WO2005030833A1 - ポリエステル樹脂組成物ならびに光学材料 - Google Patents

ポリエステル樹脂組成物ならびに光学材料 Download PDF

Info

Publication number
WO2005030833A1
WO2005030833A1 PCT/JP2004/014320 JP2004014320W WO2005030833A1 WO 2005030833 A1 WO2005030833 A1 WO 2005030833A1 JP 2004014320 W JP2004014320 W JP 2004014320W WO 2005030833 A1 WO2005030833 A1 WO 2005030833A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
acid
bis
compound
dicarboxylic acid
Prior art date
Application number
PCT/JP2004/014320
Other languages
English (en)
French (fr)
Inventor
Michiaki Fuji
Original Assignee
Kanebo, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo, Limited filed Critical Kanebo, Limited
Priority to EP04773494A priority Critical patent/EP1674496B1/en
Priority to JP2005514268A priority patent/JP4384636B2/ja
Priority to US10/573,305 priority patent/US20070032607A1/en
Priority to AT04773494T priority patent/ATE522561T1/de
Publication of WO2005030833A1 publication Critical patent/WO2005030833A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/025Polyesters derived from dicarboxylic acids and dihydroxy compounds containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/14Macromolecular compounds according to C08L59/00 - C08L87/00; Derivatives thereof
    • C08L2666/18Polyesters or polycarbonates according to C08L67/00 - C08L69/00; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to polyester and polycarbonate resin compositions that can be suitably used for optical materials. More specifically, it has low birefringence, is excellent in transparency, mechanical strength, and dimensional stability, has a good balance between refractive index and Abbe number, has high heat resistance, has good fluidity, and has a high degree of fluidity.
  • the present invention relates to a resin composition that can be suitably used for optical materials such as lenses, optical disks, optical fibers, and optical sheets. Background art
  • PMMA polymethyl methacrylate
  • PC polycarbonate
  • APO amorphous polyolefin
  • PMMA is often used because of its excellent transparency and small optical anisotropy. However, it has high hygroscopicity and tends to be deformed such as warpage after molding, resulting in poor form stability.
  • PC has high heat resistance and excellent transparency, but has problems such as poor fluidity and large birefringence of molded products, and cannot be said to be fully satisfactory as an optical material.
  • APO has high heat resistance and excellent transparency, but has poor fluidity and is easily colored during molding.
  • in order to bond a vapor-deposited film, a hard coat film, etc. it is not possible to obtain sufficient adhesiveness without going through a pre-process such as plasma treatment, and it cannot be said that the optical material is sufficiently satisfied.
  • optical discs and digital video discs for recording and reproducing information such as voices, images and characters using laser light have been rapidly developed, and substrate materials having higher performance optical characteristics have been demanded.
  • the size of the imaging lens of a small camera used in digital cameras and mobile phones is becoming smaller, and furthermore, due to the trend toward miniaturization and higher definition of image recognition devices such as CCD and CMOS, more optical differences have been observed.
  • polyester polymer-polyester copolymer a polymer using an aromatic dicarboxylic acid and 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene has been proposed as an optical material (for example, See Japanese Patent No. 2843215 and Japanese Patent No. 284 3214.) Polymers using an alicyclic dicarboxylic acid and 9,9-bis [4_ (2-hydroxyethoxy) phenyl] fluorenes have been proposed (for example, Japanese Patent No. 3331121, Japanese Patent Application Laid-Open No. H11-60706).
  • polyester copolymers are useful as optical materials because of their high refractive index, low birefringence, excellent heat resistance, and transparency, but they use expensive raw materials or lack heat resistance. And it is not always satisfactory.
  • a resin composition in which a polyester polymer and PC are blended for example, a resin composition in which a polyester made of an aromatic dicarboxylic acid and a polycarbonate made of an aromatic dihydroxy compound are blended has been proposed (Japanese Patent Application Laid-Open No. 2002-2002). -265771), however, does not describe application to optical lenses such as camera lenses or spectacle lenses, or optical applications such as optical films.
  • a blended resin composition of a polymer using an aromatic dicarboxylic acid and 9,9-bis [4-1 (2-hydroxyethoxy) phenyl] fluorene and PC has been proposed as an optical material (Patent No. See Japanese Patent No. 3023279.).
  • High heat resistance, high refractive index, birefringence Useful as an optical material with a small refractive index, but maintains heat resistance, at a temperature of 85 ° C and a humidity of 90%, does not lose transparency, has a small deformation on the lens surface, and is colored during molding.
  • a material with a small refractive index and a good balance between the refractive index and Abbe number and a small birefringence is desired. Disclosure of the invention
  • An object of the present invention is to solve the above problems, to reduce birefringence, to have excellent transparency, mechanical strength, and dimensional stability, to have a good balance of refractive index and Abbe's number, to have high heat resistance, and to be capable of flowing.
  • An object of the present invention is to provide a resin which has good properties and can be suitably used for optical materials such as camera lenses, spectacle lenses, optical disks, optical fibers, and optical sheets.
  • the present inventor has conducted various studies in order to solve the above problems, and as a result, a polyester polymer comprising a dicarboxylic acid compound and a dihydroxy compound, wherein the dicarboxylic acid compound is an alicyclic dicarboxylic acid and / or
  • the present inventors have found that the problem can be solved by using a resin composition prepared by blending a polyester polymer containing a specific dihydroxy compound and a polycarbonate, which contains an ester-forming derivative, and has reached the present invention.
  • the present invention relates to a polyester polymer comprising a dicarboxylic acid conjugate and a dihydroxy conjugate, wherein the dicarboxylic acid compound contains alicyclic dicarbonic acid and Z or an ester-forming derivative thereof,
  • the compound is characterized in that it is a resin composition prepared by blending a polyester polymer containing the compound represented by the general formula (1) and polycarbonate.
  • R i is an alkylene group having 2 to 4 carbon atoms
  • R 2 , R 3 , R 4 , and 1 ⁇ are hydrogen or carbon atoms (1 to 4 alkyl groups, aryl groups and aralkyl groups, which may be the same or different)
  • a polyester polymer comprising a dicarboxylic acid conjugate and a dihydroxy conjugate, wherein the dicarboxylic acid conjugate contains an alicyclic dicarboxylic acid and / or an ester-forming derivative thereof
  • the compound is obtained by blending a polyester polymer containing the compound represented by the general formula (1) and polycarbonate in a weight ratio of 5:95 to 95: 5.
  • the alicyclic dicarboxylic acid may be at least one compound selected from cyclohexanedicarboxylic acid, decalindicarboxylic acid, norbornanedicarboxylic acid, adamantanedicarboxylic acid, and tricyclodecenedicarboxylic acid. preferable.
  • FIG. 1 is a DSC measurement chart of the resin composition of Example 1.
  • the polyester resin composition of the present invention is a polyester polymer comprising a dicarboxylic acid compound and a dihydroxy compound, wherein the dicarboxylic acid compound contains alicyclic dicarboxylic acid Z or an ester-forming derivative thereof,
  • the dihydroxy conjugate is a resin yarn composition obtained by blending a polyester polymer containing the compound represented by the general formula (1) and polycarbonate.
  • R 2 , R 3 , R 4 , and R 5 are hydrogen or an alkyl group having 1 to 4 carbon atoms, an aryl group, and an aralkyl group.
  • alicyclic dicarboxylic acid As the alicyclic dicarboxylic acid to be provided to the polyester polymer of the present invention, a monocyclic alicyclic dicarboxylic acid such as cyclohexanedicarboxylic acid represented by the following general formula (2), or the following general formula (3): Decalin dicarboxylic acid represented by (4), norbornane dicarboxylic acid represented by the following general formulas (5) and (6), adamantane dicarboxylic acid represented by the following general formulas (7) and (8), and the following general And polycyclic alicyclic dicarboxylic acids such as tricyclodecene dicarponic acid represented by the formulas (9), (10) and (11).
  • R 6 is hydrogen or an alkyl group having 1 to 7 carbon atoms, an aryl group, or an aralkyl group, which may be the same or different.
  • A is a natural number of 1 to 3.
  • R 7 and R 8 are hydrogen or an alkyl, aryl, or aralkyl group having 1 to 7 carbon atoms and may be the same or different.
  • B and c are natural numbers of 1 to 7 )
  • R 9 and R 10 are hydrogen or an alkyl group having 1 to 7 carbon atoms, an aryl group or an aralkyl group, which may be the same or different. D and e are natural numbers of 1 to 7 is there. )
  • R 12 are hydrogen or an alkyl group having 1 to 7 carbon atoms, an aryl group, or an aralkyl group, which may be the same or different.
  • F and g are natural numbers of 1 to 7. is there One— (6)
  • R 13 and R 14 are hydrogen or an alkyl group having 1 to 7 carbon atoms, an aryl group or an aralkyl group, which may be the same or different. H and i are natural numbers of 1 to 7 is there
  • R 15 , R 16, and R 17 are hydrogen or an alkyl group having from 7 to 7 carbon atoms, an aryl group, an aralkyl group, which may be the same or different.
  • J and k are 1 to 8 Is a natural number, where 1 is a natural number from 1 to 9.
  • R 18 , R 19 and R 2 are hydrogen or an alkyl group having 1 to 7 carbon atoms, an aryl group And aralkyl groups which may be the same or different.
  • m and n are natural numbers from 1 to 8, and o is a natural number from 1 to 9.
  • R 21 and R 22 are hydrogen or an alkyl group having 1 to 7 carbon atoms, an aryl group or an aralkyl group, which may be the same or different.
  • P and q are natural numbers of 1 to 7) O
  • R 23 and R 24 are hydrogen or an alkyl group having 1 to 7 carbon atoms, an aryl group, or an aralkyl group, which may be the same or different. R and s are natural numbers of 1 to 7 is there
  • R 25 and the alkyl group R 2 6 is from 1 hydrogen or to 7 carbon atoms, Arinore group, natural numbers may be different even in the same a ⁇ La alkyl group.
  • T, u is from 1 8
  • Examples of the ester-forming derivatives of these alicyclic dicarboxylic acids include dicarboxylate-forming derivatives usually used in polyesters, and examples include alkyl esters such as dimethyl ester and getyl ester.
  • alicyclic dicarboxylic acids or their ester-forming derivatives may be used alone or in combination of two or more as required.
  • 1,4-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid dimethyl ester, 2,6-decalindicarboxylic acid, 2,6-decadecalindicarboxylic acid dimethyl ester are: It is preferable in terms of ease of synthesis, moldability, optical characteristics, and the like, but is not limited thereto.
  • 1,4-Cyclodicarboxylic acid has a trans-Z cis isomer, but the ratio is not particularly limited.
  • the melting point of the trans isomer is as high as about 312 ° C, and the melting point of cis is about 150 ° C for living organisms.
  • trans / cis isomer transition occurs, and the trans / cis ratio of the finally obtained resin is determined when the trans / cis ratio of the monomer measured by iH-NMR is 90 10 to 10790.
  • the resulting trans / cis ratio is in the range of 50/50 to 70Z30.
  • the alicyclic dicarboxylic acid or ester-forming derivative thereof used in the present invention can be arbitrarily contained in an amount of 1 to 100 mol% with respect to the whole dicarboxylic acid component as 100.
  • 5 Omo 1% or less is preferable in order to further enhance heat resistance.
  • 8 Omo is preferably 1% or less to reduce the birefringence.
  • the content of each is preferably 5 Omo 1% or less to reduce the birefringence.
  • dicarboxylic acid used as another component used in the present invention examples include aliphatic dicarboxylic acids such as malonic acid, succinic acid, daltaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, methylmalonic acid, and ethylmalonic acid.
  • Monocyclic aromatic dicarboxylic acids such as terephthalanolic acid and isophthalic acid; naphthalenedicarboxylic acids such as 2,6-naphthalenedicarboxylic acid and 1,8-naphthalenedicarboxylic acid; polycyclic compounds such as anthracenedicarboxylic acid and phenanthenedicarboxylic acid Examples thereof include aromatic dicarboxylic acids and biphenyldicarboxylic acids such as 2,2-biphenyldicarboxylic acid.
  • dihydroxy conjugate represented by the general formula (1) for example, 9,9-bis [4- (2-hydroxyethoxy) phenyl] phnoleolene, 9,9-bis [ 4- (2_Hydroxyxetoxy) 13-methylphenyl] phneolelene, 9,9-bis [4-1 (2-Hydroxyethoxy) 1,3,5-dimethylpheninole] futhleolene, 9, 9-bis [4,1 (2-Hydroxyethoxy) 1 3-Echinolefe-nole] phneolelene, 9, 9-bis [4- (2 _hydroxyxetoxy) -3, 5-Jetyl fuenorenole] 9,9-bis [4-1 (2-Hydroxyethoxy) 1,3-propylphenyl] fluorene, 9,9-bis [4- (2-hydroxyethoxy) -1,3,5-dipropylphenyl] fluorene, 9,91
  • 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene and 9,9-bis [4- (2-hydroxyethoxy-13methyl) phenyl] fluorene are optical properties. Most preferred from the viewpoint of moldability.
  • 9,9-bis [4- (2-hydroxyphenyl) phenyl] fluorene is, for example, the addition of ethylene oxide (hereinafter abbreviated as EO) to 9,9-bis (4-hydroxyphenyl) fluorene. Is obtained.
  • EO ethylene oxide
  • the 2EO adduct (9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene) in which one molecule of ethylene oxide is added to both hydroxyl groups of the phenol, a few more molecules are added. It may contain impurities such as 3EO adducts and 4EO adducts that have been added.
  • the purity of the 2E O adduct is preferably 95% or more, more preferably 97% or more.
  • the dihydroxy compound represented by the general formula (1) is preferably from 95% to 10% of the dalicol component in the resin. .
  • the content is less than 95 m 0 1%, there is an advantage that the melt polymerization reaction proceeds easily and the polymerization time is short.
  • polymerization can be performed in a short time by producing by a solution polymerization method or an interfacial polymerization method. Further, 10 mol 1% or more is preferable in that the glass transition temperature of the resin is high.
  • Diethylene glycol is likely to be produced when sulfonic acid is present.
  • the content of diethylene glycol in the polymer exceeds 6 mo 1%, the glass transition temperature, which is an indicator of heat resistance, and the refractive index decrease, and the polymer characteristics change greatly, resulting in industrially stable quality. Is difficult to provide economically.
  • the amount of diethylene glycol is preferably 4mo 1% or less, and particularly preferably 3mo 1% or less.
  • polycarbonate polymerization methods include a method of reacting a dihydroxy compound with phosgene in the presence of an acid binder (solution polymerization method) and a method of transesterifying a dihydroxy compound with a carbonate ester (ester exchange method). It is preferably adopted. Of these, the transesterification method is advantageous.
  • the form and system of polymerization are not particularly limited. For example, either a melt polymerization method or a solid phase polymerization method can be employed, but a melt polymerization method is industrially desirable.
  • aromatic dihydroxy compound examples include bis (4-hydroxyphenyl) methane, 2,2-bis (4-hydroxyphenyl) propane, and 2,2-bis (4-hydroxy-13).
  • aromatic dihydroxy compounds include, for example, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyphenyl) pentane, 2,2-bis (4-hydroxyphenyl) pentane, 2,2-bis (4-hydroxyphenyl) isopentane, 2 2,2-bis (4-hydroxyphenyl) hexane, 2,2-bis (4-hydroxyphenyl) isohexane, 4,4,1-dihydroxytriphenylmethane, 4,4,- Dihydroxytetraphenylmethane, 1,1-bis-1- (4-hydroxyphenyle) cyclohexane, 2,2-bis- (4-hydroxy-3-methynolephenine) propane, 2,2-bis- (4,1 Hydroxy 3-3, 5, 1 Noref fenore) Prono ,.
  • polycarbonate for example, it is preferable to use an aromatic polycarbonate obtained by interfacially polymerizing 2,2-bis- (4-hydroxyphenyl) propane with phosgene and an aqueous alkaline solution of methylene chloride.
  • the resin composition of the present invention is used to suppress the transesterification reaction between the polyester polymer (first component) and the polycarbonate (second component), and to reduce the molecular weight and the hue during molding and the like.
  • Heat stabilizers can be included to prevent this.
  • heat stabilizers include phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid and esters thereof, and specific examples thereof include trifle phosphite, tris (noninole feninole) phosphite, Tris (2,4-di-tert-butynolephenyl) phosphite, tridecyl phosphite, trioctyl phosphite, trioctadecyl phosphite, didesinolemonophenyl phosphite, dioctyl monophenyl Nole phosphite, diisopropinole monophenyl phosphite, mono petit / resiphenyl phosphite, mono decyl diphenyl phosphite, mono octin ole phenyl phosphite, bis-6-G tert-buty
  • trisnonylphenyl phosphite, trimethyl phosphate, tris (2,4-di-tert-butylphenyl) phosphite, bis (2,4-di-tert-butyltinphenyl) pentaerythritol diphosphite, and benzenephosphonic acid Dimethyl is preferably used.
  • These heat stabilizers may be used alone or in combination of two or more.
  • the amount of the heat stabilizer is preferably 0.0001 to 1 part by weight, and 0.0005 to 1 part by weight. 0.5 parts by weight is more preferable, and 0.001 to 0.2 parts by weight is further preferable.
  • the resin composition of the present invention may contain an antioxidant generally known for the purpose of preventing oxidation.
  • an antioxidant generally known for the purpose of preventing oxidation.
  • Examples of a strong acid-proofing agent include pentaerythritol tetrakis
  • the amount of the antioxidant is preferably 0.0001 to 0.5 part by weight. Les ,.
  • a release agent can be added to the resin composition of the present invention as long as the object of the present invention is not impaired.
  • the release agent include higher fatty acid esters of monohydric or polyhydric alcohols, higher fatty acids, paraffin wax, honey, olefin wax, olefin wax containing a carboxy group and / or carboxylic anhydride group. , Silicone oil, and organopolysiloxane.
  • the higher fatty acid ester is preferably a partial ester or a whole ester of a monohydric or polyhydric alcohol having 1 to 20 carbon atoms and a saturated fatty acid having 10 to 30 carbon atoms.
  • Examples of the partial ester or the whole ester of the monohydric or polyhydric alcohol and the saturated fatty acid include monoglyceride stearate, diglyceride stearate, triglyceride stearate, monosorbitatate stearate, stearyl stearate, behenic acid Monoglyceride, benenoic acid beninolate, pentaerythritol / lemonostearate, pentaerythritol tetrastearate, pentaerythritol tetraperargonate, propylene glycol monostearate, stearyl stearate, ⁇ .
  • Examples include noremityl palmitate, butyl stearate, methyl laurate, isopropyl palmitate, biphenyl biphenylate, sorbitan monostearate, and 2-ethylhexyl stearate.
