WO2005038099A1 - タンタル酸リチウム基板およびその製造方法 - Google Patents

タンタル酸リチウム基板およびその製造方法 Download PDF

Info

Publication number
WO2005038099A1
WO2005038099A1 PCT/JP2004/015194 JP2004015194W WO2005038099A1 WO 2005038099 A1 WO2005038099 A1 WO 2005038099A1 JP 2004015194 W JP2004015194 W JP 2004015194W WO 2005038099 A1 WO2005038099 A1 WO 2005038099A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
lithium tantalate
temperature
crystal
heat treatment
Prior art date
Application number
PCT/JP2004/015194
Other languages
English (en)
French (fr)
Inventor
Tomio Kajigaya
Takashi Kakuta
Original Assignee
Sumitomo Metal Mining Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co., Ltd. filed Critical Sumitomo Metal Mining Co., Ltd.
Priority to US10/574,276 priority Critical patent/US7442250B2/en
Publication of WO2005038099A1 publication Critical patent/WO2005038099A1/ja
Priority to KR1020067004711A priority patent/KR101213411B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/30Niobates; Vanadates; Tantalates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment

Definitions

  • the present invention relates to a lithium tantalate (LT) substrate used for a surface acoustic wave device or the like, and more particularly to an LT substrate and a method for manufacturing the same, which hardly cause a decrease in yield in a device manufacturing process and also have characteristics as a piezoelectric material. It is about improvement.
  • LT lithium tantalate
  • Lithium tantalate (LT) crystals are ferroelectrics with a melting point of about 1650 ° C and a Curie temperature of about 600 ° C.
  • the LT substrate is mainly used as a material for surface acoustic wave (SAW) filters for removing signal noise from mobile phones.
  • SAW surface acoustic wave
  • the SAW filter has a structure in which a pair of comb-shaped electrodes are formed of a metal thin film such as an Al-Cu alloy on a substrate made of a piezoelectric material such as LT, and the comb-shaped electrodes determine the polarity of the deposition. Plays an important role. Further, the above-mentioned comb-shaped electrode is formed by forming a metal thin film on a piezoelectric material by sputtering, leaving a pair of comb-shaped patterns, and etching and removing unnecessary portions by photolithographic technology.
  • the distance between electrodes is about 1 compared to the current mainstream of about 800 MHz.
  • the value of 0.3 to 0.4 / ⁇ / B of / 3 is about 200 nm or less, which is also 1 to 5 or less.
  • the LT single crystal is industrially mainly produced by the Czochralski method, After being grown in an electric furnace with a nitrogen-oxygen mixed gas atmosphere with an oxygen concentration of several to 10% using an amorphous crucible with a melting point and cooled at a predetermined cooling rate in the electric furnace, the electric furnace power [Albert A. Ballman: Journal of
  • the grown LT crystal is colorless and transparent, or has a pale yellow color with high transparency.
  • heat treatment is performed under uniform soaking near the melting point to remove residual strain due to thermal stress of the crystal, and poling treatment to make it a single polarization, that is, LT crystal is heated from room temperature to Curie temperature or higher.
  • the temperature is raised to the temperature, a voltage is applied to the crystal, the temperature is reduced to a predetermined temperature equal to or lower than the Curie temperature while the voltage is applied, and then a series of processes are performed in which the voltage is stopped and the temperature is cooled to room temperature.
  • the LT crystal (ingot) whose outer periphery has been ground to adjust the outer shape of the crystal, becomes a LT substrate through machining such as slicing, wrapping, and polishing.
  • the finally obtained LT substrate is almost colorless and transparent, and has a volume resistivity of about 10 14 to 10 15 ⁇ ⁇ cm.
  • the LT substrate obtained by such a conventional method in the surface acoustic wave device manufacturing process, due to pyroelectricity, which is a characteristic of LT crystal, electric charge is transferred to the surface of the substrate due to temperature change in the process.
  • the sparks generated by the charge-up cause the pattern formed on the surface of the substrate to burst, further causing the substrate to crack, etc., and lowering the yield in the device manufacturing process.
  • the high light transmittance of the LT substrate means that light transmitted through the substrate in the photolithography step, which is one of the device manufacturing processes, is reflected on the back surface of the substrate and returns to the front surface, degrading the resolution of the formed pattern. The problem has also arisen.
  • Japanese Patent Application Laid-Open Nos. H11-92147 and H11-2363698 disclose lithium niobate (LN) crystals of 500- Exposure to a reducing atmosphere (specifically, a gas atmosphere selected from argon, water, hydrogen, nitrogen, carbon dioxide, carbon monoxide, oxygen, or a combination thereof) within a temperature range of 114 ° C
  • a reducing atmosphere specifically, a gas atmosphere selected from argon, water, hydrogen, nitrogen, carbon dioxide, carbon monoxide, oxygen, or a combination thereof
  • JP-A-11-92147 and JP-A-11-236298 cover not only LN crystals but also lithium tantalate (LT) crystals.
  • JP-A-92147 and JP-A-11-236298 do not substantially disclose LT crystals. According to experiments by the present inventors, these methods were effective for lithium niobate crystals having a low melting point of about 1250 ° C, but were effective for LT crystals having a high melting point of 1650 ° C. Has no effect.
  • the present inventor has proposed a method completely different from the methods described in JP-A-11-192147 and JP-A-11-236298, that Embedded in one metal powder (a so-called reducing agent) selected from the group consisting of Al, Ti, and Si, and heat-treated at a holding temperature of 350 to 600 ° C to manufacture a lithium tantalate (LT) substrate
  • a so-called reducing agent selected from the group consisting of Al, Ti, and Si
  • the LT substrate manufactured by this method has high light transmittance suppressed similarly to the lithium epoxide (LN) substrate described in JP-A-11-192147 and JP-A-1-236298. And high electrical conductivity, it is possible to solve the above-mentioned problems of lowering the yield in the device manufacturing process and deteriorating the resolution of the formed pattern on the lithium tantalate (LT) substrate. It is.
  • the present invention has been made in view of such problems, and it is an object of the present invention to solve the problems caused by the above-described charge-up of a substrate and to sufficiently provide characteristics as a piezoelectric material.
  • the purpose of the present invention is to provide a substrate and a method for manufacturing the same.
