WO2005037730A1 - セメント用凝結促進剤 - Google Patents

セメント用凝結促進剤 Download PDF

Info

Publication number
WO2005037730A1
WO2005037730A1 PCT/JP2004/015539 JP2004015539W WO2005037730A1 WO 2005037730 A1 WO2005037730 A1 WO 2005037730A1 JP 2004015539 W JP2004015539 W JP 2004015539W WO 2005037730 A1 WO2005037730 A1 WO 2005037730A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement
calcium hydroxide
weight
setting accelerator
setting
Prior art date
Application number
PCT/JP2004/015539
Other languages
English (en)
French (fr)
Inventor
Hiroyoshi Kato
Shingo Hiranaka
Genji Taga
Original Assignee
Tokuyama Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corporation filed Critical Tokuyama Corporation
Priority to EP04792695A priority Critical patent/EP1690841A4/en
Priority to CA002542503A priority patent/CA2542503A1/en
Priority to US10/575,756 priority patent/US7662229B2/en
Publication of WO2005037730A1 publication Critical patent/WO2005037730A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • C04B22/062Oxides, Hydroxides of the alkali or alkaline-earth metals
    • C04B22/064Oxides, Hydroxides of the alkali or alkaline-earth metals of the alkaline-earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/10Accelerators; Activators
    • C04B2103/12Set accelerators

