038852A1 WO 2005038852 A1 WO2005038852 A1 WO 2005038852A1 JP 2004015386 W JP2004015386 W JP 2004015386W WO 2005038852 A1 WO2005038852 A1 WO 2005038852A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling medium
anode target
rotating
ray apparatus
anode
Prior art date
Application number
PCT/JP2004/015386
Other languages
English (en)
French (fr)
Inventor
Hidero Anno
Koichi Kitade
Takayuki Kitami
Hironori Nakamuta
Manabu Sato
Original Assignee
Kabushiki Kaisha Toshiba
Toshiba Electron Tubes & Devices Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba, Toshiba Electron Tubes & Devices Co., Ltd. filed Critical Kabushiki Kaisha Toshiba
Priority to JP2005514821A priority Critical patent/JP4987299B2/ja
Priority to EP04792555A priority patent/EP1691394A4/en
Publication of WO2005038852A1 publication Critical patent/WO2005038852A1/ja
Priority to US11/404,778 priority patent/US7197118B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • F16C37/002Cooling of bearings of fluid bearings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/101Arrangements for rotating anodes, e.g. supporting means, means for greasing, means for sealing the axle or means for shielding or protecting the driving
    • H01J35/1017Bearings for rotating anodes
    • H01J35/104Fluid bearings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/02Constructional details
    • H05G1/025Means for cooling the X-ray tube or the generator
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/02Constructional details
    • H05G1/04Mounting the X-ray tube within a closed housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/10Drive means for anode (target) substrate
    • H01J2235/1046Bearings and bearing contact surfaces
    • H01J2235/106Dynamic pressure bearings, e.g. helical groove type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/12Cooling
    • H01J2235/1208Cooling of the bearing assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/12Cooling
    • H01J2235/1225Cooling characterised by method
    • H01J2235/1262Circulating fluids
    • H01J2235/1275Circulating fluids characterised by the fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/16Vessels
    • H01J2235/165Shielding arrangements
    • H01J2235/168Shielding arrangements against charged particles