  • stearic acid monoglyceride stearic acid triglyceride, pentaerythritol tetrastearate, and behenyl diacid are preferably used.
  • a saturated fatty acid having 10 to 30 carbon atoms is preferable.
  • strong fatty acids include myristic acid, lauric acid, palmitic acid, stearic acid, carboxylic acid, and the like. These release agents may be used alone or in combination of two or more.
  • Stearic Acid Metal soaps such as lucidum and zinc stearate have improved releasability, but have a large degree of smearing and are unsuitable for the resin composition of the present invention.
  • thermoplastic resin composition of the present invention can be added to the thermoplastic resin composition of the present invention within a range that does not impair the object of the present invention.
  • Such light stabilizers include, for example, 2- (2,1-hydroxy-5, -tert-butylphenyl) benzotriazole, 2- (3-tert-butyl-15-methyl-2-hydroxy-2-ethyl) -15-chloro Benzotriazole, 2- (5-Methylenol 2-Hydroxyphenyl) benzotriazonole, 2- [2-Hydroxy-3,5-bis ( ⁇ , a-Dimethinolebenzyl) phenyl] _2H-Benzotriazole Nore, 2,2,1-methylenebis
  • These light stabilizers may be used alone or in combination of two or more.
  • the resin composition of the present invention may contain a bluing agent to cancel the yellow tint of the lens based on the polyester polymer / polycarbonate / ultraviolet absorber.
  • a bluing agent any one can be used without any particular problem as long as it is used for polyester resins and polycarbonate resins.
  • anthraquinone dyes are easily available and preferred.
  • Specific blueing agents include, for example, the common name Solvent Violettl 3 [CA.No (color index No) 6 0 7 2 5] and the common name Solvent Violet 3 1 [CA.No 6 8 210, common name Solvent Violet 3 3 [CA.N o 6 0 7 2 5;, common name Solvent Blue 94 [CA.N o 6 1 5 0 0], common name S o 1 vent V io 1 et 3 6 [CA.No 6 8 2 10], common name Solvent Blue 97 and common name Solvent B 1 ue 4 5 [CA.No 6 1 1 0] are typical examples As These bluing agents if normally set to 1 0 0 parts by weight of the total amount of the polyester polymer (second component) and the polycarbonate (second component), 0 1 X 1 0 - . 4 ⁇ 2 X 1 0 4 parts by weight It is blended in the ratio of
  • any method is employed. For example, mixing with a tumbler, V-type blender, super mixer, Nauter mixer, Banbury mixer, kneading roll, extruder, etc., or dissolving the above two components in a common good solvent such as Shiridani methylene
  • a solution blending method for mixing in a mixed state but the method is not particularly limited, and any method of a commonly used polymer blending method may be used.
  • the resin composition thus obtained can be used as it is or once in the form of pellets by a melt extruder, and then formed into a molded product by a generally known method such as an injection molding method, an extrusion molding method, or a compression molding method. it can.
  • the resin composition of the present invention preferably gives a single glass transition temperature when subjected to differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • two peaks corresponding to the polyester polymer (the first component) and the aromatic polycarbonate (the second component) and other peak-to-shoulder may be given, but most of them are given. Poor transparency, thermal instability and poor moldability, making it difficult to be a good optical material. — ”
  • the method using a single-screw extruder or a twin-screw extruder does not use a solvent or the like, has a small burden on the environment, and can be suitably used from the viewpoint of productivity.
  • the melt-kneading temperature of the extruder is from 200 to 350 ° C., preferably 230. C to 300 ° C. When the temperature is lower than 200 ° C, the melt viscosity of the resin is high, the load on the extruder increases, and the productivity decreases. If the temperature is higher than 350 ° C, the resin is liable to be deteriorated, the color of the resin is yellowed, and the strength is reduced due to a decrease in the molecular weight.
  • a heat stabilizer, an antioxidant, a release agent, a light stabilizer and the like may be simultaneously kneaded.
  • an extruder it is desirable to install one in order to prevent burning of resin and mixing of foreign matter during extrusion.
  • the size of foreign matter removal of the filter depends on the required optical precision, but a filter with a foreign matter cutting ability of 100 im or less is preferable.
  • the concentration is preferably 40 / ni or less, more preferably 10 / m or less.
  • the resin discharged from the extruder be carried out in a clean room in order to prevent foreign matter from being mixed after extrusion.
  • a cooling method such as air cooling or water cooling. It is desirable to use air from which foreign substances in the air have been removed in advance using a hepa filter or the like to prevent air re-adherence of foreign substances.
  • water cooling it is preferable to use water from which foreign matter in the water has been removed by using a filter to remove metal components using an ion exchange resin or the like.
  • the size of the filter varies, it is preferable to use a filter having a size of 10 to 0.45 ⁇ .
  • the polyester polymer (first component) in the range of 0.3 to 0.8 is preferred. Those having an extremely low intrinsic viscosity have low mechanical strength when molded into a lens or the like. In addition, when the intrinsic viscosity increases, the fluidity during molding decreases, the cycle characteristics decrease, and the birefringence of the molded article tends to increase. Therefore, as the polyester polymer (first component), one having a degree of polymerization of 0.3 to 0.8 in terms of intrinsic viscosity, more preferably 0.35 to 0.7 is used. Is used.
  • the degree of polymerization of the polycarbonate is preferably an aromatic polycarbonate having an intrinsic viscosity in the range of 0.2 to 0.7. Those having an extremely low intrinsic viscosity have insufficient mechanical strength when molded into a lens. Also, when the intrinsic viscosity increases, the fluidity at the time of molding decreases, the molecules tend to be oriented easily, and the birefringence tends to increase after injection molding. Therefore, as the aromatic polycarbonate, one having a degree of polymerization in the range of 0.2 to 0.7 in terms of intrinsic viscosity, more preferably 0.3 to 0.55 is used.
  • the glass transition temperature of the resin composition of the present invention is at least 100 ° C, preferably at least 120 ° C, more preferably at least 130 ° C. A glass transition temperature of 100 ° C. or more is preferable because deformation under high temperature and high humidity hardly occurs and variation in surface accuracy of the lens is small.
  • the resin composition for an optical material of the present invention is constituted by uniformly blending the two components having the respective degrees of polymerization described above, and the blend ratio is determined by a polyester polymer (first component) and an aromatic polycarbonate (The weight ratio of the second component) is preferably in the range of 5:95 to 95: 5. Within this range, the effect of reducing the birefringence can be remarkably obtained, which is preferable. Further, it is preferable that the ratio be in the range of 20:80 to 80:20.
  • the polyester polymer when a solution polymerization method, an interfacial polymerization method, or the like is employed in producing the polyester polymer (first component), generally, acid chloride is used as an active species of the acid component, or methylene is used as a solvent. Chloride, black form, etc. are used, but chloride and catalyst compounds, which are by-products, remain in the polymer, which generally remain inferior in terms of product quality. Foreign matter must be removed. These reduce the operability in the forming process of sheets, films, plates, fibers and the like, and also reduce the quality of the obtained molded body. For example, a large amount of thermal decomposition occurs during high-temperature heating.
  • the resin composition of the present invention when used as an optical material for an optical disk or a magneto-optical disk, a metal thin film such as a reflective film or a recording film adheres to the substrate by a method such as vapor deposition or sputtering. Residual chlorine in the substrate corrodes the reflective film and recording film and reduces the life and reliability of optical discs and magneto-optical disks.Therefore, a sufficient process for removing residual chlorine such as washing and filtration Is required.
  • a polymerization method of the polyester polymer (first component) a transesterification method in which chlorine is not mixed is more preferable.
  • Injection compression molding machines are usually well suited for molding optical disc substrates, and mold conditions, especially the mold surface temperature and resin temperature, are important. Although it cannot be specified unconditionally depending on the blending amount, composition and degree of polymerization of the polyester polymer (first component) and polycarbonate (second component), the mold surface temperature is 50 ° C or higher and 160 ° C or lower. It is preferable that the resin temperature at this time is not less than 220 ° C. and not more than 330 ° C. If the mold surface temperature is 50 ° C or less, resin Both the fluidity and transferability of the resin are poor, stress and strain remain during injection molding, and the birefringence tends to increase, and the molding cycle is prolonged, which is not economical.
  • the transferability is good, but it is easy to deform when releasing.
  • the resin temperature is 330 ° C. or higher, the resin is liable to be decomposed, which causes a reduction in the strength and coloring of the molded product.
  • dust and the like are formed in a step of introducing a raw material, a polymerization reaction, and a step of extruding a copolymer into a refrigerant to form a pellet or a sheet. It is desirable to take care not to get in. This degree of cleanness is usually less than 100 for compact discs and less than 100 for more sophisticated information recording.
  • Injection molding and injection compression molding are generally used for molding lenses.
  • the mold surface temperature and the resin temperature are particularly important.
  • the amount of the polyester polymer (first component) and polycarbonate (second component), the composition, the degree of polymerization, etc. cannot be specified unconditionally, but the mold surface temperature is preferably 50 ° C or higher and 160 ° C or lower.
  • the resin temperature at this time is preferably set to 220 ° C. or more and 330 ° C. or less.
  • the mold surface temperature is 50 ° C or less, both the fluidity and transferability of the resin are poor, and stress strain remains during injection molding, and the birefringence tends to increase. Performance may not be met.
  • the mold temperature is higher than 160 ° C, it will be easily deformed during mold release. Further, when the resin temperature is 220 or less, the fluidity of the resin is poor, and an excessive load may be applied to the molding machine, which is not preferable. When the resin temperature is 330 ° C. or higher, the resin is liable to be decomposed, which causes a reduction in the strength of the molded product and coloring. In the case of molding a lens, it is necessary to make the lens surface shape precise and to minimize residual internal stress which causes birefringence in order to secure the performance of the lens. Although there is a trade-off with the molding cycle, molding is often performed with a high mold temperature and a long cooling time.
  • Tosoh G_6000, G-4000, G-3000 are connected in series as a column, flow rate is lml / min, eluent is chromatoform, UV detector is used as detector, standard polystyrene is used at 40 ° C. The weight average molecular weight in terms of polystyrene was calculated using the calibration curve prepared in the above.
  • the measurement was performed with a monochromatic light of 546 nm using a Carl Zeiss pear polarizing microscope equipped with a Cerralmon, Berek, and Brace Keller compensator.
  • the mold temperature was set to Tg_20 ° C, and a 30 X 30 X 3 mm flat molded product was obtained. The retardation at the center of the molded article that had been annealed for 3 hours was measured.
  • Izod impact strength was measured according to JIS K 7110.
  • the molded article was tested using an advanced accelerated life tester (TAB-I-SPEC, TPC-212M) at a temperature of 105 ° C and a humidity of 100% for 24 hours.
  • TAB-I-SPEC advanced accelerated life tester
  • the light transmittance was measured using a spectrophotometer (Shimadzu, uv-
  • 1,9-Bis [4- (2-hydroxyethoxy) phenyl] fluorene 0.8 mol 1 and 1,2-cyclohexanedicarboxylic acid 1 mol 1 are used as raw materials. These are charged into a reaction vessel, and are stirred from room temperature to 2
  • the esterification reaction was performed by gradually heating to 30 ° C. After draining a predetermined amount of water out of the system, 0.002 mol of germanium oxide, which is a polymerization catalyst, and 0.0014 mol of trimethyl phosphate to prevent discoloration are added. Gradually, the temperature of the heating tank was reduced to 270 ° C and the degree of vacuum was reduced to 133 Pa (lTo rr) or less while removing ethylene dalicol. Maintaining these conditions and waiting for the viscosity to rise, the reaction was terminated after reaching a predetermined stirring torque (after about 4 hours), and the reaction product was extruded into water to obtain pellets.
  • This resin was pressed at 200 ° C to obtain a film having a thickness of about 100 / ⁇ m.
  • the refractive index was 1.607
  • the glass transition temperature was 126 ° C
  • the content of DEG was 1.8 mol%.
  • This polyester resin (first component) and polycarbonate (second component: Teijin Chemicals, Panlite L1250) were mixed at a weight ratio of 50 to 50 to a twin-screw extruder (Toshiba Machine TEM35B) installed in a clean room.
  • the obtained resin pellet was pressed at 200 ° C. to obtain a finolem having a thickness of about 100 ⁇ .
  • the refractive index was 1.595, the Abbe number was 29, and the glass transition temperature was 132 ° C.
  • Pellets were produced and evaluated in the same manner as in Example 1, except that the composition ratio of the polyester polymer (first component) and the polycarbonate (second component) was changed as shown in Table 1. Table 1 shows the results. V, deviation and uniform transparency were obtained, and moldability was also good.
  • the pressure was gradually reduced, and the temperature of the heating tank was reduced to 270 ° C and the degree of vacuum was reduced to 133 Pa (lTo rr) or less while removing the generated ethylene glycol. Under these conditions, the viscosity was increased, and after reaching a predetermined stirring torque (after about 2 hours), the reaction was terminated, and the reaction product was extruded into water to obtain a pellet.
  • the glass transition temperature is 123 ° C
  • the refractive index is 1.584
  • the content of DEG is 2.3 m o 1%.
  • 0.1 parts by weight of pentaerythritol diphosphate was added to 100 parts by weight of the polyester resin and the polycarbonate, and the mixture was kneaded.
  • the extruded resin was placed in a water tank filled with water through a 1 ⁇ filter. It was cooled and continuously cut by a cutter to obtain pellets. At this time, the resin temperature at the outlet of the discharge mouthpiece was 280 ° C.
  • the obtained resin pellet was pressed at 200 ° C. to obtain a film having a thickness of about 100 ⁇ .
  • the refractive index was 1.584, the Abbe number was 31, and the glass transition temperature was 130 ° C.
  • polyester polymer (first component) obtained in Example 1 with polycarbonate (second component: Teijin Chemicals Ltd., Panlite L 1250) at a weight ratio of 50:50, a heat stabilizer, bis ( 2,4-di-t tert-butyltin phthalate)
  • second component Teijin Chemicals Ltd., Panlite L 1250
  • a heat stabilizer bis ( 2,4-di-t tert-butyltin phthalate)
  • pentaerythritol tonoresiphosphite to polyester resin and polycarbonate, 100 parts by weight, 0.05 parts by weight, stearic acid as mold release agent, 0.4 parts by weight to resin And then mixed.
  • the obtained resin pellet was pressed at 200 ° C. to obtain a film having a thickness of about 100 ⁇ .
  • the refractive index was 1.595, the Abbe number was 29, and the glass transition temperature was 131 ° C.
  • Table 1 shows the results.
  • the molded product was uniform and transparent. Even when the mold temperature was close to Tg (about Tg_10 ° C), the moldability was good and the mold release was good.
  • Composition of the first component Composition at the time of kneading MFR Impact Refractive index Atsu 'Light transmittance Birefringence Retardation strength Number 3mm% Folding ratio
  • Example 1 A 80 50 50 132 4 89.2 S7. 82.3 4fi 70 Performed 2 A 80 30 70 136 3 3.8 1.591 29 89.5 88.0 84.2 70 30 Example 3 A 80 70 30 128 5 3.2 1.600 28 88.3 86.3 80.1 32 120 Performed Example 4 A 80 10 90 126 2 4.5 1.587 29 89.6 88.9 86.1 89 25 Example 5 A 80 90 10 137 7 3 1.604 28 88.0 85.4 78.1 20 180 Example 6 B 55 50 50 130 4 3 1.584 31 89.3 87.4 82.5 51 75 Example 7 A 80 .50 50 131 5 3.4 1.595 29 89.2 97.1 82 46 70 Comparative 1 0 100 140 1 7 1.585 30 89.9 89.5 88.0 95 200 Comparative 2 A 80 100 0 140 12 2.9 1.607 27 88.6 85.3 76.5 3 15 Comparative Example 3 A 80 50 50 131 5 3.4 41.6 16.2 4.3
  • Pellets were obtained in the same manner as in Example 7, except that the release agent in Example 7 was changed to 0.4 parts by weight of calcium stearate.
  • the molded product was cloudy and was unsuitable as a lens material utilizing the visible light region.
  • Comparative Example 1 shows the measurement value of polycarbonate (second component: manufactured by Teijin Chemicals Ltd., Panlite L125) alone.
  • Comparative Example 2 is a measurement value of the polyester polymer (first component) described in Example 1 alone.
  • the resin composition of the present invention has good impact resistance and transparency of polycarbonate, but has a large birefringence and good flowability of the polyester polymer, and has a high refractive index.
  • a well-balanced resin with low refraction but unsatisfactory impact resistance, heat resistance, and transparency which compensates for the advantages and disadvantages of both polycarbonate and polyester polymers, while maintaining transparency, heat resistance, and impact resistance. It can be seen that the product is a yarn.
  • Table 2 shows the results of the pressure cooker test.
  • Environmental resistance tests for lenses are conducted at a temperature of 65 ° C and a relative humidity of 80% for several hundred hours, and at a temperature of 85 ° C, a relative humidity of 90% and several hundred hours.
  • an accelerated stability test was performed at a higher temperature of 105 ° C, a relative humidity of 100%, and a high temperature and high humidity of 24 hours.
  • a part of the film was slightly clouded, and a decrease in transmittance was observed.
  • Comparative Example 2 That is, the polyester polymer (first component) used in Examples 1 to 5 and 7 alone showed that the test results showed that the opacity was large and that almost no light was transmitted.
  • Test conditions temperature 105 ° C, humidity 100%, 24 hours
  • the resin composition of the present invention is suitable for use in camera lenses, single lenses, lens applications such as lenses for CCDs and CMOSs, films used for liquid crystals, sheets, and optical materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

