WO2005028388A1 - 酸化亜鉛−アルミナ−シリカ系結晶化ガラス及びそれを用いた反射鏡基体 - Google Patents

酸化亜鉛−アルミナ−シリカ系結晶化ガラス及びそれを用いた反射鏡基体 Download PDF

Info

Publication number
WO2005028388A1
WO2005028388A1 PCT/JP2004/013670 JP2004013670W WO2005028388A1 WO 2005028388 A1 WO2005028388 A1 WO 2005028388A1 JP 2004013670 W JP2004013670 W JP 2004013670W WO 2005028388 A1 WO2005028388 A1 WO 2005028388A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
crystallized glass
parts
oxide
main component
Prior art date
Application number
PCT/JP2004/013670
Other languages
English (en)
French (fr)
Inventor
Takashi Ota
Kazuki Ootou
Original Assignee
Ngk Insulators, Ltd.
Ngk Optoceramics Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators, Ltd., Ngk Optoceramics Co., Ltd. filed Critical Ngk Insulators, Ltd.
Priority to EP04773289A priority Critical patent/EP1688399A4/en
Priority to JP2005514064A priority patent/JPWO2005028388A1/ja
Publication of WO2005028388A1 publication Critical patent/WO2005028388A1/ja
Priority to US11/150,906 priority patent/US7169476B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/24Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces

Definitions

  • the present invention relates to a base for a reflector for reflecting light from a light source lamp (reflector base), and particularly to a crystallized glass suitably used as a reflector base for a lighting device or a projector light source. .
  • a reflector for reflecting light irradiated with a light source lamp power is used.
  • a reflecting mirror is a member that is exposed to a high temperature due to the heat generated by a light source lamp such as an ultra-high pressure mercury lamp, and is required to have high heat resistance. Therefore, conventionally, a reflector having a reflective film formed on a reflector base made of heat-resistant glass having excellent heat resistance (for example, Pyrex (registered trademark), manufactured by KOJUNG Co., Ltd.) has been used.
  • ⁇ -spodumene solid solution ⁇ -spodumene: Li O— Al O 4SiO
  • ⁇ -spodumene Li O— Al O 4SiO
  • Lithia-alumina such as 2 2 3 2 Cryptite solid solution (j8 -eucryptite: Li O— Al O—2SiO)
  • silica-based crystallized glass hereinafter sometimes referred to as “lithia-based crystallized glass”
  • the present inventors have also celsian (ce lsi an: BaO- Al O- 2SiO) barrier alumina chromatography, such as sheet
  • Lica-based crystallized glass (hereinafter sometimes referred to as “barrier-based crystallized glass”) as a constituent material of a reflector base (for example, see Patent Document 2).
  • Patent Document 1 Japanese Patent Publication No. 7-92527
  • Patent Document 2 JP-A-2002-109923
  • the melting point is inferior since the melting point is as high as about 1500 ° C or more.
  • special equipment such as a melting furnace
  • the manufacturing conditions are limited. there were.
  • the aforementioned Bruno rear-based crystallized glass having a melting point is no problem, such as 1450 ° C before and after the low Guso, thermal expansion coefficient (JIS R1618: 40- 400 ° C ) is 30 X 10- 7 - 45 X 10- 7 a (Z ° C) about had room for still improved in terms of heat resistance.
  • the present invention has been made to solve the above-mentioned problems of the prior art, and has a higher performance crystallized glass having a composition different from these crystallized glasses, specifically, It has at least high heat resistance equivalent to Noria-based crystallized glass, preferably excellent heat resistance comparable to Lithia-based crystallized glass, and has a low melting point like barrier-based crystallized glass. It is to provide a good crystallized glass.
  • the inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, it has been found that the above object can be achieved by adding a specific modifying component to zinc oxide alumina silica-based crystallized glass. And completed the present invention. That is, according to the present invention, the following oxidized zinc alumina silica-based crystallized glass is provided.
  • Zinc oxide ZnO
  • alumina Al 2 O 3
  • silica SiO 2
  • a glass wherein the main component is composed of 20 to 30% by mass of zinc oxide, 15 to 25% by mass of alumina, and 50 to 60% by mass of silica; It contains 3 to 6 parts by mass of zircon as the nucleating agent with respect to 100 parts by mass of the main component, and further contains, in addition to the main component and the nucleating agent, Lithium oxide (Li O), sodium oxide (Na O), potassium oxide (KO),
  • a zinc oxide-alumina-silica-based crystallized glass containing at least one selected component is provided.
  • a crystal phase is composed of the main components, and the main crystal phase is zinc petalite (Zn— The zinc oxide, alumina, silica-based crystallized glass according to the above [1], wherein the glass is a petallite) solid solution or a ⁇ -quartz solid solution.
  • Tin dioxide as the nucleating agent is contained in place of part of zirconium as the nucleating agent, and the content thereof is 0.5-4 based on 100 parts by mass of the main component.
  • the main body comprising the oxidized zinc alumina silica-based crystallized glass according to any one of the above [1] to [4], wherein the main body has a concave surface for disposing a reflective film,
  • a reflecting mirror base comprising: a metal mesh embedded in a main body.
  • the network comprises at least one selected from the group consisting of nickel (Ni), cobalt (Co), stainless steel (SUS: Steel Use Stainless) and kovar (kobar), and a main constituent component.
  • Ni nickel
  • Co cobalt
  • SUS Steel Use Stainless
  • kovar kobar
  • the reticulated body is a metallic force having at least one selected from the group consisting of gold (Au), platinum (Pt), silver (Ag), and copper (Cu) as a main component.
  • the zinc oxide-alumina-silica-based crystallized glass of the present invention (hereinafter sometimes referred to as "zinc oxide-based crystallized glass”) has at least the same high heat resistance and resistance as that of the noria-based crystallized glass. In some cases, it has excellent heat resistance comparable to lithia-based crystallized glass, and has good melting properties with a low melting point like barrier-based crystallized glass. Further, as compared with the lithia-based crystallized glass, the crystal stability is excellent over time under high temperature conditions, and the volume shrinkage is extremely small even when exposed to high temperature for a long time.
  • FIG. 1 is a phase diagram showing a preferable main component composition ratio in the oxidized zinc alumina silica-based crystallized glass of the present invention.
  • FIG. 2 is a graph showing the change over time in the coefficient of thermal expansion of the crystallized glass of Example 50.
  • FIG. 3 is a graph showing the change over time in the coefficient of thermal expansion of the crystallized glass of Comparative Example 14.
  • FIG. 4 is a side sectional view showing a general configuration of a reflector base.
  • FIG. 5 is a process diagram showing steps (a) and (f) of forming a reflector base using a reflector base forming die.
  • FIG. 6 is a side sectional view showing a use state of the reflector base.
  • FIG. 7 (a) is a side sectional view showing a configuration of a reflector base of the present invention.
  • FIG. 7 (b) is a side sectional view showing the configuration of the reflector base of the present invention.
  • FIG. 7 (c) is a side sectional view showing the configuration of the reflector base of the present invention.
  • FIG. 8 is a process chart showing steps (a) to (g) of forming the reflector base of the present invention using a reflector base forming die.
  • the crystallized glass of the present invention is a zinc oxide-based crystallized glass containing zinc oxide, alumina, and silica as main components and zirconia as a nucleating agent.
  • the composition ratio of zinc oxide, alumina, and silica, and the content of zircon as a nucleating agent were controlled to predetermined values, and in addition to the main component and the nucleating agent, It contains a decorative component.
  • the crystallized glass of the present invention contains zinc oxide, alumina, and silica as main components. Crystallized glass of such a system can be expected to exhibit excellent heat resistance with a small coefficient of thermal expansion.
  • a crystal phase is composed of zinc oxide, alumina, and silica as main components. Its crystal phase is zinc solid (Zn—petallite: ZnO'Al O-3SiO, ZnO-2SiO
  • the crystallized glass of the present invention preferably contains substantially no ganite as its crystal phase, and preferably contains substantially no ganite (substantially contains 0% by mass of ganite). It is particularly preferable that the main crystal phase is more preferably a zinc petalite solid solution or a ⁇ -quartz solid solution.
  • the term “main crystal phase” refers to a peak of a diffraction X-ray measured at room temperature (25 ° C.) by a powder X-ray diffractometer (for example, trade name: RINT2500, manufactured by Rigaku Corporation). It means the crystalline phase with the highest strength.
  • the constituent ratios of zinc oxide, alumina, and silica contained as main components are as follows. (Hereinafter, referred to as “principal component composition ratio”) needs to be controlled to a predetermined value.
  • the hatched portion of the phase diagram shown in FIG. 1 is composed of 20-30% by mass of zinc oxide, 15-25% by mass of alumina, and 50-60% by mass of silica, and A zinc betalite solid solution or
  • Table 2 shows the crystal phase and the coefficient of thermal expansion of the oxidized zinc alumina silica-based crystallized glass having the main component composition ratios indicated by the symbols (I)-(VII) in the phase diagram of FIG. 9 is a table showing the results of evaluation of. Specifically, it has a main component composition ratio shown by the symbols (I)-(VII) in FIG. 1, and further has a nucleating agent (zirconia) in the amount shown in Table 1 and a glass fining agent (antimony oxide). Zinc oxide containing (Sb 2 O 3)) and no modifying components
  • the crystal phase is a powder X-ray diffractometer (RINT2500, Rigaku Denki (product name: RINT2500) having a rotating anti-cathode target (Cu) and a graphite monochromator as a powder X-ray diffractometer.
  • X-ray source CuKa line, tube voltage 50 kV, tube current 30 mA, diffraction angle 2 ⁇ 10 °-40 °, diffraction peak of crystallized glass at room temperature (25 ° C) It was evaluated by measuring.
  • the crystal phase having the highest measured diffraction X-ray peak intensity was defined as the main crystal phase of the crystallized glass.
  • 40- 400 ° Contact Keru thermal expansion coefficient C is, forming crystallized glass obtained in the following equivalent lithia-based crystallized glass (20 X 10- 7 (Z ° C) or less) the symbol "" a case where obtained, equal to or less than the Roh rear based crystallized glass (45 X 10- 7 (Z ° C) or less) of a case where the crystallized glass is obtained " ⁇ ", Roh rear-based crystallized glass greater than (4 5 X 10- 7 (Z ° C) greater than) the case was crystallized glasses force obtained such Chikaratsu was expressed as "X".
  • the main component zinc oxide 20- 30 mass 0/0, alumina 15 25 Weight 0/0, and is composed of a ratio of shea silica 50- 60 wt%, and, across these components Zinc-alumina-silica-based crystallized glass, which accounts for 100% by mass, has a low coefficient of thermal expansion because of its main crystal phase being a zinc petalite solid solution or ⁇ 8-quartz solid solution.
  • crystallized glass having the main component composition ratio employed in Reference Example 1 or Reference Example 3 is preferable.
  • the crystallized glass having these main component composition ratios has an extremely small coefficient of thermal expansion comparable to that of the lithia-based crystallized glass, exhibits excellent heat resistance, and is a translucent glass with little cloudiness.
  • the coefficient of thermal expansion can be stably maintained. It is preferable in that a small crystallized glass can be obtained.
  • the difference in the coefficient of thermal expansion between the reflector and the deposited reflective material can be reduced, and cracks can be effectively prevented from occurring in the reflective material. Crystallized glass having the following main component composition ratio is particularly preferred.
  • the crystallized glass having the main component composition ratio employed in Reference Example 5 has less garnite formation. Due to the tendency to be induced, the coefficient of thermal expansion is rather large, and the heat resistance is slightly inferior. It is a glass, which absorbs infrared light, so that when it is used as a reflector base, the internal temperature tends to rise due to heat storage, and in addition, it is difficult to find defects such as internal defects during visual inspection. Crystallized glass having the main component composition ratio used in Reference Example 6 or Reference Example 7 may have a large thermal expansion coefficient depending on manufacturing conditions such as the crystallization temperature, or crystallization may not be possible. May not progress A.
  • the crystallized glass having these main component composition ratios has a thermal expansion coefficient at least equal to or lower than that of the nori-based crystallized glass and exhibits excellent heat resistance.
  • the main component is a at Sani ⁇ zinc 20- 30 mass 0/0, alumina 15 one 25 wt%, and silica 50- 60 wt% of the configured crystallized glass in a ratio
  • the results show that the heat resistance is good, but the melting point is high and the melting property is not sufficient.
  • Such a crystallized glass has a problem in that the moldability is poor. Therefore, it is an essential condition that the crystallized glass of the present invention contains a specific modifying component described later.
  • the crystallized glass of the present invention contains zirconia as a nucleating agent.
  • nucleating agent refers to a substance for promoting the precipitation of fine glass crystals in crystallized glass.
  • titanium (TiO 2) or the like is contained.
  • the nucleating agent in Ming's crystallized glass must contain zirconia. Crystallized glass containing titanium as a nucleating agent tends to cause the formation of garnite having a remarkably large thermal expansion coefficient, and therefore the crystallized glass itself tends to have a large thermal expansion coefficient, resulting in poor heat resistance. May be inferior. Crystallized glass containing zirconia as a nucleating agent is unlikely to cause such problems, and is preferred!
  • Zirconia as a nucleating agent must be contained in an amount of 3 to 6 parts by mass based on 100 parts by mass of the main component. If the content is less than the above range, the zirconia will not exhibit the effect as a nucleating agent, and the crystallization of glass may be insufficient. When the nucleating agent is melted in advance, it is not preferable in that the melting may be difficult.
  • the crystallized glass of the present invention is prepared by mixing a main component, a nucleating agent, and a modifying component at a predetermined ratio to prepare a glass raw material, and melting the glass raw material to form a molten glass. By forming it into a desired shape and performing a heat treatment (crystallization treatment), it can be used as a reflector base.However, in the rare case of melting and forming glass materials, the zirconia as a nucleating agent is rarely re-used. In some cases, a devitrification phenomenon or an increase in the surface roughness of the molded article due to the crystal may be observed. [0038] The frequency of occurrence of the above phenomenon is not so high. However, the devitrification phenomenon may make the crystallized glass inhomogeneous, and an increase in the surface roughness of the molded body may reduce the reflection characteristics of the reflector, and therefore, it is preferable to suppress as much as possible.
  • the crystallized glass of the present invention contains tin dioxide as a nucleating agent instead of a part of zirconia as a nucleating agent. If necessary, zirconium is used as a nucleating agent. It is preferable to contain both tin dioxide and, as the total amount thereof, contain 3 to 6 parts by mass with respect to 100 parts by mass of the main component.
  • the content of zirconia as a nucleating agent is mainly used. It is effective to use 3 parts by mass or less for 100 parts by mass.
  • the formation of crystal nuclei tends to be insufficient due to the low content of the nucleating agent, and the crystallinity may be poor in some cases.
  • crystallized glass containing tin dioxide as a nucleating agent instead of a part of zirconia as a nucleating agent can be obtained by melting and forming a glass raw material while maintaining good crystallinity.
  • the melting temperature of the glass it is preferable in that the melting temperature of the glass can be lowered and the melting property can be improved.
  • Tin dioxide as a nucleating agent is preferably contained in an amount of 0.5 to 4 parts by mass with respect to 100 parts by mass of the main component, and 0.5 to 2 parts by mass. Is more preferred. If the content is less than the above range, the effect of suppressing the recrystallization of zirconia by tin dioxide may not be able to be enjoyed.If the content is more than the unfavorable range, tin dioxide itself tends to recrystallize, As in the case of the zirconia, it is not preferable in that the devitrification phenomenon and the increase in the surface roughness of the molded body may occur.
  • zircona as a nucleating agent is contained in an amount of 2-3 parts by mass with respect to 100 parts by mass of the main component. With such a content, it is possible to suppress recrystallization of zirconia in the stage of melting and forming the glass raw material while maintaining good crystallinity.
  • the crystallized glass of the present invention contains 3 parts by mass of zirconia as a nucleating agent and 2 parts by mass of tin dioxide with respect to 100 parts by mass of the main component. Most preferred.
  • Such crystallized glass not only can effectively suppress the recrystallization of zirconia in the stage of melting and forming the glass raw material while maintaining good crystallinity, but also its main purpose.
  • the crystal phase can be a zinc petalite solid solution or a j8-quartz solid solution, it exhibits excellent heat resistance comparable to a lithia-based crystallized glass with a small coefficient of thermal expansion.
  • the crystallized glass of the present invention comprises at least one kind of component selected from the group consisting of lithium oxide, sodium iodide, potassium oxide, diphosphorus pentoxide, niobium oxide, and tantalum oxide as modifying components. It contains.
  • modifying component means a substance that electrostatically bonds with non-crosslinking oxygen in a crystal structure composed of a main component and affects various physical properties of glass.
  • the modifying components of the crystallized glass include oxides of alkali metals (lithium, sodium, lithium, rubidium, cesium, etc.) and oxidations of alkaline earth metals (magnesium, calcium, strontium, barium, etc.). Products, transition metals (yttrium, vanadium, niobium, tantalum, molybdenum, etc.), oxides of non-metals (boron, phosphorus, etc.), bismuth oxide (BiO 2), etc.
  • lithium oxide lithium oxide, sodium, lithium, rubidium, cesium, etc.
  • oxidations of alkaline earth metals magnesium, calcium, strontium, barium, etc.
  • transition metals yttrium, vanadium, niobium, tantalum, molybdenum, etc.
  • oxides of non-metals boron, phosphorus, etc.
  • bismuth oxide bismuth oxide
  • Consists of sodium oxide, potassium oxide, phosphorus pentoxide, niobium oxide, and tantalum oxide At least one component selected from the group (hereinafter sometimes abbreviated as “six components”) must be included as a decoration component!
  • a crystallized glass containing at least one of the above-mentioned six components as a modifying component has a more stable coefficient of thermal expansion and more excellent heat resistance than a crystallized glass not containing the above-mentioned six components. In addition to being excellent, the meltability is also good, and the moldability of glass is excellent.
  • crystallized glass containing lithium oxide as a modifying component has a particularly low melting point (approximately 1450-1500 ° C) and good glass meltability. In doing so, there is no need for special equipment (such as a melting furnace) that can withstand temperatures as high as 1500 ° C or more, and there are few restrictions on manufacturing conditions. That is, it is possible to manufacture the reflector base very easily.
  • the crystallized glass containing lithium oxide, sodium iodide and potassium iodide as the modifying components was compared with the crystallized glass containing diphosphorus pentoxide as the modifying component. And good crystallinity. Further, the crystallized glass containing niobium oxide or tantalum oxide has good melting properties and also has good crystallinity at a low crystallization temperature.
  • the above-mentioned six components as modifying components are preferably contained in a total amount of 0.2-5.0 parts by mass with respect to 100 parts by mass of the main component as a total amount of the six components. -4.6 parts by mass is more preferable. If the content is less than the above range, the effect as a modifying component may not be exhibited. If the content is more than the above range, the coefficient of thermal expansion may be undesirably increased.
  • the preferable content of lithium oxide is 0.3 to 0.75 parts by mass with respect to 100 parts by mass of the main component. If the content is less than the above range, it is not preferable in that the effect of improving the melting property of glass by lithium oxide may not be obtained.
  • a preferable content of diphosphorus pentoxide is 11 to 13 parts by mass with respect to 100 parts by mass of the main component. If the content is less than the above range, the effect of improving the melting property of the glass by the pentoxide aniline may not be able to be enjoyed, and if it exceeds the unfavorable range, the crystallinity of the glass is low. However, it is not preferable in that crystallization may be insufficient.
  • the preferred content of sodium acid sodium is 0.4 to 11 parts by mass with respect to 100 parts by mass of the main component. It is. When the content is less than the above range, the effect of improving the crystallinity by sodium oxynitride may not be obtained, which is more preferable.
  • the preferable content of potassium oxysulfide is 0.5-1.5 parts by mass with respect to 100 parts by mass of the main component. If the content is less than the above range, it is not preferable because the crystallinity improving effect of potassium iodide may not be obtained.
  • a preferable content of the niobium acid is 0.1-0.5 parts by mass with respect to 100 parts by mass of the main component.
  • the content is less than the above range, the melting property is improved by oxidizing niobium, the crystallization temperature is reduced, and the crystallinity improving effect may not be obtained.
  • the preferable content of tantalum oxide is 0.1 to 0.5 part by mass with respect to 100 parts by mass of the main component. If the content is less than the above range, it is not preferable because there is a possibility that the effect of improving the melting property, lowering the crystallization temperature, and improving the crystallinity with the use of di-tantalum may not be obtained.
  • the crystallized glass of the present invention may contain another modifying component as long as it contains at least one of the above six components as the modifying component.
  • another modifying component it is preferable that about 0.1 to 0.5 part by mass of vanadium oxide (VO) or molybdenum oxide (MoO) is contained as a modifying component in 100 parts by mass of the main component.
  • VO vanadium oxide
  • MoO molybdenum oxide
  • the content of the modifying component impairs the preferable effect of the crystallized glass of the present invention, that is, the effect of having a thermal expansion coefficient at least equal to or lower than that of the barrier-type crystallized glass and exhibiting excellent heat resistance. Should be limited to no.
  • an alkaline earth metal oxidized product (acid oxidized magnesium) which is usually suitably used as a modified component of the crystallized glass is generally important.
  • MgO calcium oxide
  • ScO strontium oxide
  • BaO barium oxide
  • BaO boron oxide
  • YO yttrium oxide
  • BiO bismuth oxide
  • crystallized glass containing boron oxide as a modifying component has an increased coefficient of thermal expansion and reduced heat resistance. It is remarkable. Therefore, in the crystallized glass of the present invention, it is preferable that at least boron oxide as a modifying component is not substantially contained (boron oxide as a modifying component is substantially contained at 0% by mass). ,.
  • the crystallized glass of the present invention may contain, in addition to the main component, the nucleating agent, and the modifying component, an additive carohydrate depending on the purpose.
  • an additive carohydrate for example, as a glass fining agent, 100 parts by mass of the main component, about 0.5 parts by mass of antimony oxide (Sb 2 O 3) is included in melting the glass.
  • the crystallized glass of the present invention is prepared by mixing the above-described main component, nucleating agent, and modifying component at a predetermined ratio to prepare a glass raw material, and melting the glass raw material to obtain a glass. It can be obtained by performing a heat treatment (crystallization treatment) at a high temperature of about 2 to 4 hours.
  • a precursor eg, carbonate, nitrate, etc.
  • a precursor that can be converted into these components by heating is used, and these are converted into oxides. It can also be obtained by preparing a glass raw material by mixing to a predetermined ratio, melting the glass raw material into a glass, and then performing a heat treatment (crystallization treatment) under the same conditions.
  • the crystallization of the glass does not proceed sufficiently, and the degree of crystallization may be reduced.
  • a high coefficient of thermal expansion is not preferred in that the formation of a crystalline phase (such as garnite or willemite) is likely to be caused, which may increase the coefficient of thermal expansion of the glass and lower the heat resistance.
  • the crystallized glass of the present invention obtained as described above has high heat resistance, has a low melting point and good meltability, and has a long-term It has excellent crystal stability and exhibits characteristic physical properties such that volume shrinkage is extremely small even when exposed to high temperatures for a long time.