Definitions

  • the present invention relates to an X-ray apparatus and a rotating anode type X-ray tube applied to the X-ray apparatus.
  • An X-ray apparatus using a rotating anode type X-ray tube clarifies an anode target rotatably supported.
  • the X-ray tube also has a stator coil that provides a driving magnetic field, and an X-ray tube body and a housing that houses the stator coil.
  • a cooling medium that dissipates heat that also generates an anode target equivalent force for example, a non-oil-based cooling medium containing insulating oil or water as a main component.
  • Refill liquid is full. That is, the heat from the anode target or the like is radiated to the cooling medium, and the cooling medium is cooled by convection, so that the heat is exhausted.
  • elements that generate heat, such as the anode target are cooled.
  • the heat generated from the stator coil is also discharged, and as a result, the stator coil is also cooled.
  • a spiral groove is formed on a bearing surface of a rotating support mechanism that rotatably supports an anode target, and a liquid metal lubricant is formed.
  • a dynamic pressure-type sliding bearing in which gallium (Ga) or a gallium-indium-tin (Ga-In-Sn) alloy is filled in a spiral groove is used.
  • An object of the present invention is to provide an X-ray apparatus for cooling a rotating anode X-ray tube using a non-fat-based cooling liquid as a cooling medium, to enhance the heat emission characteristics and to provide X-rays having stable characteristics over a long period of time. It is possible to output.
  • the present invention provides an anode target for generating X-rays, an electron emission source for generating electrons toward the anode target, a rotor to which the anode target is connected, and a propulsion for rotating the rotor.
  • a stator for generating a force a bearing rotatably supporting the rotor, an envelope for maintaining at least the anode target, the electron emission source, and the rotor at a predetermined degree of vacuum; and a periphery of the envelope.
  • a cooling medium circulating through the housing, a pump circulating the cooling medium in the vicinity of the anode target and the electron emission portion and inside the bearing, and a cooling medium circulated by the pump.
  • a heat exchanger for discharging heat
  • An X-ray apparatus having:
  • the present invention provides a rotating anode type X-ray tube in which a rotatable anode target and a cathode arranged to face the anode target are housed in a vacuum envelope, and the anode target is rotated.
  • a hydrodynamic slide bearing rotatably supporting the anode target and using liquid metal as a lubricant, and a housing accommodating and holding at least the rotating cathode X-ray tube
  • a flow path provided near at least a part of the rotary anode type X-ray tube and circulating an aqueous cooling medium; and a gear pump provided at a predetermined position in the flow path and circulating the aqueous cooling medium;
  • a cooler unit having a radiator for releasing heat of the aqueous cooling medium. Is to provide.
  • the present invention provides a rotating anode type X-ray tube in which a rotatable anode target and a cathode arranged to face the anode target are housed in a vacuum envelope, and the anode target is rotated.
  • a hydrodynamic slide bearing rotatably supporting the anode target and using a liquid metal as a lubricant, and a housing accommodating and holding at least the rotating cathode type X-ray tube
  • a flow path provided in close proximity to at least a part of the rotary anode type X-ray tube, and formed so that a cooling medium can circulate in a space between the envelope and the housing;
  • An X-ray apparatus comprising: a gear pump provided at a predetermined position of the cooling medium and circulating the cooling medium; and a cooler unit having a radiator for releasing heat of the cooling medium.
  • FIG. 1 is a schematic diagram illustrating an example of an X-ray apparatus to which an embodiment of the present invention is applied
  • FIG. 2 is a schematic view showing an example of a rotating anode of an X-ray tube incorporated in the X-ray apparatus shown in FIG.
  • FIG. 3 is a schematic diagram illustrating an example of a structural material providing a bearing structure used for the rotary anode shown in FIG. 2.
  • FIG. 4 shows that the anode target and the rotating unit shown in Figs. 2 and 3 are loaded into the envelope (vacuum vessel) shown in Fig. 1, and the cooling medium can be circulated inside it.
  • FIG. 2 is a schematic diagram illustrating an example of the configuration.
  • FIG. 5 is a schematic diagram illustrating an example of a cooling system (also using an oil-based cooling medium) applicable to the X-ray apparatus described with reference to FIGS. 1 to 4.
  • FIG. 6 is a schematic diagram illustrating a modification of the cooling system of the X-ray apparatus shown in FIG.
  • FIG. 7 is a schematic diagram illustrating an example of a cooling system (only a non-fat-based cooling medium is used) applicable to the X-ray apparatus described with reference to FIGS. 1 to 4.
  • FIG. 8 is a schematic diagram illustrating a modification of the cooling system of the X-ray apparatus shown in FIG. 7.
  • FIG. 9 is a schematic diagram illustrating an example in which a route for circulating a non-oil-based cooling medium in the X-ray apparatus shown in FIG. 5 is changed.
  • FIG. 10 is a schematic diagram illustrating an example in which a route for circulating a non-oil-based cooling medium in the X-ray apparatus shown in FIG. 7 is changed.
  • an X-ray apparatus 1 that is incorporated in, for example, an X-ray image diagnostic apparatus or a non-destructive inspection apparatus and emits X-rays to be irradiated on an object, that is, a non-inspection object
  • An X-ray tube main body 5 housed in the housing 3 and capable of emitting X-rays of a predetermined intensity in a predetermined direction is provided in the housing 3.
  • the X-ray tube main body 5 is formed, for example, through a housing 3 via a non-fat-based cooling liquid or a well-known insulating oil, that is, a cooling medium 7, whose main component is water and whose electric conductivity is smaller than a predetermined value. It is housed in a predetermined position.
  • the X-ray tube main body 5 is provided in an envelope (vacuum vessel) 9 and an envelope 9, and an anode target ( Anode) 11, a rotating unit 13 formed integrally with the anode target 11 and rotated simultaneously, a rotor 15 formed integrally with the rotating unit 13 and receiving power (propulsive force) for rotating the rotating unit 13; It has a cathode (electron gun) 17 for emitting electrons toward the cathode target 17 and the like.
  • a stator (stator coil) 19 that applies a predetermined thrust (magnetic field) to the rotor 15 is provided at a predetermined position outside the cylindrical rotor 15 of the X-ray tube body 5.
  • the X-ray tube body 5 shown in FIG. 1 is of a type in which an anode target is provided at one end of a rotating unit 13.
  • FIG. 2 is an enlarged view illustrating the vicinity of the anode target of the X-ray tube main body of the X-ray tube device shown in FIG.
  • the anode target 11 is fixed to a connection (neck) portion 13c defined at one end of the rotating body 13b of the outer ring rotating type rotating unit 13 in which the rotating body 13b rotates around a fixed shaft 13a inserted inside.
  • a connection (neck) portion 13c defined at one end of the rotating body 13b of the outer ring rotating type rotating unit 13 in which the rotating body 13b rotates around a fixed shaft 13a inserted inside.
  • a support shaft a state in which the rotating body 13b and the connection portion 13c are integrally formed is called a support shaft, and as described above, a rotor (a rotating force) that generates a thrust (rotational force) for rotating the anode target 11.
  • a rotor structure 15a having a copper or copper alloy force to function as 15 is fixed.
  • the fixed shaft 13a has first and second screws provided with a specific direction along the axial direction.
  • the spiral grooves 13d and 13e are formed.
  • a lubricant dynamic pressure bearing fluid
  • a Ga-In-Sn alloy which becomes a liquid when the rotating body 13b is rotated is supplied.
  • a lubricant holding portion 13f is formed.
  • the ring 13g is fixed, for example, by screws (not shown) (eight in this example).
  • the lubricant which is a Ga—In—Sn alloy, is hermetically sealed by the fixed shaft 13a, the rotating body 13b, and the thrust ring 13g.
  • FIG. 4 shows that the anode target and the rotary unit shown in FIGS. 2 and 3 are loaded into the envelope (vacuum vessel) 9 shown in FIG. 1, and one end thereof, for example, An example of a configuration in which a cooling medium supplied into the housing 3 from the thrust ring 13 g side can be circulated is shown.
  • the cooling medium 7 is supplied into the fixed shaft 13a from one end of the fixed shaft 13a by providing the fixed shaft 13a as a cylinder and providing a pipe 13h at the center thereof. After circulating inside, it is discharged into the housing 3, that is, outside the envelope 9.
  • the cooling medium 7 is insulative, the cooling medium 7 supplied to the fixed shaft 13a may be circulated in the envelope 9 as it is.
  • one end force is also guided into the cavity (fixed shaft 13a) in the pipe 13h, and flows into the cavity at a connection portion between the nove 13h and the cavity, After passing through the cavity, it is returned into the vacuum vessel (envelope) 9 or the housing 3.
  • the lubricant interposed between the end of the rotating body 13b on the neck side and the top of the fixed shaft 13a (in the axial direction) and between the fixed shaft 13a and the thrust ring 13g is a thrust-direction dynamic pressure type lubricant. Functions as a bearing.
  • a thrust-direction dynamic pressure type lubricant Functions as a bearing.
  • the lubricant filled between the bearing portion supporting the anode target 11 and the rotating unit 13, that is, between the fixed shaft 13a and the rotating body 13b functions as a hydrodynamic bearing.
  • the heat generated from the hydrodynamic bearing (bearing part) passes through the nozzle 13h in the fixed shaft 13a of the rotating unit 13 and the empty space through the non-oil-based grease circulated by the pump pressure (not shown). (Water system) Cooled by a cooling medium.
  • the cooling medium for example, propylene glycol, a mixture of water and propylene glycol (mixing ratio 1: 1), ethylene glycol, a mixture of water and ethylene glycol, or the like can be used.
  • the thermal conductivity of insulating oil is 1, the thermal conductivity of water is 4.5, the thermal conductivity of 50% propylene glycol is 2.8, and the thermal conductivity of propylene glycol is 1.6. Yes, the heat transfer coefficient is improved in proportion to the thermal conductivity.
  • FIGS. 5 to 8 show another example of cooling the X-ray apparatus incorporating the rotating anode X-ray tube shown in FIGS. 1 to 4 described with reference to FIGS. 1 to 4 by circulating a cooling medium.
  • a force is described using an example of an X-ray tube having a different structure from the rotating anode X-ray tube shown in FIGS. 1 to 4.
  • the concept of the invention is common to all the examples. Therefore, components substantially the same as or similar to those shown in FIGS. 1 to 4 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • 5 to 8 the method of supplying the cooling medium and its circulation (in that order) will be mainly described.
  • a cooler unit 21 is connected to one end of a fixed shaft 13a that holds the anode target 11.
  • the other end of the fixed shaft 13a is fixed to a predetermined position of the vacuum vessel (envelope) 9.
  • the fixed shaft 13a on the side to which the pipe from the cooler unit 21 is not connected is connected to the leg 13i of the rotating body 13b concentrically (with respect to the fixed shaft 13a) outside the fixed shaft 13a.
  • a copper or copper alloy cylinder functioning as the rotor structure 15a is fixed to the outside of the leg 13i.
  • the stator coil 19 is arranged concentrically with respect to the rotor structure 15a of the rotating unit 13 and so as to surround the outer periphery.
  • a recoil electron trap that captures recoil electrons rebounded by the anode target 11 among electrons (thermal electrons) irradiated from the cathode 17 to the anode target 11
  • a trap (shield structure) 23 is provided.
  • the electron trap 23 is made of, for example, copper or a copper alloy having a high thermal conductivity, and is formed so that a cooling medium circulated through the fixed shaft 13a of the rotating unit 13 can be circulated.
  • the non-oil-based cooling medium described above is circulated in at least the flow path provided in the rotation unit 13 and the electron trap 23.
  • the cooler unit 21 includes a circulation pump 21a for providing a predetermined pressure to the cooling medium and a heat exchange (radiator) 21b.
  • the radiator 21b is mainly formed of, for example, copper or a copper alloy having high thermal conductivity.
  • the circulation pump 21a is provided at an arbitrary position in the flow path through which the cooling medium is circulated.
  • the radiator 21b is provided on the downstream side of the circulation pump 21a, and immediately after the temperature of the cooling medium circulating through the flow path is lowered (cooling of the cooling medium), the radiator 21b is provided around the anode target 11 and around the cylindrical rotor 15. It is preferably supplied to the fixed shaft 13a.
  • a gear pump having a high discharge pressure ie, the delivery pressure of the cooling medium, that is, the pump pressure
  • the cooling structure shown in FIG. 5 is an example in which a non-oil-based cooling medium is supplied to at least the vicinity of the rotating unit 13 and the recoil electron trap 23.
  • the cooling medium flow path is provided near at least a part of the X-ray tube main body 5, and includes, for example, a first cooling path Cl, a second cooling path C2, and a third cooling path.
  • the first cooling path C1 is formed, for example, in a cylindrical shape along the outer periphery of the vacuum vessel 9.
  • the second cooling path C 2 is located around the cathode 17, that is, near the recoil electron trap 23 and the anode target 11.
  • the third cooling path C3 is formed so as to pass through the cavity 17 in the cylindrical rotor 15.
  • the first cooling path C1 is surrounded by a wall 25 provided outside the vacuum vessel 9 and near the stator coil 19 so as to be orthogonal to a rotation axis (not shown) of the rotation unit 13. It is provided in a shape surrounding 9. That is, the first cooling path C1 is defined as a disc-shaped space 27 defined by the wall surface 25. [0038]
  • the disc-shaped space 27 has an inlet Cl1 for introducing the aqueous cooling medium into the first cooling passage CI and an outlet C12 for leading the aqueous cooling medium from the first cooling passage C1. That is, the inlet C11 and the outlet C12 are formed at both ends (180 ° intervals) with the center of the disc-shaped space 27 interposed therebetween.
  • the second cooling path C 2 is an annular space 29 defined around the cathode 17, that is, at a predetermined position of the recoil electron trap 23.
  • the annular space 29 has an inlet C21 for introducing the aqueous cooling medium into the second cooling path C2 and an outlet C22 for extracting the aqueous cooling medium from the second cooling path C2.
  • the third cooling path C3 is defined by a pipe 13h of a fixed shaft 13a of the rotating unit 13 and a cavity which is a cylinder surrounding the pipe 13h.
  • the third cooling path C3 is connected to the inside of the fixed shaft 13a from the pipe 13h, and is connected to one end of the fixed shaft 13a. Then, the course is changed into the cavity and returned to the cooler unit 21.
  • pipes Pl, P2, P3 and P4 are connected to each other to form a flow path including the first cooling path Cl, the second cooling path C2, and the third cooling path C3.