複屈折が小さく、透明性、機械的強度、寸法安定性に優れ、耐熱性が高く、流動性が良好で、光学材料に好適に用いるこのとがでる樹脂を提供する。ジカルボン酸化合物とジヒドロキシ化合物からなるポリエステル重合体であって、ジカルボン酸化合物が脂環族ジカルボン酸および/またはそのエステル形成性誘導体を含み、フルオレン系ジヒドロキシ化合物を含むポリエステル重合体とポリカーボネートとをブレンドしてなる樹脂組成物。本発明により、複屈折が小さく、透明性、機械的強度、寸法安定性に優れ、耐熱性が高く、流動性が良好で、成形性と光学特性のバランスのとれた材料が提供可能となり、カメラレンズ、眼鏡レンズ、光ディスク、光ファイバー、光学シートなどの光学材料に好適に用いるこのとがでる樹脂を提供可能となる。

Description

明 細 書 ポリエステル樹脂組成物ならぴに光学材料 技術分野
本発明は、 光学材料に好適に用いることのできるポリエステル、 ポリカーボネート樹 脂組成物に関する。 さらに詳しくは、 複屈折が小さく、 透明性、 機械的強度、 寸法安定 性に優れ、 屈折率とアッベ数のバランスを良好に有し、 耐熱性が高く、 流動性が良好で 、 カメラレンズ、 眼鏡レンズ、 光ディスク、 光ファイバ一、 光学シートなどの光学材料 に好適に用いることができる樹脂組成物に関する。 背景技術
従来、 透明で機械特性に優れている樹脂は光学材料として多く用いられている。 例え ばポリメチルメタタリレート (以下 PMMAと略する) やポリカーボネート (以下 P C と略する) 、 アモルファスポリオレフィン (以下 A P Oと略する) などが、 コンパクト ディスク、 レーザーディスク、 プロジェクシヨンレンズ、 f — θ レンズ、 撮景系レンズ 、 フアインダ一系レンズ、 ピックァップレンズ、 デジタル力メラレンズな-どの-光学材料— として、 また、 自動車の透明部品、 反射材料等に使用されている。 P MMAは透明性に 優れ、 光学的異方性も小さいのでよく使われるが、 吸湿性が高く、 成形後、 反り等の変 形が起り易く形態安定性が悪い。
一方 P Cは耐熱性が高く、 透明性に優れているが、 流動性が悪く、 成形品の複屈折が 大きくなる等の問題があり、 光学材料として十分に満足されたものとはいえない。 また 、 A P Oは耐熱性が高く、 透明性に優れているが、 流動性が悪く、 成形時に着色しやす レ、。 また、 蒸着膜やハードコート膜などを接着するには、 プラズマ処理などの前工程を 経ないと、 十分な接着性が得られず、 光学材料として十分に満足されたものとはいえな レ、。 さらに近年レーザー光を用いて音声、 画像、 文字等の情報を記録、 再生する光デイス ク、 デジタルビデオディスクが急速に開発され、 より高性能な光学特性を有する基板材 料が要望されている。 デジタルカメラ、 携帯電話に使用される小型カメラの撮影系のレ ンズは、 小型化が進み、 さらには、 CCDや CMOSなどの画像認識装置小型化、 高精 細化の方向から、 より光学的異方性の少ない樹脂材料が要望されている。
また、 より厳しい環境下での使用での耐久性が求められている。 例えば、 従来は温度 65°C、 湿度 80%で、 透明性が損なわれないことが条件であつたが、 最近は温度 85 °C、 湿度 90%で、 透明性が損なわれず、 レンズ面の表面の変形が小さいことが求めら れている。
ポリエステル重合体ゃポリエステル共重合体としては、 芳香族ジカルボン酸と 9 , 9 一ビス [4一 (2—ヒドロキシエトキシ) フエニル] フルオレン類を用いた重合体が光 学材料として提案されている (たとえば、 特許第 2843215号公報、 特許第 284 3214号公報参照。 ) 。 脂環族ジカルボン酸と 9 , 9—ビス [ 4 _ ( 2—ヒドロキシ エトキシ) フエニル] フルオレン類を用いた重合体が提案されている (たとえば、 特許 第 3331121号公報、 特開平 11一 60706号公報、 特開 2000— 31936 6号公報参照。 ) 。 これらのポリエステル共重合体は屈折率が高く、 複屈折率が小さく 、 耐熱性に優れ、透明であることから、 光学材料として有用であるが、 高価な原料を使 用したり、 耐熱性が不足したりして、 必ずしも満足できるものではない。
ポリエステル重合体と P Cとをブレンドした樹脂組成物としては、 例えば、 芳香族ジ カルボン酸からなるポリエステルと芳香族ジヒドロキシ化合物からなるポリカーボネ一 トのブレンドした樹脂組成物が提案されている (特開 2002— 265771号公報) が、 カメラレンズや眼鏡レンズといった光学レンズや、 光学フィルムといった光学用途 への適用に関する記載はない。
芳香族ジカルボン酸と 9, 9一ビス [4一 (2—ヒドロキシエトキシ) フエニル] フ ルオレン類を用いた重合体と P Cとのプレンドした樹脂組成物が光学材料として提案さ れている (特許第 3023279号公報参照。 ) 。 耐熱性が高く、 屈折率が高く、 複屈 折率が小さく光学材料として有用であるが、 耐熱性を維持しつつ、 温度 8 5 °C、 湿度 9 0 %で、 透明性が損なわれず、 レンズ面の表面の変形が小さく、 成形時の着色が小さく 、 屈折率とアッベ数のパランスがよく、 複屈折率の小さい材料が望まれている。 発明の開示
本発明の目的は、 上記問題点を解消し、 複屈折が小さく、 透明性、 機械的強度、 寸法 安定性に優れ、 屈折率とアッベ数のパランスを良好に有し、 耐熱性が高く、 流動性が良 好で、 カメラレンズ、 眼鏡レンズ、 光ディスク、 光ファイバ一、 光学シートなどの光学 材料に好適に用いるこのとができる樹脂を提供することにある。
本発明者は、 上記課題を解決するため、 種々研究を重ねた結果、 ジカルボン酸化合物 とジヒドロキシ化合物からなるポリエステル重合体であって、 ジカルボン酸ィ匕合物が脂 環族ジカルボン酸および/またはそのエステル形成性誘導体を含み、 特定のジヒドロキ シ化合物を含むポリエステル重合体とポリカーボネートとをプレンドしてなる樹脂組成 物を用いることで課題を解決できることを見いだし、 本発明に到達した。
即ち本発明は、 ジカルボン酸ィ匕合物とジヒドロキシィ匕合物からなるポリエステル重合 体であって、 ジカルボン酸化合物が脂環族ジカルポン酸および Zまたはそのエステル形 成性誘導体を含み、 ジヒドロキシィ匕合物が一般式 (1 ) で示される化合物を含むポリェ ステル重合体とポリカーボネートとをプレンドしてなる樹脂組成物であることを特徴と する。
Figure imgf000004_0001
(R iは炭素数 2から 4のアルキレン基、 R 2、 R 3、 R 4、 及ぴ1^は水素または炭素数 1から 4のアルキル基、 ァリール基、 ァラルキル基であり同じであっても異なっていて よい)
さらに、 ジカルボン酸ィ匕合物とジヒドロキシィ匕合物からなるポリエステル重合体であ つて、 ジカルボン酸ィ匕合物が脂環族ジカルボン酸および/またはそのエステル形成性誘 導体を含み、 ジヒドロキシィヒ合物が一般式 (1 ) で示される化合物を含むポリエステル 重合体とポリカーボネートとを重量比 5 : 9 5から 9 5 : 5の範囲でブレンドしてなる ことが好ましい。
また、 脂環族ジカルボン酸が、 シクロへキサンジカルボン酸、 デカリンジカルボン酸 、 ノルボルナンジカルポン酸、 ァダマンタンジカルポン酸、 またはトリシクロデセンジ カルボン酸から選ばれる少なくとも 1種の化合物であることが好ましい。
本発明により、 複屈折が小さく、 透明性、 機械的強度、 寸法安定性に優れ、 耐熱性が 高く、 流動性が良好で、 、 屈折率とアッベ数のバランスを良好に有し、 成形 1"生と光学特 性のパランスのとれた材料が提供可能となり、 カメラレンズ、 眼鏡レンズ、 光ディスク 、 光ファイバ一、光学シートなどの光学材料に好適に用いるこのとが出来る樹脂を提供 可能となる。 図面の簡単な説明 ― " " 第 1図は、 実施例 1の樹脂組成物の D S C測定チヤ一トである。
発明を実施するための最良の形態
本発明を実施するための形態を説明する。
本発明のポリエステル樹脂組成物は、 ジカルボン酸化合物とジヒ ドロキシ化合物から なるポリエステル重合体であって、 ジカルボン酸ィヒ合物が脂環族ジカルボン酸おょぴ Z またはそのエステル形成性誘導体を含み、 ジヒドロキシィ匕合物が一般式 (1 ) で示され る化合物を含むポリエステル重合体とポリカーボネートとをプレンドしてなる樹脂糸且成 物である。
Figure imgf000006_0001
(Riは炭素数 2から 4のアルキレン基、 R2、 R3、 R4、 及び R5は水素または炭素数 1から 4のアルキル基、 ァリール基、 ァラルキル基であり同じであっても異なっていて あよい)
本発明のポリエステル重合体に供する脂環族ジカルボン酸としては、 下記一般式 (2 ) で表されるシクロへキサンジカルボン酸等の単環式脂環族ジカルボン酸、 または下記 一般式 (3) 、 (4) で表されるデカリンジカルボン酸、 下記一般式 (5) 、 (6) で 表されるノルボルナンジカルボン酸、 下記一般式 (7) 、 (8) で表されるァダマンタ ンジカルボン酸、 下記一般式 (9) 、 (10) 、 (1 1) で表されるトリシクロデセン ジカルポン酸等の多環式脂環族ジカルボン酸等が挙げられる。
■(2)
Figure imgf000006_0002
(R6は水素又は炭素数 1から 7までのアルキル基、 ァリール基、 ァラルキル基であ り同じであっても異なっていてもよい。 aは 1から 3の自然数である。 ) —(3)
HOOC ヽ coon
(R7及び、 R8は水素又は炭素数 1から 7までのアルキル基、 ァリール基、 ァラル キル基であり同じであっても異なっていてもよい。 b、 cは 1から 7の自然数である。 )
Figure imgf000007_0001
(R9及ぴ、 R10は水素又は炭素数 1から 7までのアルキル基、 ァリール基、 ァラル キル基であり同じでありても異なっていてもよい。 d、 eは 1から 7の自然数である。 )
Figure imgf000007_0002
(R„及び、 R12は水素又は炭素数 1から 7までのアルキル基、 ァリール基、 ァラ ルキル基であり同じであっても異なっていてもよい。 f 、 gは 1から 7の自然数である 一— (6)
Figure imgf000008_0001
(R13及び、 R14は水素又は炭素数 1から 7までのアルキル基、 ァリール基、 ァラ ルキル基であり同じであっても異なっていてもよい。 h、 iは 1から 7の自然数である
Figure imgf000008_0002
(R15、 R16及び、 R17は水素又は炭素数: Tから 7までのアルキル基、 ァリール基 、 ァラルキル基であり同じであっても異なっていてもよい。 j、 kは 1から 8の自然数 で、 1は 1から 9の自然数である。 )
Figure imgf000008_0003
(R18、 R19及び、 R2。は水素又は炭素数 1から 7までのアルキル基、 ァリール基 、 ァラルキル基であり同じであっても異なっていてもよい。 m、 nは 1から 8の自然数 で、 oは 1から 9の自然数である。 )
Figure imgf000009_0001
(R21及ぴ、 R 22は水素又は炭素数 1から 7までのアルキル基、 ァリール基、 ァラ ルキル基であり同じであっても異なっていてもよい。 p、 qは 1から 7の自然数である o )
—(10)
Figure imgf000009_0002
(R23及び、 R24は水素又は炭素数 1から 7までのアルキル基、 ァリール基、 ァラ ルキル基であり同じであっても異なっていてもよい。 r、 sは 1から 7の自然数である
0 )
Figure imgf000009_0003
(R25及び、 R 26は水素又は炭素数 1から 7までのアルキル基、 ァリーノレ基、 ァラ ルキル基であり同じであっても異なっていてもよい。 t、 uは 1から 8の自然数である これらの脂環族ジカルボン酸のエステル形成性誘導体としては、 通常ポリエステルに 用いられるジカルポン酸エステル形成性誘導体が挙げられ、 例えばジメチルエステル、 ジェチルエステル等のアルキルエステル等が挙げられる。
これらの脂環族ジカルボン酸またはそのエステル形成性誘導体は、 それぞれ単独で用 いても良いし、 必要に応じて 2種以上併用しても良い。
これら脂環族ジカルボン酸の中でも 1, 4ーシクロへキサンジカルボン酸、 1, 4一 シク口へキサンジカルボン酸ジメチルエステル、 2, 6—デカリンジカルボン酸、 2, 6—デカデカリンジカルボン酸ジメチルエステルが、 合成し易さ、 成形性、 光学特性等 の点で好ましいが、 これに限定されるものではない。
1, 4ーシクロジカルボン酸はトランス Zシスの異性体があるが、 その比率は特に限 定されるものではない。 トランス異性体の方が融点 312°C程度と高く、 シス異^ "生体の 融点 150°C程度である。 本発明のポリエステルを溶融重合法で重合する場合は、 高温
(230°Cから 300°C) で行う。 その間に、 トランス/シスの異性体の転移が起こり 、 最終的に得られる樹脂のトランス/シスの比率は、 iH— NMRで測定したモノマー でのトランス/シス比が 90 10〜10790の場合、 最終的に得られるトランス/ シス比は 50/50〜70Z30の範囲となる。
本発明において用いられる脂環族ジカルボン酸またはそのエステル形成性誘導体は、 ジカルボン酸成分全体を 100として l〜100mo 1 %の間で任意に含有させること ができるが、 他のジカルボン酸として脂肪族ジカルボン酸とともに用いる場合には、 耐 熱性をより高めるため、 5 Omo 1 %以下が好ましい。 他のジカルボン酸として単環式 芳香族ジカルボン酸を用いる場合には、 複屈折率を低下させるため 8 Omo 1%以下が 好ましい。 多環式芳香族ジカルボン酸、 ビフエニルジカルボン酸とともに用いる場合に は、 複屈折率を低下させるため、 各々 5 Omo 1 %以下が好ましい。 本発明において用いられる他の成分として用いられるジカルボン酸としては、 マロン 酸、 コハク酸、 ダルタル酸、 アジピン酸、 ピメリン酸、 スベリン酸、 ァゼライン酸、 メ チルマロン酸、 ェチルマロン酸等の脂肪族ジカルボン酸、 テレフタノレ酸、 イソフタル酸 等の単環式芳香族ジカルボン酸、 2, 6—ナフタレンジカルボン酸、 1, 8—ナフタレ ンジカルボン酸等のナフタレンジカルボン酸、 アントラセンジカルボン酸、 フエナント レンジカルボン酸等の多環式芳香族ジカルボン酸、 2, 2, ービフエ-ルジカルボン酸 等のビフヱ二ルジカルボン酸等が挙げられる。