  • FIG. 2 shows that the crystallized glass of the present invention was kept at 600 ° C., 650 ° C., 700 ° C., and 750 ° C. for 20 hours each, and the volume expansion rate measured over time was measured. It is a graph showing a significant change.
  • the crystallized glass of the present invention has an expansion coefficient (volume expansion) with the temperature rise until the temperature of the glass reaches the holding temperature. After the temperature reached the holding temperature, a substantially constant expansion rate (volume) was maintained, and even after 20 hours, the expansion rate (volume) hardly changed.
  • the cause of the lithia-based crystallized glass exhibiting such behavior is that the crystal phase changes with time by being maintained under high-temperature conditions. Specifically, i) increase in density due to grain growth (volume shrinkage), ii) crystallization from
  • the reflector base is made of lithia-based crystallized glass
  • the crystal grains grow and the volume shrinks due to long-term use, and the shape of the reflector base may change.
  • Such a shape change is not preferable because it causes a decrease in reflection characteristics and a shift of a light-converging point.
  • the crystallized glass of the present invention unlike the lithia-based crystallized glass, has few such defects, and can withstand a long-term use of 5000 to 10,000 hours under a high temperature condition of 600 ° C or higher. It is preferred as a constituent material of a reflector base requiring durability. In view of the fact that light source lamps used for lighting devices and projector light sources have recently been increased in output and brightness, and the reflector base has been exposed to higher temperatures, the crystallization of the present invention has been considered. It goes without saying that glass is a very useful material!
  • the crystallized glass of the present invention is suitably used as a constituent material of a reflector base constituting a reflector for reflecting light of a light source lamp, particularly, a reflector base of a lighting device or a projector light source. Is what you can do.
  • the reflector base is a member on which a concave surface for arranging a reflection film is formed.
  • the shape of the concave surface is not particularly limited as long as desired reflection characteristics can be obtained when the reflective film is arranged.
  • it is often configured as a rotating quadratic surface (for example, a parabolic surface or an elliptical surface), and among them, it is preferable to configure an elliptical surface having excellent light-collecting efficiency of reflected light.
  • the configuration of the portion other than the concave surface is not particularly limited, and various configurations are used depending on the purpose.
  • a configuration such as the reflector base 10 shown in Fig. 4 is used. Is mentioned.
  • the reflector base 10 shown in FIG. 4 also has two partial forces, a bowl-shaped part 14 and a neck part 16.
  • the boundary between the bowl-shaped portion 14 and the neck portion 16 has a constricted shape, and a constricted portion 15 is formed.
  • a concave surface 12 for arranging a reflective film is formed in the bowl-shaped portion 14, and a neck portion 16 is provided on the bottom side of the concave surface 12 so as to be continuous with the bowl-shaped portion 14.
  • An inner space 18 defined by the concave surface 12 is formed in the bowl-shaped portion 14, and a light source penetrating the inside of the neck portion 16 and opening into the inner space 18 of the bowl-shaped portion 14.
  • a through hole 20 for arranging a lamp is formed.
  • the reflector base as described above is manufactured by, for example, a method of press-molding a molten glass mass (called "gob") obtained by melting a glass raw material at a high temperature using a mold. be able to.
  • a reflector base molding die 30 is used in which the ring 36 forms a body to form a cavity 33 for molding the reflector base 31.
  • a reflector base can be formed by the following method. First, a gob 38 is supplied from a gob supply nozzle 35 ((a) in the figure), and the gob 38 is cut using a cutting blade 37 to thereby form the concave portion 32 of the mold 32. A certain amount of gob 38 is injected into a ((b) in the figure).
  • the ring 36 is placed on the upper end surface of the mold 32, the core rod 34 is loosely inserted into the guide hole 36a of the ring 36, and then the core rod 34 is pressed downward by force ((c) in the figure). (E)).
  • the core rod 34 is guided to the concave portion 32a of the mold 32, and the mold 32, the core rod 34, and the ring 36 are formed into a body to form the cavity 33 for molding the reflector base 31.
  • the reflector base 31 can be formed ((f) in the figure).
  • the outer shape of the reflector base 31 is formed by a mold 32 having a concave portion 32a of a complementary shape, while the inner space of the reflector base 31 has a convex portion 34a of a complementary shape.
  • Most of the core rod 34 is formed by the core rod 34.
  • the core rod 34 is first pulled up.
  • the reflector base 31 is held down by the ring 36, the reflector base 31 is held inside the mold 32 which cannot be pulled up together with the core rod 34.
  • the ring 36 is lifted up to separate the mold, and the reflector base 31 as a molded body is taken out of the mold 32.
  • the reflector base 31 as a molded body can be obtained.
  • the reflector base body obtained as described above penetrates the lower end side of the neck portion 16 by machining or the like to form a through-hole for disposing a light source lamp.
  • a reflective mirror can be formed by arranging reflective film 22 so as to cover concave surface 12.
  • the configuration of the reflective film is not particularly limited as long as desired reflective characteristics can be obtained.
  • a high refractive index substance such as titania (TiO 2) and a low refractive index substance such as silica (SiO 2)
  • an alternate multilayer film or the like can be suitably used.
  • a conventionally known film forming method can be used.
  • a high-refractive-index material and a low-refractive-index material are alternately laminated using a conventionally known film forming method (for example, a PVD method, a CVD method, a sputtering method, etc.).
  • the film may be formed as follows.
  • a light source lamp 24 such as an ultra-high pressure mercury lamp is loaded into a through hole 20 for disposing a light source lamp, and the light source lamp 24 is fixed to a fixing material 26 such as heat-resistant cement. And the opening of the internal space 18 is covered with a glass protection plate 28 (about 4 to 5 mm thick). ) To form a light emitting device.
  • the protective plate 28 is also provided with a reason that when the light source lamp is damaged due to the elapse of the service life, the fragments are prevented from being diffused.
  • the crystallized glass of the present invention is embedded in a main body having a concave surface for disposing a reflective film, and embedded in the main body. It is also preferable to use it as a constituent material of a reflecting mirror base having a metal net formed as described above. That is, like a reflector base 50 shown in FIGS. 7A to 7C, a main body 17 made of the crystallized glass of the present invention and having a concave surface 12 serving as a reflection surface, and a main body 17 thereof It is preferable to include a metal net 52 buried in the inside.
  • a characteristic configuration of the above-described reflector base 50 is that a metal net 52 is embedded inside the main body of the reflector base 50.
  • the net-like body 52 is provided for the purpose of preventing the fragments from being diffused when the reflector base itself breaks due to the elapse of the service life.
  • Such a reflector base is preferable because it can improve safety when the light emitting device is used and can avoid damage to other devices (for example, a liquid crystal projector or the like) attached thereto.
  • the reticulated body 52 needs to be embedded inside the main body 17 of the reflector base 50. 1S
  • the embedding position is not particularly limited. Therefore, the concave surface 12 is usually buried so that at least a part of the concave surface 12 is covered along the concave surface 12 if it is appropriately arranged so as to meet the above purpose.
  • the reticulated body 52 needs to be disposed so as to cover the concave surface 12 of the main body 17 along the concave surface 12, but there is no particular limitation on the arrangement position of the reticulated body 52 except that.
  • FIG. 7 (c) when the mesh 52 is arranged so as to cover the entire concave surface 12, it is preferable in that the net 52 has a high scattering prevention effect. It is not necessary for the mesh 52 to be placed so as to enclose the body.
  • FIGS. 7A and 7B the effect of the present invention can be obtained if at least a part of the concave surface 12 is covered by the mesh body 52.
  • FIG. 7 (a) In the case where the main body also has two partial forces of the bowl-shaped portion 14 and the neck portion 16 as in the reflector base 50 shown in FIG. Above, the border between the two The fin 15 is vulnerable to thermal stress and is easily damaged. Therefore, as shown in FIG. 7 (a), the effect can be sufficiently exerted by disposing the net-like body 52 at least in the vicinity of the constricted portion 15. Also, as in the reflector base 50 shown in FIGS. 7A to 7C, the net-like body 52 may be continuously arranged from the bowl-shaped part 14 to the neck part 16 through the constricted part 15. preferable.
  • the mesh body is embedded inside the main body of the reflector base, it comes into contact with a high-temperature gob during the manufacturing process of the reflector base. Therefore, in order to manufacture a reflector base in an air atmosphere without requiring a nitrogen purge or the like, it is preferable to select a material having excellent oxidation resistance. Further, since the reflector base is used under high-temperature conditions, it is preferable to select a material having a similar thermal expansion coefficient to that of the crystallized glass constituting the main body, a high Young's modulus, and excellent extensibility. ⁇ ⁇ .
  • the reticulated body is made of a metal having at least one selected from the group consisting of nickel, cobalt, stainless steel, and kovar as a main component.
  • the "principal constituent component” is intended to mean that all of the reticulated body is constituted by the above-mentioned metal force, and it is sufficient if the net-like body is mainly constituted by the above-mentioned metal force. Specifically, it means that at least 30% by mass of the metal constituting the network is the above-mentioned metal.
  • the reflector body is subjected to a high-temperature heat treatment (crystallization treatment) after its molding, it is preferable to select a material that can promote the crystallization.
  • the reticulated body is made of a metal mainly composed of at least one selected from the group consisting of gold, platinum, silver, and copper. Since these metals can serve as crystal nuclei of glass, they are preferable in that crystallization of glass can be promoted and crystals can be refined. The same effect can be obtained when the net has a surface coating made of the above metal.
  • the network must have a network structure, but the other configuration may be determined as appropriate in consideration of the properties of the crystallized glass, the size of the reflector base, the effect of preventing fragments from diffusing, and the like. Just fine.
  • a mesh shape such as a square, a rhombus, and a turtle-shape can be adopted as the mesh shape, and a mesh having a mesh size of about 3 to 10 mm can be suitably used.
  • the mesh is composed of metal wires with a diameter of about 0.1-1. Omm ⁇ , but in some cases, it is composed of metal foil with the same width! , You can.
  • the reflector base in which the net-like body is buried as described above can be manufactured by a method according to the method of manufacturing a reflector base having a general configuration shown in FIG. That is, as shown in FIG. 8, a gob 38 may be formed by press molding using a reflector base molding die 30 having a mold 32, a core rod 34, and a ring 36.
  • This manufacturing method is the same as the manufacturing method shown in FIG. 5 except that the mesh body 52 is set in advance in the concave portion 32a of the mold 32 before the injection of the gob 38 ((a) in the figure).
  • the reflector base 50 in which the net 52 is embedded can be obtained ((b)-(g) in the figure).
  • crystallized glass of the present invention will be specifically described with reference to examples, but the crystallized glass of the present invention is not limited to these examples.
  • the crystallized glasses of the examples and comparative examples were evaluated for the four items of heat resistance, crystallinity, meltability, and devitrification, and comprehensive evaluation was performed based on these evaluations. Heat resistance, crystallinity, meltability, and devitrification were evaluated by the following methods.
  • crystallinity For the evaluation of crystallinity, “ ⁇ ” indicates that the minimum temperature at which the crystallized glass can crystallize is less than 850 ° C, “ ⁇ ” indicates that the temperature is 850-900 ° C, and “ ⁇ ” indicates that it exceeds 900 ° C. "X"
  • meltability is as follows: “ ⁇ ” when the crystallized glass has a melting temperature of less than 1500 ° C, “ ⁇ ” when it is between 1500 and 1530 ° C, and “X” when it exceeds 1530 ° C. It was described as
  • the devitrification was evaluated based on the frequency of occurrence of the devitrification phenomenon before the glass material of the crystallized glass was melted into molten glass and formed into the shape of the reflector base.
  • the symbol ⁇ indicates that there was no devitrification phenomenon at all, and the case that less than two samples had devitrification phenomenon.
  • “ ⁇ ”, “ ⁇ ” indicates that the number of samples in which devitrification occurred was 5 or less, and “X” indicates that the number of samples in which devitrification occurred was 6 or more.
  • a glass raw material is prepared by mixing the main components, nucleating agent, and modifying components shown in Table 3 in the ratios shown in Table 3, and the glass raw material is melted into glass, and then 875 ° C or 900 ° C. At 4 o'clock During this time, heat treatment (crystallization treatment) was performed to obtain crystallized glass of Example 18 and Comparative Example 14. Table 4 shows the results of evaluating the heat resistance, crystallinity, and meltability of these crystallized glasses.
  • a glass raw material was prepared by mixing the main components, nucleating agent, and modifying components shown in Table 5 in the ratios shown in Table 5, and the glass raw material was melted into glass, and then 825 ° C and 850 ° C. Heat treatment (crystallization treatment) was performed at 875 ° C. or 900 ° C. for 4 hours to obtain a crystallized glass of Examples 9-119.
  • Table 6 shows the results of evaluating the heat resistance, crystallinity, and meltability of these crystallized glasses.
  • Main component nucleating agent force 'Las refining agent modifying component crystallized force' overall whole in Figure 1 the main component Las Zr0 2 Sb 2 0 3 P 2 0 5 Li 2 0 Na 2 0 ⁇ 2 ⁇ Cs 2 0 6 entire component
  • Example 9 (VII) 100 5 0.5 ⁇ 0.5 ⁇ ⁇ ⁇ 0.5 106.0
  • Example 10 (VII) 100 5 0.5 ⁇ ⁇ 0.5 ⁇ ⁇ 0.5 106.0
  • Example 11 (I) 100 5 0.5-0.5 ⁇ ⁇ ⁇ 0.5 106.0
  • Example 12 (I) 100 5 0.5 ⁇ ⁇ 0.5 ⁇ ⁇ 0.5 106.0
  • Example 13 (I) 100 5 0.5 ⁇ ⁇ 0.5 ⁇ 0.5 106.0
  • Example 14 (I) 100 5 0.5 ⁇ ⁇ ⁇ 0.5 0.5 106.0
  • Example 15 (I) 100 5 0.5 ⁇ ⁇ 0.3 ().
  • Example 16 (I) 100 5 0.5 1 0.3 0.4 0.6 ⁇ 2.3 107.8
  • Example 17 (I) 100 5 0.5 1 0.45 0.6 0.9 ⁇ 2.95 108.45
  • Example 18 (I) 100 5 0.5 1 0.6 0.8 1.2 ⁇ 3.6 109.1
  • Example 19 (I) 100 5 0.5 1 0.75 1 1.5 ⁇ 4.25 109.75
  • Example 9 ----18.2---12.3 -12.5 -11.1 ⁇ ⁇ ⁇ ⁇ Example 10-one---4.5 4.6 5.1 ⁇ ⁇ ⁇ ⁇ Example 11 -5.4 -4.8 -4.6 -4.2 -4.0 -3.9 5.1 3.5- ⁇ ⁇ ⁇ ⁇ Example 12 22.3 Unavailable-6.3 5.8 6.1 28.4 26.5- ⁇ ⁇ ⁇ ⁇ Example 13 29.2 Unavailable-7.9 8.1-24.1 24.7 ⁇ ⁇ ⁇ ⁇ Example U 19.6 Unavailable--2.7- 0.9 0.5 -2.9 -2.0- ⁇ ⁇ ⁇ ⁇ Example 15 24.8 Unavailable-4.1 4.9 7.1 2.6 3.4 5.0 ⁇ ⁇ ⁇ ⁇ Example 16 25.0 Unavailable-7.6 8.0 10.1 5.4 5.7 6.6 ⁇ ⁇ ⁇ ⁇ Example ⁇ 19.3 21.1 28.0 11.5 12.3 19.1 ⁇ ⁇ - ⁇ ⁇ ⁇ Example 18 15.5 16.9 23.6 9.9 11.6 17.5- ⁇ - ⁇ ⁇ ⁇ Example 19 16.8 18.
  • Example 11 in which the main component composition ratio is the symbol (I) in FIG. Crystallized glass had better crystallinity.
  • the crystallized glass of Examples 11 to 19 in which the main component composition ratio is indicated by the symbol (I) in FIG. the crystallized glass of Examples 11, 14, 15, and 16 containing lithium oxide and cesium oxide as modifying components was used.
  • the crystallized glass had better crystallinity as compared with the crystallized glasses of Examples 12 and 13 containing only sodium acid and potassium acid.
  • the crystallized glass of Examples 17-19 in which the total amount of the modifying components (six components) specified in the present invention exceeds 2.5 parts by mass is excellent in meltability in addition to this. The results were very good.
  • a glass raw material was prepared by mixing the main components, nucleating agent, and modifying components shown in Table 7 in the ratios shown in Table 7, and the glass raw material was melted to obtain glass, and then 875 ° C or 900 ° C. Heat treatment (crystallization treatment) was performed for 4 hours to obtain a crystallized glass of Comparative Examples 5-10.
  • Table 8 shows the results of evaluating the heat resistance, crystallinity, and meltability of these crystallized glasses.
  • a glass raw material was prepared by mixing the main components, nucleating agent, and modifying components shown in Table 9 in the ratios shown in Table 9, and the glass raw material was melted into glass, and then 800 ° C, 825 ° C Alternatively, heat treatment (crystallization treatment) was performed at 850 ° C. for 4 hours to obtain a crystallized glass of Examples 20 to 29.
  • Table 10 shows the results of evaluating the heat resistance, crystallinity, and meltability of these crystallized glasses.
  • Example 20 36.6 Uncalculated ⁇ 15.3 16.8 25.1- ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Example 21 18.2 19.8 22.7 12.6 13.2 19.5- ⁇ ⁇ ⁇ ⁇ ⁇ Example 22 30.2 Uncalculated ⁇ 14.0 15.3 21.8- ⁇ - ⁇ ⁇ ⁇ ⁇ Example 23 35.0 Calculation impossible-16.6 18.1 26.9--- ⁇ ⁇ ⁇ ⁇ Example 24 1--15.7 16.3 25.1 15.1 15.7 24.3 ⁇ ⁇ ⁇ Example 25---14.7 15.4 22.8 14.1 15.5 21.3 ⁇ ⁇ ⁇ ⁇ Example 26---29.7 Calculation not possible-10.6 12.2- ⁇ ⁇ ⁇ ⁇ Example 27------14.8 16.3 23.8 ⁇ ⁇ ⁇ ⁇ Example 28---13.5 14.6 ⁇ 13.9 14.6 21.7 ⁇ ⁇ ⁇ ⁇ Example 29---12.5 13.0 19.8 13.0 14.4 19.8 Is shown.
  • a glass raw material was prepared by mixing the main components, nucleating agent, and modifying components shown in Table 11 at the ratios shown in Table 11, and the glass raw material was melted to obtain a glass.
  • a heat treatment crystallized glasses of Examples 30 to 43 were obtained.
  • Table 12 shows the results of evaluating the heat resistance, crystallinity, and meltability of these crystallized glasses.
  • Example 30 (I ) 100 4 0.5 1 0.1 0.1 0.6 0.8 1.2 3.8 108.3 Example 31 (0 100 4 0.5 1 0.3 0.3 0.6 0.8 1.2 4.2 108.7 Example 32 (0 100 4 0.5 1 0.5 0.5 0.6 0.8 1.2 4.6 109.1 Example 33 (I) 100 5 0.5 1 0.1 0.1 0.6 0.8 1.2 3.8 109.3 Example 34 (I) 100 5 0.5 1 0.2 0.2 0.6 0.8 1.2 4.0 109.5 Example 35 (I) 100 5 0.5 1 0.3 0.3 0.6 0.8 1.2 4.2 109.7 Example 36 (I ) 100 5 0.5 1 0.3 0.3 0.6 0.8 1.2 4.2 109.7 Example 36 (I ) 100 5 0.5 1 0.5 0.5 0.6 0.8 1.2 4.6 110.1 Example 37 (I) 100 5 0.5 1 0.5 1 0.5 1 0.5 1 0.5 0.6 0.8 1.2 4.6 110.1 Example 37 (I) 100 5 0.5 1 0.5 1 0.5 1 0.5 1
  • Table 9 As shown in Table 12, the crystallized glass of Examples 21, 24 to 43 containing the oxidized niobate or tantalum oxide in addition to the alkali metal oxidized product as the modifying component was heat resistant. All of the properties, crystallinity and meltability were excellent, and extremely good results were shown. Also, The crystallized glasses of Examples 20 and 23 containing vanadium oxide or molybdenum oxide in addition to the alkali metal oxide also showed good results, but Examples 21 and 24-43 which showed extremely good results. As a result, the crystallinity was slightly inferior to that of the crystallized glass.
  • a glass raw material was prepared by mixing the main components, nucleating agent, and modifying components shown in Table 13 in the ratios shown in Table 13, and the glass raw material was melted to obtain glass at 800 ° C or 825 ° C.
  • a heat treatment crystallized glasses of Examples 44 to 50 and Comparative Examples 11 to 13 were obtained.
  • Table 14 shows the results of evaluating the heat resistance, crystallinity, meltability, and devitrification of these crystallized glasses.
  • Example 44 100 4-0.5 1 0.3 0.2 0.6 0.9 1.2 4.2 108.7
  • Example 45 (I) 100 4 0.5 0.5 1 0.3 0.2 0.6 0.9 1.2 4.2 109.2
  • Example 46 (I) 100 4 1 0.5 1 0.3 0.2 0.6 0.9 1.2 4.2 109.7
  • Example 47 (I) 100 4 1.5 0.5 1 0.3 0.2 0.6 0.9 1.2 4.2 110.2
  • Example 48 (I) 100 4 2 0.5 1 0.3 0.2 0.6 0.9 1.2 4.2 110.7
  • Example 49 (I) 100 3 1.5 0.5 1 0.3 0.2 0.6 0.9 1.2 4.2 109.2
  • Example 50 (I) 100 3 2 0.5 1 0.3 0.2 0.6 0.9 1.2 4.2 109.7 Compar
  • Example 44 17.2 18.6 28.4 Qu 15.4 16.3 22.3 Qu ⁇ ⁇ ⁇ ⁇ ⁇ Example 45----13.3 14.8 21.6- ⁇ ⁇ ⁇ ⁇ ⁇ Example 46-1--16.1 18.6 24.8- ⁇ ⁇ ⁇ Example 47-1--15.0 16.9 22.9 1 ⁇ ⁇ ⁇ ⁇ ⁇ Example 48- ⁇ --13.8 16.1 21.8- ⁇ ⁇ ⁇ ⁇ ⁇ Example 49-- ⁇ 1 17.6 20.5 27.7- ⁇ ⁇ ⁇ ⁇ ⁇ Example 50 9.9 10.5 15.0-14.5 17.0 22.3 Pe (Qu) ⁇ ⁇ ⁇ ⁇ ⁇ Comparative Example 11 34.9 39.0 Uncalculated-7.8 7.9 11.4 Qu (Ga, Wi) ⁇ ⁇ ⁇ ⁇ ⁇ Comparative Example 12 32.5 34.7 43.7-34.8 36.4 41.8 Qu (Ga .Wi) ⁇ ⁇ ⁇ ⁇ Comparative Example 13 36.4 38.7-1 33.6 35.0-Qu (Ga.Wi) ⁇ ⁇ ⁇
  • the crystallized glass of Example 44 containing only 4 parts by mass of zirconia as a nucleating agent was excellent in all of heat resistance, crystallinity, and melting property. 17--19, 21, 24--43 Forces that show very good results as well as the glass-ceramics. When their devitrification properties were evaluated, in some samples the zirconia as a nucleating agent was re-used. A devitrification phenomenon caused by the crystals was observed.
  • Example 49 in which the content of zirconia as a nucleating agent was reduced to 3 parts by mass, and instead, 1.5 parts by mass of tin dioxide as a nucleating agent was included. Improvement in devitrification was observed, and the crystallinity was reduced. That is, the crystallized glass of Example 49 was able to suppress the recrystallization of zirconia in the stage of melting and forming the glass raw material while maintaining good crystallinity.
  • the content of zirconia as a nucleating agent was reduced to 3 parts by mass, and instead, 2 parts by mass of tin dioxide as a nucleating agent was included, so that the crystallized glass of Example 50 was devitrified. Was remarkably improved, and the crystallinity was not reduced. That is, the crystallized glass of Example 50 was able to effectively suppress the recrystallization of zirconia in the stage of melting and forming the glass raw material while maintaining good crystallinity.
  • the main crystal phase is a zinc betalite solid solution, it exhibited excellent heat resistance comparable to a lithia-based crystallized glass having a small coefficient of thermal expansion.
  • the evaluation target was the crystallized glass of Example 50, a commercially available lithium-based crystallized glass having a ⁇ -spodumene solid solution and a ⁇ -eucryptite solid solution as a crystal phase (referred to as “Comparative Example 14”).
  • the crystallized glass of Comparative Example 14 had the composition shown in Table 15. The results are shown in FIGS.
  • the crystallized glass of Example 50 has an increased coefficient of expansion (volume expansion) with the temperature increase until the temperature of the glass reaches the holding temperature.
  • volume expansion coefficient of expansion
  • a substantially constant expansion rate (volume) was maintained, and even after 20 hours, the expansion rate (volume) hardly changed.
  • the crystallized glass of Example 50 had excellent crystal stability over time under high-temperature conditions, and had extremely small volume shrinkage even when exposed to high temperatures for a long time.
  • the crystallized glass of Comparative Example 14 turned over after the temperature of the glass reached the holding temperature, and the expansion rate (volume) reached the maximum value. Expansion coefficient decreases ( (The volume decreased). This behavior tended to become more pronounced as the holding temperature increased. That is, the crystallized glass of Comparative Example 14 caused volume contraction when exposed to a high temperature for a long time. Specifically, in the crystallized glass of Example 50, the volume shrinkage after 20 hours at 750 ° C. was 0% by volume, whereas the crystallized glass of Comparative Example 14 was 0.5% by volume. The volume shrinkage was observed.
  • the oxidized zinc-alumina-silica-based crystallized glass of the present invention is suitably used as a reflector base constituting a reflector for reflecting light of a light source lamp, in particular, a reflector base of a lighting device or a projector light source. Can be.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Description

