WO2005029517A1 - ビーズ型ノイズフィルタ - Google Patents

ビーズ型ノイズフィルタ Download PDF

Info

Publication number
WO2005029517A1
WO2005029517A1 PCT/JP2003/012044 JP0312044W WO2005029517A1 WO 2005029517 A1 WO2005029517 A1 WO 2005029517A1 JP 0312044 W JP0312044 W JP 0312044W WO 2005029517 A1 WO2005029517 A1 WO 2005029517A1
Authority
WO
WIPO (PCT)
Prior art keywords
bead
noise filter
magnetic core
type noise
component
Prior art date
Application number
PCT/JP2003/012044
Other languages
English (en)
French (fr)
Inventor
Osamu Kobayashi
Osamu Yamada
Yukio Suzuki
Kiyoshi Ito
Mayuka Shirai
Original Assignee
Minebea Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co., Ltd. filed Critical Minebea Co., Ltd.
Priority to CN038143933A priority Critical patent/CN1663003A/zh
Priority to US10/515,494 priority patent/US7148767B2/en
Priority to EP03816939A priority patent/EP1569249A1/en
Priority to PCT/JP2003/012044 priority patent/WO2005029517A1/ja
Publication of WO2005029517A1 publication Critical patent/WO2005029517A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • H01F2017/065Core mounted around conductor to absorb noise, e.g. EMI filter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • H01F2017/067Core with two or more holes to lead through conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/08Cores, Yokes, or armatures made from powder
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0092Inductor filters, i.e. inductors whose parasitic capacitance is of relevance to consider it as filter

