WO2005027651A1 - 動物プランクトン用飼料 - Google Patents

動物プランクトン用飼料 Download PDF

Info

Publication number
WO2005027651A1
WO2005027651A1 PCT/JP2004/013619 JP2004013619W WO2005027651A1 WO 2005027651 A1 WO2005027651 A1 WO 2005027651A1 JP 2004013619 W JP2004013619 W JP 2004013619W WO 2005027651 A1 WO2005027651 A1 WO 2005027651A1
Authority
WO
WIPO (PCT)
Prior art keywords
feed
zooplankton
acid
mass
content
Prior art date
Application number
PCT/JP2004/013619
Other languages
English (en)
French (fr)
Inventor
Takashi Kato
Eiji Kojima
Masashi Kojimoto
Noboru Isojima
Original Assignee
The Nisshin Oillio Group, Ltd.
Nisshin Marinetech Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Nisshin Oillio Group, Ltd., Nisshin Marinetech Co., Ltd. filed Critical The Nisshin Oillio Group, Ltd.
Priority to JP2005514053A priority Critical patent/JP4778792B2/ja
Publication of WO2005027651A1 publication Critical patent/WO2005027651A1/ja
Priority to HK07100625.6A priority patent/HK1095491A1/xx

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/80Feeding-stuffs specially adapted for particular animals for aquatic animals, e.g. fish, crustaceans or molluscs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/158Fatty acids; Fats; Products containing oils or fats

Definitions

  • the present invention relates to a feed for zooplankton, which is used as a biological feed for fish and shellfish in which seed production is performed, and to a method for producing larvae and juveniles using zooplankton fed with the feed.
  • EPA eicosapentaenoic acid
  • DHA docosahexaenoic acid
  • EPA and DHA are essential nutrients, especially in the larvae and larvae.It is common practice today to feed zooplankton, such as deer, artemia and daphnia, with fortified EPA and DHA. Has been done.
  • Animal feeds for zooplankton for the purpose of nutrition enhancement include (1) artificially manufactured microcapsules and cultured microorganisms with fish oil, EPA and DHA-containing oils and fats added thereto, (2) There are two types of innate cultures of microorganisms that self-produce EPA and DHA.
  • the type (1) is a classical method that has been conventionally performed (for example, see Patent Document 1).
  • EPA or DHA-producing microorganisms are cultured and concentrated, and both are present individually as commercial products (for example, see Non-Patent Document 1). ).
  • Nannochlorobsis a microorganism containing EPA
  • Nannochlorobsis a microorganism containing EPA
  • Cultured and used for fortification due to its hard cell wall, there is a problem in that nutrients that have developed masticatory organs can be fortified without enrichment.
  • Nannochlorobsis a microorganism containing EPA
  • Artemia a high-pressure homogenizer
  • n-6DPAJ n-6 docosapentaenoic acid
  • EPA and DHA have been shown to have important effects in improving the production yield and controlling malformation of larvae and juveniles of fish and shellfish, and they are currently being used.
  • the evaluation criteria for healthy seedlings that is, fish seedlings, focused on the parts that can be judged visually, such as the shape and color of the seeds and the development of the organs.
  • Important evaluation criteria in terms of functionality include tank changing, physical stress during the transfer stage, such as resistance to handling stress during capture by nets, and the ability to adapt to different water temperatures (for example, see Non-Patent Document 2). ).
  • tank changing physical stress during the transfer stage, such as resistance to handling stress during capture by nets
  • ability to adapt to different water temperatures for example, see Non-Patent Document 2.
  • Non-Patent Document 3 In a study on the effects of lecithin and EPA on the stress tolerance of dais in Europe, handling and temperature changes due to increased EPA in the presence of lecithin were reported. It has been shown to improve the resistance to steles by the method (see Non-Patent Document 3).
  • Patent Document 1 Patent No. 1992146
  • Patent Document 2 Japanese Patent Publication No. 4 8021
  • Patent Document 3 JP-A-11-276091
  • Non-Patent Document 1 Special Edition of Aquaculture “Additive Product Best Guide”, Midori Shobo Co., Ltd., March 10, 2000, Vol. 37, No. 4, p. 186-191
  • Non-Patent Document 2 Takayuki Takahashi, “Environment and Stress in Seed Production”, Aquanet, Minato Bunsha, July 2001, Vol. 4, No. 7, p. 62-65
  • Non-Patent Document 3 JINGLE LIU, 6 others, Necessity of dietary lecithin and ei cosapentaenoic acid for growth, survival, stress resistance and lipop rotein formation in gilthead sea bream spams aurata, FISHERIES
  • Non-Patent Document 4 Toshiro Takeuchi, "Nutrient Deficiency and Demand in Fish", Cultivation and Fishery Technology Training Project Basic Theory Course Textbook V Larval and Fry Development Series, Japan Cultivation and Fisheries Association, 1991, Vol. 4, p. 20-23
  • An object of the present invention is to impart tolerance to various stresses in the production of fish and shellfish seeds and seedlings. To provide seeds and seedlings.
  • An object of the present invention is to provide a feed for zooplankton that can produce seeds and seeds that are resistant to low-temperature stress and nodling stress.
  • EPA eicosapentaenoic acid
  • n-6DPA microorganism containing enic acid
  • DHA docosahexaenoic acid
  • the present invention also relates to a feed for zooplankton, which is characterized in that the eicosapentaenoic acid content in the total fatty acids of lipids contained in microorganisms containing eicosapentaenoic acid is 10-50% by mass.
  • a feed for zooplankton which is characterized in that the eicosapentaenoic acid content in the total fatty acids of lipids contained in microorganisms containing eicosapentaenoic acid is 10-50% by mass.
  • the present invention provides a feed for animal zooplankton, wherein the microorganism containing eicosapentaenoic acid is a genuine ophthalmic alga Nannochloropsis (Nannnochloropsis.sp).
  • the present invention provides a feed for zooplankton, wherein the content of n -6 docosapentaenoic acid in the total fatty acids of lipids contained in microorganisms containing n -6 docosapentaenoic acid and docosahexaenoic acid is 10%.
  • a zooplankton feed that is 60% by mass is provided.
  • the present invention provides a feed for zooplankton which has a docosahexenoic acid content of 20 to 80 in the total fatty acids of lipids contained in microorganisms containing n-6 docosapentaenoic acid and docosahexanoic acid.
  • a zooplankton feed is provided in% by weight.
  • the present invention also relates to a feed for zooplankton, which is a microbial power containing n-6 docosapentaenoic acid and docosahexaenoic acid, belonging to the genus Schizochytrium (Schizochytrium.sp) or the genus Thraustochytrium. Also, the present invention provides a feed for zooplankton, which is a feed for zooplankton, which comprises eicosapentaenoic acid.
  • Zooplankton feed that has a mass ratio of 1: 9 to 9: 1 as a solid mass of the cell wall crushed product containing the microorganism and the microorganism containing n-6 docosapentaenoic acid and docosahexaenoic acid I do.
  • the present invention provides a feed for zooplankton, which is one or more zooplankton selected from the group consisting of Pemphigus, Artemia and Daphnia mosquito.
  • the present invention relates to a feed for zooplankton, wherein the content of eicosapentaenoic acid in the total fatty acids of lipids contained in the feed for zooplankton is 5 to 27% by mass, and the content of n6 docosapentaenoic acid is A zooplankton feed having a docosahexaenoic acid content of 5 to 21% by mass and a docosahexaenoic acid content of 5 to 52% by mass. Accordingly, the present invention provides a lipid-containing feed for animal plankton having a characteristic composition with respect to EP A, n-6DHA and DHA.
  • the present invention also provides a method for producing larvae and larvae, characterized in that a zooplankton is enriched by feeding zooplankton with a feed for zooplankton which is enriched and used as bait for larvae and larvae. .
  • This provides a method for producing larvae and larvae having low water temperature exposure resistance and handling stress resistance.
  • the present invention also provides a method for producing larvae and larvae that imparts low water temperature exposure resistance and handling stress resistance to larvae and larvae.
  • the present invention also provides a product obtained by crushing a cell wall of a microorganism containing eicosapentaenoic acid, and n6 docosa.
  • an agent for imparting stress resistance to fish and shellfish comprising a microorganism containing pentaenoic acid and docosahexaenoic acid.
  • the feed for zooplankton which comprises a cell wall-crushed product of a microorganism containing eicosapentaenoic acid and a microorganism containing n-6 docosapentaenoic acid and docosahexaenoic acid.
  • a feed for zooplankton that contains at least (1) a microbial cell wall crushed product containing eicosapentaenoic acid and (2) a microorganism containing n-6 docosapentaenoic acid and docosahexaenoic acid.
  • EPA a microorganism containing eicosapentaenoic acid
  • EPA is sometimes referred to as “C20: 5, n—3” or “C20: 5”.
  • the method of handling these microorganisms is not particularly limited.
  • microorganism in the present invention broadly includes those derived from microorganisms, and includes a culture solution containing cultured cells, dried cells, treated cells, and cells and a culture supernatant. Specifically, in addition to the microorganism itself, it includes, for example, a microorganism concentrate, a freeze-dried product, a spray-dried product, and the like.
  • the "cell wall crushed product of EPA-containing microorganism” is a product obtained by forcibly dispersing a microorganism containing EPA using a high-pressure homogenizer or the like and substantially crushing the cell wall of the microorganism.
  • This process is sometimes referred to as “digestible processing”.
  • the step of the crushing treatment is not limited at any time when preparing the microorganisms.
  • the digestion treatment may be performed in a state where the microorganisms are cultured and the cells are collected. The cells may be collected and dried, and then the dried product may be dissolved or suspended in any liquid and digested.
  • the EPA content of the microorganism containing EPA in the present invention is not particularly limited.
  • the EPA content in the total fatty acids of the lipids contained in the microorganism containing EPA is 10% by mass or more, and preferably 10% or more. It is preferably 50% by weight, more preferably 15-48% by weight, further preferably 20-45% by weight, particularly preferably 23-43% by weight, and most preferably 28-38% by weight.
  • the "lipid” in the present invention may be generally referred to as "oil”, “oil” or “oil”, and refers to, for example, a lipid extracted by the Bligh-Dyer method.
  • the fatty acid content in the total fatty acids of the lipids contained is determined by a conventional method, and the method is not particularly limited. For example, an analysis sample is lyophilized, lipids are extracted from the lyophilized product by the Bligh-Dyer method, methylesterification is performed, the fatty acid composition is calculated by gas chromatography, and the amount of the corresponding fatty acid is determined in the lipid. Can be calculated by dividing by the total amount of fatty acids.