Definitions

  • the present invention relates to a novel setting accelerator for cement, a cement composition, and a method for producing the same. More specifically, the present invention relates to a setting accelerator for cement comprising a hydroxide having an average particle diameter of 3 m or less, and a cement composition containing the setting accelerator and a method for producing the same.
  • Typical setting accelerators that have been proposed include chlorides such as calcium chloride, sodium chloride and potassium chloride, and alkaline compounds such as sodium hydroxide and potassium hydroxide. The effect has been obtained.
  • an object of the present invention is to provide a setting accelerator which has a high setting promoting effect when added to a cement-based hydraulic composition and which does not adversely affect the quality after curing, particularly durability. is there.
  • Still another object of the present invention is to adjust calcium hydroxide to a specific particle size, which is one of the hydration products of cement and which has not been conventionally practically used as a setting accelerator.
  • An object of the present invention is to provide a setting accelerator for cement capable of exhibiting an accelerating effect.
  • Still another object of the present invention is to provide a cement composition containing the above-mentioned setting accelerator for cement.
  • Still another object of the present invention is to provide a method for producing the above composition for cement.
  • a setting accelerator for cement comprising calcium hydroxide particles having an average particle size of 3 m or less.
  • the above object of the present invention and the point U are This is achieved by a cement composition comprising 100 parts by weight of cement and 0.05 to 10 parts by weight of a water-soluble calcium hydroxide as the setting accelerator for cement of the present invention.
  • the average particle size of the calcium hydroxide particles constituting the setting accelerator is adjusted to 3 m or less.
  • the average particle size is adjusted to 2 m or less, more preferably 1 zm or less. That is, by setting the average particle size of the calcium hydroxide within the above range, the effect of accelerating the setting is drastically improved, and the calcium hydroxide can exhibit a practical function as a setting accelerator.
  • wet grinding which has a high grinding efficiency and enables a high level of powder frame.
  • a method of wet pulverization using a pulverizer such as a ball mill. Water is most suitable as the dispersion medium used in the wet milling, considering the reactivity and handling properties when added as a slurry to cement.
  • a dispersing agent is used at the time of pulverization in order to increase the pulverization efficiency and obtain a high-concentration slurry having a calcium hydroxide concentration of 20 to 60% by weight, which is easy to handle. Is preferred.
  • the dispersant can be used without particular limitation as long as it has an effect of dispersing calcium hydroxide particles.
  • a cement dispersant containing lignin sulfonate, melamine sulfonate, naphthylene sulfonate, polycarboxylate and the like as a main component is mentioned as a preferred example.
  • polycarboxylate is more preferable.
  • a compound having a polyethylene glycol chain in the compound is preferable because of having high dispersion performance.
  • Many of the above compounds are generally commercially available as cement dispersants, and can be easily obtained.
  • a suitable method for obtaining a fine calcium hydroxide there is a method in which gypsum is reacted with an alkali hydroxide in an aqueous solvent to obtain calcium hydroxide as a fine precipitate. According to such a reaction, calcium hydroxide particles having an average particle diameter of 3 m or less can be industrially and easily obtained.
  • the gypsum to be reacted with alkali hydroxide has an average particle size of about 0.1 to 500; am, preferably about 5 to about Lm.
  • gypsum is used.
  • the alkali hydroxide aqueous solution preferably has a concentration of 0.1 to 50% by weight, particularly 5 to 15% by weight in consideration of the reactivity with gypsum.
  • An aqueous alkali hydroxide solution having such a concentration can be advantageously obtained by diluting an aqueous solution of alkaline hydroxide having a concentration of about 30 to 48% by weight with water.
  • alkali hydroxide for example, sodium hydroxide and potassium hydroxide are typical, and particularly, sodium hydroxide is preferable.
  • a method of reacting the gypsum and the aluminum hydroxide in water specifically, a method of mixing in a reaction tank with a stirrer, a method of mixing using a mixer in piping, a high-pressure plunger
  • a pressurized nozzle type stirrer of a type in which a processing fluid is jetted from a nozzle by a pump and further hit against a fixed plate is exemplified.
  • the ratio of gypsum to alkali hydroxide is preferably 1.0 to 1.5 mol parts, more preferably 1.0 to 1.1 mol parts, per mol part of gypsum. is there.
  • the temperature at the time of contact is preferably 10 to 40 ° C. Further, the pressure is preferably normal pressure.
  • the above reaction time depends on the concentration of alkali metal oxide and the particle size of the pulverized product, but is preferably 5 to 60 minutes. In this reaction, a precipitate of calcium hydroxide is formed in the same reaction solution.
  • the method of recovering the generated calcium hydroxide precipitates is to separate the liquid phase from the liquid phase, for example, by using a tally screen, a drum filter, a disc filter, a nutche filter, a filter press, a screw press, a tube press, etc. of A centrifuge such as a filter, a screen decan, and a screen decan is preferably used.
  • the obtained precipitate of calcium hydroxide is preferably sufficiently washed with water.
  • a method for obtaining a fine precipitate of calcium hydroxide in addition to the above method, a method of reacting calcium chloride with aluminum hydroxide in an aqueous medium can be used.
  • the calcium hydroxide particles constituting the setting accelerator of the present invention are preferably used in the form of a slurry using water as a dispersion medium in order to realize a fine particle size. That is, the calcium hydroxide particles obtained by the above-described method may cause aggregation of the particles when dried, and the average particle diameter may exceed 3 / m. Therefore, it is preferable that the slurry obtained by the wet milling or the slurry obtained by the above reaction is used as a setting accelerator without removing and drying water from the slurry.
  • the calcium hydroxide when used in the form of the slurry, it is desirable to add the dispersant in order to reduce the viscosity of the slurry.
