WO2005028874A1 - ロータ軸と回転体との固定構造及び該固定構造を有するターボ分子ポンプ - Google Patents

ロータ軸と回転体との固定構造及び該固定構造を有するターボ分子ポンプ Download PDF

Info

Publication number
WO2005028874A1
WO2005028874A1 PCT/JP2004/012409 JP2004012409W WO2005028874A1 WO 2005028874 A1 WO2005028874 A1 WO 2005028874A1 JP 2004012409 W JP2004012409 W JP 2004012409W WO 2005028874 A1 WO2005028874 A1 WO 2005028874A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor shaft
rotating body
fixed
molecular pump
shaft
Prior art date
Application number
PCT/JP2004/012409
Other languages
English (en)
French (fr)
Inventor
Yasushi Maejima
Yutaka Inayoshi
Shinji Kawanishi
Kou Sakurai
Hiroyuki Suda
Takeshi Akimoto
Original Assignee
Boc Edwards Japan Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34372710&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005028874(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Boc Edwards Japan Limited filed Critical Boc Edwards Japan Limited
Priority to KR1020067004758A priority Critical patent/KR101128174B1/ko
Priority to DE602004024217T priority patent/DE602004024217D1/de
Priority to EP04772365A priority patent/EP1666730B1/en
Priority to US10/571,642 priority patent/US7390164B2/en
Publication of WO2005028874A1 publication Critical patent/WO2005028874A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/266Rotors specially for elastic fluids mounting compressor rotors on shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/662Balancing of rotors