  • the pipes P2 and P3 are partially shown outside the housing 3 for the convenience shown in the figure, but both can be provided inside the housing 3 and their positions (the arrangement of the pipes) No restrictions.
  • the cooler unit 21 is connected to the housing 3 via, for example, a detachable piping joint. That is, the flow path between the housing 3 and the cooler unit 21 is formed of, for example, a hose.
  • the housing 3 side and the cooler unit 21 side can be attached to and detached from the connection sections T1 and T2 between the hose and the housing 3 and the connection sections T3 and T4 between the hose and the cooler unit 27. With this structure, the housing 3 and the cooler unit 21 can be easily separated, and the installation work and maintenance work of the cooler unit 21 and the like become easy.
  • the rotating unit 13 rotates by the induction electromagnetic field generated by the stator coil 19.
  • the rotation of the rotation unit 13 causes the anode target 11 to rotate. Turn over.
  • X-rays are emitted from the anode target 11.
  • X-rays are transmitted to the outside through the X-ray output windows 9a (vacuum vessel) and 3a (nozzling).
  • the temperature of the anode target 11 depends on the collision of the electron beam e from the cathode 17. More to rise. In addition, the temperature of the surrounding area, particularly the temperature of the recoil electron trap 23, also increases. The temperature of the stator coil 19 rises due to the current flowing through the coil. Due to the transfer of the heat, the temperature of the vacuum container (envelope) 9 also increases.
  • the heat of the vacuum vessel 9 and the stator 19 raises the temperature of the coolant (cooling medium) in the housing 3.
  • the cooling medium whose temperature has been increased is circulated by the pump 21 a and guided to the cooler unit 21.
  • the heat, which is the temperature rise of the vacuum vessel 9 and the stator 19 is transmitted to the cooler unit 21 via the cooling medium, and is radiated to the outside by the heat exchanger (radiator) 21b of the cooler unit 21.
  • the cooling medium sent out from the heat exchange 21b of the cooler unit 21 is introduced into the inlet port C21 through the pipe P1, and passes through the annular space 29 (second cooling path C2) to generate an electron gun (a shadow). Pole) 17, cools the vicinity of the recoil electron trap 23 and the anode target 11.
  • the coolant that has passed through the outlet C22 is introduced into the inlet C11 through the pipe P2, and when passing through the disk-shaped space 27 (the first cooling path C1), the surroundings of the vacuum vessel 9 are removed. Cooling.
  • the coolant discharged from the outlet C12 is circulated from the inlet C31 via the pipe P3 to the pipe 13h (third cooling path C3) of the fixed shaft 13a and the cavity outside thereof through the pipe P3, and It is returned from C32 to cooler unit 21 via pipe P4.
  • the heat generated inside the X-ray tube body 5 and in the vicinity of the stator 19 is generated by the heat transfer efficiency flowing through the first cooling passage Cl, the second cooling passage C2, and the third cooling passage C3.
  • the cooling medium having a high temperature is efficiently guided to the cooler unit 21, and the cooling medium is cooled by the cooler unit 21 to radiate heat to the outside.
  • the insulating oil filled in the housing 3 moves while being in contact with the outer surface of the wall surface 25, so that it is possible to efficiently transfer heat to and from the coolant and to dissipate heat by the insulating oil. Is improved. As a result, heat exchange with insulating oil is not required, and the device configuration is simplified. Become.
  • Insulating oil that does not come into contact with the aqueous cooling medium flows around the periphery of the stator 19 and the periphery of the X-ray output window 3a. Becomes possible.
  • the load is relatively large due to the water-based (non-oil-based) cooling medium flowing through the nozzle 13h provided inside the fixed shaft 13a of the cylindrical rotor 15 and the cavity defined therearound.
  • the vicinity of the hydrodynamic bearing is also efficiently cooled.
  • FIG. 6 is a modification of the X-ray apparatus described with reference to FIG. 5, and shows an example in which the shape of the third cooling path C3 is a straight pipe.
  • the fixed shaft 13a of the cylindrical rotor 15 is a simple cavity (cylindrical shape), and both ends thereof are open. Therefore, the inlet C31 for introducing the aqueous cooling medium into the third cooling path C3 and the outlet C32 for extracting the aqueous cooling medium from the third cooling path C3 are arranged such that one end force of the fixed shaft 13a is also directed to the other end. .
  • the coolant discharged from outlet C12 is introduced into inlet C31 via pipe P3, and is fixed to shaft 13a of cylindrical rotor 15 (third cooling path C3). Through) And is returned from the outlet C32 to the cooler unit 21 through the pipe P4.
  • the flow rate of the cooling medium passing through the fixed shaft 13a of the cylindrical rotor 15 is stabilized, so that heat generated around the X-ray tube main body 5 and the stator 19 is efficiently directed to the outside. It is possible to obtain an X-ray device that can discharge X-rays stably over a long period of time and maintain high reliability. Further, since the load acting on the pump 21a is reduced, it is possible to prevent the flow rate of the circulating coolant from fluctuating undesirably. Therefore, the cooling efficiency is improved, and the risk of seizure of the hydrodynamic bearing, which is considered to have a relatively large load, is reduced.
  • the cooling system shown in Fig. 3 is constituted only by a non-oil-based cooling medium circulated in the housing 3, that is, an aqueous cooling medium.
  • the third cooling passage C 3 is provided with a cooling medium circulating through a pipe 13 h formed on the fixed shaft 13 a of the cylindrical rotor 15 and a cavity around the pipe 13 h. It is guided to the first cooling channel C1 through the exit C32. The cooling medium introduced into the first cooling passage C1 is discharged from the outlet C12 into the internal space 9b of the housing 3.
  • a flow path of the cooling medium is formed between the internal space 3b of the housing 3 and the cooler unit 21. For this reason, the internal space 3b containing the X-ray tube main body 5 is filled with the aqueous cooling medium.
  • stator 19 Since the stator 19 is immersed in the cooling medium together with the X-ray tube main body 5 in the housing 3, for example, a resin material having high insulation and water resistance and high thermal conductivity is used. It is preferred to be molded by
  • the resin material that can be used for the mold 31 is selected from, for example, epoxy resin, tarepoxy resin, polyimide resin, acrylic resin, fluorine resin, silicone resin, and polyurethane resin.
  • a resin or a mixed resin containing the same as a main component can be used.
  • the viscosity of the aqueous cooling medium is smaller than that of the insulating oil (non-oil-based cooling medium), the load acting on the pump 21a is reduced. Accordingly, the flow rate at which the cooling medium is circulated is stabilized. Also, since the cooling capacity of the cooling medium by the cooling mechanism is improved, the possibility that the hydrodynamic bearing, which is considered to have a relatively large load, is damaged (burned) is reduced.
  • FIG. 8 is a modification of the X-ray apparatus described with reference to FIG. 7, and shows an example in which the shape of the third cooling path C3 is a straight pipe (the fixed shaft 13a of the cylindrical rotor 15 is a simple cylinder). And the flow path is formed linearly). Therefore, the inlet C31 for introducing the aqueous cooling medium into the third cooling path C3 and the outlet C32 for extracting the aqueous cooling medium from the third cooling path C3 are arranged toward one end of the fixed shaft 13a and the other end. You.
  • a cooling medium flow path is formed between the internal space 3b of the housing 3 and the cooler unit 21. Therefore, the internal space 3b containing the X-ray tube main body 5 is filled with the aqueous cooling medium. Since the stator 19 is immersed in the cooling medium together with the X-ray tube main body 5 in the housing 3, the stator 19 is molded with a resin material 31 having a high thermal conductivity, for example, having high insulation and water resistance, and a high heat conductivity. It is preferable to
  • the aqueous cooling medium can reduce the viscosity coefficient force and the load acting on the scooping pump 21a as compared with the insulating oil, and the flow rate of the circulating cooling medium is stabilized. Therefore, the cooling capacity of the cooling mechanism is improved, and the possibility that the hydrodynamic bearing is seized is reduced.
  • FIGS. 9 and 10 illustrate an example in which the route in which the cooling medium is circulated is changed in the X-ray apparatus described with reference to FIGS. 5 and 7.
  • the X-ray devices shown in FIGS. 9 and 10 differ from the X-ray devices shown in FIGS. 5 and 7 only in the route in which the cooling medium is circulated. Substantially the same or similar to the configuration The same reference numerals are given to the same components, and detailed description is omitted.
  • the flow path to which the cooling medium is supplied is directly connected to the pipe 13h of the fixed shaft 13a of the rotor 15 from the radiator 21b of the cooler unit 21 by the pipe P101. (Inlet C111, first cooling channel C101).
  • the cooling medium guided by the pipe 13h is introduced through a space defined between the pipe 13h provided inside the fixed shaft 13a, ie, the cylindrical fixed shaft 13a, and the shaft 13a.
  • the cooling medium circulated through the recoil electron trap 23 is provided outside the vacuum vessel 9 and near the stator coil 19 through the pipe P103 so as to be orthogonal to the rotating shaft (not shown) of the rotating unit 13. It is defined as a disc-shaped space 27 defined by the wall surface 25 provided in a shape surrounding the envelope 9 by the provided wall surface 25, and is guided to the inlet C131 of the third cooling path C103.
  • the disc-shaped space 27 is connected to the outlet C132 formed at a position 180 ° from the inlet C131 with the center thereof interposed therebetween, and connected to the pipe P104.
  • the pipe P104 is connected to the pump 21a of the cooler unit 21. That is, the cooling medium provided outside the vacuum vessel 9 is provided to the heat exchange 21b of the cooler unit 21 via the pipe P104.
  • the radiator 21b of the cooler unit 21 between the radiator 21b of the cooler unit 21 and the inlet C111 (first cooling path C101), the outlet C112 (first cooling path C101) and the inlet C121. (Second cooling path C102), outlet C122 (second cooling path C1-2) and inlet C13 1 (third cooling path C103), and outlet C132 (third cooling path C103).
  • the cooler unit 21 are interconnected by pipes P101, P102, P103 and P104, respectively. Therefore, a closed cooling medium passage is formed.
  • the pipes P102 and P103 have a part of which is shown on the outside of the housing 3. 3, and the position (pipe arrangement) is not limited to the example shown in the figure. Further, it is needless to say that an arbitrary pipe or an inlet or an outlet is connected by, for example, a hose, and at least one end is detachable.
  • the cooling medium sent from radiator 21b first cools fixed body 13a and rotating body 13b serving as a bearing portion of rotating unit 13 that generates a large amount of heat. I can do it. Therefore, seizure of the hydrodynamic bearing can be reliably prevented.
  • FIG. 10 shows an example in which the cooling system shown in FIG. 9 is constituted only by a non-oil-based cooling medium circulated in the housing 3, that is, a water-based cooling medium.
  • the radiator 21b of the cooler unit 21 is directly connected to the noveh 13h of the fixed shaft 13a of the rotor 15 by a pipe P101 (introduction port C111, first cooling path C101).
  • the cooling medium guided to the pipe 13h is introduced through a space defined between the shaft 13a and the pipe 13h provided in the cavity within the fixed shaft 13a, that is, the cylindrical fixed shaft 13a.
  • the cooling medium circulated through the recoil electron trap 23 is provided outside the vacuum vessel 9 and near the stator coil 19 through the pipe P103 so as to be orthogonal to the rotating shaft (not shown) of the rotating unit 13. It is defined as a disc-shaped space 27 defined by the wall surface 25 provided in a shape surrounding the envelope 9 by the provided wall surface 25, and is guided to the inlet C131 of the third cooling path C103.
  • the disc-shaped space 27 has an outlet 132 near the center thereof, and the cooling medium that has cooled the disc-shaped space 27 is discharged to the internal space 3b of the housing 3.
  • the cooling medium discharged into the internal space 3b of the housing 3 is returned to the pump 21a of the cooler unit 21 from the connection part T2 through the pipe P104. That is, the cooling medium guided outside the vacuum vessel 9 is guided to the heat exchange 21b of the cooler unit 21.
  • the configuration other than the flow path is shown in the figure. Since this is the same as the difference in FIG. 7 compared to 5, the detailed description is omitted.
  • a flow path of the cooling medium is formed between the internal space 3b of the housing 3 and the cooler unit 21. Therefore, the internal space 3b containing the X-ray tube body 5 is filled with the aqueous cooling medium.
  • the stator 19 since the stator 19 is immersed in the cooling medium together with the X-ray tube body 5 in the housing 3 and the housing 3, for example, the insulation 19 and the water resistance are high and the heat conduction is high. It is preferable to mold with resin materials with high rate 31!
  • the present invention can be applied as a structure in which the inside of the bearing is cooled with a cooling liquid.
  • a hydrodynamic sliding bearing liquid metal lubricated hydrodynamic bearing
  • the cooling efficiency of an X-ray apparatus to which a rotating anode type X-ray tube using is applied can be increased. Also, since the load on the pump that circulates the cooling liquid (cooling medium) is reduced, the flow rate when the cooling medium is circulated is stabilized. Therefore, the cooling efficiency is improved, and stable characteristics, that is, stable X-rays can be obtained over a long period of time even when a hydrodynamic bearing having a relatively large load is used.
  • the life of an X-ray image diagnostic apparatus or a non-destructive inspection apparatus in which the X-ray apparatus is incorporated is increased, for example.
  • the life of the X-ray apparatus and the X-ray source (X-ray tube) in the X-ray apparatus itself is improved, so that the running costs of X-ray diagnostic imaging equipment and non-destructive inspection equipment are reduced.
  • the thermal conductivity is higher than that of insulating oil (oil-based cooling medium)!
  • insulating oil oil-based cooling medium
  • a rotating anode type X-ray tube using a hydrodynamic slide bearing (liquid metal lubricated hydrodynamic bearing) by using liquid as the cooling medium, and the X-ray in which the X-ray tube is incorporated as an X-ray source The cooling efficiency of the equipment is improved.
  • the life of an X-ray diagnostic apparatus or a non-destructive inspection apparatus, for example, in which the X-ray apparatus is incorporated is increased.
  • the life of the X-ray apparatus and the X-ray source (X-ray tube) in the X-ray apparatus itself is increased, the running cost of the X-ray diagnostic imaging apparatus and the nondestructive inspection apparatus is also reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • X-Ray Techniques (AREA)