  • the present inventors have conducted intensive research. As a result, when the volume resistivity of the lithium tantalate (LT) substrate was controlled within the following range, the charge of the LT substrate was reduced. the characteristics of the resulting the problem can be solved yet pressure material charge up lead to finding in that it comprises sufficiently, and the LT substrate, an LT crystals mixed powder of a 1 and a 1 2 O 3 They have found what can be obtained by embedding and heat treatment at a holding temperature of 350 to 600 ° C.
  • lithium tantalate (LT) substrate according to the present invention is directed to JP ⁇ 3 ⁇ 4 of the volume resistivity is controlled to a range of 1 0 6 ⁇ 10 8 ⁇ ⁇ cm .
  • Embedded lithium tantalate crystal which is processed to the state of the substrate to the mixed powder at the end of A 1 and Al 2 O 3, and a heat treatment at a holding temperature of 350 to 600 ° C, a volume resistivity of 10 6 ⁇ 10 8 ⁇ ⁇ It is characterized in that a lithium tantalate substrate controlled in a range of cm is manufactured.
  • the lithium tantalate (LT) substrate according to the present invention has a volume resistivity controlled in the range of 10 6 to 10 8 ⁇ ⁇ cm. In addition to making it colored and opaque, it also has sufficient properties as a piezoelectric material. Therefore, for example, the temperature received in the device manufacturing process such as a surface acoustic wave device The change does not cause the pattern formed on the substrate surface to be destroyed by the sparks generated by the charge build-up on the substrate surface, and further to prevent the substrate from cracking, etc. The transmitted light is not reflected on the back surface of the substrate and returns to the front surface, and the resolution of the formed pattern is not deteriorated.
  • the LT crystal changes its electrical conductivity and color depending on the concentration of oxygen vacancies present in the crystal.
  • oxygen vacancies are introduced into the LT crystal, the valency of some Ta ions changes from 5 + to 4 + due to the need to balance the charge, and light absorption occurs at the same time as electrical conductivity occurs.
  • Electric conduction is thought to occur because the carrier electrons move between the Ta5 + and Ta4 + ions.
  • the electrical conductivity of a crystal is determined by the product of the number of carriers per unit volume and the mobility of carriers. For the same mobility, the electrical conductivity is proportional to the number of oxygen vacancies.
  • the color change due to light absorption is thought to be due to the electron level introduced by oxygen vacancies.
  • the control of the number of oxygen vacancies can be performed by heat treatment using a so-called reducing agent utilizing the equilibrium between solid and solid. Then, as the reducing agent of the LT crystal in the present invention, it is applied A 1 (aluminum), in particular a heat treatment is carried out by embedding the LT substrate in a mixed powder A 1 and A 1 2 O 3.
  • the above heat treatment may be performed in an atmosphere such as an inert gas such as nitrogen gas or argon gas, or a vacuum in order to prevent deterioration of A 1 (aluminum) itself constituting the powder due to excessive oxidation.
  • the heat treatment temperature is desirably high, but the upper limit temperature is limited to the temperature of the crystal of the LT crystal so that the LT substrate that has been single-polarized by the poling process does not become polypolarized.
  • the reduction conditions may be too strong. If the atmosphere is an inert gas atmosphere, the time required for the reduction may be longer, and the inert gas (nitrogen gas, argon gas, etc.) It is more desirable to use a reduced pressure atmosphere.
  • LT crystals have a relatively high binding ionicity, so the vacancy diffusion rate is relatively high.
  • a change in the oxygen vacancy concentration requires diffusion of oxygen into the crystal, so that the crystal must be kept in the atmosphere for a certain period of time. This diffusion rate greatly depends on temperature, and near room temperature, the oxygen vacancy concentration does not change in a realistic time. Therefore, in order to obtain an LT substrate having desired characteristics in a short time, it is necessary to maintain the LT substrate in a low oxygen concentration atmosphere at a high temperature at which a sufficient oxygen diffusion rate can be obtained.
  • the LT substrate is cooled immediately after the treatment at a high temperature, it is possible to obtain a crystal at room temperature while maintaining the oxygen vacancy concentration introduced at a high temperature.
  • the lower limit of the processing time can be easily determined by experiment in accordance with the processing temperature in the above heat treatment method, in consideration of economy.
  • the pyroelectric effect is caused by the deformation of the lattice caused by the change of the crystal temperature.
  • a crystal with an electric dipole it can be understood that the distance between the dipoles is caused by a change in temperature.
  • the pyroelectric effect occurs only in materials with high electrical resistance. Due to the displacement of ions, charges are generated in the dipole direction (Z direction in LT crystals) on the crystal surface, but in materials with low electrical resistance, the charges are neutralized due to the electrical conductivity of the crystal itself. .
  • the ordinary transparent LT crystal has a volume resistivity of 110 15 ⁇ ⁇ cm, and the pyroelectric effect is remarkably exhibited.
  • lithium tantalate (LT) substrate according to the present invention since the volume resistivity is controlled to a range of 1 0 6 ⁇ 1 0 8 ⁇ ⁇ cm, pyroelectric properties can not be seen, In addition, the color is changed from colorless and transparent to colored and opaque, and it has sufficient properties as a piezoelectric material. Further, the colored and opaque color tone of the lithium tantalate (LT) substrate according to the present invention looks reddish-brown in transmitted light and black in reflected light, and hence the phenomenon of colored opacity is referred to as blackening here.
  • the LT substrate is subjected to an actual surface acoustic wave device manufacturing process.
  • a 4 inch diameter LT single crystal was grown by the Chocolano-Resky method.
  • the growth atmosphere is a mixed gas of nitrogen and oxygen with an oxygen concentration of about 3%.
  • the ingot of the obtained crystal was transparent and pale yellow.
  • This crystal ingot was subjected to heat treatment to remove thermal strain and poling treatment to make it a single polarization, and then subjected to outer circumference grinding, slicing, and polishing to obtain 36 ° RY. (Rotated Y axis) LT substrate.
