WO2005033208A1 - 生分解性ワックス組成物 - Google Patents

生分解性ワックス組成物 Download PDF

Info

Publication number
WO2005033208A1
WO2005033208A1 PCT/JP2004/014658 JP2004014658W WO2005033208A1 WO 2005033208 A1 WO2005033208 A1 WO 2005033208A1 JP 2004014658 W JP2004014658 W JP 2004014658W WO 2005033208 A1 WO2005033208 A1 WO 2005033208A1
Authority
WO
WIPO (PCT)
Prior art keywords
wax
biodegradable
composition
kneading
charged
Prior art date
Application number
PCT/JP2004/014658
Other languages
English (en)
French (fr)
Inventor
Shingo Odajima
Nobuyuki Isshiki
Hitoshi Otsuka
Hidetoshi Oga
Minoru Goto
Original Assignee
Kao Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003346889A external-priority patent/JP2005112944A/ja
Priority claimed from JP2003431698A external-priority patent/JP4895473B2/ja
Application filed by Kao Corporation filed Critical Kao Corporation
Priority to CN2004800292023A priority Critical patent/CN1863876B/zh
Priority to US10/574,849 priority patent/US7989522B2/en
Priority to EP04792069A priority patent/EP1672032A4/en
Publication of WO2005033208A1 publication Critical patent/WO2005033208A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • C08L91/06Waxes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • C08L91/06Waxes
    • C08L91/08Mineral waxes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2391/00Characterised by the use of oils, fats or waxes; Derivatives thereof
    • C08J2391/06Waxes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2409/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons

Definitions

  • the present invention relates to a method for producing a composition mainly composed of wax, a biodegradable wax composition, and a biodegradable laminate.
  • the above method has the following problems.
  • the viscosity of the wax in the molten state is low, when mixing with a solid or high-viscosity substance, sufficient shearing force is not applied to these materials to be mixed.
  • the method using a wax emulsion it is impossible to disperse the component below the particle size of the component constituting the emulsion, and thus it has been difficult to obtain a composition in a uniform dispersion state.
  • wax is widely used as a component of a moisture proofing agent or a hot melt adhesive.
  • materials using these waxes are required to have biodegradability. It is becoming.
  • the melt viscosity of the wax is extremely low.
  • thermoplastic resin and a tackifier as main components
  • at least one of the thermoplastic resin and the tackifier is a polylactic acid or lactic acid copolymer, and contains 50% by weight or less of a box.
  • a biodegradable hot melt adhesive composition such as raw rosin, natural rubber and wax has been known (see Patent Document 1). Since these compositions do not have a sufficient moisture-proof property, a film obtained by melt-molding the composition may be used, for example, It cannot be used as a liner for packaging materials and containers that require moisture resistance.
  • melt viscosity Due to the property of being used as a hot-melt adhesive, its melt viscosity is higher than that of wax alone, but it is high enough to perform melt molding such as the production of T-die films and blown films using an extruder. Has no viscosity.
  • Patent Document 4 As a biodegradable composition capable of being melt-molded, a composition mainly composed of corn dalten meal and natural rubber is known (see Patent Document 4). It is said that this composition is biodegradable and has high water resistance and high wet strength. However, like the hot melt adhesive compositions disclosed in Patent Documents 1 and 2, they do not have sufficient moisture-proof properties.
  • Patent Document 5 discloses a natural rubber mixed with a solvent and a coating liquid for a coating having a moisture-proof property that also has a natural wax power.
  • a solvent in addition to the problem of odor and safety due to the residual solvent in the intermediate product and the final product, there is a problem that a large amount of the solvent is used, which adversely affects the natural environment and the working environment. You.
  • Patent Document 1 JP-A-7-278510
  • Patent Document 2 JP-A-59-66598
  • Patent Document 3 JP-A-5-339557
  • Patent Document 4 JP 2001-288295 A
  • Patent Document 5 JP-A-2002-266284
  • a second object of the present invention is to provide a biodegradable wax composition having excellent moisture resistance and easy to melt-mold.
  • the present invention is a method for producing a box composition mainly composed of wax and containing a biodegradable polymer substance and a filler.
  • a method for producing a wax composition comprising: a step of kneading a wax Z polymer material composition as a main component; and a step of further adding and kneading a filler to the wax Z polymer material composition.
  • the first object has been achieved.
  • the present invention is a wax as a main component, containing a biodegradable polymer material and a filler, biodegradable moisture permeability 40 ° C, 90% RH is in 3g'mmZm 2 '24hr or less
  • the second object has been achieved by providing a pettus composition.
  • the present invention has a moisture-proof layer made of the biodegradable wax composition of the present invention, and a biodegradable material obtained by laminating a biodegradable substrate layer on at least one surface of the moisture-proof layer. It is intended to provide a functional laminate.
  • FIG. 1 is an explanatory diagram for calculating a DSC measurement force, a melting completion temperature, and a melting peak temperature.
  • a biodegradable wax composition of the present invention (hereinafter, also simply referred to as a wax composition) will be described based on preferred embodiments.
  • the wax composition of the present invention is mainly composed of wax, and contains a biodegradable polymer substance and a filler.
  • the wax composition of the present invention exhibits sufficient moisture resistance by using wax as a main component.
  • biodegradability can be ensured.
  • the expression that the wax is mainly used (main component) means that the wax accounts for the largest volume fraction among all the components contained.
  • the wax preferably has a volume fraction of more than 40%, more preferably more than 50%.
  • the wax composition of the present invention is 3g 'mmZm 2' 24hr or less in the environment of the moisture permeability force 40 ° C, 90% RH, preferably 2g'mmZm 2 '24hr or less, more preferably lg' mmZm 2 '24 hours or less.
  • the lower limit of the moisture permeability is not limited, and the lower the lower, the better.
  • the moisture permeability is determined by forming a film having a predetermined thickness from the pettus composition, and measuring the moisture permeability of the film by a cup method (JIS Z 0208 condition B) with a lmm-thick filter. It is a value converted to rum. The converted value of the moisture permeability is calculated by multiplying the moisture permeability measured by the cup method by the film thickness, assuming that the moisture permeability is inversely proportional to the film thickness.
  • a biodegradable resin film with a known moisture permeability is used, A laminated film with the wax composition is prepared, and the moisture permeability of the wax composition is determined.
  • a biodegradable resin layer (A) a Z wax composition layer (B) a Z biodegradable resin layer (C) A three-layer film having a sufficient strength is prepared, and the moisture permeability of the entire three-layer film is determined by the above method. Measure and let the moisture permeability be d.
  • the moisture permeability of the biodegradable resin layer (A) and the biodegradable resin layer (C) are separately measured in the same manner, and the respective moisture permeability is defined as a and c.
  • the moisture permeability of the wax composition layer (B) is b
  • the following relationship is established.
  • a, b, c, and d are the moisture permeability at the actual thickness, not the moisture permeability converted to the thickness of 1 mm.
  • the unknown moisture permeability b of the wax composition layer (B) can be determined.
  • the wax yarn ⁇ product for the wax yarn ⁇ product to be mainly composed of wax to easily achieve the moisture permeability of the force the same as described above, the wax yarn ⁇ was Waxes 65- 95 weight 0/0 , Especially 70-85% by weight.
  • the wax composition contains 60 to 95%, more preferably 70 to 85% by volume of the wax. Is preferred.
  • the wax having a degree of biodegradation JIS K6950 or Pio IS K6953
  • the degree of biodegradability is measured by measuring the degree of biodegradation of only organic components.
  • the wax preferably has a melting point of 40 ° C. or more from the viewpoint of storage stability of the wax composition of the present invention. More preferably, it is the above.
  • the melting point of the wax is measured according to JIS K2235-5.3.
  • a vegetable wax, an animal wax, a mineral wax, a petroleum-based wax, a synthetic wax, or the like can be used. These waxes can be used alone or in combination of two or more. (Kenzo FUSEGAWA, ⁇ Properties and Applications of Waxes, '' Koshobo, 1993, Second Edition, First Edition, Second Page, Table 1. The waxes described in 0.1 can be used).
  • Examples of the vegetable wax include rice wax, carnauba wax, wood wax, candelilla patasse and the like.
  • Animal waxes include beeswax, lanolin, and whale wax.
  • Examples of the petroleum wax include microcrystalline wax, paraffin wax and the like.
  • Examples of the synthetic wax include polyethylene wax, Fischer-Tropsch wax, and the like.
  • Examples of the mineral wax include montan wax, ozokerite, and ceresin. Any of these waxes can be preferably used.However, if a mixer having sufficient cooling capacity cannot be used, the low melting point component in the wax melts due to a rise in temperature due to shear heat generated during kneading.
  • a wax having a low melting point component since the viscosity of the mixture may decrease and a sufficient shearing force may not be applied to the mixture (a substance mixed with the wax). For the same reason, it is preferable to use a wax having a small amorphous component. However, depending on the use of the wax composition, it may be necessary to have a degree of tackiness within the range of the living temperature range. Therefore, an appropriate amount of the low melting point component / amorphous component within a range that does not significantly affect the mixing.
  • the filler used in the present invention refers to a particulate substance composed of an inorganic or organic substance, and a composite thereof.
  • the amount of the filler is preferably less than 30% by weight in order to ensure the biodegradability of the wax composition.
  • the amount of the inorganic filler added is preferably 1% by weight or more, more preferably 2% by weight or more, More preferably, it is at least 3% by weight.
  • the amount is preferably 30% by weight or less, more preferably 25% by weight or less, and further preferably 10% by weight or less.
  • the inorganic filler include anhydrous silica, mica, talc, titanium oxide, calcium carbonate, kieselguhr, alofen, bentonite, potassium titanate, zeolite, sepiolite, smectite, kaolin, carbon and the like.
  • inorganic fillers cannot be said to be biodegradable, most of the inorganic fillers are naturally present in the natural world, so even if they are not biodegradable, they do not pose an environmental burden.
  • a natural inorganic filler even when a synthetic inorganic filler is used, the amount of the inorganic filler used is within the range described above with respect to the wax composition.
  • the wax composition to be contained is defined by laws or regulations as a disposable without any particular restriction and belongs to a class, and there is no particular problem.
  • the organic filler is required to have biodegradability, and is a biodegradable aliphatic polyester resin, or a copolymer resin of an aliphatic polyester and an aromatic polyester.
  • Organic powders derived from natural products such as raw or processed starch, pulp, chitin • chitosan, coconut shell, wood powder, bamboo powder, skin powder, or powders such as kenaf and straw can also be
  • the filler has an average particle diameter of 5 nm to 50 ⁇ m, particularly about lOnm to 10 ⁇ m.
  • the kneadability and the effect of improving the viscosity are also preferred.
  • the filler may be supplied to a kneader when, for example, the wax and the polymer substance are kneaded to produce a wax composition.
  • the biodegradable wax composition of the present invention has a melt flow rate of 125 ° C under a load of 1.2 kgf. (Hereinafter also referred to as MFR) is preferably 0.1 to 100 gZlOmin, more preferably 0.5 to 100 gZlOmin, and still more preferably one to 30 g / 10 min. That is, the biodegradable wax composition of the present invention has melt flow characteristics suitable for melt molding using an extruder. Therefore, by using the biodegradable wax composition of the present invention, film formation by the T-die method or the inflation method can be easily performed.
  • the polymer substance is used for the purpose of improving the properties of wax in a solid state or a molten state, such as caro with a function.
  • the mechanical strength in the solid state (rupture strength, impact strength, bending strength, flexibility imparting, etc.), improvement in adhesion to other materials, and improvement in melt viscosity in the molten state.
  • Examples of the high molecular substance include uncrosslinked rubber, the above-mentioned biodegradable aliphatic polyester resin, a copolymer resin of an aliphatic polyester and an aromatic polyester, and an aliphatic polycarbonate.
  • An amorphous polymer or a crystalline polymer such as a series resin is exemplified.
  • a substance which melts at a desired mixing temperature which is equal to or lower than the melting end temperature of the wax is preferably used.
  • those having a glass transition temperature at or below a desired mixing temperature which is at or below the melting end temperature of the wax are preferred.
  • those which are amorphous and have compatibility with the wax at or above the melting point of the wax are preferred, and particularly polyisoprene or natural rubber is preferred!
  • the melt viscosity is increased by blending the above-mentioned polymer substance, as described later.
  • the polymer substance lowers the moisture resistance of the wax composition.
  • the present inventors have conducted intensive studies and found that blending polyisoprene or natural rubber as the polymer substance in the composition can increase the melt viscosity of the resulting wax composition without lowering the moisture resistance. .
  • biodegradability can be obtained by combining the polymer with the wax.
  • the addition of polyisoprene or natural rubber has the additional effect that heat resistance and strength can be imparted to a molded product obtained by molding the wax composition.
  • the amount of the polymer compound such as polyisoprene or natural rubber in the biodegradable wax composition of the present invention is too large, the melt viscosity becomes too high and the processability such as melt molding decreases. There are cases. Also, the moisture resistance tends to decrease. On the other hand, if the amount of the high molecular substance such as polyisoprene or natural rubber is too small, it may be difficult to sufficiently increase the melt viscosity of the wax composition. Taking these factors into consideration, in order to obtain melt flow characteristics and other properties suitable for melt molding without reducing the moisture resistance of the wax composition, it is necessary to mix polyisoprene-natural rubber and other high-molecular substances in the wax composition. The amount is preferably 5 to 35% by weight, especially 15 to 30% by weight.
  • the melt flow characteristics of the biodegradable wax composition of the present invention suitable for melt molding, it is advantageous to appropriately control the molecular weight of polyisoprene or natural rubber. It was found by these studies. For example, when the weight average molecular weight of polyisoprene is controlled to be in the range of 200,000 or more, in particular, ⁇ , 00 or more, and more preferably air 000 or more, the melt flow properties of the obtained wax composition are suitable for melt molding. Things.
  • the upper limit of the weight average molecular weight is not particularly limited in terms of increasing the melt viscosity, but is preferably 4,000,000 or less, particularly preferably 2,000,000 or less in consideration of the ease of production of the wax composition.
  • the weight-average molecular weight can be determined, for example, by dissolving the wax composition in chloroform and measuring the GPC using a solution from which the unmelted wax has been removed by filtration. The results are obtained by GPC measurement of a polystyrene standard sample with a known molecular weight. From the calibration curve obtained, the weight average molecular weight can be determined.
  • a method for controlling the molecular weight of polyisoprene or natural rubber includes, for example, kneading wax with polyisoprene or natural rubber to produce a wax composition in the process of producing the wax composition of the present invention.
  • the kneading time, shearing force, and temperature are adjusted to apply mechanical shearing force to polyisoprene or natural rubber to cut the molecular chains, or to generate an oxidation reaction by the heat generated during kneading to break the molecular chains.
  • the longer the kneading time the lower the molecular weight of polyisoprene and natural rubber, and the higher the MFR of the wax composition.Therefore, in order to maintain a high melt viscosity, the molecular weight reduction should be minimized. It is preferable to mix them uniformly.
  • the wax composition of the present invention can be processed into a pellet form, supplied to a general extruder, and subjected to melt molding.
  • pellets are likely to be blocked depending on the type of the wax, the type of the biodegradable polymer substance, and the yarn composition ratio.
  • a method of processing into a pellet shape a general method for producing resin pellets can be used.
  • the powder for blocking prevention the inorganic fillers described above can be used, and the amount thereof is 0.5 to 5 parts by weight, and more preferably 13 to 13 parts by weight, per 100 parts by weight of the wax composition. preferable. By doing so, it is possible to obtain both the anti-blocking effect and the effect of improving the melt flow characteristics.
  • the wax composition of the present invention can be coated on the surface of a biodegradable container, for example, in a state where the wax composition is heated and melted.
  • biodegradable laminate of the present invention will be described based on a preferred embodiment.
  • the biodegradable laminate of the present embodiment is obtained by laminating a biodegradable base material layer on at least one surface of the moisture-proof layer made of the wax composition of the present invention.
  • the biodegradable laminate of the present embodiment is obtained by melt-molding the wax composition of the present invention by a T-die method or an inflation method to obtain a moisture-proof layer.
  • At least one surface of the moisture-proof layer has a biodegradable resin layer ( (Biodegradable base layer) may be laminated to form a multi-layer biodegradable film having moisture resistance.
  • the biodegradable film has a three-layer structure in which a biodegradable resin layer is laminated on each surface of the moisture-proof layer.
  • the biodegradable film has moisture-proof properties due to the presence of the moisture-proof layer.
  • the moisture-proofing degree of the biodegradable film is preferably not more than 2 g'mm / m2'24 hours when the value obtained by converting the moisture permeability measured by the cup method (JIS Z 0208 condition B) into a film having a thickness of 1 mm is used. more preferably Mashigu lg'mm / m 2 '24hr or less.
  • the value of the moisture permeability is calculated in the same manner as the above-described calculation method for the moisture permeability of the box composition.
  • a biodegradable resin film having a known moisture permeability is used, A laminated film with the wax composition is prepared, and the moisture permeability of the wax composition is determined.
  • a three-layer film composed of a biodegradable resin layer (A) a Z wax composition layer (B) and a Z biodegradable resin layer (C) is prepared. Then, the moisture permeability of the entire three-layer film is measured by the method described above, and the moisture permeability is defined as d, and separately for the biodegradable resin layer (A) and the biodegradable resin layer (C).
  • the moisture permeability is measured in the same manner, and the respective moisture permeability is a and c. ⁇ Assuming that the moisture permeability of the water-soluble composition layer (B) is b, the following relationship is established.
  • a, b, c, and d are the moisture permeability at the actual thickness, not the moisture permeability converted to a thickness of 1 mm.
  • the unknown moisture permeability b of the wax composition layer (B) can be determined.
  • the biodegradable film preferably has thermoformability.
  • Thermoformability is defined as when a biodegradable film is heated to a predetermined temperature, then gripped at both ends of the film, stretched in opposite directions along one axis, and stretched to twice the length. This means that the biodegradable film does not break.
  • the heating temperature for thermoforming the biodegradable film is appropriately selected depending on the biodegradable resin used, the wax used for the moisture-proof layer, and the thermoforming method (vacuum Z pressure forming, press forming, etc.). The heating temperature is selected so that the entire biodegradable film is formed with an appropriate thickness distribution and sufficient moisture-proof properties are obtained. It is important to perform thermoforming at a heating temperature that can suppress unevenness in the thickness of the film in order to obtain sufficient moisture resistance.
  • the heating temperature that satisfies the condition can be determined by a method of optimization that is generally performed by those skilled in the art.
  • thermoformability In determining the presence or absence of thermoformability, a heating temperature at which good results can be obtained as in actual molding is selected. As a guide for the heating temperature, for example, good results can often be obtained by selecting the conditions in the following temperature range.
  • the melting curve force obtained by DSC measurement is (Tm-40 ° C)-(Tm + 20 ° C) with respect to the melting peak temperature Tm (° C) obtained. Range. However, if there are multiple melting peak temperatures, select the melting peak with the largest heat of fusion.
  • the biodegradable resin is an amorphous resin, its glass transition temperature Tg is in the range of Tg-Tg + 50 ° C.
  • the biodegradable film can be decomposed in, for example, a compost in a period of a few months, and its biodegradability (aerobic ultimate biodegradation) Degree: JIS 6950 or JIS K6953) is preferably 30% or more, more preferably 50% or more, even more preferably 60% or more.
  • the biodegradable film is made from a wax composition constituting the moisture-proof layer and a biodegradable resin constituting the biodegradable resin layer as raw materials, for example, using a multi-die T-die. It is obtained by melt coextrusion. This co-extrusion can be carried out successfully because the wax composition has flow properties suitable for melt molding as described above. The obtained film is uniaxially or biaxially stretched as necessary.
  • the biodegradable film has a film strength and a point force of the formability of the film. Its total thickness is preferably from 10 to 2000 m, more preferably from 20 to 1000 m.
  • the thickness of the biodegradable resin layer in the biodegradable film can be appropriately selected depending on the purpose of use. From the viewpoint of film strength and handleability of the film, it is preferably 5 to 1000 ⁇ m, more preferably 10 to 500 m.
  • the thickness of the moisture-proof layer is preferably 10 to 100 ⁇ m from the viewpoint of providing practical moisture-proof properties and maintaining the strength of the biodegradable film at a high temperature. Is more preferable.
  • the biodegradable resin layer in the biodegradable film may be a biodegradable aliphatic polyester resin, a copolymer resin of an aliphatic polyester and an aromatic polyester, or an aliphatic polycarbonate resin. Preferably, it is composed of resin.
  • polyethylene succinate PES
  • polybutylene succinate PBS
  • polylactic acid PLA
  • polyglycolic acid PGA
  • polyhydroxybutyrate PBS
  • polycaprolactaton PCL
  • PCL / PBS copolymer of polyhydroxybutyrate and polyhydroxyvalerate
  • PBSZP HV copolymer of polybutylene adipate Or copolymer
  • PBSZPBA copolymer of polyethylene terephthalate and polyethylene succinate
  • PETZPES copolymer of polybutylene terephthalate and polybutylene adipate
  • the biodegradable resin layer has a biodegradability (aerobic ultimate biodegradability: JIS K 6950 or Pio IS K6953) power of 30% or more from the viewpoint of decomposing in a practical period. Is more preferably 50% or more, and still more preferably 60% or more.
  • a biodegradable container By coating the biodegradable film on the surface of the biodegradable container body, a biodegradable container can be formed.
  • the biodegradable film has a two-layer structure of a moisture-proof layer and a biodegradable resin layer
  • the biodegradable film is oriented such that the biodegradable resin layer faces the opposite side to the container body.
  • the material of the container body is not particularly limited as long as it has biodegradability.
  • the biodegradability of the container body is preferably 30% or more, more preferably 50% or more, more preferably 60% or more. Is more preferable.
  • Examples of the material of the container body include natural fibers, fibers such as biodegradable synthetic fibers, natural polymers, the biodegradable resins, and mixtures thereof.
  • Natural fibers include wood pulp fibers, non-wood pulp fibers, silk, wool, and the like.
  • Examples of biodegradable synthetic fibers include polylactic acid fibers, vinylon, and rayon.
  • Examples of natural polymers include starch, protein, and the like.
  • the shape of the container body is not particularly limited. For example, various container forms such as a cup, a bowl, a bottle, a plate, a pot, a box, and a tube are exemplified.
  • the part to be covered with the biodegradable film can be appropriately selected according to the use, form, and the like of the container.
  • the inner surface of the container main body, the outer surface of the container main body, and the like can be given.
  • the surface of the container body When the surface of the container body is coated with a biodegradable film, the surface of the container body and the biodegradable film can be bonded to each other via an adhesive, or the surface of the container body can be bonded to the biodegradable film. It can also be directly bonded to the degradable film.
  • an adhesive When an adhesive is used, its composition is not particularly limited as long as it has biodegradability. Adhesives should have a biodegradability (aerobic ultimate biodegradability: JIS K 6950 or Pio IS K6953) of 30% or more, as with biodegradable films, and more preferably 50% or more. More preferred is 60% or more.
  • a biodegradable resin having a melting point lower than that of the biodegradable resin layer on the container body side and various natural resins can be used in order to adhere to the container body by heating and melting.
  • the solution containing the adhesive component can be applied to one or both of the biodegradable film and the container body. It can also be adhered by forming it on one surface of the container body and applying the solvent to the other.
  • Container surface and biodegradable film examples include a method in which, after disposing a biodegradable film on the inner surface of a container main body, vacuum forming or pressure forming is performed while the container main body is heated from the outer surface side.
  • the biodegradable film is widely used for coating the surface of a container body in a biodegradable container as described above, and is also used for various packaging material films and paperboard (biodegradable paper). It can also be used for a biodegradable moisture-proof paper such as a laminated paper laminated with a film, and a biodegradable container formed by bending or molding the biodegradable moisture-proof paper into a cup or a box.
  • the wax composition of the present invention can be prepared by various methods.
  • the wax composition of the present invention can be produced, for example, by supplying a wax and a polymer substance such as polyisoprene or natural rubber to a kneader such as a pressurized mixer, and kneading the mixture with high shearing force.
  • a kneader such as a pressurized mixer
  • the method for producing a wax composition of the present invention described below is suitable for producing the wax composition of the present invention.
  • a polymer substance such as polyisoprene or natural rubber is dissolved in a solvent such as n-heptane, and the wax is dissolved in the solvent. And can be manufactured by removing.
  • the former method is preferred because there is no residual solvent, no solvent is used, the environmental load is small, and the manufacturing cost is low.
  • the molecular weight is significantly reduced by heating when heated, so that the heating is preferably carried out in a nitrogen atmosphere with the time being as short as possible.
  • care must be taken because the molecular weight is reduced when the solvent is volatilized, and the melt viscosity is liable to be remarkably reduced.
  • the wax or pellets or powder having an appropriate size is obtained by a method such as cooling the droplets after being melted by a pulverizer, an extruder, or the like. 2-10 mm or fine powder 1 mm or less).
  • the wax composition of the present invention can also contain an antioxidant, a coloring agent, a dispersion aid, and other additives as needed, as long as they do not hinder kneading.