  • the amount of lipid in the microorganism containing EPA in the present invention is not particularly limited.
  • the lipid content is greatly affected by the method of culturing the microorganism, and is difficult to specify.
  • the lipid content is 1% by mass or more, preferably 3% by mass or more.
  • the presence state of EPA in microorganisms including EPA in the present invention is not particularly limited.
  • it may be one of triglycerides, diglycerides, monoglycerides, fatty acids, fatty acid methyl esters, fatty acid ethyl esters, and complex lipids such as phospholipids and glycolipids.
  • n-6DPA docosapentaenoic acid
  • DHA docosahexaenoic acid
  • genus Schizochytrium (Schizochytrium.sp), the genus Thraustochytrium (Thraustochytrium.sp), the genus Ulkenia and the genus Altrina (Althornia).
  • genus Schizochytrium (Schizochytrium.sp) or the genus Thraustochytrium (Thraustochytrium.sp). The present invention is not limited to these.
  • the method for handling these microorganisms is not particularly limited.
  • the content of n-6DPA in a microorganism containing n-6DPA and DHA is not particularly limited.
  • the total fatty acid content of lipids contained in a microorganism containing n-6DPA and DHA is not limited.
  • n-6DPA content is 5% by mass or more, preferably 5-60% by mass, more preferably Is 11 to 45% by mass, more preferably 11 to 30% by mass, particularly preferably 11 to 25% by mass, and most preferably 13 to 20% by mass.
  • the DHA content in the microorganism containing n-6DPA and DHA is not particularly limited.
  • the DHA content in the lipid of the microorganism containing n-6DPA and DHA is at least 20% by mass, preferably 20% by mass. — 80% by weight, more preferably 30-70% by weight, even more preferably 30-60% by weight, particularly preferably 30-50% by weight, most particularly preferably 33-43% by weight.
  • the ratio of n-6DPA and DHA content of the microorganism containing n-6DPA and DHA is not particularly limited.
  • microorganisms having an arbitrary ratio (arbitrary combination) between the n-6DPA content of the microorganism containing n-6DPA and DHA and the DHA content of the microorganism containing n-6DPA and DHA. Can be used in the present invention. More specifically, for example, a microorganism containing n-6 DPA and DHA has a n- 6 DPA content of 10-30% by mass in the total fatty acids of the lipid and a DHA content of 30-70% by mass. No.
  • the amount of lipid in a microorganism containing n-6DPA and DHA is not particularly limited.
  • the lipid content is greatly affected by the method of culturing the microorganism and is difficult to specify, but is, for example, 5% by mass or more, preferably 30% by mass or more.
  • the presence state of EPA in a microorganism containing n-6DPA and DHA is not particularly limited.
  • it may be any of triglycerides, diglycerides, monoglycerides, fatty acids, fatty acid methyl esters, fatty acid ethyl esters, and complex lipids such as phospholipids and glycolipids.
  • the mass ratio between the crushed cell wall of the microorganism containing EPA and the microorganism containing n-6DPA and DHA is not particularly limited. Specifically, it is 1: 9 to 9: 1 as a solid material, and preferably 1: 1 as a solid material.
  • the presence of the microorganism used in the present invention can usually be identified by confirming the shape with an optical microscope and by detecting the fatty acid composition in the fat or oil.
  • Schizochytridium trauskitrium algae with n-6DPA do not have chlorophyll and are spherical, 6-7 m in diameter. Vesicles.
  • the solid content has no particular limitation on the water content as long as it has a solid, powder, or block appearance. It is not liquid, paste-like, or suspension-like.
  • a powdery substance is sometimes referred to as a “dry powder” as being included in the category of a solid substance.
  • the cell wall-crushed product of microorganisms containing EPA is not limited in its water content as long as it is a solid substance as described above.
  • the water content is 10% by mass or less. And preferably 9.1-0.1% by mass, more preferably 8-0.1% by mass.
  • the microorganism containing n-6DPA and DHA is not limited to a water content as long as it is a solid as described above.
  • the water content is preferably 10% by mass or less, and is preferably Is from 8 to 0.1% by mass, more preferably from 7 to 0.1% by mass, still more preferably from 6 to 0.1% by mass, particularly preferably from 5 to 0.1% by mass, and most preferably from 4 to 0.1% by mass. 1% by mass.
  • the feed for zooplankton according to the present invention can be provided in any form, regardless of the form.
  • it can be provided as a solid (solid, powder), paste, liquid (solution, solution) or suspension (suspension).
  • the amount of feed relative to the water content is not limited, and the concentration is not limited.
  • 0.1 to 100 mass of the solution can be mixed, dissolved or suspended for 1 mass of the feed and used.
  • powdery zooplankton feed can be provided by mixing powders of the respective microorganisms.
  • powders of the respective microorganisms For example, 100 g of freeze-dried microbial cells containing EPA and lyophilized from a cell wall, and 100 g of dry powder with a water content of 8 mass% or less, and 4 g or less of a water content of spray-dried microorganisms containing n-6DPA and DHA What mixed 100 g of dry powders is mentioned.
  • the method for mixing the dry powders derived from the respective microorganisms is not particularly limited.
  • each microorganism can be made into a powdery form, mixed with an arbitrary liquid to form a solution or suspension, and then mixed. It can be in solution or suspension Zooplankton feed can be provided.
  • freeze-dried microorganisms containing EPA Moisture content 8% by weight of dry powder lOOg added to 1 liter of distilled water and crushed cell wall Suspension and spray-dried microorganism containing n-6DPA and DHA A suspension obtained by adding 100 g of a dry powder having a content of 4% by mass to 1 liter of distilled water and stirring the mixture is mentioned.
  • the method of mixing the respective microorganism-derived solutions or suspensions is not particularly limited.
  • the solution or suspension after the above-mentioned mixing can be provided as a dried product again as a solid or powder.
  • the biomass in the liquid is not particularly limited, but is usually used at 15% by mass or less, preferably 15-5% by mass, for example, 15% by mass. , 12.5, 10, 7.5 and 5% by mass.
  • the zooplankton refers to a substance generally used as a biological feed in the production of seeds and seedlings, such as a dung beetle (such as a beetle), an artemia (brine shrimp), and a daphnia. These may be used alone or in combination of two or more.
  • feed for zooplankton refers to a feed for feeding zooplankton.
  • the main purpose of feeding the feed to zooplankton is to accumulate nutrients (eg, EPA, n-6DPA and DHA) in zooplankton (nutritional strength).
  • enriched zooplankton refers to a zooplankton in which nutrients (eg, EPA, n-6DPA, and DHA) in zooplankton are enhanced by feeding zooplankton a zooplankton feed.
  • nutrients eg, EPA, n-6DPA, and DHA
  • the fortified animal blankton is used by feeding larvae and larvae during production of seeds and seedlings.
  • the conditions for the primary culture of zooplankton and the secondary culture accompanied by enrichment can be carried out by a person skilled in the art by ordinary methods. Specific culture conditions can be modified as appropriate within the knowledge of those skilled in the art.
  • the amount of the feed is not particularly limited. This can be done by those skilled in the art in a usual manner.
  • the specific concentration can be adjusted as needed within the knowledge of those skilled in the art. For example, it can be added as 0.2 gZ liter as a solid substance of the feed.
  • 1 OOg of EPA-containing microbial solids and 1 liter of distilled water were subjected to cell destruction treatment, and 100 g of microbial solids containing n-6DPA and DHA were added to 1 liter of distilled water. And mix the mixture (hence the feed is 200 g Zl).
  • the mixture is then used in a culture of zooplankton at a concentration of 2 ml Z liter (therefore, the feed is 200 mg Z 2 ml Z liter, which translates to 0.2 g Z liter of feed).
  • the contents of EPA, n-6DPA and DHA in the feed for zooplankton that are powerful are not particularly limited.
  • the EPA content in the powerful feed for zooplankton is not particularly limited.
  • the EPA content in the total fatty acids of lipids contained in the feed is 5 to 35% by mass, preferably 5 to 35% by mass. -30% by weight, more preferably 5-27% by weight, still more preferably 5-25% by weight, particularly preferably 5-20% by weight, most preferably 10-20% by weight.
  • the content of n-6DPA in the feed for zooplankton is not particularly limited.
  • the content of n-6DPA in the total fatty acids of lipids contained in the feed is 5 to 40% by mass. It is preferably from 5 to 30% by mass, more preferably from 5 to 21% by mass, even more preferably from 6 to 20% by mass, particularly preferably from 7 to 18% by mass, most preferably from 7 to 15% by mass.
  • the DHA content in the feed for powerful zooplankton is not particularly limited.
  • the DHA content in the total fatty acids of lipids contained in the feed is 5 to 60% by mass, and preferably 5 to 60% by mass. It is 55% by mass, more preferably 5 to 52% by mass, further preferably 10 to 40% by mass, particularly preferably 15 to 35% by mass, and most preferably 25 to 35% by mass.
  • the ratio of the content of EPA, n-6DPA and DHA in the total fatty acids of the lipids contained in the zooplankton feed is not particularly limited.
  • a lipid having any ratio (any combination) of the EPA, n-6DPA and DHA contents to the total fatty acids in the lipid of the zooplankton feed can be used in the present invention.
  • the fatty acid content power in the total fatty acids of the lipids contained in the zooplankton feed is 5 to 27% by mass
  • n-6DPA is 5 to 21% by mass
  • DHA is 5 to 21% by mass.
  • the lipid amount of the feed for zooplankton that is powerful is not particularly limited.
  • the amount of the lipid varies greatly depending on the cultivation method and mixing ratio of each microorganism, and the amount of the lipid cannot be indicated unconditionally.
  • the state of the lipid in the feed for zooplankton that is powerful is not particularly limited.
  • it may be any of triglycerides, diglycerides, monoglycerides, fatty acids, fatty acid methyl esters, fatty acid ethyl esters, and complex lipids such as phospholipids and glycolipids.
  • the present invention provides EPA, n-6 DPA by adjusting the mixing mass ratio of a microorganism containing EPA or a crushed cell wall thereof and a microorganism containing n-6DPA and DHA. And a method for preparing or producing a zooplankton feed and lipid for adjusting the DHA content. Further, the lipid content obtained by the adjustment method or the production method can be adjusted to a content of EPA, n-6DPA and DHA which is effective for the production of larvae and juveniles. Further, by the adjusting method or the production method, it is possible to provide feeds and fats and oils having EPA, n-6DPA and DHA contents effective for the production of larvae and larvae.