  • the setting accelerator of the present invention is added to cement to form a cement composition.
  • the content of the cement composition is such that calcium hydroxide is added in an amount of 0.05 wt.
  • the amount is adjusted to be about 10 parts by weight, preferably 0.1 to 6 parts by weight. If the amount of calcium hydroxide is less than 0.05 parts by weight, a sufficient coagulation promoting effect cannot be obtained. Is not preferred.
  • the method of adding the setting accelerator is not particularly limited, but a method of adding the slurry in the form of the slurry to cement is preferable.
  • cement is kneaded with water to prepare a cement-based hydraulic composition such as cement paste, mortar, and concrete.
  • a method of adding a slurry later to the product and mixing the slurry may be used.
  • the cement can be used without particular limitation as long as it is generally used.
  • JISR 5210 Portland cement stipulated in JISR 5210 “Pocletland cement”
  • blast furnace cement stipulated in JISR 512 1 “Blast furnace cement”
  • JISR 5212 Sintered in silica cement Includes silica cement, fly ash cement, etc. specified in JISR 5213 “Fly ash cement”.
  • Portland cement is more preferably used.
  • the cement preferably has a Blaine value of 2,000 to 5,000 cm 2 / g.
  • the Portland cement, 3 C a O 'S i 0 2 content of 5 0 wt% or more, more it preferably is of 6 0% by weight or more, the initial ages not only setting accelerating effect Is preferable because high strength can be exhibited.
  • the three upper limit of the C a O ⁇ S i 0 2 content, 7 5% by weight is typical.
  • early-strength Portland cement can be suitably used.
  • the amount of the aluminum compound is set at 100 parts by weight of cement. It is desirable to adjust to 5 parts by weight or less.
  • various aluminum compounds such as calcium aluminate contained in the composition of the cement are not included in the abundance of the aluminum compound referred to herein.
  • the setting accelerator of the present invention is a cement dispersing agent, an air volume adjusting agent, a fire retardant, a separation reducing agent, a thickening agent, a shrinkage reducing agent, an expanding material, and an average particle size within a range that does not significantly impair the effects of the present invention. It may be used together with known admixtures such as calcium hydroxide exceeding 3 m, setting accelerator, gypsum, blast furnace slag, fly ash, silica fume, limestone fine powder and mineral fine powder.
  • the setting accelerator for cement of the present invention has an excellent setting accelerating effect and does not contain any component that adversely affects the durability of the cured cement body after hardening. Therefore, it can be used for general purpose as a setting accelerator for cement-based hydraulic compositions such as cement paste, mortar and concrete, without limiting its use, and its industrial value is extremely high .
  • ethanol as the dispersion medium, measure the particle size distribution of calcium hydroxide using a laser-diffraction particle size distribution analyzer, calculate the volume average diameter from the measurement results, and use this as the average particle size. .
  • the setting time of the cement paste to which the setting accelerator was added was measured by the method specified in JIS R5201 “Physical test method of cement”. Calcium hydroxide was added to the cement.
  • the cement paste was kneaded with cement and ion-exchanged water so that the concentration became 1% by weight, and a cement paste was measured.
  • As the cement a commercially available ordinary Portland cement was used. The results are shown in Table 1.
  • the setting time of the cement paste was measured in the same manner as in Example 1 except that calcium hydroxide was not added. The results are shown in Table 1.
  • a cement paste was obtained in the same manner as in Example 1 except that calcium hydroxide having an average particle size of 62.0, 23.5, and 6.5 warpage and 3.8 m was used. Was measured. Table 1 shows the results. table 1
  • Calcium hydroxide particles with an average particle size of 0.5 m obtained by wet milling using water as a dispersion medium, are in the form of a slurry, and the content of cement is 2.0 and 4.0% by weight, respectively.
  • a semest was obtained under the same conditions as in Example 1 except that it was added to the cement, and its setting time was measured. Table 2 shows the results. Table 2
  • Hydroxidation power particles having an average particle size of 0.2 m, obtained by wet milling using water as a dispersion medium, and a polycarboxylic acid-based cement dispersant were added so as to be 9.0% by weight of calcium hydroxide. Knead with cement and mineral water so that the slurry contains 0.9, 1.8, and 3.2% by weight of cement. One strike was obtained and the setting time was measured. As the cement, a commercially available ordinary Portland cement was used. Table 3 shows the results.
  • Hydroxidizing power particles of 0.5 / m average particle diameter obtained by wet milling using water as a dispersion medium are converted into a slurry so that the cement content is 3.1% by weight.
  • the mixture was kneaded with ion-exchanged water to obtain a cement paste, and its setting time was measured.
  • the cement used was low-heat Portland cement (2 CaO-Si 2 content 62% by weight). Table 4 shows the results.
  • the cement was a commercially available blast furnace cement type B, and the setting time of the cement paste was measured in the same manner as in Example 9 under the other conditions. Table 5 shows the results.
  • Example 12 164 318. 1 9.9 831 990 0.82 Comparative Example 8 50 164 328 834 990 0.82 Table 7
  • Example 9 The same test as in Example 13 was performed except that the amount of the calcium hydroxide particles added was changed to 7.9 parts by weight. Table 9 shows the results.
  • Example 9 shows the results.
  • Example 13 To 100 parts by weight of commercially available ordinary Portland cement, 5.7 parts by weight of calcium hydroxide particles having an average particle size of 0.18 m was added, and water, cement, calcium hydroxide, fine aggregate, coarse The same test as in Example 13 was carried out by preparing a concrete composition containing an aggregate and a commercially available polycarboxylic acid-based high-performance AE water reducing agent in the proportions shown in Table 8. Table 9 shows the results. Comparative Example 9
  • Unit Swear (kg / m 3 )
  • Example 13 152 380 20 747 1080 2.28
  • Example 14 40 152 380 30 742 1073 2.47
  • Example 1 5 152 380 20 747 1080 2.28
  • Example 16 35.7 150 420 24 735 1063 2.94 Comparison
  • Example 9 1 52 380 757 1094 1.90
  • Example 13 42. 9 64. 2 71.9 Example 14 45. 7 66. 8 73.8 Example 15 41. 0 62. 0 70. 2
  • Example 16 33. 5 59. 7 66.8 Comparative Example 9 26.8 53.1 60.7 Comparative Example 10 29.3 55.9 62.4