本発明において、 一般式 (1) で表されるジヒドロキシィ匕合物としては、 例えば、 9 , .9—ビス [4— (2—ヒ ドロキシエトキシ) フエニル] フノレオレン、 9, 9一ビス [ 4― (2_ヒ ドロキシェトキシ) 一 3 _メチルフエニル] フノレオレン、 9, 9一ビス [ 4一 (2—ヒ ドロキシエトキシ) 一3, 5—ジメチルフエ二ノレ] フスレオレン、 9, 9一 ビス [4一 (2—ヒ ドロキシエトキシ) 一 3—ェチノレフエ-ノレ] フノレオレン、 9, 9 - ビス [4- (2 _ヒ ドロキシェトキシ) -3, 5—ジェチルフエ二ノレ] フノレオレン、 9 , 9_ビス [4一 (2—ヒ ドロキシエトキシ) 一3—プロピルフエニル] フルオレン、 9, 9—ビス [4— (2—ヒ ドロキシエトキシ) 一 3, 5—ジプロピルフエニル] フル オレン、 9, 9一ビス [4— (2—ヒ ドロキシエトキシ) 一 3—イソプロピルフエニル ] フルオレン、 9, 9一ビス [4一 (2—ヒ ドロキシエトキシ) _3, 5—ジイソプロ- ピルフエニル] フルオレン、 9, 9—ビス [4— (2—ヒ ドロキシエトキシ) 一 3— n 一ブチルフエ二ノレ] フノレオレン、 9, 9一ビス [4— (2—ヒ ドロキシエトキシ) 一 3 , 5—ジ一 n—プチノレフエニル] フルオレン、 9, 9一ビス [4— (2—ヒ ドロキシェ トキシ) 一 3—イソブチルフエニル] フルオレン、 9, 9一ビス [4一 (2—ヒ ドロキ シエトキシ) 一3, 5—ジイソブチノレフエニル] フルオレン、 9, 9一ビス [4一 (2 —ヒ ドロキシエトキシ) 一 3— (1ーメチ^/プロピノレ) フエ二ノレ] フノレオレン、 9, 9 一ビス [4一 (2—ヒ ドロキシエトキシ) 一 3, 5—ビス (1一メチルプロピル) フエ -ル] フルオレン、 9, 9一ビス [4— (2—ヒ ドロキシエトキシ) 一3—フエ-ルフ ェニノレ] フノレオレン、 9, 9一ビス [4一 (2—ヒ ドロキシエトキシ) 一 3, 5—ジフ ェユルフェニル] フルオレン、 9, 9一ビス [4一 (2—ヒ ドロキシエトキシ) - 3 - ベンジルフエニル] フルオレン、 9, 9 -ビス [4 - (2—ヒ ドロキシエトキシ) - 3 , 5—ジベンジルフエ-ル] フルオレン、 9, 9一ビス [4一 (3—ヒ ドロキシプロボ キシ) フエ-ル] フルオレン、 9, 9—ビス [4— (4ーヒ ドロキシブトキシ) フエ二 ル] フルオレン等が挙げられ、 これらは単独でも 2種類以上を組み合わせて使用しても 良レ、。 これらの中でも 9, 9一ビス [4— (2—ヒ ドロキシエトキシ) フエニル] フル オレン、 9, 9—ビス [4一 (2—ヒ ドロキシエトキシ一 3メチル) フエニル] フルォ レンが光学特性、 成形性の面から最も好ましい。
9, 9一ビス [4一 (2—ヒ ドロキシェトキシ) フエニル] フルオレンは、 例えば、 9, 9_ビス (4—ヒ ドロキシフエ-ル) フルオレンにエチレンオキサイ ド (以下、 E Oと略する) を付加して得られる。 この際、 フヱノールの両水酸基にエチレンォキサイ ドが 1分子づっ付加した 2 E O付加体 ( 9, 9—ビス [ 4— ( 2—ヒドロキシエトキシ ) フエニル] フルオレン) の他に、 さらに数分子過剰に付カ卩した、 3EO付加体、 4E O付加体等の不純物が含まれる事がある。 ポリエステル重合体の耐熱性を向上させるた めには、 2 E O付加体の純度が 95 %以上で有ることが好ましく、 さらに好ましくは 9 7%以上である。
9, 9一ビス [4— (2—ビドロキシエトキシ) フエニル] フルオレンを得る別の-方一 法としては、 フルォレノンに直接フエノキシエタノールを付加させて得られる。 この場 合は、 EOが過剰に付カ卩した付加体は含まれにくく、 より好適に用いることができる。 本発明のポリエステル重合体を溶融重合法のエステル交換法で製造するには、 一般式 (1) で表わされるジヒドロキシ化合物は、 樹脂中のダリコール成分の 10力 ら 95m o 1 %であることが好ましい。 95 m 0 1 %以下の場合、 溶融重合反応が進みやすく、 重合時間が短いという利点がある。 尚、 95 m o 1 %より多い場合は、 溶液重合法また は界面重合法で製造することによつて短時間で重合することができる。 また、 10mo 1 %以上は、 樹脂のガラス転移温度が高いという点で好ましい。
また、 使用する原料の由来によっては、 硫黄を含有する酸 (例えば、 硫酸、 p—トル エンスルホン酸など) があると、 ジエチレングリコールが生成しやすくなる。 ポリマー 中のジエチレングリコールが 6 m o 1 %を超えると、 耐熱性の指標であるガラス転移温 度の低下や、 屈折率の低下が大きくなり、 ポリマーの特性の変化が大きくなり、 工業的 に安定した品質のポリマーを経済的に提供しにくくなる。
ジエチレングリコールの量は 4mo 1 %以下が好ましく、 3mo 1 %以下が特に好ま しい。
本発明で用いるポリカーボネートとしては、 とくに、 芳香族ポリカーボネートが好適 である。 ポリカーボネートの重合方法は、 酸結合剤の存在下にジヒドロキシィヒ合物とホ スゲンとを反応させる方法 (溶液重合法) およびジヒドロキシ化合物をカーボネートェ ステルとエステル交換反応させる方法 (エステル交換法) が好ましく採用される。 これ らのうち、 エステル交換法が有利である。 エステル交換法は、 その重合の形態や方式は 特に制限されない。 例えば、 溶融重合法または固相重合法いずれも採用することができ るが、 溶融重合法が工業的に望ましい。
芳香族ジヒドロキシ化合物としては、 具体的にはビス (4—ヒドロキシフエニル) メ タン、 2, 2—ビス (4—ヒ ドロキシフエ二ノレ) プロパン、 2, 2—ビス (4—ヒ ドロ キシ一 3—メチノレフエニル) プロパン、 ビス (4—ヒ ドロキシフエ二ノレ) メタン、 1, 1一ビス (4—ヒ ドロキジフエ二ノレ) 一1一フエニノレエタン、 4, 4' _ 〔1, 3—フ ェニレンビス (1—メチルェチリデン) 〕 ビスフエノール、 4, 4 ' ― 〔1, 4一フエ -レンビス (1—メチルェチリデン) 〕 ビスフエノール、 9, 9—ビス (4ーヒ ドロキ シフエ二ノレ) フル才レン、 9, 9—ビス (4ーヒ ドロキシー 3—メチノレフエ二ノレ) フル オレン、 9, 9一ビス (4ーヒ ドロキシ一 3, 5—ジメチルフエ二ノレ) フノレ才レンなど のビス (4—ヒ ドロキシァリール) アルカン、 1, 1一ビス (4—ヒ ドロキシフエニル ) シクロへキサン、 1, 1一ビス (4ーヒ ドロキシフエ二ル) .一 3, 3, 5—トリメチ ノレシク口へキサン、 4一 [1— [3 - (4—ヒ ドロキシフエニル) 一 4ーメチルシク口 へキシル〕 一1—メチルェチル] —フエノール、 4, 4, 一 〔1ーメチルー 4一 ( 1 - メチノレエチノレ) 一1, 3—シク口へキサンジィノレ〕 ビスフエノーノレ、 2, 2, 2, , 2 , ーテトラヒ ドロ _ 3, 3, 3, , 3, ーテトラメチル _1, 1, ースピロビス一 〔1 H—インデン〕 一6, 6, 一ジオールなどのビス (ヒドロキシァリール) シクロアルカ ン、 ビス (4—ヒドロキシフエニル) エーテル、 4, 4, 一ジヒドロキシー 3, 3, - ジメチノレフエニルエーテノレなどのジヒ ド口キシァリールエーテル、 4, 4, ージヒドロ キシジフヱニノレスノレフイド、 4, 4, 一ジヒドロキシー 3, 3, ージメチノレジフエ二ノレ スルフイ ドなどのジヒドロキシジァリールスルフイ ド類、 4, 4, ージヒドロキシジフ ェニノレスノレホキシド、 4, 4, ージヒドロキシー 3, 3 ' —ジメチノレジフエニノレスノレホ キシドなどのジヒ ドロキシジァリーノレスノレホキシド、 4, 4, 一ジヒ ドロキシジフエ二 ノレスノレホン、 4, 4' ージヒドロキシー 3, 3, ージメチノレジフエニノレスノレホン、 など のジヒ ドロキシジァリールスルホン、 4, 4' —ジヒドロキシジフエ二ルー 3, 3, - ィサチンなどのジヒドロキシジァリ一ルイサチン類。 3, 6—ジヒ ドロキシー 9, 9 - ジメチノレキサンテンなどのジヒドロキシジァリ一ノレキサンテン、 レゾノレシン、 ヒ ドロキ ノン、 2 - t—プチルヒドロキノン、 2—フエニルヒドロキノン、 2—クミノレヒドロキ ノン、 4, 4—ジヒドロキシジフエニルなどのジヒ ドロキシベンゼン等が例示される。 中でも 2, 2—ビス (4—ヒ ドロキシフエ二ノレ) プロパンがモノマーとしての安定性 、 更にはそれに含まれる不純物の量が少ないものの入手が容易である点、 等より好まし いものとしてあげられる。
また、 その他の芳香族ジヒドキシ化合物として、 例えばビス一 (4ーヒ ドロキシフエ ニル) メタン、 1, 1一ビス一 (4—ヒ ドロキシフエニル) ェタン、 1, 1—ビス一 ( 4—ヒ ドロキシフエニル) プロパン、 2, 2_ビス一 (4—ヒドロキシフエニル) プタ ン、 2, 2 -ビス一 (4—ヒドロキシフエ二ノレ) ペンタン、 2, 2 -ビス一 (4—ヒ ド ロキシフエ二ノレ) イソペンタン、 2, 2—ビス一 (4—ヒドロキシフエ二ノレ) へキサン 、 2, 2—ビス一 (4—ヒドロキシフエ二ノレ) イソへキサン、 4, 4, 一ジヒ ドロキシ トリフエニルメタン、 4, 4, ージヒドロキシテトラフェニルメタン、 1, 1一ビス一 (4ーヒ ドロキシフエ二ノレ) シクロへキサン、 2, 2—ビス一 (4ーヒドロキシー 3— メチノレフエ二ノレ) プロパン、 2, 2―ビス一 (4, 一ヒドロキシ一 3' , 5, 一ジメチ ノレフエ二ノレ) プロノ、。ン、 ジヒ ドロキシジフエニノレエーテノレ、 ジヒ ドロキシジフエニノレス ノレホン、 ジヒ ドロキシジフエニノレス/レフィ ドといった、 ビスフエノ一ノレ類及びハイ ドロ キノン、 レゾルシン、 0—メチルレゾルシン、 o—クミルレゾルシンといった二価のフ ェノール化合物から選択される一種または二種以上を用いても良い。
ポリカーボネートとしては、 たとえば、 2 , 2—ビス一 ( 4ーヒ ドロキシフエニル) プロパンをホスゲンとアルカリ水溶液一塩化メチレン系で界面重合させて得られる芳香 族ポリカーボネートを用いるのが好適である。
また、 本発明の樹脂組成物には、 ポリエステル重合体 (第一成分) とポリカーボネー ト (第二成分) とのエステル交換反応を抑制するためや成形時等における分子量の低下 や色相の悪化を防止するために熱安定剤を配合することができる。
かかる熱安定剤としては、 亜リン酸、 リン酸、 亜ホスホン酸、 ホスホン酸およびこれ らのエステル等が挙げられ、 具体的には、 トリフエ-ルホスファイ ト、 トリス (ノニノレ フエ二ノレ) ホスファイ ト、 トリス (2, 4 _ジ一 t e r t—ブチノレフエニル) ホスファ イ ト、 トリデシルホスフアイ ト、 トリオクチルホスフアイ ト、 トリォクタデシルホスフ アイ ト、 ジデシノレモノフエニルホスフアイ ト、 ジォクチルモノフエ二ノレホスファイ ト、 ジイソプロピノレモノフエニルホスフアイ ト、 モノプチ/レジフエニルホスファイ ト、 モノ デシルジフエ-ルホスフアイ ト、 モノォクチノレジフェ二ノレホスファィ ト、 ビス ー6 ージー t e r t—ブチノレー 4一メチルフエ二ノレ) ペンタエリスリ トーノレジホスファイ ト 、 2 , 2—メチレンビス (4, 6—ジ一 t e r t—プチノレフエ二ノレ) ォクチノレホスファ イ ト、 ビス (ノ二ノレフエ二ル) ペンタエリスリ トーノレジホスフアイ ト、 ビス ( 2 , 4 - ジ一 t e r t—ブチルフエニル) ペンタエリスリ トールジホスフアイト、 ジステアリル ペンタエリスリ トールジホスファイ ト、 トリブチルホスフェート、 トリェチルホスフエ ート、 トリメチノレホスフェート、 トリフエ二ノレホスフェート、 ジフエ二ノレモノオノレソキ セニ ホスフェート、 ジブチ^/ホスフヱート、 ジォクチノレホスフェート、 ジイソプロピ ノレホスフェート、 4 , 4, ービフエ二レンジホスフィン酸テトラキス (2 , 4—ジー t e r t一プチノレフエ二ノレ) 、 ベンゼンホスホン酸ジメチノレ、 ベンゼンホスホン酸ジェチ ノレ、 ベンゼンホスホン酸ジプロピル等が挙げられる。 なかでも、 トリスノニルフエニル ホスファイト、 トリメチルホスフェート、 トリス (2, 4—ジー t e r t—ブチルフエ ニル) ホスファイト、 ビス (2, 4ージー t e r t—プチノレフエ二ノレ) ペンタエリスリ トールジホスフアイト、 およびベンゼンホスホン酸ジメチルが好ましく使用される。 これらの熱安定剤は、 単独でもしくは 2種以上混合して用いてもよい。 かかる熱安定 剤の配合量は、 、 ポリエステル重合体 (第一成分) とポリカーボネート (第二成分) と の総量を 100重量部とした場合、 0. 0001〜1重量部が好ましく、 0. 0005 〜0. 5重量部がより好ましく、 0. 001〜0. 2重量部が更に好ましい。
また、 本発明の樹脂組成物には、 酸化防止の目的で通常知られた酸ィ匕防止剤を配合す ることもできる。 力かる酸ィヒ防止剤としては、 例えばペンタエリスリ トールテトラキス