  • the kneader used in the present invention is a device known per se, such as a pressure kneader having two kneading blades rotatable in different directions in a container.
  • the wax and the mixture are mixed at a temperature lower than the melting completion temperature of the wax, preferably lower than the melting peak temperature of the wax obtained from a melting curve obtained by DSC measurement. It is preferred to obtain the composition by mixing at a temperature with a kneader. When there are a plurality of melting peaks, it is preferable to mix them at a temperature not higher than the peak temperature of the peak having the largest heat of fusion.
  • a method of selecting a more preferable mixing temperature will be described. That is, from the melting curve of the wax obtained by DSC measurement, the ratio of the total endothermic amount of the molten wax component to ⁇ and the endothermic amount ⁇ at a temperature lower than the mixing temperature, ⁇ ' ⁇ force, preferably 0.7 or less.
  • a temperature range in which the temperature falls within the range more preferably a temperature range within the range of 0.5 or less, and still more preferably a temperature range within the range of 0.3 or less, more favorable mixing becomes possible.
  • the temperature is preferably selected to be 0.03 or more, more preferably 0.05 or more, as the lower limit of ⁇ ⁇ ′ ⁇ .
  • an appropriate amount of an oil component having a wax plasticizing effect preferably 20% by weight or less in the wax composition, more preferably It is also possible to add 10% by weight or less).
  • the optimum mixing temperature can be appropriately selected from the above-mentioned mixing temperatures in accordance with the physical properties of the mixture. For example, if the mixture is an amorphous polymer, It is preferred to mix above the glass transition temperature of the material. When the mixture is a crystalline polymer, the temperature is preferably equal to or higher than the melting point of the polymer. When the mixture is an inorganic or organic powder, the temperature is sufficiently lower than the melting completion temperature of the wax (for example, a temperature lower than the melting start temperature of the wax) to facilitate uniform dispersion of the powder. Is preferably mixed.
  • mixing at a temperature lower than the glass transition temperature of the wax may cause adverse effects such as the wax being too hard, resulting in deterioration of the dispersion state and excessive load on the mixing device. It is preferred to mix at or above the glass transition temperature. In addition, it is preferable to adjust the mixing temperature in consideration of the temperature dependence of the wax and the mixture, so that the physical properties of both are in an optimum state for mixing, within the above-mentioned preferable range.
  • the melting completion temperature of the wax, the melting peak temperature, and the ratios ⁇ and ⁇ between ⁇ and ⁇ can be determined, for example, by the following methods.
  • Measuring machine Model DSC220 of Seiko Electronic Industry Co., Ltd.
  • Sample container Part No. ⁇ / 50-020 (Aluminum open type sample container, capacity 15 1) and Part No. 050— 021 (Aluminum open type sample container crimp cover)
  • Measurement temperature range Select the optimal range according to the wax used.
  • the melting completion temperature and the melting peak temperature are determined using the data obtained after melting once, crystallizing at a rate of 5 ° CZmin, and then heating again at a rate of 5 ° CZmin.
  • Melting completion temperature As shown in Figure 1, the temperature at the point where the tangent to the baseline on the hot side of the melting peak intersects the tangent to the point located at the 1Z5 peak height on the hot side slope line of the peak. Is the melting completion temperature. If there are multiple peaks, select the peak located on the hottest side and determine the melting completion temperature.
  • Main peak temperature The peak temperature of the melting curve is determined from the data. Multiple peaks If so, select the peak with the largest heat of fusion and use it as the melting peak temperature.
  • the method for producing a wax composition of the present invention includes a step of kneading a wax containing a wax and a polymer substance and a polymer mainly composed of the wax, and a step of adding a filler to the wax and the polymer substance composition. Is further divided into a step of kneading and kneading the mixture, and a step of kneading the wax-polymer composition is further divided into a master batch preparation step and a main kneading step.
  • the wax composition of the present invention it is important to obtain a composition in which both are uniformly mixed in the step of producing the wet-polymer composition prior to the step of kneading the filler.
  • a master batch is prepared in advance before the main kneading step.
  • Masterbatch containing wax and 55- 95 wt% of the polymer material 5 45 weight based on the weight of the master batch 0/0.
  • the composition of the masterbatch is reversed with respect to the composition of the target wax composition.
  • the polymer substance is the main component and the wax is a sub-component
  • the wax is the main component and the polymer substance is the sub-component. is there.
  • the present inventors have prepared a masterbatch having such a composition in advance, added wax to the masterbatch, and kneaded the mixture, whereby the wax and the polymer substance were uniformly and quickly mixed. Is a finding. Initially, even if the wax and the high molecular substance are kneaded according to the composition of the wax composition, that is, if the high molecular substance which is an auxiliary component is mixed with the wax as the main component, the high molecular substance is contained in the kneaded material. Small grains remain! ⁇ The two cannot be mixed uniformly.
  • kneading machines for example, a batch-type press-single, open-single, twin-screw kneading machine, roll kneading machine and the like can be used. From the viewpoint of controlling the temperature during kneading, it is preferable that these kneading machines have specifications capable of cooling movable parts such as the mixing tank ⁇ , the rotor, and the screw.
  • the total capacity of the wax and the polymer substance to be charged into the kneader is 60 to 100% of the capacity of the kneader, In particular, it is preferable to introduce the wax and the polymer substance into the kneader so as to be 75-85%, since both are mixed under a sufficient shearing force.
  • the capacity of the mixing tank varies depending on the type of notch-type kneader to be used, and is not particularly limited. An appropriate volume may be selected depending on the production amount of the wax composition as the target.
  • the wax and the polymer In the preparation of the master batch, it is preferable to knead the wax and the polymer at a temperature lower than the melting completion temperature of the wax. If the temperature is lower than the melting completion temperature of the wax, unmelted wax crystals remain, so that the wax can be treated as a high-viscosity fluid, so it is generally used.
  • the wax and the polymer substance can be kneaded by the same method as in the compounding of the plastic material. In addition, sufficient shearing force is applied to the polymer substance, which has a sharp decrease in viscosity of the wax due to melting of the wax, so that sufficient kneading is performed.
  • the amount of the wax to be charged at one time is 11 to 15% by weight, particularly 2 to 15% by weight based on the total amount of the amorphous polymer previously charged into the kneading machine. It is preferable to make it 6% by weight. In other words, it is preferable that the amount of wax to be introduced at one time is relatively small. By doing so, the wax and polymer material can be more evenly distributed. Can be mixed.
  • the amount is relatively small in the early stage of the divided charging and is relatively large in the latter stage.
  • the amount of wax gradually increases with the number of times the wax is charged.
  • the kneading time can be shortened by performing such divided charging. The shortening of the kneading time is particularly effective from the viewpoint of not only reducing the production cost but also preventing a decrease in the molecular weight of the polymer substance due to shearing force or the like.
  • kneading of the masterbatch is performed by batch-type pressurization-dosing
  • kneading is first performed for a predetermined period of time under non-pressurized conditions, and then a pressure lid or the like is used. It is preferable that the kneading is performed for a predetermined time under the condition of pressurizing by using. This allows the tuss and the polymer substance to be mixed more uniformly. In this case, it is preferable to make the time for kneading under pressurized conditions longer than the time for kneading under non-pressurized conditions, from the viewpoint of further uniform mixing.
  • the time for kneading under non-pressurized conditions is preferably 0.5 to 5 minutes, particularly preferably 0.5 to 2 minutes.
  • the time for kneading under pressurized conditions is preferably 0.5 to 10 minutes, particularly preferably 11 to 13 minutes.
  • a master batch is obtained by the above operation.
  • a main kneading step of kneading the obtained masterbatch and the kneaded material is performed.
  • the master batch can be once taken out from the kneader, and the main kneading step can be performed using another kneader.
  • the kneader in that case, the same kneaders as those listed above as usable in the master batch preparation step can be used.
  • the kneading machine used in the masterbatch preparation step may be continuously used to perform the main kneading step.
  • the kneader used in the masterbatch preparation step is to be used continuously, it is preferable to take out the kneader with the power of the kneader and use a part of it.
  • the reason is as follows.
  • the total volume of the two charged into the kneader should be 60 times the capacity of the mixing tank of the kneader. — Preferably 100%. Therefore, when the master batch is completed, the mixing tank of the kneader Is almost filled with Masterno Therefore, it is a force that may not afford to add more wax without removing the master batch.
  • the total capacity of the wax and the master batch to be charged into the batch type kneader is 60 to 100%, particularly 80 to 90% of the capacity of the kneader. It is preferable that the wax, the masterbatch and the masterbatch are put into the kneading machine so that they can be mixed under a sufficient shearing force.
  • the temperature conditions during kneading can be the same as in the master batch preparation step. That is, it is preferable to knead the mixture at a temperature lower than the melting completion temperature of the wax, and it is also preferable to knead the mixture at a temperature higher than the glass transition temperature of the wax. Further, it is also preferable to mix at a temperature higher than the Tm of the polymer substance or higher than the glass transition temperature.
  • the main kneading step there is no particular limitation on the procedure of charging the wax and the master batch into the kneader.
  • a method in which both the entire amount of the disk and the entire amount of the master batch are collectively put into a kneading machine and kneaded It is also possible to adopt a method in which the entire amount of the master batch is charged into the kneading machine at a time, and then the wax is dividedly charged into the kneading machine in the next step.
  • the latter method allows the wax and the masterbatch to be more uniformly mixed. This situation is the same as in the master batch preparation step.
  • the amount of the wax charged at one time be relatively small. Specifically, it is preferable that the amount of wax input per one time be 5 to 50% by weight, particularly 6 to 30% by weight based on the total amount of the master batch previously charged into the kneader. By performing such divisional charging, the wax and the master batch can be more uniformly mixed.
  • the wax when the wax is dividedly charged, it is preferable to set a relatively small amount in the early stage of the divided charging and a relatively large amount in the latter period. In particular, it is preferable that the amount of wax gradually increases with the number of times the wax is charged. By performing such divisional injection, the kneading time can be reduced as in the case of the master batch preparation step.
  • kneading is first performed under non-pressurizing conditions in each of the divided charging of the wax, as in the case of the masterbatch preparation step. It is preferable that the kneading is performed for a predetermined time, and then the kneading is performed for a predetermined time under the conditions of pressurization using a pressure lid or the like. Thereby, the wax and the masterbatch can be mixed more uniformly.
  • the time for kneading under pressurized conditions is longer than the time for kneading under non-pressurized conditions, from the viewpoint of even more uniform mixing.
  • the time for kneading under non-pressurized conditions is preferably 0.5 to 5 minutes, particularly preferably 0.5 to 2 minutes.
  • the time for kneading under pressurized conditions is preferably 0.5 to 10 minutes, particularly preferably 115 minutes.
  • a wax composition (wax Z polymer substance composition) in which the wax and the polymer substance are uniformly mixed is obtained.
  • the obtained wax composition may contain air bubbles during kneading. Degassing may be performed to remove the air bubbles.
  • General methods can be used for defoaming. For example, there is a method in which the wax composition is kept at a temperature equal to or higher than the melting completion temperature of the titanium in a thermostat under reduced pressure.
  • the kneading operation may be performed by using a kneading apparatus having a decompression means and mixing the mixture at a temperature equal to or higher than the melting completion temperature of the wax under reduced pressure.
  • Fillers are put together or divided into the wax composition (wax Z polymer material composition) obtained by the kneading step, and kneading is carried out for a predetermined time under the conditions without first applying pressure! Next, it is preferable that the kneading be performed for a predetermined time under a condition in which the mixture is pressurized using a press cover or the like. This makes it possible to uniformly knead the wax composition and the filler obtained in the main kneading step.
  • a decompression zone heated to a temperature equal to or higher than the wax melting completion temperature is provided behind a mixing zone controlled to a temperature lower than the wax melting completion temperature.
  • a method of providing and defoaming can also be selected. It is also possible to perform mixing and defoaming in each of a plurality of twin-screw extruders or a combination of a twin-screw extruder and a single-screw extruder. Of course, depending on the specific use of the wax composition and the contents of the wax composition after the main kneading step, defoaming may not be necessary.
  • the composition obtained in order to make the wax and the mixture more uniform in dispersion state is obtained by melting the wax. It is preferable to heat to a temperature higher than the solution completion temperature.
  • the wax composition of the present invention can be produced in a short time and with good yield, and the mixture can be uniformly dispersed in the wax.
  • the wax is mixed with natural rubber or isoprene rubber, extremely uniform dispersion is possible even when the wax is in an unmelted state.
  • the production method of the present invention is suitable for producing the above-described biodegradable wax composition of the present invention.
  • the wax composition obtained by the production method of the present invention is particularly preferably used as a moisture-proof composition mainly composed of wax or a bonding composition.
  • the wax composition can be obtained without using any organic solvent in the manufacturing process, the use of the wax composition obtained by the manufacturing method of the present invention makes it possible to use the wax composition in various fields such as food packaging materials. Very safe products can be provided.
  • Microcrystalline wax manufactured by Nippon Seida Co., Ltd., product number “Hi-Mic-1070”, melting completion temperature 86 ° C, main peak temperature 44 ° C
  • isoprene rubber Nipol-IR2200, manufactured by Zeon Corporation was easily inserted into the equipment and cut into pieces.
  • the obtained masterbatch composition was white including air bubbles, and it was confirmed that the components were uniformly dispersed.
  • the obtained composition was melted in a dryer at 110 ° C in a nitrogen stream, and the dispersed state of each component was confirmed again. The presence of undispersed isoprene rubber was confirmed. I could not confirm it.
  • kneading step 26 kg of the obtained master batch composition was charged into a kneading container of a pressure mixer manufactured by Moriyama Co., Ltd., and 54 kg of the microcrystalline wax was added to the total amount of the isoprene rubber. In the range of 6%-30%, 11 divisions were made, and divided injections were made.
  • kneading without pressure was performed for about 0.5 minutes each time the wax was charged, and then pressure kneading was performed for 1.5 minutes or 2 minutes.
  • cooling water at about 15 ° C was flowed through the mixing container and rotor, and all heaters were turned off.
  • the obtained wax composition was white including air bubbles, and it was confirmed that the dispersion of each component was uniform.
  • the resulting composition was defoamed in a dryer at -500 mgHg at 110 ° C under a nitrogen stream, and the dispersibility was confirmed again in the molten state. As a result, it was found that the composition was a transparent and uniform composition and was not dispersed in isoprene rubber. I could not confirm the presence.
  • a biodegradable resin (PHB05 manufactured by Daicel Chemical Industries, Ltd.) obtained by polymer-blending polyproprotatonone and polyethylene succinate. To form a three-layer biodegradable film.
  • the obtained biodegradable film had a total thickness of 350 ⁇ m, the thickness of the wax composition layer was 150 ⁇ m, and the thickness of each biodegradable resin film was 100 ⁇ m.
  • a microcrystalline wax manufactured by Nippon Seiden Co., Ltd., part number "Hi-Mic” -1070 ” 1800 g and 600 g of isoprene rubber (manufactured by Nippon Zeon Co., Ltd., product number: Nipol-IR2200) are kneaded for 5 minutes at a rotation speed of 20 rpm, and then 600 g of the same wax is additionally charged, and further 10 minutes To obtain a wax composition containing no filler. Kneading was performed by flowing cooling water at 10 ° C through the mixing container and the rotor, and turning off all heaters.
  • a biodegradable resin (PHB05, manufactured by Daicel Chemical Industries, Ltd.) obtained by polymer-blending polyproprotatonone and polyethylene succinate.
  • PHB05 manufactured by Daicel Chemical Industries, Ltd.
  • the obtained biodegradable film had a total thickness of 350 ⁇ m, the thickness of the wax composition layer was 150 ⁇ m, and the thickness of each biodegradable resin film was 100 ⁇ m.
  • Example 2-1 In the same manner as in Example 2-1, except that the amount of the anhydrous silica particles was changed to 10% by weight, a wax composition of a filler-added kamitsu and a three-layer film were obtained.
  • Example 2-1 the anhydrous silica particles were replaced with lipophilic treated anhydrous silica (manufactured by Nippon Aerosil Co., Ltd., product number "AEROSIL R972", average primary particle diameter 16 m).
  • lipophilic treated anhydrous silica manufactured by Nippon Aerosil Co., Ltd., product number "AEROSIL R972", average primary particle diameter 16 m.
  • AEROSIL R972 average primary particle diameter 16 m
  • Example 2-2 the amount of the filler added was 10% by weight of the lipophilic treated anhydrous silica, and a wax composition and a three-layer film of a filler-filled rice pulp were obtained in the same manner as in Example 2-2.
  • Example 2-2 the filler was replaced with a lipophilic mica (manufactured by Corp Chemical Co., Ltd., product number “Soshimafu MAE”, average particle diameter 6 ⁇ m), and the filler-added mica was used in the same manner as in Example 3-2. A wax composition and a three-layer film were obtained. The addition amount of lipophilic mica is 10% by weight.
  • Example 2-1 In order to obtain a filler-free wax composition having the same history as that of 2-5, in Example 1, only the wax composition of the filler-free kamo was used in a Labo Plast mill. The mixture was kneaded again to obtain a wax composition and a three-layer film. [Performance evaluation]
  • the moisture permeability and MFR of the obtained wax composition were measured by the methods described above. Table 1 shows the results.
  • the moisture permeability of the wax composition was determined from the measured moisture permeability of the three-layer film and the measured moisture permeability of the biodegradable resin film layer (PHB05, 100 ⁇ m) 132 g / m 2 '24 hr. .
  • the wax composition of each Example (Example 1-1, 2-1-2-5) has a high MFR and low moisture permeability. A functional film was obtained. Although not shown in the table, it was confirmed that each of the wax composition and the biodegradable film of each example had biodegradability.
  • Wax compositions were prepared as in Example 3-1 and Comparative Examples 3-1 and 3-2 below.
  • a 75-L pressurized-kneader was used in the kneading apparatuses of Example 3-1 and Comparative Examples 3-1 and Comparative Examples 3-2.
  • uniformity of dispersion was evaluated as follows. The dispersibility is evaluated by heating the composition to a temperature equal to or higher than the melting point of the wax, defoaming, then stretching the composition in a molten state to a thickness of about lmm, and visually confirming the presence or absence of a granular mixture. went.
  • the MFR (melt flow rate) was measured using a melt flow indexer (temperature: 125 ° C, load: 1.25 kg) to confirm the physical properties of the kneaded material. The visual recognition of the particulate matter was judged to be in an undispersed state.
  • Microcrystalline wax manufactured by Nippon Seida Co., Ltd., product number “Hi-Mic-1070”, melting completion temperature 86 ° C, main peak temperature 44 ° C
  • isoprene rubber manufactured by Nippon Zeon Co., Ltd., part number Nipol-IR2200 was easily put into the equipment! / And cut into pieces.
  • the amount to be charged into the pressure kneader was calculated from 80% of the capacity of the kneading vessel, specific gravity of 0.9, 100 parts by weight of isoprene rubber, and 30 parts by weight of microcrystalline wax.
  • Input amount 75 [3 ⁇ 4 ⁇ pressure-one volume: L] X 0.8 [Input volume] X 0.9 [specific gravity]
  • kneading without pressure was performed for about 0.5 minutes each time the wax was charged, and then pressure kneading was performed for 1.5 minutes or 2 minutes.
  • the kneading was performed by flowing cooling water at about 15 ° C through the mixing vessel and the rotor, and turning off all the heaters.
  • the temperature of the composition after the completion of kneading was directly measured with a contact-type thermometer and found to be 60-70 ° C, at which time ⁇ ' ⁇ was 0.70-0.85.
  • the obtained masterbatch composition was white, including air bubbles, and it was confirmed that the components were dispersed uniformly.
  • the obtained composition was melted in a dryer at 110 ° C in a nitrogen stream, and the dispersed state was confirmed again. As a result, the presence of undispersed natural rubber could not be confirmed.
  • the obtained master batch composition was taken out of the kneading vessel and the whole amount was measured.
  • the amount of pressure It was calculated from 90% of the capacity, specific gravity 1.0, 130 parts by weight of isoprene rubber, and 205 parts by weight of microcrystalline wax.
  • Input amount 75 [3 ⁇ 4 ⁇ pressure-one volume: L] X 0.9 [Input volume] X I. 0 [Specific gravity]
  • the mixture was kneaded without pressure for about 0.5 minutes, and then kneaded under pressure for 1 minute, 2 minutes, or 5 minutes.
  • the kneading was carried out with cooling water at about 15 ° C flowing through the mixing vessel and the rotor, with all heaters turned off.
  • the temperature of the composition after the completion of kneading was directly measured with a contact-type thermometer, and was found to be 60 to 70 ° C., at which time ⁇ ⁇ ′ ⁇ ⁇ ⁇ was 0.70 to 0.85.
  • the obtained wax composition was white, containing air bubbles, and it was confirmed that the components were uniformly dispersed.
  • the resulting composition was defoamed in a dryer at 110 ° C and a nitrogen stream at ⁇ 500 mmHg, and the dispersed state was confirmed again in the molten state. Existence was not confirmed.
  • the MFR was measured with a melt flow indexer (temperature: 125 ° C, load: 1.25 kg) to confirm the physical properties of the kneaded product. As a result, the MFR value was about 37 [g / 10 min].
  • the kneaded material mainly composed of butter, which is sought to be obtained is 30% isoprene rubber, which is the yarn and composition ratio.
  • a 70% composition was kneaded.
  • the amount charged into the pressurized container was calculated from 90% of the capacity of the kneading container, specific gravity 1.0, 100 parts by weight of isoprene rubber, and 235 parts by weight of microcrystalline wax.
  • kneading without pressure was performed for about 0.5 minutes or 2 minutes each time the wax was charged, and then pressure kneading was performed for 1 minute, 2 minutes, or 5 minutes.
  • the kneading was performed with cooling water at about 15 ° C flowing through the mixing container and the rotor, with all heaters turned off.
  • the temperature of the composition after completion of kneading was directly measured with a contact thermometer, and was found to be 40-50 ° C, with ⁇ ⁇ and / ⁇ at that time being 0.26-0.50.
  • the obtained composition was translucent containing air bubbles, and an unkneaded isoprene rubber could be visually confirmed.
  • the resulting composition was defoamed in a dryer at 110 ° C. under a nitrogen stream at ⁇ 500 mmHg, and the dispersed state was confirmed again in the molten state. The presence of undispersed isoprene rubber was visually confirmed. MFR was not measured because of the large amount of undispersed isoprene rubber.
  • the kneaded material mainly composed of butter, which is sought to be obtained is 30% isoprene rubber, which is the yarn and composition ratio.
  • a 70% composition was kneaded.
  • the amount charged into the pressurized container was calculated from 90% of the capacity of the kneading container, specific gravity 1.0, 100 parts by weight of isoprene rubber, and 235 parts by weight of microcrystalline wax.
  • kneading without pressure was performed for about 0.5 minutes or 2 minutes each time the wax was charged, and then pressure kneading was performed for 1 minute, 2 minutes, and 5 minutes.
  • the kneading was performed with cooling water at about 15 ° C flowing through the mixing container and the rotor, with all heaters turned off.
  • the temperature of the composition after completion of kneading was directly measured with a contact thermometer, and was found to be 40-50 ° C, with ⁇ ⁇ and / ⁇ at that time being 0.26-0.50.
  • the obtained composition was translucent including air bubbles, and an unkneaded isoprene rubber could be visually confirmed.
  • the resulting composition was defoamed in a dryer at 110 ° C and a nitrogen stream at -500 mmHg, and the dispersed state was confirmed again in the molten state. The presence of ren rubber was confirmed.
  • undispersed isoprene rubber was removed from the kneaded material, and the MFR was measured using a melt flow indexer (temperature: 125 ° C, load: 1.25 kg). As a result, it was confirmed that the MFR value was about 104 [g / 10 min], and the MFR value was higher than the master notch method performed in Example 3-1.
  • a wax composition in which the components are uniformly dispersed can be produced in a short time at low cost and with good yield.
  • the wax composition of the present invention is excellent in moisture resistance and easy to melt-mold. By using the wax composition, a biodegradable film having excellent moisture resistance can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明の生分解性ワックス組成物は、ワックスを主体とし、生分解性の高分子物質およびフィラーを含有し、40°C、90%RHにおける透湿度が3g・mm/m2・24hr以下である。前記ワックスの含有量が65~95重量%であることが好ましい。前記生分解性の高分子物質の重量平均分子量が200,000以上であることが好ましい。前記高分子物質はポリイソプレン又は天然ゴムが好ましく、該高分子物質を5~35重量%含有することが好ましい。                                                                                       