Abstract

 この発明は、陽極ターゲット(11)を回転させながら陽極に電子を衝突させてX線を得る回転陽極型X線管装置において、磁界を発生するステータ(22)と陽極ターゲットとを、液体金属を用いる動圧式すべり軸受により支持するとともに、少なくとも動圧式すべり軸受内および陽極ターゲットを収容した外囲器(10)を、一種類の冷却媒体(7)を循環させて冷却することを特徴とする。

Description

技術分野
[0001] この発明は、 X線装置、ならびに X線装置に適用される回転陽極型 X線管に関する
背景技術
[0002] 回転陽極型 X線管を用いた X線装置は、回転可能に支持された陽極ターゲットを真 明
空外囲器内に収納した回転陽極型 X線管本体と、陽極ターゲットが連結されたロータ 田
に対して X線管の外部力 駆動磁界を提供するステータコイルと、 X線管本体および ステータコイルを収納するハウジング等力も構成されている。
[0003] ノ、ウジングと回転陽極型 X線管本体の隙間との間には、陽極ターゲット等力も発生 した熱を放熱する冷却媒体、例えば絶縁油や水を主な成分として含む非油脂系冷 却液が満たされている。すなわち、陽極ターゲット等からの熱は、冷却媒体に放熱さ れ、対流により冷却媒体が冷却されることにより、排熱される。この結果、陽極ターゲ ット等の発熱する要素が冷却される。この際、ステータコイルから生じた熱も同様に排 熱され、結果として、ステータコイルも冷却される。なお、排熱すなわち冷却効率を確 保する必要から、絶縁油や非油脂系冷却液を循環させるとともに、外部に設けられる 熱交換器により強制的に冷却する例も提案されている(例えば、特表 2001— 50247 3号公報)。
[0004] ところで、 X線出力の大きな大型の回転陽極型 X線管装置においては、陽極ターゲ ットを回転可能に支持する回転支持機構の軸受面に、らせん溝を形成し、液体金属 潤滑材、例えばガリウム(Ga)やガリウム-インジウム-錫(Ga-In-Sn)合金を、そのら せん溝の部分に満たした動圧式すベり軸受などが利用されている。
[0005] 動圧式すベり軸受を用いた回転陽極型 X線管において陽極ターゲットが発生する 熱を X管外に逃がす方法として、発生した熱を陽極ターゲットから回転体に伝達して
、さらに動圧式すベり軸受の軸受面を経て固定体に伝達する方法が提案されている
(例えば、特開平 9 171789号公報)。 [0006] し力しながら、動圧式すベり軸受を用いる場合、ステータの発熱が大きくなり易ぐ 短時間のうちに、軸受部分の温度が急激に上昇することがある。
[0007] 軸受部分の温度が高くなると、軸受金属面と液体金属潤滑材が反応して金属間化 合物の層が生成する。この層は、短時間で増大し、最終的に回転が停止する虞れが める。
[0008] 従って、液体金属潤滑動圧軸受を用いる回転陽極 X線管装置においては、発熱に よる寿命劣化を防ぐために、十分な冷却効率を維持することが必要である。
発明の開示
[0009] この発明の目的は、非油脂系冷却液を冷却媒体として、回転陽極型 X線管を冷却 する X線装置において、熱放出特性を高め、長期に亘つて特性の安定した X線を出 力可能とすることである。
[0010] この発明は、 X線を発生する陽極ターゲットと、前記陽極ターゲットに向けて電子を 発生する電子放出源と、前記陽極ターゲットが連結されたロータと、前記ロータを回 転させるための推進力を発生するステータと、前記ロータを回転可能に支持する軸 受と、少なくとも前記陽極ターゲットと前記電子放出源と前記ロータを所定の真空度 に維持する外囲器と、前記外囲器の周囲に冷却媒体を介在させることのできるハウ ジングと、前記陽極ターゲットと前記電子放出部との近傍および前記軸受の内側に 冷却媒体を循環させるポンプと、前記ポンプにより循環される冷却媒体により伝達さ れる熱を排出する熱交換器と、
を有する X線装置を提供するものである。
[0011] また、この発明は、回転可能な陽極ターゲット及び前記陽極ターゲットに対向して 配置された陰極を真空外囲器内に収納した回転陽極型 X線管と、前記陽極ターゲッ トを回転させるための誘導電磁界を発生するステータと、前記陽極ターゲットを回転 可能に支持し、液体金属を潤滑材とする動圧式すベり軸受と、少なくとも前記回転陽 極型 X線管を収納保持するハウジングと、前記回転陽極型 X線管の少なくとも一部に 近接して設けられ、水系冷却媒体が循環する流路と、前記流路の所定の位置に設け られ、前記水系冷却媒体を循環させるギヤポンプ、および前記水系冷却媒体の熱を 放出させるラジェータを有するクーラーユニットと、を有することを特徴とする X線装置 を提供するものである。
[0012] また、この発明は、回転可能な陽極ターゲット及び前記陽極ターゲットに対向して 配置された陰極を真空外囲器内に収納した回転陽極型 X線管と、前記陽極ターゲッ トを回転させるための誘導電磁界を発生するステータと、前記陽極ターゲットを回転 可能に支持し、液体金属を潤滑材とする動圧式すベり軸受と、少なくとも前記回転陽 極型 X線管を収納保持するハウジングと、前記回転陽極型 X線管の少なくとも一部に 近接して設けられるとともに、前記外囲器と前記ハウジングとの間の空間を冷却媒体 が循環可能に形成された流路と、前記流路の所定の位置に設けられ、前記冷却媒 体を循環させるギヤポンプ、および前記冷却媒体の熱を放出させるラジェ一タを有 するクーラーユニットと、を有することを特徴とする X線装置を提供するものである。 図面の簡単な説明
[0013] [図 1]図 1は、この発明の実施の形態が適用される X線装置の一例を説明する概略図
[図 2]図 2は、図 1に示した X線装置に組み込まれる X線管の回転陽極の一例を示す 概略図。
[図 3]図 3は、図 2に示した回転陽極に用いられる軸受け構造を提供する構造材のー 例を説明する概略図。
[図 4]図 4は、図 2および図 3に示した陽極ターゲットおよび回転ユニットを、図 1に示し た外囲器 (真空容器)内に装填し、その内部に、冷却媒体を循環可能とした構成の 一例を説明する概略図。
[図 5]図 5は、図 1ないし図 4により説明した X線装置に適用可能な冷却系(油脂系冷 却媒体を併用)の一例を説明する概略図。
[図 6]図 6は、図 5に示した X線装置の冷却系の変形例を説明する概略図。
[図 7]図 7は、図 1ないし図 4により説明した X線装置に適用可能な冷却系(非油脂系 冷却媒体のみ使用)の一例を説明する概略図。
[図 8]図 8は、図 7に示した X線装置の冷却系の変形例を説明する概略図。
[図 9]図 9は、図 5に示した X線装置において非油脂系冷却媒体を循環させる順路を 変更した一例を説明する概略図。 [図 10]図 10は、図 7に示した X線装置において非油脂系冷却媒体を循環させる順路 を変更した一例を説明する概略図。
発明を実施するための最良の形態
[0014] 以下、本発明の実施の形態について図面を参照しながら詳細に説明する。
[0015] 図 1に示したように、例えば X線画像診断装置や非破壊検査装置に組み込まれ、 対象物すなわち非検査対象に対して照射すべき X線を放射する X線装置 1は、ハウ ジング 3と、ハウジング 3に収容され、所定強度の X線を所定方向に向けて放射可能 な X線管本体 5とを有する。
[0016] X線管本体 5は、例えば主な成分が水であり電気伝導率が所定の大きさより小さく 管理された非油脂系冷却液もしくは周知の絶縁油すなわち冷却媒体 7を介してハウ ジング 3の所定の位置に収容されて 、る。
[0017] X線管本体 5は、後段に詳述するが、外囲器 (真空容器) 9、外囲器 9内に設けられ 、電子が衝突されることで X線を放射する陽極ターゲット(陽極) 11、陽極ターゲット 1 1と一体に形成され、同時に回転される回転ユニット 13、回転ユニット 13と一体に形 成され、回転体ユニット 13を回転させる動力(推進力)を受けるロータ 15、および陽 極ターゲット 17に向けて電子を出射する陰極 (電子銃) 17等を有している。なお、 X 線管本体 5の円筒ロータ 15の外側の所定の位置には、ロータ 15に所定の推力(磁 界)を与えるステータ (ステータコイル) 19が設けられている。なお、図 1に示す X線管 本体 5は、陽極ターゲットが回転ユニット 13の一端に設けられている形式である。
[0018] 図 2は、図 1に示した X線管装置の X線管本体の陽極ターゲットの近傍を拡大して 説明している。
[0019] 陽極ターゲット 11は、内側に挿入される固定軸 13aの周りを回転体 13bが回転する 外輪回転型の回転ユニット 13の回転体 13bの一端に規定される接続 (首)部 13cに 固定されている。なお、回転体 13bと接続部 13cとを一体ィ匕した状態が、支持軸と呼 称され、前に説明した通り、陽極ターゲット 11を回転させるための推力(回転力)を発 生するロータ(15)として機能するための、例えば銅あるいは銅合金力もなるロータ構 体 15aが固定されている。
[0020] 固定軸 13aには、軸方向に沿って特定の方向性が与えられた第 1および第 2の螺 旋溝 13dおよび 13eが形成されている。また、固定軸 13aの所定の位置には、支持 軸、すなわち回転体 13bが回転されることにより液状となる、例えば Ga-In-Sn合金 である潤滑剤 (動圧軸受け流体)が供給される潤滑剤保持部 13fが形成されている。
[0021] 回転体 13bの軸方向において接続部 13cと反対側となる所定の位置(回転体 13b の開放端)には、図 3に示すような第 3の螺、旋溝が形成されたスラストリング 13gが、例 えば図示しな 、ねじ (この例では 8本)により固定されて 、る。
[0022] すなわち、 Ga— In— Sn合金である潤滑剤は、固定軸 13a、回転体 13bおよびスラス トリング 13gにより密閉されている。
[0023] 図 4は、図 2および図 3に示した陽極ターゲットおよび回転ユニットを、図 1に示した 外囲器 (真空容器) 9内に装填し、その内部に、一方の端部、例えばスラストリング 13 gの側からハウジング 3内に供給される冷却媒体を循環可能とした構成の一例を示し ている。
[0024] 図 4に示す例では、冷却媒体 7は、固定軸 13aを円筒とし、その中心にパイプ 13h を設けることにより、固定軸 13aの一端側から固定軸 13a内に供給され、固定軸 13a 内を循環したのち、ハウジング 3内すなわち外囲器 9の外側に排出される。なお、冷 却媒体 7が絶縁性である場合には、固定軸 13aに供給された冷却媒体 7は、そのまま 外囲器 9内を循環されてもよい。
[0025] 詳細には、パイプ 13hには、矢印 Yで示すように、一端力も空胴(固定軸 13a)内に 案内され、ノイブ 13hと空胴との接続部において空胴内に流入し、空胴を通過して、 真空容器 (外囲器) 9内またはハウジング 3内に戻される。
[0026] なお、回転体ユニット 13の固定軸 13aとスラストリング 13gとの間、固定軸 13aと回 転体 13bとの間(同心円方向)、および回転体 13bの首部側の端部と固定軸 13aの 頂部との間 (軸方向)のそれぞれは、前に説明した通り、潤滑剤 (動圧軸受け流体)が 満たされている。、また、固定軸 13aに設けられている螺旋溝 13dおよび 13eは、ヘリ ンボンパターンであり、潤滑剤と協働して、ラジアル方向の動圧式すベり軸受として機 能する。一方、回転体 13bの首部側の端部と固定軸 13aの頂部との間(軸方向)と固 定軸 13aとスラストリング 13gとの間に介在される潤滑剤は、スラスト方向の動圧式す ベり軸受として機能する。 [0027] 以下、図 1ないし図 4に示した回転陽極 X線管が組み込まれる X線装置の動作の一 例を簡単に説明する。
[0028] ステータコイル 19に電流が供給されて回転磁界が生じることにより、円筒ロータ 15 のロータ構体 15aに回転力が生じ、円筒ロータ 15すなわち陽極ターゲット 11が回転 される。この状態で、陽極ターゲット 11に電子銃 17から電子ビームが照射されること により、陽極ターゲット 11から X線が放出される。
[0029] このとき、陽極ターゲット 11および回転ユニット 13を支持する軸受部すなわち固定 軸 13aと回転体 13bとの間に満たされている潤滑剤は、動圧流体軸受けとして機能 する。すなわち、動圧流体軸受け (軸受け部)から発生される熱は、回転ユニット 13の 固定軸 13a内のノィプ 13hおよび空月同を、図示しないポンプ力もの送出圧力により 循環される非油脂系の (水系)冷却媒体により冷却される。