Definitions

  • the present invention relates to a bead type noise filter used for a signal line (signal line) for mounting on a circuit board and a power supply line (such as a DC line) for suppressing unnecessary radiation noise and the like.
  • signal lines signal lines and power lines
  • the simplest method for suppressing such noise is to penetrate the signal line through a closed magnetic path core called a bead core having a toroidal shape or a tubular shape (hereinafter collectively referred to as a toroidal shape).
  • the signal wire is often wound around the magnetic core once and penetrated (one turn), but a plurality of holes are provided in the magnetic core, and the signal line is wound multiple times around the magnetic core using this number of holes. Sometimes it comes.
  • reference numeral 1 denotes a closed magnetic core (bead core) made of a soft magnetic material having a high specific resistance.
  • the magnetic core 1 has a cylindrical outer shape, and is provided with one through hole 1a in the center axis direction, and the signal line 2 is passed through the through hole 1a to form a bead type noise filter.
  • the number of the through holes la is not limited to one, but may be plural (see FIG. 2).
  • the number 1 for suppressing unnecessary radiation noisyzu of 0 Number 1 0 0 MH z, such also available high resistivity N i Z n Fuwerai Bok at high frequencies (1 0 2-1 0 5 Q m) is used for core 1.
  • a high specific resistance was required for the magnetic core 1 so that no problem would occur if the signal line 2 without insulation coating was directly in contact with the inner surface of the magnetic core 1 (through hole la). Therefore, NiZn ferrite is used for the core 1 from this point.
  • the bead-type noise filter has a very simple structure, since the Ni Zn ferrite containing expensive Ni has been used as a raw material in the past, the bead-type noise filter can be used for expensive components. There was a problem of becoming.
  • MgZn ferrite Another inexpensive soft ferrite is MgZn ferrite.
  • MgZn ferrite is inferior in soft magnetic properties such as initial permeability and saturation magnetic flux density to other soft ferrites, when trying to obtain the same characteristics as a bead type noise filter, One had to increase the dimensions.
  • the magnetic core 1 when used for noise suppression of signal lines (in particular, power supply lines) 2 where ripple current and surge noise pose a problem, the magnetic core 1 must be further enlarged to prevent magnetic saturation. Due to such a problem, MgZn ferrite is not actually used as a bead-type noise filter.
  • the equivalent circuit of the bead-type noise filter is represented by a circuit in which a capacitance C component is connected in parallel to a series circuit of an inductance L component and a resistance R component.
  • the inductance L component, the resistance R component, and the capacitance C component are also simply referred to as L component, R component, and C component, respectively.
  • L in the frequency band of the signal to be transmitted (signal frequency band), L >> R [L: L component value, R: R component value. Each value represents the impedance IZI value (the same applies hereinafter). ].
  • the bead-type noise filter acts as an inductor for the series circuit portion of the L and R components (almost only the L component), and does not cause loss due to the R component to the signal to be transmitted.
  • the bead-type noise filter forms a low-pass filter in a circuit with the C component between the signal lines.
  • the inductance L component Is small and the cutoff frequency is higher than the frequency band of the signal to be transmitted, so that the signal transmission loss can be ignored.
  • the series circuit portion of the L and R components acts as resistance (substantially only the R component), and absorbs noise as heat. Therefore, an effective suppression effect is exhibited especially for unnecessary radiation noise.
  • the impedance IZI of the bead type noise filter can be separated into a reactance X component (hereinafter, also simply referred to as X component) and a resistance R component by the following equation (1).
  • the complex permeability ⁇ is expressed by the following equation (2).
  • the real part 'generates an X component (also called an L component) of the bead-type noise filter
  • the imaginary part ⁇ "generates an R component.
  • the X component is dominant in the frequency band of the signal to be transmitted, which means that the bead type noise filter acts as a single-pass filter formed by the C component between signal lines, and the noise component superimposed on the signal It is useful for blocking and preventing passage.
  • this noise component that has not been cut off and passed through may become a noise component that affects other circuits.
  • the R component is dominant in the high frequency band where unwanted radiation noise occurs, and this R component is a factor that converts noise components including unwanted radiation noise into thermal energy and removes it. In this way, converting noise to heat energy and removing the noise can more safely and surely suppress noise as compared with the above-described one-pass filter for blocking noise.
  • the frequency at which the magnitudes of both the X and R components are the same is the boundary between which of the components that reflects noise and the components that are converted into thermal energy and removed is larger than the others. Frequency. In general, when removing noise, it is desirable to have a large amount of components that are converted to heat energy and removed. For impedance characteristics, the lower the X-R cross point, the better.
  • a bead-type noise filter using the NiZn ferrite as the magnetic core is examined below.
  • the R cross point exists at a high frequency band of 10 MHz, and its reactance X component extends to the high frequency band. Therefore, if a bead-type noise filter using NiZn ferrite as the magnetic core is connected to the input signal line of a high-impedance digital circuit having a capacitance of several pF, such as a C-MOS There is a problem that the waveform of the ringing may cause ringing, undershoot, overshoot, or other waveform distortion.
  • a bead-type noise filter that does not use NiZn ferrite for the magnetic core has been desired.
  • a bead-type noise filter with a lower XR cross-point than when NiZn ferrite was used for the magnetic core was desired.
  • a bead-type noise filter that suppresses noise mainly with a safe and reliable R component was desired.
  • An object of the present invention has been made in view of the above-mentioned demands, and has been developed so that transmission signals such as digital signals can be manufactured at low cost and in recent years in order to cope with higher frequency and digitalization of signals in electronic devices. It is an object of the present invention to provide a bead-type noise filter that can suppress noise without distorting the waveform.
  • the object of the present invention is to significantly increase the specific resistance of inexpensive MnZn ferrite to achieve a high frequency band comparable to that of NiZn ferrite.
  • to obtain soft magnetic properties in the present invention is to provide a bead-type noise filter which can be used for the suppression of unnecessary radiation noisyzu having 1 0 number 1 0 0 MH Z.
  • the object of the present invention (the invention according to claims 2 and 3) is to achieve a more secure and reliable R component in order to achieve the above object and to suppress noise without distorting the transmission signal waveform.
  • An object of the present invention is to provide a high-performance bead-type noise filter that can mainly suppress noise. Disclosure of the invention
  • a bead type noise filter that can be used for suppression can be provided. Also, it is possible to provide an inexpensive bead-type noise filter that allows a signal line or power supply line without insulating coating to pass through directly in contact with the magnetic core.
  • the beads-type noise filter of the invention described in claim 2 the basic composition, F e 2 0 3: 44. 0 ⁇ 50. Omo 1% ( excluding the 50. Omo 1%;), Z n O:. 4. 0 ⁇ 26 5mo 1% , T i O 2 ⁇ Pi S N_ ⁇ one of the two or two: 0.:! ⁇ 8.
  • Omo 1%, MnZn ferrite with the balance being MnO is used for the core (beads core).
  • the bead-type noise filter according to the third aspect of the present invention has a basic composition wherein F e 2
  • Zn ferrite is used for the magnetic core (bead core).
  • FIG. 1 is a perspective view showing an example of a bead type noise filter to which the present invention is applied.
  • FIG. 2 is a view similar to that of FIG.
  • FIG. 3 is an equivalent circuit diagram of a bead-type noise filter.
  • FIG. 4 is a graph showing measurement results of frequency characteristics of impedance in a bead-type noise filter using each sample shown in Table 1 below.
  • FIG. 5 is a graph showing the measurement results of the frequency characteristics of impedance in the present invention 1 (bead type noise filter using sample 1) shown in Table 3 below.