Description

明 細 書
生分解性ワックス組成物
技術分野
[0001] 本発明は、ワックスを主体とする組成物の製造方法、生分解性ワックス組成物及び 生分解性積層体に関する。
背景技術
[0002] 防湿コーティング剤などのワックスを主体とする組成物を得る手段としては、従来は 、主として組成物の成分を溶融状態で機械的に混合する方法 (例えば、下記特許文 献 1参照)、ワックスェマルジヨンを用いて混合する方法 (例えば、下記特許文献 2参 照)が用いられてきた。
[0003] し力 前記の方法には以下の問題があった。溶融状態で機械的に混合する方法で は、溶融状態のワックスの粘度が低いために、固体状または高粘度の物質との混合 を行う場合に、これら被混合物へ充分な剪断力が加わらないために、各成分の均一 な分散状態を得るのが困難であった。ワックスェマルジヨンを用いる方法では、エマ ルジョンを構成する成分の粒子サイズ以下で該成分を分散させることが不可能である ため、均一な分散状態の組成物を得ることが困難であった。
[0004] 一方、ワックスは、防湿剤やホットメルト接着剤の一成分として広く使用されているが 、近年の環境意識の高まりから、これらワックスを用いた素材にも生分解性が要求さ れるようになりつつある。ワックスの中には生分解性を有するものも種々ある力 ヮック スを単独で使用した場合には、その溶融粘度が極端に低いため、通常は榭脂等を混 合して使用されている。
熱可塑性榭脂と粘着付与剤とを主成分とする生分解性のホットメルト接着剤組成物 が知られている(特許文献 3参照)。この組成物においては、熱可塑性榭脂及び粘着 付与剤の少なくとも一方がポリ乳酸又は乳酸共重合体力 なり、 50重量%以下のヮ ックスを含む。また、生ロジン、天然ゴム及びワックス力 なる生分解性のホットメルト 接着剤組成物も知られている (特許文献 1参照)。これらの組成物は、十分な防湿性 を有するものではないので、この組成物を溶融成形して得られたフィルムを、例えば 防湿性が必要とされる包装材ゃ容器のライナーとして用いることはできない。ホットメ ルト粘着剤として用いられるという性質上ワックス単体に比べるとその溶融粘度が高く なって 、るが、押出機を用いた Tダイフィルムやインフレーションフィルムの製造など の溶融成形を行うほどの高 、溶融粘度は有さな 、。
[0005] 溶融成形可能な生分解性の組成物として、コーンダルテンミール及び天然ゴムを 主成分とするものが知られている(特許文献 4参照)。この組成物は生分解性である 上に耐水性や湿潤強度が高いとされている。しかし、特許文献 1及び 2に開示された ホットメルト接着剤組成物と同様に、十分な防湿性を有するものではな 、。
特許文献 5には、溶媒を用いて混合した天然ゴムと天然ワックス力もなる防湿性を 有するコート用の塗液が開示されている。溶剤を用いる方法では、中間製品や最終 製品において残留溶剤による臭いや安全性での問題のほか、多量の溶剤を使用す るために自然環境、労働環境などに悪影響を及ぼす問題を有して 、る。
[0006] このように、溶融成形が可能で且つ防湿性が十分に高 、生分解性の組成物、接着 性が高く且つ防湿性が十分に高 、生分解性の組成物は未だ得られて 、な 、。
[0007] 特許文献 1 :特開平 7— 278510号公報
特許文献 2:特開昭 59-66598号公報
特許文献 3:特開平 5— 339557号公報
特許文献 4:特開 2001— 288295号公報
特許文献 5:特開 2002-266284号公報
発明の開示
発明が解決しょうとする課題
[0008] 従って本発明は、前述した従来技術が有する種々の欠点のな!、ワックス組成物の 製造方法を提供することを第 1の目的とする。
また、本発明は、防湿性に優れ、溶融成形が容易な生分解性ワックス組成物を提 供することを第 2の目的とする。
課題を解決するための手段
[0009] 本発明は、ワックスを主体とし、生分解性の高分子物質およびフィラーを含有するヮ ックス組成物の製造方法であって、予めワックス及び高分子物質を含み該ワックスを 主体とするワックス Z高分子物質組成物を混練する工程と、このワックス Z高分子物 質組成物にフィラーを更に添加して混練する工程とを具備するワックス組成物の製造 方法を提供することにより前記第 1の目的を達成したものである。
[0010] また、本発明は、ワックスを主体とし、生分解性の高分子物質およびフィラーを含有 し、 40°C、 90%RHにおける透湿度が 3g'mmZm2' 24hr以下である生分解性ヮッ タス組成物を提供することにより、前記第 2の目的を達成したものである。
[0011] また、本発明は、前記本発明の生分解性ワックス組成物カゝらなる防湿層を有し、該 防湿層の少なくとも一面に生分解性の基材層が積層されてなる生分解性積層体を 提供するものである。
図面の簡単な説明
[0012] [図 1]DSC測定結果力 融解完了温度、融解ピーク温度を求める説明図である。
発明の詳細な説明
[0013] 以下、本発明の生分解性ワックス組成物(以下、単にワックス組成物ともいう。 )を、 その好ましい実施形態に基づき説明する。
本発明のワックス組成物は、ワックスを主体とし、生分解性の高分子物質およびフィ ラーを含有する。
本発明のワックス組成物は、ワックスを主体として用いることで十分な防湿性が発現 される。また生分解性を確保することができる。ここで、本明細書において、ワックスを 主体 (主成分)とするとは、ワックスが、含有される全成分の中で体積分率で最も多く を占めることを意味する。ワックスを主成分とすることで十分な防湿性を発現させるこ とができる。より高い防湿性を得る上では、ワックスが好ましくは体積分率で 40%超、 より好ましくは 50%超である。
[0014] 本発明のワックス組成物はその透湿度力 40°C、 90%RHの環境下において 3g' mmZm2' 24hr以下であり、好ましくは 2g'mmZm2' 24hr以下、より好ましくは lg' mmZm2' 24hr以下である。該透湿度の下限値に制限はなく低ければ低 、ほど好ま しい。
[0015] 前記透湿度は、該ヮッタス組成物から所定厚みのフィルムを成形し、そのフィルムに ついてカップ法 (JIS Z 0208 条件 B)によって測定した透湿度を厚み lmmのフィ ルムに換算した値である。この透湿度の換算値は、透湿度がフィルム厚みに反比例 すると仮定し、カップ法で測定した透湿度にフィルム厚みを乗じることにより算出され る。
ただし、ワックス組成物のみ力もなるフィルムを作成し、その透湿度を上記の方法で 測定することが困難である場合が多いため、その場合には透湿度が既知の生分解性 榭脂フィルムと、ワックス組成物との積層フィルムを作成し、ワックス組成物の透湿度 を求める。例えば、生分解性榭脂層 (A)Zワックス組成物層(B)Z生分解性榭脂層( C)力もなる 3層フィルムを作成し、上記の方法で 3層フィルム全体の透湿度を測定し 、その透湿度を dとする。そして、別途、生分解性榭脂層 (A)および生分解性榭脂層 (C)の透湿度を同様に測定し、それぞれの透湿度を aおよび cとする。このとき、ヮック ス組成物層(B)の透湿度を bとすると、下記の関係が成り立つ。ここで、 a、 b、 c、 dは、 実際の厚みにおける透湿度であり、 1mmの厚みに換算した透湿度ではな 、。
l/d= l/a+ l/b + l/c
この式から、未知数であるワックス組成物層(B)の透湿度 bを求めることができる。
[0016] ワックス糸且成物がワックスを主体とすることは前述の通りである力 前記の透湿度を 容易に達成するためには、ワックス糸且成物はワックスを 65— 95重量0 /0、特に 70— 85 重量%含有することが好ましい。また、ワックス組成物に後述するような比重の高い無 機粉体等がフイラ一として添加されている場合には、ワックスの体積分率で 60— 95 %、より好ましくは 70— 85%含有することが好ましい。
[0017] 本発明のワックス組成物の生分解性を確保する観点から、前記ワックスとしてその 生分解度 (JIS K6950又 ίお IS K6953)が 30%以上であるものを用いることが好 ましぐ 50%以上であるものを用いることが更に好ましぐ 60%以上のものを用いるこ とが一層好ましい。ただし、後述のようにワックス組成物が無機フィラーを含有する場 合には、生分解性度の測定においては、有機成分のみの生分解度を測定する。
[0018] また前記ワックスは、本発明のワックス組成物ゃ該ワックス組成物から溶融成形した 成形体の保存安定性の点から、その融点が 40°C以上であることが好ましぐ 60°C以 上であることが一層好ましい。ワックスの融点は、 JIS K2235-5. 3に従って測定さ れる。 [0019] ワックスとしては例えば、植物系ワックス、動物系ワックス、鉱物系ワックス、石油系ヮ ッタス、合成ワックス等を用いることができる。これらのワックスは単独で又は二種以上 を組み合わせて用いることができる (府瀬川健蔵、「ワックスの性質と応用」、幸書房、 1993年、改訂 2版第 1刷、 2頁目、表 1. 0. 1に記載されたワックスが使用可能である )。植物系ワックスとしては、ライスワックス、カルナバワックス、木ろう、キャンデリラヮッ タス等が挙げられる。動物系ワックスとしては、みつろう、ラノリン、鯨ろう等が挙げられ る。石油系ワックスとしては、マイクロクリスタリンワックス、パラフィンワックス等が挙げら れる。合成ワックスとしては、ポリエチレンワックス、フィッシャートロプシュワックス等が 挙げられる。鉱物ワックスとしては、モンタンワックス、ォゾケライト、セレシン等が挙げ られる。これらのワックスはいずれも好ましく使用することができるが、十分な冷却能力 を持つ混合機を使用できない場合には、混練時の剪断発熱による温度上昇でヮック ス中の低融点成分が融解してワックスの粘度が低下し、被混合物(ワックスと混合され る物質をいう)に十分な剪断力が加わらなくなるおそれがあるので、低融点成分が少 ないワックスを用いることが好ましい。同様の理由で、非晶成分が少ないワックスを用 いることが好ましい。ただし、ワックス組成物の用途によっては、生活温度範囲である 程度の粘着性を必要とする場合があるので、混合に大きな影響を与えな 、範囲で、 適度な量の低融点成分ゃ非晶成分を含有することが好ま ヽ場合もある。かかる観 点から、 JISK2235— 5. 3. 2に記載の方法で測定された融点が 40°C以上であるもの が好ましぐ 60°C以上であるものがより好ましい。
[0020] 本発明で使用する前記フィラーとは、無機物または有機物、及びその複合体からな る粒子状の物質をさす。フィラーの添加量は、生分解性のない無機フィラーの場合に は、 30重量%未満とすることが、ワックス組成物の生分解性の効果を確保する上で 好ましい。粘度を向上させることによって本発明のワックス組成物の溶融流動特性を 溶融成形に適したものとするためには、無機フィラーの添加量は好ましくは 1重量% 以上、より好ましくは 2重量%以上、さらに好ましくは 3重量%以上である。なお、フィ ラー添カ卩による生分解性フィルム等との接着性低下を考慮すると、該添加量は、 30 重量%以下が好ましぐより好ましくは 25重量%以下、さらに好ましくは 10重量%以 下である。 [0021] 前記無機フィラーとしては、例えば無水シリカ、雲母、タルク、酸化チタン、炭酸カル シゥム、ケィ藻土、ァロフェン、ベントナイト、チタン酸カリウム、ゼォライト、セピオライト 、スメクタイト、カオリン、カーボン等が挙げられる。これらの無機フイラ一は生分解性と は言えないが、無機フィラーの多くは元来自然界に存在するものであるから、生分解 性でなくても環境負荷になるものではない。天然の無機フィラーを用いることが好まし いが、合成された無機フィラーを用いる場合であっても、その使用量はワックス組成 物に対して前述した範囲の程度であるから、該無機フイラ一を含むワックス組成物は 、特に制約なく廃棄可能な物として法律又は条例で定められて 、る部類に属するも のであり特に問題はない。
[0022] 前記有機フイラ一は、生分解性を有することが必要であり、生分解性を有する脂肪 族ポリエステル系榭脂、脂肪族ポリエステルと芳香族ポリエステルとの共重合系榭脂
、又は脂肪族ポリカーボネート系榭脂から構成されていることが好ましい。具体的に は、ポリエチレンサクシネート(PES)、ポリブチレンサクシネート(PBS)、ポリ乳酸(P LA)、ポリグリコール酸(PGA)、ポリヒドロキシブチレート(PHB)、ポリ力プロラタトン( PCL)、ポリ力プロラタトンとポリブチレンサクシネートとの混合物若しくは共重合物(P CL/PBS)、ポリヒドロキシブチレートとポリヒドロキシバリレートとの共重合物(PHB /PHV)、ポリブチレンサクシネートとポリブチレンアジペートとの混合物若しくは共 重合物(PBSZPBA)、ポリエチレンテレフタレートとポリエチレンサクシネートとの共 重合物(PETZPES)、ポリブチレンテレフタレートとポリブチレンアジペートとの共重 合物(PBTZPBA)等が挙げられる。また、生澱粉または加工澱粉、パルプ、キチン •キトサン質、椰子殻、木材粉末、竹粉末、榭皮粉末、またはケナフや藁などの粉末と いった、天然物由来の有機粉体も使用できる。
[0023] 前記フイラ一はその平均粒径が 5nm— 50 μ m、特に lOnm— 10 μ m程度のものを 用いること力 前記ワックス、後述するポリイソプレンや天然ゴム等の高分子物質との 均一な混練性、粘度向上の効果の点力も好ましい。フイラ一は、例えば前記ワックス と高分子物質とを混練してワックス組成物を製造するときに、混練機に供給すればよ い。
[0024] 本発明の生分解性ワックス組成物は、 125°C、 1. 2kgf荷重下でのメルトフローレ一 ト(以下 MFRともいう)が 0. 1— lOOOgZlOminであることが好ましぐより好ましくは 0. 5— 100gZlOmin、さらに好ましくは 1一 30g/10minである。つまり本発明の生 分解性ワックス組成物は、押出機を用いた溶融成形に適した溶融流動特性を有して いる。従って本発明の生分解性ワックス組成物を用いれば、 Tダイ法やインフレーショ ン法によるフィルム成形を容易に行うことができる。
[0025] 前記高分子物質は、ワックスの固体状態もしくは溶融状態の物性改質ゃ機能付カロ 等を目的として用いられる。例えば、固体状態の力学強度 (破断強度、衝撃強度、曲 げ強度、柔軟性付与等)、他の材料への接着性向上や、溶融状態での溶融粘度向 上等である。
[0026] 前記高分子物質としては、未架橋のゴムや前述の生分解性を有する脂肪族ポリエ ステル系榭脂、脂肪族ポリエステルと芳香族ポリエステルとの共重合系榭脂、又は脂 肪族ポリカーボネート系榭脂などの非晶性高分子若しくは結晶性高分子等が挙げら れる。ただし、混合する高分子物質を微細に分散させるためには、結晶性高分子の 場合にはワックスの融解終了温度以下である所望の混合温度において溶融するもの が好ましぐ非晶性高分子の場合にはワックスの融解終了温度以下である所望の混 合温度以下にガラス転移温度を有するものが好ましい。これらの中でも、非晶性で、 ワックスの融点以上においてワックスと相溶性を有するものが好ましぐ特にポリイソプ レン又は天然ゴムが好まし!/、。
[0027] 本発明のワックス組成物は、後述するように前記高分子物質を配合することでの溶 融粘度が高められるが、その場合の高分子物質はワックス組成物の防湿性を低下さ せる傾向がある。本発明者らが鋭意検討したところ、前記高分子物質としてポリイソプ レン又は天然ゴムを組成物中に配合すると、得られるワックス組成物の防湿性を低下 させることなぐ溶融粘度を高められることが判明した。また、前記高分子物質と前記 ワックスとを組み合わせることで生分解性が得られる。更に、ポリイソプレン又は天然 ゴムを配合することで、ワックス組成物を成形して得られる成形物に耐熱性や強度を 付与できると 、う付加的効果もある。