明 細 書
酸化亜鉛一アルミナ一シリカ系結晶化ガラス
技術分野
[0001] 本発明は、光源ランプの光を反射させるための反射鏡用の基体 (反射鏡基体)、特 に、照明装置や映写機光源の反射鏡基体として好適に用いられる結晶化ガラスに関 する。
背景技術
[0002] OHP (Over Head Projector)、液晶プロジェクターをはじめとする映写機光源や、ス ポット照明等の照明装置においては、光源ランプ力も照射される光を反射させるため の反射鏡が用いられる。このような反射鏡は、超高圧水銀灯等の光源ランプ力 の発 熱によって高温に曝される部材であり、高い耐熱性が要求される。従って、従来は、 耐熱性に優れる耐熱ガラス (例えば、パイレックス (登録商標)、コーユング社製等)を 構成材料とする反射鏡基体に反射膜が形成されたものが用いられてきた。
[0003] しかしながら、近年、照明装置や映写機光源等に使用される光源ランプは高出力 ィ匕、高輝度化される傾向にあり、要求される耐熱性のレベルはより一層高いものとな つている。このような背景の下、反射鏡基体の構成材料として、耐熱ガラスより更に耐 熱性に優れる結晶化ガラスを用いることが試みられて 、る。
[0004] 例えば、 βースポジュメン固溶体 ( β -spodumene: Li O— Al O 4SiO )や β ユー
2 2 3 2 クリプタイト固溶体( j8 -eucryptite : Li O— Al O—2SiO )といったリチア—アルミナ
2 2 3 2
シリカ系結晶化ガラス (以下、「リチア系結晶化ガラス」と記す場合がある)を反射鏡基 体の構成材料として用いることが提案されている (例えば、特許文献 1参照)。また、 本発明者等もセルジアン(celsian : BaO— Al O— 2SiO )のようなバリアーアルミナーシ
2 3 2
リカ系結晶化ガラス (以下、「バリア系結晶化ガラス」と記す場合がある)を反射鏡基体 の構成材料として用いることを既に提案している (例えば、特許文献 2参照)。
[0005] 特許文献 1:特公平 7— 92527号公報
特許文献 2:特開 2002-109923号公報
発明の開示 [0006] ところ力 上記のリチア系結晶化ガラスは、熱膨張係数 (JIS R1618 :40-400°C )が O X 10—7— 20 X 10—7 (Z°C)程度と極めて小さぐ優れた耐熱性を示すものの、融 点が約 1500°C以上と高いため、溶融性に劣るという問題があった。具体的には、ガ ラスを溶融して反射鏡基体を成形する際に、 1500°C以上の高温に耐え得る特殊設 備 (溶融炉等)を必要とし、製造条件に制約があるという難点があった。一方、上記の ノ リア系結晶化ガラスは、融点が 1450°C前後と低ぐそのような問題は生じないもの の、熱膨張係数 (JIS R1618 :40— 400°C)は 30 X 10— 7— 45 X 10— 7 (Z°C)程度で あり、耐熱性の面でなお改善の余地を残していた。
[0007] 本発明は、上述のような従来技術の課題を解決すべくなされたものであり、これらの 結晶化ガラスとは異なる組成を有する、より高性能な結晶化ガラス、具体的には、少 なくともノリア系結晶化ガラスと同等の高い耐熱性、好ましくはリチア系結晶化ガラス に匹敵する優れた耐熱性を有し、かつ、バリア系結晶化ガラスのように融点が低ぐ 溶融性が良好な結晶化ガラスを提供するものである。
[0008] 本発明者等は、上述の課題を解決するべく鋭意研究した結果、酸化亜鉛 アルミ ナーシリカ系の結晶化ガラスにおいて、特定の修飾成分を含有せしめることによって、 上記目的を達成することができることを見出し、本発明を完成させた。即ち、本発明 によれば、以下の酸ィ匕亜鉛 アルミナ シリカ系結晶化ガラスが提供される。
[0009] [1] 主成分としての酸化亜鉛 (ZnO)、アルミナ (Al O )、及びシリカ(SiO )と、核形
2 3 2 成剤としてのジルコユア (ZrO )とを含有する酸ィ匕亜鉛 アルミナ シリカ系の結晶化
2
ガラスであって、前記主成分が、酸ィ匕亜鉛 20— 30質量%、アルミナ 15— 25質量% 、及びシリカ 50— 60質量%の比率で構成され、かつ、これらの成分全体で 100質量 %を占めるものであり、前記主成分 100質量部に対して、前記核形成剤としてのジル コ-ァ 3— 6質量部を含有し、更に、前記主成分、及び前記核形成剤に加えて、修飾 成分としての酸化リチウム (Li O)、酸化ナトリウム (Na O)、酸化カリウム (K O)、五
2 2 2 酸化二リン(P O )、酸化ニオブ (Nb O )、及び酸化タンタル (Ta O )力 なる群より
2 5 2 5 2 5
選択された少なくとも一種の成分を含有する酸化亜鉛 -アルミナ -シリカ系結晶化ガ ラス。
[0010] [2] 前記主成分により結晶相が構成され、その主結晶相が亜鉛ぺタライト (Zn— petallite)固溶体又は β 石英( β -quartz)固溶体である前記 [1]に記載の酸化亜鉛 アルミナ シリカ系結晶化ガラス。
[0011] [3] 前記主成分 100質量部に対して、前記修飾成分 0. 2-5. 0質量部を含有する 前記 [ 1]又は [2]に記載の酸ィ匕亜鉛 アルミナ シリカ系結晶化ガラス。
[0012] [4] 前記核形成剤としてジルコユアの一部に代えて、前記核形成剤としての二酸化 スズを含有し、その含有量は、前記主成分 100質量部に対して 0. 5— 4質量部であ る [1]一 [3]の 、ずれかに記載の酸ィ匕亜鉛 アルミナ シリカ系結晶化ガラス。
[0013] [5] 前記 [1]一 [4]のいずれか〖こ記載の酸ィ匕亜鉛 アルミナ シリカ系結晶化ガラス からなり、反射膜を配置するための凹面が形成された本体と、前記本体の内部に埋 設された金属製の網状体とを備えた反射鏡基体。
[0014] [6] 前記網状体が、ニッケル (Ni)、コバルト(Co)、ステンレス鋼 (SUS: Steel Use Stainless)、及びコバール (kobar)の群力 選択される少なくとも一種を主たる構成成 分とする金属からなるものである前記 [5]に記載の反射鏡基体。
[0015] [7] 前記網状体が、金 (Au)、白金 (Pt)、銀 (Ag)、及び銅 (Cu)の群から選択され る少なくとも一種を主たる構成成分とする金属力 なるもの、又は前記金属からなる 表面被膜を有するものである前記 [5]又は [6]に記載の反射鏡基体。
[0016] 本発明の酸ィ匕亜鉛 アルミナ シリカ系結晶化ガラス (以下、「酸化亜鉛系結晶化ガ ラス」と記す場合がある)は、少なくともノリア系結晶化ガラスと同等の高い耐熱性、条 件によっては、リチア系結晶化ガラスに匹敵する優れた耐熱性を有し、かつ、バリア 系結晶化ガラスのように融点が低ぐ溶融性が良好である。また、リチア系結晶化ガラ スと比較して、高温条件下での経時的な結晶安定性に優れており、長期間高温に曝 された場合でも体積収縮が極めて少な 、。
図面の簡単な説明
[0017] [図 1]本発明の酸ィ匕亜鉛 アルミナ シリカ系結晶化ガラスにおける好ましい主成分 構成比率を示す相図である。
[図 2]実施例 50の結晶化ガラスの熱膨張率の経時的な変化を示したグラフである。
[図 3]比較例 14の結晶化ガラスの熱膨張率の経時的な変化を示したグラフである。 圆 4]反射鏡基体の一般的な構成を示す側面断面図である。 [図 5]反射鏡基体成形用金型により、反射鏡基体を成形する工程 (a)一 (f)を示すェ 程図である。
[図 6]反射鏡基体の使用状態を示す側面断面図である。
[図 7(a)]本発明の反射鏡基体の構成を示す側面断面図である。
[図 7(b)]本発明の反射鏡基体の構成を示す側面断面図である。
[図 7(c)]本発明の反射鏡基体の構成を示す側面断面図である。
[図 8]反射鏡基体成形用金型により、本発明の反射鏡基体を成形する工程 (a)— (g) を示す工程図である。
符号の説明
[0018] 10, 50···反射鏡基体、 12…凹面、 14…椀状部、 15…くびれ部、 16···ネック部、 17 …本体、 18…内部空間、 20···貫通孔、 22…反射膜、 24…光源ランプ、 26…固定 材、 28···保護板、 30···反射鏡基体成形用金型、 32···モールド、 32a…凹部、 33··· キヤビティ、 34···コアロッド、 34a…凸部 35···ゴブ供給ノズル、 36· "リング、 36a…ガ イド孔、 38···ゴブ、 37···切断刃、 52···網状体。
発明を実施するための最良の形態
[0019] 以下、本発明の結晶化ガラスを実施するための最良の形態について具体的に説明 するが、本発明は以下の形態に限定されるものではない。
[0020] 本発明の結晶化ガラスは、主成分としての酸化亜鉛、アルミナ、及びシリカと、核形 成剤としてのジルコユアとを含有する酸ィ匕亜鉛系の結晶化ガラスであり、主成分とし ての酸ィ匕亜鉛、アルミナ、及びシリカの構成比率、並びに核形成剤としてのジルコ- ァの含有量を所定の値に制御し、更に、主成分、及び核形成剤に加えて、特定の修 飾成分を含有せしめたものである。
[0021] (1)主成分
本発明の結晶化ガラスは、主成分としての酸化亜鉛、アルミナ、及びシリカを含有 する。このような系の結晶化ガラスは、熱膨張率が小さぐ優れた耐熱性を示すことを 期待できる。
[0022] 酸ィ匕亜鉛 アルミナ シリカ系結晶化ガラスにおいては、主成分としての酸化亜鉛、 アルミナ、及びシリカによって結晶相が構成される。その結晶相としては、亜鉛べタラ イト(Zn—petallite :ZnO'Al O - 3SiO、 ZnO - 2SiO
2、 ΖηΟ·Α1 O - 8SiOの混合物
2 3 2 2 3 2
)固溶体、 β 石英( β -quartz: SiO )固溶体、ガーナイト (gahnite: ZnO · Al O )、ゥ
2 2 3 イリマイト (willemite : 2ZnO ' SiO )等があるが、亜鉛ぺタライト固溶体、 |8—石英固溶
2
体、ウイリマイトの熱膨張率が比較的小さいのに対し、ガーナイトの熱膨張率は著しく 大きい。
[0023] 従って、本発明の結晶化ガラスは、その結晶相として、可能な限りガーナイトを含ま ないことが好ましぐ実質的にガーナイトを含まないこと (実質的にガーナイトを 0質量 %含むこと)が更に好ましぐその主結晶相が亜鉛ぺタライト固溶体又は β 石英固 溶体であることが特に好ましい。なお、本発明において「主結晶相」というときは、室温 (25°C)において粉末 X線回折装置 (例えば、商品名: RINT2500、理学電機 (株) 製)により測定される回折 X線のピーク強度が最も強い結晶相を意味するものとする。
[0024] 酸ィ匕亜鉛 アルミナ シリカ系の結晶化ガラスにおいて、亜鉛ぺタライト固溶体又は β 石英固溶体を特異的に形成させるためには、主成分として含有される酸化亜鉛 、アルミナ、及びシリカの構成比率 (以下、「主成分構成比率」と記す)を所定の値に 制御することが必要である。具体的には、図 1に示す相図の斜線部分、即ち、主成分 力 酸化亜鉛 20— 30質量%、アルミナ 15— 25質量%、及びシリカ 50— 60質量% の比率で構成され、かつ、これらの成分全体で 100質量%を占めるという限定された 構成比率において、亜鉛べタライト固溶体又は |8—石英固溶体が特異的に形成され る。
[0025] 表 2は、図 1の相図における記号 (I)一 (VII)で示される主成分構成比率を有する 酸ィ匕亜鉛 アルミナ シリカ系結晶化ガラスについて、その結晶相、及び熱膨張係数 を評価した結果を示す表である。具体的には、図 1の記号 (I)一 (VII)で示される主 成分構成比率を有し、更に、表 1に示す量の核形成剤 (ジルコニァ)、及びガラス清 澄剤(酸化アンチモン(Sb O ) )を含有し、修飾成分を含有しない酸化亜鉛 アルミ
2 3
ナーシリカ系結晶化ガラスを実際に製造し (参考例 1一 7)、それらの結晶化ガラスに つき、室温(25°C)において粉末 X線回折装置により測定される回折 X線のピークパ ターンに基づいて結晶相を、 JIS R1618に記載の方法に準拠して熱膨張係数 (平 均線熱膨張係数)を各々評価した結果を示したものである。 [0026] 具体的には、結晶相は、粉末 X線回折装置として、回転対陰極型ターゲット (Cu)、 及びグラフアイトモノクロメータを有する粉末 X線回折装置(商品名: RINT2500、理 学電機 (株)製)を用い、 X線源 CuK a線、管電圧 50kV、管電流 30mA、回折角 2 Θ = 10°— 40°の条件の下、室温(25°C)において結晶化ガラスの回折ピークを測 定することにより評価した。測定される回折 X線のピーク強度が最も強い結晶相をそ の結晶化ガラスの主結晶相とした。
[0027] また、熱膨張係数は、結晶化ガラスから 3mm X 3mm X 20mmの測定サンプルを 切り出し、 JIS R1618【こ記載の方法【こ準拠して、 40一 400oC、 40一 600oC、 40一 8 00°Cの 3つの温度範囲で測定した。更に、耐熱性の評価としては、 40— 400°Cにお ける熱膨張係数が、リチア系結晶化ガラスと同等以下 (20 X 10— 7 (Z°C)以下)の結 晶化ガラスが得られた場合を「〇」、ノ リア系結晶化ガラスと同等以下 (45 X 10— 7 (Z °C)以下)の結晶化ガラスが得られた場合を「△」、ノ リア系結晶化ガラスより大きい (4 5 X 10— 7 (Z°C)超)結晶化ガラスし力得られな力つた場合を「 X」として表記した。
[0028] [表 1]
主成分 核形成剤 力'ラス清澄剤 結晶化力'ラス全体 構成成分比率 (合計 100質量;!!)
図 1中 ZnO A1203 Si02 主成分全体 Zr02 Sb203¾002 記号 (質量 (質量!!;) (質量 S (質量部) (質量部) (質量部) (質量部) 参考例 1 (I) 25 20 55 100 5 0.5 105.5 参考例 2 (II) 25 15 60 100 5 0.5 105.5 参考例 3 (III) 20 20 60 100 5 0.5 105.5 参考例 4 (IV) 30 15 55 100 5 0.5 105.5 参考例 5 (V) 20 25 55 100 5 0.5 105.5 参考例 6 (VI) 30 20 50 100 5 0.5 105.5 参考例 7 (VII) 25 25 50 100 5 0.5 105.5
Figure imgf000010_0001
結晶相の檷にて、 太字は主結晶相、 ( ) 内は他の結晶相、 Qu: )3 -石英固溶体、 Pe:亜鉛 Λ°タライト固溶体、 Ή:ウイリマ仆、 Ga:力' -ナ仆 平均線熱膨張係数の欄にて、 「算出不可」 とは熱膨張曲線に転移点、 屈伏点があり熱膨張係数が算出できなかったことを示す。
[0030] 表 2に示すように、図 1の記号 (I)一 (VII)で示される主成分構成比率を有する酸化 亜鉛 アルミナ シリカ系結晶化ガラスは、 V、ずれもその主結晶相が亜鉛ぺタライト固 溶体又は ι8—石英固溶体であり、その熱膨張係数は、少なくともバリア系結晶化ガラ ス(30 X 10— 7— 45 X 10— 7 (Z°C) )と同等以下であり、主成分構成比率や結晶化温度 等を適切な条件に設定したものについては、リチア系結晶化ガラス (O X 10—7— 20 X 10— 7 (Z°C) )に匹敵する極めて小さ!/、値を示した。
[0031] このように、主成分が、酸化亜鉛 20— 30質量0 /0、アルミナ 15— 25質量0 /0、及びシ リカ 50— 60質量%の比率で構成され、かつ、これらの成分全体で 100質量%を占め る酸ィ匕亜鉛 アルミナ シリカ系結晶化ガラスは、その主結晶相が亜鉛ぺタライト固溶 体又は ι8 -石英固溶体であるため、いずれも熱膨張率が小さぐ優れた耐熱性を示 すものであるが、中でも参考例 1又は参考例 3で採用した主成分構成比率を有する 結晶化ガラスが好ましい。これらの主成分構成比率を有する結晶化ガラスは、リチア 系結晶化ガラスに匹敵する極めて小さい熱膨張率を有し、優れた耐熱性を示すこと に加え、白濁の少ない半透明のガラスであり、赤外光を容易に透過するために、反 射鏡基体とした際に蓄熱による内部温度の上昇が起こり難ぐ更には、結晶化温度 等の製造条件に拘らず、安定的に熱膨張率の小さい結晶化ガラスを得られる点にお いて好ましい。また、反射鏡基体とした際に、蒸着される反射材との熱膨張率差を小 さくでき、反射材にクラックが発生する事態を有効に防止することができる点において 、参考例 1で採用した主成分構成比率を有する結晶化ガラスが特に好ましい。
[0032] なお、参考例 1又は参考例 3で採用した主成分構成比率を有する結晶化ガラスと比 較すると、参考例 5で採用した主成分構成比率を有する結晶化ガラスは、ガーナイト の形成が惹起され易いことに起因して、やや熱膨張率が大きぐ耐熱性にやや劣り、 参考例 2又は参考例 4で採用した主成分構成比率を有する結晶化ガラスは、ガラス が白濁した白色不透明のガラスであり、赤外光を吸収するために、反射鏡基体とした 際に蓄熱による内部温度の上昇が起こり易いことに加え、外観検査の際に内部欠陥 等の不良を発見し難いという不具合が生じるおそれがあり、参考例 6又は参考例 7で 採用した主成分構成比率を有する結晶化ガラスは、結晶化温度等の製造条件によ つては熱膨張率が大きく変動したり、結晶化が確実に進行しないおそれがある。 [0033] 但し、これらの主成分構成比率を有する結晶化ガラスについても、少なくともノ リア 系結晶化ガラスと同等以下の熱膨張率を有し、優れた耐熱性を示すことはいうまでも ない。なお、ここに示されるような、主成分が、酸ィ匕亜鉛 20— 30質量0 /0、アルミナ 15 一 25質量%、及びシリカ 50— 60質量%の比率で構成された結晶化ガラスであって も、後述する修飾成分を含有しないものについては、耐熱性は良好である一方で、 融点が高く溶融性が十分ではな 、と 、う結果が得られて 、る。このような結晶化ガラ スは成形性が悪ィ匕するという点において問題がある。従って、本発明の結晶化ガラス は、後述する特定の修飾成分を含有することが必須の条件となる。
