WO2005030868A1 - 球状複合組成物および球状複合組成物の製造方法 - Google Patents

球状複合組成物および球状複合組成物の製造方法 Download PDF

Info

Publication number
WO2005030868A1
WO2005030868A1 PCT/JP2004/013510 JP2004013510W WO2005030868A1 WO 2005030868 A1 WO2005030868 A1 WO 2005030868A1 JP 2004013510 W JP2004013510 W JP 2004013510W WO 2005030868 A1 WO2005030868 A1 WO 2005030868A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
composite composition
spherical composite
units
mass
Prior art date
Application number
PCT/JP2004/013510
Other languages
English (en)
French (fr)
Inventor
Makoto Someda
Satoshi Akiyama
Kyoji Kuroda
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to EP20040773169 priority Critical patent/EP1669408B1/en
Priority to JP2005514169A priority patent/JP4964466B2/ja
Priority to KR1020067004750A priority patent/KR101285210B1/ko
Priority to US10/572,646 priority patent/US20060278843A1/en
Publication of WO2005030868A1 publication Critical patent/WO2005030868A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/212Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase and solid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L57/00Compositions of unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0802Preparation methods
    • G03G9/0804Preparation methods whereby the components are brought together in a liquid dispersing medium
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0827Developers with toner particles characterised by their shape, e.g. degree of sphericity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/066Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder obtained by liquid dynamic compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/083Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together in a bonding agent