  • FIG. 6 is a graph showing measurement results of frequency characteristics of impedance in Comparative Example 2 (bead type noise filter using sample 4) shown in Table 3 below.
  • a bead-type noise filter according to an embodiment of the present invention will be described with reference to FIGS.
  • FIG. 1 shows a bead type noise filter including a magnetic core (bead core) 1 made of a soft magnetic material having a high specific resistance and a signal line (or power supply line, the same applies hereinafter) 2.
  • the magnetic core 1 has a cylindrical outer shape, is provided with one through-hole 1a in the axial direction at the center thereof, and the signal line 2 is penetrated into the through-hole 1a to form a bead-type noise filter. ing.
  • the present invention has a configuration illustrated in FIGS. 1 and 2, and is applied to a bead-type noise filter having an equivalent circuit illustrated in FIG.
  • the F e 2 O 3 which is generally conventionally 5 0. O mo 1% or more containing Mn Z n Fuwera site is inexpensive, and although having good properties, the resistivity is very low. For this reason, this is used for the magnetic core of a bead-type noise filter and cannot be used in a high frequency band.In addition, the signal line must be used directly without an insulating film or insulating coating and in contact with the magnetic core. Was impossible.
  • the present inventors have the F e 2 O 3 composition as a 5 0. O mo less than 1%, and by including an appropriate amount of one or more of the T i 0 2 ⁇ Pi S N_ ⁇ 2, It has been clarified that the specific resistance can be significantly increased in Japanese Patent No. 3108803, Japanese Patent No. 310884 and the like.
  • the object of the present invention is to provide a safer and more reliable R in order to suppress noise without distorting the transmission signal waveform. It is impossible to provide a high-performance bead-type noise filter capable of suppressing noise mainly by components.
  • the XR cross point exists in a high frequency band of 1 OMHz or more, as described later. According to this, since the reactance X component extends to a high frequency band and is large, when such a bead-type noise filter is inserted into the input signal line of a high-impedance digital circuit, the waveform of the input digital signal becomes oversaturated. It causes distortion such as ringing.
  • such a bead-type noise filter has a signal wire wound around a magnetic core (bead core) once to penetrate (penetrate one turn). (Coiled signal line)
  • the capacitance C component is small.
  • the C component can depend on the real part ⁇ 'of the complex relative permittivity of the magnetic core.
  • the capacitance C component generated between the winding and the magnetic core becomes very large.
  • the C component greatly depends on the real part ⁇ 'of the complex relative permittivity of the magnetic core.
  • the present inventors produced a bead-type noise filter using ⁇ ferrite having the same L component and R component, and obtained the following knowledge from the measurement results of the impedance characteristics.
  • the real part ⁇ ′ of the complex relative permittivity is large (the C component is large), and the conventional general ⁇ ⁇ ⁇ ⁇ ferrite has the X-R cross point on the low frequency side, but the impedance characteristic at high frequencies
  • NiZn ferrite which has a small real part of the complex relative permittivity (small C component)
  • has an X-R cross point on the high frequency side but has excellent impedance characteristics at high frequencies.
  • the real part ⁇ 'of the complex relative permittivity of the conventional MnZn ferrite ⁇ NiZn ferrite keeps an almost constant value from the low frequency band to the high frequency band. Even so, the width is less than an order of magnitude.
  • the present inventors have come to propose a bead-type noise filter using a soft magnetic material for the magnetic core in which the real part ⁇ ′ of the complex relative permittivity changes extremely from low frequency to high frequency. .
  • the real part ⁇ ′ of the complex relative permittivity at low frequencies is somewhat large, the X--R cross point exists on the low frequency side, and the real part ⁇ ' of the complex relative permittivity at high frequencies is small, so that It is possible to manufacture a bead-type noise filter that has excellent impedance characteristics at frequencies.
  • the magnetic core has a specific resistance of 150 ⁇ or more.
  • the real part ⁇ of the complex relative permittivity of the magnetic core is not less than 1,000 and not more than 20,000 at 1 kHz, and not more than 50 at 1 MHz.
  • the real part ⁇ ′ of the complex relative permittivity changes greatly from a low frequency to a high frequency
  • the X-R cross point of the bead-type noise filter is reduced to a low frequency side, for example, 5 ⁇ Move around ⁇ .
  • An embodiment of a bead-type noise filter according to the present invention, in which a signal line is passed through a through hole using a magnetic core of a closed magnetic circuit having the same, will be described.
  • Table 1 shows the basic compositions of a magnetic core (sample) using the soft magnetic material according to the embodiment of the present invention and a magnetic core (sample) using the soft magnetic material for comparison.
  • Samples 1 to 3 were baked at 1,150 ° C for 3 hours in an atmosphere in which nitrogen was supplied and oxygen partial pressure was controlled. Samples 4 and 5 were fired in air at 1,150 for 3 hours.
  • Each of the samples 1 to 5 had a baked shape, an outer shape: 3.2 mm, an inner diameter: 1.6 mm, and: 6 mm.
  • Sample 5 which is MgZnFrite, has a low initial magnetic permeability i and a low saturation magnetic flux density Bs, and has no advantage compared to the other Samples 1-4.
  • the MgZn ferrite with a low saturation magnetic flux density Bs must have a large core size There is a problem.
  • Sample 3 which is a general MnZn ferrite, shows good values for both the initial magnetic permeability ⁇ i and the saturation magnetic flux density B s, but has a very low specific resistance p V and is difficult to use in a high frequency band.
  • Sample 3 was a signal without insulating film or coating. The point that the line cannot be used directly in contact with the magnetic core also limits its use.
  • Sample 1 core in the invention of claim 2 of MnZn ferrite used as the magnetic core in the present invention
  • sample 2 core in the invention of claim 3
  • sample 4 of NiZn ferrite were , Initial magnetic permeability ⁇ i, saturation magnetic flux density B s, and specific resistance p V show favorable values.
  • Comparative Example 1 As shown in FIG. 4, at higher frequencies than 10 MHz, which is important in noise suppression, the impedance characteristics of Comparative Example 1 are different from those of the present invention (the present inventions 1, 2 and Comparative Examples 2 and 3). Is significantly lower than that of. This is due to the low specific resistance ⁇ V of the MnZn ferrite.
  • Comparative Example 3 the impedance characteristics of Comparative Example 3 are lower than those of any of the other bead-type noise filters (Inventive Examples 1 and 2 and Comparative Examples 1 and 2). This is due to the low initial permeability i of MgZnf: lite.
  • the impedance characteristics of the present inventions 1 and 2 and Comparative Example 2 show good values in a high frequency band.
  • the impedance measured in the production step 2 was separated into a reactance X component and a resistance R component according to the above equation (1).
  • both the present inventions 1 and 2 and the comparative example 2 are good, but the waveform of the input digital signal is distorted. It has been found that the present inventions 1 and 2 are superior to the comparative example 2 in that the risk is extremely small.
  • the specific resistance is 150 ⁇ or more
  • the real part of the complex relative permittivity ⁇ ′ is 1 kHz at 1 kHz.
  • the bead type noise filter (the present inventions 1 and 2), which is 32 or 28 in relation to ⁇ 42, has been described, but the real part ⁇ ′ of the complex relative permittivity is not limited to the range described in claim 1. In this case, the same or almost the same effect as that of the above embodiment was obtained.
  • the basic yarn of the magnetic core ( ⁇ ferrite) is composed of Fe 2 O 3 : 47.0 m ⁇ 1% and ⁇ ⁇ ⁇ : 10. 5 m ⁇ 1%,
  • the bead-type noise filter according to the present invention can easily and inexpensively suppress high-frequency noise radiated from the signal lines of electronic devices due to the trend of electronic devices that have a tendency to be more compact / higher in performance.
  • This filter is useful as a filter for noise reduction, and is particularly suitable for suppressing noise without distorting the waveform of the input digital signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Filters And Equalizers (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