[0030] なお、冷却媒体には、例えばプロピレングリコール、または水とロピレンダリコールの の混合体 (混合比 1: 1)、エチレングリコール、もしくは水とエチレングリコールとの混 合体等が利用可能である。また、絶縁油の熱伝導率を 1とすると、水の熱伝導率は 4 . 5で、 50%プロピレングリコールの熱伝導率は 2. 8で、プロピレングリコールの熱伝 導率は 1. 6であり、熱伝達係数は、熱伝導率に比例して向上される。
[0031] 図 5ないし図 8は、図 1ないし図 4により説明した図 1ないし図 4に示した回転陽極 X 線管が組み込まれる X線装置を、冷却媒体を循環させて冷却する別の例を説明して いる。なお、図 5ないし図 8においては、図 1ないし図 4に示した回転陽極 X線管とは 構造が異なる X線管を例に説明する力 いずれの例においても発明の概念は共通で ある。従って、図 1ないし図 4に示した構成と実質的に同一または類似した構成には、 同じ符号を付して詳細な説明を省略する。また、図 5ないし図 8においては、冷却媒 体の供給方法およびその循環 (の順)を中心に説明する。
[0032] 図 5ないし図 8に示した X線装置においては、陽極ターゲット 11を保持する固定軸 1 3aの一端に、クーラーユニット 21が接続されている。また、固定軸 13aの他の一端は 、真空容器 (外囲器) 9の所定の位置に固定されている。
[0033] クーラーユニット 21からの配管が接続されていない側の固定軸 13aには、固定軸 1 3aの外側に、(固定軸 13aに対して)同心円状に、回転体 13bの脚部 13iには、規定 されている。脚部 13iの外側には、ロータ構体 15aとして機能する銅または銅合金の 円筒が固定されている。ステータコイル 19は、回転ユニット 13のロータ構体 15aに対 して同心円状、かつ、外周を取り巻くように、配置される。
[0034] 陽極ターゲット 11と対向する陰極 17の近傍には、陰極 17から陽極ターゲット 11に 照射された電子 (熱電子)のうちの陽極ターゲット 11により跳ね返される反跳電子を 捕捉する反跳電子捕捉トラップ (シールド構体) 23が設けられている。なお、電子捕 捉トラップ 23は、熱伝導度が高い、例えば銅または銅合金製であり、回転ユニット 13 の固定軸 13aを循環される冷却媒体が循環可能に形成されている。また、少なくとも 回転ユニット 13および電子捕捉トラップ 23に設けられる流路には、前に説明した非 油脂系の冷却媒体が循環される。
[0035] クーラーユニット 21は、冷却媒体に所定の圧力を提供する循環ポンプ 21aや熱交 翻 (ラジェータ) 21bを含む。ラジェータ 21bは、主に、熱伝導度が高い、例えば銅 または銅合金により形成される。循環ポンプ 21aは、冷却媒体が循環される流路内の 任意の位置に設けられる。なお、ラジェータ 21bは、循環ポンプ 21aの下流側に設け られ、流路を循環される冷却媒体の温度を低下させた (冷却媒体を冷却した)直後に 、陽極ターゲット 11の周囲や円筒ロータ 15の固定軸 13aに供給されることが好ましい 。また、ポンプ 21aは、(冷却媒体の送出圧すなわち)吐出圧の高いギヤポンプが好 ましい。なお、図 5に示した冷却構造は、少なくとも回転ユニット 13および反跳電子捕 捉トラップ 23の近傍に、非油脂系の冷却媒体を供給する例である。
[0036] 冷却媒体の流路は、 X線管本体 5の少なくとも一部に近接して設けられ、たとえば 第 1冷却路 Cl、第 2冷却路 C2、および第 3冷却路からなる。第 1冷却路 C1は、真空 容器 9の外周に沿って、たとえば筒状に形成されている。第 2冷却路 C2は、陰極 17 の周囲すなわち反跳電子捕捉トラップ 23と陽極ターゲット 11の近傍に位置されてい る。第 3冷却路 C3は、円筒ロータ 15内の空胴 17を通るように形成されている。
[0037] 第 1冷却路 C1は、詳細には、真空容器 9の外側、かつステータコイル 19の近傍に、 回転ユニット 13の図示しない回転軸と直交するように設けられた壁面 25により外囲 器 9を囲む形状に設けられている。すなわち、第 1冷却路 C1は、壁面 25により規定さ れる円盤状空間 27として定義される。 [0038] 円盤状空間 27は、第 1冷却路 CIに水系冷却媒体を導入する導入口 Cl lおよび第 1冷却路 C1から水系冷却媒体を導出する導出口 C12を有している。すなわち、導入 口 C11と導出口 C12は、円盤状空間 27の中心部を挟んで両端(180° の間隔)に 形成されている。
[0039] 第 2冷却路 C2は、陰極 17の周囲すなわち反跳電子捕捉トラップ 23の所定の位置 に規定される環状空間 29である。環状空間 29は、第 2冷却路 C2に水系冷却媒体を 導入する導入口 C21及び第 2冷却路 C2から水系冷却媒体を導出する導出口 C22 を有している。
[0040] 第 3冷却路 C3は、回転ユニット 13の固定軸 13aのパイプ 13hとその周囲の円筒で ある空胴により規定され、パイプ 13hから固定軸 13a内部に接続され、固定軸 13aの 一端で、空洞内に進路が変更されて、クーラーユニット 21に戻される。
[0041] クーラーユニット 21と導入口 C21 (第 2冷却路 C2)との間、導出口 C22 (第 2冷却路 C2)と導入口 C11 (第 1冷却路 C1)との間、導出口 C12 (第 1冷却路 C1)と導入口 C 31 (第 3冷却路 C3)との間、および導出口 C32 (第 3冷却路 C3)とクーラーユニット 2 1との間は、それぞれ、配管 Pl、 P2、 P3、および P4により、相互に連結され、第 1冷 却路 Cl、第 2冷却路 C2、および第 3冷却路 C3を含めた流路が形成されている。な お、配管 P2および P3は、図示の都合力もその一部がハウジング 3の外側に示されて いるが、いずれもハウジング 3内に設けることができ、その位置 (パイプの配置)は、特 に制限を受けない。
[0042] クーラーユニット 21は、詳述しないが、たとえば着脱自在の配管ジョイントを介して ハウジング 3と接続されている。すなわち、ハウジング 3とクーラーユニット 21との間の 流路は、たとえばホースで構成されている。また、ホースとハウジング 3との接続部 T1 および T2ならびにホースとクーラーユニット 27との接続部 T3および T4は、ハウジン グ 3側またはクーラーユニット 21側の少なくとも一方が着脱可能である。この構造によ り、ハウジング 3とクーラーユニット 21とを容易に分離することができ、クーラーユニット 21などの据え付け作業や保守作業が容易になる。
[0043] 上述した X線装置においては、ステータコイル 19が発生する誘導電磁界によって 回転ユニット 13が回転する。この回転ユニット 13の回転により陽極ターゲット 11が回 転する。この状態で、陰極 17から陽極ターゲット 11に電子ビーム eが照射されること により、陽極ターゲット 11から X線が放出される。 X線は、 X線出力窓 9a (真空容器) および 3a (ノヽウジング)を透過して外部に出力される。
[0044] 回転陽極型 X線管本体 5を有する X線装置 1すなわち X線管本体 5の動作状態に おいては、陽極ターゲット 11の温度は、陰極 17からの電子ビーム eが衝突することに より、上昇する。また、その周囲、特に反跳電子捕捉トラップ 23の温度も上昇する。い うまでもなぐステータコイル 19も、コイル部分に流れる電流により、温度が上昇する。 これらの熱の伝達により、真空容器 (外囲器) 9の温度も上昇する。
[0045] 真空容器 9およびステータ 19の熱は、ハウジング 3内の冷却液 (冷却媒体)の温度 を上昇させる。温度が上昇された冷却媒体は、ポンプ 21aにより循環され、クーラー ユニット 21に案内される。これにより、真空容器 9およびステータ 19の温度上昇であ る熱は、冷却媒体を介してクーラーユニット 21に伝達され、クーラーユニット 21の熱 交換器 (ラジェータ) 21bにより、外部に放熱される。
[0046] クーラーユニット 21の熱交 21bから送出された冷却媒体は、配管 P1を介して 導入口 C21に導入され、環状空間 29 (第 2冷却路 C2)を通過する際に、電子銃(陰 極) 17、反跳電子捕捉トラップ 23および陽極ターゲット 11の近傍を冷却する。
[0047] 以下、導出口 C22を通過した冷却液は、配管 P2を介して導入口 C11に導入され、 円盤状空間 27 (第 1冷却路 C1)を通過する際に、真空容器 9の周囲を冷却する。
[0048] 導出口 C12から放出された冷却液は、配管 P3を介して導入口 C31から固定軸 13 aのパイプ 13h (第 3冷却路 C3)およびその外側の空胴を循環されて、導出口 C32か ら配管 P4を介してクーラーユニット 21に戻される。
[0049] 以上説明したように、 X線管本体 5の内部ゃステータ 19の近傍で生じた熱は、第 1 冷却路 Cl、第 2冷却路 C2、および第 3冷却路 C3を流れる熱伝達効率の高い冷却 媒体によって効率的にクーラーユニット 21に案内され、クーラーユニット 21により冷 却媒体が冷却されることにより、外部に放熱される。
[0050] 一方、ハウジング 3内に満たされている絶縁油は、壁面 25の外面に接触しながら移 動するため、冷却液との間に効率的な熱の受け渡しが可能となり、絶縁油による放熱 が向上する。その結果、絶縁油に対する熱交^^が不要となり、装置構成が簡単に なる。
[0051] また、ステータ 19の周囲や X線用出力窓 3aの周辺は、水系冷却媒体に接すること がなぐ絶縁油が流れるため、電気絶縁性の低下や出力窓の腐食なども防止するこ とが可能となる。
[0052] すなわち、 X線管本体 5およびステータ 19の周囲に発生する熱が効率よく外部に 排熱されるので、長期に亘つて安定に X線を出力可能で、高い信頼性を確保するこ とが可能な X線装置 1が得られる。
[0053] また、円筒ロータ 15の固定軸 13aの内側に設けられたノィプ 13hおよびその周りに 規定される空胴を流れる水系の (非油脂系)冷却媒体により、比較的負荷の大きいと される動圧流体軸受けの近傍も効率よく冷却される。
[0054] 従って、動圧流体軸受けが (加熱されて不所望に)停止する (焼き付く)虞れが低減 される。
[0055] 図 6は、図 5により説明した X線装置の変形例であり、第 3冷却路 C3の形状を直管と した例を示している。
[0056] 図 6に示す例では、円筒ロータ 15の固定軸 13aは、単純な空胴(円筒状)であり、そ の両端部が開放されている。従って、第 3冷却路 C3に水系冷却媒体を導入する導 入口 C31および第 3冷却路 C3から水系冷却媒体を導出する導出口 C32は、固定軸 13aの一端力も他の一端に向けて配置される。なお、図 6に示す X線装置 1において も、クーラーユニット 21と導入口 C21 (第 2冷却路 C2)との間、導出口 C22 (第 2冷却 路 C2)と導入口 CI 1 (第 1冷却路 C1)との間、導出口 C12 (第 1冷却路 C1)と導入口 C31 (第 3冷却路 C3)との間、および導出口 C32 (第 3冷却路 C3)とクーラーユニット 21との間は、それぞれ、配管 Pl、 P2、 P3、および P4により、相互に連結され、第 1 冷却路 Cl、第 2冷却路 C2、および第 3冷却路 C3を含めた流路が形成されている。 なお、配管 P2は、図示の都合力もその一部がハウジング 3の外側に示されているが、 図 5に示した例と同様、ハウジング 3内に設けることができ、その位置 (パイプの配置) は、特に制限を受けない。
[0057] 図 6に示した X線装置においては、導出口 C12から導出された冷却液は、配管 P3 を介して導入口 C31に導入され、円筒ロータ 15の固定軸 13a (第 3冷却路 C3)を通 過し、導出口 C32から配管 P4を通じてクーラーユニット 21に戻される。