Definitions

  • the present invention relates to a spherical composite composition and a method for producing a spherical composite composition. More specifically, a spherical composite composition having a high spheroidization ratio, which is composed of a resin composed of an unsaturated bullet unit and a magnetic material, and which is difficult to produce efficiently with the conventional technology, and an aqueous medium in which the resin is dispersed
  • the present invention relates to a method for producing a spherical composite composition obtained by adding and dispersing a magnetic material therein, and granulating by a spray drying method.
  • a resin polymerized in an aqueous medium is generally solidified as described in JP-B-42-22684.
  • a method for obtaining a spherical composite composition comprising a resin and a magnetic material, it is common to melt-knead the resin and the magnetic material, pulverize, classify, and then perform a spheroidizing treatment. It is not always satisfactory from the viewpoint of the necessity and the wide distribution of the average particle size of the obtained composition in terms of productivity. In particular, in the case of a resin mainly containing atarilonitrile, the thermal stability at the time of molding is extremely poor.
  • Patent Document 1 Japanese Patent Publication No. 42-22684
  • Patent Document 2 JP-A-9-1185184
  • An object of the present invention is to solve the above-described problems, and to provide an unsaturated valve.
  • a spherical composite composition produced by a simple and highly productive production method without the need for multiple production steps, and a method for producing a spherical composite composition are described.
  • An object of the present invention is to provide a method for manufacturing a product.
  • the inventors of the present invention have conducted intensive studies to solve such problems, and as a result, added a magnetic material of a specific size to an aqueous medium in which a resin of a specific average particle size is dispersed. After that, by performing spray drying under specific spraying conditions, the resin and the magnetic material are combined and granulated, whereby a spherical composite composition having a high spheroidization ratio in a specific particle diameter range is obtained.
  • the present invention has been completed.
  • the first invention is that (A-1) 100 parts by mass of an unsaturated vinyl resin having a glass transition temperature of 50 to 150 ° C. and (A-2) having a mass average molecular weight of 10,000 to 1,000,000 and also having a unit force.
  • the present invention relates to a spherical composite composition characterized by having a diameter of 100 ⁇ m and a sphering ratio of 0.7-1.
  • the (A-1) average particle diameter is 0.01-1: m
  • the (A_2) glass transition temperature is 50 to 150 ° C
  • the (A-3) mass average molecular weight is 10,000 to 1000000.
  • the feature of this production method is that drying and granulation are simultaneously performed by a spray drying method after adding and dispersing a magnetic material to an aqueous medium in which a resin is dispersed. Therefore, the production method is very simple and the productivity is good, and the spherical composite composition obtained has a high spheroidization rate.
  • the invention's effect [0009]
  • the spherical composite composition of the present invention has various uses such as a resin magnet having a high spheroidization rate, a radio wave absorbing material, a magnetic shield material, a developer and a toner carrier used in a developing machine of an electrophotographic process.
  • the method for producing a spherical composite composition of the present invention is a method for producing a spherical composite having a high spheroidization ratio comprising a resin and a magnetic material, which has been difficult to produce efficiently with conventional techniques.
  • a composite composition can be produced, which is an industrially extremely valuable production method.
  • the first invention is a spherical composite composition having a high spheroidization ratio, comprising a specific unsaturated vinyl unit and a magnetic material.
  • the second invention a resin dispersed in an aqueous medium, is made of a magnetic material. It can be efficiently obtained by a manufacturing method in which granulation is performed by a spray drying method after addition and dispersion.
  • the resin may be polymerized in an aqueous medium or the powder after production may be dispersed in the aqueous medium.
  • production of a resin having an average particle diameter of 0.01-: m is considered.
  • polymerization in an aqueous medium such as emulsion polymerization or suspension polymerization is suitable in terms of productivity, and more preferably emulsion polymerization.
  • the average particle size of the resin dispersed in the aqueous medium is 0.01-lzm, preferably 0.1-0.5xm.
  • the resin may be composed of an unsaturated vinyl unit and may be a homopolymer composed of one type of unsaturated vinyl unit or a copolymer composed of two or more types of unsaturated vinyl units.
  • unsaturated Bier unit examples include an unsaturated nitrile unit, an alkyl (meth) acrylate unit, and an aromatic vinyl unit.
  • Examples of the monomer species of the unsaturated nitrile unit include acrylonitrile, methacrylonitrile, and polychloroacrylonitrile, and the monomer species of the alkyl (meth) acrylate unit is , Methyl (meth) acrylate, ethyl (meth) acrylate, (meth) acrylate
  • Examples of the monomer species of the aromatic vinyl unit such as lopinole and butyl (meth) acrylate include styrene, permethylstyrene, vinyltoluene, and vinylxylene.
  • examples of other monomeric units of unsaturated copolymerizable copolymerizable unit include butyl ether, burester, and thiorefin, and examples of butyl ester include butyl acetate, propionbule, butyl butyrate, and the like.
  • examples of ethers include methylbutyl ether, etylbininoleatenoate, propinolebininoleatenoate, butynolebininoleatenoate, methinoleisopropyl ether, ethylisopropenyl ether, and the like.
  • the unsaturated vinyl unit preferably, an acrylonitrile unit, a methacrylonitrile unit, a methyl (meth) acrylate unit, an ethyl (meth) acrylate unit, and a propyl (meth) acrylate Units, butyl (meth) acrylate units, styrene units, ⁇ -methylstyrene units, and vinyltoluene units, and the resin preferably contains 30 to 100% by mass, preferably 50 to 100% by mass.
  • the alkyl (meth) acrylate means an alkyl acrylate or an alkyl methacrylate.
  • the glass transition temperature of the above resin is 50 ° C. or higher, production can be performed without causing aggregation at the time of collection at the spraying part during granulation by the spray drying method. Taking into account the granulation by, the temperature is 50 ° C to 150 ° C, preferably 50 ° C to 110 ° C.
  • the mass average molecular weight of the resin needs to be in a specific range in consideration of granulation by a spray drying method.
  • the weight average molecular weight is 10,000 or more, the glass transition temperature does not become too low, and thus production can be performed without causing aggregation at the time of collecting the scum in the spraying part.
  • the mass average molecular weight is 1,000,000 or less, the resin is melted by hot air during granulation, so that the resin is well bonded to the magnetic material, and a composite composition having a high spheroidization ratio can be obtained.
  • the mass average molecular weight is 10,000 to 1,000,000, preferably 20,000 to 300,000.
  • the types of magnetic materials used in the present invention include rare earths such as Nd_Fe_B-based and Sm-Co-based.
  • Sintered type sintered ferrite type such as Ba-based, Sr-based, La-Co-substituted type, soft ferrite type such as Mn_Zn-based, Ni_Zn-based, etc.
  • Sm-Fe-N type Sm-Fe-N type.
  • the shape of the magnetic material is not particularly limited, and a round shape, a ring shape, a square shape, a segment shape, and the like can be applied.
  • the longest length of the original projection is preferably 0.01 to 50 xm, more preferably 0.1 to 10 xm.
  • the amount of the magnetic material to be added is 5 to 1000 parts by mass, preferably 10 to 800 parts by mass with respect to 100 parts by mass of the resin.
  • the total concentration of the resin and the magnetic material in the aqueous medium is preferably from 10 to 85% by mass, more preferably from 20 to 80% by mass. If the above total concentration is 10% by mass or more, the concentration does not decrease so that the production efficiency does not decrease, and if the above total concentration is 85% by mass or less, the viscosity of the dispersion does not become too high. This makes it difficult to feed the liquid to the spraying device, and prevents the spraying portion from getting wet.
  • a dispersant can be used together with an aqueous medium.
  • an anionic surfactant is preferable, and further selected from alkyl sulphate ester, anolequinole benzene snolenate, anolequinolenaphthalene solenate, anoalkyl sulfosuccinate, and fatty acid salt. It is preferable to include at least one anionic surfactant.
  • the amount of the dispersant used is 0.1 to 10 parts by mass, preferably 0.1 to 15 parts by mass, based on 100 parts by mass of the monomer.
  • a magnetic material is added and dispersed in an aqueous medium in which a resin is dispersed by the above method, and then granulation is performed by a spray drying method.
  • a spray drying method No particular limitation is imposed on the spray method of the spray drying method, and a nozzle method or a disk method can be used.
  • nozzle type pressurized nozzle type, pressurized two-fluid nozzle type, two-fluid nozzle type, and four-fluid nozzle type
  • a pin type disk type, a vane type disk type, a Kessner type disk type, or the like can be used.
  • a pressurized nozzle type, a two-fluid nozzle type, a pin type disk type, and a vane type disk type are preferable in consideration of the long run property and particle size distribution during production.
  • the collection method There is no particular limitation on the collection method.
  • One-point collection method, two-point collection method, etc. can be applied.
  • the heating source is not particularly limited, and an electric type, a gas type, a steam type, and the like can be applied.
  • the hot air contact type can be a parallel flow type, a counter flow type, or a parallel flow type.
  • the spray pressure in the case of the nozzle type and the number of revolutions of the disk in the case of the disk type are determined by considering the type of resin and dispersion used, the concentration, and the moisture content of the spherical composite composition after spray drying. Adjusted so that the average particle size of the composition is 100 ⁇ ⁇ and the spheroidization ratio is 0.7-1 and preferably the average particle size is 5-70 / m and the spheroidization ratio is 0.75--1. I do. If the disk rotation speed is 3000 rpm or more, the droplets to be sprayed do not become too large, so that the average particle diameter of the spherical composite composition does not become too large and at the same time it can be sufficiently dried.