[0028] 本発明の生分解性ワックス組成物中へのポリイソプレンや天然ゴム等の高分子物 質の配合量が多すぎると溶融粘度が高くなりすぎて溶融成形等の加工性が低下する 場合がある。また防湿性も低下する傾向にある。逆にポリイソプレンや天然ゴム等の 高分子物質の配合量が少なすぎると、ワックス組成物の溶融粘度を十分に高めにく い場合がある。これらを勘案すると、ワックス組成物の防湿性を低下させることなぐ溶 融成形に適した溶融流動特性等を得るためには、ワックス組成物中へのポリイソプレ ンゃ天然ゴム等の高分子物質の配合量は 5— 35重量%、特に 15— 30重量%であ ることが好ましい。
[0029] 本発明の生分解性ワックス組成物の溶融流動特性を溶融成形に適したものとする には、ポリイソプレンや天然ゴムの分子量を適切にコントロールすることが有利である ことが本発明者らの検討によって判明した。例えばポリイソプレンについては、その重 量平均分子量を 200, 000以上、特に■, 00以上、より好ましくは風 000以上 の範囲にコントロールすると、得られるワックス組成物の溶融流動特性を溶融成形に 適したものとすることができる。重量平均分子量の上限は、溶融粘度を高める点で特 に制約はないが、ワックス組成物の製造のしゃすさを考慮すると 4, 000, 000以下、 特に 2, 000, 000以下が好ましい。重量平均分子量は、例えば、ワックス組成物をク ロロホルムに溶解させた後、未融解のワックスを濾過により除去した溶液で GPCを測 定し、その結果と分子量既知のポリスチレン標準サンプルの GPC測定で得た較正曲 線とから重量平均分子量を求めることができる。
[0030] また、ポリイソプレンや天然ゴムの分子量をコントロールする方法には、例えば本発 明のワックス組成物の製造過程において、ワックスとポリイソプレン又は天然ゴムとを 混練してワックス組成物を製造するときの混練時間、剪断力、温度を調整し、ポリイソ プレンや天然ゴムに機械的な剪断力を加えて分子鎖を切断したり、混練時に発生す る熱によって酸化反応を生じさせて分子鎖を切断する方法もある。一般に、混練時間 が長くなるとポリイソプレンや天然ゴムの分子量が低下していき、ワックス組成物の M FRは上昇する傾向にあるため、溶融粘度を高く維持するためには、分子量低下を極 力防止して均一に混合することが好ま 、。
[0031] 本発明のワックス組成物は、ペレット形状に加工することで、一般的な押出機に供 給して溶融成形を行うことができる。ただし、前記ワックスの種類や前記生分解性の 高分子物質等の種類や糸且成比によって、ペレットはブロッキングしやすくなるため、表 面にブロッキング防止用の粉体を付着させた状態で製品とすることが好ましい。ペレ ット形状に加工する方法としては、榭脂ペレットを製造するための一般的な方法を用 いることができる。ブロッキング防止用の粉体としては、前述した無機フィラーを用いる ことができ、その量はワックス組成物 100重量部に対して 0. 5— 5重量部、さらには 1 一 3重量部とすることが好ましい。そうすることで、ブロッキング防止効果と溶融流動特 性向上効果の両方を得ることが可能となる。
[0032] 本発明のワックス組成物は、例えばこれを加熱して溶融させた状態下に生分解性 の容器の表面にコートすることができる。
[0033] 次に、本発明の生分解性積層体を好ましい実施形態に基づき説明する。
本実施形態の生分解性積層体は、前記本発明のワックス組成物からなる防湿層の 少なくとも一面に生分解性基材層が積層されてなるものである。
本実施形態の生分解性積層体は、前記本発明のワックス組成物を Tダイ法やイン フレーシヨン法で溶融成形して防湿層を得、この防湿層の少なくとも一面に生分解性 榭脂層(生分解性基材層)を積層し、防湿性を有する多層の生分解性フィルムの形 態とすることができる。前記生分解性フィルムは、その好ましい実施形態においては、 前記防湿層の各面に生分解性榭脂層が積層されてなる 3層構造となっている。
[0034] 前記生分解性フィルムは、前記防湿層の存在によって防湿性を有している。生分 解性フィルムの防湿性の程度は、カップ法 (JIS Z 0208 条件 B)により測定した透 湿度を厚み lmmのフィルムに換算した値が 2g'mm/m2' 24hr以下であることが好 ましぐ lg'mm/m2' 24hr以下であることがより好ましい。この透湿度の値は、ヮック ス組成物の透湿度に関して先に述べた算出法と同様にして算出される。
ただし、ワックス組成物のみ力もなるフィルムを作製し、その透湿度を上記の方法で 測定することが困難である場合が多いため、その場合には透湿度が既知の生分解性 榭脂フィルムと、ワックス組成物との積層フィルムを作製し、ワックス組成物の透湿度 を求める。例えば、生分解性榭脂層 (A)Zワックス組成物層(B)Z生分解性榭脂層( C)からなる 3層フィルムを作製する。そして、上記の方法で 3層フィルム全体の透湿 度を測定し、その透湿度を dとするとともに、別途、生分解性榭脂層 (A)および生分 解性榭脂層(C)の透湿度を同様に測定し、それぞれの透湿度を aおよび cとする。ヮ ックス組成物層(B)の透湿度を bとすると、下記の関係が成り立つ。ここで、 a、 b、 c、 d は、実際の厚みにおける透湿度であり、 1mmの厚みに換算した透湿度ではない。
l/d= l/a+ l/b + l/c
この式から、未知数であるワックス組成物層(B)の透湿度 bを求めることができる。
[0035] 前記生分解性フィルムは、これを生分解性の容器本体の表面に被覆することを考 慮すると、熱成形性を有していることが好ましい。熱成形性とは、生分解性フィルムを 所定温度に加熱した後、該フィルムの両端を把持し一軸方向に沿って互!、に逆方向 に引つ張って 2倍の長さに引き伸ばしたときに、該生分解性フィルムが破断しな 、こと をいう。生分解性フィルムを熱成形する場合の加熱温度は、使用する生分解性榭脂 、防湿層に使用するワックス、熱成形の方法 (真空 Z圧空成形、プレス成形等)により 適宜選択する。この加熱温度は、生分解性フィルム全体が適切な厚み分布で成形さ れ、且つ十分な防湿性が得られるよう選択する。フィルムの厚みのムラを抑えることが できる加熱温度で熱成形することが、十分な防湿性を得る上で重要である。その条 件を満足する加熱温度は、当業者が一般的に行う最適条件化の手法により求めるこ とがでさる。
[0036] 熱成形性の有無の判断においても、実際の成形と同様に良好な結果を得ることが できる加熱温度を選択する。加熱温度の目安としては、例えば、以下の温度範囲で 条件を選択することで良好な結果が得られる場合が多 ヽ。生分解性榭脂が結晶性榭 脂の場合は、 DSC測定により得た融解曲線力 求めた溶融ピーク温度 Tm(°C)に対 し、(Tm - 40°C)—(Tm+ 20°C)の範囲である。ただし、溶融ピーク温度が複数存在 する場合には、融解熱量が最も大きな溶融ピークを選択する。生分解性榭脂が非結 晶性榭脂の場合は、そのガラス転移温度 Tgに対して Tg— Tg + 50°Cの範囲である。
[0037] 前記生分解性フィルムは、現実的な期間での分解を考慮すると、例えば、コンポス ト等では 2· 3ヶ月の期間で分解できる点から、その生分解度 (好気的究極生分解度: JIS Κ 6950又 ¾JIS K6953)が 30%以上であることが好ましぐ 50%以上である ことがより好ましぐ 60%以上であることがさらに好ましい。
[0038] 前記生分解性フィルムは、防湿層を構成するワックス組成物と、生分解性榭脂層を 構成する生分解性榭脂とを原料とし、例えばマルチマ-ホールドの Tダイを用いた溶 融共押出成形することで得られる。ワックス組成物は先に述べた通り溶融成形に適し た流動特性を有しているので、この共押出成形は首尾良く行うことができる。得られた フィルムは必要に応じて一軸又は二軸延伸される。
[0039] 前記生分解性フィルムは、フィルム強度及びフィルムの成形性の点力 その全厚み 力 10— 2000 mであることが好ましぐ 20— 1000 mであることがより好ましい。生 分解性フィルムにおける生分解性榭脂層の厚みはその使用目的等に応じて適宜選 択することができる。フィルム強度とフィルムの取扱い性の点からは 5— 1000 μ mで あることが好ましぐ 10— 500 mであることがより好ましい。一方、防湿層の厚みは、 実用的な防湿性を与えるとともに高温での生分解性フィルムの強度を維持する点か ら 1一 500 μ mであることが好ましぐ 10— 100 μ mであることがより好ましい。
[0040] 前記生分解性フィルムにおける前記生分解性榭脂層は、生分解性を有する脂肪族 ポリエステル系榭脂、脂肪族ポリエステルと芳香族ポリエステルとの共重合系榭脂、 又は脂肪族ポリカーボネート系榭脂から構成されていることが好ましい。具体的には 、ポリエチレンサクシネート(PES)、ポリブチレンサクシネート(PBS)、ポリ乳酸(PLA )、ポリグリコール酸(PGA)、ポリヒドロキシブチレート(PHB)、ポリ力プロラタトン(PC L)、ポリ力プロラタトンとポリブチレンサクシネートとの混合物若しくは共重合物(PCL /PBS)、ポリヒドロキシブチレートとポリヒドロキシバリレートとの共重合物(PHBZP HV)、ポリブチレンサクシネートとポリブチレンアジペートとの混合物若しくは共重合 物(PBSZPBA)、ポリエチレンテレフタレートとポリエチレンサクシネートとの共重合 物(PETZPES)、ポリブチレンテレフタレートとポリブチレンアジペートとの共重合物
(PBTZPBA)等が挙げられる。これらの榭脂は、単独で又は二以上を組み合わせ て用いることができる。
[0041] 前記生分解性榭脂層は、実用的な期間で分解する点から、生分解度 (好気的究極 生分解度: JIS K 6950又 ίお IS K6953)力 30%以上であることが好ましぐ 50 %以上であることがより好ましぐ 60%以上であることがさらに好ましい。
[0042] 前記生分解性フィルムを生分解性の容器本体の表面に被覆することで、生分解性 容器となすことができる。前記生分解性フィルムが防湿層と生分解性榭脂層の 2層構 造である場合、該生分解性フィルムは生分解性榭脂層が容器本体と反対側を向くよ うに被覆される。前記容器本体は、生分解性を有するものであればその素材に特に 制限はない。容器本体の生分解度 (好気的究極生分解度: JIS K6950又〖お IS K 6953)は、 30%以上であることが好ましぐ 50%以上であることがより好ましぐ 60% 以上であることが更に好ましい。前記容器本体の素材としては、例えば、天然繊維、 生分解性の合成繊維等の繊維、天然高分子、前記生分解性榭脂、及びこれらの混 合物等が挙げられる。天然繊維としては、木材パルプ繊維、非木材パルプ繊維、絹、 羊毛等が挙げられる。生分解性の合成繊維としては、ポリ乳酸繊維、ビニロン、レーョ ン等が挙げられる。天然高分子としては、でん粉、たん白質等が挙げられる。容器本 体はその形態に特に制限はない。例えば、カップ、どんぶり、ボトル、皿、鉢、箱、筒 等の各種の容器形態が挙げられる。
[0043] 前記容器本体の部位のうち生分解性フィルムで被覆する部位は、容器の用途、形 態等に応じて適宜選択することができる。例えば、容器本体の内面、容器本体の外 面等が挙げられる。特にカップ等に用いる場合には、少なくとも容器本体の内表面が 生分解性フィルムで被覆されて ヽることが好まし 、。
[0044] 前記容器本体の表面に生分解性フィルムを被覆する場合は、容器本体の表面と生 分解性フィルムとの間に接着剤を介して接合することもできるし、容器本体の表面と 生分解性フィルムとを直接接合することもできる。接着剤を用いる場合、該接着剤は 、生分解性を有するものであればその組成に特に制限はない。接着剤は生分解性フ イルムと同様に生分解度 (好気的究極生分解度: JIS K 6950又 ίお IS K6953)が 30%以上であるものが好ましぐ 50%以上であるものがより好ましぐ 60%以上であ るものがさらに好ましい。具体的にはデンプン、ポリビュルアルコール、〖こ力わ、ゼラ チン、カゼイン、未加硫の天然ゴム、未加硫のポリイソプレン等が挙げられる。また、 接着剤として、加熱溶融により容器本体に接着させるために容器本体側の生分解性 榭脂層よりも融点の低 、生分解性榭脂ゃ各種天然榭脂等を用いることもできる。溶 媒の揮散により接着させる接着剤を用いる場合には、接着成分を含む溶液を生分解 性フィルムと容器本体との何れか一方若しくは両方に塗布することもでき、接着成分 を生分解性フィルム若しくは容器本体の何れか一方の表面に形成し溶媒を他の一方 に塗布することにより接着させることもできる。容器本体の表面と生分解性フィルムと を直接接合する方法としては、例えば、生分解性フィルムを容器本体の内面に配し た後、容器本体をその外面側から加熱した状態で真空成形又は圧空成形を行う方 法が挙げられる。
[0045] 前記生分解性フィルムの用途は広ぐ先に述べた通り生分解性容器における容器 本体表面の被覆に用いられるほか、各種包装材フィルムや板紙 (生分解性の紙)と生 分解性フィルムとをラミネートしたラミネート紙等の生分解性防湿紙、該生分解性防 湿紙からカップや箱等の形態に折曲加工や成形した生分解性容器にも用いることが できる。
[0046] 本発明のワックス組成物は種々の方法で調製できる。本発明のワックス組成物は、 一例としてワックスとポリイソプレン又は天然ゴム等の高分子物質とを加圧-一ダ一等 の混練機に供給し高剪断力で混練することで製造することができる。特に後述する本 発明のワックス組成物の製造方法は、本発明のワックス組成物の製造に好適である。 また、これ以外に別の例として、ポリイソプレン又は天然ゴム等の高分子物質を n— ヘプタン等の溶剤に溶解させ、更に前記ワックスを該溶媒に溶解させた後、該溶剤を 揮発等の手段によって除去することで製造することができる。
これらの製造方法のうち、溶剤の残留がない、溶剤を使用しないので環境負荷が 小さい、製造コストが低い点から前者の方法を用いることが好ましい。また、ポリイソプ レン又は天然ゴムの場合は加熱すると酸ィヒにより著しく分子量が低下するので加熱 する際には、その時間を極力短くし、窒素雰囲気下で行うことが好ましい。特に、溶 剤を用いて組成物を調製する場合には、溶剤を揮散させる時に分子量が低下し、溶 融粘度の著し 、低下が生じやす 、ので注意が必要である。
[0047] 次に、本発明のワックス組成物の製造方法を、その好まし!/ヽ実施形態に基づき説 明する。
[0048] 前記ワックスは、混練機に供給するに先立って、粉砕機、押出機、融解させた後に 液滴を冷却するなどの方法によって適切な大きさのペレットまたは粉体状 (例えば平 均直径 2— 10mm又は、微粉 lmm以下)にすることが好ましい。
[0049] 本発明のワックス組成物には、混練に支障ない範囲で、酸化防止剤、着色剤、分 散助剤、その他必要に応じて適宜添加剤等を含ませることもできる。 [0050] 本発明で使用される混練機としては、それ自体公知の装置であり、たとえば容器内 で互いに異方向に回転可能な二枚の混練羽根を有する加圧ニーダ一等が挙げられ る。
[0051] 次に、以上の各成分を含むワックス組成物の製造方法について説明する。本発明 のワックス組成物の製造方法では、前記ワックスと前記被混合物とを該ワックスの融 解完了温度未満の温度、好ましくは DSC測定により得た融解曲線から求めたヮック スの溶融ピーク温度以下の温度で混練機によって混合して組成物を得るのが好まし い。溶融ピークが複数ある場合は、融解熱量の最も大きなピークのピーク温度以下で 混合することが好ましい。カゝかる条件で混合することで、ワックスの融解〖こよるワックス の急激な粘度が低下もなぐ被混合物に十分な剪断力が加わり、均一なワックス組成 物を得ることができる。ワックスの融解完了温度未満の温度で混合すると、未溶融状 態のワックスの結晶が残っているため、ワックスを見かけ上高粘度の流動体として扱う ことができるので、一般的に行われているプラスチック材料のコンパウンドと同様の方 法により、ワックスと被混合物の混合を行うことができる。