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

平均粒径3μm以下に調整された水酸化カルシウム粒子からなるセメント用凝結促進剤及びこの凝結促進剤をセメント100重量部に対して0.05~10重量部含有するセメント組成物が提供される。上記水酸化力ルシウム粒子として、水酸化カルシウムの湿式粉砕物や、カルシウム塩と水酸化アルカリとの反応によって生成する微細沈殿物を使用することができる。この凝結促進剤は高い凝結促進効果を示すとともに、セメントの硬化後の品質、特に耐久性に悪影響を及ぼさない。

Description

セメント用凝結促進剤
技術分野
本発明は、 新規なセメント用凝結促進剤、 セメント組成物およびその製造法に 関するものである。 さらに詳しくは、 平均粒径 3 m以下に調整された水酸化力 ルシゥムからなるセメント用凝結促進剤、 該凝結促進剤を含有するセメント組成 物およびその製造法に関するものである。
明 田
背景技術
モルタル、 コンクリート等のセメント系水硬性組成物を使用する工事において は、 施工性の確保、 ェ期の短縮、 養生設備の簡素化等の観点から、 凝結硬化時間 の制御が求められている。 なかでも、 ェ期短縮、 養生設備の簡素化、 寒冷地にお ける施工性の確保等を目的とした凝結促進効果に対する要求が高まつており、 高 い凝結促進効果を有する凝結促進剤の開発が期待されている。
従来から提案されている代表的な凝結促進剤としては、 塩化カルシウム、 塩化 ナトリウム、 塩化カリウム等の塩化物、 水酸ィ匕ナトリウム、 水酸化カリウム等の アル力リ化合物が挙げられ、 高い凝結促進効果が得られている。
ところが、 これらの化合物を使用すると、 硬ィヒ体中の塩化物量あるいはアル力 リ量が増加して鉄筋腐食あるいはアル力リ骨材反応といつた硬化体の耐久性に悪 影響を及ぼす現象の発生する可能性が高まるため、 硬化体の耐久性確保の観点か らその用途が極めて限定され、 実用例は非常に少ないのが現状である。
現在まで、 上記の化合物以外に有用な凝結促進剤は実用化されておらず、 高い 凝結促進効果を有するとともに、 硬化後の品質、 特に耐久性に悪影響を及ぼさな い凝結促進剤の開発が望まれている。
一方、 セメント系水硬性組成物に添加した場合、 上記問題を生じない化合物と して、 水酸ィ匕カルシウムが挙げられる。
窯業協会誌、 第 9 3巻 4号、 4 5〜5 2頁、 1 9 8 5年には、 セメントに水酸 化カルシウムを 1%添加し、 テストミルで粉枠してブレーン比表面積 3, 200 cm2Zgのセメントを作成したこと、このセスントをェアジエツトシーブにより 5つの粒群に分け、 グリセリンーアルコール法で各粒群の遊離 C a 0量を定量し たこと、 その結果粒径 10 m以下の粒群に C aOが約 0. 5%存在したことそ してこのセメントの i n i t i a 1 s e t t i ng t ime および f i n a 1 s e t t ing t imeが、 水酸化カルシウムを添加しない場合より 短縮されたことが開示されている。
しかしながら、 上記文献には、 水酸化カルシウムの粒度とセメントの凝結時間 との関係は何ら開示されていず、 上記の如く水酸化カルシウムが 10 //m近辺の 粒径においてセメントの凝結を促進することが示されているにすぎない。 発明の開示
従って、 本発明の目的は、 セメント系水硬性組成物に添加した際に、 高い凝結 促進効果を有するとともに、 硬化後の品質、 特に耐久性に悪影響を及ぼさない凝 結促進剤を提供することにある。
本発明のさらに他の目的は、 セメントの水和生成物の 1種であり、 従来、 凝結 促進剤として実用的に適用されることのなかつた水酸化カルシウムを特定の粒度 に調節して高い凝結促進効果の発現を可能としたセメント用凝結促進剤を提供す ることにある。
本発明のさらに他の目的は、 上記セメン卜用凝結促進剤を含有するセメント 組成物を提供することにある。
本発明のさらに他の目的は、 上記セメント用組成物の製造法を提供することに ある。
本発明のさらに他の目的および利点は以下の説明から明らかになろう。
本発明によれば、 本発明の上記目的および禾【』点は、 第 1に、
平均粒径 3 m以下の水酸化カルシウム粒子よりなることを特徴とするセメント 用凝結促進剤によつて達成される。
本発明によれば、 本発明の上記目的および禾 U点は、 第 2に、 セメント 1 0 0重量部および本発明の上記セメント用凝結促進剤である水酸化力 ルシゥムを 0. 0 5〜1 0重量部、 を含有することを特徴とするセメント組成物 によって達成される。
本発明によれば、 本発明の上記目的および利点は、 第 3に、
セメントに対して平均粒径 3 m以下の水酸化カルシウム粒子の水スラリーを添 加することを特徵とするセメント組成物の製造方法によって達成される。 発明の好ましい実施の形態
以下、 本発明をさらに詳細に説明する。
本発明において、 凝結促進剤を構成する水酸化カルシウム粒子は、 平均粒径が 3 m以下に調整されることが重要である。 かかる平均粒径は、 より好適には 2 m以下に、 更に好ましくは 1 zm以下に調整される。 即ち、 水酸化カルシウム は、 平均粒子径を上記範囲内とすることによってその凝結促進効果が飛躍的に向 上し、 凝結促進剤として実用的な機能を発揮することができる。
本発明において、 平均粒径 3 z/mの水酸化カルシウム粒子を得るには、 粉碎効 率が高く、 高度な粉枠が可能な湿式粉砕が推奨される。 具体的には、 ボールミル 等に代表される粉砕機を使用して湿式粉砕する方法が挙げられる。 上記湿式粉碎 に使用する分散媒としてはセメントにスラリ一で添加した場合の反応性、 取扱い 性を考慮すれば、 水が最も適当である。
また、 上記粉碎において、 粉碎効率を高めると共に、 取扱い性が良好な、 水酸 化カルシウムの濃度が 2 0〜6 0重量%の高濃度のスラリ一を得るために、 粉碎 時に分散剤を使用することが好ましい。
上記分散剤としては、 水酸化カルシウム粒子を分散する効果を有するものであ れば、特に制限無く使用することが出来る。具体的には、 リグニンスルホン酸塩、 メラミンスルホン酸塩、 ナフ夕レンスルホン酸塩、 ポリカルボン酸塩等を主成分 とするセメント分散剤を好適な例として挙げられる。 中でも、 ポリカルボン酸塩 がより好適である。特に、化合物中にポリエチレングリコール鎖を有するものは、 高い分散性能を有するため好ましい。 上記化合物は、 一般にセメント分散剤として市販されているものも多く、 容易 に入手することができる。
また、 微細な水酸ィ匕カルシウムを得るために好適な方法として、 水溶媒中で石 膏を水酸化アルカリと反応せしめ、 水酸化カルシウムを微細沈殿として得る方法 が挙げられる。 かかる反応によれば、 平均粒子径 3 m以下の水酸化カルシウム 粒子を工業的に且つ容易に得ることが可能である。