Definitions

  • Turbomolecular port has a fixed structure and the fixed structure of the rotor shaft and the rotor: off
  • the present invention relates to a fixed structure between a rotor shaft and a rotating body and a turbo molecular pump having the fixed structure, and in particular, to stabilizing a contact state of a contact surface between the rotor shaft and the rotating body, thereby making the rotor more stable.
  • the present invention relates to a fixed structure of a rotor shaft and a rotating body capable of maintaining rotation balance of a shaft and a rotating body and preventing oscillation, and a turbo molecular pump having the fixed structure.
  • These semiconductors are manufactured by doping impurities into a very high purity semiconductor substrate to give electrical properties, or by forming a fine circuit pattern on the semiconductor substrate and laminating them.
  • a turbo-molecular pump is used in equipment such as an electron microscope in order to prevent the refraction of an electron beam due to the presence of dust and the like, and to make the environment in a chamber such as an electron microscope a high vacuum state. Used.
  • Such a turbo-molecular pump is composed of a turbo-molecular pump main body 100 for sucking and discharging gas from a chamber of a semiconductor manufacturing apparatus and the like, and a control device 200 for controlling the turbo-molecular pump main body 100.
  • a configuration diagram of a turbo-molecular pump is shown in FIG.
  • a turbo molecular pump main body 100 has an intake port 101 formed at an upper end of a cylindrical outer cylinder 127. Also, inside the outer cylinder 127, there is provided a rotating body 103 in which a plurality of rotating blades 102a, 102b, 102c ' Have been.
  • the rotating body 103 is a heavenly, substantially cylindrical member, and a rotor shaft 113 is fixed through the center of the rotating body 103 from inside. The structure of the fixed portion between the rotor shaft 113 and the rotating body 103 will be described later in detail.
  • the rotor shaft 113 is levitated and supported by a so-called five-axis control magnetic bearing, for example, and its position is controlled.
  • the cylindrical main shaft portion 151 of the rotor shaft 113 is formed of a high magnetic permeability material (iron or the like), and is attracted by the magnetic force of the upper radial electromagnet 104 and the lower radial electromagnet 105 described below. It has become.
  • the upper radial electromagnet 104 In the upper radial electromagnet 104, four electromagnets are arranged in pairs on the X axis and the Y axis.
  • An upper radial sensor 107 including four electromagnets is provided in proximity to and corresponding to the upper radial electromagnet 104.
  • the upper radial sensor 107 is configured to detect a radial displacement of the main shaft portion 151 of the rotor shaft 113 and send a displacement signal to the control device 200.
  • the control device 200 controls the excitation of the upper radial electromagnet 104 via a compensation circuit having a PID adjustment function, based on the displacement signal detected by the upper radial
  • the upper radial position of the main shaft 151 is adjusted.
  • the adjustment is performed independently in the X-axis direction and the Y-axis direction.
  • a lower radial electromagnet 105 and a lower radial sensor 108 are arranged similarly to the upper radial electromagnet 104 and the upper radial sensor 107, and a lower radius of the main shaft portion 151 of the rotor shaft 113 is provided.
  • the directional position is adjusted similarly to the upper radial position.
  • the axial electromagnets 106A and 106B are arranged so as to vertically sandwich a disk-shaped metal disk 111 provided below the main shaft portion 151 of the rotor shaft 113.
  • the metal disk 111 is made of a material having high magnetic permeability such as iron.
  • an axial displacement of the rotor shaft 113 is detected below the metal disk 111.
  • An axial sensor 109 is provided below the metal disk 111.
  • An axial displacement signal from the axial sensor 109 is sent to the control device 200.
  • the control device 200 controls the excitation of the axial electromagnetic stones 106A and 106B based on the displacement signal detected by the axial sensor 109. At this time, the axial electromagnet 106A
  • the magnetic disk attracts the metal disk 111 upward by magnetic force, and the axial electromagnet 106B
  • the magnetic bearing causes the rotor shaft 113 to be magnetically levitated and held in a non-contact manner by appropriately adjusting the magnetic force applied to the rotor shaft 113.
  • the motor 121 has a plurality of permanent magnet magnetic poles circumferentially arranged on the rotor side so as to surround the main shaft portion 151 of the rotor shaft 113. To the magnetic poles of these permanent magnets, a torque component for rotating the rotor shaft 113 is added from an electromagnet on the stator side of the motor 121 so that the rotating body 103 is driven to rotate. It has become.
  • a rotation speed sensor and a motor temperature sensor are attached to the motor 121, and the control device 200 receives rotation signals of the rotation speed sensor and the motor temperature sensor, and the control device 200 rotates the rotor shaft 113. Is controlled.
  • the rotating blades 102a, 102b, 102c ′,... are arranged in multiple stages as described above.
  • the rotary blades 102 a, 102 b, 102 c ′ are inclined by a predetermined angle from a plane perpendicular to the axial direction of the rotor shaft 113 in order to transfer the molecules of the exhaust gas downward by collision. It is formed. Further, the fixed blade 123 is similarly formed to be inclined by a predetermined angle from a plane perpendicular to the axial direction of the rotor shaft 113, and is different from the step of the rotary blade 102 toward the inside of the outer cylinder 127. It is arranged in ⁇ .
  • the fixed wing spacer 125 is a ring-shaped member, for example, a metal such as aluminum, iron, stainless steel, copper, or the like. It is made of a metal such as an alloy containing a metal as a component.
  • an outer cylinder 127 is provided on the outer periphery of the fixed wing spacer 125 with a slight gap therebetween.
  • the outer cylinder 127 is fixed by bolts 128 to a base 129 disposed at the bottom.
  • a threaded spacer 131 is provided between a lower portion of the fixed wing spacer 125 and the base portion 129.
  • An exhaust port 133 is formed below the threaded spacer 131 in the base portion 129 and communicates with the outside.
  • the threaded spacer 131 is a cylindrical member made of a metal such as aluminum, copper, stainless steel, iron, or an alloy containing these metals, and has a spiral shape on its inner peripheral surface. A plurality of thread grooves 131a are provided. The spiral direction of the thread groove 131a is such that when the molecules of the exhaust gas move in the rotation direction of the rotating body 103, the molecules are transferred to the exhaust port 133.
  • a rotating blade 102d formed in a cylindrical shape with respect to the axial direction of the rotor shaft 113 hangs at the lowermost portion following the blade-like rotating blades 102a, 102b, 102c '. It is formed.
  • the rotor 102d is formed so as to protrude toward the inner peripheral surface of the threaded spacer 131, and the protruding portion is separated from the inner peripheral surface of the threaded spacer 131 by a predetermined gap. Being close.
  • the base 129 is a disk-shaped member that forms the base of the turbo-molecular pump main body 100, and is generally made of a metal such as iron, aluminum, and stainless steel.
  • the base 129 physically holds the turbo-molecular pump body 100 and also has the function of a heat conduction path, so it is made of a rigid metal such as iron, aluminum, or copper and has a high thermal conductivity. It is desirable to be done.
  • the exhaust gas sucked from the air inlet 101 passes through the space between the rotary blade 102 and the fixed blade 123 and is transferred to the base portion 129.
  • the temperature of the rotary blade 102 rises due to frictional heat generated when the exhaust gas contacts the rotary blade 102, conduction of heat generated by the motor 121, etc.
  • Fixed wing 123 side due to conduction by molecules etc. Is transmitted to Furthermore, the fixed blade spacers 125 are joined to each other at the outer periphery, and the fixed blades 123 transfer heat received by the fixed blades 123 from the rotating blades 102 or frictional heat generated when exhaust gas comes into contact with the fixed blades 123 to the outside. Communicate with.
  • the exhaust gas transferred to the base portion 129 is supplied to the thread groove of the threaded spacer 131.
  • the threaded spacer 131 is provided on the outer periphery of the rotary blade 102d, and the threaded groove 131a is formed on the inner peripheral surface of the threaded spacer 131.
  • a thread groove may be formed on the outer peripheral surface of the rotating blade 102d, and a spacer having a cylindrical inner peripheral surface may be arranged around the groove.
  • the electric component side composed of the gas force motor 121 sucked from the intake port 101, the lower radial electromagnet 105, the lower radial sensor 108, the upper radial electromagnet 104, the upper radial sensor 107, and the like.
  • the periphery of the electrical component is covered with a stator column 122, and the interior of the electrical component is maintained at a predetermined pressure with a purge gas.
  • a pipe (not shown) is provided in the base portion 129, and a purge gas is introduced through this pipe.
  • the introduced purge gas is delivered to the exhaust port 133 through a gap between the protective bearing 120 and the rotor shaft 113, a gap between the rotor and the stator of the motor 121, and a gap between the stator column 122 and the rotary blade 102.
  • the process gas is likely to be introduced into the chamber at a high temperature in order to increase the reactivity.
  • these process gases are cooled to a certain temperature when they are exhausted, they may become solids and deposit products in the exhaust system.
  • the process gas power of this type becomes low temperature in the S turbo molecular pump main body 100 and becomes solid, adheres and accumulates inside the turbo molecular pump main body 100.
  • the deposits narrow the pump flow path and cause a decrease in the performance of the turbo-molecular pump body 100. It becomes.
  • the above-described product was in a state of being easily solidified and adhered in a portion having a low temperature near the exhaust port, particularly in the vicinity of the rotary blade 102 and the threaded spacer 131.
  • a heater (not shown) or an annular water cooling tube 149 (not shown) is wound around the outer periphery of the base 129 and the like, and a temperature sensor (eg, a thermistor) not shown is mounted on the base 129, for example. Based on the signal from the temperature sensor, control of heating of the heater and cooling by the water cooling pipe 149 (hereinafter referred to as TMS) is performed so that the temperature of the base portion 129 is maintained at a constant high temperature (set temperature). ) Is being conducted.
  • TMS control of heating of the heater and cooling by the water cooling pipe 149
  • FIG. 10 is an enlarged configuration diagram of a fixed portion between the rotor shaft and the rotating body
  • FIG. 11 is a partial configuration diagram of the rotating body
  • FIG. 12 is a partial configuration diagram of the rotor shaft.
  • FIG. 12 (a) is a longitudinal sectional view of the rotor shaft
  • FIG. 12 (b) is a plan view thereof.
  • the diameter of the rotor shaft 113 is twice that of the main shaft 151 above the main shaft 151 whose radial position is adjusted by the upper radial electromagnet 104 and the like.
  • a fastening portion 153 whose diameter is gradually increased to a certain extent is formed.
  • a contact surface 157 on the side of the rotor shaft 113 that contacts the rotating body 103 is formed on the entire upper surface of the fastening portion 153, and the contact surface 157 is perpendicular to the axial direction of the main shaft portion 151. It is machined into a flat shape.
  • a bolt hole 161 having an opening at the contact surface 157 side is dug in the fastening portion 153 along the axial direction, and the bolt hole 161 is formed from the axial force of the rotor shaft 113 to the main shaft portion 151. It is formed at a position that is approximately the same distance as the diameter of the. Further, the bolt holes 161 are formed at, for example, six places in the fastening portion 153, and are equally spaced around the axis. The number of the bolt holes 161 is not limited to six, but may be eight, for example.
  • a penetrating shaft portion 155 having a smaller diameter than the main shaft portion 151 and having the same axis as the main shaft portion 151 is formed to extend.
  • a hexagonal hole 163 having an upper opening is dug along the axial direction at an upper end portion of the through shaft portion 155.
  • the hexagonal hole 163 has a length of about half the length of the through shaft portion 155. It is dug to the depth of.
  • the center of the upper end of the rotating body 103 has a round cross-section recessed downward.
  • a recess 181 is formed.
  • a center hole 183 is formed at the center of the concave portion 181 so as to penetrate between the inside and outside of the rotating body 103 along the axial direction.
  • a contact surface 187 on the rotating body 103 side which is in contact with the contact surface 157 of the rotor shaft 113, is formed on the inner surface of the rotating body 103.
  • the contact surface 187 is also processed to be perpendicular to the axial direction and flat, so that it can be fitted with the contact surface 187 on the rotating body 103 side.
  • a bolt through hole 185 is formed in the recess 181 so as to penetrate between the inner side and the outer side of the rotating body 103 along the axial direction adjacent to the center hole 183.
  • the number of the bolt through holes 185 is equal to the number of the bolt holes 161 on the rotor shaft 113 side.
  • the through shaft 155 of the rotor shaft 113 is inserted into the center hole 183 of the rotating body 103.
  • the insertion of the through shaft 155 into the center hole 183 is performed by shrink fitting, for example.
  • the outer diameter force of the through shaft portion 155 of the rotor shaft 113 is set to be several tens ⁇ larger than the inner diameter of the center hole 183 of the rotating body 103.
  • the inner diameter of the center hole 183 of the rotating body 103 is larger than the outer diameter of the through shaft 155 of the rotor shaft 113. Increased by several hundred zm.
  • the through shaft portion 155 is inserted into the center hole 183, and is left to cool for a certain period of time.
  • the penetrating shaft 155 is firmly fixed to the center hole 183 due to the difference in diameter at room temperature.
  • the rotor 103 After cooling the rotor 103 and the rotor shaft 113 by the shrink fit, the rotor 103 is screwed into the bolt hole 161 on the side of the rotor shaft 113 with the Bonoreto 191 force. At this time, when tightening the Bonoret 191, a hexagon wrench (not shown) is fitted into the hexagon hole 163 of the rotor shaft 113, and the rotating body 10 3 and the rotation of the rotor shaft 113 are blocked. Thereby, the rotating body 103 and the rotor shaft 113 are easily fastened to the force S.
  • the rotating body 103 and the rotating wing 102 are subjected to a plating process on the entire surface for the purpose of preventing corrosion.
  • a plating process for example, electroless nickel plating is adopted.
  • FIG. 13 (which is a partially enlarged view of a portion A in FIG. 10) shows the state of the build-up force S of the plating at the contact surfaces 157 and 187 between the rotor shaft 113 and the rotating body 103.
  • the liquid is applied to the corner B1 of the portion closest to the through shaft portion 155 of the rotor shaft 113, the corner B2 near the axis of the bolt through hole 185, and the corner B3 on the opposite side. It drips, and the swelling of the plate is formed.
  • the size of the swelling of the plating is usually as small as about 30 ⁇ m.
  • the contact surface 157 and the contact surface 187 do not adhere to each other, and the contact state between the rotor shaft 113 and the rotating body 103 may become unstable. Therefore, the run-out of the rotor shaft 113 and the rotating body 103 during rotation becomes large, so that the rotation balance cannot be maintained, and the turbo molecular pump main body 100 may be vibrated.
  • the natural frequency of the rotor shaft 113 and the rotating body 103 may greatly vary.
  • magnetic bearings the above-described upper radial electromagnet 104, upper radial sensor 107, lower radial electromagnet 105, lower radial sensor 108, axial electromagnets 106A and 106B, axial sensor 109, control device 200
  • a filter for stabilization is provided.
  • the through shaft portion 155 of the rotor shaft 113 has a force that is inserted into and fixed to the center hole 183 of the rotating body 103 by shrink fitting.
  • the rotor shaft 113 and the rotating body 103 may play during cooling in the shrink fit, and the axial direction of the rotor shaft 113 and the rotating body 103 may be shifted after cooling. Therefore, even when the bolt 191 is fastened, the contact surface 157 and the contact surface 187 do not adhere to each other, and the contact state between the rotor shaft 113 and the rotating body 103 may become unstable.
  • the present invention has been made in view of such a conventional problem, and stabilizes a contact state of a contact surface between a rotor shaft and a rotating body, thereby maintaining a rotational balance between the rotor shaft and the rotating body,
  • An object of the present invention is to provide a fixed structure of a rotor shaft and a rotating body that can prevent oscillation, and a turbo molecular pump having the fixed structure.
  • the present invention relates to a fixing structure of a rotor shaft and a rotating body, and relates to a rotating body, a rotor shaft fixed to the rotating body, and a bolt for fastening the rotor shaft to the rotating body.
  • a hole, fastening means for fastening the rotor shaft and the rotating body using the bolt hole, a rotating body-side contact surface formed perpendicularly to the axial direction on the rotating body side, and the rotor shaft A rotor shaft-side contact surface that is in contact with the rotor-side contact surface on the side of the rotor shaft; and a seat-drilled portion that is recessed from the rotor shaft-side contact surface.