[0052] より好ましい混合温度の選定方法を述べる。すなわち、 DSC測定により得たヮック スの融解曲線から、融解ワックス成分の全吸熱量を ΔΗと、混合温度よりも低温側の 吸熱量の ΔΗ,の比 ΔΗ' Ζ ΔΗ力 好ましくは 0. 7以下となる温度範囲、より好ましく は 0. 5以下となる温度範囲、さらに好ましくは 0. 3以下となる温度範囲を選定するこ とで、一層良好な混合が可能となる。ワックスの融解開始温度よりも低い温度で混合 を行うことに支障は無いが、結晶性の高い硬いワックスなどの場合には、混合温度で 粘性を有することが均一な混合物を得る上で好ましい場合があり、その場合には ΔΗ ' Ζ ΔΗの下限の温度として、好ましくは 0. 03以上、より好ましくは 0. 05以上となる よう選択する。同様の考え方として、ワックスの融解開始温度近傍もしくはそれよりも 低 ヽ温度で混合する場合に、ワックスの可塑化効果を有するオイル成分などを適量( ワックス組成物中に好ましくは 20重量%以下、より好ましくは 10重量%以下となるよう に)を添加することも可能である。
[0053] 最適な混合温度は、被混合物の物性に合わせて、前記の混合温度の中から適宜 選択することができる。例えば、被混合物が非晶性高分子である場合は、高分子物 質のガラス転移温度以上で混合することが好ま 、。被混合物が結晶性高分子物質 である場合は、高分子物質の融点以上の温度であることが好ましい。被混合物が無 機又は有機の粉体である場合は、粉体の均一分散を行いやすいよう、ワックスの融 解完了温度よりも十分に低い温度 (例えば、ワックスの融解開始温度よりも低い温度) で混合することが好ましい。ただし、ワックスのガラス転移温度よりも低い温度での混 合は、ワックスが硬過ぎて、分散状態が悪化したり、混合装置に過度の負荷がかかる などの悪影響がでる場合があるので、ワックスのガラス転移温度以上で混合すること が好ましい。また、ワックスや被混合物の温度依存性を考慮し、前記の好ましい範囲 の中でも、両者の物性が混合に最適な状態になるように混合温度を調整することが 好ましい。
本発明におけるワックスの融解完了温度、融解ピーク温度、 ΔΗと ΔΗ,の比 ΔΗ, Ζ ΔΗは、例えば、以下の方法で求めることができる。
測定機:セイコー電子工業 (株)の型式 DSC220
試料容器:品番 ΡΝ/50 - 020 (アルミ製オープン型試料容器、容量 15 1)および 品番 ΡΝΖ50— 021 (アルミ製オープン型試料容器クリンプ用カバー)
試料重量:約 lOmg
昇温速度、降温速度: 5°C/min
測定温度範囲:用いるワックスに応じて、最適な範囲を選択する。融解完了温度お よび融解ピーク温度は、一度融解させた後に 5°CZminの速度で結晶化させた後、 再度 5°CZminの速度で昇温させたときのデータを使用して求める。
具体例を挙げると、 [1st昇温過程] 30°Cから 130°C、 [降温過程] 130°C (5分間 保持)から 30°C、 [2nd昇温過程 ]—30°Cから 130°Cと連続して測定を行い、 2nd昇 温過程のデータを使用する。
融解完了温度:図 1に示すように、融解ピークの高温側のベースラインの接線と、ピ ークの高温側傾斜ラインの 1Z5ピーク高さに位置する点の接線とが交差する点の温 度を融解完了温度とする。複数のピークが存在する場合は、最も高温側に位置する ピークを選択して、融解完了温度を求める。
主ピーク温度:融解曲線のピークの温度を前記データから求める。複数のピークを 持つ場合は、融解熱量の最も大きなピークを選択し、それを融解ピーク温度とする。
Δ H:全ての溶融ピークの吸熱量の合計値
Δ Η':混合温度以下の吸熱量
[0055] 本発明のワックス組成物の製造方法は、ワックス及び高分子物質を含み該ワックス を主体とするワックス Ζ高分子物質組成物を混練する工程と、このワックス Ζ高分子 物質組成物にフィラーを更に添加して混練する工程とに分けられ、さらにワックス Ζ 高分子物質組成物を混練する工程はマスターバッチ調製工程と本練り工程とに分け られる。
本発明のワックス組成物の製造工程においては、フィラーの混練工程に先立つヮッ タス Ζ高分子物質組成物を製造する工程において、両者が均一に混合された組成 物を得ることが重要である。
以下、ワックス Ζ高分子物質組成物の混練工程を中心に説明する。
[0056] マスターバッチ調製工程においては、本練り工程に先立ち予めマスターバッチを調 製する。マスターバッチは、該マスターバッチの重量基準で 5— 45重量0 /0のワックス 及び 55— 95重量%の高分子物質を含む。ここで留意すべきことは、マスターバッチ の組成が、目的物であるワックス組成物の組成に対して逆転していることである。即ち 、マスターバッチでは高分子物質が主成分であり且つワックスが副成分であるのに対 して、目的物であるヮッスク糸且成物ではワックスが主成分であり且つ高分子物質が副 成分である。このような組成のマスターバッチを予め調製しておき、該マスターバッチ にワックスを添加し混練することで、ワックスと高分子物質とが均一に且つ短時間で混 合されることを本発明者らは知見したものである。初めカゝらワックス組成物の組成通り にワックスと高分子物質とを混練しても、つまり主成分たるワックスに副成分である高 分子物質を混練しても、混練物中に高分子物質の小粒が残存してしま!ヽ両者を均一 に混合させることができな 、。
[0057] 逆に、 5— 45重量%のワックスと 55— 95重量%の高分子物質とを混練すると、つま り主成分たる高分子物質に副成分たるワックスを混練すると、両者は容易に混合し、 両者が均一に混合されたマスターバッチが得られることを本発明者らは知見した。そ して、このようにして得られたマスターバッチにワックスを添加して、高分子物質の濃 度を希釈することで、ワックスと高分子物質とが均一に混合して、目的物であるヮック ス組成物が得られる。
[0058] マスターバッチの調製においては、各種の混練機、例えばバッチ式の加圧-一ダ 一、オープン-一ダー、二軸混練機、ロール混練機等を用いることができる。これら の混練機においては、混練時の温度制御の観点から、混合槽ゃ、ローター及びスク リューなどの可動部を冷却できる仕様となって 、ることが好ま 、。
[0059] ノツチ式の混練機を用いてワックスと高分子物質とを混練する場合には、該混練機 に投入するワックス及び高分子物質の総容量力 該混練機の容量の 60— 100%、 特に 75— 85%となるように、ワックス及び高分子物質を該混練機に投入することが、 十分な剪断力下に両者が混合されるようになる点から好ましい。混合槽の容量は、使 用するノ ツチ式の混練機のタイプに応じて様々であり特に制限はない。目的物であ るワックス組成物の生産量に応じて適切な容量を選択すればよい。
[0060] マスターバッチの調製においては、ワックスの融解完了温度未満の温度で該ヮック スと高分子物質とを混練することが好ま 、。ワックスの融解完了温度未満の温度で あれば未溶融状態のワックスの結晶が残って 、ることから、ワックスを見かけ上高粘 度の流動体として扱うことができるので、一般的に行われているプラスチック材料のコ ンパウンドと同様の方法により、ワックスと高分子物質とを混練させることができる。ま た、ワックスの融解に起因するワックスの急激な粘度低下がなぐ高分子物質に十分 な剪断力が加わり十分な混練がなされる。
[0061] マスターバッチの調製においては、ワックス及び高分子物質を混練機に投入する手 順に特に制限はない。例えば、ヮッスクの全量と高分子物質の全量を何れも一括して 混練機に投入し混練する方法を採用することができる。しかし、この方法よりも、全量 の高分子物質を混練機に一括投入し、次 ヽでワックスを混練機に分割投入する方法 を採用する方が、両者を一層均一に混合させ得ることが判明した。
[0062] ワックスを分割投入する場合には、一回当たりのワックスの投入量が、先に混練機 に投入してある非晶性高分子の全量に対して 1一 15重量%、特に 2— 6重量%とな るようにすることが好ましい。つまり一回当たりのワックス投入量を比較的少量とするこ とが好ましい。このような分割投入をすることで、ワックスと高分子物質とを一層均一に 混合させることができる。
[0063] またワックスを分割投入する場合には、分割投入の初期にお ヽては、投入量を相 対的に少量とし、後期においては相対的に多量とすることが好ましい。特に、ワックス の投入回数に連れてその投入量が漸次多くなるようにすることが好ま 、。このような 分割投入をすることで、混練時間を短縮化できる。混練時間の短縮は、製造コストの 低減のみならず、剪断力等に起因する高分子物質の分子量低下を防止する点から 特に効果的である。
[0064] マスターバッチの混練をバッチ式の加圧-一ダ一で行う場合は、ワックスの分割投 入の各回においては、先ず加圧しない条件下に混練を所定時間行い、次いで加圧 蓋等を用いて加圧した条件下に混練を所定時間行うことが好まし 、。これによつてヮ ッタスと高分子物質とを一層均一に混合させることができる。この場合、加圧しない条 件下に混練を行う時間よりも、加圧した条件下に混練を行う時間を長くすることが、更 に一層の混合均一の観点から好ましい。具体的には、加圧しない条件下に混練を行 う時間を 0. 5— 5分間、特に 0. 5— 2分間とすることが好ましい。一方、加圧した条件 下に混練を行う時間は 0. 5— 10分間、特に 1一 3分間とすることが好ましい。
連続式の二軸混練機で混練を行う場合は、前記方法の加圧しな!、条件下の混練 は必ずしも必要ではない。
[0065] 以上の操作によってマスターバッチが得られる。次に得られたマスターバッチとヮッ タスとを混練する本練り工程を行う。この場合、マスターバッチを混練機カゝら一旦取り 出し、別の混練機を用いて本練り工程を行うことができる。その場合の混練機として は、マスターバッチ調製工程において用い得るとして先に列挙したものと同様の混練 機を用いることができる。或いは、マスターバッチ調製工程で用いた混練機を引き続 き用 、て本練り工程を行ってもよ 、。マスターバッチ調製工程で用 、た混練機を引き 続き用いる場合であっても、マスターバッチを混練機力もー且取り出し、その一部を 用いることが好ましい。この理由は次の通りである。先に述べた通り、マスターバッチ 調製工程において、十分な剪断力下にワックスと高分子物質とを混合させるには、混 練機に投入する両者の総容量を混練機の混合槽の容量の 60— 100%とすることが 好ましい。従って、マスターバッチが出来上がった時点においては、混練機の混合槽 はマスターノ《ツチでほぼ満たされている。それ故、マスターバッチを取り出さずに更に ワックスを添加する余裕がないこともある力 である。
[0066] マスターバッチ調製工程と同様に本練り工程においても、バッチ式の混練機に投 入するワックス及びマスターバッチの総容量力 該混練機の容量の 60— 100%、特 に 80— 90%となるよう〖こ、ワックス及びマスターバッチを混練機に投入すること力 十 分な剪断力下に両者が混合されるようになる点から好ましい。
[0067] 混練時の温度条件もマスターバッチ調製工程の場合と同様とすることができる。つ まりワックスの融解完了温度未満の温度で混練することが好ましぐまたワックスのガ ラス転移温度以上で混練することも好ましい。更に高分子物質の Tm以上もしくはガ ラス転移温度以上で混合することも好ま 、。
[0068] 本練り工程においては、ワックス及びマスターバッチを混練機に投入する手順に特 に制限はない。例えば、ヮッスクの全量とマスターバッチの全量を何れも一括して混 練機に投入し混練する方法を採用することができる。また、全量のマスターバッチを 混練機に一括投入し、次 ヽでワックスを混練機に分割投入する方法を採用することも できる。後者の方法の方が、ワックスとマスターバッチとを一層均一に混合させること ができる。この事情はマスターバッチ調製工程の場合と同様である。
[0069] ワックスを分割投入する場合には、一回当たりのワックス投入量を比較的少量とする ことが好ましい。具体的には、一回当たりのワックスの投入量力 先に混練機に投入 してあるマスターバッチの全量に対して 5— 50重量%、特に 6— 30重量%となるよう にすることが好ましい。このような分割投入をすることで、ワックスとマスターバッチとを 一層均一に混合させることができる。
[0070] またワックスを分割投入する場合には、分割投入の初期においては、投入量を相 対的に少量とし、後期においては相対的に多量とすることが好ましい。特に、ワックス の投入回数に連れてその投入量が漸次多くなるようにすることが好ま 、。このような 分割投入をすることで、マスターバッチ調製工程の場合と同様に混練時間を短縮ィ匕 できる。
[0071] 本練り工程をバッチ式の加圧-一ダ一で行う場合は、ワックスの分割投入の各回に おいては、マスターバッチ調製工程の場合と同様に、先ず加圧しない条件下に混練 を所定時間行 、、次 、で加圧蓋等を用いて加圧した条件下に混練を所定時間行うこ とが好ましい。これによつてワックスとマスターバッチとを一層均一に混合させることが できる。この場合、加圧しない条件下に混練を行う時間よりも、加圧した条件下に混 練を行う時間を長くすることが、更に一層の混合均一の観点力も好ましい。具体的に は、加圧しない条件下に混練を行う時間を 0. 5— 5分間、特に 0. 5— 2分間とするこ とが好ましい。一方、加圧した条件下に混練を行う時間は 0. 5— 10分間、特に 1一 5 分間とすることが好ましい。連続式の二軸混練機で混練を行う場合は、前記方法の 加圧しな!、条件下の混練は必ずしも必要ではな!/、。
[0072] 以上の本練り工程によって、ワックスと高分子物質とが均一に混合したワックス組成 物(ワックス Z高分子物質組成物)が得られる。得られたワックス組成物は、混練中に 気泡を含むことがある。その気泡を抜くために脱泡を行ってもよい。脱泡には一般的 な方法を用いることができる。例えば、減圧下にある恒温槽中でワックス組成物をヮッ タスの融解完了温度以上の温度に保持する方法がある。また混練操作を、減圧手段 を持つ混練装置を用いて減圧下でワックスの融解完了温度以上で混合する方法な どが用いられる。
[0073] 本練り工程によって得られたワックス組成物(ワックス Z高分子物質組成物)に、一 括または分割してフィラーを投入し、先ず加圧しな!、条件下に混練を所定時間行!ヽ 、次いで加圧蓋等を用いて加圧した条件下に混練を所定時間行うことが好ましい。こ れによって、本練り工程によって得られたワックス組成物とフィラーとを均一に混練す ることがでさる。
[0074] 二軸混練機などを用いて混練を行う場合には、ワックスの融解完了温度未満の温 度に制御した混合ゾーンの後ろに、ワックスの融解完了温度以上の温度に加熱した 減圧ゾーンを設けて脱泡するという方法も選択できる。複数の二軸押出機、または二 軸押出機と単軸押出機を組み合わせて、それぞれで混合と脱泡を行うことも可能で ある。勿論ワックス組成物の具体的な用途や、本練り工程以降のワックス組成物の加 ェ内容によっては、脱泡の必要がない場合もある。
[0075] また、被混合物として天然ゴムやイソプレンゴムなどを用いる場合は、ワックスと被混 合物との分散状態をより均一にするために得られた前記組成物を前記ワックスの融 解完了温度以上に加熱することが好ましい。
[0076] 本発明の製造方法によれば、前記本発明のワックス組成物を短時間で収率よく製 造することができ、被混合物をワックス中に均一に分散することができる。特に、ヮック スと天然ゴムもしくはイソプレンゴムとの混合を行った場合には、ワックスが未溶融の 状態であっても極めて均一な分散が可能となる。本発明の製造方法は、上述の本発 明の生分解性ワックス組成物の製造に好適である。
[0077] 本発明の製造方法で得られるワックス組成物は、ワックスを主体とする防湿性組成 物や接着用組成物として特に好ましく用いられる。また、製造工程において有機溶剤 などを一切用いることなくワックス組成物を得ることができるため、本発明の製造方法 で得られるワックス組成物を用いることで食品包装材料を始めとして様々な分野にお V、て極めて安全な製品を提供できる。