(3—メルカプトプロピオネート) 、 ペンタエリスリ トールテトラキス (3—ラウリル チォプロピオネート) 、 グリセロール一 3—ステアリルチオプロピオネート、 トリェチ レングリコール—ビス [3 - (3 - t e r t一プチノレ一 5ーメチノレー 4—ヒ ドロキシフ ェニル) プロピオネート] 、 1 , 6—へキサンジオール一ビス [3 - (3, 5—ジー t e r t一プチル一 4ーヒドロキシフエニル) プロピオネート] 、 ペンタエリスリ トール —テトラキス [3 - (3, 5—ジ一 t e r t—ブチノレー 4—ヒドロキシフエニル) プロ ピオネート] 、 ォクタデシルー 3 _ (3, 5—ジ _ t e r tーブチルー 4ーヒド百—ギ — フエニル) プロピオネート、 1, 3, 5—トリメチルー 2 , 4, 6—トリス (3, 5 - ジー t e r tーブチノレー 4—ヒ ドロキシベンジノレ) ベンゼン、 N, N—へキサメチレン ビス (3, 5—ジー t e r t—ブチルー 4—ヒドロキシーヒ ドロシンナマイド) 、 3, 5—ジ _ t e r t—ブチノレー 4ーヒ ドロキシ一べンジノレホスホネート一ジェチノレエステ ノレ、 トリス (3, 5—ジ一 t e r t—プチノレー4ーヒドロキシベンジノレ) イソシァヌレ ート、 4, 4, 一ビフエ二レンジホスフィン酸テトラキス (2, 4—ジ一 t e r t—プ チルフエニル) 、 3, 9_ビス {1, 1—ジメチルー 2 _ [/3 - (3— t e r t—ブチ ノレ一4—ヒ ドロキシー 5—メチルフエ二ノレ) プロピオニノレオキシ] ェチノレ } -2, 4, 8, 10—テトラオキサスピロ (5, 5) ゥンデカン等が挙げられる。 これら酸化防止剤の配合量は、 ポリエステル (第一成分) とポリカーボネート (第二 成分) との総量を 1 0 0重量部とした場合、 0 . 0 0 0 1〜 0 . 5重量部が好ましレ、。 また、 本発明の樹脂組成物には溶融成形時の金型からの離型性をより向上させるため に、 本発明の目的を損なわない範囲で離型剤を配合することも可能である。 かかる離型 剤としては、 一価または多価アルコールの高級脂肪酸エステル、 高級脂肪酸、 パラフィ ンワックス、 蜜蠟、 ォレフィン系ワックス、 カルボキシ基おょぴ/またはカルボン酸無 水物基を含有するォレフイン系ワックス、 シリコーンオイル、 オルガノポリシロキサン 等が挙げられる。 力かる離型剤の配合量は、 ポリエステル (第一成分) とポリカーボネ 一ト (第二成分) との総量を 1 0 0重量部とした場合、 0 . 0 1〜 5重量部が好ましレヽ 高級脂肪酸エステルとしては、 炭素原子数 1〜 2 0の一価または多価アルコールと炭 素原子数 1 0〜 3 0の飽和脂肪酸との部分エステルまたは全エステルであるのが好まし V、。 かかる一価または多価アルコールと飽和脂肪酸との部分エステルまたは全ェステル としては、 ステアリン酸モノグリセリ ド、 ステアリン酸ジグリセリ ド、 ステアリン酸ト リグリセリ ド、 ステアリン酸モノソルビテート、 ステアリン酸ステアリル、 ベへニン酸 モノグリセリ ド、 ベへニン酸べへ二ノレ、 ペンタエリスリ トー/レモノステアレート、 ペン タエリスリ トールテトラステアレート、 ペンタエリスリ トールテトラペラルゴネート、 プロピレングリコールモノステアレート、 ステアリルステアレート、 ノ、。ノレミチルパルミ テート、 ブチルステアレート、 メチルラウレート、 イソプロピルパルミテート、 ビフエ 二ルビフエネート、 ソルビタンモノステアレート、 2—ェチルへキシルステアレート等 が挙げられる。
なかでも、 ステアリン酸モノグリセリ ド、 ステアリン酸トリグリセリ ド、 ペンタエリ スリ トールテトラステアレ一ト、 ベへ二ン酸ベへニルが好ましく用いられる。
本願発明の高級脂肪酸としては、 炭素原子数 1 0〜 3 0の飽和脂肪酸が好ましい。 力 かる脂肪酸としては、 ミリスチン酸、 ラウリン酸、 パルミチン酸、 ステアリン酸、 ニン酸、 などが挙げられる。 これらの離型剤は、 単独でもしくは 2種以上混合して用いてもよい。 ステアリン酸力 ルシゥム、 ステアリン酸亜鉛といった、 金属石けんは、 離型性は改善されるが、 にごり が大きく、 本発明の樹脂組成物には不適である。
本願発明の熱可塑性樹脂組成物には、 本願発明の目的を損なわない範囲で、 光安定剤 を配合することができる。
かかる光安定剤としては、 例えば 2— (2, 一ヒドロキシー 5, - t e r tーォクチ ルフエニル) ベンゾトリァゾール、 2— (3 - t e r t—プチル一 5—メチルー 2—ヒ ドロキシフエ-ル) 一 5—クロ口べンゾトリァゾール、 2— (5—メチノレー 2—ヒ ドロ キシフエニル) ベンゾトリァゾーノレ、 2— [2—ヒ ドロキシー 3, 5—ビス (α, a— ジメチノレベンジル) フエニル] _ 2 H—ベンゾトリァゾーノレ、 2, 2, 一メチレンビス
(4ークミル一 6—ベンゾトリアゾールフエニル) 、 2, 2, 一 p _フエ二レンビス ( 1, 3 _ベンゾォキサジン一 4一オン) 等が挙げられる。 かかる光安定剤の配合量は、 ポリエステル重合体 (第二成分) とポリカーボネート (第二成分) との総量を 1 0 0重 量部とした場合、 0. 0 1〜 2重量部が好ましレ、。
これらの光安定剤は、 単独でもしくは 2'種以上混合して用いてもよレ、。
本発明の樹脂組成物には、 レンズに成形した場合、 ポリエステル重合体ゃポリカーボ ネ ドゃ紫外線吸収剤に基づくレンズの黄色味を打ち消すためにブルーィング剤を配合 することができる。 ブルーイング剤としては、 ポリエステル樹脂、 ポリカーボネート樹 脂に使用されるものであれば、 特に支障なく使用することができる。
一般的にはアンスラキノン系染料が入手容易であり好ましい。 具体的なブルーィング 剤としては、 例えば一般名 S o l v e n t V i o l e t l 3 [CA.N o (カラーイン デッタス N o) 6 0 7 2 5] 、 一般名 S o l v e n t V i o l e t 3 1 [CA.N o 6 8 2 1 0、 一般名 S o l v e n t V i o l e t 3 3 [CA.N o 6 0 7 2 5 ;、 一般名 S o l v e n t B l u e 94 [CA.N o 6 1 5 0 0] 、 一般名 S o 1 v e n t V i o 1 e t 3 6 [CA.N o 6 8 2 1 0] 、 一般名 S o l v e n t B l u e 9 7および一般 名 S o l v e n t B 1 u e 4 5 [CA.N o 6 1 1 1 0] が代表例として挙げられる。 これらブルーイング剤は通常ポリエステル重合体 (第二成分) とポリカーボネート (第 二成分) との総量を 1 0 0重量部とした場合、 0 . 1 X 1 0 -4〜 2 X 1 0 4重量部の割合 で配合される。
本発明のポリエステル重合体 (第一成分) とポリカーボネート (第二成分) のプレン ド方法としては、 任意の方法が採用される。 例えばタンブラ一、 V型ブレンダー、 スー パーミキサー、 ナウターミキサー、 バンバリ一ミキサー、 混練ロール、 押出機等で混合 する方法、 あるいは上記 2成分を例えば塩ィ匕メチレンなどの共通の良溶媒に溶解させた 状態で混合する溶液プレンド方法などがあるが、 これは特に限定されるものではなく、 通常用いられるポリマーブレンド方法ならどのような方法を用いてもよい。
こうして得られる榭脂組成物は、 そのまま、 または溶融押出機で一旦ペレット状にし てから、 射出成形法、 押出成形法、 圧縮成形法等の通常知られている方法で成形物にす ることができる。
本発明の樹脂組成物は、 示差走查熱量測定 (D S C) を行ったとき、 好ましくは単一 のガラス転移温度を与える。 一般的には、 ポリエステル重合体 (第一成分) と芳香族ポ リカーボネート (第二成分) に対応する二つのピーク、 及び、 それ以外のピークゃショ ルダーを与える場合があるが、 その多くは、 透明性が悪く、 熱的に不安定で成形性も悪 く、'良好な光学材料とはなり難い。 — " 本発明の熱可塑性樹脂組成物の混和性を高めて安定した離型性や各物性を得るために は、 溶融押出において単軸押出機、 二軸押出機を使用するのが好ましい。
単軸押出機、 二軸押出機を用いる方法は、 溶剤等を用いることがなく、 環境への負荷 が小さく、 生産性の点からも好適に用いることができる。 押出機の溶融混練温度は 2 0 0から 3 5 0 °C好ましくは 2 3 0。Cから 3 0 0 °Cである。 2 0 0 °Cより低い温度である と、 樹脂の溶融粘度が高く、 押出機への負荷が大きくなり、 生産性が低下する。 3 5 0 °Cより高いと、 樹脂の劣化が起こりやすくなり、 樹脂の色が黄変したり、 分子量が低下 するため強度が劣化したりする。 また、 必要に応じて、 熱安定剤、 酸化防止剤、 離型剤 、 光安定剤等を同時に混練してもよい。 押出機を使用する場合、 押出時に樹脂の焼け、 異物の混入を防止するため、 一を設置することが望ましい。 フィルターの異物除去の大きさは、 求められる光学的な 精度依存するが、 1 0 0 i m以下の異物カツト能があるフィルターが好ましレ、。 特に異 物の混入を嫌う場合は、 4 0 / ni以下、 さらには 1 0 / m以下が好ましい。
押出機から吐出された樹脂は、 押出後の異物混入を防止するために、 クリーンルーム 中で実施することが望ましい。
また、 押出された樹脂を冷却しペレット化する際は、 空冷、 水冷等の冷却方法を使用 するのが好ましい。 空冷の際に使用する空気はへパフィルター等で空気中の異物を事前 に取り除いた空気を使用し、 空気中の異物の再付着を防ぐのが望ましい。 水冷を使用す る際は、 イオン交換樹脂等で金属分を取り除き、 さらにフィルタ一にて、 水中の異物を 取り除いた水を使用することが望ましい。 フィルターの大きさは種々あるが、 1 0〜0 . 4 5 μ πιのフィルターの使用が好ましい。
ポリエステル重合体の重合度は、 固有粘度 (フエノール 6 0重量0 /0、 1 , 1, 2 , 2 ーテトラクロロェタン 4 0重量0 /0の混合溶液中、 2 0 °Cで測定) にして 0 . 3〜0 . 8 の範囲内のポリエステル重合体 (第一成分) が好ましい。 この固有粘度が極端に低い物 はレンズ等に成形した時の機械的強度が弱い。 また、 固有粘度が大きくなると、 成形す る際の流動性が低下し、 サイクル特性を低下させ、 成形品の複屈折率が大きくなり易い- 傾向がある。 従って、 ポリエステル重合体 (第一成分) としては重合度が固有粘度にし て 0 . 3〜0 . 8の範囲内のものを用い、 さらに好ましくは 0 . 3 5〜0 . 7の範囲内 のものを用いる。
ポリカーボネートの重合度は固有粘度にして 0 . 2〜0 . 7の範囲内の芳香族ポリ力 ーボネートが好ましい。 この固有粘度が極端に低い物はレンズに成形した時の機械的強 度が不十分である。 また、 固有粘度が大きくなると、 成形する際の流動性を低下させ、 分子配向しやすくなり、 射出成形後、 複屈折が大きくなる傾向がある。 従って、 芳香族 ポリカーボネートとしては、 重合度が固有粘度にして 0 . 2〜0 . 7の範囲内のものを 用い、 さらに好ましくは 0 . 3〜0 . 5 5の範囲内のものを用いる。 本発明の樹脂組成物のガラス転移温度は 1 0 0 °C以上、 好ましくは 1 2 0 °C以上更に 好ましくは 1 3 0 °C以上である。 ガラス転移温度が 1 0 0 °C以上だと、 高温高湿度下で の変形が起こりにくく、 レンズの面精度のバラツキが少ないので好ましい。
本発明の光学材料用樹脂組成物は、 上記のそれぞれの重合度を持った 2成分を均一に ブレンドして構成されるが、 そのブレンド率はポリエステル重合体 (第一成分) と芳香 族ポリカーボネート (第二成分) の重量比で、 5 : 9 5〜9 5 : 5の範囲内とすること が好ましい。 この範囲にあれば、 複屈折率の低減効果が顕著に得られるので好ましい。 更には、 2 0 : 8 0〜8 0 : 2 0の範囲内にすることが好ましい。
本発明において、 ポリエステル重合体 (第一成分) を製造する際に、 溶液重合法、 界 面重合法等を採用する場合には、 一般に酸成分の活性種として酸クロライドを用いたり 、 溶媒としてメチレンクロライド、 クロ口ホルム等が使用するが、 ポリマー中には副生 成物である塩化物や触媒化合物が残留し、 このものは一般的に製品の品質上良くないの で、 重合工程後に一般に残留異物を除去せねばならない。 これらは、 シート、 フィルム 、 プレート、 繊維等の成形工程での操業性を低下させ、 得られる成形体の品質をも低下 させる。 例えば高温加熱時に熱分解が多量に発生する。
また、 光ディスクや光磁気ディスク等の光学材料として本発明の樹脂組成物を使用す る際は、 反射膜や記録膜等の金属薄膜を基板に蒸着、 スパッタリング等の方法で固着ず— るが、 基板内に残留塩素分があると、 反射膜、 記録膜を腐食し、 光ディスクや光磁気デ イスクの寿命や信頼性を低下させるので、 十分な、 洗浄、 ろ過等の残留する塩素を除去 する工程が必要となる。 ポリエステル重合体 (第一成分) の重合方法としては塩素が混 入しないエステル交換法のほうが好ましい。
光ディスク基板の成形には通常射出圧縮成形機がよく適合し、 成形条件では、 特に金 型表面温度と樹脂温度が重要である。 ポリエステル重合体 (第一成分) とポリカーボネ ート (第二成分) の配合量、 組成及び重合度などにより一概に規定できないが、 金型表 面温度は 5 0 °C以上 1 6 0 °C以下が好ましく、 また、 この時の樹脂温度は 2 2 0 °C以上 3 3 0 °C以下となるようにするのが良い。 金型表面温度が 5 0 °C以下の場合には、 樹脂 の流動性と転写性が共に悪く、 射出成形時に応力歪が残って、 複屈折率が大きくなる傾 向があり、 また、 成形サイクルも延びるので経済的でない。 金型温度が 1 6 0 °C以上の 場合、 転写性は良いが、 離型時に変形し易い。 また、 樹脂温度が 3 3 0 °C以上の場合は 樹脂の分解が起こり易く、 成形品の強度低下、 着色の原因となる。
本発明の光学材料用樹脂組成物から光学材料を成形する場合には、 原料の投入工程を 初め、 重合反応、 共重合体を冷媒中に押し出してペレット状またはシート状にする工程 では塵埃等が入り込まないように留意して行う事が望まれる。 このクリーン度は、 通常 コンパクトディスク用の場合には 1 0 0 0以下であり、 更に高度な情報記録用の場合に は 1 0 0以下である。
レンズの成形には、 射出成形や射出圧縮成形が一般に用いられている。 成形条件では 、 特に金型表面温度と榭脂温度が重要である。 ポリエステル重合体 (第一成分) とポリ カーボネート (第二成分) の配合量、 組成及び重合度などにより一概に規定できないが 、 金型表面温度は 5 0 °C以上 1 6 0 °C以下が好ましく、 また、 この時の樹脂温度は 2 2 0 °C以上 3 3 0 °C以下となるようにするのが良い。 金型表面温度が 5 0 °C以下の場合に は、 樹脂の流動性と転写性が共に悪く、 射出成形時に応力歪が残って、 複屈折率が大き くなる傾向があり、 レンズとしての要求性能が満たされない場合がある。 金型温度が 1 6 0 °C以上の場合、 離型時に変形し易い。 また、 樹脂温度が 2 2 0以下の場合、 樹脂の—— 流動性が乏しく、 成形機に過大な負荷がかかる場合があり好ましくない。 樹脂温度が 3 3 0 °C以上の場合は樹脂の分解が起こり易く、 成形品の強度低下、 着色の原因となる。 レンズの成形の場合、 レンズの性能を確保する'ナこめに、 レンズの表面形状を精密にし 、 さらに複屈折の原因となる残留内部応力をできるだけ小さくする必要がある。 成形サ ィクルとの兼ね合いもあるが、 金型温度をなるベく高くし、 冷却時間を長めにとつて、 成形することが多い。 金型温度がガラス転移温度 T gに近づくと、 成形収縮率が小さく なり、 金型からの離型性が悪くなる場合がある。 このような場合には、 先に述べた離型 剤を配合した樹脂組成物を使用するほうがより好ましい。 以下実施例を用いて説明する。 実施例