  • the disk rotation speed is preferably 3000 to 50000 rpm, and more preferably 5000 to 200 OCkpm
  • the average particle size is 1 ⁇ m or more, the spherical composite particles will not be too small and handling will be easy, and if the average particle size is 100 zm or less, the size of the magnetic material to be mixed will be large.
  • the hot air inlet temperature in the spray dryer is 100 ° C or higher, moisture evaporates during drying, and the resin melts and can be granulated.
  • [Glass transition temperature of resin + 150 ° C] If it is below, continuous operation can be performed without causing agglomeration or the like due to agglomeration or solidification of the resin in the spray section.
  • the outlet temperature of the hot air in the spray dryer is 40 ° C or higher, sufficient drying and granulation can be performed. If the temperature is [the glass transition temperature of the resin + 50 ° C] or lower, the resin in the drying chamber can be dried.
  • the inlet temperature of hot air in the spray dryer is 100 ° C— [glass transition temperature of resin + 150 ° C] and the outlet of hot air in the spray dryer.
  • the temperature is 40 ° C .— [resin glass transition temperature + 50 ° C.], preferably, the hot air inlet temperature in the spray drying apparatus is 100 ° C .— [resin glass transition temperature + 100 ° C.],
  • the outlet temperature of hot air in the spray drying equipment is 50 ° C-[glass transition temperature of resin + 20 ° C].
  • the composition obtained by the above method is a spherical composite composition having a high spheroidization rate.
  • the spherical composite composition having a high spheroidization ratio of the present invention as described above can be used as a resin magnet. It can be used in various ways, such as using it as a powder, using it as a powder coating, dispersing it in water or a solvent, and using it as a coating material, or using it as a molded product after molding. Further, the resin magnet can be suitably used in a motor, a generator, a rotation control device, a magnet roll, a spur, an electromagnetic buzzer, a magnetic therapy machine, a sensor, a magnet chuck, and the like.
  • the spherical composite composition having a high spheroidization ratio of the present invention as described above can be used as an electromagnetic wave absorbing material. It can be used in various ways, such as using it as a powder, using it as a powder coating, dispersing it in water or a solvent and using it as a coating agent, or using it as a molded product after molding. Further, the radio wave absorbing material can be suitably used as an inner wall material of a radio wave anechoic chamber, a material for preventing reception interference due to reflection of broadcast waves, a material for preventing radar ghost due to radio wave reflection, and the like.
  • the spherical composite composition having a high spheroidization ratio of the present invention as described above can be used as a magnetic shielding material. It can be used in various ways, such as using it as a powder, using it as a powder coating, dispersing it in water or a solvent and using it as a coating agent, or using it as a molded product after molding. Further, the magnetic shield material can be suitably used for an internal magnetic shield material for electric and electronic equipment, a protective shield material for monitors and magnetic cards, a shield room application, and the like.
  • Magnetic toner material used in a developing machine of an electrophotographic process The spherical composite composition having a high spheroidization ratio of the present invention as described above can be used as a magnetic toner material for one-component or two-component electrophotography. When used as a magnetic toner
  • a charge controlling agent a surface treating agent, carbon black, a coloring agent, a wax, and the like may be added to the inside or the surface.
  • the spherical composite composition having a high sphericity of the present invention as described above can be mixed with a toner and used as a two-component electrophotographic developer.
  • a toner carrier When used as a toner carrier, it can be used without any treatment or after being subjected to a surface treatment or heat treatment.
  • the toner has a colorant dispersed in a binder resin, and the content of the toner is not particularly limited. When consumed for development, it may be added as appropriate. Usually, the content of the toner is about 10 to 100,000 parts by mass with respect to 100 parts by mass of the spherical composite product for a carrier.
  • the composition of carbon, hydrogen, and nitrogen was measured by elemental analysis [CHN CORD ER, Model: MT-2, manufactured by Yanagimoto Seisakusho], and this operation was repeated three times to obtain a resin composition.
  • the particle size was measured using a Malvern particle size analyzer HPPS.
  • the average particle size is a volume-based value using a dynamic light scattering method.
  • the sample was cooled to room temperature at a cooling rate of 10 ° C / min, and then cooled to room temperature at a cooling rate of 5 ° C / min.
  • the glass transition temperature was defined as the temperature at the intersection of the extension of the base line and the tangent line indicating the maximum slope between the peak rising part and the peak apex.
  • GPC gel permeation chromatography
  • Detector Refractive index detection type.
  • Average particle diameter of spherical composite composition (/ im) It was measured by a dry method using MT3000EX manufactured by Microtrac. The average particle size is a value based on volume.
  • a stainless steel polymerization reactor was charged with 15 parts of acrylonitrile, 5 parts of methyl atalinoleate, 0.407 parts of sodium dioctylsulfosuccinate and 150 parts of water, and stirred under a nitrogen atmosphere. The temperature was raised to ° C, and the mixture was stirred for 30 minutes as it was, and an aqueous solution containing 0.08 parts of potassium persulfate was added as a polymerization initiator to initiate polymerization.
  • the pH was adjusted to 3 ⁇ 0.3 by adding phosphoric acid, and as the raw materials for the continuous addition, 60 parts of attalilonitrile, 20 parts of methyl acrylate, pentaerythritol tetrakis (-mercaptopropionate) 1.
  • the polymerization was continued at 60 ° C. while 6 parts, 1.627 parts of sodium dioctylsulfosuccinate and 85 parts of water were continuously added over 6 hours.
  • Resin composition 75% acrylonitrile, 25% methyl acrylate
  • Average particle size of resin in aqueous medium 0.22 x m
  • Resin composition 75% acrylonitrile, 25% methyl acrylate
  • Average particle size of resin in aqueous medium 0.23 ⁇
  • Weight average molecular weight 220000
  • Resin composition 75% acrylonitrile, 25% methyl atalinoleate
  • Average particle size of resin in aqueous medium 0.20 x m
  • Weight average molecular weight 30000
  • Resin composition acrylonitrile 50%, methyl methacrylate 50%
  • Average particle size of resin in aqueous medium 0.22 x m
  • Weight average molecular weight 130,000
  • the polymerization was carried out in the same manner as in Production Example 1 except that the composition was changed as follows between the initial addition amount and the continuous addition amount of the raw materials, and a resin [A-5] having the following measurement results was obtained.
  • Resin composition 50% acrylonitrile, 50% styrene
  • Average particle size of resin in aqueous medium 0.24 ⁇
  • Weight average molecular weight 140000
  • the polymerization was carried out in the same manner as in Production Example 1 except that the composition was changed as follows between the initial addition amount and the continuous addition amount of the raw materials, and a resin [A_6] having the following measurement results was obtained.
  • Resin composition acrylonitrile 65%, butyl acrylate 35% Average particle size of resin in aqueous medium: 0.22 xm
  • Weight average molecular weight 130,000
  • the polymerization was carried out in the same manner as in Production Example 1 except that the composition was changed as follows between the initial addition amount and the continuous addition amount of the raw materials, and a resin [A_7] having the following measurement results was obtained.
  • Resin composition 100% acrylonitrile
  • Average particle size of resin in aqueous medium 0.20 ⁇
  • Weight average molecular weight 130,000
  • Resin composition 75% acrylonitrile, 25% methyl acrylate
  • the average particle size of the resin in the aqueous medium 0. 27 M m
  • Weight average molecular weight 1200000
  • Resin composition 50% acrylonitrile, 50% ethyl acrylate
  • Average particle size of resin in aqueous medium 0.23 ⁇
  • Weight average molecular weight 130,000
  • the types of the magnetic materials used in the examples and comparative examples of the present invention and the maximum lengths when two-dimensionally projected are as follows.
  • B-1 Toda Kogyo, FL-900 (ferrite), maximum length 1.6 ⁇ m
  • B_2 Toda Kogyo, FH-800 (ferrite), maximum length 1 ⁇ 4 / im
  • B-3 Sumitomo Metal
  • Wellmax P_10 Seiko Sangyo, Neo40 (Nd_Fe_B), maximum length 4.1 ⁇ m
  • B-5 Manufactured by Seiko Sangyo, SAN40 (A to M-Co), maximum length 8.5 ⁇ m.
  • Production Example 1 In the aqueous medium in which the resin (A-1-1A-9) obtained in Production Example 9 is dispersed, the magnetic material (B-1-1B-4) is added to the aqueous medium (Table 1). After mixing with the composition shown in 3) and stirring for 30 minutes, granulation was performed by the spray-drying method under the conditions of [Table 1]-[Table 3] using the spray dryer LT-8 manufactured by Okawara Processing Machine. Was. The spray type was a disk type and the collection type was a two-point collection type.
  • Granulation conditions 65 65 65 65 65 150 60 65 65 65
  • Each of the spherical composite compositions of the present invention (Example 1 to Example 16) is excellent in productivity and product properties (average particle diameter, spheroidization ratio).
  • the spherical composite material having a high spheroidization ratio and comprising a resin containing an unsaturated vinyl unit and a magnetic material according to the present invention has a good spheroidity ratio and is suitable for applications such as resin magnets, radio wave absorbing materials, magnetic shielding materials, magnetic toner materials, and toner carrier materials. Can be used. Further, the method for producing a spherical composite composition of the present invention is a simple and industrially valuable method that does not require a plurality of production steps and has good productivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