  • the obtained substrate was colorless and transparent, had a volume resistivity of 10 15 Q'cm, a temperature of 603 ° C, and a surface acoustic wave velocity of 415 OmZ seconds.
  • the resulting substrate 75 wt% of 1 and embedded in eight 1 2 0 3 in the powder mixture of 25 wt%, a nitrogen gas atmosphere, in a vacuum condition of 500 Torr, a heat treatment of 350 ° C, 20 hours was.
  • the substrate after the heat treatment was opaque reddish-brown (light transmittance at a wavelength of 365 nm of the substrate was 48%) and had a volume resistivity of 9.80 ⁇ 10 7 ⁇ ⁇ cm.
  • the light transmittance was measured using a spectrophotometer (U-3400) manufactured by Hitachi, Ltd., and the volume resistivity was measured by a three-terminal method in accordance with JIS K-6911. I have.
  • the heat-treated substrate was subjected to a thermal cycle test in which the temperature was raised from room temperature to 200 ° C at a rate of 10 ° C / min, and then cooled to room temperature in 1 ° cZ minutes. As a result, no surface potential was generated, and no sparking phenomenon was observed.
  • the Curie temperature of the obtained substrate is 603 ° C
  • the surface acoustic wave velocity is 4150 mZ seconds
  • the physical properties that affect the surface acoustic wave element characteristics are different from those of the conventional 36 ° RY substrate.
  • heat treatment temperature was 550 ° C
  • heat treatment was performed under substantially the same conditions as in Example 1.
  • the heat treatment was opaque reddish-brown (the light transmittance of the substrate at a wavelength of 365 nm was 45%) and the volume resistivity was 1
  • a substrate was obtained that was 30 ⁇ 10 7 Q ′ cm.
  • This substrate showed the same heat cycle test results as in Example 1 and also had the same properties as the curable temperature and the like in Example 1.
  • This substrate also showed the same heat cycle test results as in Example 1, and also had the same properties as Curie temperature as in Example 1.
  • the heat treatment is performed 10 wt.% Of 1 to 90% by weight of A 1 2 0 crowded padded 3 in the mixed powder, and the same process except for using 80 hour heat treatment time as in Example 1 went.
  • the obtained substrate was opaque reddish-brown (light transmittance at a wavelength of 365 nm of the substrate was 48%), and the volume resistivity was 9.50 ⁇ 10 7 ⁇ ⁇ cm.
  • This substrate also showed the same heat cycle test results as in Example 1, and the characteristics such as the Curie temperature were also the same as in Example 1.
  • the heat treatment is performed crowded padded to 10% by weight of eight 1 and 90% by weight of the mixed powder of eight 1 2 O 3, and a heat treatment temperature of 550, except for using 80 hour heat treatment time Example 1
  • the same processing as described above was performed.
  • the obtained substrate was opaque reddish brown (the transmittance of light at 365 nm wavelength of the substrate was 45%), and the volume resistivity was 1.40 ⁇ 10 7 ⁇ ⁇ . m.
  • This substrate also showed the same heat cycle test results as in Example 1, and the characteristics such as the Curie temperature were also the same as in Example 1.
  • the heat treatment is performed crowded padded to 10% by weight of the mixed powder of A 1 to 90 wt% of eight 1 2 O 3, and the heat treatment temperature 600 ° C, except for using 80 hour heat treatment time implementation The same processing as in Example 1 was performed.
  • volume resistivity was 1. 20 ⁇ 1 0 6 ⁇ ⁇ ⁇ m.
  • This substrate also showed the same heat cycle test results as in Example 1, and The characteristics such as the re-heating temperature were the same as in Example 1.
  • Example 2 The same process as in Example 1 was performed except that the upper IB heat treatment was performed at 550 ° C. and 80 hours in a nitrogen gas atmosphere and atmospheric pressure conditions.
  • the resulting substrate an opaque reddish brown (4 8% light transmittance at a wavelength of 3 6 5 nm in the substrate), and the volume resistivity was 1. 8 0 X 1 0 7 Q 'cm.
  • This substrate also showed the same heat cycle test results as in Example 1, and the characteristics such as the Curie temperature were also the same as in Example 1.
  • the thermal treatment 5 0% by weight of 1 and 5 0% by weight of 1 2 0 3 inclusive padded in the mixed powder, in vacuum conditions, 5 5 0 ° C and then addition was the same as in Example 1 treatment Was done.
  • the resulting substrate an opaque reddish brown (2 8% Wavelength 3 6 5 nm of the light transmittance of the substrate), and the volume resistivity was 9. 3 0 X 1 0 6 ⁇ ⁇ cm.
  • This substrate also showed the same heat cycle test results as in Example 1, and the characteristics such as the Curie temperature were also the same as in Example 1.
  • the obtained substrate was colorless and transparent, and no blackening was observed (the transmittance of the substrate at a wavelength of 365 nm was 71%), and the volume resistivity was 1 to 2 X 10 15 ⁇ cm Met.
  • the treated substrate was subjected to a heat cycle test in which the temperature was raised from room temperature to 200 ° C at 100 ° C for 10 minutes, and then cooled to room temperature at 1 ° C / min. A sparking phenomenon was seen.
  • Example 2 The heat treatment, A 1 and A 1 2 0 without embedding the substrate 3 of the 'mixed powder, nitrogen
  • Example 3 The same treatment as in Example 1 was performed except that the temperature was 800 ° C (Comparative Example 2), 480 ° C (Comparative Example 3) and 40 hours in a raw gas atmosphere and atmospheric pressure conditions.
  • Each of the obtained substrates was colorless and transparent and no blackening was observed (light transmittance at a wavelength of 365 nm of the substrate was 72%), and the volume resistivity was 1-2 ⁇ 10 15 ⁇ ⁇ cm.
  • a heat cycle test was performed on each of the processed substrates by raising the temperature from room temperature to 200 ° C in 10 ° CZ minutes, and then cooling to room temperature in 10 ° CZ minutes. A phenomenon of sparking was observed.
  • lithium tantalate (LT) substrate since the volume resistance rate is controlled in a range of 10 6 ⁇ 10 8 ⁇ ⁇ cm, pyroelectric properties Ri no longer observed, In addition to being colorless and transparent to colored and opaque, it has sufficient properties as a piezoelectric material. Therefore, the pattern formed on the surface of the substrate is destroyed by sparks generated by charge build-up on the substrate surface due to temperature changes in the device manufacturing process such as surface acoustic wave devices, and the substrate may be cracked.
  • the surface elastic wave element It is suitable for use as a substrate for applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 チョコラスキー法で育成したタンタル酸リチウム結晶を基板の状態に加工して得たLT基板をAlとAl2O3の混合粉末に埋め込み、350~600℃の保持温度で熱処理して、体積抵抗率が106~108Ω・cmの範囲に制御されたタンタル酸リチウム基板を製造することを特徴とする。得られた基板には焦電性が見られなくなり、かつ、無色透明から有色不透明化すると共に圧電材料としての特性も充分に具備している。