[0058] この構成によれば、円筒ロータ 15の固定軸 13a内を通る冷却媒体の流量が安定ィ匕 されるため、 X線管本体 5およびステータ 19の周囲に発生する熱が効率よく外部に排 熱され、長期に亘つて安定に X線を出力可能で、高い信頼性を確保することが可能 な X線装置が得られる。また、ポンプ 21aに作用する負荷が低減されることから、冷却 媒体が循環される流量が不所望に変動することが防止される。従って、冷却効率が 向上され、比較的負荷の大きいとされる動圧流体軸受けが焼き付く虞れが低減され る。
[0059] 図 7に示す例は、図 3に示した冷却系を、ハウジング 3内を循環される非油脂系冷 却媒体すなわち水系冷却媒体のみにより構成するものである。
[0060] 図 7において、第 3冷却路 C3は、円筒ロータ 15の固定軸 13aに形成されたパイプ 1 3hおよびその周囲の空胴を循環される冷却媒体は、導入口 C31から流入され、導 出口 C32を通って、第 1冷却路 C1に案内される。第 1冷却路 C1に導入された冷却 媒体は、ハウジング 3の内部空間 9bに、導出口 C12から排出される。
[0061] すなわち、ハウジング 3の内部空間 3bとクーラーユニット 21との間に、冷却媒体の 流路が形成される。このため、 X線管本体 5を収納した内部空間 3bは、水系冷却媒 体によって満たされる。
[0062] なお、ステータ 19は、ハウジング 3内において、 X線管本体 5とともに、冷却媒体に 浸されることから、たとえば絶縁性および耐水性が高ぐしかも熱伝導率の高い榭脂 材料等 31によりモールドされることが好ましい。
[0063] モールド 31に利用可能な榭脂材料としては、例えばエポキシ榭脂、タールェポキ シ榭脂、ポリイミド榭脂、アクリル榭脂、フッ素榭脂、シリコーン榭脂、ポリウレタン榭脂 の中から選ばれた榭脂またはそれを主成分とする混合榭脂を使用することができる。
[0064] これにより、ステータ 19の周囲は、水系冷却媒体に接することがなぐ電気絶縁性 の低下を防止することが可能となる。
[0065] 図 7に示した X線装置においては、冷却媒体を水系冷却媒体の 1種類のみとするこ とができ、コストが低減可能で、し力もメンテナンスも容易である。また、水系冷却媒体 は、絶縁油と比較して熱伝達効率が高いため、装置全体の熱を効率よく放出可能と なる。
[0066] また、水系冷却媒体は、絶縁油 (非油脂系冷却媒体)に比較して粘性係数が小さ いことから、ポンプ 21aに作用する負荷が低減される。従って、冷却媒体が循環され る流量が安定化される。し力も、冷却機構による冷却媒体の冷却能力が向上されるこ とから、比較的負荷が大きいとされる動圧流体軸受けが損傷する (焼き付く)虞れが 低減される。
[0067] 図 8は、図 7により説明した X線装置の変形例であり、第 3冷却路 C3の形状を直管と した例を示している(円筒ロータ 15の固定軸 13aが単純な円筒に形成され、流路が 直線的に形成されている)。従って、第 3冷却路 C3に水系冷却媒体を導入する導入 口 C31および第 3冷却路 C3から水系冷却媒体を導出する導出口 C32は、固定軸 1 3aの一端力 他の一端に向けて配置される。
[0068] また、図 7により説明したと同様に、ハウジング 3の内部空間 3bとクーラーユニット 21 との間に、冷却媒体の流路が形成されている。このため、 X線管本体 5を収納した内 部空間 3bは、水系冷却媒体によって満たされる。なお、ステータ 19は、ノ、ウジング 3 内において X線管本体 5とともに冷却媒体に浸されることから、例えば絶縁性および 耐水性が高ぐし力も熱伝導率の高い榭脂材料等 31によりモールドされることが好ま しい。
[0069] 図 8に示した X線装置においては、冷却媒体を水系冷却媒体の 1種類のみとするこ とができ、コストが低減可能で、し力もメンテナンスも容易である。また、水系冷却媒体 は、絶縁油と比較して熱伝達効率が高いため、装置全体の熱を効率よく放出可能と なる。
[0070] なお、水系冷却媒体は、絶縁油と比較して粘性係数力 、さぐポンプ 21aに作用す る負荷を低減可能であり、冷却媒体が循環される流量が安定化される。従って、冷却 機構の冷却能力が向上され、動圧流体軸受けが焼き付く虞れが低減される。
[0071] 図 9および図 10は、図 5および図 7により説明した X線装置において、冷却媒体が 循環される順路を変更した例を、説明している。なお、図 9および図 10に示すそれぞ れの X線装置においては、図 5および図 7に示した X線装置と、冷却媒体が循環され る順路がことのなるのみであるから、既に説明した構成と実質的に同一または類似し た構成には、同じ符号を付して詳細な説明を省略する。
[0072] 図 9に示す X線装置において、冷却媒体が供給される流路は、クーラーユニット 21 のラジェータ 21bから、配管 P101により、ロータ 15の固定軸 13aのパイプ 13hに直 接、接続される (導入口 C111,第 1冷却路 C101)。
[0073] パイプ 13hに案内された冷却媒体は、固定軸 13a内の空胴すなわち円筒状の固定 軸 13a内に設けられたパイプ 13hと軸 13aとの間に規定される空間を通って、導入口 C111の外周、かつ近傍に規定される導出口 C112から、配管 P102に案内され、陰 極 17の周囲すなわち反跳電子捕捉トラップ 23と陽極ターゲット 11の近傍に位置され ている第 2冷却路 C102に案内される。すなわち、固定軸 13aを循環した冷却媒体は 、導入口 C121から反跳電子捕捉トラップ 23の近傍に案内され、導出口 C122へ排 出される。
[0074] 反跳電子捕捉トラップ 23を循環された冷却媒体は、配管 P103を通じて、真空容器 9の外側、かつステータコイル 19の近傍に、回転ユニット 13の図示しない回転軸と直 交するように設けられた壁面 25により外囲器 9を囲む形状に設けられた壁面 25により 規定される円盤状空間 27として定義されて 、る第 3冷却路 C103の導入口 C131に 案内される。
[0075] 円盤状空間 27は、その中心部を挟んで導入口 C131から 180° の位置に形成さ れている導出口 C132と接続され、配管 P104に接続される。なお、配管 P104は、ク 一ラーユニット 21のポンプ 21aに接続されている。すなわち、真空容器 9の外側を案 内された冷却媒体は、配管 P104を介して、クーラーユニット 21の熱交 21bに案 内される。
[0076] 換言すると、図 9に示す冷却機構においては、クーラーユニット 21のラジェータ 21b と導入口 C111 (第 1冷却路 C101)との間、導出口 C112 (第 1冷却路 C101)と導入 口 C121 (第 2冷却路 C102)との間、導出口 C122 (第 2冷却路 C1-2)と導入口 C13 1 (第 3冷却路 C103)との間、および導出口 C132 (第 3冷却路 C103)とクーラーュニ ット 21との間は、それぞれ、配管 P101、 P102、 P103および P104により相互に連 結されている。従って、閉じた冷却媒体流路が形成されている。なお、配管 P102お よび P103は、その一部がハウジング 3の外側に示されている力 いずれもハウジング 3内に設けることができ、その位置 (パイプ配置)は、図示の例に制限を受けることは ない。また、任意の配管あるいは導入口もしくは導出口は、例えばホースにより接続 され、しかも少なくとも一端が着脱可能であることはいうまでもない。
[0077] 図 9に示した冷却流路によれば、ラジェータ 21bから送出された冷却媒体は、発熱 量の大きな回転ユニット 13の軸受け部となる回転体 13bと固定軸 13aとを第 1に冷却 するできる。従って、動圧流体軸受けが焼き付くことが、確実に防止できる。
[0078] 図 10は、図 9に示した冷却系を、ハウジング 3内を循環される非油脂系冷却媒体す なわち水系冷却媒体のみにより構成する例である。
[0079] 図 10に示される通り、クーラーユニット 21のラジェータ 21bから、配管 P101により、 ロータ 15の固定軸 13aのノイブ 13hに直接、接続される(導入口 C111,第 1冷却路 C101)。
[0080] パイプ 13hに案内された冷却媒体は、固定軸 13a内の空胴すなわち円筒状の固定 軸 13a内に設けられたパイプ 13hと軸 13aとの間に規定される空間を通って、導入口 C111の外周、かつ近傍に規定される導出口 C112から、配管 P102に案内され、陰 極 17の周囲すなわち反跳電子捕捉トラップ 23と陽極ターゲット 11の近傍に位置され ている第 2冷却路 C102に案内される。すなわち、固定軸 13aを循環した冷却媒体は 、導入口 C121から反跳電子捕捉トラップ 23の近傍に案内され、導出口 C122へ排 出される。
[0081] 反跳電子捕捉トラップ 23を循環された冷却媒体は、配管 P103を通じて、真空容器 9の外側、かつステータコイル 19の近傍に、回転ユニット 13の図示しない回転軸と直 交するように設けられた壁面 25により外囲器 9を囲む形状に設けられた壁面 25により 規定される円盤状空間 27として定義されて 、る第 3冷却路 C103の導入口 C131に 案内される。
[0082] 円盤状空間 27は、その中心部近傍に導出口 132を有し、円盤状空間 27を冷却し た冷却媒体は、ハウジング 3の内部空間 3bに排出される。なお、ハウジング 3の内部 空間 3bに排出された冷却媒体は、接続部 T2から配管 P104を通じて、クーラーュ- ット 21のポンプ 21aに戻される。すなわち、真空容器 9の外側を案内された冷却媒体 は、クーラーユニット 21の熱交 21bに案内される。なお、流路以外の構成は、図 5に比較した図 7の差異と同様であるから、詳細な説明は省略する。
[0083] 図 10に示した冷却構造によれば、ハウジング 3の内部空間 3bとクーラーユニット 21 との間に、冷却媒体の流路が形成される。このため、 X線管本体 5を収納した内部空 間 3bは、水系冷却媒体によって満たされる。但し、図 7においても既に説明したが、 ステータ 19は、ノ、ウジング 3内において、 X線管本体 5とともに、冷却媒体に浸される ことから、たとえば絶縁性および耐水性が高ぐしかも熱伝導率の高い榭脂材料等 3 1によりモールドされることが好まし!/、。
[0084] なお、この発明は上記した実施の形態そのままに限定されるものではなぐ実施段 階ではその要旨を逸脱しない範囲で構成要素を種々変形して具体ィ匕することができ る。また、上記した実施の形態に開示されている複数の構成要素を適宜に組み合わ せることにより、種々の発明を形成することができる。例えば、実施の形態に示される 全構成要素からいくつかの構成要素を削除してもよい。
[0085] また、従来のボールベアリング軸受を使用する場合でも、陽極ターゲットの熱が軸 受に伝熱して、軸受部の温度上昇が問題となる場合がある。この場合にも軸受内部 を冷却液で冷却する構造として本発明を適用することが可能である。
[0086] 以上説明したように、この発明によれば、熱伝導率のよ!/、非油脂系冷却液を冷却 媒体に用いたので、動圧式すベり軸受 (液体金属潤滑動圧軸受)が用いられている 回転陽極型 X線管が適用された X線装置の冷却効率を高めることができる。また、冷 却液 (冷却媒体)を循環させるポンプの負荷が低減されることから、冷却媒体が循環 される際の流量が安定化される。従って、冷却効率が向上され、比較的負荷の大き な動圧流体軸受けを用いたとしても、長期に亘つて安定な特性すなわち安定な X線 が得られる。
[0087] 従って、 X線装置が組み込まれる、例えば X線画像診断装置や非破壊検査装置の 寿命が増大される。また、 X線装置およびその内部の X線源 (X線管)自身の寿命も 向上されるので、 X線画像診断装置や非破壊検査装置のランニングコストも低減され る。
産業上の利用可能性
[0088] この発明によれば、絶縁油(油脂系冷却媒体)よりも熱伝導率のよ!、非油脂系冷却 液を冷却媒体に用いたことにより、動圧式すベり軸受 (液体金属潤滑動圧軸受)が利 用されている回転陽極型 X線管およびその X線管が X線源として組み込まれる X線装 置の冷却効率が向上される。
[0089] これにより、 X線装置から出力される X線が、長期に亘つて安定に得られる。
[0090] 従って、 X線装置が組み込まれる、例えば X線画像診断装置や非破壊検査装置の 寿命が増大される。また、 X線装置およびその内部の X線源 (X線管)自身の寿命も 増大されるので、 X線画像診断装置や非破壊検査装置のランニングコストも低減され る。