(1) 屈折率及ぴアッベ数
ァタゴ社製アッベ屈折計 DR— M2で、 波長 589 nmの干渉フィルターを用い D 茅泉での屈折率 nd、 波長 639 nmの干渉フィルターを用い C線での屈折率 nc、 波長 486 n mの干渉フィルターを用い F線での屈折率 n Fを測定した。 ァッべ数 v dは ( 1 - nd) / (nc-nF) の式から計算した。 測定試料は樹脂を 160〜 240。(でプ レス成形し、 厚み 80~150 /zmのフィルムを作製し、 得られたフィルムを約 8 X 2 Ommの短冊状に切り出し、 測定試験片とした。 界面液として 1—ブロモナフタレンを 用い 20°Cで測定した。
(2) ガラス転移温度 (Tg)
示差走査熱量計 (セィコ一電子 DSC-110) に試料約 10 m gを用いて、 10 °C/m i nの昇温速度で加熱して測定した。 J I S K 7121 (1987) に準拠 して、 ガラス転移温度 Tgを求めた。
(3) 分子量
カラムとして東ソー製 G_6000、 G— 4000、 G— 3000を直列につなぎ、— 流速 lml/mi n、 溶離液をクロ口ホルム、 検出器として UV検出器、 温度を 40°C にて標準ポリスチレンを用いて作成した検量線を用いて、 ポリスチレン換算の重量平均 分子量を算出した。
(4) 光線透過率
分光光度計 (島津製作所製 UV-3101 PC) を用いて、 射出成形機 (住友重機 製、 ミニマット 14/7 B) を用い金型温度を Tg— 20°Cに設定して成形した 30 X 30 X 3 mm平板成形品の光線透過率を測定した。
(5) MFR
J I SK7210に準拠して、 オリフィス 2mm、 温度 230°C、 荷重 2160 gで の MFRを測定した
(6) 複屈折
カールツァイス社梨偏光顕微鏡にて、 セラルモン、 ベレック、 ブレースケラー式コン ペンセーターを装着し、 546 nmの単色光で測定した。
(6-1) フィルムでの評価
樹脂をを 260〜300°Cで溶融、 押し出し成形で、 直径 3 Omm、 厚さ 1mmの円 盤状の試験片を作製し、 さらにその成形試験片を 160〜240°Cでプレス成形し、 厚 み 80〜150 μπιのフィルムを得た。 得られたフィルムを 4 X 4 Ommの短冊状に切 り出し、 測定試験片を得た。 ガラス転移温度 + 10°Cの温度で測定試験片を 20 %/ s e cで 40%延伸後、 急冷し、 延伸フィルムを得た。 これらのフィルムの複屈折率を測 定した。
(6-2) 成形品での評価
射出成形機 (住友重機製、 ミニマツト 14/7B) を用い金型温度を Tg_20°Cに 設定して成形した 30 X 30 X 3 mm平板成形品を得た後、 T g— 20 °Cの温度で 3時 間ァニールした成形品の中心部のレターデーションを測定した。
(7) ポリマーの固有粘度
フエノール 60重量%、 1, 1, 2, 2—テトラクロロェタン 40重量0 /0の混合溶液- 50mlに共重合体 0. 15〜0. 5 gを 80 °Cで溶解後、 20 °Cで粘度を測定し決定 した。
(8) 耐衝撃特性
J I S K 7110に準拠してアイゾット衝撃強度を測定した。
(9) ジエチレングリコール (以下 DEGと略する) の定量
試料調製
5 Om 1の 1 _プロパノールを 20 Om 1の共栓フラスコに入れ、 2. 81 gの水酸 化カリウム、 精秤した 2 gの榭脂ペレットをいれ、 水冷している玉入冷却管を取り付け 、 攪拌しながら、 2時間加熱還溜した。 冷却後、 7_Rl Om 1をカロえ、 7 gのテレフタル 酸を加え、 1時間加熱還溜した。 内部標準として、 1%のテトラエチレンダリコールジ メチルエーテルの 1一プロパノール溶液を 5ml添カ卩し、 約 5分攪拌。 ろ過したサンプ ルをガスクロマトグラフにより定量し、 ジエチレンダリコールの含有量を求めた。
(10) プレッシャークッカーテスト
高度加速寿命試験装置 (タバイエスペック社製、 TPC-212M) にて、 温度 10 5 °C、 湿度 100 %、 24時間の条件で成形品を試験した。
試験後の成形品の外観を確認し、 光線透過率を分光光度計 (島津製作所製、 uv-
3101 PC) で測定した。
[実施例 1]
1, 4ーシクロへキサンジカルボン酸 1 mo 1に対して、 9, 9—ビス [4— (2— ヒ ドロキシエトキシ) フエニル] フルオレン 0. 8mo 1、 エチレングリコーノレ 2. 2 mo 1を原料とし、 これらを反応槽に投入し、 撹拌しながら常法に従って、 室温から 2
30°Cに徐々に加熱してエステルイ匕反応を行った。 所定量の水を系外へ抜き出した後、 重合触媒である酸化ゲルマニウム 0. 002mo 1と、 着色を防止するため、 リン酸 トリメチルエステル 0. 0014m o 1とを投入して、 昇温と減圧を徐々に行い、 発 生するエチレンダリコールを抜きながら、 加熱槽温度を 270°C、 真空度を 133 P a (lTo r r) 以下に到達させた。 この条件を維持し、 粘度の上昇を待ち、—所定の攪―拌 トルクに到達後 (約 4時間後) 反応を終了し、 反応物を水中に押し出してペレットを得 た。
この樹脂を、 200°Cでプレスし、 厚さ約 100 /^mのフィルムを得た。 屈折率は 1 . 607、 ガラス転移温度は 126°C、 DEGの含有量は 1. 8mo l%であった。 このポリエステル樹脂 (第一成分) とポリカーボネート (第二成分:帝人化成製、 パ ンライト L 1250) とを重量比 50対 50でクリーンルーム内に設置された二軸押 出機 (東芝機械製 TEM35B) に投入し、 熱安定剤として、 ビス (2, 4ージー t e r t—ブチノレフェニノレ) ペンタエリスリ ]、一ノレジホスフアイトをポリエステル樹脂と ポリカーボネートとの総量を 100重量部として 0. 1重量部添加し混練を行ったのち 、 押し出された樹脂を 1 /imのフィルターを通した水を張った水槽で冷却し、 カッター により連続的に裁断してペレットを得た。 このとき、 吐出口金の出口での樹脂温度は 2 80°Cであった。
得られた樹脂ペレツトを 200°Cでプレスし、 厚さ約 100 μηιのフイノレムを得た。 屈折率は 1. 595、 アッベ数 29、 ガラス転移温度は 132°Cであった。
得られた樹脂ペレツトを射出成形機にて成形した成形品は均一透明であった。 結果を 表 1に示す。
[実施例 2〜5]
ポリエステル重合体 (第一成分) とポリカーボネート (第二成分) の組成比を表 1に 示すように変えた他は実施例 1と同様な操作でペレットを製造し、 同様に評価した。 結 果を表 1に示す。 V、ずれも均一透明なものが得られ、 成形性も良好であつた。
[実施例 6]
2 , 6—デカリンジカルボン酸ジメチルエステル 1 mo 1に対して、 9, 9 -ビス [4 - (2_ヒ ドロキシェトキシ) フエニル] フルオレン 0. 55mo 1、 エチレング リコール 2. 2m o 1を原料とし、 触媒として、 酢酸カルシウム 0. 0008mo l 、 酢酸マンガン 0. 0002mo 1を用い、 これらを反応槽に投入し、 撹拌しながら 常法に従って室温から 230°Cに徐々に加熱してエステル交換反応を行った。 所定量の メタノールを系外へ抜き出した後、 重合触媒である酸ィ匕ゲルマニウム 0. 012m o 1 と、 着色を防止するため、 リン酸トリメチルエステル 0. 0018mo lとを投入し て、 昇温と減圧を徐々に行い、 発生するエチレングリコールを抜きながら、 加熱槽温度 を 270°C、 真空度を 1 33 P a (lTo r r) 以下に到達させた。 この条件を維持し 、 粘度の上昇を待ち、 所定の攪拌トルクに到達後 (約 2時間後) 反応を終了し、 反応物 を水中に押し出してペレツトを得た。
ガラス転移温度は 123 °C、 屈折率 1. 584、 DEGの含有量は 2. 3 m o 1 %で あつに。
このポリエステル樹脂 (第一成分) とポリカーボネート (第二成分:帝人化成製、 ノ、。 ンライト L I 250) とを重量 50比対 50でクリーンルーム内に設置された二軸押 出機 (東芝機械製 TEM35B) に投入し、 熱安定剤として、 ビス (2, 4—ジ一t e r t一ブチルフエニル) ペンタエリスリ トールジホスフアイ トをポリエステル樹脂と ポリカーボネートとの総量を 100重量部として 0. 1重量部添加し混練を行つたのち 、 押し出された樹脂を 1 μπιのフィルターを通した水を張った水槽で冷却し、 カッター により連続的に裁断してペレットを得た。 このとき、 吐出口金の出口での樹脂温度は 2 80°Cであった。
得られた樹脂ペレツトを 200°Cでプレスし、 厚さ約 100 μπιのフィルムを得た。 屈折率は 1. 584、 ァッべ数 31、 ガラス転移温度は 130 °Cであった。
得られた樹脂ペレツトを射出成形機にて成形した成形品は均一透明であった。 結果を 表 1に示す。
[実施例 7]
実施例 1で得られたポリエステル重合体 (第一成分) とポリカーボネート (第二成分 :帝人化成製、 パンライト L 1250) とを重量比 50対 50で混合後、 、 熱安定剤 として、 ビス (2, 4—ジ _t e r t一プチノレフエ二ノレ) ペンタエリスリ トーノレジフォ スフアイトをポリエステル樹脂とポリカーボネートの総量を 100重量部として、 0. 05重量部、 離型剤として、 ステアリン酸 0. 4重量部を樹脂に添加し混合し-た。—ダリ ーンルーム内にある 30 μπιのフィルターを設置した二軸押出機 (東芝機械製 ΤΕΜ 25Β) に混合した樹脂と添加剤を定量で投入し混練を行った後、 押し出された樹脂を 1 μπιのフィルターを通した水を張った水槽で冷却し、 カッターにより連続的に裁断し てペレツトを得た。 このときの吐出口金での樹脂温度は 280°Cであった。
得られた樹脂ペレツトを 200°Cでプレスし、 厚さ約 100 ηιのフィルムを得た。 屈折率は 1. 595、 ァッべ数 29、 ガラス転移温度は 131 °Cであった。
結果を表 1に示す。 成形品は均一で透明なものが得られた。 金型温度を Tgに近い ( Tg_10°C程度) にしても成形性では良好で、 離型性も良好であった。 第一成分の組成 混練時の組成 MFR 衝撃 屈折率 アツへ' 光線透過率 複屈 レターデーシヨン 強度 数 3mm % 折率
g/10min nd nm シ'ヒト'ロキシ 第一成分の 第一成分の 700nm 500nm 400nm X 10 酸 化合物
実施例 1 A 80 50 50 132 4 89.2 S7. 82.3 4fi 70 実施倒 2 A 80 30 70 136 3 3.8 1.591 29 89.5 88.0 84.2 70 30 実施例 3 A 80 70 30 128 5 3.2 1.600 28 88.3 86.3 80.1 32 120 実施例 4 A 80 10 90 126 2 4.5 1.587 29 89.6 88.9 86.1 89 25 実施例 5 A 80 90 10 137 7 3 1.604 28 88.0 85.4 78.1 20 180 実施例 6 B 55 50 50 130 4 3 1.584 31 89.3 87.4 82.5 51 75 実施例 7 A 80 . 50 50 131 5 3.4 1.595 29 89.2 97.1 82 46 70 比較例 1 0 100 140 1 7 1.585 30 89.9 89.5 88.0 95 200 比較例 2 A 80 100 0 140 12 2.9 1.607 27 88.6 85.3 76.5 3 15 比較例 3 A 80 50 50 131 5 3.4 41.6 16.2 4.3
ジヒドロキシ化合物: 9, 9—ビス [4— (ヒドロキシエトキシ)フエニル]フルオレン
A: l, 4ーシクロへキサンジカルボン酸
B : 2, 6—デカリンジカルボン酸ジメチルエステル
比較例 3
実施例 7の離型剤をステアリン酸カルシウム 0 . 4重量部に変更したほかは実施例 7 と同様にしてペレットを得た。 成形品は白濁しており、 可視光領域を利用するレンズ材 料としては不適であった。
比較例 1はポリカーネート (第二成分:帝人化成製、 パンライト L 1 2 5 0 ) 単独 での測定値を示す。 比較例 2は実施例 1で記載したポリエステル重合体 (第一成分) 単 独での測定値である。
本発明の樹脂組成物は表 1力 ら明らかなように、 ポリカーボネートの耐衝撃性、 透明 性がよいが、 複屈折の大きいという点とポリエステル重合体の流動性が良く、 屈折率が 高く、 複屈折が小さいが耐衝撃性、 耐熱性、 透明性が不満足という、 ポリカーボネート とポリエステル重合体の両者の長所と欠点を補いあった透明性、 耐熱性、 耐衝撃性を保 持したパランスのとれた樹脂糸且成物であることがわかる。
プレッシャークッカーテストの結果を表 2に示す。 レンズの耐環境試験として、 温度 6 5 °C、 相対湿度 8 0 %、 数 1 0 0時間という条件や、 温度 8 5 °C、 相対湿度 9 0 %、 数 1 0 0時間という条件での試験が実施されてレ、るが、 より厳しい温度 1 0 5 °C、 相対 湿度 1 0 0 %、 2 4時間での高温高湿下の安定性の促進テストを実施した。 本発明の実 施例 1から 5及び 7では、 一部は若干白濁し、 透過率の低下は見られた。 比較例 2すな わち実施例 1から 5及び 7に使用したポリエステル重合体 (第 1成分) 単独の試験結果 では、 白濁が大きく、 ほとんど光線が透過しなかった。 この結果から本発明のポリエス テル重合体とポリカーボネートをプレンドしてなる樹脂組成物は高温高湿下での耐久性 が向上していることがわかる。 表 2
Figure imgf000030_0001
試験条件:温度 105°C、湿度 100%、 24時間
変形:〇=変形無し
白濁 :〇=白濁無し、△=若干白濁、 X =白濁 産業上の利用可能性
本発明の樹脂組成物は、 カメラレンズ、 一レンズ、 C C Dや CMO S用レ ンズなどのレンズ用途、 液晶- 利用されるフィルム、 シー ト、 光学材料への使用に適している。