 MnZnフェライトの比抵抗を高めることにより、高周波数特性を向上して不要輻射ノイズの抑制に用いることを可能とし、かつMnZnフェライトの誘電率を低減することにより、伝送信号波形を歪ませることなくノイズ抑制可能なビーズ型ノイズフィルタである。本発明のビーズ型ノイズフィルタは、外形円柱状をなし、1つ又は複数の貫通孔1aをもつ比抵抗の高い軟磁性体からなる磁心1と上記貫通孔1aに貫通させる信号線2とで構成される。このビーズ型ノイズフィルタは、複素比誘電率の実数部が1kHzにおいて1,000以上かつ20,000以下、1MHzにおいて50以下であり、かつ比抵抗が150Ωm以上である軟磁性材料1により閉磁路の磁心を形成し、これに信号線2を貫通させることにより構成することができる。

Description

ビーズ型ノイズフィルタ 技術分野
本発明は、 回路基板実装用の信号線 (信号ライン) や電源線 (D Cライン等) に使用される、 不要輻射ノィズ等を抑制するビーズ型ノィズフィルタに関するも のである。
明 背景技術
電子機器が小型化、高性能化されるなかで、電子機器の信号線や電源線(以下、 信号線と総称する。)から輻射される高周波ノイズが大きな問題となっている。 こ のようなノイズを抑制する最も簡単な方法に、 上記信号線をトロイダル形状ない し筒状(以下、 トロイダル形状と総称する。) のビーズコアと呼ばれる閉磁路磁心 に貫通させる方法がある。実際には、信号線を上記磁心に 1回巻き付けて貫通( 1 ターン貫通) させる場合が多いが、 磁心に複数の孔を設け、 このネ复数の孔を用い て信号線を磁心に複数回卷き付けることもある。
以下、 このようなノィズ抑制方法が採用されたノィズフィルタであるビーズ型 ノイズフィルタを第 1図に基づいて説明する。 図において、 1は比抵抗の高い軟 磁性体からなる閉磁路磁心 (ビーズコア) である。 この磁心 1は、 外形状が円柱 状であり、 その中心軸方向に 1つの貫通孔 1 aが設けられており、 この貫通孔 1 aに信号線 2が貫通されてビーズ型ノイズフィルタが構成される。 なお、 貫通孔 l aは 1つに限らず、 複数設けられる場合もある (第 2図参照)。
従来、 数 1 0〜数 1 0 0 MH zの不要輻射ノィズを抑制するため、 このような 高周波数帯においても使用可能な高比抵抗の N i Z nフヱライ卜 (1 02〜1 0 5 Q m) が磁心 1に用いられている。 また、 磁心 1 (貫通孔 l a ) の内面に絶縁被 覆なしの信号線 2が直に接した状態で貫通させても問題が生じないように、 磁心 1には高い比抵抗が要求され、 したがつてこの点からも N i Z nフェライトが磁 心 1に用いられている。 このように、 ビーズ型ノイズフィルタは、 非常に簡単な構造であるにもかかわ らず、従来、原料に高価な N iを含む N i Z nフェライ トが用いられているため、 高価な部品になってしまうという問題点があつた。
一方、 安価かつ良好な特性を有するソフトフェライ トに M n Z nフヱライ トが あるが、 従来の M n Z nフェライトでは、 その比抵抗は 1 0 -1〜 1 0。Ω ηιと非常 に低い。 このため、 これを材料とした磁心 (ビーズコア) 1は、 所望の高周波数 帯域において使用することができなかった。 ノィズ抑制したい信号周波数帯より も低レ、周波数において、 渦電流による損失が著しく増大してしまうためである。 また、 磁心 1 (貫通孔 1 a ) の内面に絶縁被覆なしの信号線 2を直に接した状態 で貫通させ、 組み立てることができないという問題点があった。
もう 1つ、 安価なソフトフエライトに M g Z nフェライ トがある。 しかし、 こ の M g Z nフェライ トは、 初透磁率や飽和磁束密度といった軟磁気特性が他のソ フトフェライ トに比べて劣るため、 ビーズ型ノイズフィルタとして同じ特性を得 ようとした場合、 磁心 1の寸法を大きくしなければならなかった。 特に、 リップ ル電流やサージノイズが問題となる信号線 (ここでは特に電源線) 2のノイズ抑 制に用いる場合、 磁気飽和しないよう、 磁心 1を更に大型化しなければならなく つた。 このような問題から、 M g Z nフェライ トはビーズ型ノイズフィルタとし て使用されていないのが実状である。
ところで、 ビーズ型ノイズフィルタの等価回路は、 第 3図に示すように、 イン ダクタンス L成分とレジスタンス R成分の直列回路に、 キャパシタンス C成分が 並列接続された回路で表される。 以下、 インダクタンス L成分、 レジスタンス R 成分、 キャパシタンス C成分を、 各々、 単に L成分、 R成分、 C成分とも記す。 第 3図において、 伝送させる信号の周波数帯域 (信号周波数帯域) では L》R [ L : L成分の値、 R : R成分の値。 各値はインピーダンス I Z I値を表す (以 下、 同様)。] となる。
このため、 ビーズ型ノイズフィルタは、 L , R成分の直列回路部分については インダクタとして働き (ほぼ L成分のみとなり)、伝送させる信号に対して R成分 による損失を与えない。 つまりビーズ型ノイズフィルタは、 信号線間の C成分と によって回路的にローパスフィルタを形成する。 しかし、 インダクタンス L成分 の値も小さく、 またカットオフ周波数が、 伝送させる信号の周波数帯域より高い 周波数であるため、 信号の伝送損失は無視できる。
伝送させる信号より高い周波数帯域では L《Rとなるため、 上記 L, R成分の 直列回路部分はレジスタンスとして働き (ほぼ R成分のみとなり)、 ノイズを熱と して吸収する。 したがって、 特に、 不要輻射ノイズに対しては、 有効な抑制効果 を発揮する。
ここで、 ビーズ型ノイズフィルタのインピーダンス I Z Iは、 下記式 (1 ) に よって、 リアクタンス X成分 (以下、 単に X成分とも記す。) とレジスタンス R成 分とに分離することができる。
I z I = ( X2 + R2 ) … )
また、 ビーズ型ノイズフィルタの磁心に交流磁界を印加した場合、 複素透磁率 μは下記式 (2 ) で表される。 この式 (2 ) において、 実数部 ' によりビーズ 型ノイズフィルタの X成分 ( L成分といってもよい) が生じ、 虚数部 μ " により R成分が生じる。
μ - ΛΓ ( μ ' 2 + μ " 2 ) … )
したがって、 伝送させる信号の周波数帯域では X成分が支配的であり、 このこ とは、 ビーズ型ノィズフィルタが信号線間の C成分とで形成する口一パスフィル タとして作用し、 信号に重畳するノィズ成分を遮断して通過させないことに役立 つことを意味する。 しかし、一旦は遮断して通過させなかったこのノイズ成分は、 他の回路に影響するノィズ成分となる虞がある。
一方、 不要輻射ノイズ等が発生する高周波数帯域では R成分が支配的であり、 この R成分が不要輻射ノィズを含むノィズ成分を熱エネルギーに変換し、 除去す る因子となる。 このようにノイズを熱エネルギーに変換して除去する方が、 上記 口一パスフィルタによるノィズの遮断に比べて、 より安全で確実にノィズを抑制 できる。
また、 X, R両成分の大きさが同一となる周波数、 すなわち X— Rクロスボイ ントは、 ノイズを反射する成分と熱エネルギーに変換し除去する成分のいずれが 他より大きくなるかの境界となる周波数である。 通常、 ノイズを除去する際は、 熱エネルギーに変換して除去する成分が多い方が望ましく、 したがって、 同じィ ンピーダンス特性であれば、 上記 X— Rクロスポイントは低いほどよい。
更に、 高周波数帯域において X成分が大きく、 R成分が小さいと、 信号線間の キャパシタンス C成分によって Q (インダクタの性能を表すための指数) が大き い L C共振が生じ、 ビーズ型ノイズフィルタを接続する回路によっては、 入力す るデジタル信号に対し、 リンギング等の波形歪を引き起こさせてしまう問題があ る。 したがって、 高周波数帯域における X成分は小さい方がよい。
以上述べた周波数 (帯域) と X, R両成分との関係において、 上記 N i Z nフ ェライトを磁心に用いたビーズ型ノイズフィルタについて以下に検討すると、 こ のようなビーズ型ノイズフィルタの X— Rクロスポイントは、 1 0 MH zといつ た高周波数帯に存在し、そのリアクタンス X成分は高周波数帯まで伸びて大きレ、。 このため、 C— MO Sインパータのような数 p Fのキャパシタンスをもつハイィ ンピーダンスなデジタル回路の入力信号線に、 N i Z nフェライトを磁心に用い たビーズ型ノィズフィルタを接続すると、 入力するデジタル信号の波形にリンギ ングゃアンダーシュート、 オーバーシユートといった波形歪を引き起こさせてし まう問題があった。
これは、上述した Qが比較的大きい L C共振等が生ずることによるものである。 したがって、 前述した高価になることと相俟って、 磁心に N i Z nフェライトを 用いないビーズ型ノイズフィルタが望まれた。 特に、 ここでは、 N i Z nフェラ ィトを磁心に用いた場合よりも X— Rクロスポイントが低いビーズ型ノイズフィ ルタが望まれた。 また、 安全で確実な R成分主体でノイズを抑制するビーズ型ノ ィズフィルタが望まれた。