Claims

請求の範囲
[1] X線を発生する陽極ターゲットと、
前記陽極ターゲットに向けて電子を発生する電子放出源と、
前記陽極ターゲットが連結されたロータと、
前記ロータを回転させるための推進力を発生するステータと、
前記ロータを回転可能に支持する軸受と、
少なくとも前記陽極ターゲットと前記電子放出源と前記ロータを所定の真空度に維 持する外囲器と、
前記外囲器の周囲に冷却媒体を介在させることのできるハウジングと、 前記陽極ターゲットと前記電子放出部との近傍および前記軸受の内側に冷却媒体 を循環させるポンプと、
前記ポンプにより循環される冷却媒体により伝達される熱を排出する熱交換器と、 を有する X線装置。
[2] 前記軸受は、液体金属を潤滑材とする動圧式すベり軸受であることを特徴とする請 求項 1記載の X線装置。
[3] 前記ポンプは、ギヤポンプであることを特徴とする請求項 2記載の X線装置。
[4] 前記外囲器と前記ハウジングとの間の空間が前記冷却媒体の流路の一部を提供 することを特徴とする請求項 3記載の X線装置。
[5] 前記冷却媒体は、水を主な成分として含むことを特徴とする請求項 4記載の X線装 置。
[6] 前記冷却媒体は、グリコール類を含むことを特徴とする請求項 4記載の X線装置。
[7] 前記冷却媒体は、水を主な成分としたダリコール類との混合液を含むことを特徴と する請求項 4記載の X線装置。
[8] 前記冷却媒体は、一種類のみであることを特徴とする請求項 4記載の X線装置。
[9] 回転可能な陽極ターゲット及び前記陽極ターゲットに対向して配置された陰極を真 空外囲器内に収納した回転陽極型 X線管と、
前記陽極ターゲットを回転させるための誘導電磁界を発生するステータと、 前記陽極ターゲットを回転可能に支持し、液体金属を潤滑材とする動圧式すベり軸 受と、
少なくとも前記回転陽極型 X線管を収納保持するハウジングと、
前記回転陽極型 X線管の少なくとも一部に近接して設けられ、水系冷却媒体が循 環する流路と、
前記流路の所定の位置に設けられ、前記水系冷却媒体を循環させるギヤポンプ、 および前記水系冷却媒体の熱を放出させるラジェータを有するクーラーユニットと、 を有することを特徴とする X線装置。
[10] 前記外囲器と前記ハウジングとの間の空間が前記冷却媒体の流路の一部を提供 することを特徴とする請求項 9記載の X線装置。
[11] 回転可能な陽極ターゲット及び前記陽極ターゲットに対向して配置された陰極を真 空外囲器内に収納した回転陽極型 X線管と、
前記陽極ターゲットを回転させるための誘導電磁界を発生するステータと、 前記陽極ターゲットを回転可能に支持し、液体金属を潤滑材とする動圧式すベり軸 受と、
少なくとも前記回転陽極型 X線管を収納保持するハウジングと、
前記回転陽極型 X線管の少なくとも一部に近接して設けられるとともに、前記外囲 器と前記ハウジングとの間の空間を冷却媒体が循環可能に形成された流路と、 前記流路の所定の位置に設けられ、前記冷却媒体を循環させるギヤポンプ、およ び前記冷却媒体の熱を放出させるラジェータを有するクーラーユニットと、 を有することを特徴とする X線装置。
[12] 前記冷却媒体は、水系冷却媒体であることを特徴とする請求項 11記載の X線装置
PCT/JP2004/015386 2003-10-17 2004-10-18 X線装置 WO2005038852A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005514821A JP4987299B2 (ja) 2003-10-17 2004-10-18 X線装置
EP04792555A EP1691394A4 (en) 2003-10-17 2004-10-18 X-RAY DEVICE
US11/404,778 US7197118B2 (en) 2003-10-17 2006-04-17 X-ray apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003358275 2003-10-17
JP2003-358275 2003-10-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/404,778 Continuation US7197118B2 (en) 2003-10-17 2006-04-17 X-ray apparatus