Description

明 細 書
タンタノレ酸リチウム基板およぴその製造方法 技術分野
この発明は、 表面弾性波素子等に用いられるタンタル酸リチウム (LT) 基板 に係り、 特に、 素子製造プロセスでの歩留まり低下が起こり難くしかも圧電材料 としての特性も具備する LT基板とその製造方法の改良に関するものである。 背景技術
タンタル酸リチウム (LT) 結晶は、 融点が約 1650°C、 キュリー温度が約 600°Cの強誘電体である。 そして、 LT基板の用途は、 主に携帯電話の信号ノ ィズ除去用の表面弾性波 (SAW) フィルター用材料である。
そして、 携帯電話の高周波化、 各種電子機器の無線 LANである Bluetooth (2. 45GHz) の普及等により、 2 GHz前後の周波数領域の SAWフィル ターが今後急増すると予測されている。
上記 SAWフィルタ一は、 LT等の圧電材料で構成された基板上に、 Al Cu 合金等の金属薄膜で一対の櫛形電極を形成した構造となっており、 この櫛形電極 がデパイスの極性を左右する重要な役割を担っている。 また、 上記櫛形電極は、 スパッタにより圧電材料上に金属薄膜を成膜した後、 一対の櫛形パターンを残し 、 フォトリソグラフ技術により不要な部分をエッチング除去することにより形成 される。
そして、 より高周波に対応するためには、 上記櫛形パターンを微細に、 かつ、 薄くする必要があり、 2 GHz前後のデバイスでは、 現在の主力である 800M Hz前後に比べ、 電極間距離が約 1/3の 0. 3〜0. 4/ πι、 B莫厚が同じく 1 ノ5以下の 200 nm以下程度となる。
また、 上記 LT単結晶は、 産業的には、 主にチョコラルスキー法で、 通常、 高 融点のィリジゥムるつぼを用い、 酸素濃度が数〜 1 0 %程度の窒素—酸素混合ガ ス雰囲気の電気炉中で育成され、 電気炉内で所定の冷却速度で冷却された後、 電 気炉力 ら取り出されて得られる [Albert A. Ballman: Journal of
American Ceramic Society, Vol , 48 ( 1965 )参照] 0
育成された L T結晶は、 無色透明若しくは透明感の高い淡黄色を呈している。 育成後、 結晶の熱応力による残留歪みを取り除くため、 融点に近い均熱下で熱処 理を行い、 さらに単一分極とするためのポーリング処理、 すなわち、 L T結晶を 室温からキュリー温度以上の所定温度まで昇温し、 結晶に電圧を印加し、 電圧を 印加したままキュリ一温度以下の所定温度まで降温した後、 電圧印加を停止して 室温まで冷却する一連の処理を行う。 ポーリング処理後、 結晶の外形を整えるた めに外周研削された L T結晶 (インゴット) はスライス、 ラップ、 ポリッシユエ 程等の機械加工を経て L T基板となる。 最終的に得られた L T基板はほぼ無色透 明であり、 体積抵抗率はおよそ 1 0 1 4〜1 0 1 5 Ω · c m程度である。
ところで、 このような従来の方法で得られた L T基板では、 表面弾性波素子製 造プロセスにおいて、 L T結晶の特性である焦電性のために、 プロセスで受ける 温度変化によつて電荷が基板表面にチャージァップして発生するスパークにより 、 基板表面に形成したパターンが破壌され、 さらには基板の割れ等が発生し、 素 子製造プロセスでの歩留まり低下が起きている。
また、 . L T基板の高い光透過率は、 デバイス製造プロセスの 1つであるフォト リソグラフ工程で基板内を透過した光が基板裏面で反射されて表面に戻り、 形成 パターンの解像度を悪ィ匕させるという問題も生じさせている。
そこで、 この問題を解決するため、 特開平 1 1— 9 2 1 4 7号公報、 特開平 1 1一 2 3 6 2 9 8号公報においては、 ニオブ酸リチウム (L N) 結晶を 5 0 0〜 1 1 4 0 °Cの範囲内で還元性雰囲気 (具体的には、 アルゴン、 水、 水素、 窒素、 二酸化炭素、 一酸化炭素、 酸素、 これ等組合せから選択されたガス雰囲気) に晒 して L N結晶のゥエーハを黒ィ匕させることにより、 基板の高い光透過率を抑制す ると共に、 電気伝導度を髙くし、 もって基板裏面からの戻り光を抑制し、 同時に 焦電性を低減することが述べられている。
但し、 特開平 11— 92147号公報、 特開平 11— 236298号公報に記 載された発明は、 LN結晶のみならず、 タンタル酸リチウム (LT) 結晶をも対 象としているが、 特開平 11— 92147号公報、 特開平 11一 236298号 公報には LT結晶について実質的に何らの開示がない。 そして、 本発明者の実験 によれば、 これらの方法は、 1250°C程度と融点が低いニオブ酸リチウム結晶 に対しては有効ではあったが、 1650°Cと融点が高い LT結晶に対しては効果 がないことが確認された。
この様な技術的背景の下、 本発明者は、 特開平 11一 92147号公報、 特開 平 11—236298号公報に記載された方法とは全く別異の方法、 すなわち、 LT結晶を、 Ca、 Al、 T i、 S iからなる群より選択される 1つの金属粉末 (いわゆる還元剤) に埋め込み、 350〜600°Cの保持温度で熱処理してタン タル酸リチウム (LT) 基板を製造する方法を既に提案している (特願 2003 一 104176号明細書参照) 。
そして、 この方法により製造された LT基板は、 特開平 11一 92147号公 報ゃ特開平 i 1— 236298号公報に記載されたェォプ酸リチウム (LN) 基 板と同様、 高い光透過率が抑制され、 かつ、 電気伝導度も高くなることから、 タ ンタル酸リチウム (LT) 基板においても上述した素子製造プロセスでの歩留ま り低下や形成パターンの解像度を悪化させる問題を解消させることを可能として いる。
しかし、 特願 2003-104176号明細書記載の発明においては、 タンタ ル酸リチウム (LT) 基板に対する還元条件が強すぎると、 得られる LT基板の 焦電性が著しく低減するため上記チャージァップに起因した問題は改善されるが LT基板の圧電性も同様に低減し圧電材料としての特性が低下してしまう問題が あり、 反対に、 タンタル酸リチウム (LT) 基板に対する還元条件が弱いと得ら れる LT基板の焦電性が低減し難い問題があり、 未だ改善の余地を有していた。 発明の開示
本発明は、 この様な問題点に着華してなされたもので、 その課題とするところ は、 基板の上記チャージアップに起因した問題が解消されると共に圧電材料とし ての特性も充分に具備するタンタル酸リチウム ( L T ).基板とその製造方法を提 供することにある。
そこで、 上記課題を解決するため本発明者等が鋭意研究を継続したところ、 タ ンタル酸リチウム (LT) 基板の体積抵抗率が以下の範囲内に制御された場合、 この L T基板においては上記チャージアップに起因した問題が解消されしかも圧 電材料としての特性も充分に具備していることを見出すに至り、 かつ、 この LT 基板は、 LT結晶を A 1と A 12O 3の混合粉末に埋め込み、 350〜600°C の保持温度で熱処理することにより得られることを見出すに至った。