Claims

請 求 の 範 囲
1 . ジカルポン酸化合物とジヒドロキシ化合物からなるポリエステル重合体であって、 ジカルポン酸ィヒ合物が脂環族ジカルポン酸および またはそのエステル形成性誘導体を 含み、 ジヒドロキシ化合物が一般式 (1 ) で示される化合物を含むポリエステル重合体 とポリカーボネートとをプレンドしてなる樹脂組成物。
一一 (1 )
Figure imgf000031_0001
は炭素数 2から 4のアルキレン基、 R 2、 R 3、 R 4、 及ぴ R 5は水素または炭素数 1から 4のアルキル基、 ァリール基、 ァラルキル基であ "り同じであっても異なっていて あよい)
2 . ジカルボン酸化合物とジヒドロキシィ匕合物からなるポリエステル重合体であって、 ジカルボン酸ィヒ合物が脂環族ジカルポン酸および Zまたはそのエステル形成性誘導体を 含み、 ジヒドロキシィヒ合物が一般式 (1 ) で示される化合物を含むポリエステル重合体 とポリカーボネートとを重量比 5 : 9 5から 9 5 : 5の範囲でブレンドしてなる請求の 範囲 1記載の樹脂組成物。 '
3 . 脂環族ジカルボン酸が、 シクロへキサンジカルボン酸、 デカリンジカルボン酸、 ノ ルボルナンジカルボン酸、 ァダマンタンジカルポン酸、 またはトリシク口デセンジカル ボン酸から選ばれる少なくとも 1種の化合物であることを特徴とする請求の範囲 1また は 2いずれかに記載の樹脂組成物。
4 . 一般式 (1 ) で示されるジヒドロキシ化合物が、 9 , 9一ビス [ 4— ( 2—ヒ ドロ キシエトキシ) フエニル] フルオレンおよび/ /または 9, 9一ビス [ 4— ( 2—ヒ ドロ キシエトキシ) 一3—メチルフエニル] フルオレンであることを特徴とする請求項 1か ら 3のいずれかに記載の樹脂組成物。
5 . ポリカーボネートが芳香族ポリカーボネートであること特徴とする請求の範囲 1か ら 3のいずれかに記載の樹脂組成物。
6 . 請求の範囲 1から 5レ、ずれかに記載の樹脂組成物を加熱下で溶融混練することによ り得ることを特徴とする樹脂組成物。
7 . 請求の範囲 1から 5いずれかに記載の樹脂組成物を加熱下で溶融混練する際に、 熱 安定剤を同時に添加し溶融混練することにより得ることを特徴とする樹脂組成物。
8 . 請求の範囲 1から 5いずれかに記載の樹脂組成物を加熱下で溶融混練する際に、 熱 安定剤と離型剤を同時に添加し溶融混練することにより得ることを特徴とする樹脂組成 物。
9 . 請求の範囲 1から 8いずれかに記載の樹脂組成物を成形してなる光学材料。
PCT/JP2004/014320 2003-09-25 2004-09-22 ポリエステル樹脂組成物ならびに光学材料 WO2005030833A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP04773494A EP1674496B1 (en) 2003-09-25 2004-09-22 Polyester resin composition and optical material
JP2005514268A JP4384636B2 (ja) 2003-09-25 2004-09-22 ポリエステル樹脂組成物ならびに光学材料
US10/573,305 US20070032607A1 (en) 2003-09-25 2004-09-22 Polyester resin compostion and optical material
AT04773494T ATE522561T1 (de) 2003-09-25 2004-09-22 Polyesterharzzusammensetzung und optisches material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003332884 2003-09-25
JP2003-332884 2003-09-25

Publications (1)

Publication Number Publication Date
WO2005030833A1 true WO2005030833A1 (ja) 2005-04-07

Family

ID=34385969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014320 WO2005030833A1 (ja) 2003-09-25 2004-09-22 ポリエステル樹脂組成物ならびに光学材料

Country Status (8)