[課題]本発明の目的は、不飽和ビニル単位からなる樹脂と磁性材料からなる球状複合材料に関し、複数の製造工程を必要とすることなく簡素かつ生産性の良い製造方法によって作られる、球形化率の高い球状複合組成物、および球状複合組成物の製造方法を提供することにある。 [解決手段]樹脂が分散している水性媒体中に、磁性材料を添加・分散後、噴霧乾燥法を用いることにより造粒して得られる、球状複合組成物を提供することであり、かつ球状複合組成物の製造方法を提供することにある。

Description

明 細 書
球状複合組成物および球状複合組成物の製造方法
技術分野
[0001] 本発明は、球状複合組成物および球状複合組成物の製造方法に関する。詳しくは、 従来の技術では効率的な製造が困難であった、不飽和ビュル単位からなる樹脂と磁 性材料からなる、球形化率が高い球状複合組成物および、樹脂が分散している水性 媒体中に磁性材料を添加'分散後、噴霧乾燥法による造粒にて得られる球状複合組 成物の製造方法に関する。
背景技術
[0002] 水性媒体中で重合した樹脂は、特公昭 42-22684号公報に記載されているように固 形化するのが一般的である。また、樹脂と磁性材料からなる球状の複合組成物を得 る方法としては、樹脂と磁性材料を溶融混練し、粉砕、分級後、球形化処理するのが 一般的であるが、複数の製造工程が必要であることと、得られる組成物の平均粒径 の分布が広ぐ生産性の面から必ずしも満足できるものではなレ、。特にアタリロニトリ ルを主成分とするような樹脂においては、非常に成形時の熱的安定性が悪いため、 磁性材料との溶融混練を行うと熱劣化による品質低下が問題となる。また、溶融時の 粘度が高い樹脂においては、磁性材料との溶融混練時に成形機に負荷が生じ、生 産できない、もしくは生産性を悪化させてしまう。
[0003] また、特開平 9一 185184号公報に記載されているような樹脂中に磁性材料を分散さ せる製造方法があるが、溶液重合であるため分子量を制御する幅が狭ぐ溶媒の種 類によって単量体の種類が制限されてしまう。また、溶媒を用いることによる環境面へ の負荷等の問題もある。
特許文献 1:特公昭 42 - 22684号公報
特許文献 2 :特開平 9一 185184号公報
発明の開示
発明が解決しょうとする課題
[0004] 本発明の目的は、上記のような問題を解決しょうとするものであって、不飽和ビュル 単位を含む樹脂と磁性材料力 なる球状複合材料に関し、複数の製造工程を必要と することなく簡素かつ生産性の良い製造方法によって作られる球状複合組成物、お よび球状複合組成物の製造方法を提供することにある。つまり、樹脂が分散している 水性媒体中に、磁性材料を添加 ·分散後、噴霧乾燥法を用いることにより造粒して得 られる、球状複合組成物を提供することであり、かつ球状複合組成物の製造方法を 提供することにある。
課題を解決するための手段
[0005] 本発明者らは、かかる問題点を解決するために鋭意検討した結果、特定の平均粒子 径の樹脂が分散している水性媒体に対し、特定の大きさの磁性材料を添加'分散後 、特定の噴霧条件で噴霧乾燥を行うことで樹脂と磁性材料を結合させて造粒すること により、特定の粒子径の範囲にて球形化率の高い球状複合組成物が得られることを 見出して本発明を完成した。
[0006] すなわち、第一の発明は、(A— 1)ガラス転移温度が 50— 150°Cおよび (A— 2)質量 平均分子量が 10000— 1000000である不飽和ビュル単位力もなる樹脂 100質量 部に対し、 (B)二次元投影した際の最長長さが 0. 01— 50 x mである磁性材料 5— 1 000質量部を添加してなる球状複合組成物であって、平均粒子径が 1一 100 μ m、 かつ球形化率が 0. 7— 1であることを特徴とする球状複合組成物についてである。
[0007] また第二の発明は、 (A—1)平均粒子径 0. 01—: m、(A_2)ガラス転移温度が 50 一 150°Cおよび (A— 3)質量平均分子量が 10000— 1000000である不飽和ビュル 単位力 なる水性媒体中に分散している樹脂 100質量部に対し、 (B)二次元投影し た際の最長長さが 0. 01— 50 μ ΐηである磁性材料 5— 1000質量部を添加'分散後、 噴霧乾燥法による造粒にて得られる球状複合組成物であって、平均粒子径が 1一 1 00 x m、かつ球形化率が 0. 7— 1であることを特徴とする球状複合組成物の製造方 法についてである。
[0008] 本製造法の特徴は、樹脂が分散している水性媒体に、磁性材料を添加'分散後に噴 霧乾燥法により乾燥と造粒を同時に行う点にある。そのため、製造方法が非常に簡 素、かつ生産性が良好であり、また得られる球状複合組成物は球形化率が高い。 発明の効果 [0009] 本発明の球状複合組成物は、球形化率が高ぐ樹脂磁石、電波吸収材料、磁気シ 一ルド材料、電子写真プロセスの現像機内で使用する現像剤およびトナーキャリアな ど様々な用途で好適に使用できるものであり、また、本発明の球状複合組成物の製 造方法は、従来の技術では効率的な製造が困難であった、樹脂と磁性材料からなる 球形化率の高い球状複合組成物を製造することができ、工業的に極めて価値のある 製造方法である。
発明を実施するための最良の形態
[0010] 以下、本発明について詳細に説明する。
[0011] [樹脂]
第 1の発明は、特定の不飽和ビュル単位と磁性材料からなる球形化率の高い球状複 合組成物であり、第 2の発明である、水性媒体中に分散した樹脂に対し、磁性材料を 添加'分散後に噴霧乾燥法により造粒する製造方法で効率的に得ることができる。
[0012] 本発明における樹脂は、水性媒体中で重合を行うか、製造後の粉体を水性媒体中 に分散させても良いが、 0. 01—: mの平均粒子径の樹脂製造を考慮すると、乳化 重合や懸濁重合などの水性媒体中での重合が生産性の面で適しており、より好まし くは乳化重合である。水性媒体中に分散した樹脂の平均粒子径は小さい方が磁性 材料の分散には適しているが、 0. 01 z m未満の平均粒子径で水性媒体中に分散し た樹脂を製造することは非常に困難であり、現実的な範囲として 0. 01 x m以上であ る。また、平均粒子径が大きすぎると均一な分散が困難なため l z m以下が好ましい 。力かる点より水性媒体中に分散された樹脂の平均粒子径は 0. 01— l z mであり、 好ましくは 0. 1— 0· 5 x mである。
[0013] 上記樹脂は、不飽和ビュル単位から構成され、 1種類の不飽和ビニル単位からなる 単独重合体でもよぐまたは 2種類以上の不飽和ビニル単位からなる共重合体でもよ レ、。また、不飽和ビエル単位の種類としては、不飽和二トリル単位、(メタ)アクリル酸 アルキルエステル単位、芳香族ビニル単位等が挙げられる。
[0014] 不飽和二トリル単位の単量体種としては、アクリロニトリル、メタタリロニトリル、 ひ_ク ロロアクリロニトリル等が挙げられ、また、(メタ)アクリル酸アルキルエステル単位の単 量体種としては、(メタ)アクリル酸メチル、(メタ)アクリル酸ェチル、(メタ)アクリル酸プ ロピノレ、(メタ)アクリル酸ブチル等、芳香族ビュル単位の単量体種としては、スチレン 、 ひーメチルスチレン、ビュルトルエン、ビュルキシレン等が挙げられる。また、その他 の共重合可能な不飽和ビュル単位の単量体種としては、ビュルエーテル、ビュルェ ステル、 ひ—ォレフィン等が挙げられ、ビュルエステルとしては、酢酸ビュル、プロピオ ンビュル、酪酸ビュル等、ビュルエーテルとしては、メチルビュルエーテル、ェチルビ ニノレエーテノレ、プロピノレビニノレエーテノレ、ブチノレビニノレエーテノレ、メチノレイソプロぺ ニルエーテル、ェチルイソプロぺニルエーテル等、 ひーォレフインとしては、イソブテ ン、 2—メチノレー 1—ブテン、 2—メチノレー 1—ペンテン、 2—メチルー 1—へキセン、 2—メチ ルー 1_ヘプテン、 2—メチノレー 1—オタテン、 2—ェチルー 1—ブテン、 2_プロピノレー 1—ブ テン等が挙げられる。
[0015] 上記の不飽和ビュル単位の単量体種の内、好ましくはアクリロニトリル単位、メタタリ ロニトリル単位、(メタ)アクリル酸メチル単位、(メタ)アクリル酸ェチル単位、(メタ)ァク リル酸プロピル単位、(メタ)アクリル酸ブチル単位、スチレン単位、 α—メチルスチレン 単位、ビニルトルエン単位であり、樹脂中に 30— 100質量%、好ましくは 50— 100質 量%含むことが好ましい。尚、本発明において、(メタ)アクリル酸アルキルエステルと は、アクリル酸アルキルエステルまたはメタアクリル酸アルキルエステルを意味する。
[0016] 上記樹脂のガラス転移温度は、 50°C以上であれば噴霧乾燥法による造粒時に噴 霧部でのツマリゃ回収時の凝集が発生することなく生産が可能であり、噴霧乾燥法 による造粒を考慮すると、 50°C— 150°C、好ましくは 50°C— 110°Cである。
[0017] また、上記樹脂の質量平均分子量は、噴霧乾燥法による造粒を考慮すると特定範 囲である必要がある。質量平均分子量が 10000以上であればガラス転移温度が低く なりすぎないため、噴霧部でのツマリゃ回収時の凝集が発生することなく生産が可能 となる。質量平均分子量が 1000000以下であれば、造粒時の熱風により樹脂が溶 融するため磁性材料と良好に結合し、球形化率の高い複合組成物を得ることができ る。力かる点を考慮すると、質量平均分子量は、 10000— 1000000であり、好ましく は 20000— 300000である。
[0018] [磁性材料]
本発明で用いる磁性材料の種類としては、 Nd_Fe_B系、 Sm— Co系などの希土類 焼結タイプ、 Ba系、 Sr系、 La— Co置換系などのフェライト焼結タイプ、 Mn_Zn系、 N i_Zn系などのソフトフェライトタイプ、その他として、 Al_Ni_Co系、 Fe—Μη系、 Fe_ Cr~Co系、 Sm-Fe-N系などが挙げられる。また、磁性材料の形状には特に制限は なぐ丸型、リング型、角型、セグメント型などの形状が適用できる。
[0019] 磁性材料の大きさは小さい方が分散には適しているが、小さくなりすぎると取り扱い が困難になるため、最終的な組成物の平均粒子径および球形化率を考慮し、二次 元投影した際の最長長さは、 0. 01— 50 x mであることが好ましぐ更に好ましくは 0 . 1一 lO x mである。また、磁性材料の添加量は、樹脂 100質量部に対して 5— 100 0質量部、好ましくは 10— 800質量部である。