[0034] (2)核形成剤
本発明の結晶化ガラスは、核形成剤としてのジルコユアを含有する。本明細書にお いて「核形成剤」というときは、結晶化ガラスにおいて微細ガラス結晶の析出を促進す るための物質を意味する。
[0035] 通常、結晶化ガラスの核形成剤としては、チタ-ァ (TiO )等が含有されるが、本発
2
明の結晶化ガラスにおける核形成剤はジルコユアを含有して ヽなければならな 、。 核形成剤としてチタ-ァを含有する結晶化ガラスは、熱膨張率が著しく大きいガーナ イトの形成が惹起され易いため、結晶化ガラス自体の熱膨張率も大きくなる傾向があ り、耐熱性に劣る場合がある。核形成剤としてジルコユアを含有する結晶化ガラスは 、このような不具合が生じ難 、点にお 、て好まし!/、。
[0036] 核形成剤としてのジルコユアは、主成分 100質量部に対して、 3— 6質量部含有さ れていることが必要である。含有量が上記範囲未満の場合には、ジルコユアが核形 成剤としての効果を発揮しなくなり、ガラスの結晶化が不十分となるおそれがある点 において好ましくなぐ上記範囲を超えると、結晶化に先立って核形成剤を溶融させ る際に、その溶融が困難になるというおそれがある点において好ましくない。
[0037] なお、本発明の結晶化ガラスは、主成分、核形成剤、修飾成分を所定の比率で混 合してガラス原料を調製し、そのガラス原料を溶融して溶融ガラスとした後、所望の形 状に成形し、熱処理 (結晶化処理)を行うことにより、反射鏡基体とすることができるが 、ガラス原料の溶融 '成形の際に、ごく稀に核形成剤としてのジルコユアの再結晶に 起因する失透現象や成形体の表面粗さの増大が認められる場合がある。 [0038] 上記の現象が発生する頻度はさほど多くはない。しかしながら、失透現象は結晶化 ガラスを不均質化させるおそれがあり、成形体の表面粗さの増大は反射鏡の反射特 性を低下させるおそれがあるため、可能な限り抑制することが好ましい。
[0039] そこで、本発明者等が鋭意検討した結果、核形成剤としてのジルコユアの一部に代 えて、核形成剤としての二酸化スズ (SnO )を含有せしめることが、ガラス原料の溶融
2
•成形の段階におけるジルコユアの再結晶、ひいては失透現象や成形体の表面粗さ の増大を抑制するために有効であることを見出した。即ち、本発明の結晶化ガラスは 、核形成剤としてのジルコユアの一部に代えて、核形成剤としての二酸化スズを含有 するものであること、要すれば、核形成剤としてジルコ二ァとニ酸化スズの双方を含 有し、これらの総量として、主成分 100質量部に対して 3— 6質量部を含有するもの が好ましい。
[0040] 核形成剤としてジルコユアのみを含有する結晶化ガラスにおいて、ガラス原料の溶 融'成形の段階におけるジルコユアの再結晶を抑制するためには、核形成剤としての ジルコユアの含有量を主成分 100質量部に対して 3質量部以下とすることが有効で ある。但し、このような結晶化ガラスは核形成剤の含有量が少ないことに起因して結 晶核の形成が不十分となり易ぐ結晶性に劣る場合がある。
[0041] 一方、核形成剤としてのジルコユアの一部に代えて、核形成剤としての二酸化スズ を含有する結晶化ガラスは、良好な結晶性を維持したまま、ガラス原料の溶融'成形 の段階におけるジルコユアの再結晶を抑制することが可能であることに加え、ガラス の溶融温度を低下させ、溶融性を向上させることができる点において好ましい。
[0042] 核形成剤としての二酸化スズは、主成分 100質量部に対して、 0. 5— 4質量部含 有されていることが好ましぐ 0. 5— 2質量部含有されていることが更に好ましい。含 有量が上記範囲未満の場合には、二酸化スズによるジルコユアの再結晶を抑制する 効果を享受できなくなるおそれがある点において好ましくなぐ上記範囲を超えると、 二酸化スズ自体が再結晶し易くなり、ジルコユアの場合と同様に、失透現象や成形 体の表面粗さの増大が発生するおそれがある点において好ましくない。
[0043] なお、核形成剤のジルコユアの全部に代えて、核形成剤としての二酸化スズを含有 せしめた場合 (即ち、核形成剤として二酸化スズのみを含有せしめた場合)にもガラ ス原料の溶融'成形の段階における失透現象や成形体の表面粗さの増大を回避す ることができる場合がある。但し、ガーナイト (熱膨張率が著しく大きい)、ウイリマィト( 亜鉛べタライト固溶体や β 石英固溶体と比較して熱膨張率が大き!ヽ)の形成が惹 起され得るため、結晶化ガラス自体の熱膨張率が大きくなり、耐熱性に劣る場合があ る。
[0044] 核形成剤として二酸化スズを含む結晶化ガラスにおいては、核形成剤としてのジル コ-ァは、主成分 100質量部に対して 2— 3質量部含有されていることが好ましい。こ のような含有量とすることにより、良好な結晶性を維持したまま、ガラス原料の溶融'成 形の段階におけるジルコユアの再結晶を抑制することができる。
[0045] 以上のことを勘案すると、本発明の結晶化ガラスにおいては、主成分 100質量部に 対して、核形成剤としてのジルコユアを 3質量部、二酸化スズを 2質量部含有するも のが最も好ましい。このような結晶化ガラスは、良好な結晶性を維持したまま、ガラス 原料の溶融 '成形の段階におけるジルコ二ァの再結晶を効果的に抑制することがで きるのは勿論のこと、その主結晶相を亜鉛ぺタライト固溶体又は j8—石英固溶体とす ることができるため、熱膨張率が小さぐリチア系結晶化ガラスに匹敵する優れた耐熱 性を示す。
[0046] (3)修飾成分
本発明の結晶化ガラスは、修飾成分としての酸化リチウム、酸ィ匕ナトリウム、酸ィ匕カ リウム、五酸化二リン、酸化ニオブ、及び酸化タンタルからなる群より選択された少な くとも一種の成分を含有する。本明細書において「修飾成分」というときは、主成分に よって構成される結晶構造中の非架橋酸素と静電的に結合し、ガラスの種々の物性 に影響を与える物質を意味する。
[0047] 通常、結晶化ガラスの修飾成分としては、アルカリ金属(リチウム、ナトリウム、力リウ ム、ルビジウム、セシウム等)の酸化物、アルカリ土類金属(マグネシウム、カルシウム 、ストロンチウム、バリウム等)の酸化物、遷移金属 (イットリウム、バナジウム、ニオブ、 タンタル、モリブデン等)の酸ィ匕物、非金属(ホウ素、リン等)の酸化物の他、酸化ビス マス (Bi O )等が含有されるが、本発明の結晶化ガラスにおいては、酸化リチウム、
2 3
酸化ナトリウム、酸化カリウム、五酸化二リン、酸化ニオブ、及び酸化タンタルからなる 群より選択された少なくとも一種の成分 (以下、「6成分」と略記する場合がある)を修 飾成分として含有して!/、る必要がある。
[0048] 修飾成分として上記 6成分のうちの少なくとも一種の成分を含有する結晶化ガラス は、上記 6成分を含有しない結晶化ガラスと比較して、熱膨張率がより安定し、耐熱 性に一層優れる他、溶融性も良好であり、ガラスの成形性に優れる。中でも酸化リチ ゥムを修飾成分として含有する結晶化ガラスは、特に融点が低く(1450— 1500°C程 度)、ガラスの溶融性が良好であるため、ガラスを溶融して反射鏡基体を成形するに 際し、 1500°C以上の高温に耐え得る特殊設備 (溶融炉等)は不要であり、製造条件 に関する制約が少ない。即ち、極めて簡便に反射鏡基体を製造することが可能であ る。また、酸化リチウム、酸ィ匕ナトリウム、酸ィ匕カリウムというアルカリ金属の酸ィ匕物を修 飾成分として含有する結晶化ガラスは、五酸化二リンを修飾成分として含有する結晶 化ガラスと比較して、結晶性が良好である。更に、酸化ニオブ、酸化タンタルを含有 する結晶化ガラスは、溶融性が良好であることに加え、結晶化温度が低ぐ結晶性も 良好である。
[0049] 修飾成分としての上記 6成分は、上記 6成分の総量として、主成分 100質量部に対 して、 0. 2-5. 0質量部含有されていることが好ましぐ 0. 5-4. 6質量部含有され ていることが更に好ましい。含有量が上記範囲未満の場合には、修飾成分としての 効果を発揮しなくなるおそれがある点において好ましくなぐ上記範囲を超えると、熱 膨張率が大きくなるというおそれがある点において好ましくない。
[0050] 酸化リチウムの好ましい含有量は、主成分 100質量部に対して、 0. 3-0. 75質量 部である。含有量が上記範囲未満の場合には、酸化リチウムによるガラスの溶融性 向上効果を享受できなくなるおそれがある点において好ましくない。
[0051] 五酸化二リンの好ましい含有量は、主成分 100質量部に対して、 1一 3質量部であ る。含有量が上記範囲未満の場合には、五酸ィ匕ニリンによるガラスの溶融性向上効 果を享受できなくなるおそれがある点において好ましくなぐ上記範囲を超えると、ガ ラスの結晶性が低いために、結晶化が不十分となるおそれがある点において好ましく ない。
[0052] 酸ィ匕ナトリウムの好ましい含有量は、主成分 100質量部に対して、 0. 4一 1質量部 である。含有量が上記範囲未満の場合には、酸ィ匕ナトリウムによる結晶性向上効果 を享受できなくなるおそれがある点にぉ 、て好ましくな 、。
[0053] 酸ィ匕カリウムの好ましい含有量は、主成分 100質量部に対して、 0. 5— 1. 5質量部 である。含有量が上記範囲未満の場合には、酸ィ匕カリウムによる結晶性向上効果を 享受できなくなるおそれがある点にぉ 、て好ましくな 、。
[0054] 酸ィ匕ニオブの好ましい含有量は、主成分 100質量部に対して、 0. 1-0. 5質量部 である。含有量が上記範囲未満の場合には、酸ィ匕ニオブによる溶融性改善、結晶化 温度低減、結晶性向上効果を享受できなくなるおそれがある点にぉ 、て好ましくな 、
[0055] 酸化タンタルの好ましい含有量は、主成分 100質量部に対して、 0. 1-0. 5質量 部である。含有量が上記範囲未満の場合には、酸ィヒタンタルによる溶融性改善、結 晶化温度低減、結晶性向上効果を享受できなくなるおそれがある点にぉ 、て好まし くない。
[0056] 本発明の結晶化ガラスは、修飾成分として上記 6成分のうちの少なくとも一種の成 分を含有する限りにおいて、他の修飾成分を含有するものであってもよい。例えば、 修飾成分として主成分 100質量部に対して、 0. 1-0. 5質量部程度の酸化バナジゥ ム(V O )、又は酸化モリブデン(MoO )を含有せしめることは好ましい。但し、他の
2 5 3
修飾成分の含有量は、本発明の結晶化ガラスが有する好ましい効果、即ち、少なくと もバリア系結晶化ガラスと同等以下の熱膨張率を有し、優れた耐熱性を示すという効 果を阻害しない範囲に制限されるべきである。
[0057] なお、本発明の結晶化ガラスにお!、て重要な点は、通常は結晶化ガラスの修飾成 分として好適に用いられるアルカリ土類金属の酸ィ匕物(酸ィ匕マグネシウム (MgO)、 酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、酸化バリウム(BaO) )、酸化ホウ 素(B O )、酸化イットリウム (Y O )、酸化ビスマス(Bi O )を含有せしめると、却って
2 3 2 3 2 3
耐熱性の向上効果が減殺される点にある。修飾成分としてこれらの成分を含有せし めると、熱膨張率の高い結晶相(ガーナイトゃスピネル (MgO' Al O )等)の形成が
2 3
惹起され易くなるため、熱膨張率が大きくなり、耐熱性が低下することによる。中でも、 酸化ホウ素を修飾成分として含む結晶化ガラスは、熱膨張率の増大、耐熱性の低下 力 り顕著である。従って、本発明の結晶化ガラスにおいては、少なくとも修飾成分と しての酸化ホウ素を実質的に含有しな ヽこと (修飾成分としての酸化ホウ素を実質的 に 0質量%含有すること)が好まし 、。
[0058] (4)添加剤
本発明の結晶化ガラスは、主成分、核形成剤、修飾成分の他、目的に応じて添カロ 剤を含有せしめてもよい。例えば、ガラス清澄剤として、主成分 100質量部に対して、 0. 5質量部程度の酸ィ匕アンチモン (Sb O )を含有せしめることは、ガラス溶融の際の
2 3
気泡の発生量を減少させ、ガラス内に気泡を残り難くするという効果を享受できる点 において好ましい。
[0059] (5)結晶化ガラス
本発明の結晶化ガラスは、上述した主成分、核形成剤、修飾成分を所定の比率で 混合してガラス原料を調製し、そのガラス原料を溶融してガラスとした後、 800— 900 °C程度の高温で 2— 4時間程度、熱処理 (結晶化処理)を行うことによって得ることが できる。
[0060] また、上述した主成分、核形成剤、修飾成分に代えて、加熱によりこれらの成分に 変換される得る前駆体 (例えば、炭酸塩、硝酸塩等)を用い、これらを酸化物換算で 所定の比率となるように混合してガラス原料を調製し、そのガラス原料を溶融してガラ スとした後、同様の条件で熱処理 (結晶化処理)を行うことによつても得ることができる
[0061] 処理温度'処理時間が上記範囲未満の場合には、ガラスの結晶化が十分に進行 せず、その結晶化度が低下するおそれがある点において好ましくなぐ上記範囲を超 える場合には、熱膨張率の高 、結晶相 (ガーナイトやウイリマイト等)の形成が惹起さ れ易くなるため、ガラスの熱膨張率が大きくなり、耐熱性が低下するおそれがある点 において好ましくない。
[0062] 上記のようにして得られる本発明の結晶化ガラスは、高い耐熱性を有し、かつ、融 点が低ぐ溶融性が良好であることに加え、高温条件下での経時的な結晶安定性に 優れており、長期間高温に曝された場合でも体積収縮が極めて少ないという特徴的 な物性を示す。 [0063] 図 2は、本発明の結晶化ガラスを 600°C、 650°C、 700°C、 750°Cの高温条件下で 各々 20時間保持し、この際測定した体積膨張率の経時的な変化を示したグラフであ る。この図 2に示すように、本発明の結晶化ガラスは、ガラスの温度が保持温度に達 するまではその温度上昇に伴って膨張率が上昇 (体積が膨張)しているが、ガラスの 温度が保持温度に達した後においては略一定の膨張率 (体積)を維持しており、 20 時間を経過してもその膨張率 (体積)は殆ど変化しな力つた。
[0064] これに対し、リチア系結晶化ガラスについて同様の試験を行ったところ、図 3に示す ように、ガラスの温度が保持温度に達し、その膨張率 (体積)が極大値に至った後、 一転、膨張率が低下 (体積が減少)するという挙動を示した。そして、この挙動は保持 温度が高温となるほど顕著となる傾向があった。即ち、リチア系結晶化ガラスは、長時 間高温に曝されると体積収縮を起こすことになる。
[0065] リチア系結晶化ガラスがこのような挙動を示す原因は、高温条件下で保持されるこ とにより、経時的に結晶相が変化することにある。具体的には、 i)結晶粒成長による 密度上昇 (体積収縮)、 ii) |8—ユークリプタイト固溶体 (熱膨張係数≤0)から j8—スポ ジュメン固溶体 (熱膨張係数≥0)への結晶相の変化、等が原因として挙げられる。即 ち、リチア系結晶化ガラスは、高温条件下における経時的な結晶安定性が不十分で あるために、長時間高温に曝されると体積収縮を起こしてしまうのである。
[0066] 従って、リチア系結晶化ガラスにより反射鏡基体を構成した場合には、長期間の使 用により結晶粒成長が進行し体積収縮が起こるため、反射鏡基体の形状が変化する おそれがある。このような形状変化は、反射特性の低下や集光点のズレを招来する ため好ましくない。
[0067] 本発明の結晶化ガラスは、リチア系結晶化ガラスとは異なり、上記のような不具合が 少ないため、 600°C以上の高温条件下、 5000— 10000時間といった長期間の使用 に耐え得る耐久性を要求される反射鏡基体の構成材料として好まし 、ものである。近 年、照明装置や映写機光源等に使用される光源ランプが高出力化、高輝度化され、 反射鏡基体がより高い温度に曝される傾向にあることも考慮すれば、本発明の結晶 化ガラスが非常に有用な材料であることは 、うまでもな!/、。
[0068] (6)反射鏡基体 既に述べたように、本発明の結晶化ガラスは、光源ランプの光を反射させるための 反射鏡を構成する反射鏡基体、特に、照明装置や映写機光源の反射鏡基体の構成 材料として好適に用いることができるものである。
[0069] 反射鏡基体は、反射膜を配置するための凹面が形成された部材である。凹面は、 反射膜を配置した際に、所望の反射特性が得られる限り、その形状に特に制限はな い。通常は、回転二次曲面 (例えば、放物曲面や楕円曲面等)に構成することが多く 、中でも、反射光の集光効率に優れる楕円曲面に構成することが好ましい。
[0070] 上記凹面以外の部分の構成については特に限定はなぐ目的に応じて種々の構 成のものが用いられるが、一般的な構成としては、図 4に示す反射鏡基体 10のような 構成が挙げられる。図 4に示す反射鏡基体 10は、椀状部 14と、ネック部 16という 2つ の部分力も構成されている。そして、椀状部 14とネック部 16との境界部はくびれ形状 となっており、くびれ部 15が形成されている。椀状部 14には、反射膜を配置するため の凹面 12が形成されており、ネック部 16は凹面 12の底部側に椀状部 14と連続する ように付設されている。また、椀状部 14には、凹面 12によって区画された内部空間 1 8が形成されており、ネック部 16には、その内部を貫通し、椀状部 14の内部空間 18 に開孔する光源ランプ配設用の貫通孔 20が形成されている。
[0071] 上記のような反射鏡基体は、例えば、ガラス原料を高温で溶融させてなる溶融ガラ ス塊(「ゴブ」と称される)を、金型を用いてプレス成形する方法により製造することが できる。
[0072] 反射鏡基体を成形するために用いられる金型としては、例えば、図 5に示すような、 反射鏡基体 31の外部形状と相補的な形状の凹部 32aを有するモールド 32と、反射 鏡基体 31の内部空間と相補的な形状の凸部 34aを有するコアロッド 34と、コアロッド 34をモールド 32の凹部 32aに案内するガイド孔 36aを有するリング 36とを備え、モー ルド 32、コアロッド 34、及びリング 36がー体となって、反射鏡基体 31を成形するキヤ ビティ 33が形成されるように構成された反射鏡基体成形用金型 30が用いられる。