実施例
[0078] 以下、実施例により本発明を更に具体的に説明する。なお、本発明は本実施例に 何等制限されるものではな 、。
[0079] 〔実施例 1 1〕
マイクロクリスタリンワックス(日本精蝌 (株)製、品番「Hi-Mic-1070」、融解完了 温度 86°C、主ピーク温度 44°C)を粉砕機で 10mm以下に冷凍粉砕した。また、イソ プレンゴム(日本ゼオン (株)製、品番 Nipol— IR2200)を装置に投入しやす!/、大きさ に切断した。
(株)モリヤマ製の加圧-一ダー(DS. DX75型)を用い、加圧-一ダ一の混練容 器に前記イソプレンゴム 41. 5kgを投入した。次いで、前記マイクロクリスタリンヮック ス 12. 5kgを、前記イソプレンゴム全量に対して 2%— 6%の範囲で 10分割し、分割 投入を行った。ワックス分割投入時には投入毎に加圧なしの混練を約 0. 5分間行い 、その後加圧混練を 1. 5分間または 2分間行った。混練時には、混合容器及びロー ターに約 15°Cの冷却水を流し、ヒーターは全て OFFの状態で行った。
得られたマスターバッチ組成物は、気泡を含んだ白色であり、各成分の分散が均一 であることが確認できた。得られた組成物を 110°C、窒素気流の乾燥機中で溶融状 態にし、再度各成分の分散状態を確認したところ、未分散のイソプレンゴムの存在は 確認できな力つた。
本練工程では、得られたマスターバッチ組成物 26. Okgを、(株)森山製の加圧- ーダ一の混練容器に投入し、さらに前記マイクロクリスタリンワックス 54kgを、前記イソ プレンゴム全量に対して 6%— 30%の範囲で 11分割し、分割投入を行った。ワックス の分割投入時には、投入毎に加圧なしの混練を約 0. 5分間行い、その後加圧混練 を 1. 5分間または 2分間行った。混練時には、混合容器及びローターに約 15°Cの冷 却水を流し、ヒーターは全て OFFの状態で行った。
得られたワックス組成物は、気泡を含んだ白色であり、各成分の分散が均一である ことが確認できた。得られた組成物を 110°C、窒素気流下、— 500mgHgの乾燥機中 で脱泡し、溶融状態で再度分散性を確認したところ、透明で均一な組成物であり、未 分散のイソプレンゴムの存在は確認できな力つた。
上記のワックス組成物 50gと、フイラ一として無水シリカ粒子(日本ァエロジル (株)製 、品番「AEROSIL 200」一次粒子の平均径 12 m) 2. 6gとを、東洋精機製作所( 株)製のラボプラストミル(30C150型)の混練容器に供給し、回転数 30rpm、ヒータ 一は全て OFFの状態で 10分間混練を行 ヽ、フィラーを含むワックス組成物を得た。
[0080] 次いで、ポリ力プロラタトンとポリエチレンサクシネートとをポリマーブレンドした生分 解性榭脂 (ダイセル化学工業 (株)製 PHB05)力もなるフィルムの間にワックス組成物 の層を挟み、プレス成形機によって成形して 3層構造の生分解性フィルムを作製した 。得られた生分解性フィルムは全厚 350 μ m、ワックス組成物の層の厚みが 150 μ m 、各生分解性榭脂フィルムの厚みが 100 μ mであった。
[0081] 〔実施例 2— 1〕
(株)森山製作所製の加圧-一ダー(DS0. 3— 3型)を用い、加圧-一ダ一の混練 容器にマイクロクリスタリンワックス(日本精蝌 (株)製、品番「Hi-Mic-1070」 ) 1800 gと、イソプレンゴム(日本ゼオン (株)製、品番 Nipol— IR2200) 600gを入れ、回転 数 20rpmで 5分間混練を行い、次いで同じワックス 600gを追加投入してさらに 10分 間の混練を行い、フィラーを含まないワックス組成物を得た。混練は、混合容器及び ローターに 10°Cの冷却水を流し、ヒーターは全て OFFの状態で行った。
[0082] 得られたフィラー無添カ卩のワックス組成物 50gと、フィラーとしての無水シリカ粒子( 日本ァエロジル (株)製、品番「AEROSIL 200」、一時粒子の平均径 12 m) 2. 6 g (5重量%)とを、東洋精機製作所 (株)製ラボプラストミル (30C150型)の混練容器 に供給し、回転数 30rpm、ヒーターを全て OFFの状態で 10分間混練を行い、フイラ 一を含むワックス組成物を得た。
[0083] 次いで、ポリ力プロラタトンとポリエチレンサクシネートとをポリマーブレンドした生分 解性榭脂 (ダイセル化学工業 (株)製 PHB05)力もなるフィルムの間にワックス組成物 の層を挟み、プレス成形機によって成形して 3層構造の生分解性フィルムを作製した 。得られた生分解性フィルムは全厚 350 μ m、ワックス組成物の層の厚みが 150 μ m 、各生分解性榭脂フィルムの厚みが 100 μ mであった。
[0084] 〔実施例 2— 2〕
実施例 2— 1において、無水シリカ粒子を 10重量%とした以外は、実施例 2— 1と同 様にフィラー添カ卩のワックス組成物および 3層フィルムを得た。
[0085] 〔実施例 2— 3〕
実施例 2— 1にお 、て、無水シリカ粒子を親油性処理無水シリカ(日本ァエロジル ( 株)製、品番「AEROSIL R972」、一次粒子の平均径 16 m)に代え、実施例 2— 1 と同様にフィラー添カ卩のワックス組成物および 3層フィルムを得た。親油性処理無水 シリカの添加量は 5重量%である。
[0086] 〔実施例 2— 4〕
実施例 2— 2において、フィラーを親油性処理無水シリカの添加量を 10重量%とし、 実施例 2— 2と同様にフィラー添カ卩のワックス組成物および 3層フィルムを得た。
[0087] 〔実施例 2— 5〕
実施例 2— 2において、フィラーを親油性雲母 (コープケミカル (株)製、品番「ソシマ フ MAE」、平均粒径 6 μ m)に代えて、実施例 3— 2と同様にフィラー添カ卩のワックス組 成物および 3層フィルムを得た。親油性雲母の添加量は 10重量%である。
[0088] 〔比較例 2— 1〕
実施例 2— 1一 2— 5と同等の履歴を受けたフィラー無添加のワックス組成物を得るた めに、実施例 1において、フィラー無添カ卩のワックス組成物のみをラボプラストミルに て再度混練してワックス組成物および 3層フィルムを得た。 [0089] 〔性能評価〕
得られたワックス組成物にっ 、て前述の方法で透湿度及び MFRを測定した。結果 を表 1に示す。ワックス組成物の透湿度については、 3層フィルムの透湿度の測定値 と、生分解性榭脂フィルム層(PHB05、 100 μ m)の透湿度の測定値 132g/m2' 24 hrから求めた。
[0090] [表 1]
Figure imgf000025_0001
[0091] 表 1から明らかなように、各実施例(実施例 1-1、 2-1-2-5)のワックス組成物は MFRが高ぐまた透湿度が低 ヽワックス組成物および生分解性フィルムを得ることが できた。なお表には示していないが、各実施例のワックス組成物及び生分解性フィル ムは何れも生分解性を有して ヽることを確認した。
[0092] 以下に、ワックス Z高分子物質組成物の混練条件を種々変更する試験を行った。フ イラ一の混練工程に先立つ、ワックス Z高分子物質組成物の混練工程にぉ 、て均一 な混合状態を達成することが、本発明のワックス組成物の製造において特に重要で ある。
下記実施例 3— 1及び比較例 3— 1、 3—2のようにしてワックス組成物を作製した。実 施例 3— 1及び比較例 3— 1、比較例 3— 2の混練装置には 75L加圧-一ダーを使用し た。そして、該組成物について、下記のように分散の均一性を評価した。分散性の評 価は、該組成物をワックスの融点以上に加熱して脱泡した後、溶融状態のまま lmm 程度の厚みに伸ばして目視により粒状の被混合物の存在の有無を確認する方法で 行った。また、混練物の物性を確認するためメルトフローインディクサ一(温度 125°C 、荷重 1. 25kg)で MFR (メルトフローレート)を測定した。なお、粒状物の視認は未 分散状態であると判断した。
[0093] 〔実施例 3— 1〕
マイクロクリスタリンワックス(日本精蝌 (株)製、品番「Hi-Mic-1070」、融解完了 温度 86°C、主ピーク温度 44°C)を粉砕機で 10mm以下に冷凍粉砕した。また、イソ プレンゴム(日本ゼオン (株)製、品番 Nipol— IR2200)は装置に投入しやす!/、大きさ に切断した。
[0094] マスターバッチ調整工程において加圧ニーダ一への投入量は、混練容器容量の 8 0%、比重 0. 9、イソプレンゴム 100重量部、マイクロクリスタリンワックス 30重量部か ら算出し 7こ。
投入量 = 75[¾Π圧-一ダー容積: L] X 0. 8 [投入容量] X 0. 9 [比重]
[0095] (株)モリヤマ製の加圧-一ダー(DS. DX75型)を用い、加圧-一ダ一の混練容 器にイソプレンゴム(日本ゼオン(株)製、品番 Nipol— IR2200) 41. 5kg (100重量 部)を投入し、回転数 30rpmで 4分間混練を行い、次いでマイクロクリスタリンワックス (日本精蝌 (株)製、品番「Hi-Mic— 1070」 ) 12. 5kg (30重量部)をイソプレンゴム 全量に対して 2%から 6%の範囲で 10分割し、分割投入を行った。ワックス分割投入 時には投入毎に加圧なしの混練を約 0. 5分間行い、その後加圧混練を 1. 5分間ま たは 2分間行った。混練は、混合容器及びローターに約 15°Cの冷却水を流し、ヒー ターは全て OFFの状態で行った。混練終了後の組成物の温度を接触式温度計で直 接測定したところ、 60— 70°Cであり、その時の Δ Η' Ζ Δ Ηは 0. 70—0. 85であった
[0096] 得られたマスターバッチ組成物は、気泡を含んだ白色のもので、各成分の分散が 均一であることが確認できた。得られた組成物を 110°C、窒素気流の乾燥機中で溶 融状態にし、再度分散状態を確認したところ、未分散の天然ゴムの存在は確認でき なかった。
[0097] 本練り工程での混練のため、得られたマスターバッチ組成物を混練容器力 全量 取り出し計量を行った。本練り工程において加圧-一ダ一への投入量は、混練容器 容量の 90%、比重 1. 0、イソプレンゴム 130重量部、マイクロクリスタリンワックス 205 重量部から算出した。
投入量 = 75[¾Π圧-一ダー容積: L] X 0. 9 [投入容量] X I. 0 [比重]
[0098] (株)モリヤマ製の加圧-一ダー(DS. DX75型)を用い、加圧-一ダ一の混練容 器に作成したマスターバッチ組成物 26. Okg (130重量部)を投入し、回転数 30rpm で 5分間混練を行い、次いでマイクロクリスタリンワックス(日本精蝌 (株)製、品番「Hi —Mic—1070」)46. 5kg (205重量部)をイソプレンゴム全量に対して 6%— 30%の 範囲で 11分割し、分割投入を行った。ワックス分割投入時には投入毎に加圧なしの 混練を約 0. 5分間行い、その後加圧混練を 1分間または 2分間または 5分間行った。 混練は、混合容器及びローターに約 15°Cの冷却水を流し、ヒーターは全て OFFの 状態で行った。混練終了後の組成物の温度を接触式温度計で直接測定したところ、 60— 70°Cであり、その時の Δ Η' Ζ Δ Ηは 0. 70—0. 85であった。
[0099] 得られたワックス組成物は、気泡を含んだ白色のもので、各成分の分散が均一であ ることが確認できた。得られた組成物を 110°C、窒素気流、— 500mmHgの乾燥機中 で脱泡し、溶融状態で再度分散状態を確認したところ、透明で均一な組成物であり、 未分散の天然ゴムの存在は確認できな力つた。また、混練物の物性を確認するため メルトフローインディクサ一(温度 125°C、荷重 1. 25kg)で MFRを測定した結果、 M FR値が約 37[g/10分]であった。
[0100] 〔比較例 3— 1〕
(株)モリヤマ製の加圧-一ダー(DS. DX75型)を用い、本来得ようとしているヮッ タス主体とした混練物の糸且成比であるイソプレンゴム 30%、マイクロクリスタリンヮック ス 70%組成物の混練を行った。加圧-一ダ一への投入量は、混練容器容量の 90% 、比重 1. 0、イソプレンゴム 100重量部、マイクロクリスタリンワックス 235重量部から 算出した。
[0101] 加圧-一ダ一の混練容器にイソプレンゴム(日本ゼオン (株)製、品番 Nipol— IR22 00) 20. 0kg (100重量部)を投入し、回転数 30rpmで 5分間混練を行い、次いでマ イク口クリスタリンワックス(日本精蝌 (株)製、品番「Hi— Mic— 1070」)47. 5kg (235 重量部)をイソプレンゴム全量に対して 30%から 60%の範囲で 6分割し、分割投入を 行った。ワックス分割投入時には投入毎に加圧なしの混練を約 0. 5分間または 2分 間行い、その後加圧混練を 1分間または 2分間または 5分間行った。混練は、混合容 器及びローターに約 15°Cの冷却水を流し、ヒーターは全て OFFの状態で行った。混 練終了後の組成物の温度を接触式温度計で直接測定したところ、 40— 50°Cであり 、その時の Δ Η,/ Δ Ηは 0. 26—0. 50であった。
[0102] 得られた組成物は、気泡を含んだ半透明のもので、目視により未混練物のイソプレ ンゴムが確認できた。得られた組成物を 110°C、窒素気流、— 500mmHgの乾燥機 中で脱泡し、溶融状態で再度分散状態を確認したところ、目視により未分散のイソプ レンゴムの存在が確認された。なお、イソプレンゴムの未分散物が多量なので、 MFR は測定しな力つた。
[0103] 〔比較例 3— 2〕
(株)モリヤマ製の加圧-一ダー(DS. DX75型)を用い、本来得ようとしているヮッ タス主体とした混練物の糸且成比であるイソプレンゴム 30%、マイクロクリスタリンヮック ス 70%組成物の混練を行った。加圧-一ダ一への投入量は、混練容器容量の 90% 、比重 1. 0、イソプレンゴム 100重量部、マイクロクリスタリンワックス 235重量部から 算出した。
[0104] 加圧-一ダ一の混練容器にイソプレンゴム(日本ゼオン (株)製、品番 Nipol— IR22 00) 20. 0kg (100重量部)を投入し、回転数 30rpmで 5分間混練を行い、次いでマ イク口クリスタリンワックス(日本精蝌 (株)製、品番「Hi— Mic— 1070」)47. 5kg (235 重量部)をイソプレンゴム全量に対して 4%から 30%の範囲で 10分割し、分割投入を 行った。ワックス分割投入時には投入毎に加圧なしの混練を約 0. 5分間または 2分 間行い、その後加圧混練を 1分間または 2分間および 5分間行った。混練は、混合容 器及びローターに約 15°Cの冷却水を流し、ヒーターは全て OFFの状態で行った。混 練終了後の組成物の温度を接触式温度計で直接測定したところ、 40— 50°Cであり 、その時の Δ Η,/ Δ Ηは 0. 26—0. 50であった。
[0105] 得られた組成物は、気泡を含んだ半透明のもので、目視により未混練物のイソプレ ンゴムが確認できた。得られた組成物を 110°C、窒素気流、— 500mmHgの乾燥機 中で脱泡し、溶融状態で再度分散状態を確認したところ、目視により未分散のイソプ レンゴムの存在が確認された。なお、混練物の物性を確認するため、混練物からイソ プレンゴムの未分散物を取り除きメルトフローインディクサ一(温度 125°C、荷重 1. 2 5kg)で MFRを測定した。結果、 MFR値が約 104[g/10分]で、実施例 3—1で実施し たマスターノツチ方法と比較して MFR値が高くなつていることが確認された。
産業上の利用可能性
[0106] 本発明の製造方法によれば、各成分の分散が均一なワックス組成物を、短時間且 つ低コストで収率よく製造できる。
[0107] また、本発明のワックス組成物は、防湿性に優れ、溶融成形が容易である。該ヮック ス組成物を用いることにより、防湿性に優れた生分解性フィルムを得ることができる。