[0020] [球状複合樹脂の製造]
樹脂が分散している水性媒体への磁性材料の添加'分散方法については、特に制 限はなぐ磁性材料添加後に撹拌羽根にて分散する方法、ホモジナーザ一にて分散 する方法など一般的な方法が適用できる。水性媒体中の樹脂と磁性材料の合計濃 度は、 10— 85質量%であることが好ましぐさらに好ましくは 20— 80質量%である。 上記合計濃度が 10質量%以上であれば、濃度が薄くならないため生産効率を低下 させることがなく、また、上記合計濃度が 85質量%以下であれば、分散液の粘度が 高くなりすぎないため、噴霧装置までの送液が困難になることや、噴霧部でのッマリ を防ぐこと力できる。
[0021] また、本発明の球状複合組成物の製造では、水性媒体とともに分散剤を用いること ができる。分散剤としては、ァニオン系界面活性剤が好まし さらにアルキル硫酸ェ ステノレ塩、ァノレキノレベンゼンスノレホン酸塩、ァノレキノレナフタレンスノレホン酸塩、ァノレ キルスルホコハク酸塩、脂肪酸塩から選ばれた少なくとも 1種のァニオン系界面活性 剤を含むことが好ましい。また、分散剤の使用量は、単量体 100質量部に対し、 0. 1 一 10質量部、好ましくは、 0. 1一 5質量部である。
[0022] 本発明の球状複合組成物の製造方法では、樹脂が分散している水性媒体中に、 上記方法で磁性材料を添加 ·分散後、噴霧乾燥法にて造粒を行う。噴霧乾燥法の噴 霧方式に特に制限はなぐノズル式、ディスク式などで可能である。具体的にはノズ ル式の場合は加圧ノズル式、加圧 2流体ノズル式、 2流体ノズノレ式、 4流体ノズノレ式を 用いることができ、ディスク式の場合はピン型ディスク式、ベーン型ディスク式、ケスナ 一型ディスク式などを用いることができる。これらのうち、生産時のロングラン性、粒子 径分布を考慮すると、加圧ノズル式、 2流体ノズル式、ピン型ディスク式、ベーン型デ イスク式が好ましい。捕集方式についても特に制限はなぐ 1点捕集方式、 2点捕集 方式などが適用できる。また、加熱源についても特に制限はなぐ電気式、ガス式、 蒸気式などが適用でき、熱風接触方式も並流式、向流式、並向流式が適用できる。 ノズル式の場合の噴霧圧力、ディスク式の場合のディスク回転数は、使用する樹脂や 分散液の種類'濃度、噴霧乾燥後の球状複合組成物の水分含有率を考慮し、得ら れる球状複合組成物の平均粒子径が 1一 100 μ ΐη、かつ球形化率 0. 7— 1、好まし くは平均粒子径 5— 70 / m、かつ球形化率 0. 75— 1になるように調節する。ディスク 式を用いる場合のディスク回転数は 3000rpm以上であれば噴霧される液滴が大きく なりすぎないため、球状複合組成物の平均粒子径が大きくなりすぎないと同時に十 分に乾燥できる。また、ディスク回転数が 50000i"pm以下であれば噴霧される液滴 が小さくなりすぎないため、球状複合組成物の平均粒子径は小さくなりすぎなレ、。か 力る点、を考慮すると、ディスク回転数は 3000— 50000rpm力 S好ましく、 5000— 200 OCkpmが更に好ましい。噴霧乾燥法による造粒においては、平均粒子径が 1 / m未 満の球状複合組成物を製造することは困難であると同時に、平均粒子径が 1 μ m以 上であれば、球状複合粒子が小さくなりすぎないため取り扱いが容易である。また平 均粒子径が 100 z m以下であれば、配合する磁性材料の大きさにもよるが、噴霧乾 燥後に球状複合粒子を高収率で得ることが可能となり、得られる複合組成物の球形 化率も高く保つことができる。
また、噴霧乾燥と同時に造粒する際の生産性を考慮すると、特定範囲の乾燥条件 が必要となる。噴霧乾燥装置内の熱風の入口温度が 100°C以上であれば、乾燥中 に水分が蒸発するとともに、樹脂が溶融して造粒可能であり、 [樹脂のガラス転移温 度 + 150°C]以下であれば噴霧部での樹脂の凝集や固化によるツマリ等を起こさず 連続運転することができる。さらに、噴霧乾燥装置内の熱風の出口温度が 40°C以上 であれば十分に乾燥、造粒が可能であり、 [樹脂のガラス転移温度 + 50°C]以下で あれば乾燥室への樹脂の付着等を防ぐことができ、連続運転が可能である。かかる 点を考慮すると、噴霧乾燥と同時に造粒する際の、噴霧乾燥装置内の熱風の入口 温度が 100°C— [樹脂のガラス転移温度 + 150°C]、かつ噴霧乾燥装置内の熱風の 出口温度が 40°C— [樹脂のガラス転移温度 + 50°C]であり、好ましくは、噴霧乾燥装 置内の熱風の入口温度が 100°C— [樹脂のガラス転移温度 + 100°C]、かつ噴霧乾 燥装置内の熱風の出口温度が 50°C— [樹脂のガラス転移温度 + 20°C]である。上 記方法により得られる組成物は、球形化率の高い球状複合組成物である。
[0024] [樹脂磁石]
上記のような本発明の球形化率の高い球状複合組成物は、樹脂磁石として用いるこ とができる。粉体のまま用いたり、粉体塗料として用いたり、水や溶剤に分散し塗布剤 として用いたり、成型カ卩ェ後に成形物として用いるなど、様々な方法で用いることが できる。また、該樹脂磁石は、モーター、発電機、回転制御装置、マグネットロール、 スプ一力一、電磁ブザー、磁気治療機、センサ、マグネットチャックなどで好適に用い ること力 Sできる。
[0025] [電波吸収材料]
上記のような本発明の球形化率の高い球状複合組成物は、電磁波吸収材料として 用レ、ることができる。粉体のまま用いたり、粉体塗料として用いたり、水や溶剤に分散 し塗布剤として用いたり、成型カ卩ェ後に成形物として用いるなど、様々な方法で用い ることができる。また、該電波吸収材料は、電波暗室の内壁材、放送波の反射による 受信障害防止材、電波反射によるレーダーゴーズト防止材などで好適に用いること ができる。
[0026] [磁気シールド材料]
上記のような本発明の球形化率の高い球状複合組成物は、磁気シールド材料として 用レ、ることができる。粉体のまま用いたり、粉体塗料として用いたり、水や溶剤に分散 し塗布剤として用いたり、成型カ卩ェ後に成形物として用いるなど、様々な方法で用い ることができる。また、該磁気シールド材料は、電気'電子機器用の内部磁気シール ド材、モニターや磁気カードの保護シールド材、シールドルーム用途などで好適に用 レ、ることができる。
[0027] [電子写真プロセスの現像機内で使用する磁性トナー材料] 上記のような本発明の球形化率の高い球状複合組成物は、 1成分または 2成分電子 写真用の磁性トナー材料として用いることができる。磁性トナーとして用いる場合には
、更に荷電調節剤、表面処理剤、カーボンブラック、着色剤、ワックスなどを内部また は表面に添カ卩しても良い。
[0028] [電子写真プロセスの現像機内で使用するトナーキャリア材料]
上記のような本発明の球形化率の高い球状複合組成物は、トナーと混合して 2成分 電子写真用現像剤として用いることができる。トナーキャリアとして用いる場合は、未 処理で用いることもできるし、表面処理や熱処理などを行った後に用いることもできる 。トナーは結着樹脂中に着色剤を分散させたものであり、トナーの含有量は特に問わ なレ、。現像に使用して消費された場合には、適宜追加してもよい。通常、トナーの含 有量は、キャリア用の球状複合生成物 100質量部に対し、 10— 100000質量部程 度である。
実施例
[0029] 以下、実施例および比較例を示して本発明について、さらに詳細を説明する。本発 明はその要をこえない限り、これら例に何ら制限されるものではない。なお、実施例、 比較例中の「部」および「%」はいずれも質量基準を意味する。また、実施例および比 較例に記した分析および測定は以下の方法に従って行った。
[0030] (1)樹脂組成 (質量%)
炭素、水素および窒素の含有組成を元素分析〔(株)柳本製作所製、 CHN CORD ER、型式: MT-2〕にて測定し、この操作を 3回繰り返して平均し、樹脂組成を求め た。
(2)水性媒体中の樹脂の平均粒子径( μ m)
マルバーン社製粒径測定装置 HPPSにて測定した。尚、平均粒子径は動的光散乱 法を用いた体積基準の値である。
(3)樹脂のガラス転移温度 (°C)
示差走査熱量計〔PERKIN_ELMER製、形式: DSC_7〕を用いて、窒素雰囲気下 で 150°Cまで昇温し、その温度で 3分間放置した後、降温速度 10°C/minで室温ま で冷却した試料を、昇温速度 5°CZminで測定した際にガラス転移温度以下のベー スラインの延長線とピークの立ち上がり部分からピークの頂点までの間の最大傾斜を 示す接線との交点の温度をガラス転移温度とした。
[0031] (4)樹脂の質量平均分子量
単分散ポリスチレン標準試料を標準として用いたゲルパーミエーシヨンクロマトグラフ ィ(以下、 GPCという)により測定した。
〔測定装置及び条件〕
GPC:ウォーターズ (株)製、型式: 150—C
カラム:昭和電工(株)製、型式: Shodex AD-80M/S X 2本
溶媒: N, N—ジメチルホルムアミド(含リチウムブロミド 0. 1質量0 /0)
流量: 0· 8ml/min
カラム温度: 60°C
試料濃度: 0. 1質量%
注入量: 200 μ ΐ
検出器:屈折率検出型。
(5)磁性材料の最長長さ( x m)
電子顕微鏡にて撮影した写真を用いて、 20個の磁性材料の最長長さを測定し平均 ィ直を求めた。
(6)造粒時の生産性
噴霧乾燥装置による造粒を連続で 2時間行い、造粒終了後、噴霧乾燥装置内にほと んど付着が見られず、かつ噴霧部のディスク内にも固化物が発生していない場合に は〇、造粒終了後に噴霧乾燥装置内に付着が多く見られたり、噴霧部のディスク内 に固化物が発生している場合は△、造粒中に、噴霧部のディスク内に固化物が多量 に発生することにより 30分以上運転できない場合は Xとした。
[0032] (7)球状複合組成物の平均粒子径(/i m) マイクロトラック社製 MT3000EXを用レ、、乾式方法にて測定した。尚、平均粒子径 は体積基準の値である。
(8)球形化率測定
電子顕微鏡にて撮影した写真を用いて、 20個の球状複合組成物の(最大直径 -最 小直径)を測定し平均値を求めた、次に(6)の平均粒子径の値を用い、 〔平均粒子径 一 (二次元投影した際の最長径と最短径の差)〕/平均粒子径、の計算式にて求めた
[0033] [樹脂の製造]
[製造例 1]
ステンレス製重合反応器に初期添加分の原料として、アクリロニトリル 15部、アタリノレ 酸メチル 5部、ジォクチルスルホコハク酸ナトリウム 0. 407部、水 150部を仕込み、撹 拌下、窒素雰囲気下において、 60°Cに昇温し、そのまま 30分間撹拌後、重合開始 剤として過硫酸カリウム 0. 08部を含む水溶液を添加して重合を開始した。