すなわち、 本発明に係るタンタル酸リチウム (LT) 基板は、 体積抵抗率が 1 06〜108Ω · cmの範囲に制御されたことを特^¾とする。
また、 本発明に係るタンタル酸リチウム基板の製造方法は、
チョコラスキー法で育成したタンタル酸リチウム結晶を用いてタンタル酸リチ ゥム基板を製造する方法において、
基板の状態に加工されたタンタル酸リチウム結晶を A 1と Al 2O3の混合粉 末に埋め込み、 350〜 600°Cの保持温度で熱処理して、 体積抵抗率が 106 〜108Ω · cmの範囲に制御されたタンタル酸リチウム基板を製造することを 特徴とする。
そして、 本発明に係るタンタル酸リチウム (LT) 基板は、 その体積抵抗率が 106〜108Ω · cmの範囲に制御されるため、 焦電性は見られなくなり、 力、 つ、 無色透明から有色不透明化すると共に、 圧電材料としての特性も充分に具備 している。 従って、 例えば、 表面弾性波素子等の素子製造プロセスで受ける温度 変化によって、 電荷が基板表面にチャージアップして生ずるスパークにより基板 表面に形成したパターンが破壊されたり、 さらには基板の割れ等が発生したりす ることがなく、 また、 フォトリソグラフ工程で基板内を透過した光が基板裏面で 反射されて表面に戻り、 形成パターンの解像度を悪化させてしまうことがない。 発明を実施するための最良の形態
以下、 本発明を具体的に説明する。
まず、 L T結晶は、 結晶内に存在する酸素空孔濃度によって電気伝導度と色が 変化する。 L T結晶中に酸素空孔が導入されると、 チャージバランスをとる必要 から、 一部の T aイオンの価数が 5 +から 4 +に変わり、 電気伝導性を生じると 同時に光吸収を起こす。
電気伝導は、 キヤリァである電子が T a 5 +イオンと T a 4 +イオンの間を移動 するために生ずると考えられる。 結晶の電気伝導度は、 単位体積あたりのキヤリ ァ数とキャリアの移動度の積で決まる。 移動度が同じであれば、 電気伝導度は酸 素空孔数に比例する。 光吸収による色変化は、 酸素空孔により導入された電子レ ベルによるものと考えられる。
上記酸素空孔数の制御は固体と固体の平衡を利用した、 いわゆる還元剤を用い た熱処理により行うことができる。 そして、 本発明において L T結晶の上記還元 剤としては、 A 1 (アルミニウム) が適用され、 具体的には A 1と A 1 2 O 3の 混合粉末中に L T基板を埋め込んで熱処理を行う。
また、 上記熱処理は、 粉末を構成している A 1 (アルミニウム) そのものの過 剰な酸化による劣化を防ぐため、 窒素ガスやアルゴンガス等の不活性ガス、 真空 等の雰囲気の中で行うことが望ましい。 また、 熱処理温度は高温が望ましいが、 上限温度はポーリング処理により単一分極化済みの L T基板が多分極化しないよ うに L T結晶のキユリ一温度に制限される。
そして、 処理工程の制御性、 最終的に得られる基板の特性、 同特性の均一性、 再現性等を考慮した最も好ましい条件としては、 試料としてポーリング後の L T 結晶インゴットから切り出されたゥエーハ (L T基板) を用い、 該 L T基板を A 1と A 1 203の混合粉末中に埋め込み、 窒素ガスやアルゴンガス等の不活性ガ ス、 真空等の雰囲気中で、 L T結晶のキュリー温度以下で熱処理することが有効 である。 尚、 真空雰囲気とすると還元条件が強すぎてしまう場合があり、 また、 不活性ガスの大気圧雰囲気下とすると還元に要する時間が長くなるため、 不活性 ガス (窒素ガスやアルゴンガス等)の減圧雰囲気であることがより望ましい。
また、 L T結晶は、 結合イオン性が強いので空孔の拡散速度は比較的速い。 し かし、 酸素空孔濃度の変化には酸素の結晶内拡散を要するので、 一定時間、 結晶 を雰囲気中に保持する必要がある。 この拡散速度は、 温度に大きく依存し、 室温 近傍では現実的な時間での酸素空孔濃度の変化は起きない。 従って、 短時間で所 望とする特性を有する L T基板を得るには、 十分な酸素拡散速度を得られる高温 で、 低酸素濃度雰囲気中に L T基板を保持する必要がある。
高温で処理した後、 L T基板を速やかに冷却すれば、 高温で導入された酸素空 孔濃度を保ったままの結晶を室温で得ることができる。 処理時間の下限は、 経済 性を考慮し、 実験によって、 上記熱処理方法での処理温度に応じて容易に決定で ぎる。
ところで、 焦電効果 (焦電性) は、 結晶温度が変化することによって生ずる格 子の変形に起因する。 電気双極子を持つ結晶では、 双極子間の距離が温度で変化 するために生じると理解できる。 焦電効果は、 電気抵抗の高い材料のみで生じる 。 イオンの変位により、 結晶表面には双極子方向 (L T結晶では Z方向) に電荷 を生じるが、 電気抵抗の低い材料では、 この電荷は結晶自身の持つ電気伝導性の ために中和されてしまう。 そして、 通常の透明な L T結晶は、 上述したようにそ の体積抵抗率が 1 0 1 5 Ω · c mのレベルであるため焦電効果が顕著に現れる。 しかし、 本発明に係るタンタル酸リチウム (L T) 基板は、 その体積抵抗率が 1 0 6〜 1 0 8 Ω · c mの範囲に制御されるため、 焦電性は見られなくなり、 つ、 無色透明から有色不透明化すると共に、 圧電材料としての特性も充分に具備 している。 また、 本発明に係るタンタル酸リチウム (L T) 基板における有色不 透明の色調は、 透過光では赤褐色系に、 反射光では黒色に見えるため、 この有色 不透明化現象をここでは黒化と呼ぶ。
そして、 上記熱処理の効果であるタンタル酸リチウム (L T) 基板の焦電性が 見られなくなつたか否かを判定する実用的な方法として、 実際の表面弾性波素子 製造プロセスにおいて、 L T基板が受ける温度変化を模して行う熱サイクル試験 がある。 すなわち、 室温から 2 0 0 °Cまで 1 0 °CZ分で昇温し、 その後 1 0 °CZ 分で室温まで冷却する熱サイクルを L T基板に与えた場合、 従来法による L T基 板では基板表面でスパークが観察される。 一方、 黒化した L T基板では基板表面 でのスパークは観察されない。 従って、 黒化の有無の判定が、 L T基板の実用的 な判定方法としては有用である。
尚、 熱処理は 4時間以上行うことで黒ィヒが明らかに観察されるが、 熱処理の雰 囲気を真空雰囲気とするよりも不活性ガス (窒素ガスやアルゴンガス等)とした方 1 体積抵抗率が同じであっても透過光で見た場合の黒ィ匕 着色度合いは薄い。 真空雰囲気で処理した基板は基板の表面近傍の着色が強く、 表面近傍の酸素空孔 濃度が高いものと推定される。 酸素空孔は結晶欠陥の一種でもあるため、 基板の 機械的強度の面からは、 比較的薄い着色で所望の体積抵抗率が得られた方が望ま しい。
次に、 本発明の実施例について詳細に説明する。
[:実施例 1 ]
コングルェント組成の原料を用いて、 チョコラノレスキー法で、 直径 4インチの L T単結晶育成を行った。 育成雰囲気は、 酸素濃度約 3 %の窒素一酸素混合ガス である。 得られた結晶のインゴッ トは、 透明な淡黄色であった。