  • the content of fatty acids in the total fatty acids of lipids is EPA power of 27% by mass, n-6DPA is 5-21% by mass or more, and DHA is 5-5% by mass. It can provide 52% by mass of lipid.
  • the method of using these lipids is not particularly limited, and they can be used alone or in combination with other lipids. They can be used for all fish and shellfish production, including zooplankton feed and larva production methods, and can be used for all medicines and foods.
  • lipids having a specific ratio of EPA, n-6DPA and DHA in the total fatty acids of the lipids contained in the feed for zooplankton and feed containing the lipids are microorganisms containing EPA.
  • Z or n--6DPA and DHA without using microorganisms prepare and mix each component, or mix each component with triglycerides, diglycerides, monoglycerides, fatty acids, fatty acid methyl esters, fatty acid esters.
  • H It can be realized by mixing with any of complex lipids such as ester, phospholipid and glycolipid.
  • the use of microorganisms containing EPA and microorganisms containing n-6 DPA and DHA, which are effective in the present invention are simple in production, can be produced industrially, and can be produced at low cost. .
  • a feed for zooplankton using a microorganism containing EPA and a microorganism containing n-6DPA and DHA according to the present invention and a feed for zooplankton using each component to prepare the feed for the present invention
  • the former is preferable in terms of effect.
  • Seed production is, in the case of fish, generally a process of raising hatched larvae to fry! The fry obtained from these seedling productions are then used for stocking and aquaculture. Therefore, if the production of seeds and seedlings is successful and fry with high viability and high survival rate and fry with various stress tolerance can be made, it will be greatly useful for subsequent aquaculture.
  • an enriched zooplankton that is enriched by feeding the zooplankton with a strong zooplankton feed.
  • a method for producing a fortified zooplankton which is fortified by feeding a zooplankton feed with a strong zooplankton feed.
  • a method for feeding zooplankton which is enriched by enriching zooplankton by feeding a strong zooplankton feed to the zooplankton.
  • a larva or fry characterized by using a fortified zooplankton fortified by feeding a zooplankton feed to a zooplankton as a bait for a larva or fry. I do.
  • the feeding of larvae and larvae is characterized in that fortified zooplankton, which is enriched by feeding zooplankton with a strong zooplankton feed, is used as bait for larvae and larvae.
  • fortified zooplankton which is enriched by feeding zooplankton with a strong zooplankton feed, is used as bait for larvae and larvae.
  • the present invention is characterized in that fortified zooplankton, which has been fortified by feeding a strong zooplankton feed to the zooplankton, is used as a feed for larvae and larvae.
  • the present invention provides a method for producing larvae and larvae.
  • a larva or fry obtained by using a powerful zooplankton feed for the production of larvae or seedlings.
  • a method for producing larvae and seedlings comprising using a feed for zooplankton that is powerful for producing larvae and seedlings.
  • a method for producing larvae and larvae wherein a feed for zooplankton is used for producing larvae and larvae.
  • the feed for zooplankton according to the present invention can be used by mixing feed components other than the feed.
  • the feed components other than the feed are not particularly limited, and those used as general feed for animal plankton can be used. For example, freshwater chlorella, yeast, fish oil, phospholipid and the like can be mentioned.
  • the feed for zooplankton according to the present invention can use the feed and feed components other than the feed simultaneously or separately for fish and shellfish.
  • the seafood that can be used for seed production using the zooplankton feed according to the present invention is not particularly limited, and can be used for all those that produce seeds using zooplankton. it can.
  • crustaceans such as red sea bream, flounder, black porgy, black pufferfish, flatfish, scorpionfish, fish, fish, fish, crabs, crabs and squid heads And feet.
  • red sea bream, black sea bream containing giltfish, tiger pufferfish, flounder, more preferably red sea bream, flounder While maintaining the conventional visually recognizable effects such as controlling malformation, it has the excellent effect of improving the functional aspects of fish and shellfish.
  • Improving the functional aspects of fish and shellfish means improving the internal functional aspects of fish and shellfish, which cannot be visually recognized. For example, improvement of tolerance such as stress in tank change, physical stress in transfer stage, handling stress in catching by net, and stress in transfer to different water temperature. Conventionally, if the function of fish and shellfish is low, the survival rate of fish and shellfish will decrease due to these processes, and seed production may not be successful.
  • the effect of the feed for zooplankton according to the present invention is more specifically described in that the feed is fed to an animal plan, and the enriched animal plan is used as a feed for larvae and juveniles.
  • the production improves the above-mentioned stress tolerance for larvae and larvae, and the survival rate of larvae and larvae when larvae and larvae are replaced in tanks, when they are transferred, when they are caught by nets, and when they are transferred to tanks with different water temperatures. Activity can be prevented from dropping. As a result, seed and seedling production will be even better than it is now.
  • the effects of the feed for zooplankton according to the present invention are generally considered to have effects such as improvement in production yield (improvement of survival rate) and control of malformation.
  • a large effect compared to microorganisms that contain little DPA or DHA, and (b) microorganisms that contain relatively large amounts of DPA and DHA and contain trace amounts of EPA (5% by mass or less in total fatty acids in lipids). have.
  • the feed has a remarkable effect on the resistance of larvae and larvae to aerial exposure and the resistance to low water temperature exposure.
  • the “nodling stress resistance” and the “stress prevention effect by handling” referred to in this specification are measured.
  • larvae and larvae reared for a certain period of time are placed on a net, exposed to the air for a certain period of time (for example, 120 seconds), and then transferred to another water temperature for a certain period of time (for example, , 24 hours).
  • a certain period of time for example, 120 seconds
  • another water temperature for a certain period of time (for example, 24 hours).
  • low water temperature exposure resistance low temperature stress resistance
  • stress prevention effect by low water temperature exposure for example, larvae and larvae reared at a water temperature of 21 ° C for a certain period of time are transferred to another water tank at a water temperature of 12 ° C, 13 ° C, 14 ° C, or 15 ° C for a certain period (eg, , 30 minutes).
  • vitality is maintained, and if the survival rate of larvae and fry is high (if they do not die), it is natural that larvae and larvae will be less likely to die when they are produced during seed production, and as a result, seed production will be successful. ! /, Which is very useful for the fishing industry.
  • a cell wall-crushed product of a microorganism containing EPA and a microorganism containing n-6DPA and DHA as a feed for zooplankton, It exerts a stress-preventing effect due to low water temperature exposure and handling of larvae and larvae in seedling production.
  • zooplankton such as Artemisia beetle, to which the zooplankton feed of the present invention has been applied has the advantage that its vitality does not decrease.
  • Test feed A corresponds to microorganisms containing n-6DPA and DHA.
  • Test feed B corresponds to the crushed cell wall of microorganisms including EPA.
  • Test feed C corresponds to the feed for zooplankton according to the present invention.
  • Test feeds A to C were used as fatty acid analysis samples, respectively.
  • Table 1 shows the fatty acid composition of the test feed.
  • Fatty acid composition was analyzed by gas chromatography after lyophilizing a fatty acid analysis sample, extracting lipids by the Bligh-Dyer method, methylesteridation, and the like. The ratio (% by mass) of the constituent fatty acids was determined from the area percentage.
  • the dry powder of the freeze-dried bacterial cells used in Test Feed A had a water content of 3.7% and an oil content of 58.5%.
  • the zooplankton culture solution which is fortified by adding a test feed, is prepared by cultivating pemphides in freshwater chlorella to adjust to 1000 individual Zml, Artemia to 100 individual Zml, and maintaining the water temperature at 25 ° C for V and deviation. did.
  • Various test feeds were added to each at a concentration of 2 ml / liter, and those fed for 2 hours or more (enriched zooplankton) were used as fatty acid analysis samples and used as test fish feed.
  • demushi A-C and artemia A-C are referred to as demushi A-C and artemia A-C, respectively.
  • Table 2 shows the fatty acid composition of the enriched beetle
  • Table 3 shows the fatty acid composition of the enriched artemia.
  • Fatty acid composition was analyzed by gas chromatography after freeze-drying a fatty acid analysis sample, extracting lipids by the Bligh-Dyer method, methylesteridation, and then gas chromatography. The ratio (% by mass) of the constituent fatty acids was determined from the area percentage.
  • Table 1 shows fatty acid analysis values of various test feeds. The unit is mass%. “ND” in the table means not detected.
  • Table 2 shows the fatty acid analysis values of pests enriched with various feeds. The unit is mass%. “ND” in the table means not detected.
  • Table 3 shows the fatty acid analysis values of Artemia enriched with various feeds. The unit is mass%.
  • Breeding tests were performed using red sea bream fed as the test fish, using the test feed ⁇ -C obtained in Example 1 fed with the worms (enriched worms A-C) in sections A-C.
  • the self-collected fertilized red sea bream eggs were housed in a 500-liter polycarbonate water tank with 12500 grains in each section and hatched at the spawning water temperature, and then the water temperature was gradually raised to 21 ° C.
  • the hatching rate was over 98% in each plot, and there was no difference.
  • the nutrient-enriched beetles A-C were fed once a day in each plot, with the amount of beetles adjusted to maintain 5-ml Zml from day 3 after hatching. Feeding was carried out twice in the morning and evening after adjusting the amount of pests to maintain 8 ml of Zml from 10 days after hatching and 10 ml from 15 days after hatching, and the breeding test was terminated 20 days after hatching.
  • the fish after rearing was used as a fatty acid analysis sample.
  • the fatty acid composition of the fish was analyzed, and the survival rate and average total length of each section were calculated.
  • Table 4 shows the fatty acid composition of fish after the breeding test.
  • Table 5 shows the results of the survival rate.
  • Section A refers to the group given the nutrition-enriched worm A
  • Group B refers to the group given the nutrition-enriched worm B
  • section C refers to the group given the nutrition-enriched worm.
  • Fatty acid composition was analyzed by gas chromatography after freeze-drying a fatty acid analysis sample, extracting lipids by the Bligh-Dyer method, methylesteridation, and gas chromatography. The ratio (% by mass) of the constituent fatty acids was determined from the area percentage.
  • Table 4 shows the fatty acid composition of the red sea bream fish after the pest feeding test. The unit is mass%.
  • Table 5 shows the test results of red sea bream fed with various enriched deer bugs. The unit is mass%.