[0073] 上記のような反射鏡基体成形用金型 30を用いると、以下に示すような方法により反 射鏡基体を成形することができる。まず、ゴブ供給ノズル 35からゴブ 38を供給し (図 中(a) )、そのゴブ 38を切断刃 37を用いて切断することにより、モールド 32の凹部 32 aに一定量のゴブ 38を注入する(図中(b) )。
[0074] 次いで、モールド 32の上端面にリング 36を載置し、コアロッド 34をリング 36のガイド 孔 36aに緩挿した後、コアロッド 34を下方に向力つて押圧する(図中(c)一(e) )。こう することにより、コアロッド 34がモールド 32の凹部 32aに案内されるとともに、モールド 32、コアロッド 34、及びリング 36がー体となって、反射鏡基体 31を成形するキヤビテ ィ 33が形成されるので、反射鏡基体 31を成形することが可能となる(図中(f) )。この 際、反射鏡基体 31の外部形状は、これと相補的な形状の凹部 32aを有するモールド 32により、一方、反射鏡基体 31の内部空間は、これと相補的な形状の凸部 34aを有 するコアロッド 34によって、その殆どが成形されることになる。
[0075] 成形完了後は、反射鏡基体 31を十分冷却した後、まず、コアロッド 34を上方に引 き上げる。この際、反射鏡基体 31はリング 36によって下方に押さえられているため、 コアロッド 34とともに引き上げられることはなぐモールド 32の内部に保持される。次 いで、リング 36を上方に引き上げることにより型ばらしを行い、成形体である反射鏡 基体 31をモールド 32から取り出す。このようにして、成形体である反射鏡基体 31を 得ることができる。
[0076] 上記のようにして得られた反射鏡基体は、図 4及び図 6に示すように、機械加工等 によりネック部 16の下端側を剖り貫いて、光源ランプ配設用の貫通孔 20を形成した 後、凹面 12を被覆するように反射膜 22を配置することにより反射鏡とすることができ る。
[0077] 反射膜は所望の反射特性を得られる限り、その構成は特に限定されるものではな い。例えば、チタニア (TiO )等の高屈折率物質とシリカ(SiO )等の低屈折率物質と
2 2
が交互に積層された交互多層膜等を好適に用いることができる。反射膜の形成には 、従来公知の成膜法を利用することができる。上記の交互多層膜の場合であれば、 従来公知の成膜法 (例えば、 PVD法、 CVD法、スパッタリング法等)を利用して、高 屈折率物質と低屈折率物質とを交互に積層するように成膜すればよい。
[0078] この反射鏡は、図 6に示すように、光源ランプ配設用の貫通孔 20に超高圧水銀灯 等の光源ランプ 24を装填し、その光源ランプ 24を耐熱セメント等の固定材 26を用い て固着し、更に、内部空間 18の開口部を、ガラス製の保護板 28 (厚さ 4一 5mm程度 )によって閉塞することにより発光装置とする。なお、保護板 28は、耐用時間の経過 により光源ランプが破損した際にその破片の拡散防止を図るという理由力も配設され るものである。
[0079] 以上、一般的な構成の反射鏡基体の例により説明してきたが、本発明の結晶化ガ ラスを、反射膜を配置するための凹面が形成された本体と、本体の内部に埋設され た金属製の網状体を備えた反射鏡基体の構成材料として用いることも好ま 、形態 の一つである。即ち、図 7 (a)—図 7 (c)に示す反射鏡基体 50のように、本発明の結 晶化ガラスからなり、反射面となる凹面 12が形成された本体 17と、その本体 17の内 部に埋設された金属製の網状体 52とを備えたものが好ましい。
[0080] 上記の反射鏡基体 50の特徴的な構成は、反射鏡基体 50の本体の内部に金属製 の網状体 52を埋設した点にある。網状体 52は、耐用時間の経過により反射鏡基体 自体が破損した際にその破片の拡散防止を図るという理由力 配設されるものである 。このような反射鏡基体は、発光装置使用時の安全性を向上させることが可能であり 、付設されている他の装置 (例えば、液晶プロジェクタ一等)の損傷を回避することが できるため好ましい。
[0081] 網状体 52は、反射鏡基体 50の本体 17の内部に埋設されていることが必要である 1S その埋設位置は特に制限されるものではない。従って、上記の目的に適合するよ うに適宜配置すればよぐ通常は、凹面 12の少なくとも一部を凹面 12に沿って被包 するように埋設される。
[0082] 網状体 52は、本体 17の凹面 12を凹面 12に沿って被包するように配置されることが 必要であるが、そのことを除き網状体 52の配置位置ついては特に制限はない。図 7 ( c)に示すように、凹面 12の全体を被包するように網状体 52が配置された場合には、 網状体 52による飛散防止効果が高い点において好ましいが、必ずしも凹面 12の全 体を被包するように網状体 52が配置される必要はない。例えば、図 7 (a)、図 7 (b)に 示すように、凹面 12の少なくとも一部が網状体 52によって被包されていれば本発明 の効果を得ることができる。
[0083] 図 7 (a)—図 7 (c)に示す反射鏡基体 50のように、本体が椀状部 14と、ネック部 16 という 2つの部分力も構成されている場合には、その構造上、両者の境界部であるく びれ部 15が熱ストレスに対して脆弱な部分であり破損し易い。従って、図 7 (a)に示 すように、少なくともくびれ部 15近傍に網状体 52を配置すれば十分にその効果を発 揮させることができる。また、図 7 (a)—図 7 (c)に示す反射鏡基体 50のように、椀状 部 14からくびれ部 15を経てネック部 16に至るまで網状体 52を連続的に配置するこ とも好ましい。
[0084] 網状体を構成する金属について特に制限はないが、本体が結晶化ガラスにより構 成されて!/、ることを考慮してその材質を選択することが好ま 、。
[0085] まず、網状体は、反射鏡基体の本体の内部に埋設されるものであるので、反射鏡 基体の製造過程において、高温のゴブと接触することになる。従って、窒素パージ等 を必要とせず、大気雰囲気下で反射鏡基体を製造するためには、耐酸化性に優れ た材質を選択することが好ましい。また、反射鏡基体は高温条件下で使用されるもの であるので、本体を構成する結晶化ガラスと熱膨張係数が近似し、ヤング率が高ぐ 延展性に優れた材質を選択することが好まし ヽ。
[0086] 上記のような観点からは、網状体は、ニッケル、コバルト、ステンレス鋼、及びコバー ルの群力 選択される少なくとも一種を主たる構成成分とする金属力 なるものである ことが好ましい。上記金属を選択することにより、窒素パージ等を必要とせず、大気雰 囲気下で反射鏡基体を製造することが可能となり、本体と網状体との熱膨張挙動の 相違により反射鏡基体が破損する事態を効果的に抑制することができる。
[0087] なお、「主たる構成成分」とは、網状体の全てが上記金属力 構成されて 、る必要 はなぐ主として上記金属力 構成されていれば足りる趣旨である。具体的には、網 状体を構成する金属のうち 30質量%以上が上記金属であることを意味する。
[0088] 更に、反射鏡基体はその成形後に高温での熱処理 (結晶化処理)を行うため、その 結晶化を促進し得る材質を選択することが好ましい。このような観点力もは、網状体 は、金、白金、銀、及び銅の群から選択される少なくとも一種を主たる構成成分とする 金属からなるものであることが好ましい。これらの金属はガラスの結晶核となり得るた め、ガラスの結晶化を促進し、結晶を微細化することができる点において好ましい。な お、網状体を上記金属からなる表面被膜を有するものとした場合にも同様の効果を 得ることができる。 [0089] 網状体は、網目構造を有することが必要であるが、他の構成については、結晶化ガ ラスの性状、反射鏡基体のサイズ、破片の拡散防止効果等を勘案して適宜決定すれ ばよい。例えば、網目形状としては、正方形、菱形、亀甲型等の形状を採用すること ができ、目開きとしては 3— 10mm程度のものを好適に用いることができる。通常、網 状体は直径 0. 1-1. Omm φ程度の金属線によって構成されることが多いが、場合 によっては、同程度の幅を有する金属箔によって構成されて!、てもよ 、。
[0090] 上記のような網状体が埋設された反射鏡基体は、図 5に示した一般的な構成の反 射鏡基体の製造方法に準じた方法にて製造することができる。即ち、図 8に示すよう に、モールド 32と、コアロッド 34と、リング 36とを備えた反射鏡基体成形用金型 30が 用い、ゴブ 38をプレス成形する方法により製造すればよい。この製造方法では、ゴブ 38の注入前に、モールド 32の凹部 32aに予め網状体 52をセットしておくこと(図中(a ) )を除いては、図 5に示した製造方法と同様の工程により、網状体 52が埋設された 反射鏡基体 50を得ることができる(図中 (b)— (g) )。
実施例
[0091] 以下、本発明の結晶化ガラスにつき実施例を用いて具体的に説明するが、本発明 の結晶化ガラスはこれらの実施例によって何ら限定されるものではない。なお、実施 例及び比較例の結晶化ガラスについては、耐熱性、結晶性、溶融性、失透性の 4項 目について評価し、これらの評価に基づいて総合評価を行った。耐熱性、結晶性、 溶融性、失透性の 4項目については、以下の方法により評価した。
[0092] [耐熱性]
耐熱性の評価としては、結晶化ガラスから 3mm X 3mm X 20mmの測定サンプル を切り出し、 JIS R1618【こ記載の方法【こ準拠して、 40一 400oC、 40一 600oC、 40 一 800°Cの 3つの温度範囲で熱膨張係数を測定し、 40— 400°Cにおける熱膨張係 数が、リチア系結晶化ガラスと同等以下(20 X 10— 7 (Z°C)以下)の結晶化ガラスが得 られた場合を「〇」、 ノリア系結晶化ガラスと同等以下 (45 X 10— 7 (Z°C)以下)の結晶 化ガラスが得られた場合を「△」、 ノリア系結晶化ガラスより大きい (45 X 10— 7 (Z°C) 超)結晶化ガラスし力得られな力つた場合を「 X」として表記した。
[0093] [結晶性] 結晶性の評価としては、その結晶化ガラスが結晶化し得る最低温度が 850°C未満 である場合を「〇」、 850— 900°Cである場合を「△」、 900°Cを超える場合を「X」とし
Figure imgf000024_0001
[0094] [溶融性]
溶融性の評価としては、その結晶化ガラスの溶融温度が 1500°C未満である場合を 「〇」、 1500— 1530°Cである場合を「△」、 1530°Cを超える場合を「X」として表記し た。
[0095] [失透性]
失透性の評価としては、その結晶化ガラスのガラス原料を溶融して溶融ガラスとし、 反射鏡基体の形状に成形するまでの間に失透現象が発生する頻度により評価した。 100基の反射鏡基体 (サンプル)を製造する際に、失透現象が発生したサンプルが 全くなカゝつた場合を「◎」、失透現象が発生したサンプルが 2基以下であった場合を「 〇」、失透現象が発生したサンプルが 5基以下であった場合を「△」、失透現象が発 生したサンプルが 6基以上であった場合を「 X」として表記した。
[0096] [総合評価]
総合評価としては、実施例 1一 43、及び比較例 1一 10の結晶化ガラスについては 、耐熱性、結晶性、溶融性という 3項目の評価が全て「〇」である場合を「◎」、上記 3 項目のうち 2項目が「〇」である場合を「〇」、これ以外の場合を「△」として表記した。 但し、上記 3項目のうち耐熱性、又は溶融性のいずれか 1項目でも「 X」があるものに つ!、ては上記の基準に拘らず「 X」として表記した。
[0097] また、実施例 44一 50、及び比較例 11一 13の結晶化ガラスについては、耐熱性、 結晶性、溶融性の評価が全て「〇」であり、かつ、失透性が「◎」である場合を「◎」、 耐熱性、結晶性、溶融性の評価が全て「〇」であり、かつ、失透性が「〇」である場合 を「〇」、耐熱性、又は失透性のいずれか 1項目でも「△」があるものについては「△」 として表記した。
[0098] (実施例 1一 8、比較例 1一 4)
表 3に記載の主成分、核形成剤、修飾成分を表 3に記載の比率で混合してガラス 原料を調製し、そのガラス原料を溶融してガラスとした後、 875°C又は 900°Cで 4時 間、熱処理 (結晶化処理)を行うことによって、実施例 1 8、及び比較例 1 4の結晶 化ガラスを得た。これらの結晶化ガラスについて耐熱性、結晶性、溶融性を評価した 結果を表 4に示す。
[0099] [表 3]
Figure imgf000025_0001
[0100] [表 4] 室都Βit 18〜
s½^Τ室窗驟 υ^ϋLcw: 18sい Y〜 ,,
Figure imgf000026_0001
Figure imgf000026_0002
平均線熱膨張係数の欄にて、 「算出不可」 とは熱膨張曲線に転移点、 屈伏点があり熱膨張係数が算出できなかったことを示す。
化ガラスと比較して溶融性が良好であった。特に、修飾成分として、酸化ホウ素を含 有せず、五酸ィ匕ニリン 1質量部のみを含有する実施例 5の結晶化ガラスは、耐熱性、 結晶性とも優れており、更に良好な結果を示した。一方、修飾成分としての酸化ホウ 素を 3質量部と比較的多く含有する比較例 2の結晶化ガラスは、耐熱性、溶融性とも 不良であった。
[0102] (実施例 9一 19)
表 5に記載の主成分、核形成剤、修飾成分を表 5に記載の比率で混合してガラス 原料を調製し、そのガラス原料を溶融してガラスとした後、 825°C、 850°C、 875°C又 は 900°Cで 4時間、熱処理 (結晶化処理)を行うことによって、実施例 9一 19の結晶化 ガラスを得た。これらの結晶化ガラスについて耐熱性、結晶性、溶融性を評価した結 果を表 6に示す。
[0103] [表 5]
主成分 核形成剤 力'ラス清澄剤 修飾成分 結晶化力'ラス全体 図 1中 主成分全体 Zr02 Sb203 P205 Li20 Na20 κ2ο Cs20 6成分全体
記号 (質量部) (質量部) (質量部) (質量部) (質量部) (質量部) (質量部) (質量部) (質量部) (質量部) 実施例 9 (VII) 100 5 0.5 ― 0.5 ― ― ― 0.5 106.0 実施例 10 (VII) 100 5 0.5 ― ― 0.5 ― ― 0.5 106.0 実施例 11 (I) 100 5 0.5 - 0.5 ― ― ― 0.5 106.0 実施例 12 (I) 100 5 0.5 ― ― 0.5 ― ― 0.5 106.0 実施例 13 (I) 100 5 0.5 ― ― 0.5 ― 0.5 106.0 実施例 14 (I) 100 5 0.5 ― ― ― 0.5 0.5 106.0 実施例 15 (I) 100 5 0.5 ― 0.3 (). 1 0.6 ― 1.3 106.8 実施例 16 (I) 100 5 0.5 1 0.3 0.4 0.6 ― 2.3 107.8 実施例 17 (I) 100 5 0.5 1 0.45 0.6 0.9 ― 2.95 108.45 実施例 18 (I) 100 5 0.5 1 0.6 0.8 1.2 ― 3.6 109.1 実施例 19 (I) 100 5 0.5 1 0.75 1 1.5 ― 4.25 109.75
[9挲] [雨 0] L9£l0/ 00Zd /lDd LZ 88C8Z0/S00Z OAV 結 E ¾化温度 85 結 ¾化温度 875"C 結 ¾化温度 90 評価 平均線熱 ft張係数 XI Q- ? (/°C) 平均線熱 i彭張係数 XI Ο_7(Α:) 平均線熱) 1)彭張係数 XI 0 -7 (/で) 耐熱性 結晶性 溶融性 総合評価 40 40(TC 40 - 600 40 - 800で 40 - 400"Ό 40 - 600"C 40 - 800で 40 - 400"C 40 - 600で 40 -麵で
実施例 9 - ― - -18.2 - ― -12.3 -12.5 -11.1 〇 Δ Δ Δ 実施例 10 - 一 - - ― 4.5 4.6 5.1 〇 Δ Δ Δ 実施例 11 -5.4 -4.8 -4.6 -4.2 -4.0 -3.9 5.1 3.5 - 〇 〇 Δ 〇 実施例 12 22.3 算出不可 - 6.3 5.8 6.1 28.4 26.5 - 〇 Δ Δ Δ 実施例 13 29.2 算出不可 - 7.9 8.1 - 24.1 24.7 〇 Δ Δ Δ 実施例 U 19.6 算出不可 - -2.7 -0.9 0.5 -2.9 -2.0 - 〇 〇 Δ 〇 実施例 15 24.8 算出不可 - 4.1 4.9 7.1 2.6 3.4 5.0 〇 〇 Δ 〇 実施例 16 25.0 算出不可 - 7.6 8.0 10.1 5.4 5.7 6.6 〇 〇 Δ 〇 実施例 Π 19.3 21.1 28.0 11.5 12.3 19.1 ― ― - 〇 〇 〇 ◎ 実施例 18 15.5 16.9 23.6 9.9 11.6 17.5 - ― - 〇 〇 〇 ◎ 実施例 19 16.8 18.4 27.2 15.6 16.5 24.5 ― - 〇 〇 〇 ◎ 平均線熱膨張係数の欄にて、 「算出不可」 とは熱膨張曲線に転移点、 屈伏点があり熱膨張係数が算出できなかったことを示す。
[0105] [評価]
表 5及び表 6に示すように、主成分構成比率が図 1中記号 (VII)である実施例 9の 結晶化ガラスより、主成分構成比率が図 1中記号 (I)である実施例 11の結晶化ガラス の方が結晶性が良好であった。主成分構成比率が図 1中記号 (I)である実施例 11一 19の結晶化ガラスの中では、修飾成分として、酸化リチウム、酸化セシウムを含有す る実施例 11, 14, 15, 16の結晶化ガラスは、酸ィ匕ナトリウムや酸ィ匕カリウムのみを含 有する実施例 12, 13の結晶化ガラスと比較して結晶性が良好であった。また、本発 明に規定する修飾成分 (6成分)の総量が 2. 5質量部を超える実施例 17— 19の結 晶化ガラスにあっては、これに加えて溶融性に優れており、極めて良好な結果を示し た。