この結晶のインゴットに対して熱歪み除去のための熱処理と単一分極とするた めのポーリング処理を行った後、 外周研削、 スライス、 研磨を行って 3 6 ° R Y (Rotated Y axis) の LT基板とした。 得られた基板は、 無色透明で、 体積 抵抗率は 1015Q ' cm、 キユリ一温度は 603 °C、 表面弾性波速度は 415 OmZ秒であった。
得られた基板を、 75重量%の 1と 25重量%の八 1203の混合粉末中に 埋め込み、 窒素ガス雰囲気、 500 Torrの減圧条件中で、 350°C、 20時間 の熱処理を行った。
熱処理後の基板は、 不透明な赤褐色 (基板における波長 365 nmの光透過率 は 48 %)で、 体積抵抗率は 9. 80 X 107 Ω · c mであった。
尚、 上記光透過率は、 日立製作所 (株)社製の分光光度計 (U— 3400)を用い て測定し、 上記体積抵抗率は、 J I S K-6911に準拠した 3端子法により 測定している。
次に、 熱処理後の基板に対して、 室温から 200°Cまで 10°C/分で昇温し、 その後 1 o°cZ分で室温まで冷却する熱サイクル試験を行った。 その結果、 表面 電位は発生せず、 スパークする現象は全く見られなかった。
さらに、 得られた基板のキュリ一温度は 603°C、 表面弾性波速度は 4150 mZ秒であり、 表面弾性波素子特性に影響する物性値は従来品の 36° RYの基 板と異なるところはなかつた。
[実施例 2 ]
熱処理温度が 550°Cである点を除き、 実施例 1と略同一の条件で熱処理を施 し、 不透明な赤褐色 (基板における波長 365 nmの光透過率は 45%)で、 体積 抵抗率が 1. 30X 107Q ' c mである基板を得た。
そして、 この基板は、 実施例 1と同様の熱サイクル試験結果を示し、 かつ、 キ ュリ一温度等の特性も実施例 1と同様であった。
[実施例 3 ]
熱処理温度が 600°Cである点を除き、 実施例 1と略同一の条件で熱処理を施 し、 不透明な赤褐色 (基板における波長 365 nmの光透過率は 43 °/0)で、 体積 抵抗率が 1. 20 Χ 1 06Ω · 。 mである基板を得た。
そして、 この基板も、 実施例 1と同様の熱サイクル試験結果を示し、 かつ、 キ ュリ一温度等の特性も実施例 1と同様であった。
[実施例 4]
上記熱処理を、 10重量.%の 1と 90重量%の A 1203の混合粉末中に埋 め込んで行い、 かつ、 熱処理時間を 80時間とした以外は実施例 1と同様な処理 を行った。
得られた基板は、 不透明な赤褐色 (基板における波長 365 nmの光透過率は 48 %)で、 体積抵抗率は 9. 50 X 107 Ω · c mであった。
また、 この基板も、 実施例 1と同様の熱サイクル試験結果を示し、 かつ、 キュ リ一温度等の特性も実施例 1と同様であった。
[実施例 5]
上記熱処理を、 10重量%の八 1と 90重量%の八 12O3の混合粉末中に埋 め込んで行い、 かつ、 熱処理温度を 550 、 熱処理時間を 80時間とした以外 は実施例 1と同様な処理を行った。
得られた基板は、 不透明な赤褐色 (基板における波長 365 nmの光透過率は 45 %)で、 体積抵抗率は 1. 40Χ 107Ω · 。 mであった。
また、 この基板も、 実施例 1と同様の熱サイクル試験結果を示し、 かつ、 キュ リー温度等の特性も実施例 1と同様であった。
[実施例 6]
上記熱処理を、 10重量%の A 1と 90重量%の八 12O3の混合粉末中に埋 め込んで行い、 かつ、 熱処理温度を 600°C、 熱処理時間を 80時間とした以外 は実施例 1と同様な処理を行った。
得られた基板は、 不透明な赤褐色 (基板における波長 365 nmの光透過率は 43 %)で、 体積抵抗率は 1. 20 Χ 1 06Ω · ο mであった。
また、 この基板も、 実施例 1と同様の熱サイクル試験結果を示し、 かつ、 キュ リ一温度等の特性も実施例 1と同様であった。
[実施例 7 ]
上 IB熱処理を、 窒素ガス雰囲気、 大気圧条件中、 5 5 0°C、 8 0時間とした以 外は実施例 1と同様な処理を行つた。
得られた基板は、 不透明な赤褐色 (基板における波長 3 6 5 n mの光透過率は 4 8 %)で、 体積抵抗率は 1 . 8 0 X 1 0 7 Q ' c mであった。
また、 この基板も、 実施例 1と同様の熱サイクル試験結果を示し、 かつ、 キュ リ一温度等の特性も実施例 1と同様であった。
[実施例 8 ]
上記熱処理を、 5 0重量%の 1と 5 0重量%の 1 203の混合粉末中に埋 め込み、 真空条件中で、 5 5 0 °Cとした以外は実施例 1と同様な処理を行った。 得られた基板は、 不透明な赤褐色 (基板における波長 3 6 5 n mの光透過率は 2 8 %)で、 体積抵抗率は 9 . 3 0 X 1 0 6 Ω · c mであった。
また、 この基板も、 実施例 1と同様の熱サイクル試験結果を示し、 かつ、 キュ リ一温度等の特性も実施例 1と同様であった。
[比較例 1 ]
上記熱処理を、 A 1と A 1 203の混合粉末中に基板を埋め込むことなく、 窒 素ガス雰囲気、 大気圧条件中、 1 0 0 0 °C、 4 0時間とした以外は実施例 1と同 様な処理を行った。
得られた基板は、 無色透明で黒化は見られず (基板における波長 3 6 5 n mの 光透過率は 7 1 %)、 かつ、 体積抵抗率は 1〜 2 X 1 0 1 5 Ω · c mであった。 処理済みの基板に対して、 室温から 2 0 0 °Cまで 1 0 °0 分で昇温し、 その後 1 o°c/分で室温まで冷却する熱サイクル試験を行ったところ、 基板表面で激し くスパークする現象が見られた。
[比較例 2〜 3 ]
上記熱処理を、 A 1と A 1 203の'混合粉末中に基板を埋め込むことなく、 窒 素ガス雰囲気、 大気圧条件中、 800°C (比較例 2)、 480°C (比較例 3)、 40 時間とした以外は実施例 1と同様な処理を行った。
得られた各基板は、 無色透明で黒化は見られず (基板における波長 365 nm の光透過率は 72 %)、 かつ、 体積抵抗率は 1〜2Χ 1015Ω · c mであった。 .また、 処理済みの各基板に対して、 室温から 200°Cまで 10°CZ分で昇温し 、 その後 10°CZ分で室温まで冷却する熱サイクル試験を行ったところ、 基板表 面で激しくスパークする現象が見られた。 産業の利用可能性
以上のように、 本発明に係るタンタル酸リチウム (LT) 基板は、 その体積抵 抗率が 106〜108Ω · cmの範囲に制御されるため、 焦電性は見られなくな り、 かつ、 無色透明から有色不透明化すると共に、 圧電材料としての特性も充分 に具備している。 従って、 表面弾性波素子等の素子製造プロセスで受ける温度変 化によって、 電荷が基板表面にチャージアップして生ずるスパークにより基板表 面に形成したパターンが破壊されたり、 基板の割れ等が発生したりすることがな く、 また、 フォトリソグラフ工程で基板內を透過した光が基板裏面で反射されて 表面に戻り、 形成パターンの解像度を悪ィヒさせてしまうことがないため、 表面弾 性波素子用の基板に用いるのに適している。