  • a gap is formed between the bolt and the seat lip, and the bolt hole is opened toward the gap.
  • the rotating body may be subjected to a plating process on the entire surface for corrosion prevention. Then, in the drying of the plating, dripping may occur at the corners of the bolt holes and the like, and the swelling of the plating may be formed.
  • the present invention relates to a fixing structure of a rotor shaft and a rotating body, wherein the rotating body has a center hole formed at the center of the rotating body, and the rotor shaft is penetrated by the center hole. And a main shaft having a diameter larger than that of the through shaft.
  • the rotor shaft can be firmly fixed to the rotating body.
  • the present invention relates to a fixing structure of the rotor shaft and the rotating body, characterized by comprising a female screw formed on the rotor shaft.
  • the present invention relates to a fixing structure of a rotor shaft and a rotating body, wherein the rotor shaft is screwed into the female screw to urge the rotor shaft in an axial direction and in a direction opposite to the urging direction. It is characterized by comprising fixing means for urging the rotating body.
  • the penetration of the through-shaft portion of the rotor shaft into the center hole of the rotating body may be performed by shrink fitting. If the directions of the center hole and the through shaft portion are distorted in the axial direction, the rotor shaft and the rotating body may play during the shrink-fit cooling. Further, when the rotor shaft and the rotating body are fastened during cooling in shrink fit, the axial direction of the center hole and the axial direction of the through shaft portion may be shifted due to unevenness of the fastening force.
  • a female screw is formed on the rotor shaft, and a fixing means is screwed to the female screw.
  • the rotor shaft and the rotating body are urged in opposite directions along the axial direction by the fixing means. Therefore, the rotor shaft and the rotating body are cooled in a state where the axial directions of the rotor shaft and the rotating body match.
  • the contact surface between the rotor and the rotor shaft is in close contact with each other, so that the contact state between the rotor shaft and the rotor is stabilized, and the rotational balance between the rotor shaft and the rotor can be maintained.
  • the present invention relates to a turbo-molecular pump having a fixed structure of a rotor shaft and a rotating body.
  • the rotor shaft and the rotating body having the above-described fixed structure are mounted on a turbo-molecular pump having a magnetic bearing.
  • the natural frequency of the rotor shaft and the rotating body does not fluctuate due to the instability of the contact state between the rotor shaft and the rotating body, so that oscillation of the magnetic bearing can be prevented.
  • the present invention relates to a turbo-molecular pump, which relates to an electrical unit including at least a motor, a base unit supporting the electrical unit, a rotor shaft rotated by the motor, and a rotating shaft fixed to the rotor shaft.
  • an electrical unit including at least a motor, a base unit supporting the electrical unit, a rotor shaft rotated by the motor, and a rotating shaft fixed to the rotor shaft.
  • Body rotating blades formed on the rotating body, fixed blades alternately arranged with the rotating blades, fixed blade spacers for fixing the fixed blades, at least the rotor shaft, the rotation
  • An outer cylinder including the body, the rotating wing, the fixed wing, and the fixed wing spacer; a female screw formed on the rotor shaft; and screwing means screwed to the female screw.
  • the internal thread and the screwing means are used in a disassembling operation when the turbo molecular pump is broken. At this time, by pulling the screwing means, the rotor shaft, the rotating body, the rotating wing, the fixed wing, the fixed wing spacer and the outer cylinder are separated from the electric component and the base.
  • the rotating blade, the fixed blade, and the fixed blade spacer can be peeled off inside the outer cylinder. If the rotor, fixed wing and fixed wing spacer can be removed, the outer cylinder can be easily removed.
  • the turbo molecular pump can be efficiently disassembled.
  • the female screw and the screwing means are also used in the assembly operation of the turbo molecular pump. At this time, by pulling the screwing means, it is possible to easily move the rotor shaft, the rotating body and the rotor blades. Therefore, even if the turbo molecular pump becomes large, these parts can be easily attached to the base side, and the efficiency of the turbo molecular pump assembly work is improved. Can be achieved.
  • the present invention relates to a turbo-molecular pump, wherein the screwing means is an eyebolt.
  • the rotor shaft and the like can be easily towed only by hooking the eyebolt with a hook such as a crane.
  • the fixing structure between the rotor shaft and the rotating body is provided with a gap between the rotating body side contact surface and the seat member, so that the rotor shaft and the rotating body are fixed.
  • the contact state of the body can be stabilized, and the rotation balance of the rotor shaft and the rotating body can be maintained.
  • the structure for fixing the rotor shaft and the rotating body is provided in a turbo molecular pump having a magnetic bearing, the rotor shaft and the rotating body are accompanied by instability of the contact state between the rotor shaft and the rotating body.
  • the magnetic bearing can be prevented, and oscillation of the magnetic bearing can be prevented.
  • FIG. 1 is an enlarged configuration diagram of a fixed portion between a rotor shaft and a rotating body according to an embodiment of the present invention
  • FIG. 2 is a partial configuration diagram of the rotor shaft.
  • 2A is a longitudinal sectional view of the rotor shaft
  • FIG. 2B is a plan view thereof.
  • the same elements as those in FIGS. 9 and 12 are denoted by the same reference numerals, and description thereof will be omitted.
  • a fastening portion 253 whose diameter is gradually increased is formed above the main shaft portion 151 of the rotor shaft 213 as in the related art.
  • a contact surface 257 on the rotor shaft 213 side which is in contact with the contact surface 187 of the rotating body 103, is formed concentrically on the outer peripheral portion of the upper surface of the fastening portion 253.
  • the contact surface 257 is formed on the upper surface of the fastening portion 253 from the outer peripheral side further than the place where the conventional bolt hole 161 is opened to the outermost peripheral edge of the upper surface, and
  • the upper surface of the portion 253 is formed to have a radial length of, for example, about 5 mm. Further, the contact surface 257 is machined in a plane perpendicular to the axial direction.
  • a portion from the portion where the through shaft portion 255 is formed to the inner periphery of the contact surface 257 is provided with a seat lip portion 259 whose upper surface is more concave than the contact surface 257.
  • the upper surface of the seat sprung portion 259 is machined perpendicular to the axial direction. At this time, the depth of the recessed portion as the seat portion 259 is, for example, about 50 ⁇ m.
  • a hexagonal hole 163 having an upper opening is formed at the upper end of the through shaft portion 255.
  • a female screw 263 is further dug along the axial direction, and the female screw 263 is dug to the same depth as the length of the through shaft portion 255.
  • the positional relationship between the hexagonal hole 163 and the female screw 263 may be such that the female screw 263 is on the upper side and the hexagonal hole 163 is on the lower side.
  • the threaded shaft portion 255 is preferably formed with a female screw 263 as shown in the figure. This is because an unillustrated balancer machine is arranged in the recess 181 at the upper end of the rotor shaft 213, and it becomes impossible to screw a bolt or the like into the through shaft portion 255 in relation to the arrangement of the balancer machine. This is because there is a fear.
  • the turbo molecular pump of the present invention is provided with a fixing part 301 for fixing the rotor shaft 213 to the rotating body 103 during cooling by shrink fitting.
  • the fixed component 301 is used for shrink fitting, and is desirably removed during rotation of the rotor shaft 213 in order to maintain the rotational balance of the rotor shaft 213 and the like.
  • FIG. 3 shows how the fixed part fixes the rotor shaft
  • FIG. 4 shows a configuration diagram of the fixed part.
  • FIG. 4 (a) is a longitudinal sectional view of the fixed part
  • FIG. 4 (b) is a plan view of the fixed part.
  • FIG. 4 (c) shows another example of the fixed part.
  • the fixed component 301 is a heavenly cylindrical member.
  • the fixed part 301 is housed in the concave part 181 of the rotating body 103 with the top part 303 facing upward. Further, in the state of being housed in the concave portion 181, a portion protruding from the center hole 183 of the through shaft portion 255 and an opening portion of the bolt through hole 185 are included inside the cylindrical portion 305 of the fixed component 301. Become.
  • a bolt through hole 311 penetrating through the top 303 is formed at the center of the fixed part 301.
  • the foot portion of the fixing bolt 321 is passed through the bolt through hole 311.
  • the fixing bolt 321 is connected to the female screw 263 formed on the through shaft portion 255 of the rotor shaft 213. They are screwed together.
  • the penetrating shaft portion 255 of the rotor shaft 213 is urged upward in the axial direction, and the cylindrical portion 305 of the fixed component 301 causes the rotating body 103 to rotate.
  • the bottom of the concave portion 181 is urged downward and evenly along the axial direction.
  • a D-shaped bolt insertion hole 313 that penetrates the top part 303 is formed around the bolt through hole 311 of the fixed part 301.
  • the same number of the bolt insertion holes 313 as the bolt holes 161 on the rotor shaft 213 side are formed, and the bolt insertion holes 313 are equally disposed around the bolt through hole 311 at the center.
  • the bolt insertion hole 313 is configured such that the entirety including the head of the bonoleto 191 screwed into the bonolet hole 161 can be inserted. Once inserted, the bolt 191 can be fastened.
  • the shape of the bolt insertion hole 313 is not limited to the D-shape as shown in FIG. 4 (b) as long as the entire bolt 191 can be inserted, and may be a round shape as shown in FIG. 4 (c). good.
  • the through shaft portion 255 of the rotor shaft 213 is fitted into the center hole 183 of the rotating body 103 by shrink fitting as in the related art. After the shrink fitting is cooled, the rotor shaft 213 and the rotating body 103 are fastened by bolts 191.
  • the rotating body 103 and the rotating blades 102 are subjected to a plating process on the entire surface in order to prevent corrosion.
  • a bump of the plating may be formed on the contact surface 187 of the rotating body 103.
  • FIG. 5 (a partially enlarged view of a portion C in FIG. 1) shows the swelling of the plating.
  • the contact surface 187 of the rotating body 103 is attached to the through shaft portion 255 in the same manner as before. Liquid dripping occurs at the nearest corner B1, the corner B2 and the corner B3 of the bolt through hole 185, and a bump is formed.
  • the rotor shaft 213 is brought into contact with the contact surface 187 of the rotating body 103 only at the contact surface 257, and the swelling of the contact is caused by the close contact between the contact surface 257 and the contact surface 187. It has no effect. Therefore, the contact state between the rotor shaft 213 and the rotating body 103 is stabilized.
  • the turbo molecular pump of the present invention has the fixed part 301. Therefore, the rotor shaft 213 can be fixed to the rotating body 103 by using the fixed component 301 at the time of cooling in shrink fitting.
  • the rotor shaft 213 is urged upward along the axial direction by the fixed component 301, and the rotating body 103 is urged downward along the axial direction. Therefore, even when the directions of the through shaft portion 255 and the center hole 183 are distorted, the rotor shaft 213 and the rotating body 103 are cooled while the axial directions of the rotor shaft 213 and the rotating body 103 match. Therefore, the contact surfaces 257 and 187 are in close contact with each other, and the contact state between the rotor shaft 213 and the rotating body 103 is stabilized.
  • the center hole 183 is formed in the rotating body 103, and the force described so as to fix the through shaft portion 255 of the motor shaft 213 through the center hole 183 is not limited to this.
  • the rotor shaft may be fitted and fixed to the rotating body.
  • FIG. 6 shows an enlarged configuration diagram of a fixed portion between the rotor shaft and the rotating body.
  • penetrating shaft portion 255 is not provided on rotor shaft 613. Also, unlike the rotating body 103 of FIG. 1, the rotating body 503 does not have the center hole 183.
  • a recess 581 is formed on the contact surface 187 of the rotating body 503 from the inside of the rotating body 503 upward.
  • the largest diameter portion 653a of the fastening portion 653 of the rotor shaft 613 is fitted into the concave portion 581. Therefore, in the recess 581, the rotor shaft 613 and the rotating body 503 are fixed, and the contact surface 257 of the rotor shaft 613 and the contact surface 187 of the rotating body 503 are brought into contact.
  • the internal thread 263 formed in the through shaft portion 255 of the rotor shaft 213 has been described as being used for fixing the fixed component 301, but is not limited thereto. That is, the female screw 263 can be used for the purpose of increasing the efficiency of the disassembling operation of the turbo molecular pump.
  • turbo-molecular pump shown in FIG.
  • the broken turbo molecular pump is disassembled to investigate the cause of the failure.
  • the outer cylinder 127 is fixed and the bonoleto 128 is removed, and then only the outer cylinder 127 is removed from the turbo-molecular pump main body 100. Further, the fixed-wing spacer 125 After removing the fixed blade 123 in order, the rotating blade 102 and the rotor shaft 113 were removed, and the components were checked.
  • the rotor 102 collides with the fixed wing 123 or the fixed wing spacer 125 during the rotation and breaks.
  • the damaged rotor 102 is intertwined with the fixed blade 123 and the fixed blade spacer 125 in a complicated manner.
  • the rotary wing 102 and the like are sunk into the outer cylinder 127, and the outer cylinder 127 is deformed.
  • the outer cylinder 127 cannot be easily removed. For example, a crowbar was screwed into a deformed portion of the outer cylinder 127, and the outer cylinder 127 was removed while recovering the deformation. . Even after the outer cylinder 127 is removed, the rotor 102 is entangled with the stator 123 and the stator spacer 125 and is damaged. In addition, the rotating body 103, the rotor shaft 113 and the like could not be removed.
  • the eye bolt 401 when performing the disassembling operation, as shown in FIG. 7, the eye bolt 401 is screwed into the female screw 263 of the rotor shaft 213. Then, a hook is hooked on the ivobonole 401 from a crane or the like (not shown).
  • the bolt 128 fixing the outer cylinder 127 is removed in advance. Further, the metal disk 111 provided on the rotor shaft 213 is also removed. Further, the base portion 129 is fixed to the base portion 129 by a device (not shown) so that the base portion 129 side is not lifted together with the rotor shaft 213 and the like.
  • the eyebolt 401 is pulled upward by a crane or the like, and the rotor shaft 213 is lifted.
  • the rotor shaft 213, the rotating body 103, the rotating blade 102, the fixed blade 123, the fixed blade spacer 125, and the outer cylinder 127 These parts are collectively referred to as the upper part 500) and can be lifted as a body. Therefore, only the upper part 500 is separated from the base part 129 side.
  • the rotating blade 102, the fixed blade 123, and the fixed blade spacer 125 are peeled inside the outer cylinder 127. Can be dropped. This operation is easier than the conventional operation of manually peeling the rotor 102 and the like one by one.
  • the outer cylinder 127 can be easily removed.
  • the turbo molecular pump can be disassembled efficiently.
  • the carbon nanotube 401 is used when disassembling the turbo-molecular pump, and is desirably removed during rotation of the rotor shaft 213 in order to maintain the rotational balance of the rotor shaft 213 and the like.
  • the bolt is not limited to the Aybonoleto 401.
  • the balance of the rotor shaft 213 and the like at the time of the rotation operation is maintained, so that it is not necessary to remove the bolt. In this case, when pulling the upper part 500, it is good to grab the head of this bolt with a crane or the like.
  • the rotor shaft 213, the rotating body 103, and the rotating blade 102 Need to be lifted and moved.
  • an eyebolt 401 is screwed into the female screw 263 of the rotor shaft 213, and the rotor shaft 213, the rotating body 103 and the rotating wing 102 are pulled by a crane or the like, so that the rotor shaft 213 and the rotating body can be easily formed.
  • the 103 and the rotary blade 102 can be moved and attached to the base part 129 side. Therefore, by using the female screw 263 and the fiber bonole 401, the efficiency of assembling a large turbo molecular pump can be increased.
  • FIG. 1 An enlarged configuration diagram of a fixed portion between a rotor shaft and a rotating body according to the present invention.
  • FIG. 2 is a partial configuration diagram of a rotor shaft of the present invention.
  • FIG. 3 A state of fixing a rotor shaft by a fixing part of the present invention.
  • FIG. 4 is a configuration diagram of a fixed part according to the present invention.
  • FIG. 5 The appearance of swelling on the contact surface according to the present invention.
  • FIG. 6 is an enlarged configuration diagram of a fixed portion between the rotor shaft and the rotating body according to the present invention (another example)
  • FIG. 10 is an enlarged configuration diagram of a conventional fixed portion between a rotor shaft and a rotating body.
  • FIG. 11 is a partial configuration diagram of a conventional rotating body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