  • Section A Section B Section C Fatty acid ⁇ Test section (Enhancement of nutrition (enhancement of nutrition (enhancement of nutrients A worm A worm B worm C administration group) administration group)
  • Section A Section B Section C Evaluation method ⁇ Test section (Enrichment (enrichment (enrichment (enrichment (enrichment A worm A worm B worm B administration group) administration group) administration group) administration group) End of rearing (survival rate%) 6 9. 3 5 5 7 D 5.5 Overall length (mm) 7.2 6.6.5 6.5 Aerial exposure (survival rate%) 7 8.5 50.3 95.3
  • Example 3
  • a breeding test was conducted using Artemia fed with the test feeds A to C obtained in Example 1 (enriched Artemia A to C) in each of the A to C sections and using red sea bream as the test fish. Red fertilized eggs of red sea bream were reared until the 20th day after hatching with a pitworm enriched with fish egg extract oil in each section. 2000 tanks in each tank were placed in a 500-liter polycarbonate tank, and the water temperature was set to 21 ° C. The hatching rate was over 98% in each plot, and there was no difference.
  • Enhanced Artemia enriched Artemia A-C
  • Enhanced Artemia A-C was used in combination, and thereafter only Enhanced Artemia A-C was fed until day 36.
  • the pitworm enriched with fish egg extract oil is fed twice a day in the morning and evening to adjust to an amount of 10 ml per animal in the breeding water, and the enriched Artemia AC can be eaten within 2 hours in the morning and evening. The animals were fed and the amount of feed was gradually increased.
  • the fatty acid composition of the fish was analyzed, and the survival rate and average total length of each section were calculated.
  • Table 6 shows the fatty acid composition of fish after breeding
  • Table 7 shows the average total length, survival rate, aerial exposure test, and low-temperature exposure test after breeding.
  • Section A refers to the group administered with enriched Artemia A
  • Section B refers to the group administered with enriched Artemia B
  • section C refers to the group administered with enriched Artemia C.
  • the fatty acid composition was analyzed by gas chromatography after freeze-drying a fatty acid analysis sample, extracting lipid by the Bligh-Dyer method, methyl esterifying the lipid, and then subjecting the sample to gas chromatography. The ratio (% by mass) of the constituent fatty acids was determined from the area percentage.
  • section A has the highest DHA composition compared to other sections.
  • Section B has the highest EPA composition in section B.
  • section C both EPA, n-6DPA and DHA are well-balanced. You can see this.
  • Table 7 shows that there was no significant difference in the average total length of each plot, and no difference in the survival rate. On the other hand, in the aerial exposure test, Section A and Section B were almost the same, and Section C showed the highest survival rate. In other words, the group that used a diet containing EPA, n-6DPA, and DHA in a well-balanced composition was the most effective.
  • the survival rate due to low water temperature exposure is the highest in section C when exposed to 12 ° C. Next, it was in the A and B areas. The order was the same at 13 ° C. At 14 ° C and 15 ° C, there was no difference between groups A and C, which had particularly low survival rates in section B. Section B had a particularly low survival rate in all exposure tests at 1215 ° C compared to Sections A and C. In other words, the group using the EPA n-6 DP A and DHA compositions in a well-balanced manner was the most effective.
  • Table 6 shows the fatty acid composition of red sea bream fish after the Artemia feeding test. The unit is mass%.
  • Table 7 shows the test results of red sea bream fed with various enriched artemias. The unit is mass%.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Animal Husbandry (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Birds (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Insects & Arthropods (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • Feed For Specific Animals (AREA)
  • Fodder In General (AREA)
  • Farming Of Fish And Shellfish (AREA)

Abstract

 エイコサペンタエン酸を含む微生物の細胞壁破砕処理物および、n−6ドコサペンタエン酸とドコサヘキサエン酸とを含む微生物、を含有する動物プランクトン用飼料を提供する。この飼料は、該飼料に含まれる脂質中に、エイコサペンタエン酸、n−6ドコサペンタエン酸および、ドコサヘキサエン酸がバランス良く含まれていることを特徴の一つとする。この飼料は、仔稚魚等の種苗生産時に問題となっている低温ストレスおよびハンドリングストレスに強い種苗(仔稚魚等)を生産可能とする。

Description

明 細 書
動物プランクトン用飼料
技術分野
[0001] 本発明は、種苗生産が行われる魚介類の生物餌料となる動物プランクトン用の飼 料並びに、該飼料を給餌させた動物プランクトンを用いる仔稚魚の生産方法に関す る。
人工種苗生産技術の発展により、マダイ、ヒラメ、クロダイ、トラフグ、ァュ、カレイ、ォ -ォコゼ、ガザミ等の多くの水産動物の種苗生産が可能となった。さらに、近年の飛 躍的な技術の向上により、従来生産が難しいとされていた、プリ、タエ、ァカアマダイ、 マグロ、タコなどの種苗生産も可能となっている。
このような魚種の種苗生産が可能となった背景には、仔稚魚の摂餌するヮムシ、ァ ルテミアへの栄養強化用飼料の改良がある。
[0002] 海産魚介類の仔稚魚期または幼生期の脂肪酸要求に関しては、高度不飽和脂肪 酸であるエイコサペンタエン酸(以下、「EPA」という。)およびドコサへキサェン酸(以 下、「DHA」という。)が特に重要であり、生産歩留まり向上や奇形の防除に必須の栄 養成分であることが明らかにされた。
然るに EPAと DHAは、特に仔稚魚期の必須栄養素であり、餌であるヮムシ、アル テミア、ミジンコ等の動物プランクトンに EPAと DHAを栄養強化したものを給餌するこ とが今日では通常的に行われている。