[0034] 次いで、リン酸を添加して pHを 3 ± 0. 3に調節し、連続添加分の原料として、アタリ ロニトリル 60部、アクリル酸メチル 20部、ペンタエリスリトールテトラキス( -メルカプト プロピオネート) 1 · 6部、ジォクチルスルホコハク酸ナトリウム 1. 627部、水 85部を 6 時間かけて連続的に添加しながら、 60°Cで重合を継続した。
[0035] この添加の間、重合開始時から 5時間まではリン酸も連続的に添加して、 6時間まで 重合系の pHを 3 ± 0. 3に保って重合を行った。重合開始から 8時間経過後、冷却し 、樹脂〔A_1〕を得た。この樹脂について、前記方法で樹脂組成、水性媒体中の樹脂 の平均粒子径、ガラス転移温度、質量平均分子量を測定したところ以下の通りであつ た。
<測定結果 >
樹脂組成:アクリロニトリル 75%、アクリル酸メチル 25%
水性媒体中の樹脂の平均粒子径: 0. 22 x m
ガラス転移温度:85°C
質量平均分子量: 120000 [0036] [製造例 2]
製造例 1で、ペンタエリスリトールテトラキス(j3 _メルカプトプロピオネート)を 0. 8部用 レ、たこと以外は、製造例 1と同様にして重合を行い、以下の測定結果を有する樹脂〔 A— 2〕を得た。
<測定結果 >
樹脂組成:アクリロニトリル 75%、アクリル酸メチル 25%
水性媒体中の樹脂の平均粒子径: 0. 23 μ η
ガラス転移温度:86°C
質量平均分子量: 220000
[0037] [製造例 3]
製造例 1で、ペンタエリスリトールテトラキス -メルカプトプロピオネート)を 4部用い たこと以外は、製造例 1と同様にして重合を行い、以下の測定結果を有する樹脂〔A -3〕を得た。
<測定結果 >
樹脂組成:アクリロニトリル 75%、アタリノレ酸メチル 25%
水性媒体中の樹脂の平均粒子径: 0. 20 x m
ガラス転移温度:81°C
質量平均分子量: 30000
[0038] [製造例 4]
原料の初期添加分と連続添加分において、組成を以下のように変更し、製造例 1と 同様にして重合を行い、以下の測定結果を有する樹脂〔A_4〕を得た。
<初期添加分 >
アクリロニトリル 10部、メタクリル酸メチル 10部
<連続添加分 >
ク];ロニ卜];ノレ 40咅 メタクジノレ酸メチノレ 40咅 <測定結果 >
樹脂組成:アクリロニトリル 50%、メタクリル酸メチル 50%
水性媒体中の樹脂の平均粒子径: 0. 22 x m
ガラス転移温度:93°C
質量平均分子量: 130000
[0039] [製造例 5]
原料の初期添加分と連続添加分において、組成を以下のように変更し、製造例 1と 同様にして重合を行い、以下の測定結果を有する樹脂〔A— 5〕を得た。
<初期添加分 >
アタリロニトリノレ 10部、スチレン 10部
<連続添加分 >
アクリロニトリル 40部、スチレン 40部
<測定結果 >
樹脂組成:アクリロニトリル 50%、スチレン 50%
水性媒体中の樹脂の平均粒子径: 0. 24 μ η
ガラス転移温度:95°C
質量平均分子量: 140000
[0040] [製造例 6]
原料の初期添加分と連続添加分において、組成を以下のように変更し、製造例 1と 同様にして重合を行い、以下の測定結果を有する樹脂〔A_6〕を得た。
<初期添加分 >
アタリロニトリノレ 13部、アタリノレ酸ブチノレ 7部
<連続添加分 >
了クリロニトリノレ 52奋 ^了クリノレ酸ブチノレ 28奋
<測定結果 >
樹脂組成:アクリロニトリル 65 %、アクリル酸ブチル 35 % 水性媒体中の樹脂の平均粒子径: 0. 22 x m
ガラス転移温度:55°C
質量平均分子量: 130000
[0041] [製造例 7]
原料の初期添加分と連続添加分において、組成を以下のように変更し、製造例 1と 同様にして重合を行い、以下の測定結果を有する樹脂〔A_7〕を得た。
<初期添加分 >
アタリロニトリノレ 20咅
<連続添加分 >
アタリロニトリノレ 80咅
<測定結果 >
樹脂組成:アクリロニトリル 100%
水性媒体中の樹脂の平均粒子径: 0. 20 μ η
ガラス転移温度:100°C
質量平均分子量: 130000
[0042] [製造例 8]
製造例 1で、ペンタエリスリトールテトラキス(j3 _メルカプトプロピオネート)を 0. 2部用 レ、たこと以外は、製造例 1と同様にして重合を行い、以下の測定結果を有する樹脂〔 A— 8〕を得た。
<測定結果 >
樹脂組成:アクリロニトリル 75%、アクリル酸メチル 25%
水性媒体中の樹脂の平均粒子径: 0. 27 M m
ガラス転移温度:90°C
質量平均分子量: 1200000
[0043] [製造例 9] 原料の初期添加分と連続添加分において、組成を以下のように変更し、製造例 1と 同様にして重合を行い、以下の測定結果を有する樹脂〔A_9〕を得た。
<初期添加分 >
了タリロニ卜];ノレ 10咅 ^了クリノレ酸ェチノレ 10咅 B
<連続添加分 >
了クリロニ卜リノレ 40奋 ^了クリノレ酸ェチノレ 40奋
<測定結果 >
樹脂組成:アクリロニトリル 50%、アクリル酸ェチル 50%
水性媒体中の樹脂の平均粒子径: 0. 23 μ η
ガラス転移温度:45°C
質量平均分子量: 130000
[0044] [磁性材料]
本発明の実施例および比較例で使用した磁性材料の、種類および二次元投影した 際の最長長さは以下である。
B— 1:戸田工業製、 FL—900 (フェライト)、最長長さ 1. 6 μ m、 B_2:戸田工業製、 F H—800 (フェライト)、最長長さ 1 · 4 /i m、 B—3 :住友金属製、 Wellmax P_10 (Sm —Co系)、最大長さ 5. 3 μ m、 B-4:西興産業製、 Neo40 (Nd_Fe_B系)、最大長さ 4. 1 μ m、 B-5:西興産業製、 SAN40 (Aト M— Co系)、最大長さ 8. 5 μ m。
[0045] [実施例 1一実施例 16]および [比較例 1一比較例 8]
製造例 1一製造例 9で得られた樹脂 (A— 1一 A— 9)が分散している水性媒体に対し、 磁性材料 (B— 1一 B— 4)を〔表 1〕一〔表 3〕に示した組成で添加し、 30分間撹 拌した後、大川原加工機製噴霧乾燥装置 LT-8を用いて〔表 1〕一〔表 3〕の条件にて 噴霧乾燥法による造粒を行った。尚、噴霧形式はディスク式、捕集方式は 2点捕集タ イブを用いた。
[0046] [表 1] 1 2 3 4 5 6 7 8 樹脂種 A- 1 A-l A-l A-l A 1 A-l Λ- 1 A-l 樹脂組成
100 100 100 100 100 100 100 1 00 (部)
組成
磁性材料種 B-l B-2 B-3 B-4 B-5 B-l 13- 1 B-l 磁性材料組成
100 100 100 100 100 600 200 10 (部)
熱風の入口 ffl度
120 120 120 120 120 120 120 120 (¾)
熱風の出口温度
造粒条件 65 65 65 65 65 65 65 65
(V)
ディスク [Hi転数
18000 18000 18000 18000 18000 18000 18000 18000 ( r p m)
水性媒体中の樹脂と磁性材料
46 46 16 46 46 75 56 32 の合計濃度 (質量%)
造柠時の生産性 〇 〇 〇 〇 〇 〇 〇 〇 甲-均粒子径
35 38 33 34 37 36 42 31 複合 m)
物の特性
球形化率 0. 85 0. 83 0. 88 0. 84 0. 83 0. 81 0. 86 0. 85
[0047] [表 2]
Figure imgf000016_0001
[0048] [表 3] 比較例
1 2 3 4 5 6 7 8 樹脂種 A-8 A-8 A-9 A-9 A-1 A-1 Λ-1 A-1 樹脂組成
100 100 100 100 丄 00 100 100 100
(部〉
組成
磁性材料種 B-1 B-1 B-1 B-1 B-1 B-1 B-1 B-2 磁性材料組成
100 100 100 100 100 100 1500 1500 (部)
熱風の入口温度
120 140 120 115 240 95 120 120 rc)
熱風の出口温度
造粒条件 65 65 65 65 150 60 65 65
ディスク回転数
18000 18000 18000 18000 18000 18000 18000 18000
( r p !
水性媒体中の樹脂と磁性材料
46 46 46 46 46 46 87 87 の合訏渙度 (質 ft%)
造粒時の生産性 〇 〇 Δ X X Δ X X
平均粒子径
19 21 32 一 ― 43 ― ― 複合組成 ( μ in)
物の特性
球形化率 0. 42 0. 51 0. 81 ― ― 0. 83 ― 一
[0049] [実施例の考察]
本発明の球状複合組成物(実施例 1一実施例 16)は、いずれも生産性および製品物 性 (平均粒子径、球形化率)に優れている。
[0050] 一方、樹脂の質量平均分子量が 1000000を超える場合 (比較例 1および比較例 2 )には、樹脂が溶融しづらいため生成した粉体が結着 (樹脂の溶融による結合)して おらず球形化率が低くなつてしまう。樹脂のガラス転移温度が 50°C未満である場合( 比較例 3および比較例 4)には、噴霧乾燥機の噴霧部のディスク内で樹脂が凝集、固 化し、生産性が悪い。熱風の入口温度が [樹脂のガラス転移温度 + 150°C]を超える 場合 (比較例 5)には、噴霧部のディスク内で樹脂が凝集、固化し、生産できない。噴 霧乾燥機内の熱風の入口温度が 100°C以下の場合 (比較例 6)には、噴霧乾燥機の 乾燥室内で十分な乾燥がなされず樹脂が水分を多く含むため、乾燥室内に付着し 生産性が悪い。また、磁性材料の添加量が樹脂 100質量部に対して 1000を越える 場合 (比較例 7及び比較例 8)には、生成した粉体が結着しておらず球形化率が低く なってしまう。
産業上の利用可能性 本発明の不飽和ビニル単位を含む樹脂と磁性材料からなる球形化率の高い球状複 合材料は、樹脂磁石、電波吸収材料、磁気シールド材料、磁性トナー材料、トナーキ ャリア材料などの用途に良好に使用することができる。また、本発明の球状複合組成 物の製造法は、複数の製造工程を必要とすることなく簡素かつ生産性が良ぐ工業 的に極めて価値のある方法である。