上記方法を更に具体的に説明すれば、 水酸化アルカリと反応させる石膏として は、 平均粒径 0 . 1〜 5 0 0; am程度、 好ましく【ま 5〜: L 0 0 m程度に調整さ れた石膏を使用することが好ましい。 また、 水酸化アルカリ水溶液としては、 石 膏との反応性等を勘案すると、 0. 1〜5 0重量%、 特に 5〜1 5重量%の濃度 を有するものが好ましい。 このような濃度の水酸化アルカリ水溶液は、 3 0〜4 8重量%程度の濃度の水酸化アル力リ水溶液を水によつて希釈することによって 有利に得ることができる。 上記水酸化アルカリとしては、 例えば水酸化ナトリウ ム、 水酸化カリウムが代表的であるが、 特に、 水酸化ナトリウムが好ましい。 前記石膏と水酸化アル力リとを水中で反応させる方法としては、 具体的には、 攪拌機付きの反応槽内で混合する方法、配管内で混合機を使用して混合する方法、 高圧プランジャーポンプで処理流体をノズルから噴射させ、 さらに固定板にたた きつける方式の加圧ノズル式攪拌機等が挙げられる。
また、 石膏と水酸化アルカリとの割合は、 石膏 1モル部に対して、 好ましくは 水酸化アルカリが 1 . 0〜1 . 5モル部、 より好ましくは、 1 . 0〜1 . 1モル 部である。 また、 接触時の温度は、 1 0〜4 0 °C力好適である。 更に、 圧力は、 常圧が好ましい。
上記反応時間は、 ΤΚ酸化アルカリの濃度、 粉砕物の粒子径にもよるが、 5〜6 0分が好適である。 この反応では、 同一の反応液中において水酸化カルシウムの 沈殿物を生成する。
生成した水酸化カルシウムの沈殿物を回収する方法としては、 液相部との分離 に、 例えば口一タリースクリーン、 ドラムフィルター、 ディスクフィルター、 ヌ ッチェフィルター、 フィルタ一プレス、 スクリュープレス、 チューブプレス等の ろ過器、 スクリユーデカン夕一、 スクリーンデカン夕一等遠心分離機などが好ま しく使用される。 得られた水酸化カルシウムの沈殿物は十分水洗を行なうことが 好ましい。
水酸ィヒカルシウムの微細沈殿物を得る方法としては、 上記の方法以外に、 水溶 媒中で塩化カルシウムと水酸化アル力リとを反応せしめる方法等が使用できる。 本発明の凝結促進剤を構成する水酸化カルシウム粒子は、 その微細な粒径を実 現するため、水を分散媒としたスラリ一の形態で使用することが好ましい。即ち、 前述の方法で得られた水酸ィ匕カルシウム粒子は、 これを乾燥すると粒子の凝集が 起こり、 平均粒径が 3 / mを超えるおそれがある。 従って、 前記湿式粉碎して得 られたスラリー、 或いは上記反応によって得られたスラリーより水を除去して乾 燥することなく、 そのまま凝結促進剤として使用する態様が好適である。
尚、 本発明において、 前記水酸化カルシウムを上記スラリーの形態で使用する 場合、 スラリーの粘性を低減するためにも、 前記分散剤を添加することが望まし い。
本発明の凝結促進剤は、 セメントに添加してセメント組成物を構成するが、 そ のセメント組成物中の含有量は、 セメント 1 0 0重量部に対して水酸化カルシゥ ムが 0 . 0 5〜1 0重量部、好適には 0 . 1〜6重量部となる割合に調整される。 水酸化カルシウムの添加量が 0 . 0 5重量部より少ないと、 十分な凝結促進効果 が得られず、 また、 1 0重量部を超えると、 凝結促進効果が頭打ちとなるため、 経済性の観点から好ましくない。
本発明において、 凝結促進剤の添加方法は特に制限されないものの、 前記スラ リーの形態でセメントに添加する方法が好ましい。 具体的には、 セメントを水で 混練してセメントペースト、 モルタル及びコンクリートに代表されるセメント系 水硬性組成物を調製する際にスラリ一で添加する方法、 すでに調整されたセメン ト系水硬性組成物に後からスラリ一を添加して混鍊する方法等が挙げられる。 上記スラリ一で添加する製造方法においてま、 予め分散剤を添加することによ り粘性を低減したスラリ一を使用することにより、 より容易にセメントに添加す ることが可能である。 本発明において、 セメントは、 一般的に使用されるものであれば、 特に制限な く使用できる。 例えば、 J I S R 5 2 1 0 「ポクレトランドセメント」 に規定 されているポルトランドセメント、 J I S R 5 2 1 1 「高炉セメント」 に規 定されている高炉セメント、 J I S R 5 2 1 2 「シリカセメント」 に規定さ れているシリカセメント、 J I S R 5 2 1 3 「フライアッシュセメント」 に 規定されているフライアッシュセメント等が使用で含る。
中でも、 ポルトランドセメントがより好適に使用される。 また、 上記セメント は、ブレーン値が 2 , 0 0 0〜5, 0 0 0 c m2 / gのものが好適に使用される。 更に、 上記ポルトランドセメントは、 3 C a O ' S i 02含有量が 5 0重量% 以上、 より好適には 6 0重量%以上のものであることが、 凝結促進効果のみなら ず初期材齢において高い強度発現性を発揮することが可能となるため好ましい。 また、 3 C a O · S i 02含有量の上限は、 7 5重量%が一般的である。
一般には、 上記 3 C a O · S i 02含有量が 5 0重量%以上、 6 0重量%未満 の場合には普通ポルトランドセメントが、 3 C a O - S 1 02含有量が6 0重量% 以上の場合には早強ポルトランドセメントが好適に使用できる。
本発明の凝結促進剤を、 多量のカルシウムアルミネート類等のアルミニウム化 合物と併用すると、 凝結促進効果を阻害される恐れ Sあるため、 該アルミニウム 化合物の存在量は、 セメント 1 0 0重量部に対して 5重量部以下に調整されるこ とが望ましい。 但し、 セメントの組成として含有されているカルシウムアルミネ —ト等の各種アルミニウム化合物は、 ここでいうアルミニウム化合物の存在量に は含まれない。
本発明の凝結促進剤は、 本発明の効果を著しく阻害しない範囲で、 セメント分 散剤、 空気量調製剤、 防鲭剤、 分離低減剤、 増粘剤、 収縮低減剤、 膨張材、 平均 粒径 3 mを超える水酸化カルシウム、 凝結促進剤、 石膏、 高炉スラグ、 フライ アッシュ、 シリカフューム、 石灰石微粉末、 鉱物質微粉末等の公知の混和材料と 同時に使用しても構わない。
以上のとおり、 本発明のセメント用凝結促進剤は、 優れた凝結促進効果を有す ると共に、 硬化後のセメント硬化体の耐久性に悪影響を与える成分を含まないた め、 用途を限定することなく、 セメントぺ一スト、 モルタル及びコンクリート等 のセメント系水硬性組成物の凝結促進剤として汎用的に使用可能なものであり、 その工業的価値は極めて高いものである。 実施例
以下、 実施例により本発明の構成及び効果を説明するが、 本発明はこれらの実 施例に限定されるものではない。
( 1 ) 平均粒径の評価方法
分散媒体としてエタノ一ルを使用し、 レ一ザ一回折式粒度分布測定器を用いて 水酸化カルシウムの粒度分布を測定し、 測定結果から体積平均径を算出し、 これ を平均粒径とした。
( 2 ) 凝結時間の評価方法
凝結促進剤を添加したセメントペース卜の凝結時間を、 J I S R 5 2 0 1 「セメントの物理試験方法」 に規定された方法により測定した。 水酸化カルシゥ ムはセメントの内割添加とした。
実施例 1〜 3
水を分散媒とした湿式粉碎によって得られた、平均粒径 2 . 5、 1 . 3及び 0 . 5 mの水酸化カルシウム粒子のそれぞれを、 スラリーの形態で、 それぞれセメ ントの内割で 3 . 1重量%となるように、 セメント及びイオン交換水と練り混ぜ てセメントペーストを得、 その凝結時間を測定した。 尚、 セメントは市販の普通 ポルトランドセメントを使用した。 結果を表 1に示す。