栄養強化を目的とする動物プランクトン用飼料には、(1)人工的に製造されたマイ クロカプセルや培養した微生物中に魚油や EPA、 DHAを含む油脂分を後天的に添 加した飼料と、(2)先天的に EPAや DHAを自己産生する微生物を培養したもの、の 2つのタイプが存在する。
(1)のタイプは、従来よりなされている古典的な方法である(例えば、特許文献 1参 照)。一方、(2)のタイプである天然の微生物を用いた飼料では、 EPAまたは DHA を産生する微生物を培養し濃縮したものが両者それぞれ個別に商品として存在して いる (例えば、非特許文献 1参照)。
[0003] また、 EPAを含む微生物であるナンノクロロブシスも、多くの種苗生産機関で自家 培養され栄養強化に使用されている。しかし、その細胞壁が硬いため、咀嚼器官の 発達したヮムシには栄養強化できる力 咀嚼器官が比較的未達であるアルテミアに はそのままでは栄養強化できな 、と 、う問題点があった。
そこで、現在では、高圧ホモジナイザーを用いた強制分散処理 (以下、「可消化処 理」という。 )による細胞壁の破砕処理を用いることにより、 EPAを含む微生物である ナンノクロロブシスをアルテミアの養成及び栄養強化に用いている(例えば、特許文 献 2参照)。
更に、最近では、 n— 6ドコサペンタエン酸(以下、「n— 6DPAJという。 )に注目とした 仔稚魚用の飼料についても、種苗生産における奇形防止効果を有するとして広く実 用化されている (例えば、特許文献 3参照)。
以上の通り、魚介類の仔稚魚期または幼少期における生産歩留まり向上や奇形の 防除において、 EPAと DHAが重要な効果を示すことがわかり、現在使用され続けて いる。これらの効果を示すものとして、健康な種苗、すなわち魚の健苗性の評価基準 としては、種苗の形、色、器官の発達具合等々、目で判断できる部分に重点が置か れていた。
しかし、近年ではさらに一歩進んで、魚の機能面の向上、例えば消化能、運動性、 さらには遊泳行動、群れ行動にまで評価基準の範囲が拡大して 、る。
機能面で重要な評価基準は、水槽換え、移送段階の物理的ストレス、例えば網に よる捕獲時のハンドリングストレスへの耐性、異なる水温への適応能等があげられる ( 例えば、非特許文献 2参照)。その中でも、特に栽培漁業における放流用種苗にお いては、低水温の海域へ放流する場合、放流後ストレスにより活力が低下すると、す ぐさま大型魚に捕食されてしまうことが予測され、問題となっている。これを防ぐ試みと して魚礁近辺への放流など放流場所の様々な検討が行われて 、る。
初期飼料の分野でも、健康な種苗を生産するために、従来力もなされている形態 異常の改善とともに、新たにストレスへの耐性等々を評価基準に用いて、様々な栄養 成分的アプローチが行われて 、る。
ヨーロッパへダイのストレス耐性等に対するレシチンおよび EPAの効果についてさ れた研究においては、レシチン存在下 EPAの増加によりハンドリングや温度変化に よるステレス耐性を改善することが示されて 、る (非特許文献 3参照)。
マダイ仔稚魚の活力テスト (ノヽンドリング耐性)に対する EPAと DHAの効果につい てされた研究においては、 EPAでは殆ど効果なぐ DHAでは比較的良好な効果を 有することが示されて ヽる (非特許文献 4参照)。
しかしながら、いずれの効果も十分とは言い難ぐ実際の種苗生産現場におけるス トレス耐性や低水温適応能への効果を反映したものではな力つた。また、実際の現場 にお 、て十分な効果を奏するものではな力つた。
以上の通り、近年、種苗生産の指標として、網による捕獲時のハンドリングストレス への耐性、異なる水温への適応能等が重要視されているが、これらを改善させる初 期飼料の栄養成分的アプローチは予備検討に止まり、極めて不十分である。特に、
EPA、 n— 6DPAおよび DHAを中心とする総合的なアポローチは全くなされて!/、な い。
[0005] 特許文献 1 :特許第 1992146号
特許文献 2:特公平 4 8021号公報
特許文献 3:特開平 11—276091号公報
非特許文献 1 :養殖臨時増刊「添加商品べストガイド」、株式会社緑書房、平成 12年 3月 10日、第 37卷,第 4号、 p. 186-191
非特許文献 2 :高橋隆行, 「種苗生産における環境とストレス」,アクアネット,湊文社, 平成 13年 7月,第 4卷,第 7号, p. 62-65
非特許文献 3: JINGLE LIU、外 6名, Necessity of dietary lecithin and ei cosapentaenoic acid for growth, survival, stress resistance and lipop rotein formation in gilthead sea bream spams aurata, FISHERIES
SCIENCEJ , 日本, 日本水産学会誌, 2002年,第 68卷, p. 1165—1172 非特許文献 4 :竹内俊郎, 「魚類における栄養素の欠乏症と要求量」,栽培漁業技術 研修事業 基礎理論コース テキスト集 V 仔稚魚期の発育シリーズ,社団法人日本 栽培漁業協会,平成 3年,第 4卷, p. 20-23
発明の開示
[0006] 本発明の目的は、魚介類の種苗生産における種々のストレスへの耐性が付与され た種苗を提供することである。
本発明の課題は、低温ストレスおよびノヽンドリングストレスに強い種苗を生産するこ とができる動物プランクトン用飼料を提供することにある。
本発明者らは、これらの問題点 (課題)を解決するために鋭意努力した結果、エイコ サペンタエン酸(以下、「EPA」という。)を含む微生物の細胞壁破砕処理物と、 n— 6 ドコサペンタエン酸(以下、「n— 6DPA」という。)とドコサへキサェン酸(以下、「DHA 」という。)とを含む微生物を含有したものを、動物プランクトン用飼料として使用するこ とにより、種苗生産における低水温暴露ゃノ、ンドリングによるストレス防止効果を発揮 することを見出し、本発明を完成させた。よって、本発明は、種苗生産において、魚 介類、特に仔稚魚に低水温暴露耐性や、ハンドリングストレス耐性を付与できる飼料 を提供する。
[0007] また、本発明は、力かる動物プランクトン用飼料において、エイコサペンタエン酸を 含む微生物に含まれる脂質の総脂肪酸中のエイコサペンタエン酸含量が、 10— 50 質量%である動物プラン外ン用飼料を提供する。
また、本発明は、力かる動物プランクトン用飼料において、エイコサペンタエン酸を 含む微生物が、真正眼点藻類ナンノクロロブシス属(Nannnochloropsis.sp)である動 物プラン外ン用飼料を提供する。
また、本発明は、力かる動物プランクトン用飼料において、 n— 6ドコサペンタエン酸 とドコサへキサェン酸とを含む微生物に含まれる脂質の総脂肪酸中の n— 6ドコサぺ ンタエン酸含量が 10— 60質量%である動物プランクトン用飼料を提供する。
また、本発明は、力かる動物プランクトン用飼料において、 n— 6ドコサペンタエン酸 とドコサへキサェン酸とを含む微生物に含まれる脂質の総脂肪酸中のドコサへキサ ェン酸含量が 20— 80質量%である動物プランクトン用飼料を提供する。
[0008] また、本発明は、力かる動物プランクトン用飼料において、 n— 6ドコサペンタエン酸 とドコサへキサェン酸とを含む微生物力 シゾキトリウム属 (Schizochytrium.sp)または トラウストキトリウム属(Thraustochytrium.sp)である動物プランクトン用飼料を提供する また、本発明は、力かる動物プランクトン用飼料において、エイコサペンタエン酸を 含む微生物の細胞壁破砕処理物と、 n— 6ドコサペンタエン酸とドコサへキサェン酸と を含む微生物との質量比率が、固体物として 1: 9一 9: 1である動物プランクトン用飼 料を提供する。
また、本発明は、力かる動物プランクトン用飼料において、動物プランクトンが、ヮム シ、アルテミアおよびミジンコカもなる群より選ばれる 1種または 2種以上である動物プ ランクトン用飼料を提供する。
[0009] また、本発明は、力かる動物プランクトン用飼料において、動物プランクトン用飼料 に含まれる脂質の総脂肪酸中のエイコサペンタエン酸含量が 5— 27質量%であり、 n 6ドコサペンタエン酸含量が 5— 21質量%であり、かつ、ドコサへキサェン酸含量が 5— 52質量%である動物プランクトン用飼料を提供する。これにより、本発明は、 EP A、 n-6DHAおよび DHAに関して、特徴ある組成を有する脂質を含有する動物プ ランクトン用飼料を提供する。
また、本発明は、力かる動物プランクトン用飼料を動物プランクトンに給餌させること により栄養強化した栄養強化動物プラン外ンを、仔稚魚の餌として用いることを特徴 とする仔稚魚の生産方法を提供する。これにより、低水温暴露耐性やハンドリングスト レス耐性を有する仔稚魚の生産方法を提供する。また、言い換えれば、仔稚魚に低 水温暴露耐性やハンドリングストレス耐性を付与する、仔稚魚の生産方法を提供する 本発明は、又、エイコサペンタエン酸を含む微生物の細胞壁破砕処理物、および n 6ドコサペンタエン酸とドコサへキサェン酸とを含む微生物、を含有する、魚介類へ のストレス耐性付与剤を提供する。
発明を実施するための最良の形態
[0010] 本発明における、エイコサペンタエン酸を含む微生物の細胞壁破砕処理物および 、 n— 6ドコサペンタエン酸とドコサへキサェン酸とを含む微生物、を含有することを特 徴とする動物プランクトン用飼料とは、少なくとも、(1)エイコサペンタエン酸を含む微 生物の細胞壁破砕処理物と、 (2) n— 6ドコサペンタエン酸とドコサへキサェン酸とを 含む微生物、を含有する動物プランクトン用飼料をいう。
本発明における「エイコサペンタエン酸 (以下、「EPA」という。)を含む微生物」とは 、微生物中に EPAを含有しているものおよび Zまたは、微生物を培養すると微生物 内に EPAを産生するものをいう。 EPAは、「C20 : 5, n— 3」や「C20 : 5」と表記される 場合がある。
具体的には、真正眼点藻類ナンノクロロブシス属 (Nannnochloropsis.sp)、プラシノ藻 類のテトラセルミス(Tetraselmis.sp)および、挂藻類のキートセラス(Chaetceros.sp)な どが挙げられる。この中でも好ましいのは、真正眼点藻類ナンノクロロブシス属 (Nannnochloropsis.sp)である。
[0011] これらの微生物の取扱い方法は、特に限定されないが、例えば、純粋培養した培 養液体中より微生物菌体のみを分離したものの濃縮物または、その乾燥物として用 いるのが好ましい。
本発明における「微生物」とは、微生物に由来したものを広く含み、培養菌体、乾燥 培養菌体および処理培養菌体ならびに菌体および培養上清を含む培養液を含む。 詳しくは、微生物そのものの他、例えば、微生物の濃縮物、凍結乾燥物、スプレー乾 燥物などを含む。
本発明における「EPAを含む微生物の細胞壁破砕処理物」とは、 EPAを含む微生 物に対して高圧ホモジナイザー等を用いて強制分散処理し、実質的に該微生物の 細胞壁を破砕処理したものをいう(例えば、特許文献 3参照)。この処理は、「可消化 処理」と言われる場合がある。当該破砕処理の工程は、微生物を調整する際、いず れの時期にも限定されず、例えば、微生物を培養して菌体を集めた状態で可消化処 理を施してもよぐまた、菌体を収集,乾燥し、その後、当該乾燥物を任意の液体に溶 かし、または懸濁させ、可消化処理を施してもよい。