 ロータ軸と回転体との当接面の接触状態を安定させることにより、ロータ軸及び回転体の回転バランスを保ち、発振を防止することのできるロータ軸と回転体との固定構造及び該固定構造を有するターボ分子ポンプを提供する。  締結部253の上面の外周部には、回転体103と接触するロータ軸213側の締結面257が同心状に形成されている。また、この締結面257の内周には、締結面257よりも上面が凹んだ座グリ部259が形成されている。そのため、ロータ軸213が回転体103に対し締結されるとき、この座グリ部259が形成された部分には、座グリ部259の深さ分だけ、回転体103の当接面187との間に隙間265が形成されるようになっている。

Description

明 細 書
ロータ軸と回転体との固定構造及び該固定構造を有するターボ分子ポ:
技術分野
[0001] 本発明はロータ軸と回転体との固定構造及び該固定構造を有するターボ分子ボン プに係わり、特に、ロータ軸と回転体との当接面の接触状態を安定させることにより、 ロータ軸及び回転体の回転バランスを保ち、発振を防止することのできるロータ軸と 回転体との固定構造及び該固定構造を有するターボ分子ポンプに関する。
背景技術
[0002] 近年のエレクトロニクスの発展に伴レ、、メモリや集積回路といった半導体の需要が 急激に増大している。
これらの半導体は、極めて純度の高い半導体基板に不純物をドープして電気的性 質を与えたり、半導体基板上に微細な回路パターンを形成し、これを積層する等して 製造される。
[0003] そして、これらの作業は空気中の塵等による影響を避けるため高真空状態のチャン バ内で行われる必要がある。このチャンバの排気には、一般に真空ポンプが用いら れているが、特に残留ガスが少なぐ保守が容易である等の点から真空ポンプの中の 1つであるターボ分子ポンプが多用されている。また、半導体の製造工程では、さま ざまなプロセスガスを半導体の基板に作用させる工程が数多くあり、ターボ分子ボン プはチャンバ内を真空にするのみならず、これらのプロセスガスをチャンバ内力ら排 気するのにも使用される。
[0004] さらに、ターボ分子ポンプは、電子顕微鏡等の設備において、粉塵等の存在による 電子ビームの屈折等を防止するため、電子顕微鏡等のチャンバ内の環境を高度の 真空状態にするのにも用いられている。
[0005] このようなターボ分子ポンプは、半導体製造装置等のチャンバからガスを吸引排気 するためのターボ分子ポンプ本体 100と、このターボ分子ポンプ本体 100を制御する 制御装置 200とから構成されてレ、る。 [0006] ここで、ターボ分子ポンプの構成図を図 9に示す。
図 9において、ターボ分子ポンプ本体 100は、円筒状の外筒 127の上端に吸気口 101が形成されている。また、外筒 127の内方には、ガスを吸引排気するためのター ビンブレードによる複数の回転翼 102a、 102b, 102c' · ·を周部に放射状かつ多段 に配設した回転体 103が設けられている。この回転体 103は、有天の略円筒状の部 材となっており、その内側から回転体 103の中心にロータ軸 113が貫通固定されて いる。このロータ軸 113と回転体 103との固定部分の構造に関しては、後に詳述する
[0007] さらに、ロータ軸 113は、例えば、いわゆる 5軸制御の磁気軸受により浮上支持かつ 位置制御されるようになっている。このとき、ロータ軸 113の円柱状の主軸部 151は、 高透磁率材 (鉄等)により形成されており、以下に示す上側径方向電磁石 104や下 側径方向電磁石 105の磁力により吸引されるようになっている。
[0008] 上側径方向電磁石 104は、 4個の電磁石が X軸と Y軸とに対をなして配置されてい る。また、この上側径方向電磁石 104に近接かつ対応されて 4個の電磁石からなる上 側径方向センサ 107が備えられている。そして、上側径方向センサ 107はロータ軸 1 13の主軸部 151の径方向変位を検出し、その変位信号を制御装置 200に送るよう に構成されている。
[0009] 制御装置 200では、上側径方向センサ 107が検出した変位信号に基づき、図示し なレ、 PID調節機能を有する補償回路を介して上側径方向電磁石 104を励磁制御し 、ロータ軸 113の主軸部 151の上側の径方向位置を調整するようになっている。なお 、かかる調整は、 X軸方向と Y軸方向とにそれぞれ独立して行われる。
[0010] また、下側径方向電磁石 105及び下側径方向センサ 108が、上側径方向電磁石 1 04及び上側径方向センサ 107と同様に配置され、ロータ軸 113の主軸部 151の下 側の径方向位置を上側の径方向位置と同様に調整している。
[0011] さらに、軸方向電磁石 106A、 106Bは、ロータ軸 113の主軸部 151の下部に設け られた円板状の金属ディスク 111を上下に挟んで配置されている。この金属ディスク 111は、鉄等の高透磁率材で構成されている。
[0012] また、この金属ディスク 111の下方には、ロータ軸 113の軸方向変位を検出するた めの軸方向センサ 109が設けられている。そして、この軸方向センサ 109による軸方 向の変位信号は、制御装置 200に送られるようになつている。
[0013] 制御装置 200では、軸方向センサ 109が検出した変位信号に基づき、軸方向電磁 石 106A、 106Bを励磁制御するようになっている。このとき、軸方向電磁石 106Aは
、磁力により金属ディスク 111を上方に吸引し、軸方向電磁石 106Bは、金属ディスク
111を下方に吸引するようになってレ、る。
このように、磁気軸受は、ロータ軸 113に及ぼす磁力を適当に調節することで、ロー タ軸 113を磁気浮上させ、非接触で保持するようになってレ、る。
[0014] さらに、モータ 121は、その回転子側にロータ軸 113の主軸部 151を取り囲むように 周状に配置された複数の永久磁石の磁極を備えている。そして、これらの永久磁石 の磁極には、モータ 121の固定子側である電磁石から、ロータ軸 113を回転させるト ルク成分が加えられるようになっており、回転体 103が回転駆動されるようになってい る。
[0015] また、モータ 121には、図示しない回転数センサ及びモータ温度センサが取り付け られており、これらの回転数センサ及びモータ温度センサの検出信号を受けて、制御 装置 200においてロータ軸 113の回転が制御されている。
[0016] 一方、このようなロータ軸 113が固定された回転体 103には、上述したように回転翼 102a, 102b, 102c ' · ·が多段に配設されている。そして、この回転翼 102a、 102b 、 102c ' · ·とわずかの空隙を隔てて複数枚の固定翼 123a、 123b, 123c ' · ·が配設 されている。
[0017] また、回転翼 102a、 102b, 102c ' · ·は、それぞれ排気ガスの分子を衝突により下 方向に移送するため、ロータ軸 113の軸方向に垂直な平面から所定の角度だけ傾 斜して形成されている。さらに、固定翼 123も、同様にロータ軸 113の軸方向に垂直 な平面から所定の角度だけ傾斜して形成され、かつ外筒 127の内方に向けて回転 翼 102の段と互レ、違いに配設されてレ、る。
[0018] そして、固定翼 123の一端は、複数の段積みされた固定翼スぺーサ 125a、 125b, 125c…の間に嵌揷された状態で支持されている。この固定翼スぺーサ 125はリン グ状の部材であり、例えばアルミニウム、鉄、ステンレス、銅等の金属、又はこれらの 金属を成分として含む合金等の金属によって構成されている。
[0019] さらに、固定翼スぺーサ 125の外周には、わずかの空隙を隔てて外筒 127が設けら れている。この外筒 127は、その底部に配設されたベース部 129に対しボルト 128に より固定されている。また、固定翼スぺーサ 125の下部とベース部 129の間にはネジ 付きスぺーサ 131が配設されている。そして、ベース部 129中のネジ付きスぺーサ 13 1の下部には排気口 133が形成され、外部に連通されている。
[0020] ネジ付きスぺーサ 131は、アルミニウム、銅、ステンレス、鉄、又はこれらの金属を成 分とする合金等の金属によって構成された円筒状の部材であり、その内周面に螺旋 状のネジ溝 131aが複数条刻設されている。このネジ溝 131aの螺旋の方向は、回転 体 103の回転方向に排気ガスの分子が移動したときに、この分子が排気口 133の方 へ移送される方向となっている。
[0021] さらに、回転体 103において、羽根状の回転翼 102a、 102b, 102c ' · ·に続く最下 部には、ロータ軸 113の軸方向に対し円筒状に形成された回転翼 102dが垂下形成 されている。この回転翼 102dは、ネジ付きスぺーサ 131の内周面に向かって張り出 して形成されており、この張り出した部分はネジ付きスぺーサ 131の内周面と所定の 隙間を隔てて近接されている。
[0022] また、ベース部 129は、ターボ分子ポンプ本体 100の基底部を構成する円盤状の 部材であり、一般には鉄、アルミニウム、ステンレス等の金属によって構成されている 。ベース部 129は、ターボ分子ポンプ本体 100を物理的に保持すると共に、熱の伝 導路の機能も兼ね備えているので、鉄、アルミニウムや銅等の剛性があり、熱伝導率 も高い金属が使用されるのが望ましい。
[0023] 力、かる構成において、ロータ軸 113がモータ 121により駆動されて回転体 103及び 回転翼 102と共に回転すると、回転翼 102と固定翼 123の作用により、吸気口 101を 通じてチャンバからの排気ガスが吸気される。
[0024] そして、吸気口 101から吸気された排気ガスは、回転翼 102と固定翼 123との間を 通り、ベース部 129へ移送される。このとき、排気ガスが回転翼 102に接触する際に 生ずる摩擦熱や、モータ 121で発生した熱の伝導等により、回転翼 102の温度は上 昇するが、この熱は輻射又は排気ガスの気体分子等による伝導により固定翼 123側 に伝達される。さらに、固定翼スぺーサ 125は、外周部で互いに接合しており、固定 翼 123が回転翼 102から受け取った熱や排気ガスが固定翼 123に接触する際に生 ずる摩擦熱等を外部へと伝達する。
[0025] また、ベース部 129に移送されてきた排気ガスは、ネジ付きスぺーサ 131のネジ溝
131aに案内されつつ排気口 133へと送られる。
なお、上記では、ネジ付きスぺーサ 131は回転翼 102dの外周に配設し、ネジ付き スぺーサ 131の内周面にネジ溝 131aが刻設されているとして説明した。しかしながら 、これとは逆に回転翼 102dの外周面にネジ溝が刻設され、その周囲に円筒状の内 周面を有するスぺーサが配置される場合もある。
[0026] また、吸気口 101から吸引されたガス力 モータ 121、下側径方向電磁石 105、下 側径方向センサ 108、上側径方向電磁石 104、上側径方向センサ 107等で構成さ れる電装部側に侵入することのなレ、よう、電装部の周囲はステータコラム 122で覆わ れ、この電装部内はパージガスにて所定圧に保たれる。
[0027] このため、ベース部 129には図示しない配管が配設され、この配管を通じてパージ ガスが導入される。この導入されたパージガスは、保護ベアリング 120とロータ軸 113 間、モータ 121のロータとステータ間、ステータコラム 122と回転翼 102間の隙間を通 じて排気口 133へ送出される。