比較例 1
水酸化カルシウムを添加せず、 他の条件は実施例 1と同様にセメントペースト の凝結時間を測定した。 結果を表 1に示す。
比較例 2〜5
平均粒径 6 2 . 0、 2 3 . 5、 6. 5反び 3 . 8 mの水酸化カルシウムを使 用し、 他の条件は実施例 1と同様にしてセメントペーストを得、 その凝結時間を 測定した。 結果を表 1に示す。 表 1
Figure imgf000009_0001
実施例 4〜 5
水を分散媒とした湿式粉碎によって得られた平均粒径 0. 5 mの水酸化カル シゥム粒子をスラリーの形態で、 セメントの内割でそれぞれ 2. 0及び 4. 0重 量%となるようにセメントに対して添加した以外は実施例 1と同様の条件でセメ ストを得、 その凝結時間を測定した。 結果を表 2に示す。 表 2
Figure imgf000009_0002
実施例 6〜 8
水を分散媒とした湿式粉碎によって得られた、 平均粒径 0. 2 mの水酸化力 ルシゥム粒子を、 ポリカルボン酸系セメント分散剤を水酸化カルシウムの 9. 0 重量%となるよう添加したスラリーの形態で、 セメントの内割で 0. 9、 1. 8、 3. 2重量%となるように、 セメント及びィ才ン交換水と練り混ぜてセメントべ 一ストを得、 その凝結時間を測定した。 尚、 セメントは市販の普通ポルトランド セメントを使用した。 結果を表 3に示す。
表 3
Figure imgf000010_0001
実施例 9
水を分散媒とした湿式粉碎によって得られた、 平均粒径 0 . 5 / mの水酸化力 ルシゥム粒子を、 スラリーの形態で、 セメントの内割で 3 . 1重量%となるよう に、 セメント及びイオン交換水と練り混ぜてセメントペーストを得、 その凝結時 間を測定した。 尚、 セメントは低熱ポルトランドセメント (2 C a O - S i〇2 含有量 6 2重量%) を使用した。 結果を表 4に示す。
比較例 6
水酸化カルシウムを添加せず、 他の条件は実施例 9と同様にセメントペースト の凝結時間を測定した。 結果を表 4に示す。 表 4
Figure imgf000010_0002
実施例 1 0
セメントを市販の高炉セメント B種とし、 他の条件は実施例 9と同様にセメン トペーストの凝結時間を測定した。 結果を表 5に示す。
比較例 7
水酸化カルシウムを添加せず、 他の条件は実施例 9と同様にセメントペースト の凝結時間を測定した。 結果を表 5に示す。 表 5
Figure imgf000011_0001
実施例 11〜; 12
市販の普通ポル卜ランドセメント 100重量部に対して、 水を分散媒とした湿 式粉碎によって得られた平均粒径 0. 4 zmの水酸化カルシウム粒子を、 スラリ 一の形態で 1. 0及び 3. 1重量部添加し、 水、 セメント、 水酸化カルシウム、 細骨材、 粗骨材及び A E減水剤標準形を表 6に示す割合で配合したコンクリート 組成物の凝結時間を測定した。 コンクリートの配合条件は、 スランプ: 18. 0 ±2. 5 cm、 空気量: 4. 5±1. 5 %とした。 凝結時間は J I S A l l 47 「コンクリー卜の凝結時間試験方法」 により測定した。 試験温度は 5 °Cとし た。 結果を表 7に示す。
比較例 8
水酸化カルシウムを添加せず、 他の条件は実施例 11と同様にコンクリートの 凝結時間及び圧縮強度を測定した。 配合を表 6に、 結果を表 7に示す。 表 6
単位量 (kg/m3)
水粉
水酸化
体比 AE 水 セメント カルシ 細骨材 粗骨材
(%) 減水剤 ゥム
実施例 11 164 324. 7 3. 3 833 990 0. 82
50
実施例 12 164 318. 1 9. 9 831 990 0. 82 比較例 8 50 164 328 834 990 0. 82 表 7
Figure imgf000012_0001
実施例 1 3
市販の早強ポルトランドセメント 1 00重量部に対して、 平均粒径 0. 45 mの水酸化カルシウム粒子を 5. 3重量部添加し、 水、 セメント、 水酸化カルシ ゥム粒子、 細骨材、 粗骨材及び市販のポリカルボン酸系高性能 AE減水剤を表 8 に示す割合で配合したコンクリート組成物の圧縮強度を測定した。 コンクリート の配合条件は、 スランプ: 8. 0± 2. 5 cm、 空気量: 3. 0± 1. 0%とし た。 圧縮強度は J I S A 1 1 08 「コンクリートの圧縮強度試験方法」 によ り測定した。 試験温度 2 orとした。 結果を表 9に示す。
実施例 14
水酸化カルシウム粒子の添加量を 7. 9重量部とした以外は、 実施例 1 3と同 様な試験を実施した。 結果を表 9に示す。
実施例 1 5
水酸化カルシウム粒子の平均粒径を 1. 6 mとした以外は、 実施例 1 3と同 様な試験を実施した。 結果を表 9に示す。
実施例 1 6
市販の普通ポルトランドセメント 1 00重量部に対して、 平均粒径 0. 1 8 mの水酸化カルシウム粒子を 5. 7重量部添加し、 水、 セメント、 水酸化カルシ ゥム、 細骨材、 粗骨材及び市販のポリカルボン酸系高性能 AE減水剤を表 8に示 す割合で配合したコンクリート組成物を調整し、 実施例 1 3と同様な試験を実施 した。 結果を表 9に示す。 比較例 9
市販の早強ポルトランドセメントを使用し、 水、 セメント、 細骨材、 粗骨材及 び市販のポリカルボン酸系高性能 AE減水剤を表 8に示す割合で配合したコンク リート組成物を調整し、実施例 1 3と同様な試験を実施した。結果を表 9に示す。 比較例 1 0
市販の早強ポルトランドセメント 1 0 0重量部に対して、 平均粒径 1 2. 0 mの水酸化カルシウム粒子を 5. 3重量部添加し、 水、 セメント、 水酸化カルシ ゥム、 細骨材、 粗骨材及び市販のポリカルボン酸系高性能 AE減水剤を表 8に示 す割合で配合したコンクリ一ト組成物を調整し、 実施例 1 3と同様な試験を実施 した。 結果を表 9に示す。
表 8
単位灑 : (kg/m3)
水セメン 水酸化
セメ 高性能 AE ト比(%) 水 カルシ 細骨材 粗骨材
ン卜 減水剤 ゥム
実施例 13 152 380 20 747 1080 2. 28 実施例 14 40 152 380 30 742 1073 2. 47 実施例 1 5 152 380 20 747 1080 2. 28 実施例 16 35. 7 150 420 24 735 1063 2. 94 比較例 9 1 52 380 757 1094 1. 90
40
比較例 10 152 380 20 747 1080 2. 09 表 9
圧縮強度 (N /画2)
材齢
1曰 3曰 7曰 実施例 13 42. 9 64. 2 71. 9 実施例 14 45. 7 66. 8 73. 8 実施例 15 41. 0 62. 0 70. 2 実施例 16 33. 5 59. 7 66. 8 比較例 9 26. 8 53. 1 60. 7 比較例 10 29. 3 55. 9 62. 4