本発明の目的は、 上記のような要望に鑑みてなされたもので、 安価、 かつ、 近 年の電子機器における信号の高周波数化、 デジタル化に対応できるように、 デジ タル信号等の伝送信号の波形を歪ませることなくノィズを抑制できるビーズ型ノ ィズフィルタを提供することにある。
具体的には、 本発明 (請求項 1に記載の発明) の目的は、 安価な M n Z nフエ ライトの比抵抗を著しく高めることにより、 N i Z nフェライトと同程度の高周 波数帯における軟磁気特性を得て、 数 1 0〜数 1 0 0 MH Zの不要輻射ノィズの 抑制に用いることが可能なビーズ型ノイズフィルタを提供することにある。また、 必要に応じて、 絶縁皮膜あるいは絶縁コーティングなしで信号線又は電源線を、 直接、 磁心に接した状態で貫通させることも可能な安価なビーズ型ノィズフィル タを提供することにある。
また、 本発明 (請求項 2, 3に記載の発明) の目的は、 上記目的を達成でき、 かつ、 伝送信号波形を歪ませることなくノイズを抑制するために、 より安全で確 実な R成分主体でノィズ抑制できる高性能なビーズ型ノィズフィルタを提供する ことにある。 発明の開示
請求項 1に記載の発明のビーズ型ノイズフィルタは、 複素比誘電率の実数部が 1 kHzにおいて 1, 000以上かつ 20, 000以下、 1 MHzにおいて 50 以下であり、 かつ比抵抗が 150 Ωπι以上である軟磁性材料により貫通孔をもつ 閉磁路の磁心 (ビーズコア) を形成し、 これに信号線又は電源線を貫通させるこ とを特徴とする。
これによれば、 安価でありながら、 比抵抗が著しく高く、 かつ、 N i Znフエ ライ トと同程度の高周波数帯における軟磁気特性を得て、 数 10〜数 100MH zの不要輻射ノィズの抑制に用いることが可能なビーズ型ノィズフィルタを提供 できる。 また、 絶縁被覆なしの信号線や電源線を、 直接、 磁心に接した状態で貫 通させることも可能な安価なビーズ型ノィズフィルタを提供できる。
また、 請求項 2に記載の発明のビーズ型ノイズフィルタは、 基本組成が、 F e2 03: 44. 0〜 50. Omo 1 % (ただし、 50. Omo 1 %は除く;)、 Z n O: 4. 0〜26. 5mo 1 %、 T i O2及ぴ S n〇2のうち 1種又は 2種: 0. :!〜 8. Omo 1 %、 残部が MnOである Mn Z nフェライトを上記磁心 (ビーズコ ァ) に用いることを特徴とする。
これによれば、 伝送信号波形を歪ませることなくノイズ抑制するために、 より 安全で確実な R成分主体でノィズ抑制できる高性能のビーズ型ノィズフィルタを 安価に提供できる。
更に、 請求項 3に記載の発明のビーズ型ノイズフィルタは、 基本組成が、 F e2
03: 44. 0〜 50. Omo 1 % (ただし、 50. Omo 1 %は除く;)、 Z n〇 : 4 . 0〜2 6 . 5 m o 1 %、 T i O2及ぴ S n〇2のうち 1種又は 2種: 0 . 1〜 8 . O m o 1 %, C u O : 0 . 1〜: 1 6 . 0 m o 1 %、 残部が M n Oである M n
Z nフェライトを上記磁心 (ビーズコア) に用いることを特徴とする。
これによれば、 請求項 2に記載の発明と同様に、 高性能のビーズ型ノイズフィ ルタを安価に提供できる。 図面の簡単な説明
第 1図は、 本発明が適用されるビーズ型ノイズフィルタの一例を示す斜視図で める。
第 2図は、 同じく他の例を示す ^[視図である。
第 3図は、 ビーズ型ノイズフィルタの等価回路図である。
第 4図は、 後掲表 1に示す各試料を用いたビーズ型ノィズフィルタにおけるィ ンピーダンスの周波数特性の測定結果を示すグラフである。
第 5図は、後掲表 3に示す本発明 1 (試料 1を用いたビーズ型ノィズフィルタ) におけるインピーダンスの周波数特性の測定結果を示すグラフである。
第 6図は、後掲表 3に示す比較例 2 (試料 4を用いたビーズ型ノイズフィルタ) におけるインピーダンスの周波数特性の測定結果を示すグラフである。 発明を実施するための最良の形態
本発明の実施の形態に係るビーズ型ノイズフィルタを第 1図〜第 6図に基づい て説明する。
第 1図は、 比抵抗の高い軟磁性体からなる磁心 (ビーズコア) 1と信号線 (又 は電源線、以下同様。) 2とからなるビーズ型ノィズフィルタを示す。磁心 1は、 外形状が円柱状であり、 その中心の軸方向に 1つの貫通孔 1 aが設けられ、 その 貫通孔 1 a内に信号線 2が貫通されて、 ビーズ型ノイズフィルタが構成されてい る。
第 2図は、 貫通孔 1 a力 S 2つ設けられ、 信号線 2が 1つの貫通孔 1 aを貫通し てから折り返して他の貫通孔 1 aを貫通している以外は磁心 1の材料、外形状等、 第 1図のものと同様である。 第 3図は、 ビーズ型ノイズフィルタの等価回路を示す図である。 この図に示す ように、 ビーズ型ノイズフィルタの等価回路は、 インダクタンス L成分とレジス タンス R成分の直列回路に、 キャパシタンス C成分が並列接続された回路で表さ れる。
本発明は、 第 1図及び第 2図に例示される構成を有し、 また第 3図に例示され る等価回路のビーズ型ノイズフィルタに適用される。
以下に、 本発明の具体例を説明する。
従来から汎用されている F e 2O3を 5 0 . O m o 1 %以上含む Mn Z nフヱラ イトは安価で、 かつ良好な特性を有するものの、 その比抵抗は非常に低い。 この ため、 これをビーズ型ノイズフィルタの磁心に用い、 高周波数帯域において使用 することはできず、 また、 信号線を絶縁皮膜あるいは絶縁コーティングなしで直 接、 その磁心に接触した状態で使用することは不可能であった。
これに対し、 本発明者らは、 F e 2O3組成を 5 0 . O m o 1 %未満とし、 かつ T i 02及ぴ S n〇2のうち 1種以上を適量含有させることにより、 比抵抗を著し く高めることができることを特許第 3 1 0 8 8 0 3号、 特許第 3 1 0 8 8 0 4号 等において明らかにした。
しかしながら、 単に高比抵抗のフェライト、 例えば N i Z nフェライトを磁心 に用いるだけでは、 本発明の目的である、 伝送信号波形を歪ませることなくノィ ズ抑制するために、 より安全で確実な R成分主体でノィズ抑制できる高性能なビ ーズ型ノイズフィルタを提供することはできない。
すなわち、 N i Z nフェライトをビーズ型ノイズフィルタの磁心に用いた場合、 後述するように、 X— Rクロスポイントは 1 O MH z以上の高周波数帯域に存在 する。 これによると、 リアクタンス X成分が高周波数帯まで伸びて大きいため、 ハイインピーダンスなデジタル回路の入力信号線に、 このようなビーズ型ノイズ フィルタを挿入した場合、 入力デジタル信号の波形にオーバーシユートゃリンギ ング等の歪みを誘発させる原因となる。
ビーズ型ノイズフィルタの等価回路は、 一般に第 3図に示されるが、 このよう なビーズ型ノィズフィルタの磁心に交流磁界を印加した場合、 誘電率 εは下記式
( 3 ) に示すように複素数で表される。 この式 (3 ) において、 ε ' は複素比誘 電率の実数部、 ε " は同虚数部であり、 この複素比誘電率の虚数部 ε " は誘電損 失に寄与する成分である。
= f ( ε ' 2 + ε " 2 ) … (3 )
このようなビーズ型ノイズフィルタは、 多くの場合、 磁心 (ビーズコア) に信 号線を 1回巻き付けて貫通 (1ターン貫通) させており、 また、 入力一出力端子 間が離れているため、 巻線 (巻き付けられた信号線) 間キャパシタンス C成分は 小さい。 し力 し、 C成分となり得るのはこの卷線間だけでなく、 卷線一磁心間も あり、 磁心の上記複素比誘電率の実数部 ε ' に依存する。 例えば、 複素比誘電率 の実数部 ε ' が非常に大きい Μ η Ζ ηフェライ トでは、 巻線一磁心間に生じるキ ャパシタンス C成分が非常に大きくなる。 特に、 ビーズ型ノイズフィルタは、 卷 線が磁心に密着した形で貫通しているため、 C成分は磁心の複素比誘電率の実数 部 ε ' に大きく依存する。
本発明者らは、 同じ L成分、 R成分をもつ Μ η Ζ ηフェライ トにおいてビーズ 型ノイズフィルタを作製し、 そのインピーダンス特性の測定結果から以下の知見 を得た。
すなわち、 「複素比誘電率の実数部 ε ' の大きい (C成分が大きい)、 従来一般 の Μ η Ζ ηフェライ トは、 X— Rクロスポイントが低周波数側にあるが、 高周波 数におけるインピーダンス特性は劣る。 逆に、 複素比誘電率の実数部 の小さ い (C成分が小さい) N i Z nフェライ トは、 X— Rクロスポイントが高周波数 側にあるが、 高周波数におけるインピーダンス特性は優れている。 更に、 従来一 般の M n Z nフェライ トゃ N i Z nフェライトの複素比誘電率の実数部 ε ' は、 低周波数帯域から高周波数帯域までほぼ一定値を保つこと、 仮に変化したとして もその幅は一桁に満たない」 という知見を得た。