Claims

請 求 の 範 囲
1. 体積抵抗率が 106〜 108 Ω · c mの範囲に制御されたことを特徴とする タンタル酸リチウム基板。
2. A 1と A 1203の混合粉末に埋め込まれて、 350〜600°Cの保持温度 で熱処理された熱履歴を有することを特徴とする請求の範囲第 1項記載のタンタ ル酸リチウム基板。
3. チョコラスキー法で育成したタンタル酸リチウム結晶を用いてタンタル酸リ チウム基板を製造する方法において、
基板の状態に加工されたタンタル酸リチウム結晶を A 1と Al 203の混合粉 末に埋め込み、 350〜600°Cの保持温度で熱処理して、 体積抵抗率が 106 〜108Ω · cmの範囲に制御されたタンタル酸リチウム基板を製造することを 特徴とするタンタル酸リチウム基板の製造方法。
4. 上記熱処理を不活性ガスの減圧雰囲気下で行うことを特徴とする請求の範囲 第 3項記載のタンタル酸リチウム基板の製造方法。
PCT/JP2004/015194 2003-10-16 2004-10-07 タンタル酸リチウム基板およびその製造方法 WO2005038099A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/574,276 US7442250B2 (en) 2003-10-16 2004-10-07 Lithium tantalate substrate and method for producing same
KR1020067004711A KR101213411B1 (ko) 2003-10-16 2006-03-08 탄탈산 리튬 기판 및 그 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-356517 2003-10-16
JP2003356517A JP4063190B2 (ja) 2003-10-16 2003-10-16 タンタル酸リチウム基板の製造方法

Publications (1)

Publication Number Publication Date
WO2005038099A1 true WO2005038099A1 (ja) 2005-04-28

Family

ID=34463209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015194 WO2005038099A1 (ja) 2003-10-16 2004-10-07 タンタル酸リチウム基板およびその製造方法

Country Status (6)