Claims

請求の範囲
1. 平均粒径 3 m以下の水酸化カルシウム粒子よりなることを特徴とするセ メント用凝結促進剤。
2. スラリ一の形態にある請求項 1記載のセメント用凝結促進剤。
3. セメント 100重量部および請求項 1又は 2に記載のセメント用凝結促進剤 である水酸化カルシウムを 0. 05〜10重量部、 を含有することを特徴とす るセメント組成物。
4. セメントに対して平均粒径 3 m以下の水酸化カルシウム粒子の水スラリー を添加することを特徴とするセメント組成物の製造方法。
5. 平均粒径 3 zm以下の水酸化カルシウム粒子のセメント用凝結促進剤として の使用。
PCT/JP2004/015539 2003-10-16 2004-10-14 セメント用凝結促進剤 WO2005037730A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04792695A EP1690841A4 (en) 2003-10-16 2004-10-14 CEMENT TAKE ACCELERATOR
CA002542503A CA2542503A1 (en) 2003-10-16 2004-10-14 Cement setting accelerator
US10/575,756 US7662229B2 (en) 2003-10-16 2004-10-14 Cement setting accelerator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-356885 2003-10-16
JP2003356885 2003-10-16
JP2004138284A JP2005139060A (ja) 2003-10-16 2004-05-07 セメント用凝結促進剤
JP2004-138284 2004-05-07

Publications (1)

Publication Number Publication Date
WO2005037730A1 true WO2005037730A1 (ja) 2005-04-28

Family

ID=34467766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015539 WO2005037730A1 (ja) 2003-10-16 2004-10-14 セメント用凝結促進剤

Country Status (7)

Country Link
US (1) US7662229B2 (ja)
EP (1) EP1690841A4 (ja)
JP (1) JP2005139060A (ja)
KR (1) KR20060104990A (ja)
CA (1) CA2542503A1 (ja)
RU (1) RU2006116570A (ja)
WO (1) WO2005037730A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006111225A1 (de) * 2005-04-19 2006-10-26 Construction Research & Technology Gmbh Hydraulisches bindemittel

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4969813B2 (ja) * 2005-07-27 2012-07-04 東曹産業株式会社 超微粒子水酸化カルシウムスラリー
JP2007326762A (ja) * 2006-06-09 2007-12-20 Tokuyama Corp セメント硬化体の製造方法
EP2066595B1 (de) * 2006-09-20 2014-11-19 HeidelbergCement AG Bindemittel enthaltend portlandzement und kalkhydrat
JP4840384B2 (ja) * 2008-03-14 2011-12-21 宇部興産株式会社 水硬性組成物及び水硬性モルタル並びにコンクリート床構造体
US9409820B2 (en) * 2010-04-21 2016-08-09 Basf Se Use of CSH suspensions in well cementing
MX353983B (es) * 2010-08-09 2017-08-31 Davila O´´Farril Tech S A De C V Una composicion espumada o no, estable, a base de anhidrita, cemento portland, cargas ligeras y/o pesadas, aditivos activadores, aditivos reguladores y aditivos espesantes, para recubrir enlucir y aislar muros, lozas y techos, asi como para fabricar elementos constructivos aislantes, colar sistemas constructivos de ferro-cemento ligeros y aislantes, aislar tuberias, ductos, rellenar espacios, estabilizar suelos y fabricar suelo cemento, para la industria de la construccion.
JP5987378B2 (ja) * 2012-03-15 2016-09-07 宇部興産株式会社 モルタル
JP5895625B2 (ja) * 2012-03-15 2016-03-30 宇部興産株式会社 モルタルの施工方法
JP6026799B2 (ja) * 2012-07-10 2016-11-16 デンカ株式会社 セメント組成物、及びそれを用いたセメントモルタル
BE1021522B1 (fr) * 2012-09-12 2015-12-07 S.A. Lhoist Recherche Et Developpement Composition de lait de chaux de grande finesse
AU2013344816B2 (en) * 2012-11-13 2016-09-22 Cement Australia Pty Limited Geopolymer cement
JP2014205601A (ja) * 2013-04-16 2014-10-30 株式会社トクヤマ 水硬性組成物
JP6359322B2 (ja) * 2013-09-06 2018-07-18 株式会社トクヤマ 水硬性組成物
RU2740696C2 (ru) * 2016-03-22 2021-01-19 Сикэ Текнолоджи Аг Композиция на основе оксида кальция
JP6760642B2 (ja) * 2016-06-29 2020-09-23 株式会社エイケン 土固化モルタル施工方法
KR20180009260A (ko) * 2016-07-18 2018-01-26 이지스 주식회사 칼슘 화합물을 포함하는 시멘트 콘크리트용 조강혼합물 및 이의 제조방법
KR20180009261A (ko) * 2016-07-18 2018-01-26 이지스 주식회사 슬래그를 포함하는 시멘트 콘크리트용 조강혼합물 및 이의 제조방법
US11814320B2 (en) * 2016-11-09 2023-11-14 Sika Technology Ag Hardening accelerator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001233661A (ja) * 2000-02-25 2001-08-28 Denki Kagaku Kogyo Kk ドライセメントコンクリート、吹付材料及びそれを用いた吹付工法
JP2003246657A (ja) * 2002-02-26 2003-09-02 Denki Kagaku Kogyo Kk 下水道汚泥の焼却灰を含むセメント用の硬化促進剤及びセメント組成物
JP2003277111A (ja) * 2002-03-22 2003-10-02 Denki Kagaku Kogyo Kk 硬化促進剤及びセメント組成物