Claims

請求の範囲
[1] (A— 1)ガラス転移温度が 50— 150°Cおよび (A— 2)質量平均分子量が 10000— 10 00000である不飽和ビニル単位からなる樹脂 100質量部に対し、 (B)二次元投影し た際の最長長さが 0. 01— 50 μ mである磁性材料 5— 1000質量部を添加してなる 球状複合組成物であって、平均粒子径が 1一 100 /i m、かつ球形化率が 0. 7— 1で あることを特徴とする球状複合組成物。
[2] 不飽和ビニル単位からなる樹脂力 アクリロニトリル単位およびメタタリロニトリル単位 力も選ばれた少なくとも 1種の単量体単位 30— 100質量%を含むことを特徴とする請 求項 1記載の球状複合組成物。
[3] 不飽和ビニル単位からなる樹脂力 (メタ)アクリル酸メチル単位、(メタ)アクリル酸ェ チル単位、 (メタ)アクリル酸ブチル単位、スチレン単位、 ひーメチルスチレン単位、ビ ニルトルエン単位から選ばれた少なくとも 1種の単量体単位 30— 100質量%を含む ことを特徴とする請求項 1記載の球状複合組成物。
[4] (A—1)平均粒径 0. 01— l x m、(A_2)ガラス転移温度が 50— 150°Cおよび(A_3 )質量平均分子量が 10000— 1000000である不飽和ビュル単位力もなる水性媒体 中に分散している樹脂 100質量部に対し、(B)二次元投影した際の最長長さが 0. 0 1一 50 μ mである磁性材料 5— 1000質量部を添加'分散後、噴霧乾燥法による造 粒にて得られる球状複合組成物であって、平均粒子径が 1一 100 z m、かつ球形化 率が 0. 7— 1であることを特徴とする球状複合組成物の製造方法。
[5] 不飽和ビュル単位からなる樹脂力 アクリロニトリル単位およびメタタリロニトリル単位 力も選ばれた少なくとも 1種の単量体単位 30— 100質量%を含むことを特徴とする請 求項 4記載の球状複合組成物の製造方法。
[6] 不飽和ビニル単位からなる樹脂力 (メタ)アクリル酸メチル単位、(メタ)アクリル酸ェ チル単位、 (メタ)アクリル酸ブチル単位、スチレン単位、 α—メチルスチレン単位、ビ ニルトルエン単位から選ばれた少なくとも 1種の単量体単位 30— 100質量%を含む ことを特徴とする請求項 4記載の球状複合組成物の製造方法。
[7] 噴霧乾燥法における噴霧乾燥装置内の熱風の入口温度が 100°C— [樹脂のガラス 転移温度 + 150°C]、かつ噴霧乾燥装置内の熱風の出口温度が 40°C— [樹脂のガ ラス転移温度 + 50°C]であることを特徴とする請求項 4記載の球状複合組成物の製 造方法。
[8] 請求項 1から請求項 3のレ、ずれかに記載の球状複合組成物からなることを特徴とする 樹脂磁石。
[9] 請求項 1から請求項 3のレ、ずれかに記載の球状複合組成物からなることを特徴とする 電波吸収材料。
[10] 請求項 1から請求項 3のレ、ずれかに記載の球状複合組成物からなることを特徴とする 磁気シールド材料。
[11] 請求項 1から請求項 3のいずれかに記載の球状複合組成物からなることを特徴とする 現像機内で使用する磁性トナー材料。
[12] 請求項 1から請求項 3のレ、ずれかに記載の球状複合組成物からなることを特徴とする 電子写真プロセスの現像機内で使用するトナーキャリア材料。
PCT/JP2004/013510 2003-09-26 2004-09-16 球状複合組成物および球状複合組成物の製造方法 WO2005030868A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20040773169 EP1669408B1 (en) 2003-09-26 2004-09-16 Spherical composite composition and process for producing spherical composite composition
JP2005514169A JP4964466B2 (ja) 2003-09-26 2004-09-16 球状複合組成物および球状複合組成物の製造方法
KR1020067004750A KR101285210B1 (ko) 2003-09-26 2004-09-16 구상 복합 조성물 및 구상 복합 조성물의 제조 방법
US10/572,646 US20060278843A1 (en) 2003-09-26 2004-09-16 Spherical composite composition and process for producing spherical composite composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-335301 2003-09-26
JP2003335301 2003-09-26

Publications (1)

Publication Number Publication Date
WO2005030868A1 true WO2005030868A1 (ja) 2005-04-07

Family

ID=34386061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013510 WO2005030868A1 (ja) 2003-09-26 2004-09-16 球状複合組成物および球状複合組成物の製造方法

Country Status (6)

Country Link
US (1) US20060278843A1 (ja)
EP (1) EP1669408B1 (ja)
JP (1) JP4964466B2 (ja)
KR (1) KR101285210B1 (ja)
CN (1) CN100441632C (ja)
WO (1) WO2005030868A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1994448A1 (en) * 2006-03-03 2008-11-26 Dow Global Technologies Inc. Aqueous dispersions for use as toners
JP2012163708A (ja) * 2011-02-04 2012-08-30 Ricoh Co Ltd 異方性磁性体分散型樹脂キャリア、電子写真用現像剤、及び現像装置
JP2013130655A (ja) * 2011-12-20 2013-07-04 Ricoh Co Ltd 電子写真用現像剤、画像形成装置及びプロセスカートリッジ

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9547246B2 (en) * 2006-03-03 2017-01-17 Dow Global Technologies Llc Aqueous dispersions for use as toners
EP2131373B1 (de) 2008-06-05 2016-11-02 TRIDELTA Weichferrite GmbH Weichmagnetischer Werkstoff und Verfahren zur Herstellung von Gegenständen aus diesem weichmagnetischen Werkstoff
DE102008048839A1 (de) 2008-09-25 2010-04-01 Tridelta Weichferrite Gmbh Weichmagnetischer Werkstoff
DE102008026888B4 (de) 2008-06-05 2012-02-23 Tridelta Weichferrite Gmbh Verfahren zur Herstellung von Gegenständen aus einem weichmagnetischen Kompositwerkstoff und nach dem Verfahren hergestellte Gegenstände
DE102008026887B4 (de) 2008-06-05 2012-02-23 Tridelta Weichferrite Gmbh Weichmagnetischer Kompositwerkstoff
JP6017416B2 (ja) * 2010-05-10 2016-11-02 コリア インスティチュ−ト オブ マシナリ− アンド マテリアルズ 広帯域電磁気波吸収体及びその製造方法
CN110591164B (zh) * 2019-10-08 2021-10-29 陕西师范大学 一种固体纳米分散体吸波材料
CN110828104A (zh) * 2019-10-23 2020-02-21 上海太朔材料技术有限公司 用水性环氧树脂制造的模压电感及其制造工艺
JP7463086B2 (ja) * 2019-12-12 2024-04-08 キヤノン株式会社 トナー