[0106] (比較例 5— 10)
表 7に記載の主成分、核形成剤、修飾成分を表 7に記載の比率で混合してガラス 原料を調製し、そのガラス原料を溶融してガラスとした後、 875°C又は 900°Cで 4時 間、熱処理 (結晶化処理)を行うことによって、比較例 5— 10の結晶化ガラスを得た。 これらの結晶化ガラスについて耐熱性、結晶性、溶融性を評価した結果を表 8に示 す。
[0107] [表 7]
主成分 核形成剤 力'ラス清澄剤 修飾成分 結晶化力'ラス全体 図 1中 主成分全体 Zr02 Sb203 Bi203 CaO SrO MgO BaO Y2O3 6成分全体
記号 (質量部) (質量部) (質量部) (質量部) (質量部) (質量部) (質量部) (質量部) (質量部) (質量部) (質量部) 比較例 5 (VII) 100 5 0.5 2 ― ― ― ― ― ― 107.5 比較例 6 (VII) 100 5 0.5 - 2 ― ― ― ― ― 107.5 比較例 7 (VII) 100 5 0.5 - ― 2 ― ― ― ― 107.5 比較例 8 (VII) 100 5 0.5 - ― ― 2 ― ― ― 107.5 比較例 9 (VII) 100 5 0.5 - ― ― ― 2 ― - 107.5 比較例 10 (VII) 100 5 0.5 一 ― ― ― ― 2 - 107.5
[表 8]
Figure imgf000033_0001
[評価]
表 7及び表 8に示すように、本発明に規定する修飾成分 (6成分)に代えて、酸ィ匕ビ スマス、酸化カルシウム、酸化ストロンチウム、酸化マグネシウム、酸化バリウム、酸化 イットリウムを修飾成分として含有する比較例 5— 10の結晶化ガラスは、溶融性が不 良であつ 7こ。
[0110] (実施例 20— 29)
表 9に記載の主成分、核形成剤、修飾成分を表 9に記載の比率で混合してガラス 原料を調製し、そのガラス原料を溶融してガラスとした後、 800°C、 825°C、又は 850 °Cで 4時間、熱処理 (結晶化処理)を行うことによって、実施例 20— 29の結晶化ガラ スを得た。これらの結晶化ガラスについて耐熱性、結晶性、溶融性を評価した結果を 表 10に示す。
[0111] [表 9]
主成分 核形成剤 力'ラス清澄剤 修飾成分 結晶化力'ラス 図 1中 主成分全体 Zr02 Sb203 P2O5 v2o5 Nb205 Ta205 Mo03 Li20 Na20 κ2ο 6成分全体 全体 記号 (質量部) (質量部) (質量部) (質量部) (質量部) (質量部) (質量部) (質量部) (質量部) (質量部) (質量部) (質量部) (質量部) 実施例 20 (I) 100 5 0.5 1 0.2 - - - 0.6 0.8 1.2 3.6 109.3 実施例 21 (I) 100 5 0.5 1 0.2 - - 0.6 0.8 1.2 3.8 109.3 実施例 22 (I) 100 5 0.5 1 - 0.2 - 0.6 0.8 1.2 3.8 109.3 実施例 23 (I) 100 5 0.5 1 ― - - 0.2 0.6 0.8 1.2 3.6 109.3 実施例 24 (I) 100 4 0.5 1 - 0.3 ― - 0.6 0.8 1.2 3.9 108.4 実施例 25 (I) 100 4 0.5 1 - 0.5 - - 0.6 0.8 1.2 4.1 108.6 実施例 26 (I) 100 3 0.5 1 ― 0.5 - - 0.6 0.8 1.2 4.1 107.6 実施例 27 (I) 100 4 0.5 1 - ― 0.1 - 0.6 0.8 1.2 3.7 108.2 実施例 28 (I) 100 4 0.5 1 - - 0.3 - 0.6 0.8 1.2 3.9 108.4 実施例 29 (I) 100 4 0.5 1 - - 0.5 - 0.6 0.8 1.2 4.1 108.6
L9£l0/ 00Zd /lDd P£ 88C8Z0/S00Z OAV 結! ii化温度 80 o 結,昆化温度 825"C 結晶化温度 85 評価 平均線熱) 1彭張係数 XI 0一 7 (/ ) 平均線熱)!彭張係数 XI 0_7(/で) 平均線熱 ί彭張係数 X] 耐熱性 結晶性 溶融性 総合評価 40 -棚 40 - 600°C 40 - 800で 40 -棚で 40 - 600で 40 -画で 40 - 400で 40 - 600"C
実施例 20 36.6 算出不可 ― 15.3 16.8 25.1 - ― ― 〇 Δ 〇 〇 実施例 21 18.2 19.8 22.7 12.6 13.2 19.5 - ― ― 〇 〇 〇 ◎ 実施例 22 30.2 算出不可 ― 14.0 15.3 21.8 - ― - 〇 Δ 〇 〇 実施例 23 35.0 算出不可 ― 16.6 18.1 26.9 - ― - 〇 Δ 〇 〇 実施例 24 一 - ― 15.7 16.3 25.1 15.1 15.7 24.3 〇 〇 〇 ◎ 実施例 25 - - ― 14.7 15.4 22.8 14.1 15.5 21.3 〇 〇 〇 ◎ 実施例 26 - - ― 29.7 算出不可 ― 10.6 12.2 - 〇 〇 〇 ◎ 実施例 27 ― ― ― - - ― 14.8 16.3 23.8 〇 〇 〇 ◎ 実施例 28 - - ― 13.5 14.6 ― 13.9 14.6 21.7 〇 〇 〇 ◎ 実施例 29 - - - 12.5 13.0 19.8 13.0 14.4 19.8 〇 〇 〇 ◎ 平均線熱膨張係数の檷にて、 「算出不可」 とは熱膨張曲線に転移点、 屈伏点があり熱膨張係数が算出できなかったことを示す。
O ^
[0113] (実施例 30— 43)
表 11に記載の主成分、核形成剤、修飾成分を表 11に記載の比率で混合してガラ ス原料を調製し、そのガラス原料を溶融してガラスとした後、 825°C、又は 850°Cで 4 時間、熱処理 (結晶化処理)を行うことによって、実施例 30— 43の結晶化ガラスを得 た。これらの結晶化ガラスについて耐熱性、結晶性、溶融性を評価した結果を表 12 に示す。
[0114] [表 11]
£成分 核形成剤 力'ラス清澄剤 修飾成分 結晶化力'ラス全体 図 1中 主成分全体 Zr02 Sb203 P2O5 Nb205 Ta205 Li20 Na20 κ2ο 6成分全体
記号 (質量部) (質量部) (質量部) (質量部) (質量部) (質量部) (質量部) (質量部) (質量部) (質量部) (質量部) 実施例 30 (I) 100 4 0.5 1 0.1 0.1 0.6 0.8 1.2 3.8 108.3 実施例 31 (0 100 4 0.5 1 0.3 0.3 0.6 0.8 1.2 4.2 108.7 実施例 32 (0 100 4 0.5 1 0.5 0.5 0.6 0.8 1.2 4.6 109.1 実施例 33 (I) 100 5 0.5 1 0.1 0.1 0.6 0.8 1.2 3.8 109.3 実施例 34 (I) 100 5 0.5 1 0.2 0.2 0.6 0.8 1.2 4.0 109.5 実施例 35 (I) 100 5 0.5 1 0.3 0.3 0.6 0.8 1.2 4.2 109.7 実施例 36 (I) 100 5 0.5 1 0.5 0.5 0.6 0.8 1.2 4.6 110.1 実施例 37 (I) 100 5 0.5 1 0.1 0.1 0.45 0.6 0.9 3.15 108.7 実施例 38 (I) 100 5 0.5 1 0.2 0.2 0.45 0.6 0.9 3.35 108.9 実施例 39 (I) 100 5 0.5 1 0.3 0.3 0.45 0.6 0.9 3.55 109.1 実施例 40 (1) 100 5 0.5 1 0.5 0.5 0.45 0.6 0.9 3.95 109.5 実施例 41 (I) 100 4.5 0.5 1 0.1 0.1 0.6 0.7 1 3.5 108.5 実施例 42 (I) 100 4.5 0.5 1 0.3 0.2 0.6 0.7 1 3.8 108.8 実施例 43 (0 100 4.5 0.5 1 0.5 0.5 0.6 0.7 1 4.3 109.3
[表 12]
Figure imgf000040_0001
[評価]
表 9 表 12に示すように、修飾成分として、アルカリ金属酸ィ匕物に加えて、酸ィ匕ニ ォブ、或いは酸化タンタルを含有する実施例 21, 24— 43の結晶化ガラスは、耐熱 性、結晶性、溶融性のいずれもが優れており、極めて良好な結果を示した。また、了 ルカリ金属酸化物の他、酸化バナジウム、或いは酸化モリブデンを含有する実施例 2 0, 23の結晶化ガラスも良好な結果を示したが、極めて良好な結果を示した実施例 2 1, 24— 43の結晶化ガラスと比較すると、結晶性がやや劣る結果となった。
[0117] (実施例 44一 50、比較例 11一 13)
表 13に記載の主成分、核形成剤、修飾成分を表 13に記載の比率で混合してガラ ス原料を調製し、そのガラス原料を溶融してガラスとした後、 800°C、又は 825°Cで 4 時間、熱処理 (結晶化処理)を行うことによって、実施例 44一 50、及び比較例 11一 1 3の結晶化ガラスを得た。これらの結晶化ガラスについて耐熱性、結晶性、溶融性、 失透性を評価した結果を表 14に示す。
[0118] [表 13]
£成分 核形成剤 力'ラス清澄剤 修飾成分 結晶化力'ラス全体 図 1中 主成分全体 Zr02 Sn02 Sb203 P2O5 Nb205 Ta205 Li20 Na20 κ 6成分全体
記号 (質量部) (質量部) (質量部) (質量部) (質量部) (質量部) (質量部) (質量部) (質量部) (質量部) (質量部) 実施例 44 (I) 100 4 - 0.5 1 0.3 0.2 0.6 0.9 1.2 4.2 108.7 実施例 45 (I) 100 4 0.5 0.5 1 0.3 0.2 0.6 0.9 1.2 4.2 109.2 実施例 46 (I) 100 4 1 0.5 1 0.3 0.2 0.6 0.9 1.2 4.2 109.7 実施例 47 (I) 100 4 1.5 0.5 1 0.3 0.2 0.6 0.9 1.2 4.2 110.2 実施例 48 (I) 100 4 2 0.5 1 0.3 0.2 0.6 0.9 1.2 4.2 110.7 実施例 49 (I) 100 3 1.5 0.5 1 0.3 0.2 0.6 0.9 1.2 4.2 109.2 実施例 50 (I) 100 3 2 0.5 1 0.3 0.2 0.6 0.9 1.2 4.2 109.7 比較例 11 (I) 100 - 4 0.5 1 0.3 0.2 0.6 0.9 1.2 4.2 108.7 比較例 12 (0 100 一 5 0.5 1 0.3 0.2 0.6 0.9 1.2 4.2 109.7 比較例 13 (I) 100 - 6 0.5 1 0.3 0.2 0.6 0.9 1.2 4.2 110.7
[0119] [表 14]
結晶化 【度 800·Ό 結晶化 度 825T: 評価
平均線熱) 1彭張係数 XI 0一7 (/ ) 結晶相 平均線熱 ft彭張係数 XI 0_7(/で) 結晶相 耐熱性 結晶性 溶融性 失透性 総合評価 40 - 400 40 - 600で 40 - 800 40 - 400 40 - 600 ; 40 - 800
実施例 44 17.2 18.6 28.4 Qu 15.4 16.3 22.3 Qu 〇 〇 〇 Δ Δ 実施例 45 - - - ― 13.3 14.8 21.6 ― 〇 〇 〇 Δ Δ 実施例 46 ― 一 - ― 16.1 18.6 24.8 ― 〇 〇 〇 Δ Δ 実施例 47 - 一 - - 15.0 16.9 22.9 一 〇 〇 〇 Δ Δ 実施例 48 ― ― - - 13.8 16.1 21.8 - 〇 〇 〇 Δ Δ 実施例 49 - - ― 一 17.6 20.5 27.7 - 〇 〇 〇 〇 〇 実施例 50 9.9 10.5 15.0 - 14.5 17.0 22.3 Pe (Qu) 〇 〇 〇 ◎ ◎ 比較例 11 34.9 39.0 算出不可 - 7.8 7.9 11.4 Qu(Ga,Wi) 〇 〇 〇 ◎ ◎ 比較例 12 32.5 34.7 43.7 - 34.8 36.4 41.8 Qu(Ga.Wi) Δ 〇 〇 © △ 比較例 13 36.4 38.7 - 一 33.6 35.0 - Qu(Ga.Wi) Δ 〇 〇 Δ Δ 結晶相の欄にて、 太字は主結晶相、 ( ) 内は他の結晶相、 Qu: 0-石英固溶体、 Pe:亜鉛 Λ'タラ仆固溶体、 Wi:ウイリマ仆、 Ga:力' -ナ仆 平均線熱膨張係数の欄にて、 「算出不可」 とは熱膨張曲線に転移点、 屈伏点があり熱膨張係数が算出できなかったことを示す。
[0120] [評価]
表 13—表 14に示すように、核形成剤としてジルコニァ 4質量部のみを含有する実 施例 44の結晶化ガラスは、耐熱性、結晶性、溶融性のいずれもが優れており、実施 例 17— 19, 21, 24— 43の結晶化ガラスと同様に極めて良好な結果を示すものであ る力 その失透性を評価したところ、一部のサンプルにおいて核形成剤としてのジル コユアの再結晶に起因する失透現象が認められた。
[0121] 実施例 44の結晶化ガラスに対して、ジルコユアの含有量を変えることなぐ単に核 形成剤としての二酸化スズを加えた実施例 45— 48の結晶化ガラスでは失透性の改 善は認められなかった。
[0122] これに対し、核形成剤としてのジルコユアの含有量を 3質量部に減じ、その代わりに 核形成剤としての二酸化スズ 1. 5質量部を含有せしめた実施例 49の結晶化ガラス では失透性の改善が認められ、結晶性が低下することもな力つた。即ち、実施例 49 の結晶化ガラスは良好な結晶性を維持したまま、ガラス原料の溶融 '成形の段階に おけるジルコユアの再結晶を抑制することが可能であった。
[0123] 更に、核形成剤としてのジルコユアの含有量を 3質量部に減じ、その代わりに核形 成剤としての二酸化スズ 2質量部を含有せしめた実施例 50の結晶化ガラスでは失透 性が顕著に改善され、結晶性が低下することもな力つた。即ち、実施例 50の結晶化 ガラスは良好な結晶性を維持したまま、ガラス原料の溶融 '成形の段階におけるジル コユアの再結晶を効果的に抑制することができた。更に、その主結晶相が亜鉛べタラ イト固溶体であるために、熱膨張率が小さぐリチア系結晶化ガラスに匹敵する優れ た耐熱性を示した。
[0124] また、核形成剤としてのジルコユアの全部に代えて、核形成剤としての二酸化スズ を含有せしめた場合 (即ち、核形成剤として二酸化スズのみを含有せしめた場合)、 比較例 11の結晶化ガラスのように、良好な結晶性'耐熱性を維持したまま、失透性が 顕著に改善されたものもあったが、比較例 12, 13の結晶化ガラスのように、結晶相と してガーナイトやウイリマイトが形成されることによって、結晶化ガラス自体の熱膨張率 が大きくなり、耐熱性が低下する場合があった。また、二酸化スズの含有量が 6質量 部である比較例 13の結晶化ガラスは、二酸化スズ自体が再結晶し易くなるために、 ジルコユアの場合と同様に、失透現象が発生した。
[0125] [結晶の経時安定性]
既に述べた耐熱性、結晶性、溶融性、失透性の評価とは別に、結晶の経時安定性 について評価を行った。結晶の経時安定性の評価は、結晶化ガラスから 3mm X 3m m X 20mmの測定サンプルを切り出し、 JIS R1618に記載の方法に準拠して、 600 °C、 650°C、 700°C、 750°Cの高温条件下で各々 20時間保持し、体積膨張率の経 時的な変化を測定することにより行った。評価対象は、実施例 50の結晶化ガラスと、 βースポジュメン固溶体、及び β ユークリプタイト固溶体を結晶相とする市販のリチ ァ系結晶化ガラスとした(「比較例 14」とする)。比較例 14の結晶化ガラスは、表 15に 記載の組成を有するものであった。その結果を、図 2及び図 3に示す。
[0126] [表 15]
構成成分度結晶化温で:
7結相均晶膨張係数平線熱(/)x r
でで
較例比 ii¾州^¾牲H S ra isssE¾s.r I :d---' - ,
鰂 == 鰂
¾ ^ ¾ ^ 讕
[0127] 図 2のグラフから明らかなように、実施例 50の結晶化ガラスは、ガラスの温度が保持 温度に達するまではその温度上昇に伴って膨張率が上昇 (体積が膨張)しているが 、ガラスの温度が保持温度に達した後にお 、ては略一定の膨張率 (体積)を維持して おり、 20時間を経過してもその膨張率 (体積)は殆ど変化しな力つた。即ち、実施例 5 0の結晶化ガラスは、高温条件下での経時的な結晶安定性に優れており、長期間高 温に曝された場合でも体積収縮が極めて少なカゝつた。
[0128] これに対し、比較例 14の結晶化ガラスは、図 3のグラフに示すように、ガラスの温度 が保持温度に達し、その膨張率 (体積)が極大値に至った後、一転、膨張率が低下( 体積が減少)するという挙動を示した。そして、この挙動は保持温度が高温となるほど 顕著となる傾向であった。即ち、比較例 14の結晶化ガラスは、長時間高温に曝され ると体積収縮を起こすものであった。具体的には、実施例 50の結晶化ガラスは、 750 °C、 20時間経過後の体積収縮が 0体積%であつたのに対し、比較例 14の結晶化ガ ラスは 0. 5体積%の体積収縮が認められた。
産業上の利用可能性
本発明の酸ィ匕亜鉛 アルミナ シリカ系結晶化ガラスは、光源ランプの光を反射さ せるための反射鏡を構成する反射鏡基体、特に、照明装置や映写機光源の反射鏡 基体として好適に用いることができる。