Claims

請求の範囲
[I] ワックスを主体とし、生分解性の高分子物質およびフィラーを含有し、 40°C、 90%R Hにおける透湿度が 3g · mmZm2 · 24hr以下である生分解性ワックス組成物。
[2] 前記ワックスの含有量が 65— 95重量%である請求の範囲第 1項記載の生分解性 ワックス組成物。
[3] 前記生分解性の高分子物質の重量平均分子量が 200, 000以上である請求の範 囲第 1項又は第 2項記載の生分解性ワックス組成物。
[4] 前記高分子物質がポリイソプレン又は天然ゴムであり、該高分子物質を 5— 35重量 %含有する請求の範囲第 1項記載の生分解性ワックス組成物。
[5] 請求の範囲第 1項記載の生分解性ワックス組成物力 なる防湿層を有し、該防湿 層の少なくとも一面に生分解性の基材層が積層されてなる生分解性積層体。
[6] ワックスを主体とし、高分子物質およびフィラーを含有するワックス組成物の製造方 法であって、予めワックス及び高分子物質を含み該ワックスを主体とするワックス Z高 分子物質組成物を混練する工程と、このワックス Z高分子物質組成物にフィラーを更 に添加して混練する工程とを具備するワックス組成物の製造方法。
[7] 上記ワックス Z高分子物質糸且成物が 50— 95重量%のワックス及び 5— 50重量% の高分子物質を含有し、上記ワックス Z高分子物質組成物の製造工程が予め 5— 4 5重量%のワックス及び 55— 95重量%の高分子物質を含むマスターバッチを調製 するマスターバッチ調製工程と、このマスターバッチにワックスを更に添加し混練する 本練り工程とを具備する請求の範囲第 6項記載のワックス組成物の製造方法。
[8] マスターバッチ調製工程にぉ 、て、ワックスの融解完了温度未満の温度で、該ヮッ タスと高分子物質とを混練する請求の範囲第 7項記載のワックス組成物の製造方法。
[9] マスターバッチ調製工程にぉ 、て、全量の高分子物質を混練機に一括投入し、次 いでワックスを混練機に分割投入する請求の範囲第 7項又は第 8項記載のワックス組 成物の製造方法。
[10] 一回当たりのワックスの投入量力 高分子物質全量に対して 1一 15重量%となるよ うにワックスを分割投入する請求の範囲第 9項記載のワックス組成物の製造方法。
[I I] ワックスの投入回数に連れてその投入量が漸次多くなるようにワックスを分割投入 する請求の範囲第 9項記載のワックス組成物の製造方法。
[12] マスターバッチ調製工程において、ワックスと高分子物質とをバッチ式混練機によ つて混練し、
バッチ式混練機に投入するワックス及び高分子物質の総容量が、該混練機の容量 の 60— 100%となるように、ワックス及び高分子物質を投入する請求の範囲第 7項記 載のワックス組成物の製造方法。
[13] 本練り工程において、ワックスの融解完了温度未満で、該ワックスとマスターバッチ とを混練する請求の範囲第 7項記載のワックス組成物の製造方法。
[14] 本練り工程において、全量のマスターバッチを混練機に一括投入し、次いでヮック スを混練機に分割投入する請求の範囲第 7項記載のワックス組成物の製造方法。
[15] 一回当たりのワックスの投入量力 マスターバッチ全量に対して 5— 30重量%となる ようにワックスを分割投入する請求の範囲第 14項記載のワックス組成物の製造方法。
[16] ワックスの投入回数に連れてその投入量が漸次多くなるようにワックスを分割投入 する請求の範囲第 14項記載のワックス組成物の製造方法。
[17] 本練り工程において、ワックスとマスターバッチとをバッチ式混練機によって混練し、
ノツチ式混練機に投入するワックス及びマスターバッチの総容量が、該混練機の容 量の 60%以上となるように、ワックス及びマスターバッチを投入する請求の範囲第 7 項記載のワックス組成物の製造方法。
PCT/JP2004/014658 2003-10-06 2004-10-05 生分解性ワックス組成物 WO2005033208A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2004800292023A CN1863876B (zh) 2003-10-06 2004-10-05 生物降解性蜡组合物
US10/574,849 US7989522B2 (en) 2003-10-06 2004-10-05 Biodegradable wax composition
EP04792069A EP1672032A4 (en) 2003-10-06 2004-10-05 BIODEGRADABLE WAX COMPOSITION

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003346889A JP2005112944A (ja) 2003-10-06 2003-10-06 生分解性ワックス組成物
JP2003-346889 2003-10-06
JP2003431698A JP4895473B2 (ja) 2003-12-26 2003-12-26 ワックス組成物の製造方法
JP2003-431698 2003-12-26

Publications (1)

Publication Number Publication Date
WO2005033208A1 true WO2005033208A1 (ja) 2005-04-14

Family

ID=34425360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014658 WO2005033208A1 (ja) 2003-10-06 2004-10-05 生分解性ワックス組成物

Country Status (3)

Country Link
US (1) US7989522B2 (ja)
EP (1) EP1672032A4 (ja)
WO (1) WO2005033208A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8006518B2 (en) 2003-10-08 2011-08-30 Draka Comteq, B.V. Method for manufacturing a preform for optical fibres

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4838559B2 (ja) * 2005-09-14 2011-12-14 富士通株式会社 樹脂成型体
WO2008026632A1 (fr) * 2006-09-01 2008-03-06 Kaneka Corporation Composition élastomère thermoplastique
NZ598695A (en) * 2011-03-28 2012-06-29 O E & D R Pope Pty Ltd A recyclable packaging container for dry based powders, grains, particulates and aggregates
US10801573B2 (en) * 2011-09-26 2020-10-13 Nisshinbo Brake, Inc. Manufacturing method for copper and elemental free non-asbestos-organic friction material
US20150320674A1 (en) * 2014-05-08 2015-11-12 Micro Powders, Inc. Compositions Comprising Synthetic Waxes
AT516548B1 (de) * 2014-12-04 2017-08-15 Stefanski Claus Thermoplastisches Gussmaterial
FR3137386A1 (fr) * 2022-07-01 2024-01-05 Tifany Emballages Composition et son utilisation pour l’étanchéisation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507802A (ja) * 1973-05-23 1975-01-27
JPH08302166A (ja) * 1995-05-13 1996-11-19 Toppan Printing Co Ltd 生分解性ワックス組成物
JP2003261129A (ja) * 2002-03-05 2003-09-16 Toppan Printing Co Ltd 生分解性紙容器
JP2003305816A (ja) * 2002-04-16 2003-10-28 Toyobo Co Ltd 多層ポリエステル系シ−ト、フイルム、およびそれからなる成形品
JP2003311868A (ja) * 2002-02-21 2003-11-06 Kao Corp 生分解性フィルム
JP2004131575A (ja) * 2002-10-10 2004-04-30 Kao Corp 生分解性の組成物の製造方法
JP2004142426A (ja) * 2002-08-26 2004-05-20 Dainichiseika Color & Chem Mfg Co Ltd 水溶性防水フィルム
JP2004162037A (ja) * 2002-10-23 2004-06-10 Kao Corp ワックス組成物の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2413239A (en) * 1944-04-19 1946-12-24 Shawinigan Chem Ltd Plastic composition of polyvinyl ester and wax
US2595911A (en) * 1944-12-29 1952-05-06 Standard Oil Dev Co Paraffin wax-styrene isobutylene copolymer composition
US4207221A (en) * 1972-09-13 1980-06-10 Owens-Illinois, Inc. Degradable plastic composition containing unsaturated wax
JPS5966598A (ja) 1982-10-04 1984-04-16 王子製紙株式会社 防湿、防水性を有する易離解性紙
US4537217A (en) * 1982-12-09 1985-08-27 Research Triangle Institute Fluid distributor
GB8621094D0 (en) * 1986-09-01 1986-10-08 Ici Plc Loading of polymer additives
USH1241H (en) * 1991-11-18 1993-10-05 Universal gum base concentrate
JP3330390B2 (ja) 1992-06-11 2002-09-30 三井化学株式会社 ホットメルト接着剤組成物
JP3214223B2 (ja) 1994-04-15 2001-10-02 東洋インキ製造株式会社 生分解性ホットメルト型接着剤
JP2001288295A (ja) 2000-04-03 2001-10-16 Oji Paper Co Ltd 生分解性組成物およびその成形物
JP2002266284A (ja) 2001-03-07 2002-09-18 Nissin Food Prod Co Ltd 紙製容器素材及びその製造方法並びに紙製容器
KR20040086377A (ko) 2002-02-21 2004-10-08 카오카부시키가이샤 생분해성 필름

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507802A (ja) * 1973-05-23 1975-01-27
JPH08302166A (ja) * 1995-05-13 1996-11-19 Toppan Printing Co Ltd 生分解性ワックス組成物
JP2003311868A (ja) * 2002-02-21 2003-11-06 Kao Corp 生分解性フィルム
JP2003261129A (ja) * 2002-03-05 2003-09-16 Toppan Printing Co Ltd 生分解性紙容器
JP2003305816A (ja) * 2002-04-16 2003-10-28 Toyobo Co Ltd 多層ポリエステル系シ−ト、フイルム、およびそれからなる成形品
JP2004142426A (ja) * 2002-08-26 2004-05-20 Dainichiseika Color & Chem Mfg Co Ltd 水溶性防水フィルム
JP2004131575A (ja) * 2002-10-10 2004-04-30 Kao Corp 生分解性の組成物の製造方法
JP2004162037A (ja) * 2002-10-23 2004-06-10 Kao Corp ワックス組成物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1672032A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8006518B2 (en) 2003-10-08 2011-08-30 Draka Comteq, B.V. Method for manufacturing a preform for optical fibres

Also Published As

Publication number Publication date
EP1672032A4 (en) 2006-11-22
US7989522B2 (en) 2011-08-02
EP1672032A1 (en) 2006-06-21
US20070078214A1 (en) 2007-04-05

Similar Documents

Publication Publication Date Title
AU2004243688B2 (en) Fibrous sheets coated or impregnated with biodegradable polymers or polymers blends
KR20170013901A (ko) 다공성 중합체 시트로부터 형성된 열성형 용품
CN105835491A (zh) 一种双向收缩耐老化共聚酯薄膜及其制备方法
WO2005033208A1 (ja) 生分解性ワックス組成物
JP6856970B2 (ja) 脂肪族ポリエステル樹脂組成物およびそれを用いた包装材料
TWI383020B (zh) A thermoplastic resin composition and a molded article
WO2004037504A1 (ja) ワックス組成物及びその製造方法
JP4744996B2 (ja) 温度履歴表示材料及びそれを用いた包装材料
CN112724507B (zh) 一种流延聚丙烯组合物及其制备方法和应用
WO2006059584A1 (ja) ポリエステル系樹脂フィルムおよびその製造方法。
JP4849832B2 (ja) ワックス組成物薄膜、及びその製造方法
JP2016049630A (ja) 積層体の製造方法
JP6645006B2 (ja) 積層体
JP2004331079A (ja) トリガー機能を有する吸湿性・バリア性積層包装材料及びそれを用いた包装体
CN1863876B (zh) 生物降解性蜡组合物
CN100484736C (zh) 蜡组合物及其制造方法
JP2006290920A (ja) ワックス含有組成物及びその製造方法
JP2004162037A (ja) ワックス組成物の製造方法
KR102098396B1 (ko) 바이오 플라스틱 식품용기의 제조방법
JP7156587B1 (ja) 多層フィルム、包装材及び包装体
KR102501758B1 (ko) 개질된 천연 무수 석고 및 전처리 생분해성 수지를 포함하는 생분해성 수지 조성물 및 그 제조 방법
WO2022255041A1 (ja) 多層フィルム、包装材及び包装体
JP4895473B2 (ja) ワックス組成物の製造方法
JP2022106082A (ja) 多層フィルム、包装材及び包装体
US20240199799A1 (en) Thermoformed packaging and methods of forming the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480029202.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004792069

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004792069

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007078214

Country of ref document: US

Ref document number: 10574849

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10574849

Country of ref document: US