Publications (1)

Publication Number Publication Date
WO2005038852A1 true WO2005038852A1 (ja) 2005-04-28

Family

ID=34463289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015386 WO2005038852A1 (ja) 2003-10-17 2004-10-18 X線装置

Country Status (5)

Country Link
US (1) US7197118B2 (ja)
EP (2) EP2487702B1 (ja)
JP (1) JP4987299B2 (ja)
CN (1) CN1868025A (ja)
WO (1) WO2005038852A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123211A (ja) * 2005-10-31 2007-05-17 Toshiba Corp 冷却器及びx線管装置
JP2007157640A (ja) * 2005-12-08 2007-06-21 Toshiba Corp 回転陽極型x線管及びx線管装置
WO2008069195A1 (ja) * 2006-12-04 2008-06-12 Kabushiki Kaisha Toshiba 回転陽極型x線管
JP2012049123A (ja) * 2010-07-30 2012-03-08 Rigaku Corp 工業用x線発生装置
JP2013016264A (ja) * 2011-06-30 2013-01-24 Toshiba Corp X線管装置
EP3336876A4 (en) * 2015-08-10 2019-04-10 Canon Electron Tubes & Devices Co., Ltd. X-RAY TUBE, X-RAY TUBE DEVICE, AND METHOD FOR MANUFACTURING X-RAY TUBE

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007041829B4 (de) * 2007-09-03 2009-08-20 Siemens Ag Elektronenquelle
CN102224558B (zh) * 2008-11-26 2014-07-23 皇家飞利浦电子股份有限公司 包括液态热链路的可旋转阳极和x-射线管
US8009806B2 (en) * 2009-07-13 2011-08-30 General Electric Company Apparatus and method of cooling a liquid metal bearing in an x-ray tube
US8300770B2 (en) 2010-07-13 2012-10-30 Varian Medical Systems, Inc. Liquid metal containment in an x-ray tube
US9153408B2 (en) * 2010-08-27 2015-10-06 Ge Sensing & Inspection Technologies Gmbh Microfocus X-ray tube for a high-resolution X-ray apparatus
US8503615B2 (en) * 2010-10-29 2013-08-06 General Electric Company Active thermal control of X-ray tubes
JP6091930B2 (ja) * 2013-03-04 2017-03-08 東芝電子管デバイス株式会社 回転陽極型x線管
CN115799024A (zh) * 2017-08-31 2023-03-14 上海联影医疗科技股份有限公司 辐射发射装置
CN109192644B (zh) * 2018-07-25 2023-09-01 思柯拉特医疗科技(苏州)有限公司 一种内部冷却滚珠轴承医用x射线管
US11424095B1 (en) * 2018-11-14 2022-08-23 General Electric Company Passive thermal control of x-ray tubes
WO2023169908A1 (en) * 2022-03-08 2023-09-14 Koninklijke Philips N.V. Rotary anode x-ray source
EP4243051A1 (en) * 2022-03-08 2023-09-13 Koninklijke Philips N.V. Rotary anode x-ray source

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216683A (ja) * 2001-01-22 2002-08-02 Toshiba Corp 回転陽極型x線管装置
WO2002082495A1 (en) * 2001-04-09 2002-10-17 Varian Medical Systems, Inc. A dual fluid cooling system for high power x-ray tubes
JP2002536804A (ja) * 1999-02-05 2002-10-29 ディリック,モーリス,ディー. X線管の寿命を延ばす方法及び装置
JP2003197136A (ja) * 2001-12-27 2003-07-11 Toshiba Corp 回転陽極x線管装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309637A (en) * 1979-11-13 1982-01-05 Emi Limited Rotating anode X-ray tube
US5169243A (en) * 1990-09-28 1992-12-08 Koyo Seiko Co., Ltd. Dynamic pressure bearing for an x-ray tube having a rotary anode
US5652778A (en) 1995-10-13 1997-07-29 General Electric Company Cooling X-ray tube
US5689542A (en) * 1996-06-06 1997-11-18 Varian Associates, Inc. X-ray generating apparatus with a heat transfer device
US6115454A (en) * 1997-08-06 2000-09-05 Varian Medical Systems, Inc. High-performance X-ray generating apparatus with improved cooling system
JP4357094B2 (ja) * 1999-08-10 2009-11-04 株式会社東芝 回転陽極型x線管及びそれを内蔵したx線管装置
JP3663111B2 (ja) * 1999-10-18 2005-06-22 株式会社東芝 回転陽極型x線管
US6453010B1 (en) * 2000-06-13 2002-09-17 Koninklijke Philips Electronics N.V. X-ray tube liquid flux director

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002536804A (ja) * 1999-02-05 2002-10-29 ディリック,モーリス,ディー. X線管の寿命を延ばす方法及び装置
JP2002216683A (ja) * 2001-01-22 2002-08-02 Toshiba Corp 回転陽極型x線管装置
WO2002082495A1 (en) * 2001-04-09 2002-10-17 Varian Medical Systems, Inc. A dual fluid cooling system for high power x-ray tubes
JP2003197136A (ja) * 2001-12-27 2003-07-11 Toshiba Corp 回転陽極x線管装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1691394A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123211A (ja) * 2005-10-31 2007-05-17 Toshiba Corp 冷却器及びx線管装置
JP2007157640A (ja) * 2005-12-08 2007-06-21 Toshiba Corp 回転陽極型x線管及びx線管装置
WO2008069195A1 (ja) * 2006-12-04 2008-06-12 Kabushiki Kaisha Toshiba 回転陽極型x線管
JPWO2008069195A1 (ja) * 2006-12-04 2010-03-18 株式会社東芝 回転陽極型x線管
US7697665B2 (en) 2006-12-04 2010-04-13 Kabushiki Kaisha Toshiba Rotating anode X-ray tube
JP5259406B2 (ja) * 2006-12-04 2013-08-07 株式会社東芝 回転陽極型x線管
JP2012049123A (ja) * 2010-07-30 2012-03-08 Rigaku Corp 工業用x線発生装置
JP2013016264A (ja) * 2011-06-30 2013-01-24 Toshiba Corp X線管装置
EP3336876A4 (en) * 2015-08-10 2019-04-10 Canon Electron Tubes & Devices Co., Ltd. X-RAY TUBE, X-RAY TUBE DEVICE, AND METHOD FOR MANUFACTURING X-RAY TUBE
US10636613B2 (en) 2015-08-10 2020-04-28 Canon Electron Tubes & Devices Co., Ltd. X-ray tube, X-ray tube device, and method of manufacturing X-ray tube device

Also Published As

Publication number Publication date
JPWO2005038852A1 (ja) 2007-11-29
EP2487702B1 (en) 2013-09-25
EP2487702A1 (en) 2012-08-15
EP1691394A4 (en) 2009-12-23
CN1868025A (zh) 2006-11-22
US7197118B2 (en) 2007-03-27
EP1691394A1 (en) 2006-08-16
JP4987299B2 (ja) 2012-07-25
US20060193439A1 (en) 2006-08-31

Similar Documents

Publication Publication Date Title
US7197118B2 (en) X-ray apparatus
US7203280B2 (en) X-ray apparatus
JP4908341B2 (ja) 回転陽極型x線管装置
EP1047100A2 (en) X-Ray tube having rotary anode cooled with high thermal conductivity fluid
CN101154550A (zh) 旋转阳极x-射线管组件
WO2006031515A2 (en) Integrated fluid pump for use in an x-ray tube
JP2000340146A (ja) X線発生デバイス
JP2006179482A (ja) 冷却式放射線放出デバイス
US7391852B2 (en) X-ray apparatus
JP2009021161A (ja) 回転陽極型x線管装置およびx線装置
JP4309290B2 (ja) X線ターゲット用液体金属ヒートパイプ構造
JP4220881B2 (ja) X線管装置
JP2009252648A (ja) 回転陽極型x線管装置
JP2006210339A (ja) グリースで潤滑した回転式アノード軸受けを備えたx線管用液冷式軸受け外被
JP2004103568A (ja) 回転陽極型x線管装置
JP2009043652A (ja) 冷却器及びx線管装置
JP2009158418A (ja) 回転陽極型x線管装置
JP7491756B2 (ja) 回転陽極型x線管装置およびx線撮像装置
JP2003203590A (ja) 回転陽極型x線管
JP2010212088A (ja) 回転陽極型x線管
JP4846214B2 (ja) 回転陽極型x線管
JP3029000B2 (ja) X線管装置
JP2012099286A (ja) 回転陽極型x線管装置及び回転陽極型x線管装置の製造方法
JP2001276052A (ja) カソードスキャン型x線発生器及びx線ctスキャナ
JP2007048640A (ja) X線管装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480030461.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514821

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004792555

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11404778

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004792555

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11404778

Country of ref document: US