Claims

請求の範囲
[1] 主成分としての酸化亜鉛 (ZnO)、アルミナ (Al O )、及びシリカ(SiO )と、核形成
2 3 2
剤としてのジルコユア (ZrO )とを含有する酸ィ匕亜鉛 アルミナ シリカ系の結晶化ガ
2
ラスであって、
前記主成分が、酸化亜鉛 20— 30質量%、アルミナ 15— 25質量%、及びシリカ 50 一 60質量%の比率で構成され、かつ、これらの成分全体で 100質量%を占めるもの であり、前記主成分 100質量部に対して、前記核形成剤としてのジルコユア 3— 6質 量部を含有し、更に、前記主成分、及び前記核形成剤に加えて、修飾成分としての 酸化リチウム (Li O)、酸化ナトリウム (Na O)、酸化カリウム (K O)、五酸化二リン (P
2 2 2 2
O )、酸化ニオブ (Nb O )、及び酸ィ匕タンタル (Ta O )からなる群より選択された少
5 2 5 2 5
なくとも一種の成分を含有する酸ィ匕亜鉛 アルミナ シリカ系結晶化ガラス。
[2] 前記主成分により結晶相が構成され、その主結晶相が亜鉛ぺタライト (Zn— petallite )固溶体又は β 石英( β -quartz)固溶体である請求項 1に記載の酸ィヒ亜鉛 アルミ ナ-シリカ系結晶化ガラス。
[3] 前記主成分 100質量部に対して、前記修飾成分としての酸化リチウム、酸化ナトリ ゥム、酸ィ匕カリウム、五酸化二リン、酸化ニオブ、及び酸ィ匕タンタル力もなる群より選 択された少なくとも一種の成分をその総量として 0. 2-5. 0質量部含有する請求項 1 又は 2に記載の酸ィ匕亜鉛 アルミナ シリカ系結晶化ガラス。
[4] 前記核形成剤としてジルコユアの一部に代えて、前記核形成剤としての二酸化スズ
(SnO )を含有し、その含有量は、前記主成分 100質量部に対して 0. 5— 4質量部
2
である請求項 1一 3のいずれか一項に記載の酸ィ匕亜鉛 アルミナ シリカ系結晶化ガ ラス。
[5] 請求項 1一 4の 、ずれか一項に記載の酸ィ匕亜鉛 アルミナ シリカ系結晶化ガラス からなり、反射膜を配置するための凹面が形成された本体と、前記本体の内部に埋 設された金属製の網状体とを備えた反射鏡基体。
[6] 前記網状体が、ニッケル (Ni)、コバルト(Co)、ステンレス鋼 (SUS: Steel Use
Stainless)、及びコバール (kobar)の群力 選択される少なくとも一種を主たる構成成 分とする金属からなるものである請求項 5に記載の反射鏡基体。 前記網状体が、金 (Au)、白金 (Pt)、銀 (Ag)、及び銅 (Cu)の群から選択される少 なくとも一種を主たる構成成分とする金属からなるもの、又は前記金属力 なる表面 被膜を有するものである請求項 5又は 6に記載の反射鏡基体。
PCT/JP2004/013670 2003-09-19 2004-09-17 酸化亜鉛−アルミナ−シリカ系結晶化ガラス及びそれを用いた反射鏡基体 WO2005028388A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04773289A EP1688399A4 (en) 2003-09-19 2004-09-17 CRYSTALLIZED GLASS BASED ON ZINC-ALUMINA SILICA OXIDE AND REFLECTIVE MIRROR SUBSTRATE USING THE GLASS
JP2005514064A JPWO2005028388A1 (ja) 2003-09-19 2004-09-17 酸化亜鉛−アルミナ−シリカ系結晶化ガラス
US11/150,906 US7169476B2 (en) 2003-09-19 2005-06-13 Zinc oxide-alumina-silica-based crystallized glass

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-328537 2003-09-19
JP2003328537 2003-09-19
JP2003357975 2003-10-17
JP2003-357975 2003-10-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/150,906 Continuation US7169476B2 (en) 2003-09-19 2005-06-13 Zinc oxide-alumina-silica-based crystallized glass

Publications (1)

Publication Number Publication Date
WO2005028388A1 true WO2005028388A1 (ja) 2005-03-31

Family

ID=34380339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013670 WO2005028388A1 (ja) 2003-09-19 2004-09-17 酸化亜鉛−アルミナ−シリカ系結晶化ガラス及びそれを用いた反射鏡基体

Country Status (4)

Country Link
US (1) US7169476B2 (ja)
EP (1) EP1688399A4 (ja)
JP (1) JPWO2005028388A1 (ja)
WO (1) WO2005028388A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006056745A (ja) * 2004-08-20 2006-03-02 Nippon Electric Glass Co Ltd 結晶化ガラス及びその製造方法
CN111533443A (zh) * 2020-05-27 2020-08-14 成都光明光电股份有限公司 光学玻璃
WO2021199631A1 (ja) * 2020-03-30 2021-10-07 Agc株式会社 結晶化ガラス、高周波用基板および結晶化ガラスの製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101466930B1 (ko) * 2007-12-21 2014-12-01 재단법인 포항산업과학연구원 Ta205계 유전체 나노 분말 및 그의 제조방법
FI20106181A0 (fi) * 2010-11-11 2010-11-11 Pekka Laukkanen Menetelmä substraatin muodostamiseksi ja substraatti
WO2018071360A1 (en) 2016-10-12 2018-04-19 Corning Incorporated Glass ceramics
CN115484330A (zh) * 2021-05-31 2022-12-16 华为技术有限公司 玻璃陶瓷及制备方法、玻璃陶瓷盖板、电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS474979A (ja) * 1970-08-19 1972-03-13
JPH1095641A (ja) * 1996-09-19 1998-04-14 Figura Kk 機能性耐火ガラス
JP2003051210A (ja) * 2001-07-24 2003-02-21 Three M Innovative Properties Co 可溶性ポリイミドを用いたリフレクタ、それを備える放電ランプ及び画像投影装置
JP7092527B2 (ja) * 2018-03-15 2022-06-28 本田技研工業株式会社 輸送機器およびその走行制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3282711A (en) * 1959-03-27 1966-11-01 Westinghouse Electric Corp Preshaped two-phase glass ceramic body and process for preparing the same
US3854963A (en) * 1973-05-11 1974-12-17 Corning Glass Works AgCl-NUCLEATED GLASS-CERAMIC ARTICLES
US3839053A (en) * 1973-05-11 1974-10-01 Corning Glass Works Highly opaque, ta205-containing glass-ceramic articles
JPS59203736A (ja) * 1983-05-02 1984-11-17 Nippon Electric Glass Co Ltd 結晶化ガラス
JP2517710B2 (ja) * 1986-06-13 1996-07-24 株式会社 オハラ ガラスセラミツク製品の製造方法
JP2691263B2 (ja) * 1989-08-11 1997-12-17 株式会社オハラ 透明結晶化ガラス
JPH0792527B2 (ja) * 1991-02-01 1995-10-09 岡本硝子株式会社 反射鏡
JP4274683B2 (ja) 2000-09-29 2009-06-10 日本碍子株式会社 反射鏡

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS474979A (ja) * 1970-08-19 1972-03-13
JPH1095641A (ja) * 1996-09-19 1998-04-14 Figura Kk 機能性耐火ガラス
JP2003051210A (ja) * 2001-07-24 2003-02-21 Three M Innovative Properties Co 可溶性ポリイミドを用いたリフレクタ、それを備える放電ランプ及び画像投影装置
JP7092527B2 (ja) * 2018-03-15 2022-06-28 本田技研工業株式会社 輸送機器およびその走行制御方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006056745A (ja) * 2004-08-20 2006-03-02 Nippon Electric Glass Co Ltd 結晶化ガラス及びその製造方法
JP4702696B2 (ja) * 2004-08-20 2011-06-15 日本電気硝子株式会社 結晶化ガラスの使用方法及び結晶化ガラスの製造方法
WO2021199631A1 (ja) * 2020-03-30 2021-10-07 Agc株式会社 結晶化ガラス、高周波用基板および結晶化ガラスの製造方法
CN111533443A (zh) * 2020-05-27 2020-08-14 成都光明光电股份有限公司 光学玻璃

Also Published As

Publication number Publication date
US7169476B2 (en) 2007-01-30
US20050255984A1 (en) 2005-11-17
JPWO2005028388A1 (ja) 2006-11-30
EP1688399A1 (en) 2006-08-09
EP1688399A4 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
JP4298822B2 (ja) 発光性ガラスセラミックス
EP0997445B1 (en) Low expansion glass-ceramics
JP5738190B2 (ja) 改善されたカラー表示能力を有する透明な着色クックトップ及びクックトップの製造方法
JP5354445B2 (ja) 金属被覆用ガラス及び半導体封止材料
JP5173123B2 (ja) 無機組成物
CN104370470B (zh) 一种超低膨胀系数高透明度的微晶玻璃及其制备方法
JP5510885B2 (ja) 光反射基材
CN102892725A (zh) Li2O-Al2O3-SiO2系结晶化玻璃
JP2006199538A (ja) Li2O−Al2O3−SiO2系結晶性ガラス及び結晶化ガラス並びにLi2O−Al2O3−SiO2系結晶化ガラスの製造方法。
JP2005325018A (ja) 調理面となる半透明または不透明着色ガラスセラミック製品及びその使用
JPH10291833A (ja) シリカ−ソーダ−石灰ガラス組成物
ES2643866T3 (es) Celda fotovoltaica con un sustrato de vidrio hecho de vidrio de aluminosilicato
US7169476B2 (en) Zinc oxide-alumina-silica-based crystallized glass
JP2007197310A (ja) 結晶化ガラスおよびそれを用いた反射鏡基材並びに反射鏡
JP4378152B2 (ja) 耐熱性ガラス
JP2006232661A (ja) 結晶化ガラスおよびその製造方法
JPWO2006106660A1 (ja) ランプ用ガラス組成物、ランプ、バックライトユニットおよびランプ用ガラス組成物の製造方法
JP2013087022A (ja) Li2O−Al2O3−SiO2系結晶化ガラス
JP4647256B2 (ja) ガラスセラミックス
JP2021155268A (ja) 化学強化結晶化ガラス物品
JP2007284319A (ja) 結晶化ガラス物品及びその製造方法
CN100355685C (zh) 氧化锌—氧化铝—二氧化硅基晶化玻璃及使用其的反射体基材
JP2007077001A (ja) 天然大理石様結晶化ガラス及びその製造方法
JPWO2009119433A1 (ja) 無鉛ガラス及び無鉛ガラスセラミックス用組成物
JP5737620B2 (ja) 天然大理石様結晶化ガラス、天然大理石様結晶化ガラス物品及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11150906

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004773289

Country of ref document: EP

Ref document number: 2005514064

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20048017577

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004773289

Country of ref document: EP