[0028] ところで、プロセスガスは、反応性を高めるため高温の状態でチャンバに導入される こと力ある。そして、これらのプロセスガスは、排気される際に冷却されてある温度にな ると固体となり排気系に生成物を析出する場合がある。そして、この種のプロセスガス 力 Sターボ分子ポンプ本体 100内で低温となって固体状となり、ターボ分子ポンプ本体 100内部に付着して堆積する。
[0029] 例えば、 A1エッチング装置にプロセスガスとして SiClが使用された場合、低真空(
4
760 [torr]— 10— 2[torr] )かつ低温(約 20 [°C] )のとき、固体生成物(例えば A1C1 )
3 が析出し、ターボ分子ポンプ本体 100内部に付着堆積することが蒸気圧曲線からわ かる。
[0030] そして、ターボ分子ポンプ本体 100内部にプロセスガスの析出物が堆積すると、こ の堆積物がポンプ流路を狭め、ターボ分子ポンプ本体 100の性能を低下させる原因 となる。例えば、前述した生成物は排気口付近の温度が低い部分、特に回転翼 102 及びネジ付きスぺーサ 131付近で凝固、付着しやすい状況にあった。
[0031] この問題を解決するために、従来はベース部 129等の外周に図示しないヒータや 環状の水冷管 149を卷着させ、かつ例えばベース部 129に図示しない温度センサ( 例えばサーミスタ)を坦め込み、この温度センサの信号に基づきベース部 129の温度 を一定の高い温度 (設定温度)に保つようにヒータの加熱や水冷管 149による冷却の 制御(以下、 TMSという。 TMS ;Temperature Management System)が行わ れている。
[0032] ここで、従来のロータ軸 113と回転体 103との固定部分の構造について説明する。
ロータ軸と回転体との固定部分の拡大構成図を図 10に、回転体の部分構成図を図 11に、ロータ軸の部分構成図を図 12に示す。なお、図 12 (a)はロータ軸の縦断面図 であり、図 12 (b)はその平面図である。
[0033] 図 10—図 12において、ロータ軸 113のうち、上述した上側径方向電磁石 104等に より径方向位置が調整される主軸部 151の上方には、その径が主軸部 151の 2倍程 度まで段階的に拡径された締結部 153が形成されている。そして、この締結部 153 の上面の全体には、回転体 103と接触するロータ軸 113側の当接面 157が形成され ており、この当接面 157は主軸部 151の軸方向に対して垂直にかつ平面状に加工さ れている。
[0034] また、締結部 153には、当接面 157側が開口されたボルト穴 161が軸方向に沿つ て掘られており、このボルト穴 161はロータ軸 113の軸心力ら主軸部 151の径とほぼ 同じ長さだけ離れた位置に形成されている。さらに、このボルト穴 161は、締結部 15 3に例えば 6か所形成されており、軸心の周りに等分配置されている。なお、ボルト穴 161の数は 6個に限られるものではなぐ例えば 8個等の場合もある。
[0035] さらに、ロータ軸 113の締結部 153の上方には、主軸部 151よりも小径であり、主軸 部 151と軸心が一致した貫通軸部 155が延長形成されている。また、この貫通軸部 1 55の上端部には、上方が開口された六角穴 163が軸方向に沿って掘られており、こ の六角穴 163は、貫通軸部 155の長さの半分程度の深さまで掘られている。
[0036] これに対し、回転体 103の上端の中央部には、下方に向けて凹んだ断面が丸形の 凹部 181が形成されている。また、この凹部 181の中心には、軸方向に沿って回転 体 103の内側と外側との間を貫通する中心穴 183が形成されている。
[0037] また、この凹部 181の下方側で、回転体 103の内側の面には、ロータ軸 113の当接 面 157と接触する回転体 103側の当接面 187が形成されており、この当接面 187も 軸方向に対して垂直にかつ平面状に加工されて、回転体 103側の当接面 187と合 わせられるようになってレ、る。
[0038] さらに、この凹部 181には、中心穴 183と隣接して軸方向に沿って回転体 103の内 側と外側との間を貫通するボルト通し穴 185が形成されている。このボルト通し穴 18 5は、ロータ軸 113側のボルト穴 161と同じ数だけ形成されており、ロータ軸 113の貫 通軸部 155が回転体 103の中心穴 183に貫通された状態で、ボルト穴 161と連絡さ れるように配置されている。
[0039] さらに、このボルト通し穴 185とボルト穴 161とが連絡された状態では、ボルト通し穴 185にボノレト 191の足咅 B力 S通されるようになっており、さらにこのボノレト 191は、ロータ 車由 113但 IJのボノレ卜穴 161と虫累合されるようになってレヽる。なお、ボノレ卜 191ち、ボノレ卜穴 161と同じ数だけ用意されている。
[0040] 力かる構成において、ロータ軸 113と回転体 103とを固定するに際しては、まず、口 ータ軸 113の貫通軸部 155を回転体 103の中心穴 183に挿入する。このとき、貫通 軸部 155の中心穴 183への挿入は、例えば焼きばめにより行われる。
[0041] そのため、常温では、ロータ軸 113の貫通軸部 155の外径力 回転体 103の中心 穴 183の内径よりも数十 μ ΐη程度大きくされる。そして、貫通軸部 155の挿入の前に 、回転体 103だけが 100°C程度にまで加熱され、回転体 103の中心穴 183の内径が 、ロータ軸 113の貫通軸部 155の外径よりも数百 z m程度大きくされる。その後、この 状態で貫通軸部 155を中心穴 183に揷入し、そのまま一定時間、放置冷却する。こ れにより、回転体 103とロータ軸 113とが常温に戻ると、常温時の径の違いに伴い貫 通軸部 155が中心穴 183に対し堅固に固定される。
[0042] また、この焼きばめによる回転体 103とロータ軸 113との冷却の後には、ボノレト 191 力 Sロータ軸 113側のボルト穴 161に螺合される。このとき、ボノレト 191の締め付けに際 しては、ロータ軸 113の六角穴 163に図示しない六角レンチが嵌合され、回転体 10 3及びロータ軸 113の回転が阻止される。これにより、回転体 103とロータ軸 113と力 S 、簡単に締結される。
発明の開示
発明が解決しょうとする課題
[0043] ところで、このようなターボ分子ポンプでは腐食性のガスを吸引する場合がある。そ のため、回転体 103及び回転翼 102には、その防食のために、全面にメツキ処理が 施される。そして、このメツキ処理は、例えば無電解ニッケルメツキが採用される。
[0044] このとき、回転体 103及び回転翼 102にメツキ処理を施すと、メツキの乾燥において 部材の角部等に液垂れを生じ、メツキの盛り上がりが形成される場合がある。例えば 、ロータ軸 113と回転体 103との当接面 157、 187におけるメツキの盛り上力 Sりの様子 を図 13 (図 10中 A部の部分拡大図である)に示すと、回転体 103の当接面 187にお いて、ロータ軸 113の貫通軸部 155に最も近い部分の角部 B1や、ボルト通し穴 185 の軸心寄りの角部 B2や、その逆側の角部 B3に液垂れを生じ、メツキの盛り上がりが 形成されている。
[0045] このとき、メツキの盛り上がりは、通常その大きさが 30 μ m程度と小さいが、これが図 13のようにロータ軸 113と回転体 103との当接面 157、 187に生じると、当接面 157 と当接面 187との間が密着せず、ロータ軸 113と回転体 103との接触状態が不安定 になるおそれがあった。そのため、ロータ軸 113及び回転体 103の回転中の振れが 大きくなつて、回転バランスを保つことができず、ターボ分子ポンプ本体 100が振動 するおそれがあった。
[0046] また、メツキの盛り上がり量により、ロータ軸 113と回転体 103との接触状態が変化 するため、ロータ軸 113及び回転体 103の固有振動数が大きく変動するおそれがあ つた。そして、通常、磁気軸受(上述した上側径方向電磁石 104、上側径方向センサ 107、下側径方向電磁石 105、下側径方向センサ 108、軸方向電磁石 106A、 106 B、軸方向センサ 109、制御装置 200等で構成される)にはフィードバックループが構 成され、このフィードバックループには安定のためのフィルタが設けられる力 ロータ 軸 113及び回転体 103の固有振動数が変動するとフィルタのカットオフ周波数を超 えてしまい、磁気軸受が発振するおそれがあった。 [0047] 加えて、ロータ軸 113の貫通軸部 155は、回転体 103の中心穴 183に焼きばめに より挿入されて固定される力 貫通軸部 155や中心穴 183の向きが軸方向に対し歪 んでいると、焼きばめにおける冷却の途中でロータ軸 113や回転体 103が遊んでし まレ、、冷却後にロータ軸 113と回転体 103との軸方向がずれるおそれがあった。その ため、ボルト 191の締結によっても、当接面 157と当接面 187とが密着せず、ロータ 軸 113と回転体 103との接触状態が不安定になるおそれがあった。
[0048] また、この点に関し、焼きばめにおける冷却の途中でボルト 191の締結を行うことも 考えられる力 6か所あるボルト 191の締結力を均一にするのは困難であるため、この 締結力の不均一さにより、中心穴 183の軸方向と貫通軸部 155の軸方向とがずれる おそれがあった。そのため、ロータ軸 113と回転体 103との接触状態が不安定になる おそれがあった。
[0049] 本発明はこのような従来の課題に鑑みてなされたもので、ロータ軸と回転体との当 接面の接触状態を安定させることにより、ロータ軸及び回転体の回転バランスを保ち 、発振を防止することのできるロータ軸と回転体との固定構造及び該固定構造を有 するターボ分子ポンプを提供することを目的とする。
課題を解決するための手段
[0050] このため本発明は、ロータ軸と回転体との固定構造に関し、回転体と、該回転体に 固定されるロータ軸と、該ロータ軸と前記回転体との締結を行うためのボルト穴と、該 ボルト穴を用いて前記ロータ軸と前記回転体との締結を行う締結手段と、前記回転 体の側で軸方向に対し垂直に形成された回転体側当接面と、前記ロータ軸の側で 前記回転体側当接面と当接されたロータ軸側当接面と、該ロータ軸側当接面より凹 んだ座ダリ部とを備え、前記締結により、前記回転体側当接面と前記座ダリ部との間 には隙間が形成され、該隙間に向けて前記ボルト穴が開口されることを特徴とする。
[0051] 回転体には、その防食のために、全面にメツキ処理が施される場合がある。そして、 このメツキの乾燥では、ボルト穴の角部等において液垂れを生じ、メツキの盛り上がり が形成される場合がある。
そこで、回転体側当接面と座ダリ部との間に隙間を形成する。そして、この隙間に 向けてボルト穴が開口される。 [0052] 従って、ボルト穴の角部等にメツキの盛り上がりが形成されても、この盛り上がりは隙 間に吸収される。そのため、ロータ軸は、回転体の回転体側当接面に対し、そのロー タ軸側当接面においてのみ接触され、メツキの盛り上がりが回転体側当接面とロータ 軸側当接面との密着に影響を与えることはない。
このことにより、ロータ軸及び回転体の接触状態が安定し、ロータ軸及び回転体の 回転バランスを保つことができる。
[0053] また、本発明は、ロータ軸と回転体との固定構造に関し、前記回転体は、該回転体 の中心に形成された中心穴を備え、前記ロータ軸は、前記中心穴に貫通された貫通 軸部と、該貫通軸部より大径である主軸部とを備えて構成した。