本発明者らは、 以上の知見から、 複素比誘電率の実数部 ε ' が低周波数から高 周波数にかけて非常に大きく変化する軟磁性材料を磁心に用いたビーズ型ノイズ フィルタを提案するに至った。 これにより、 低周波数での複素比誘電率の実数部 ε ' がある程度大きいため X— Rクロスポイントが低周波数側に存在し、 高周波 数での複素比誘電率の実数部 ε ' が小さいため高周波数におけるインピーダンス 特性も優れるビーズ型ノイズフィルタの作製が可能となる。 本発明においては、 磁心の比抵抗は 150 Ωπι以上とする。 磁心に絶縁被覆が ない銅線を直接、 巻き付けて問題が生じないかどうかは、 印加される電圧に依存 するため一概にいえないが、 比抵抗が 150 Ωηι以上であれば、 かなり広い用途 において支障がないと考えられるからである。
また本発明は、 磁心の複素比誘電率の実数部 ε, 力 1 kHzにおいて 1, 0 00以上かつ 20, 000以下、 1MH zにおいて 50以下とする。 このように、 複素比誘電率の実数部 ε ' が低周波数から高周波数にかけて大きく変化する特徴 を有する磁心を用いることにより、 そのビーズ型ノイズフィルタの X— Rクロス ボイントは低周波数側、 例えば 5 ΜΗ ζあたりに移動する。
以下に、 複素比誘電率の実数部が 1 kH ζにおいて 1 , 000以上かつ 20, 000以下、 1 MHzにおいて 50以下であり、 かつ比抵抗が 150 Ωπι以上で ある軟磁性材料からなる貫通孔をもつ閉磁路の磁心を用い、 その貫通孔に信号線 を貫通させた本発明によるビーズ型ノイズフィルタの実施例について説明する。 実施例
作製工程 1
次表 1は、 本発明の実施の形態の軟磁性材料を用いた磁心 (試料) と、 比較の ための軟磁性材料を用いた磁心 (試料) の基本組成を示す。
[表 1]
Figure imgf000011_0001
まず、 F e23、 ZnO、 T i 02、 S n 02、 CuO, MnO、 1^ 1〇及び^[§ Oを、 表 1に示した最終組成 (単位は mo 1 %) になるように、 各原料粉末をボ ールミルにて混合した。 表 1に示すように、 試料は 5種類 (試料 1〜試料 5) と した。 次に、 この混合粉末を、 大気中において 900°Cで 2時間、 仮焼した。 仮焼後、 これをボールミルにて平均粉体粒径がおよそ 1. 4 mになるまで微粉砕した。 更に、 この微粉碎された混合粉末にポリビュルアルコールを加'えて造粒し、 80 MP aの圧力で 2種類のトロイダル形状に成形した。
その後、 試料 1〜試料 3は、 窒素を流入して酸素分圧を制御した雰囲気中にお いて、 1, 150°Cで 3時間、 焼成した。 試料 4及ぴ試料 5は、 大気中において、 1 , 150 で 3時間、 焼成した。
各試料 1〜5は、 焼き上がりの形状にて、 外形: 3. 2mm、 内径: 1. 6 m m、 : 6 mmであった。
こうして得た各試料 (ビーズ型ノイズフィルタの磁心としての試料) 1〜5に ついて、 0. 1MH zにおける初透磁率 i、 1, 194 AZmにおける飽和磁 束密度 B s、比抵抗 p V (Ωηι)、及ぴ 1 kH ζと 1 MH zにおける複素比誘電率 の実数部 ε ' を測定して、 下表 2に示す結果を得た。
[表 2]
Figure imgf000012_0001
表 2において、 Mg Z nフヱライトである試料 5は、 初透磁率 iも飽和磁束 密度 B sも低く、 他の試料 1〜4に比べて優位性がない。 特に、 ビーズ型ノイズ フィルタは、 リップル電流やサージノイズに対して磁気飽和しないことが要求さ れるため、 飽和磁束密度 B sが低い Mg Z nフェライトは磁心としたときの寸法 を大きくしなければならない問題点がある。
一般的な MnZnフェライトである試料 3は、 初透磁率 μ i、 飽和磁束密度 B sともに良好な値を示すものの、 比抵抗 p Vが非常に低く、 高周波数帯における 使用が困難である。 また試料 3は、 絶縁皮膜あるいは絶縁コーティングのない信 号線を直接、磁心に接触した状態で使用できない点でも、用途が限られてしまう。 本発明における磁心として用いる M n Z nフェライトの試料 1 (請求項 2の発 明における磁心)、 試料 2 (請求項 3の発明における磁心)、 及び N i Z nフェラ ィトである試料 4は、 初透磁率 μ i、 飽和磁束密度 B s、 比抵抗 p Vともに好ま しい値を示している。
作製工程 2
次に、 上記作製工程 1にて得た各試料 1〜 5による磁心 (ビーズコア) の各々 について信号線を貫通 (磁心への巻き付け回数を 1とした 1ターン貫通) させ、 ビーズ型ノイズフィルタを構成した。 下表 3にその一覧を、 測定された X— Rク ロスポイントと共に示す。
[表 3 ]
Figure imgf000013_0001
また、 各試料 1〜 5によるビーズ型ノィズフィルタについて、 各々インピーダ ンスの周波数特性を測定した結果を、 第 4図に示す。 この第 4図に示すインピー ダンス特性がビーズ型ノイズフィルタとしての実用特性である。
第 4図に示すように、 ノイズ抑制において重要となる 1 0 MH zよりも高周波 数側において、 比較例 1のインピーダンス特性は、 他のもの (本発明 1, 2、 比 較例 2, 3 ) に比べて著しく低下している。 これは Mn Z nフェライ トの比抵抗 β Vが低いことによる。
また、 比較例 3のインピーダンス特性は、 他のいずれのビーズ型ノイズフィル タ (本発明 1 , 2、 比較例 1 , 2 ) と比べても低い。 これは M g Z nフ: ライト の初透磁率 iが低いことによる。
これに対して、 本発明 1 , 2及ぴ比較例 2のインピーダンス特性は高周波数帯 において良好な値を示している。 次に、 上記作製工程 1, 2における各種の測定結果から、 ビーズ型ノイズフィ ルタとして有望なものとされる本発明 1, 2及び比較例 2にっき、 更に検討を加 える。
そこで、 本発明 1, 2及び比較例 2の各々について、 作製工程 2にて測定され たインピーダンスを、 上記式 ( 1) に従ってリアクタンス X成分とレジスタンス R成分とに分離した。
その結果を、 本発明 1について第 5図に、 比較例 2について第 6図にグラフ化 して示す。 第 5図から分かるように、 本発明 1の X— Rクロスポイントは 5MH z付近である。 本発明 2についても、 図示しないが同じ結果が得られた。 これに 対して、 比較例 2のそれは、 第 6図から分かるように 1 OMH z付近にある。 これは、 表 2に示したように試料 1 (本発明 1) 及び試料 2 (本発明 2) の複 素比誘電率の実数部 ε ' は、 1 kHzと 1MHzの間において大きく変化してい るのに対して、 試料 4 (比較例 2) はその変化が見られないためである。
これによれば、 高周波数帯のインピーダンス特性、 つまりノイズを抑制する作 用においては、 本発明 1, 2と比較例 2とは共に良好であるが、 入力デジタル信 号の波形に歪みを生じさせる虞が極めて少ないという点においては、 本発明 1 , 2の方が比較例 2に比べて優れていることが分かつた。
なお、 請求項 1に記載の発明として、 上述実施例では、 比抵抗が 1 50 Ωηι以 上で、 複素比誘電率の実数部 ε ' 力 1 kHzにおいて 1 2, 320、 10, 9 70、 1^4 2にぉぃて32、 28であるビーズ型ノイズフィルタ (本発明 1, 2) について述べたが、 複素比誘電率の実数部 ε ' について、 これ以外で請求項 1に記載された範囲においても、 上述実施例と同等ないしほぼ同等の効果が得ら れた。
また、 請求項 2に記載の発明として、 上述実施例では、 磁心 (ΜηΖηフェラ ィト) の基本糸且成を、 F e 203: 47. 0 m ο 1 %、 Ζ η Ο: 10. 5 m ο 1 %、
Τ i 02: 1. 0 m ο 1 %、 残部 (41. 5 m ο 1 %) が Mn Oとしたビーズ型ノ ィズフィルタ (本発明 1) について述べたが、 これ以外で請求項 2に記載された 範囲の基本組成においても、上述実施例と同等ないしほぼ同等の効果が得られた。 更に、 請求項 3に記載の発明として、 上述実施例では、 磁心 (Mn Znフェラ ィト) の基本組成を、 F e 203: 47. 0 m o 1 %、 Z n O: 1 0. 5 m o 1 %、 S n02: 0. 5mo 1 %, CuO : 1. 5 m o 1。/。、 残部 ( 40. 5mo 1 %) が MnOとしたビーズ型ノイズフィルタ (本発明 2) について述べたが、 これ以 外で請求項 3に記載された範囲の基本組成においても、 上述実施例と同等ないし ほぼ同等の効果が得られた。 産業上の利用可能性
以上のように、 本発明によるビーズ型ノイズフィルタは、 近年の電子機器の/ J、 型化、 高性能化傾向にあって、 電子機器の信号線から輻射される高周波ノイズを 簡単かつ安価に抑制するフィルタとして有用であり、 特に、 入力デジタル信号の 波形を歪ませることなくノィズを抑制するのに適している。