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4205998A (en) * 1976-12-17 1980-06-03 Centralna Laboratoria Po Physiko-Chimicheska Mechanika Pri Ban Admixture for obtaining rapid hardening portland cement and a method by which it is to be performed
JPS5817816A (ja) * 1981-07-23 1983-02-02 Kao Corp 金属水酸化物水スラリ−ろ過脱水性向上剤
US4650523A (en) * 1984-06-08 1987-03-17 Onoda Cement Co., Ltd. Cement accelerating agent
US5468460A (en) * 1994-01-10 1995-11-21 Nalco Fuel Tech Stabilization of calcium-based slurries for sox reduction by in-furnace injection
JPH0841455A (ja) 1994-07-29 1996-02-13 Japan Found Eng Co Ltd 高分散化低粘性超微粒子スラリーの製造方法および高分散化低粘性超微粒子スラリーを用いた地盤注入方法
JPH10167775A (ja) * 1996-12-11 1998-06-23 Aruai Sekkai Kogyo Kk 消石灰の製造方法
JP2001123071A (ja) * 1999-08-19 2001-05-08 Kaisui Kagaku Kenkyusho:Kk 水酸化カルシウムの製造方法および樹脂組成物
JP2001114542A (ja) * 1999-10-15 2001-04-24 Kurosaki Harima Corp 消石灰系スラリー急結剤
US6451105B1 (en) * 2000-11-17 2002-09-17 Raymond C. Turpin, Jr. Cementitious composition with limestone accelerator
GB0111706D0 (en) * 2001-05-14 2001-07-04 Ciba Spec Chem Water Treat Ltd Fine particle size lime slurries and their production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001233661A (ja) * 2000-02-25 2001-08-28 Denki Kagaku Kogyo Kk ドライセメントコンクリート、吹付材料及びそれを用いた吹付工法
JP2003246657A (ja) * 2002-02-26 2003-09-02 Denki Kagaku Kogyo Kk 下水道汚泥の焼却灰を含むセメント用の硬化促進剤及びセメント組成物
JP2003277111A (ja) * 2002-03-22 2003-10-02 Denki Kagaku Kogyo Kk 硬化促進剤及びセメント組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1690841A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006111225A1 (de) * 2005-04-19 2006-10-26 Construction Research & Technology Gmbh Hydraulisches bindemittel
EP1719742A1 (de) 2005-04-19 2006-11-08 SCHWENK Zement KG Hydraulisches Bindemittel
JP2008536788A (ja) * 2005-04-19 2008-09-11 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハー 水硬性バインダー
EP2128108A1 (de) * 2005-04-19 2009-12-02 SCHWENK Zement KG Hydraulisches Bindemittel
AU2006237031B2 (en) * 2005-04-19 2011-10-13 Construction Research & Technology Gmbh Hydraulic binding agent
US8257487B2 (en) 2005-04-19 2012-09-04 Constuction Research & Technology Gmbh Hydraulic binding agent

Also Published As

Publication number Publication date
CA2542503A1 (en) 2005-04-28
RU2006116570A (ru) 2007-11-27
KR20060104990A (ko) 2006-10-09
US7662229B2 (en) 2010-02-16
EP1690841A1 (en) 2006-08-16
EP1690841A4 (en) 2011-01-26
JP2005139060A (ja) 2005-06-02
US20070151483A1 (en) 2007-07-05

Similar Documents

Publication Publication Date Title
WO2005037730A1 (ja) セメント用凝結促進剤
JP4834574B2 (ja) 高流動性コンクリート用セメント組成物および高流動性コンクリート組成物
ITMI982118A1 (it) Additivi di lavorazione migliorati per cementi idraulici.
WO2010095417A1 (ja) 水硬性組成物および該水硬性組成物を用いたコンクリート
JP2020001969A (ja) モルタル・コンクリート用混和材、これを含むセメント組成物、モルタル組成物及びコンクリート組成物、並びに、モルタル硬化物及びコンクリート硬化物の製造方法
KR20140112195A (ko) 고유동 콘크리트용 무시멘트결합재 및 상기 결합재를 포함하는 친환경 고유동 콘크리트
US10144673B2 (en) Method for producing a calcium silicate hydrate-comprising hardening accelerator in powder form
JPH1179818A (ja) セメント混和材、セメント組成物、吹付材料、及びそれを用いた吹付工法
JPH07267697A (ja) 水硬性組成物
JPH06100338A (ja) 高流動性セメント
JP5172737B2 (ja) 水硬性組成物
JP5336881B2 (ja) 減水剤組成物及びそれを用いたモルタル又はコンクリート
JP2004002080A (ja) セメント組成物
JP2007326728A (ja) コンクリートの製造方法及びコンクリート
CA3024654C (en) Formulation for the production of acid and heat-resistant construction products
JPH09110510A (ja) セメント組成物
JP2002037651A (ja) 重量グラウトモルタル用混和材及びセメント組成物、並びに重量グラウトモルタル
JP2008201605A (ja) 高流動水硬性組成物用速硬材及び高流動水硬性組成物
KR20230067760A (ko) 콘크리트 조기강도 발현용 나노입자, 이를 포함하는 콘크리트 형성용 조성물 및 이의 제조방법
JP2968868B2 (ja) セメント混和材及びセメント組成物
JPH0421551A (ja) 急硬性aeコンクリート組成物
JP4745259B2 (ja) セメント組成物
JPH01242445A (ja) 水硬性セメント組成物
JPH01275456A (ja) 速硬性セメント組成物
JP2021017379A (ja) セメント混和材、膨張材、及びセメント組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480030242.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067006515

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2542503

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10575756

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004792695

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006116570

Country of ref document: RU

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWP Wipo information: published in national office

Ref document number: 2004792695

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067006515

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10575756

Country of ref document: US