[0054] このことにより、ロータ軸を回転体に対し、堅固に固定させることができる。
[0055] さらに、本発明は、ロータ軸と回転体との固定構造に関し、前記ロータ軸に形成さ れたメネジを備えたことを特徴とする。
[0056] さらに、本発明は、ロータ軸と回転体との固定構造に関し、前記メネジに螺合される ことで、前記ロータ軸を軸方向に付勢し、かつ該付勢方向と逆向きに前記回転体を 付勢する固定手段を備えたことを特徴とする。
[0057] 回転体の中心穴への、ロータ軸の貫通軸部の貫通は、焼きばめにより行われる場 合がある。そして、これらの中心穴や貫通軸部の向きが軸方向に対し歪んでいると、 焼きばめの冷却の途中でロータ軸や回転体が遊ぶおそれがある。また、焼きばめに おける冷却の途中でロータ軸と回転体との締結を行うと、締結力の不均一さにより、 中心穴の軸方向と貫通軸部の軸方向とがずれるおそれがある。
[0058] これに対し、ロータ軸にはメネジが形成され、このメネジに固定手段が螺合される。
従って、この固定手段により、ロータ軸及び回転体は、軸方向に沿ってそれぞれ逆向 きに付勢される。そのため、ロータ軸と回転体との軸方向が一致した状態でロータ軸 及び回転体の冷却等が行われる。
このことにより、回転体側当接面とロータ軸側当接面とが密着されるので、ロータ軸 及び回転体の接触状態が安定し、ロータ軸及び回転体の回転バランスを保つことが できる。
[0059] さらに、本発明は、ロータ軸と回転体との固定構造を有するターボ分子ポンプであ つて、前記ロータ軸を磁気浮上させ、径方向及び/又は軸方向に位置調整する磁 気軸受を有し、前記回転体には回転翼が形成され、前記ターボ分子ポンプは、被対 象設備に設置され、該被対象設備から所定のガスを吸引することを特徴とする。
[0060] 上述した固定構造を有するロータ軸と回転体とは、磁気軸受を有するターボ分子ポ ンプに搭載される。
そのため、ロータ軸及び回転体の接触状態の不安定さに伴う、ロータ軸及び回転 体の固有振動数の変動が起こらないので、磁気軸受の発振を防止することができる
[0061] さらに、本発明は、ターボ分子ポンプに関し、少なくともモータを含む電装部と、該 電装部を支持するベース部と、前記モータにより回転されるロータ軸と、該ロータ軸が 固定された回転体と、該回転体に形成された回転翼と、該回転翼と交互に配設され た固定翼と、該固定翼を固定するための固定翼スぺーサと、少なくとも前記ロータ軸 、前記回転体、前記回転翼、前記固定翼及び前記固定翼スぺーサを内包する外筒 と、前記ロータ軸に形成されたメネジと、該メネジに螺合された螺合手段とを備え、該 螺合手段を牽引することで、少なくとも前記ロータ軸、前記回転体及び前記回転翼を 、前記電装部及び前記ベース部に対し分離可能であることを特徴とする。
[0062] メネジ及び螺合手段は、ターボ分子ポンプが破壊したときの分解作業で用いられる 。このとき、螺合手段を牽引することにより、ロータ軸、回転体、回転翼、固定翼、固定 翼スぺーサ及び外筒が、電装部及びベース部から分離される。
そのため、電装部及びベース部から分離した部品からロータ軸及び回転体を取り 外すことで、回転翼、固定翼及び固定翼スぺーサを、外筒の内方に剥ぎ落とすことが できる。また、回転翼、固定翼及び固定翼スぺーサを取り外すことができれば、外筒 を簡単に取り外すこともできる。
このことにより、ターボ分子ポンプの分解作業を効率良く行うことができる。
[0063] また、このメネジ及び螺合手段は、ターボ分子ポンプの組立作業でも用いられる。こ のとき、螺合手段を牽引することで、ロータ軸、回転体及び回転翼を簡単に移動させ ること力 Sできる。そのため、ターボ分子ポンプが大型化した場合でも、これらの部品を 簡単にベース部側に取り付けることができ、ターボ分子ポンプの組立作業の効率化 を図ることができる。
[0064] さらに、本発明は、ターボ分子ポンプに関し、前記螺合手段は、アイボルトであるこ とを特徴とする。
[0065] このことにより、アイボルトにクレーン等のフックを掛けるだけで、ロータ軸等を簡単 に牽引することができる。
発明の効果
[0066] 以上説明したように本発明によれば、ロータ軸と回転体との固定構造に関し、回転 体側当接面と座ダリ部との間に隙間を備えて構成したので、ロータ軸及び回転体の 接触状態を安定させることができ、ロータ軸及び回転体の回転バランスを保つことが できる。
[0067] また、このロータ軸及び回転体の固定構造を、磁気軸受を有するターボ分子ポンプ に備えて構成したので、ロータ軸及び回転体の接触状態の不安定さに伴う、ロータ 軸及び回転体の固有振動数の変動を防ぐことができ、磁気軸受の発振を防止するこ とができる。
発明を実施するための最良の形態
[0068] 以下、本発明の実施形態について説明する。
本発明の実施形態であるロータ軸と回転体との固定部分の拡大構成図を図 1に、 ロータ軸の部分構成図を図 2に示す。なお、図 2 (a)はロータ軸の縦断面図であり、図 2 (b)はその平面図である。また、図 9一図 12と同一要素のものについては同一符号 を付して説明は省略する。
[0069] 図 1、図 2において、ロータ軸 213の主軸部 151の上方には、従来と同様に、その 径が段階的に拡径された締結部 253が形成されている。
そして、この締結部 253の上面の外周部には、回転体 103の当接面 187と接触す るロータ軸 213側の当接面 257が同心状に形成されている。具体的には、当接面 25 7は、締結部 253の上面において従来のボルト穴 161が開口された場所よりもさらに 外周側から、上面の最外周縁までの部分に形成されており、締結部 253の上面の径 方向長さで例えば 5mm程度形成されている。また、この当接面 257は軸方向に対し 垂直にかつ平面状に加工されている。 [0070] さらに、締結部 253の上面において、貫通軸部 255が形成された部分から、当接面 257の内周までの部分には、当接面 257よりも上面が凹んだ座ダリ部 259が形成さ れている。また、この座ダリ部 259の上面も軸方向に対し垂直に加工されている。この とき、座ダリ部 259として凹ませる深さは、例えば 50 x m程度である。
[0071] さらに、貫通軸部 255の上端部には、上方が開口された六角穴 163が形成されて いる。加えて、この六角穴 163の底には、さらにメネジ 263が軸方向に沿って掘られ ており、このメネジ 263は、貫通軸部 255の長さと同程度の深さまで掘られている。
[0072] なお、この六角穴 163とメネジ 263の位置関係は、これとは逆にメネジ 263が上方 側、六角穴 163が下方側でも良い。また、貫通軸部 255に形成されるのは、図示する ようにメネジ 263が好ましレ、。これは、ロータ軸 213の上端の凹部 181には、通常図 示しないバランサーマシーンが配置されるためであり、このバランサーマシーンの配 置との関係で貫通軸部 255にボルト等を螺合できなくなるおそれがあるからである。
[0073] 力 Qえて、本発明のターボ分子ポンプには、焼きばめによる冷却の途中でロータ軸 2 13を回転体 103に固定するための固定部品 301が設けられている。なお、固定部品 301は焼きばめする際に用いられ、ロータ軸 213の回転動作時にはロータ軸 213等 の回転バランスを保っために取り外されることが望ましい。
[0074] この固定部品によるロータ軸の固定の様子を図 3に、固定部品の構成図を図 4に示 す。なお、図 4 (a)は固定部品の縦断面図であり、図 4 (b)はこの固定部品の平面図 である。また、図 4 (c)は固定部品の別例である。
[0075] 図 3、図 4において、固定部品 301は、有天の円筒状の部材となっている。そして、 固定部品 301は、その天部 303を上方に向けて、回転体 103の凹部 181に収納され るようになっている。また、凹部 181に収納された状態で、固定部品 301の円筒部 30 5の内側には、貫通軸部 255の中心穴 183から突出した部分や、ボルト通し穴 185 の開口部分が内包されるようになってレ、る。
[0076] このとき、固定部品 301の中央部には、天部 303を貫通するボルト通し穴 311が形 成されている。そして、このボルト通し穴 311には、固定用ボルト 321の足部が通され るようになっており、さらにこの固定用ボルト 321は、ロータ軸 213の貫通軸部 255に 形成されたメネジ 263と螺合されるようになつている。 [0077] その結果、この固定用ボルト 321の締め付けにより、ロータ軸 213の貫通軸部 255 は、軸方向に沿って上方に付勢され、かつ固定部品 301の円筒部 305により、回転 体 103の凹部 181の底部は、軸方向に沿って下方にかつ均等に付勢されるようにな つている。
[0078] さらに、固定部品 301のボルト通し穴 311の周りには、天部 303を貫通する D字形 のボルト揷入穴 313が形成されている。このボルト揷入穴 313は、ロータ軸 213側の ボルト穴 161と同じ数だけ形成されており、中央部のボルト通し穴 311の周りに等分 配置されている。
[0079] そして、このボルト揷入穴 313には、ボノレト穴 161に螺合されるボノレト 191の頭部を 含めた全体が揷入できるようになつており、ボルト揷入穴 313にドライバ等を揷入して ボルト 191の締結が行えるようになつている。なお、ボルト揷入穴 313の形状は、ボル ト 191全体が揷入可能であれば図 4 (b)のように D字形である場合に限られず、図 4 ( c)のように丸形でも良い。
[0080] 力かる構成において、ロータ軸 213と回転体 103とを固定するに際しては、従来と 同様に、ロータ軸 213の貫通軸部 255が、回転体 103の中心穴 183に焼きばめによ り挿入され、この焼きばめの冷却の後にロータ軸 213と回転体 103とがボルト 191に より締結される。
[0081] このとき、本発明のターボ分子ポンプにおいても、回転体 103及び回転翼 102には 、その防食のために、全面にメツキ処理が施される。そして、このメツキの乾燥におい ても、回転体 103の当接面 187には、メツキの盛り上がりが形成される場合がある。
[0082] このメツキの盛り上がりの様子を図 5 (図 1中 C部の部分拡大図である)に示すと、従 来と同様に、回転体 103の当接面 187において、貫通軸部 255に最も近い部分の角 部 B1や、ボルト通し穴 185の角部 B2、角部 B3に液垂れを生じ、メツキの盛り上がり が形成されている。
[0083] しかしながら、本発明のロータ軸 213では、その締結部 253の上面に、当接面 257 よりも上面が凹んだ座ダリ部 259が形成されている。そのため、座ダリ部 259が形成さ れた部分には、この深さ分だけ回転体 103の当接面 187との間に隙間 265が形成さ れる。 [0084] このとき、座ダリ部 259は、貫通軸部 255から、ボルト穴 161が開口された場所よりも さらに外周側まで形成されている(すなわち、ボルト穴 161が隙間 265に向けて開口 されている)ため、回転体 103の当接面 187の角部 B1— B3にメツキの盛り上がりが 形成された場合でも、この盛り上がりは全て隙間 265に吸収される。
[0085] そのため、ロータ軸 213は、回転体 103の当接面 187に対し、その当接面 257にお いてのみ接触され、メツキの盛り上がりが当接面 257と当接面 187との密着に影響を 与えることはない。従って、ロータ軸 213及び回転体 103の接触状態は安定する。