Country Link
US (1) US20070032607A1 (ja)
EP (1) EP1674496B1 (ja)
JP (1) JP4384636B2 (ja)
KR (1) KR100711149B1 (ja)
CN (1) CN100427525C (ja)
AT (1) ATE522561T1 (ja)
TW (1) TWI291978B (ja)
WO (1) WO2005030833A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006127831A1 (en) * 2005-05-26 2006-11-30 Eastman Chemical Company Miscible high tg polyester/polymer blend compositions and films formed therefrom
EP1840652A1 (en) 2006-03-27 2007-10-03 SeeReal Technologies S.A. Photo-curable resins and resin compositions with very high refractive indices for application in plastic optics
JP2007262190A (ja) * 2006-03-28 2007-10-11 Toray Ind Inc 光学用ポリエステル樹脂及びこれを含有したポリエステルフィルム
US7510768B2 (en) 2005-06-17 2009-03-31 Eastman Chemical Company Thermoplastic articles comprising cyclobutanediol having a decorative material embedded therein
US7704605B2 (en) 2006-03-28 2010-04-27 Eastman Chemical Company Thermoplastic articles comprising cyclobutanediol having a decorative material embedded therein
JP2011012178A (ja) * 2009-07-02 2011-01-20 Daiwa Can Co Ltd ポリエステル樹脂組成物及び成形体
US8193302B2 (en) 2005-10-28 2012-06-05 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol and certain phosphate thermal stabilizers, and/or reaction products thereof
US8198371B2 (en) 2008-06-27 2012-06-12 Eastman Chemical Company Blends of polyesters and ABS copolymers
US8299204B2 (en) 2005-10-28 2012-10-30 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol and certain thermal stabilizers, and/or reaction products thereof
US8394997B2 (en) 2010-12-09 2013-03-12 Eastman Chemical Company Process for the isomerization of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
US8420868B2 (en) 2010-12-09 2013-04-16 Eastman Chemical Company Process for the preparation of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
US8420869B2 (en) 2010-12-09 2013-04-16 Eastman Chemical Company Process for the preparation of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
US8501292B2 (en) 2007-11-21 2013-08-06 Eastman Chemical Company Plastic baby bottles, other blow molded articles, and processes for their manufacture
US8501287B2 (en) 2007-11-21 2013-08-06 Eastman Chemical Company Plastic baby bottles, other blow molded articles, and processes for their manufacture
JP2014501444A (ja) * 2010-12-20 2014-01-20 ソルベイ アセトウ ゲーエムベーハー Led(発光ダイオード)光源モジュール
JP2014205733A (ja) * 2013-04-10 2014-10-30 大阪瓦斯株式会社 耐熱性向上剤
US8895654B2 (en) 2008-12-18 2014-11-25 Eastman Chemical Company Polyester compositions which comprise spiro-glycol, cyclohexanedimethanol, and terephthalic acid
US9169388B2 (en) 2006-03-28 2015-10-27 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol and certain thermal stabilizers, and/or reaction products thereof
US9598533B2 (en) 2005-11-22 2017-03-21 Eastman Chemical Company Polyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and moderate glass transition temperature and articles made therefrom
WO2017078071A1 (ja) * 2015-11-04 2017-05-11 三菱瓦斯化学株式会社 樹脂組成物の製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101018824B (zh) * 2004-07-15 2011-05-04 大阪瓦斯株式会社 树脂组合物及其成型体
US7737246B2 (en) 2005-12-15 2010-06-15 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol, cyclohexanedimethanol, and ethylene glycol and manufacturing processes therefor
TWI357507B (en) * 2007-05-23 2012-02-01 Kolon Inc Optical sheet
CN102388012B (zh) * 2009-04-13 2014-10-15 田冈化学工业株式会社 芴衍生物的制造方法
US8026188B2 (en) * 2009-06-25 2011-09-27 Techmer Pm, Llc Hydrophobic additive for use with fabric, fiber, and film
JP2011190334A (ja) * 2010-03-13 2011-09-29 Muroran Institute Of Technology 芳香族ポリエステル用改質剤及びそれを含む芳香族ポリエステル樹脂組成物
US20130217830A1 (en) 2012-02-16 2013-08-22 Eastman Chemical Company Clear Semi-Crystalline Articles with Improved Heat Resistance
US8691915B2 (en) 2012-04-23 2014-04-08 Sabic Innovative Plastics Ip B.V. Copolymers and polymer blends having improved refractive indices
CN107003546A (zh) * 2014-12-04 2017-08-01 三菱瓦斯化学株式会社 包含聚酯树脂的功能性片材和使用该功能性片材的透镜
US10835714B2 (en) 2016-03-21 2020-11-17 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
CA3052493A1 (en) 2017-04-18 2018-10-25 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
JP2022167814A (ja) * 2021-04-23 2022-11-04 新光合成纎維股▲分▼有限公司 耐屈折性があるポリエステルフィルム及びその製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841303A (ja) * 1994-07-28 1996-02-13 Kanebo Ltd 光学材料用樹脂組成物とその製造法
US6066711A (en) * 1996-05-17 2000-05-23 Kanebo, Ltd. Polyester polymer and its moldings

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2768463B2 (ja) * 1987-12-15 1998-06-25 オーツタイヤ株式会社 乗心地を改良した空気入りラジアルタイヤ
JPH0323279A (ja) * 1989-03-15 1991-01-31 Uingu Haisera:Kk セラミックス部材の接合方法
JP5210476B2 (ja) * 2001-03-15 2013-06-12 帝人株式会社 熱可塑性樹脂組成物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841303A (ja) * 1994-07-28 1996-02-13 Kanebo Ltd 光学材料用樹脂組成物とその製造法
US6066711A (en) * 1996-05-17 2000-05-23 Kanebo, Ltd. Polyester polymer and its moldings

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006127831A1 (en) * 2005-05-26 2006-11-30 Eastman Chemical Company Miscible high tg polyester/polymer blend compositions and films formed therefrom
US7915376B2 (en) 2005-06-17 2011-03-29 Eastman Chemical Company Containers comprising polyester compositions which comprise cyclobutanediol
US7803440B2 (en) 2005-06-17 2010-09-28 Eastman Chemical Company Bottles comprising polyester compositions which comprise cyclobutanediol
US7951900B2 (en) 2005-06-17 2011-05-31 Eastman Chemical Company Dialysis filter housings comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US7803439B2 (en) 2005-06-17 2010-09-28 Eastman Chemical Company Blood therapy containers comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US7985827B2 (en) 2005-06-17 2011-07-26 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol having certain cis/trans ratios
US7803441B2 (en) 2005-06-17 2010-09-28 Eastman Chemical Company Intravenous components comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US7807774B2 (en) 2005-06-17 2010-10-05 Eastman Chemical Company Vending machines comprising polyester compositions formed from 2,2,4,4,-tetramethyl-1,3,-cyclobutanediol and 1,4-cyclohexanedimethanol
US7807775B2 (en) 2005-06-17 2010-10-05 Eastman Chemical Company Point of purchase displays comprising polyester compositions formed from 2,2,4,4-tetramethyl-1, 3,-cyclobutanediol and 1,4-cyclohexanedimethanol
US7812111B2 (en) 2005-06-17 2010-10-12 Eastman Chemical Company LCD films comprising polyester compositions formed from 2,2,4,4-tetramethy1-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US7834129B2 (en) 2005-06-17 2010-11-16 Eastman Chemical Company Restaurant smallware comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US7838620B2 (en) 2005-06-17 2010-11-23 Eastman Chemical Company Thermoformed sheet(s) comprising polyester compositions which comprise cyclobutanediol
US7842776B2 (en) 2005-06-17 2010-11-30 Eastman Chemical Company Appliance parts comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US7855267B2 (en) 2005-06-17 2010-12-21 Eastman Chemical Company Film(s) and/or sheet(s) comprising polyester compositions which comprise cyclobutanediol and have a certain combination of inherent viscosity and moderate glass transition temperature
US7868128B2 (en) 2005-06-17 2011-01-11 Eastman Chemical Company Skylights and windows comprising polyester compositions formed from 2,2,4,4,-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US9534079B2 (en) 2005-06-17 2017-01-03 Eastman Chemical Company Containers comprising polyester compositions which comprise cyclobutanediol
US8063172B2 (en) 2005-06-17 2011-11-22 Eastman Chemical Company Film(s) and/or sheet(s) made using polyester compositions containing low amounts of cyclobutanediol
US9181388B2 (en) 2005-06-17 2015-11-10 Eastman Chemical Company Polyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and high glass transition temperature and articles made therefrom
US9175134B2 (en) 2005-06-17 2015-11-03 Eastman Chemical Company Containers comprising polyester compositions which comprise cyclobutanediol
US7893188B2 (en) 2005-06-17 2011-02-22 Eastman Chemical Company Baby bottles comprising polyester compositions which comprise cyclobutanediol
US7893187B2 (en) 2005-06-17 2011-02-22 Eastman Chemical Company Glass laminates comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US7902320B2 (en) 2005-06-17 2011-03-08 Eastman Chemical Company Graphic art films comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US7906610B2 (en) 2005-06-17 2011-03-15 Eastman Chemical Company Food service products comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US7906212B2 (en) 2005-06-17 2011-03-15 Eastman Chemical Company Thermoplastic articles comprising cyclobutanediol having a decorative material embedded therein
US7510768B2 (en) 2005-06-17 2009-03-31 Eastman Chemical Company Thermoplastic articles comprising cyclobutanediol having a decorative material embedded therein
US7781562B2 (en) 2005-06-17 2010-08-24 Eastman Chemical Company Polyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and moderate glass transition temperature and articles made therefrom
US7576171B2 (en) 2005-06-17 2009-08-18 Eastman Chemical Company Pacifiers comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US8415450B2 (en) 2005-06-17 2013-04-09 Eastman Chemical Company Polyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and high glass transition temperature and articles made therefrom
US8063173B2 (en) 2005-06-17 2011-11-22 Eastman Chemical Company Polyester compositions containing low amounts of cyclobutanediol and articles made therefrom
US8067525B2 (en) 2005-06-17 2011-11-29 Eastman Chemical Company Film(s) and/or sheet(s) comprising polyester compositions which comprise cyclobutanediol and have a certain combination of inherent viscosity and high glass transition temperature
US8119761B2 (en) 2005-06-17 2012-02-21 Eastman Chemical Company Polyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and high glass transition temperature and articles made therefrom
US8193302B2 (en) 2005-10-28 2012-06-05 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol and certain phosphate thermal stabilizers, and/or reaction products thereof
US8299204B2 (en) 2005-10-28 2012-10-30 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol and certain thermal stabilizers, and/or reaction products thereof
US9598533B2 (en) 2005-11-22 2017-03-21 Eastman Chemical Company Polyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and moderate glass transition temperature and articles made therefrom
EP1840652A1 (en) 2006-03-27 2007-10-03 SeeReal Technologies S.A. Photo-curable resins and resin compositions with very high refractive indices for application in plastic optics
US9169388B2 (en) 2006-03-28 2015-10-27 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol and certain thermal stabilizers, and/or reaction products thereof
JP2007262190A (ja) * 2006-03-28 2007-10-11 Toray Ind Inc 光学用ポリエステル樹脂及びこれを含有したポリエステルフィルム
US7704605B2 (en) 2006-03-28 2010-04-27 Eastman Chemical Company Thermoplastic articles comprising cyclobutanediol having a decorative material embedded therein
US8501292B2 (en) 2007-11-21 2013-08-06 Eastman Chemical Company Plastic baby bottles, other blow molded articles, and processes for their manufacture
US8501287B2 (en) 2007-11-21 2013-08-06 Eastman Chemical Company Plastic baby bottles, other blow molded articles, and processes for their manufacture
US8198371B2 (en) 2008-06-27 2012-06-12 Eastman Chemical Company Blends of polyesters and ABS copolymers
US8895654B2 (en) 2008-12-18 2014-11-25 Eastman Chemical Company Polyester compositions which comprise spiro-glycol, cyclohexanedimethanol, and terephthalic acid
JP2011012178A (ja) * 2009-07-02 2011-01-20 Daiwa Can Co Ltd ポリエステル樹脂組成物及び成形体
US8420868B2 (en) 2010-12-09 2013-04-16 Eastman Chemical Company Process for the preparation of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
US8394997B2 (en) 2010-12-09 2013-03-12 Eastman Chemical Company Process for the isomerization of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
US8420869B2 (en) 2010-12-09 2013-04-16 Eastman Chemical Company Process for the preparation of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
JP2014501444A (ja) * 2010-12-20 2014-01-20 ソルベイ アセトウ ゲーエムベーハー Led(発光ダイオード)光源モジュール
JP2014205733A (ja) * 2013-04-10 2014-10-30 大阪瓦斯株式会社 耐熱性向上剤
WO2017078071A1 (ja) * 2015-11-04 2017-05-11 三菱瓦斯化学株式会社 樹脂組成物の製造方法
JPWO2017078071A1 (ja) * 2015-11-04 2018-08-30 三菱瓦斯化学株式会社 樹脂組成物の製造方法
US10640642B2 (en) 2015-11-04 2020-05-05 Mitsubishi Gas Chemical Company, Inc. Method for producing resin composition

Also Published As

Publication number Publication date
JP4384636B2 (ja) 2009-12-16
TWI291978B (en) 2008-01-01
EP1674496A4 (en) 2006-10-04
CN100427525C (zh) 2008-10-22
EP1674496A1 (en) 2006-06-28
EP1674496B1 (en) 2011-08-31
KR100711149B1 (ko) 2007-05-02
US20070032607A1 (en) 2007-02-08
KR20060095989A (ko) 2006-09-05
ATE522561T1 (de) 2011-09-15
JPWO2005030833A1 (ja) 2006-12-07
CN1856524A (zh) 2006-11-01
TW200517439A (en) 2005-06-01

Similar Documents

Publication Publication Date Title
WO2005030833A1 (ja) ポリエステル樹脂組成物ならびに光学材料
JP5271142B2 (ja) ポリエステル重合体およびその成形体
JP4908781B2 (ja) ポリエステル樹脂組成物および光学部品
JP6166309B2 (ja) ポリカーボネート共重合体
TWI441850B (zh) 聚碳酸酯共聚合體及其製造方法
TWI405998B (zh) 光學元件及色像差補正透鏡
JPH07198901A (ja) プラスチックレンズ用ポリエステル樹脂
JP5716362B2 (ja) ポリカーボネート共重合体
JP2009080424A (ja) 光学部材
JP7211705B2 (ja) 樹脂組成物ならびにそれを含む光学レンズ、シートおよびフィルム
JP2005232252A (ja) 改質ポリカーボネート樹脂
JP5652153B2 (ja) ポリカーボネート樹脂、それを用いた光学フィルム、位相差フィルムおよび偏光板
WO2020162533A1 (ja) ポリカーボネート樹脂組成物及びそれを用いた光学レンズ
JP2003096179A (ja) 光学部品用成形材料
TW202428697A (zh) 熱塑性樹脂組成物及包含其之光學構件
JP2009080425A (ja) 光学部材
TW202033606A (zh) 熱塑性樹脂組成物及使用其之光學構件
KR20220161254A (ko) 수지 조성물 그리고 그것을 포함하는 광학 렌즈 및 광학 필름
JP2005042021A (ja) ポリカーボネート樹脂組成物
JPH07188401A (ja) ポリエステル重合体及びその成形体
JP2004250622A (ja) 樹脂組成物
JP2005041988A (ja) ポリカーボネート樹脂

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480027704.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514268

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067005822

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004773494

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004773494

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067005822

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007032607

Country of ref document: US

Ref document number: 10573305

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 1020067005822

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10573305

Country of ref document: US