Country Link
US (1) US7442250B2 (ja)
JP (1) JP4063190B2 (ja)
KR (1) KR101213411B1 (ja)
CN (1) CN100351436C (ja)
TW (1) TWI367965B (ja)
WO (1) WO2005038099A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6932957B2 (en) 2002-06-28 2005-08-23 Silicon Light Machines Corporation Method and apparatus for increasing bulk conductivity of a ferroelectric material
JP3938147B2 (ja) * 2003-04-08 2007-06-27 住友金属鉱山株式会社 タンタル酸リチウム基板およびその製造方法
JP4063191B2 (ja) * 2003-10-16 2008-03-19 住友金属鉱山株式会社 タンタル酸リチウム基板の製造方法
JP2007176715A (ja) * 2005-12-27 2007-07-12 Sumitomo Metal Mining Co Ltd タンタル酸リチウム基板の製造方法
WO2008092097A2 (en) * 2007-01-26 2008-07-31 Shasta Crystals, Inc. Multi-beam optical afterheater for laser heated pedstal growth
KR101148587B1 (ko) 2007-12-25 2012-05-23 가부시키가이샤 무라타 세이사쿠쇼 복합 압전 기판의 제조 방법
JP6238478B2 (ja) * 2016-03-16 2017-11-29 信越化学工業株式会社 タンタル酸リチウム単結晶基板の製造方法
CN106521633B (zh) * 2016-12-26 2019-12-13 福建晶安光电有限公司 一种钽酸锂晶体基片的黑化处理方法
CN106868595B (zh) * 2017-02-15 2019-03-15 宁夏钜晶源晶体科技有限公司 大厚度黑色钽酸锂晶片的制造方法
JP7319592B2 (ja) * 2020-01-22 2023-08-02 住友金属鉱山株式会社 タンタル酸リチウム基板の製造方法
CN112028600A (zh) * 2020-09-14 2020-12-04 吉林大学 一种制备顺电相LiTaO3的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573800A (en) * 1980-06-05 1982-01-09 Toshiba Corp Heat-treating method of single crystal
JPS579279A (en) * 1980-06-19 1982-01-18 Nissan Motor Co Ltd Motor controlling circuit for automotive
JPS6335499A (ja) * 1986-07-31 1988-02-16 Hitachi Metals Ltd リチウムタンタレ−ト単結晶の単一分域化方法
JPH0637350B2 (ja) * 1987-02-27 1994-05-18 日立金属株式会社 単分域タンタル酸リチウム単結晶の製造方法
JPH06191983A (ja) * 1992-12-25 1994-07-12 Ngk Insulators Ltd 酸化物単結晶の製造方法及びその装置
JP2004315316A (ja) * 2003-04-17 2004-11-11 Shin Etsu Chem Co Ltd 単一分極化されたタンタル酸リチウム結晶の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539279A (en) 1976-07-14 1978-01-27 Fujitsu Ltd Annealing method for metallic oxide single crystal
JPH0637350A (ja) 1992-07-15 1994-02-10 Nippon Telegr & Teleph Corp <Ntt> 光信号受信器
US6319430B1 (en) * 1997-07-25 2001-11-20 Crystal Technology, Inc. Preconditioned crystals of lithium niobate and lithium tantalate and method of preparing the same
DE69819971T2 (de) 1997-07-25 2004-09-02 Crystal Technology, Inc., Palo Alto Vorbehandelte Kristalle aus Lithiumniobat und Lithiumtantalat und das Verfahren zu ihrer Herstellung
JPH11236298A (ja) 1997-12-05 1999-08-31 Crystal Technol Inc フォトリソグラフィー法に使用するための結晶および電磁線吸収能を増大させるための該結晶の前状態調節法
US6786967B1 (en) * 1998-05-11 2004-09-07 California Institute Of Technology Ion exchange waveguides and methods of fabrication
US6567598B1 (en) * 1998-05-11 2003-05-20 California Institute Of Technology Titanium-indiffusion waveguides
JP2004328712A (ja) 2003-01-16 2004-11-18 Sumitomo Metal Mining Co Ltd タンタル酸リチウム基板およびその製造方法
JP3938147B2 (ja) 2003-04-08 2007-06-27 住友金属鉱山株式会社 タンタル酸リチウム基板およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573800A (en) * 1980-06-05 1982-01-09 Toshiba Corp Heat-treating method of single crystal
JPS579279A (en) * 1980-06-19 1982-01-18 Nissan Motor Co Ltd Motor controlling circuit for automotive
JPS6335499A (ja) * 1986-07-31 1988-02-16 Hitachi Metals Ltd リチウムタンタレ−ト単結晶の単一分域化方法
JPH0637350B2 (ja) * 1987-02-27 1994-05-18 日立金属株式会社 単分域タンタル酸リチウム単結晶の製造方法
JPH06191983A (ja) * 1992-12-25 1994-07-12 Ngk Insulators Ltd 酸化物単結晶の製造方法及びその装置
JP2004315316A (ja) * 2003-04-17 2004-11-11 Shin Etsu Chem Co Ltd 単一分極化されたタンタル酸リチウム結晶の製造方法

Also Published As

Publication number Publication date
TWI367965B (en) 2012-07-11
JP2005119906A (ja) 2005-05-12
US20070006797A1 (en) 2007-01-11
CN1856599A (zh) 2006-11-01
KR20060126925A (ko) 2006-12-11
TW200523408A (en) 2005-07-16
CN100351436C (zh) 2007-11-28
US7442250B2 (en) 2008-10-28
KR101213411B1 (ko) 2012-12-18
JP4063190B2 (ja) 2008-03-19

Similar Documents

Publication Publication Date Title
JP3938147B2 (ja) タンタル酸リチウム基板およびその製造方法
KR101213405B1 (ko) 탄탈산 리튬 기판 및 그 제조방법
JP4063191B2 (ja) タンタル酸リチウム基板の製造方法
KR101213411B1 (ko) 탄탈산 리튬 기판 및 그 제조방법
JP4492291B2 (ja) ニオブ酸リチウム基板の製造方法
JP4924818B2 (ja) タンタル酸リチウム基板およびその製造方法
JP2004328712A (ja) タンタル酸リチウム基板およびその製造方法
EP3366816B1 (en) Method for producing lithium niobate single crystal substrate
JP6721948B2 (ja) ニオブ酸リチウム単結晶基板とその製造方法
JP4924817B2 (ja) タンタル酸リチウム基板およびその製造方法
EP3312312A1 (en) Lithium niobate single crystal substrate and method for producing same
EP3312315A1 (en) Lithium niobate single crystal substrate and method for producing same
JP2021134097A (ja) タンタル酸リチウム基板の製造方法とタンタル酸リチウム基板
EP3312314A1 (en) Lithium niobate single crystal substrate and method for producing same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480027724.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067004711

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007006797

Country of ref document: US

Ref document number: 10574276

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 1020067004711

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10574276

Country of ref document: US