[0012] 本発明における EPAを含む微生物の EPA含量は、特に限定されないが、例えば、 EPAを含む微生物に含まれる脂質の総脂肪酸中の EPA含量が、 10質量%以上で あり、好ましくは 10— 50質量%、より好ましくは 15— 48質量%、さらに好ましくは 20 一 45質量%、特に好ましくは 23— 43質量%、最も特に好ましくは 28— 38質量%で める。
本発明における「脂質」とは、一般的に、「油脂」、「油分」および「油」と言われる場 合もあり、例えば、 Bligh— Dyer法により抽出された脂質をいう。飼料および微生物に 含まれる脂質の総脂肪酸中の脂肪酸含量は、従来方法により求められ、その方法は 特に限定されない。例えば、分析サンプルを凍結乾燥し、該凍結乾燥物より Bligh— Dyer法で脂質を抽出してメチルエステルイ匕した後、ガスクロマトグラフィーで脂肪酸 組成を算出し、該当する脂肪酸の量を、脂質中の脂肪酸全体の量で除して求めるこ とがでさる。
本発明における EPAを含む微生物中の脂質量は、特に限定されない。該脂質量 は、微生物の培養方法により大きく影響をうけるものなので、特定することが難しいが 、例えば、 1質量%以上であり、好ましくは 3質量%以上である。
本発明における EPAを含む微生物の EPAの存在状態は、特に限定されない。例 えば、トリグリセリド、ジグリセリド、モノグリセリド、脂肪酸、脂肪酸メチルエステル、脂 肪酸ェチルエステル、リン脂質や糖脂質等の複合脂質の 1、ずれであってもよ 、。
[0013] 本発明における「n— 6ドコサペンタエン酸(以下、「n— 6DPA」と!、う。)とドコサへキ サェン酸(以下、「DHA」という。)とを含む微生物」とは、微生物中に n-6DPAと DH Aを含有しているものおよび Zまたは、培養すると微生物内に n— 6DPAと DHAを産 生するものをいう。 n— 6DPAは「C22 : 5、 n— 6」や「C22 : 5」と、 DHAは「C22 : 6、 n— 3」や「C22: 6」と表記される場合がある。
具体的には、シゾキトリウム属(Schizochytrium.sp)、トラウストキトリウム属( Thraustochytrium.sp)、ウルケニア属 (Ulkenia属)および、アルトリニア属 (Althornia属 )などが挙げられる。この中でも好ましいのは、シゾキトリウム属(Schizochytrium.sp)ま たはトラウストキトリウム属(Thraustochytrium.sp )であり、より詳細には、 ATCC 208 88、 20889、 20891、 24473、 28209、 28221、 34304等力 S挙げ、られる力 本発明 はこれらに限定されるものではない。
これらの微生物の取扱い方法は、特に限定されないが、例えば、純粋培養した培 養液体中より微生物菌体のみを分離したものの濃縮物および、その乾燥物として用 いるのが好ましい。
[0014] 本発明における n— 6DPAと DHAとを含む微生物中の n— 6DPA含量は、特に限 定されないが、例えば、 n— 6DPAと DHAとを含む微生物に含まれる脂質の総脂肪 酸中の n— 6DPA含量は、 5質量%以上であり、好ましくは 5— 60質量%、より好ましく は 11一 45質量%、さらに好ましくは 11一 30質量%、特に好ましくは 11一 25質量% 、最も特に好ましくは 13— 20質量%である。
本発明における n— 6DPAと DHAを含む微生物中の DHA含量は、特に限定され ないが、例えば、 n— 6DPAと DHAを含む微生物の脂質中の DHA含量力 20質量 %以上であり、好ましくは 20— 80質量%、より好ましくは 30— 70質量%、さらに好ま しくは 30— 60質量%、特に好ましくは 30— 50質量%、最も特に好ましくは 33— 43 質量%である。
本発明における n— 6DPAと DHAとを含む微生物の n— 6DPAと DHA含量との割 合については、特に限定されない。例えば、上記の n— 6DPAと DHAとを含む微生 物の n— 6DPA含量と、上記の n— 6DPAと DHAとを含む微生物の DHA含量との任 意の割合 (任意の組み合わせ)をなす微生物を、本発明で用いることができる。詳しく は、例えば、 n— 6DPAと DHAとを含む微生物に含まれる脂質の総脂肪酸中の n— 6 DPA含量が 10— 30質量%であり、かつ、 DHA含量が 30— 70質量%のものが挙げ られる。
本発明における n— 6DPAと DHAを含む微生物中の脂質量は、特に限定されない 。該脂質量は、微生物の培養方法により大きく影響をうけるものなので、特定すること が難しいが、例えば、 5質量%以上であり、好ましくは 30質量%以上である。
本発明における n— 6DPAと DHAを含む微生物の EPAの存在状態は、特に限定 されない。例えば、トリグリセリド、ジグリセリド、モノグリセリド、脂肪酸、脂肪酸メチル エステル、脂肪酸ェチルエステル、リン脂質や糖脂質等の複合脂質のいずれであつ てもよい。
本発明に力かる動物プランクトン用飼料にぉ 、ては、 EPAを含む微生物の細胞壁 破砕処理物と、 n— 6DPAと DHAとを含む微生物との質量比率は、特に限定されな いが、例えば、具体的には、固体物として 1 : 9一 9 : 1であり、好ましくは、固体物とし て 1 : 1である。
本発明で用いる微生物の存在は、通常、光学顕微鏡による形状の確認と、その油 脂中の脂肪酸組成により同定することができる。例えば、 n— 6DPAを持つシゾキトリ ゥム属 'トラウスキトリウム属藻類は、クロロフィルを持たず、直径 6— 7 mの球形の細 胞である。
本発明において、固体物とは、外観が固形状、粉末状またはブロック状等であれば よぐ水分含量は特に限定されない。また、液状、ペースト状、懸濁状ではない。本明 細書中では、固体物の範疇に含まれるものとして、特に粉末状のものを「乾燥粉末」 という場合がある。
[0016] 質量比率を調整する場合、 EPAを含む微生物の細胞壁破砕処理物は、上記のよ うに固体物であればよぐ水分含量が限定されないが、例えば、水分含量は、 10質 量%以下であり、好ましくは 9一 0. 1質量%、より好ましくは 8— 0. 1質量%である。 質量比率を調整する場合、 n— 6DPAと DHAとを含む微生物は、上記のように固体 物であればよぐ水分含量が限定されないが、例えば、水分含量は、 10質量%以下 であり、好ましくは 8— 0. 1質量%、より好ましくは 7— 0. 1質量%、さらに好ましくは 6 一 0. 1質量%、特に好ましくは 5— 0. 1質量%、最も特に好ましくは 4一 0. 1質量% である。
本発明にかかる動物プランクトン用飼料は、性状は問わず、いかなる性状でも提供 できる。例えば、固体(固形状、粉末状)、ペースト、液体 (溶液、溶液状)または懸濁 液 (懸濁状)として提供できる。
また、液体 (溶液、溶液状)または懸濁液 (懸濁状)する場合でも、その水分に対す る飼料の量は、限定されず、濃度は問わない。例えば、飼料 1質量に対して、溶液 0 . 1一 100質量を混合、溶解または懸濁させ用いることができる。
[0017] 本発明にかかる動物プランクトン用飼料の製造方法の一例を示す。
本発明にお!ヽて質量比率を調整するとき、それぞれの微生物を粉末状としたものを 混合することにより、粉末状の動物プランクトン用飼料を提供できる。例えば、 EPAを 含む微生物を細胞壁破砕処理したものを凍結乾燥した水分含量 8質量%以下の乾 燥粉末 100gと、 n— 6DPAと DHAとを含む微生物をスプレー乾燥した水分含量 4質 量%以下の乾燥粉末 100gを混合したものが挙げられる。それぞれの微生物由来の 乾燥粉末の混合方法は、特に限定されない。
また、それぞれの微生物を粉末状とし、それぞれを任意の液体と混合して、溶液状 または懸濁状にし、その後、混合することができる。これにより、溶液状または懸濁状 の動物プランクトン用飼料を提供できる。例えば、 EPAを含む微生物を凍結乾燥した 水分含量 8質量%の乾燥粉末 lOOgを 1リットルの蒸留水に加え細胞壁破砕処理した 懸濁液と、 n— 6DPAと DHAとを含む微生物をスプレー乾燥した水分含量 4質量% の乾燥粉末 lOOgを 1リットルの蒸留水に加え攪拌した懸濁液を、混合したものが挙 げられる。それぞれの微生物由来の溶液または懸濁状としたものの混合方法は、特 に限定されない。また、上記の混合後の溶液状または懸濁状のものを、再度、乾燥 物として、固形状または粉末状として提供することもできる。
溶液状または懸濁状の動物プランクトン用飼料を提供する場合、特に液体中の微 生物量は限定されないが、通常 15質量%以下で用いられ、好ましくは 15— 5質量% であり、例えば、 15、 12. 5、 10、 7. 5、 5質量%が挙げられる。
[0018] 本発明で 、う動物性プランクトンとは、ヮムシ (シォミズッボヮムシなど)、アルテミア( ブラインシュリンプ)、ミジンコなどの一般に種苗生産において生物餌料として利用さ れているものをいう。これらは、同時に 1種または 2種以上用いても良い。
本発明にお 、て「動物プランクトン用飼料」とは、動物プランクトンに給餌させるため の飼料をいう。該飼料を動物プランクトンに給餌させる主な目的は、動物プランクトン の中に栄養素(例えば、 EPA、 n— 6DPAおよび DHAなど)を蓄積させること (栄養強 ィ匕)である。
本発明において、「栄養強化動物プランクトン」とは、動物プランクトン用飼料を動物 プランクトンに給餌させたことにより、動物プランクトン中の栄養素(例えば、 EPA、 n— 6DPAおよび DHAなど)が強化された動物プランクトンをいう。該栄養強化動物ブラ ンクトンは、種苗生産時に、仔稚魚に給餌して用いるものである。
本発明において動物プランクトンの一次培養および、栄養強化を伴う二次培養の 条件は、当業者において通常の方法で行うことができる。具体的な培養条件は、当 業者の知識の範囲で、適時修正して行うことができる。
[0019] 本発明において、力かる動物プランクトン用飼料を栄養強化に使用するとき、該飼 料の添加量は、特に限定されない。これは、当業者において通常の方法で行うことが できる。具体的な濃度は、当業者の知識の範囲で、適時修正して行うことができる。 例えば、当該飼料の固体物として、 0. 2gZリットルで添加することができる。詳しくは 、 EPAを含む微生物の固体物 1 OOgと 1リットルの蒸留水にカ卩えて細胞破壊処理をな したものと、 n— 6DPAと DHAとを含む微生物の固体物 100gを 1リットルの蒸留水に 加えて攪拌したものを混合する(従って、飼料 200gZ2リットルとなる)。次いで、該混 合液を、動物プランクトンの培養液の中に、 2mlZリットルの濃度で使用する(従って 、飼料 200mgZ2mlZリットルなので、換算すると、飼料 0. 2gZリットルとなる)。 本発明において、力かる動物プランクトン用飼料中の EPA、 n— 6DPAおよび DHA の含量は、特に限定されるものではない。