Claims

請 求 の 範 囲
1. 複素比誘電率の実数部が 1 kHzにおいて 1, 000以上かつ 2 0, 00 0以下、 1MHzにおいて 50以下であり、 かつ比抵抗が 1 50 Ωπι以上である 軟磁性材料からなる貫通孔をもつ閉磁路の磁心を形成し、 この貫通孔に信号線又 は電源線を貫通させたことを特徴とするビーズ型ノイズフィルタ。
2. 前記磁心は Μη Ζ ηフェライトからなり、 その基本組成は、 F e 23: 4 4. 0〜50. 0 m ο 1 % (ただし、 50. 0 m o 1 %は除く)、 Z n O : 4. 〇 〜26. 5mo 1 %、 T i 02及ぴ S n〇2のうち 1種又は 2種: 0. :!〜 8. 0 mo 1 %、 残部が MnOであることを特徴とする請求項 1に記載のビーズ型ノィ ズフイノレタ。
3. 前記磁心は Mn Z nフェライトからなり、 その基本組成は、 F e 23: 4
4. 0〜 50. 0 m o 1 % (ただし、 50. 0 m o 1 %は除く)、 Z n O : 4. 0 〜26. 5mo 1 %、 T i 02及ぴ S n〇2のうち 1種又は 2種: 0. 1〜8. 0 mo l %、 C u O : 0. 1〜: 16. 0 m o 1 %、 残部が Mn Oであることを特徴 とする請求項 1に記載のビーズ型ノイズフィルタ。
PCT/JP2003/012044 2003-09-22 2003-09-22 ビーズ型ノイズフィルタ WO2005029517A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN038143933A CN1663003A (zh) 2003-09-22 2003-09-22 珠形噪声滤波器
US10/515,494 US7148767B2 (en) 2003-09-22 2003-09-22 Bead type noise filter
EP03816939A EP1569249A1 (en) 2003-09-22 2003-09-22 Bead noise filter
PCT/JP2003/012044 WO2005029517A1 (ja) 2003-09-22 2003-09-22 ビーズ型ノイズフィルタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/012044 WO2005029517A1 (ja) 2003-09-22 2003-09-22 ビーズ型ノイズフィルタ

Publications (1)

Publication Number Publication Date
WO2005029517A1 true WO2005029517A1 (ja) 2005-03-31