[0086] 加えて、本発明においても、貫通軸部 255や中心穴 183の向きが軸方向に対し歪 んでいると、焼きばめの冷却の途中でロータ軸 213や回転体 103が遊ぶおそれがあ る。
[0087] し力 ながら、本発明のターボ分子ポンプは、固定部品 301を有している。そのた め、焼きばめにおける冷却の際に固定部品 301を用いることで、ロータ軸 213を回転 体 103に対し固定することができる。
[0088] このとき、固定部品 301により、ロータ軸 213は軸方向に沿って上方に付勢され、回 転体 103は軸方向に沿って下方に付勢される。そのため、貫通軸部 255や中心穴 1 83の向きが歪んでいた場合でも、ロータ軸 213と回転体 103との軸方向が一致した 状態でロータ軸 213と回転体 103とが冷却される。従って、当接面 257と当接面 187 とは密着され、ロータ軸 213及び回転体 103の接触状態は安定する。
[0089] また、製造工程の短縮等のために、焼きばめにおける冷却の途中でボルト 191の 締結を行うことも考えられる力 この場合にも、固定部品 301を用いてロータ軸 213を 回転体 103に対し固定することができる。
[0090] このとき、固定部品 301の天部 303にはボルト揷入穴 313が形成されているため、 この固定部品 301でロータ軸 213を固定した状態で、ボルト 191の締結を行うことが 可能である。また、この場合には、 6か所あるボルト 191の締結力の不均一さが問題と なるが、ロータ軸 213が回転体 103に固定されているため、締結力の不均一さによる 影響は小さくなる。従って、ロータ軸 213と回転体 103との接触状態は安定する。
[0091] 以上により、ロータ軸 213と回転体 103との接触状態を安定させることができるので 、ロータ軸 213及び回転体 103の回転バランスを保つことができる。そのため、ターボ 分子ポンプの振動を防ぐことができる。また、接触状態の不安定さに伴うロータ軸 21 3及び回転体 103の固有振動数の変動も起こらないので、磁気軸受の発振を防止す ること力 Sできる。
[0092] なお、本発明においては、回転体 103に中心穴 183を形成し、この中心穴 183に口 ータ軸 213の貫通軸部 255を貫通固定するとして説明してきた力 これに限られない
。例えば、ロータ軸を回転体に嵌合させて固定しても良い。
このロータ軸と回転体との固定部分の拡大構成図を図 6に示す。
[0093] 図 6において、ロータ軸 613には、図 1のロータ軸 213と異なり、貫通軸部 255が設 けられていない。また、回転体 503にも、図 1の回転体 103と異なり、中心穴 183が形 成されていない。
一方、ロータ軸 613の締結部 653の上面で、当接面 257の内周側には、図 1のロー タ軸 213と同様に、座ダリ部 659が形成されている。また、回転体 503の当接面 187 には、回転体 503の内側から上方に向けて凹部 581が形成されている。
[0094] そして、この凹部 581には、ロータ軸 613の締結部 653の最大径部 653aが嵌合さ れている。そのため、凹部 581において、ロータ軸 613と回転体 503とは固定され、口 ータ軸 613の当接面 257と回転体 503の当接面 187とが接触されるようになっている
[0095] 力かる構成において、回転体 503の当接面 187にメツキの盛り上がりが形成された 場合でも、ロータ軸 613には座ダリ部 659が形成されているため、回転体 503とロー タ軸 613との間には隙間 665が形成される。
従って、ロータ軸 613及び回転体 503の接触状態を安定させることができる。このこ とにより、設計容易なロータ軸 613と回転体 503との固定構造を適宜選択可能となる
[0096] また、本発明においては、ロータ軸 213の貫通軸部 255に形成されたメネジ 263は 、固定部品 301を固定するために用いられるとして説明してきたが、これに限られな レ、。すなわち、このメネジ 263をターボ分子ポンプの分解作業の効率化を図る目的で 使用することが可能である。
[0097] 例えば、図 9に示したターボ分子ポンプにおいて、ブレード破損(回転翼 102が回 転中に固定翼 123や固定翼スぺーサ 125と衝突し、複雑に絡み合って破損する状 況をいう)を生じ、ターボ分子ポンプが破壊したとする。この場合、破壊したターボ分 子ポンプに対しては、その故障原因を調査するためにターボ分子ポンプの分解が行 われる。
[0098] そこで、従来のターボ分子ポンプでは、まず外筒 127を固定してレヽるボノレト 128を 取り外した後、外筒 127のみをターボ分子ポンプ本体 100から取り外し、さらに、固定 翼スぺーサ 125、固定翼 123を順に取り外した後、回転翼 102及びロータ軸 113を 取り外して、各部品について調查を行っていた。
[0099] し力、しながら、ターボ分子ポンプがブレード破損を起こして破壊した場合、回転翼 1 02は、その回転中に固定翼 123や固定翼スぺーサ 125と衝突し、破損するため、破 損後の回転翼 102は、固定翼 123や固定翼スぺーサ 125と複雑に絡み合つている。 また、固定翼 123や固定翼スぺーサ 125との衝突により、回転翼 102等が外筒 127 にめり込んでしまい、外筒 127が変形している。
[0100] そのため、実際は、外筒 127を容易に取り外すことはできず、例えば外筒 127の変 形部分等にバールをねじ込み、この変形を戻しながら、この外筒 127の取り外しを行 つていた。また、外筒 127を取り外した後も、回転翼 102が、固定翼 123や固定翼ス ぺーサ 125と絡み合って破損しているため、回転翼 102等を手作業で一枚ずつ剥が さないと、回転体 103やロータ軸 113等を取り外すことができなかった。
[0101] そこで、本発明のターボ分子ポンプでは、その分解作業を行うに際し、図 7に示す ように、そのロータ軸 213のメネジ 263にアイボルト 401が螺合される。そして、このァ イボノレト 401には、図示しないクレーン等からフックが掛けられる。
[0102] このとき、外筒 127を固定しているボルト 128は予め取り外される。また、ロータ軸 2 13に設けられた金属ディスク 111も取り外される。さらに、ベース部 129には、ベース 部 129側がロータ軸 213等とともに持ち上がらないように、図示しない器具により固定 される。
その後、アイボルト 401がクレーン等により上方に牽引され、ロータ軸 213が持ち上 げられる。
[0103] このとき、ロータ軸 213は、回転体 103に固定されているので、回転体 103は、ロー タ軸 213とともに持ち上げられる。また、回転翼 102は、固定翼 123や固定翼スぺー サ 125と絡み合って破損しているため、回転翼 102、固定翼 123、固定翼スぺーサ 1 25も、ロータ軸 213とともに持ち上げられる。さらに、回転翼 102等は、外筒 127にめ り込んでいるため、外筒 127も、ロータ軸 213とともに持ち上げられる。
[0104] そのため、アイボルト 401をクレーン等により牽引すると、図 8に示すように、ロータ 軸 213、回転体 103、回転翼 102、固定翼 123、固定翼スぺーサ 125、外筒 127 (こ れらの部品をまとめて上部部品 500という)がー体となって持ち上げられる。そのため 、上部部品 500だけがベース部 129側から分離される。
[0105] そして、分離された上部部品 500から、ロータ軸 213及び回転体 103を取り外すこ とにより、回転翼 102、固定翼 123及び固定翼スぺーサ 125を、外筒 127の内方に 剥ぎ落とすことができる。この作業は、従来行っていた回転翼 102等を手作業で一枚 ずつ剥がす作業よりも容易である。また、回転翼 102、固定翼 123及び固定翼スぺ ーサ 125を取り外すことができれば、簡単に外筒 127を取り外すこともできる。
従って、メネジ 263とアイボルト 401を用いることで、ターボ分子ポンプの分解作業 を効率良く行うことができる。
[0106] なお、ァイボノレト 401は、ターボ分子ポンプを分解する際に用いられ、ロータ軸 213 の回転動作時にはロータ軸 213等の回転バランスを保っために取り外されることが望 ましレ、。ただし、ァイボノレト 401に限らず、例えば頭部が球状のボルトを用いれば、回 転動作時のロータ軸 213等のバランスが保たれるので、ボルトを外さなくても良レ、。こ の場合に上部部品 500を牽引するときは、クレーン等でこのボルトの頭部を掴めば良 レ、。
[0107] 加えて、このメネジ 263とァイボノレト 401とは、ターボ分子ポンプの組立作業で用い ることも可肯である。
例えば、ターボ分子ポンプの組立作業で、すでに組み立てられたロータ軸 213、回 転体 103及び回転翼 102をベース部 129側に取り付ける際には、これらロータ軸 21 3、回転体 103及び回転翼 102を持ち上げて、移動させる必要がある。
[0108] し力 ながら、今後、ターボ分子ポンプが大容量向けに大型化した場合には、ロー タ軸 213、回転体 103及び回転翼 102も大型化するため、その重量は増加する。従 つて、作業者がロータ軸 213、回転体 103及び回転翼 102を手で持ち上げて、移動 させることが困難になる場合がある。
[0109] そこで、このロータ軸 213のメネジ 263にアイボルト 401を螺合させて、ロータ軸 21 3、回転体 103及び回転翼 102をクレーン等で牽引することで、簡単にロータ軸 213 、回転体 103及び回転翼 102を移動させ、ベース部 129側に取り付けることができる 従って、メネジ 263とァイボノレト 401を用レヽることで、大型のターボ分子ポンプの組 立作業の効率化を図ることができる。
図面の簡単な説明
[0110] [図 1]本発明のロータ軸と回転体との固定部分の拡大構成図
[図 2]本発明のロータ軸の部分構成図
[図 3]本発明の固定部品によるロータ軸の固定の様子
[図 4]本発明の固定部品の構成図
[図 5]本発明の当接面におけるメツキの盛り上がりの様子
[図 6]本発明のロータ軸と回転体との固定部分の拡大構成図(別例)
[図 7]メネジの使用別例
[図 8]同上
[図 9]従来のターボ分子ポンプの構成図
[図 10]従来のロータ軸と回転体との固定部分の拡大構成図
[図 11]従来の回転体の部分構成図
[図 12]従来のロータ軸の部分構成図
[図 13]従来の当接面におけるメツキの盛り上がりの様子
符号の説明
[0111] 100 ターボ分子ポンプ本体
102 回転翼
103、 503 回転体
104 上側径方向電磁石
105 下側径方向電磁石 106A、 106B 軸方向電磁石
107 上側径方向センサ
108 下側径方向センサ
109 軸方向センサ
113、 213、 613 ロータ軸
121 モータ
123 固定翼
125 固定翼スぺーサ
127 外筒
129 ベース部
151 主軸部
153、 253、 653 締結部
155、 255 貫通軸部
157、 187、 257 当接面
161 ボル卜穴
183 中心穴
185 ボゾレト通し穴
191 ボル卜
200 制御装置
259、 659 座グジ部
263 メネジ
265、 665 隙間
301 固定部品
321 固定用ボルト
401 ァイボノレト