本発明において、力かる動物プランクトン用飼料中の EPA含量は、特に限定されな いが、例えば、該飼料に含まれる脂質の総脂肪酸中の EPA含量が 5— 35質量%で あり、好ましくは 5— 30質量%、より好ましくは 5— 27質量%、さらに好ましくは 5— 25 質量%、特に好ましくは 5— 20質量%、最も特に好ましくは 10— 20質量%である。 本発明において、力かる動物プランクトン用飼料中の n— 6DP A含量は、特に限定 されないが、例えば、該飼料に含まれる脂質の総脂肪酸中の n— 6DPA含量が 5— 4 0質量%であり、好ましくは 5— 30質量%、より好ましくは 5— 21質量%、さらに好まし くは 6— 20質量%、特に好ましくは 7— 18質量%、最も特に好ましくは 7— 15質量% である。
本発明において、力かる動物プランクトン用飼料中の DHA含量は、特に限定され ないが、例えば、該飼料に含まれる脂質の総脂肪酸中の DHA含量が 5— 60質量% であり、好ましくは 5— 55質量%、より好ましくは 5— 52質量%、さらに好ましくは 10— 40質量%、特に好ましくは 15— 35質量%、最も特に好ましくは 25— 35質量%であ る。
本発明において、力かる動物プランクトン用飼料に含まれる脂質の総脂肪酸中の E PA、 n— 6DPAおよび DHA含量の割合については、特に限定されるものでない。例 えば、上記動物プランクトン用飼料の脂質中の総脂肪酸に対する EPA、 n— 6DPA および DHA含量の任意の割合 (任意の組み合わせ)をなす脂質を、本発明で用い ることができる。詳しくは、例えば、力かる動物プランクトン用飼料に含まれる脂質の総 脂肪酸中の脂肪酸含量力 EPAが 5— 27質量%であり、 n— 6DPAが 5— 21質量% であり、かつ、 DHAが 5— 52質量%である動物プランクトン用飼料を提供することが できる。
[0021] 本発明において、力かる動物プランクトン用飼料の脂質量は、特に限定されない。
該脂質量は、それぞれの微生物の培養方法や混合比率により大きく異なるものであ り、一概に含量を示すことはできない。
本発明において、力かる動物プランクトン用飼料の脂質の存在状態は、特に限定さ れない。例えば、トリグリセリド、ジグリセリド、モノグリセリド、脂肪酸、脂肪酸メチルェ ステル、脂肪酸ェチルエステル、リン脂質や糖脂質等の複合脂質のいずれであって ちょい。
本発明は、別の観点カゝらすれば、 EPAを含む微生物または該細胞壁破砕物と、 n —6DPAと DHAとを含む微生物との混合質量比率を調整することにより、 EPA、 n— 6 DPAおよび DHAの含量を調整する動物プランクトン用飼料および脂質の調整方法 または生産方法を提供する。また、該調整方法または生産方法により得られる脂質 含量を、仔稚魚の種苗生産に対して有効な EPA、 n— 6DPAおよび DHAの含量に 調整することができる。さらに、該調整方法または生産方法により、仔稚魚の種苗生 産に対して有効な EPA、n— 6DPAおよび DHAの含量の飼料および油脂を提供で きる。
本発明は、別の観点力 すれば、脂質の総脂肪酸中の構成脂肪酸含量が、 EPA 力 一 27質量%であり、 n— 6DPAが 5— 21質量%以上であり、かつ、 DHAが 5— 5 2質量%である脂質を提供できるものである。
[0022] これらの脂質の使用方法は、特に限定されず、単独または他のもの混ぜて使用す ることができる。これらは、例えば、動物プランクトン用飼料、仔稚魚の生産方法など、 あらゆる魚介類の種苗生産に関することに使用できるとともに、あらゆる医薬品や食 品にち使用することがでさる。
本発明において、力かる動物プランクトン用飼料に含まれる脂質の総脂肪酸中の E PA、 n - 6DPAおよび DHA含量が特定の比率である脂質および、該脂質を含有す る飼料は、 EPAを含む微生物および Zまたは、 n— 6DPAと DHAとを含む微生物を 用いなくても、各成分をそれぞれ用意して混合したり、もしくはそれぞれの成分をトリ グリセリド、ジグリセリド、モノグリセリド、脂肪酸、脂肪酸メチルエステル、脂肪酸ェチ ルエステル、リン脂質や糖脂質等の複合脂質のいずれにして、混合することによって も、実現可能である。しかしながら、本発明に力かる EPAを含む微生物および、 n— 6 DPAと DHAを含む微生物を用いることが、製造する際に簡単であり、工業的にも効 率がよぐ安価に作製可能である。
また、本発明にカゝかる EPAを含む微生物および、 n— 6DPAと DHAを含む微生物 を用いて動物プランクトン用飼料としたものと、各成分をそれぞれ用意して本発明に 力かる動物プランクトン用飼料に含まれる脂質の総脂肪酸中の EPA、n— 6DPAおよ び DHA含量を同様の比率としたものでは、前者の方が、効果の面でも好ましい。
[0023] 種苗生産とは、魚類の場合、一般に、孵化仔魚から稚魚まで育てる工程を!ヽぅ。こ れら種苗生産により得られた稚魚は、その後、放流や養殖に用いられる。よって、種 苗生産がうまくいき、生残率が高ぐ活力が大きい稚魚、さらに種々のストレス耐性を 備えた稚魚ができれば、その後の養殖等に大いに役立つこととなる。
本発明において、別の観点によれば、力かる動物プランクトン用飼料を動物プラン タトンに給餌させることにより栄養強化した栄養強化動物プラン外ンを提供する。 本発明において、別の観点によれば、力かる動物プランクトン用飼料を動物プラン タトンに給餌させることにより栄養強化した栄養強化動物プランクトンの生産方法を提 供する。
[0024] 本発明において、別の観点によれば、力かる動物プランクトン用飼料を動物プラン タトンに給餌させることにより栄養強化した栄養強化動物プランクトンを得る動物ブラ ンクトンの給餌方法を提供する。
本発明において、別の観点によれば、力かる動物プランクトン用飼料を動物プラン タトンに給餌させることにより栄養強化した栄養強化動物プランクトンを、仔稚魚の餌 として用いることを特徴とする仔稚魚を提供する。
本発明において、別の観点によれば、力かる動物プランクトン用飼料を動物プラン タトンに給餌させることにより栄養強化した栄養強化動物プランクトンを、仔稚魚の餌 として用いることを特徴とする仔稚魚の給餌方法を提供する。
本発明にお 、て、力かる動物プランクトン用飼料を動物プランクトンに給餌させるこ とにより栄養強化した栄養強化動物プランクトンを、仔稚魚の餌として用いることを特 徴とする仔稚魚の生産方法を提供する。
[0025] 本発明において、別の観点によれば、力かる動物プランクトン用飼料を、仔稚魚の 種苗生産に用いて得られる仔稚魚を提供する。
本発明において、別の観点によれば、力かる動物プランクトン用飼料を、仔稚魚の 種苗生産に用いることを特徴とする仔稚魚の種苗生産方法を提供する。
本発明において、別の観点によれば、力かる動物プランクトン用飼料を、仔稚魚の 種苗生産に用いることを特徴とする仔稚魚の生産方法を提供する。
また、本発明による動物プランクトン用飼料には、当該飼料以外の飼料成分を混合 して用いることができる。当該飼料以外の飼料成分は、特に限定されず、通常の動物 プランクトン用飼料として用いられているものを使用できる。例えば、淡水クロレラ、酵 母、魚油、リン脂質などが挙げられる。さらに、本発明による動物プランクトン用飼料 は、当該飼料と、当該飼料以外の飼料成分を同時または別個独立して、魚介類に用 いることがでさる。
[0026] 本発明による動物プランクトン用飼料を用いて種苗生産を行うことができる魚介類 は、特に限定されるものではなぐ動物プランクトンを使用して種苗生産を行うすべて のものに対して用いることができる。例えば、マダイ、ヒラメ、クロダイ、トラフグ、カレイ 、力サゴ、メバル、ァュ、ォ-ォコゼ、ブリ、タエ、ァカアマダイ、マグロ等の魚類、ガザ ミ、クルマエビ等の甲殻類やタコ、イカ等の頭足類などである。この中でも、好ましくは マダイ、ヒラ入クロダイ、トラフグ、カレイであり、さらに好ましくは、マダイ、ヒラメである 本発明による動物プランクトン用飼料は、魚介類の生産歩留まり向上 (生残率の向 上)や奇形の防除等の従来の視覚で認識できる作用を保持しつつ、魚介類の機能 面の向上という優れた効果を有するものである。魚介類の機能面の向上とは、視覚で 認識できないが、魚介類の内的な機能面の向上をいう。例えば、水槽換えにおける ストレス、移送段階の物理的ストレス、網による捕獲時のハンドリングストレスおよび、 異なる水温へ移送した時のストレスなどの耐性向上をいう。従来、魚介類の機能面が 低いと、これらの工程により、魚介類は生残率が落ちてしまい、種苗生産がうまくいか ない場合があった。 本発明による動物プランクトン用飼料の効果は、より詳細には、当該飼料を動物プ ラン外ンに給餌させ栄養強化された栄養強化動物プラン外ンを、仔稚魚の餌として 用い、仔稚魚の種苗生産をすることにより、仔稚魚に対して上記ストレス耐性が向上 されるため、仔稚魚の水槽換え時、移送時、網による捕獲時、異なる水温の水槽へ 移送した時に、仔稚魚の生存率や活性が落ちるのを防ぐことができる。これにより、結 果として、種苗生産が現状よりも、さらに良好になるものである。
[0027] 本発明による動物プランクトン用飼料の効果は、一般に、生産歩留まり向上 (生残 率の向上)や奇形の防除等の効果を有するとされている、(a)比較的 EPAを多く含 み、 DP Aや DHAをほとんど含まない微生物、(b)比較的 DPAおよび DHAを多く含 み、 EPAを微量 (脂質中の総脂肪酸に 5質量%以下)含む微生物、と比較して、大き な効果を有している。特に、当該飼料は、これらと比して、仔稚魚の空中暴露に対す る耐性および、低水温暴露に対する耐性について、顕著な効果を有している。
空中暴露試験では、本明細書中で言われる「ノヽンドリングストレス耐性」、「ハンドリ ングによるストレス防止効果」を測定する。該試験は、例えば、一定期間飼育後の仔 稚魚を網の上に乗せ、一定時間(例えば、 120秒)、空中に露出させた後、他の同水 温へ移送して、一定期間(例えば、 24時間)後の生残率で測定することにより行うこと ができる。これにより、活力が維持され、仔稚魚の生残率が高ければ (死ななければ) 、当然、仔稚魚の種苗生産時における取扱い時にも、死ぬことが少なくなり、結果とし て、種苗生産がうまくいき、水産業に大いに役立つものである。
低水温暴露試験では、本明細書中で言われる「低水温暴露耐性 (低温ストレス耐 性)」、「低水温暴露によるストレス防止効果」を測定する。該試験は、例えば、水温 2 1°Cで一定期間飼育後の仔稚魚を、水温 12°C、 13°C、 14°Cまたは 15°Cの他の水槽 に移送して、一定期間(例えば、 30分)後の生残率で測定することにより行うことがで きる。これにより、活力が維持され、仔稚魚の生残率が高ければ (死ななければ)、当 然、仔稚魚の種苗生産時における取扱い時にも、死ぬことが少なくなり、結果として、 種苗生産がうまく!/、き、水産業に大いに役立つものである。
[0028] 本発明によれば、 EPAを含む微生物の細胞壁破砕処理物と、 n— 6DPAと DHAと を含む微生物を含有したものを、動物プランクトン用飼料として使用することにより、 種苗生産における仔稚魚の低水温暴露やハンドリングによるストレス防止効果を奏す る。
すなわち、本発明によれば、力かる動物プランクトン用飼料を、動物プランクトンに 給餌させることにより栄養強化された栄養強化動物プランクトンを仔稚魚の餌として 用いることにより、該仔稚魚の低水温暴露耐性 (低温ストレス耐性)やハンドリングスト レス耐性を向上させる効果を奏する。又、本発明の動物プランクトン用飼料を与えた アルテミアゃヮムシなどの動物プランクトンでは、その活力が低下しないとの利点があ る。