Family

ID=34362504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012044 WO2005029517A1 (ja) 2003-09-22 2003-09-22 ビーズ型ノイズフィルタ

Country Status (4)

Country Link
US (1) US7148767B2 (ja)
EP (1) EP1569249A1 (ja)
CN (1) CN1663003A (ja)
WO (1) WO2005029517A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7307495B2 (en) * 2004-06-17 2007-12-11 Fci Americas Technology, Inc. Electrical filter assembly having IDC connection
CN100468930C (zh) * 2006-03-17 2009-03-11 鸿富锦精密工业(深圳)有限公司 抗电磁干扰电源滤波器的磁珠选择方法
US20140241217A1 (en) * 2011-08-18 2014-08-28 Zte Corporation Headset device, headset, and method for processing signal by using headset device
JP6206654B2 (ja) * 2013-08-30 2017-10-04 セイコーエプソン株式会社 液体吐出装置およびヘッドユニット
JP6206655B2 (ja) 2013-08-30 2017-10-04 セイコーエプソン株式会社 液体吐出装置およびヘッドユニット
JP6421424B2 (ja) * 2014-03-07 2018-11-14 北川工業株式会社 バスバーアセンブリ、バスバーアセンブリの製造方法
DE102014007780A1 (de) 2014-05-21 2015-11-26 Audi Ag Energiespeicher, Energiespeicheranordnung für ein Kraftfahrzeug und Kraftfahrzeug
US9600214B2 (en) 2014-06-13 2017-03-21 Ricoh Company, Ltd. Aggregate work volume estimation mechanism
US9213510B1 (en) 2014-06-13 2015-12-15 Ricoh Company, Ltd. Print scheduling mechanism
CN106021811B (zh) * 2016-06-08 2019-04-02 福州大学 一种磁性材料宽频复数磁导率测定方法
JP6380773B2 (ja) * 2017-03-27 2018-08-29 セイコーエプソン株式会社 液体吐出装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441202A (en) * 1987-08-06 1989-02-13 Mitsubishi Petrochemical Co Cable shielding bead
JPH05283223A (ja) * 1992-04-03 1993-10-29 Mitsubishi Electric Corp 信号弁別器
JP3108804B2 (ja) * 1998-08-19 2000-11-13 ミネベア株式会社 Mn−Znフェライト
JP3108803B2 (ja) * 1998-08-19 2000-11-13 ミネベア株式会社 Mn−Znフェライト
JP2003282318A (ja) * 2002-03-22 2003-10-03 Minebea Co Ltd 信号弁別器
JP2003324014A (ja) * 2002-04-30 2003-11-14 Minebea Co Ltd ビーズコア型ノイズフィルタ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636163Y2 (ja) * 1976-08-19 1981-08-26
US4656451A (en) * 1986-01-23 1987-04-07 Ferronics, Inc. Electronic noise suppressor
JPS6441202U (ja) 1987-09-04 1989-03-13
US5500629A (en) * 1993-09-10 1996-03-19 Meyer Dennis R Noise suppressor
US5455552A (en) * 1994-05-03 1995-10-03 Steward, Inc. Ferrite common mode choke adapted for circuit board mounting
JPH08181478A (ja) * 1994-12-26 1996-07-12 Kanegafuchi Chem Ind Co Ltd ノイズフィルタ及びその製造方法
JP3584439B2 (ja) * 2000-02-08 2004-11-04 ミネベア株式会社 Mn−Znフェライトおよびその製造方法
JP2002167272A (ja) * 2000-11-28 2002-06-11 Minebea Co Ltd Mn−Znフェライトの製造方法
JP2003059712A (ja) * 2001-08-10 2003-02-28 Minebea Co Ltd Mn−Znフェライトおよび巻き線部品
JP2003068515A (ja) * 2001-08-22 2003-03-07 Minebea Co Ltd Mn−Znフェライトおよび巻き線部品
JP2004039787A (ja) * 2002-07-02 2004-02-05 Minebea Co Ltd インダクタ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441202A (en) * 1987-08-06 1989-02-13 Mitsubishi Petrochemical Co Cable shielding bead
JPH05283223A (ja) * 1992-04-03 1993-10-29 Mitsubishi Electric Corp 信号弁別器
JP3108804B2 (ja) * 1998-08-19 2000-11-13 ミネベア株式会社 Mn−Znフェライト
JP3108803B2 (ja) * 1998-08-19 2000-11-13 ミネベア株式会社 Mn−Znフェライト
JP2003282318A (ja) * 2002-03-22 2003-10-03 Minebea Co Ltd 信号弁別器
JP2003324014A (ja) * 2002-04-30 2003-11-14 Minebea Co Ltd ビーズコア型ノイズフィルタ

Also Published As

Publication number Publication date
US20060055487A1 (en) 2006-03-16
EP1569249A1 (en) 2005-08-31
US7148767B2 (en) 2006-12-12
CN1663003A (zh) 2005-08-31

Similar Documents

Publication Publication Date Title
JP4914448B2 (ja) 低損失フェライト及びこれを用いた電子部品
JP5841312B2 (ja) 低損失フェライト及びこれを用いた電子部品
JP4216917B2 (ja) チップビーズ素子およびその製造方法
EP2707883B1 (en) Procedure for magnetic grain boundary engineered ferrite core materials
WO2005029517A1 (ja) ビーズ型ノイズフィルタ
WO2003088281A1 (en) Method of manufacturing soft magnetic powder and inductor using the same
JP2000252112A (ja) 磁性体磁器組成物およびそれを用いたインダクタ部品
JP7456233B2 (ja) 金属磁性粒子、インダクタ、金属磁性粒子の製造方法及び金属磁性体コアの製造方法
JP2005032918A (ja) 磁性素子
JP2005029426A (ja) 磁性フェライトおよびそれを用いた磁性素子
JP5913246B2 (ja) 金属磁性材料、電子部品
WO2005029516A1 (ja) 信号弁別器
US6255933B1 (en) Inductance device and manufacturing method thereof
JP2016136592A (ja) チョークコイル用コアおよびチョークコイル
US6798329B2 (en) Inductor
JP3035479B2 (ja) 積層型インダクタンス素子
JPH08236354A (ja) 積層インダクタ
JPH10270255A (ja) 高周波チップビーズ素子
JP2003324014A (ja) ビーズコア型ノイズフィルタ
JP3739977B2 (ja) 磁性材料とそれを用いたバルク型コイル部品と積層型コイル部品
JPH07169613A (ja) 複合磁性体材料
JPH1050514A (ja) フェライト磁性材料およびフェライトコア
JPH08167523A (ja) 積層インダクタ及びその製造方法
JP2006148023A (ja) トロイダルコイル、電気回路素子、信号伝達装置
JP2001167920A (ja) フェライト磁性材料およびフェライトコア

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 03814393.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003816939

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006055487

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10515494

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): CN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB NL

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2003816939

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2003816939

Country of ref document: EP