Claims

請求の範囲
[1] 回転体と、
該回転体に固定されるロータ軸と、
該ロータ軸と前記回転体との締結を行うためのボルト穴と、
該ボルト穴を用いて前記ロータ軸と前記回転体との締結を行う締結手段と、 前記回転体の側で軸方向に対し垂直に形成された回転体側当接面と、 前記ロータ軸の側で前記回転体側当接面と当接されたロータ軸側当接面と、 該ロータ軸側当接面より凹んだ座ダリ部とを備え、
前記締結により、前記回転体側当接面と前記座ダリ部との間には隙間が形成され、 該隙間に向けて前記ボルト穴が開口されることを特徴とするロータ軸と回転体との固 定構造。
[2] 前記回転体は、該回転体の中心に形成された中心穴を備え、
前記ロータ軸は、前記中心穴に貫通された貫通軸部と、該貫通軸部より大径である 主軸部とを備えたことを特徴とする請求項 1記載のロータ軸と回転体との固定構造。
[3] 前記ロータ軸に形成されたメネジを備えたことを特徴とする請求項 1又は請求項 2 記載のロータ軸と回転体との固定構造。
[4] 前記メネジに螺合されることで、前記ロータ軸を軸方向に付勢し、かつ該付勢方向 と逆向きに前記回転体を付勢する固定手段を備えたことを特徴とする請求項 3記載 のロータ軸と回転体との固定構造。
[5] 請求項 1、 2、 3又は 4記載の固定構造を有するターボ分子ポンプであって、
前記ロータ軸を磁気浮上させ、径方向及び/又は軸方向に位置調整する磁気軸受 を有し、
前記回転体には回転翼が形成され、
前記ターボ分子ポンプは、
被対象設備に設置され、該被対象設備から所定のガスを吸引することを特徴とする ターボ分子ポンプ。
[6] 少なくともモータを含む電装部と、
該電装部を支持するベース部と、 前記モータにより回転されるロータ軸と、
該ロータ軸が固定された回転体と、
該回転体に形成された回転翼と、
該回転翼と交互に配設された固定翼と、
該固定翼を固定するための固定翼スぺーサと、
少なくとも前記ロータ軸、前記回転体、前記回転翼、前記固定翼及び前記固定翼ス ぺーサを内包する外筒と、
前記ロータ軸に形成されたメネジと、
該メネジに螺合された螺合手段とを備え、
該螺合手段を牽引することで、少なくとも前記ロータ軸、前記回転体及び前記回転翼 を、前記電装部及び前記ベース部に対し分離可能であることを特徴とするターボ分 子ポンプ。
[7] 前記螺合手段は、アイボルトであることを特徴とする請求項 6記載のターボ分子ボン プ。
PCT/JP2004/012409 2003-09-16 2004-08-27 ロータ軸と回転体との固定構造及び該固定構造を有するターボ分子ポンプ WO2005028874A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020067004758A KR101128174B1 (ko) 2003-09-16 2004-08-27 로터축과 회전체와의 고정 구조 및 이 고정 구조를 갖는터보 분자 펌프
DE602004024217T DE602004024217D1 (de) 2003-09-16 2004-08-27 Konstruktion eines rotors und einer rotorwelle und turbomolekularpumpe mit diesem konstruktion
EP04772365A EP1666730B1 (en) 2003-09-16 2004-08-27 Structure of rotor and rotor shaft, and turbo molecular pump having the structure
US10/571,642 US7390164B2 (en) 2003-09-16 2004-08-27 Fixing structure for fixing rotor to rotor shaft, and turbo molecular pump having the fixing structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003323378A JP2006194083A (ja) 2003-09-16 2003-09-16 ロータ軸と回転体との固定構造及び該固定構造を有するターボ分子ポンプ
JP2003-323378 2003-09-16

Publications (1)

Publication Number Publication Date
WO2005028874A1 true WO2005028874A1 (ja) 2005-03-31

Family

ID=34372710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012409 WO2005028874A1 (ja) 2003-09-16 2004-08-27 ロータ軸と回転体との固定構造及び該固定構造を有するターボ分子ポンプ

Country Status (6)

Country Link
US (1) US7390164B2 (ja)
EP (1) EP1666730B1 (ja)
JP (1) JP2006194083A (ja)
KR (1) KR101128174B1 (ja)
DE (1) DE602004024217D1 (ja)
WO (1) WO2005028874A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239464A (ja) * 2006-03-03 2007-09-20 Boc Edwards Kk ロータ軸と回転体との固定構造及び該固定構造を有するターボ分子ポンプ
JP2014051969A (ja) * 2012-09-10 2014-03-20 Pfeiffer Vacuum Gmbh 真空ポンプ
WO2022153981A1 (ja) * 2021-01-18 2022-07-21 エドワーズ株式会社 真空ポンプとその回転体

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100610012B1 (ko) * 2004-08-16 2006-08-09 삼성전자주식회사 터보 펌프
US7485997B1 (en) 2005-08-16 2009-02-03 Avtron Industrial Automation, Inc. System and method for securing a rotor to a motor drive shaft using cam fasteners
JP5764283B2 (ja) * 2007-12-27 2015-08-19 エドワーズ株式会社 真空ポンプ
JP5541464B2 (ja) * 2009-02-18 2014-07-09 株式会社島津製作所 ターボ分子ポンプ
EP2469096B1 (en) * 2009-08-21 2020-04-22 Edwards Japan Limited Vacuum pump
KR101848528B1 (ko) * 2010-10-19 2018-04-12 에드워즈 가부시키가이샤 진공 펌프
EP3034880B1 (de) * 2014-12-15 2019-10-16 Pfeiffer Vacuum Gmbh Rotoranordnung für eine vakuumpumpe und verfahren zur herstellung derselben
KR102499085B1 (ko) * 2016-05-04 2023-02-10 삼성전자주식회사 진공 펌프
JP6834845B2 (ja) * 2017-08-15 2021-02-24 株式会社島津製作所 ターボ分子ポンプ
US10557471B2 (en) * 2017-11-16 2020-02-11 L Dean Stansbury Turbomolecular vacuum pump for ionized matter and plasma fields
JP6973348B2 (ja) * 2018-10-15 2021-11-24 株式会社島津製作所 真空ポンプ
JP7306878B2 (ja) * 2019-05-31 2023-07-11 エドワーズ株式会社 真空ポンプ、及び、真空ポンプ構成部品
GB2601320B (en) * 2020-11-25 2023-04-26 Edwards S R O Rotor assembly for a turbomolecular pump
JP2022127116A (ja) * 2021-02-19 2022-08-31 エドワーズ株式会社 真空ポンプ、及び、真空ポンプ用回転体

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61210292A (ja) * 1985-03-14 1986-09-18 Shimadzu Corp タ−ボ分子ポンプの磁気軸受装置
JPS6371492U (ja) * 1986-10-28 1988-05-13

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2202383A1 (de) 1972-01-19 1973-07-26 Leybold Heraeus Gmbh & Co Kg Turbomolekularpumpe
JPH0646036B2 (ja) * 1982-11-19 1994-06-15 セイコー電子工業株式会社 軸流分子ポンプ
JPS6121029A (ja) 1984-07-10 1986-01-29 井関農機株式会社 脱穀装置
JP2545070B2 (ja) 1986-09-12 1996-10-16 本田技研工業株式会社 自動二輪車の後輪緩衝装置
US5221179A (en) * 1988-07-13 1993-06-22 Osaka Vacuum, Ltd. Vacuum pump
DE19915307A1 (de) * 1999-04-03 2000-10-05 Leybold Vakuum Gmbh Reibungsvakuumpumpe mit aus Welle und Rotor bestehender Rotoreinheit
JP2003172291A (ja) 2001-12-04 2003-06-20 Boc Edwards Technologies Ltd 真空ポンプ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61210292A (ja) * 1985-03-14 1986-09-18 Shimadzu Corp タ−ボ分子ポンプの磁気軸受装置
JPS6371492U (ja) * 1986-10-28 1988-05-13

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1666730A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239464A (ja) * 2006-03-03 2007-09-20 Boc Edwards Kk ロータ軸と回転体との固定構造及び該固定構造を有するターボ分子ポンプ
JP2014051969A (ja) * 2012-09-10 2014-03-20 Pfeiffer Vacuum Gmbh 真空ポンプ
WO2022153981A1 (ja) * 2021-01-18 2022-07-21 エドワーズ株式会社 真空ポンプとその回転体

Also Published As

Publication number Publication date
JP2006194083A (ja) 2006-07-27
DE602004024217D1 (de) 2009-12-31
US7390164B2 (en) 2008-06-24
KR101128174B1 (ko) 2012-03-23
EP1666730A1 (en) 2006-06-07
KR20060096993A (ko) 2006-09-13
EP1666730B1 (en) 2009-11-18
EP1666730A4 (en) 2007-10-31
US20070031270A1 (en) 2007-02-08

Similar Documents

Publication Publication Date Title
WO2005028874A1 (ja) ロータ軸と回転体との固定構造及び該固定構造を有するターボ分子ポンプ
JP5778166B2 (ja) 真空ポンプ
JP5744044B2 (ja) 真空ポンプ
JP2005083316A (ja) モータ制御システム及び該モータ制御システムを搭載した真空ポンプ
JP5255752B2 (ja) ターボ分子ポンプ
WO2023095910A1 (ja) 真空ポンプ、スペーサ部品、及びボルトの締結方法
JP4481124B2 (ja) 磁気軸受装置及び該磁気軸受装置が搭載されたターボ分子ポンプ
EP3910201A1 (en) Vacuum pump
JP5864111B2 (ja) 回転体及び該回転体を搭載した真空ポンプ
WO2020145150A1 (ja) 真空ポンプ
US20220170470A1 (en) Vacuum pump and control apparatus of vacuum pump
WO2022196559A1 (ja) 真空ポンプおよび排気システム
WO2021246337A1 (ja) 真空ポンプおよび真空ポンプの回転体
WO2022255202A1 (ja) 真空ポンプ、スペーサ及びケーシング
KR20230116781A (ko) 진공 펌프
JP2003269368A (ja) 真空ポンプ
KR20230131832A (ko) 진공 펌프, 회전체, 커버부 및 회전체의 제조 방법
CN116783391A (zh) 真空泵
KR20230047332A (ko) 진공 펌프 및 진공 펌프용 회전 날개

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NA NI NO NZ OM PG PL PT RO RU SC SD SE SG SK SL SY TM TN TR TT TZ UA UG US UZ VC YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067004758

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007031270

Country of ref document: US

Ref document number: 10571642

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004772365

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004772365

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067004758

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10571642

Country of ref document: US