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2075209A (en) 1980-04-24 1981-11-11 Electronic Memories & Magnetic Carrier particles for electro-photographic developers
EP0248421A2 (en) 1986-06-05 1987-12-09 Fuji Xerox Co., Ltd. Carrier for developer
JPH01204071A (ja) 1988-02-10 1989-08-16 Fuji Xerox Co Ltd 静電潜像現像用キャリア
JPH02225529A (ja) * 1988-11-14 1990-09-07 Kanegafuchi Chem Ind Co Ltd 粒子状ペースト加工用塩化ビニル樹脂の製造法
JPH05295123A (ja) 1992-04-21 1993-11-09 Japan Synthetic Rubber Co Ltd 粉末粒子の製造方法
JPH0627743A (ja) 1992-07-09 1994-02-04 Mita Ind Co Ltd 電子写真用キャリヤ
JPH0963822A (ja) * 1995-08-29 1997-03-07 Sumitomo Metal Mining Co Ltd 樹脂磁石用組成物及びその製造方法
JPH09185184A (ja) 1996-08-28 1997-07-15 Toda Kogyo Corp 球形を呈した磁性キャリア及びその製造法
JP2001329067A (ja) * 2000-05-19 2001-11-27 Mitsubishi Rayon Co Ltd アクリル系重合体の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556308A (en) * 1978-06-28 1980-01-17 Hitachi Metals Ltd Magnetic toner composition for electrostatic transfer
JPS59166965A (ja) * 1983-03-11 1984-09-20 Hitachi Chem Co Ltd 静電荷像現像用トナ−
DE68926380T2 (de) * 1988-11-14 1996-09-12 Kanegafuchi Chemical Ind Sphärische Vinylchloridharzgranulate und Verfahren zu ihrer Herstellung
JPH04214569A (ja) * 1990-12-12 1992-08-05 Hitachi Metals Ltd 磁性トナー
EP0507324A3 (en) * 1991-04-05 1993-07-28 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Composite molding of resin-bonded magnet for machine parts and process for producing the same
JP3962479B2 (ja) * 1998-04-06 2007-08-22 キヤノン株式会社 静電荷像現像用トナー
EP1128225B1 (en) * 2000-02-21 2005-12-14 Canon Kabushiki Kaisha Magnetic toner and image-forming method making use of the same
JP3943857B2 (ja) * 2000-06-08 2007-07-11 キヤノン株式会社 重合トナーの製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2075209A (en) 1980-04-24 1981-11-11 Electronic Memories & Magnetic Carrier particles for electro-photographic developers
EP0248421A2 (en) 1986-06-05 1987-12-09 Fuji Xerox Co., Ltd. Carrier for developer
JPH01204071A (ja) 1988-02-10 1989-08-16 Fuji Xerox Co Ltd 静電潜像現像用キャリア
JPH02225529A (ja) * 1988-11-14 1990-09-07 Kanegafuchi Chem Ind Co Ltd 粒子状ペースト加工用塩化ビニル樹脂の製造法
JPH05295123A (ja) 1992-04-21 1993-11-09 Japan Synthetic Rubber Co Ltd 粉末粒子の製造方法
JPH0627743A (ja) 1992-07-09 1994-02-04 Mita Ind Co Ltd 電子写真用キャリヤ
JPH0963822A (ja) * 1995-08-29 1997-03-07 Sumitomo Metal Mining Co Ltd 樹脂磁石用組成物及びその製造方法
JPH09185184A (ja) 1996-08-28 1997-07-15 Toda Kogyo Corp 球形を呈した磁性キャリア及びその製造法
JP2001329067A (ja) * 2000-05-19 2001-11-27 Mitsubishi Rayon Co Ltd アクリル系重合体の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1994448A1 (en) * 2006-03-03 2008-11-26 Dow Global Technologies Inc. Aqueous dispersions for use as toners
EP1994448A4 (en) * 2006-03-03 2011-03-16 Dow Global Technologies Inc AQUEOUS DISPERSIONS AS TONER
JP2012163708A (ja) * 2011-02-04 2012-08-30 Ricoh Co Ltd 異方性磁性体分散型樹脂キャリア、電子写真用現像剤、及び現像装置
JP2013130655A (ja) * 2011-12-20 2013-07-04 Ricoh Co Ltd 電子写真用現像剤、画像形成装置及びプロセスカートリッジ

Also Published As

Publication number Publication date
KR20070004516A (ko) 2007-01-09
CN1856542A (zh) 2006-11-01
JP4964466B2 (ja) 2012-06-27
EP1669408A4 (en) 2009-02-25
US20060278843A1 (en) 2006-12-14
CN100441632C (zh) 2008-12-10
EP1669408B1 (en) 2015-05-06
JPWO2005030868A1 (ja) 2006-12-07
KR101285210B1 (ko) 2013-07-11
EP1669408A1 (en) 2006-06-14

Similar Documents

Publication Publication Date Title
Pérez et al. Molecularly imprinted nanoparticles prepared by core‐shell emulsion polymerization
WO2005030868A1 (ja) 球状複合組成物および球状複合組成物の製造方法
Darwish et al. Bi-layered polymer–magnetite core/shell particles: synthesis and characterization
CN104151764B (zh) 一种聚合物刷修饰的磁性复合微球及其制备方法与应用
JP2008282002A (ja) 磁性トナー用疎水性磁性酸化鉄粒子粉末及びその製造方法
Sun et al. Fabrication of Fe 3 O 4@ polydopamine@ polyamidoamine core–shell nanocomposites and their application for Cu (ii) adsorption
JP3499881B2 (ja) 無機物粒子含有樹脂複合球状物粉体
Erkoc et al. Photocurable pentaerythritol triacrylate/lithium phenyl‐2, 4, 6‐trimethylbenzoylphosphinate‐based ink for extrusion‐based 3D printing of magneto‐responsive materials
Xu et al. Controllable preparation of epoxy‐functionalized magnetic polymer latexes with different morphologies by modified miniemulsion polymerization
CN103304711B (zh) 一种树脂包覆型氢氧化铝的制备方法
Yang et al. Preparation of novel hydrophobic magnetic Fe3O4/waterborne polyurethane nanocomposites
US7144626B2 (en) Magnetic iron oxide particles and magnetic toner using the same
JPS59221302A (ja) 磁性重合体粒子の製造方法
CN101328273A (zh) 一种水分散磁性高分子微球及其制备方法
JP5403213B2 (ja) 表面処理された磁性酸化鉄粒子粉末及び該表面処理された磁性酸化鉄粒子粉末を用いた黒色塗料、ゴム・樹脂組成物
JP2006306998A (ja) 光干渉樹脂微粒子及び光干渉複合微粒子
Jia et al. Quaternary ammonium functionalized Fe 3 O 4 & P (GMA-AA-DVB) magnetic Janus particles as highly efficient catalysts for phase transfer reactions
JP5403214B2 (ja) 表面処理された磁性酸化鉄粒子粉末及び該表面処理された磁性酸化鉄粒子粉末を用いた黒色塗料、ゴム・樹脂組成物
JP5109298B2 (ja) 磁性重合体粒子及びその製造方法、水分散体
JP3097710B2 (ja) 無機物粒子含有エポキシ樹脂粒状物粉体
JP6119348B2 (ja) コア−シェル型シリカ複合粒子及びその製造方法
JP4639696B2 (ja) 磁性体複合粒子およびその製造方法
JP2003112925A (ja) マグネタイト結晶ナノ粒子
JP5617891B2 (ja) コア−シェル型シリカナノ粒子及びその製造方法
Nabid et al. Copper (I) ion stabilized on Fe3O4‐core ethylated branched polyethyleneimine‐shell as magnetically recyclable catalyst for ATRP reaction

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480027699.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005514169

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067004750

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006278843

Country of ref document: US

Ref document number: 10572646

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004773169

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004773169

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10572646

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067004750

Country of ref document: KR