これらの効果は、従来にない、とても有効な効果であり、魚介類の種苗生産、特に 仔稚魚の種苗生産に大いに役立つものである。
以下に、実施例を挙げて本発明をより具体的に説明する力 本発明はそれらによつ て限定されるものではない。
実施例 1
[動物プランクトン用飼料の調整および、栄養強化動物プランクトンの調整]
(1 1)動物プランクトン用飼料の調整
動物プランクトン用飼料の原料として、シゾキトリウム ATCC20891株の培養液 100 リットル力も約 3kgの菌体を分離した。次いで菌体を凍結乾燥処理した後、粉砕し、 1
. 2kgの乾燥粉末を得た。この乾燥粉末 lOOgに蒸留水を加え 1リットルにし、ホモジ ナイザーで分散した試験飼料 Aを得た。
試験飼料 Aは、 n— 6DPAと DHAとを含む微生物に相当する。
また、ナンノクロロブシス培養液 5000リットルから 4kgの菌体を得て、それをスプレ 一乾燥した。その乾燥粉末 lOOgを蒸留水に加え 1リットルとし高圧ホモジナイザーに より細胞壁破砕処理を行!ゝ試験飼料 Bを得た。
試験飼料 Bは、 EPAを含む微生物の細胞壁破砕物に相当する。
さらに、別に Aの飼料 500mlと Bの飼料 500mlを作成しそれぞれを混合し、試験飼 料 Cを得た。
試験飼料 Cは、当該発明にかかる動物プランクトン用飼料に相当する。
試験飼料 A— Cを、それぞれ脂肪酸分析サンプルとした。 試験飼料の脂肪酸組成を表 1に示す。脂肪酸組成は、脂肪酸分析サンプルを凍結 乾燥後、 Bligh— Dyer法で脂質を抽出してメチルエステルイ匕後、ガスクロマトグラフィ 一で分析した。構成脂肪酸の割合 (質量%)は、面積百分率より求めた。
試験飼料 Aに用いた菌体の凍結乾燥品たる乾燥粉末の水分は 3. 7%、油分は 58 . 5%であった。また、試験飼料 Bに用いたスプレー乾燥品たる乾燥粉末の水分は 7. 0%、油分は 7. 5%であった。
[0030] (1 2)栄養強化動物プランクトンの調整
試験飼料を添加して栄養強化する動物プランクトン培養液は、ヮムシを淡水クロレラ にて培養し 1000個体 Zmlに調整、アルテミアは 100個体 Zmlにそれぞれ調整し、 V、ずれも水温を 25°Cに維持した。そこに各種試験飼料をそれぞれ 2ml/リットルの濃 度になるように添加した後、 2時間以上経過したもの(栄養強化動物プランクトン)を 脂肪酸分析サンプルに供するとともに試験魚の餌として用いた。ここで、栄養強化し たヮムシおよびアルテミアを、それぞれヮムシ A— C、アルテミア A— Cという。
栄養強化ヮムシの脂肪酸組成を表 2に、栄養強化アルテミアの脂肪酸組成を表 3に 示す。脂肪酸組成は、脂肪酸分析サンプルを凍結乾燥後、 Bligh - Dyer法で脂質を 抽出してメチルエステルイ匕後、ガスクロマトグラフィーで分析した。構成脂肪酸の割合 (質量%)は、面積百分率より求めた。
これらから、試験飼料の脂肪酸組成が、栄養強化した動物プラン外ンの脂肪酸組 成に反映して ヽることがわかる。
以上のようにして栄養強化したヮムシ、アルテミアを用いて、実施例 2および 3にて、 それぞれマダイにより飼育試験を行った。
[0031] 表 1は、各種試験飼料の脂肪酸分析値を示す。単位は、質量%である。表中の「N D」は、未検出を意味する。
表 2は、各種飼料で栄養強化したヮムシの脂肪酸分析値を示す。単位は、質量% である。表中の「ND」は、未検出を意味する。
表 3は、各種飼料で栄養強化したアルテミアの脂肪酸分析値を示す。単位は、質量 %である。
[0032] 表 1 脂肪酸 \試験区 試験飼料 A 試験飼料 B 試験飼料 C
C 14 0 0. 5 3. 6 0.4
C 16 0 1 2. 4 1 9. 3 1 3. 7
C 16 1 0. 3 1 7. 8 4. 3
C 18 0 2 7. 6 0. 3 1 8.4
C 18 1 0. 4 3. 4 0. 7
C 18 2 0. 3 0. 1 0. 2
C20 4 0. 8 5. 9 1. 0
C20 5 (E P A) 1. 5 3 2. 3 1 5. 0
C22 5 ( n - 6 D P A) 1 4. 1 ND 1 0. 6
C22 5 ( n - 3 D P A) 0. 1 ND N D
C22 6 (D H A) 3 7. 8 ND 2 9. 1 その他 4. 2 1 7. 3 6. 6
Λ
ct、 = aiT 1 0 0. 0 1 0 0. 0 1 0 0. 0 表 2
Figure imgf000019_0001
表 3
W ^B^I料 A 飼料し gt^ g-t- \ ¾^ t T
^木丧 5虫 1 木丧5虫 1 木丧 5虫 1 τ¾ 广、ノ u Ί . .
ti . U I d , i i ΰ
A a
ο
ΰ . υ O . Δ
Δ Ό . Ό o . q ■¾ . Q ο . a υ q ZL
C20 : 5 (E P A) 5. 5 2 0 , 4 1 1. 4
C22 : 5 ( n - 6 D P A) 5. 8 N D 4. 5
C22 : 5 ( n - 3 D P A) 0. 2 N D 0. 1
C22 : 6 (D H A) 1 9. 1 0. 1 1 6. 9 その他 1 1. 3 1 0. 5 9. 9 斗 1 0 0. 0 1 0 0. 0 1 0 0. 0
[0035] 実施例 2
[栄養強化ヮムシを用いたマダイにおける飼育試験および、空中露出試験] (2-1)栄養強化ヮムシを用いたマダイにおける飼育試験
実施例 1で得られた試験飼料 Α— Cを給餌させたヮムシ (栄養強化ヮムシ A— C)を それぞれ A— C区に用いて、供試魚にマダイを使用して飼育試験を実施した。
自家採卵したマダイ受精卵を、各区 12500粒にて 500リットル容ポリカーボネート 水槽に収容し、産卵水温で孵化させた後に、徐々に水温を上げ 21°Cにした。ふ化率 は各区とも 98%以上であり、差異はなかった。
栄養強化ヮムシ A— Cの添カ卩は、各区において、ふ化後 3日目よりヮムシの量を 5個 体 Zmlを維持するように調整し、 1日 1回給餌した。ふ化後 10日目より 8個体 Zml維 持、 15日目より 10個体 Zml維持するようにヮムシの量を調整して朝夕 2回給餌し、ふ 化後 20日目で飼育試験を終了した。
飼育終了後の魚体を脂肪酸分析サンプルとした。
飼育終了後、魚体の脂肪酸組成を分析、各区の生残率と平均全長を算定した。
[0036] (2— 2)栄養強化ヮムシを用いたマダイにおける空中露出試験
さらに、空中露出試験として、飼育終了後のマダイ 100尾を網により 60秒間空中に 露出した後、他の同水温の水槽へ移送、 24時間後の生残率をみた。
飼育試験後の魚体の脂肪酸組成を表 4、飼育後の平均全長、生残率、空中露出 後の生残率、の結果を表 5に示す。 A区は栄養強化ヮムシ A投与群、 B区は栄養強 化ヮムシ B投与群、 C区は栄養強化ヮムシ C投与群をさす。脂肪酸組成は、脂肪酸分 析サンプルを凍結乾燥後、 Bligh— Dyer法で脂質を抽出してメチルエステルイ匕後、 ガスクロマトグラフィーで分析した。構成脂肪酸の割合 (質量%)は、面積百分率より 求めた。
表 4中、 A区では他区と比較して最も DHA組成が高ぐ B区では EPA組成が最も 高ぐ C区では EPA、 n— 6DPAおよび DHA組成ともにバランス良く含まれていること がわかる。これらから試験飼料および栄養強化ヮムシの脂肪酸組成が、飼育試験後 の魚体中の脂肪酸組成に反映していることがわかる。
[0037] 表 5より、各区の平均全長には大きな差は見られず、生残率では B区が劣り、 A区と C区は、ほぼ同等であった。空中露出試験 (ノ、ンドリングストレス試験)では、 C区では 95. 3%と生残率が最も高ぐ次いで A区、 B区の順であった。すなわち、 EPA、 n— 6 DPAおよび DHA組成ともにバランス良く含まれて ヽる飼料を用いた群が最も効果が 大きかった。
表 4は、ヮムシ給餌試験後のマダイ魚体の脂肪酸組成を示す。単位は、質量%で める。
表 5は、各種栄養強化したヮムシを給餌したマダイの試験結果を示す。単位は、質 量%である。
[0038] 表 4
A区 B区 C区 脂肪酸 \試験区 (栄赛強化 (栄養強化 〔栄養強化 ヮムシ A ヮムシ B ヮムシ C 投与群) 投与群) 投与群)
C 14 0 1. 7 2. 3 1. 8
C 16 0 2 0. 7 2 3. 0 2 2. 7
C 16 1 3. 4 5 , 7 5 , 0
C 18 0 1 0. 0 1 0. 8 1 0. 6
C 18 1 1 1. 8 1 1. 4 1 0. 2
C 18 2 1 3. 8 1 8. 3 1 5. 0
C20 4 3. 5 4. 1 3. 6
C20 5 ( E P A) 1. 5 1 0. 5 7 , 6
C22 5 ( n - 6 D P A) 4. 1 0. 1 3. 8
C22 5 ( n - 3 D P A) 1. 2 2 , 9 1 , 3
C22 6 (DH A) 1 8. 7 1. 8 1 4. 3 その他 9. 6 9. 1 4. 1 a口 T 1 0 0. 0 1 0 0. 0 1 0 0. 0 表 5
A区 B区 C区 評価方法 \試験区 (栄養強化 (栄養強化 (栄養強化 ヮムシ A ヮムシ B ヮムシ C 投与群) 投与群) 投与群) 飼育終了時 (生残率%) 6 9. 3 5 5. 7 D 5. 5 全長 (mm) 7. 2 6. 5 6. 5 空中露出 (生残率%) 7 8. 5 50. 3 9 5. 3 実施例 3
[栄養強化アルテミアを用いたマダイにおける飼育試験、空中暴露試験および、低水
(3-1)栄養強化アルテミアを用いたマダイにおける飼育試験
実施例 1で得られた試験飼料 A— Cを給餌させたアルテミア (栄養強化アルテミア A 一 C)をそれぞれ A— C区に用いて、供試魚にマダイを使用して飼育試験を実施した 自家採卵したマダイ受精卵を、各区魚卵抽出油で栄養強化したヮムシにより孵化 後 20日目まで飼育したマダイを用いた。各区の水槽に 2000尾づつ、 500リットル容 ポリカーボネート水槽に収容し、水温を 21°Cとした。ふ化率は各区とも 98%以上であ り、差異はなかった。
孵化後 30日目までは魚卵抽出油で栄養強化したヮムシと、各区試験飼料で栄養 強化したアルテミア (栄養強化アルテミア A— C)を併用し、それ以降 36日目まで強 化アルテミア A— Cのみの給餌とした。
魚卵抽出油で栄養強化したヮムシは、朝夕 2回、飼育水中で 10個体 Zmlになるよ うな量に調整して給餌し、栄養強化アルテミア A— Cは、朝夕 2時間以内に食べきる 量を給餌し、徐々に給餌量を増加させた。
[0041] 飼育終了後の魚体を脂肪酸分析サンプルとした。
飼育終了後、魚体の脂肪酸組成を分析、各区の生残率と平均全長を算定した。
(3— 2)栄養強化ヮムシを用いたマダイにおける空中露出試験
また、空中暴露試験として、飼育終了後のマダイ 100尾を網により 120秒間の空中 露出後別水槽へ移送、 24時間後の生残率をみた。
(3-3)栄養強化アルテミアを用いたマダイにおける低水温暴露試験
さらに、低水温暴露試験として、飼育終了後のマダイ 100尾を 12°C、 13°C、 14°C、 1 5°Cの低水温に暴露し 30分後の生残率をみた。
飼育終了後の魚体の脂肪酸組成を表 6に、飼育後の平均全長、生残率、空中露出 試験、低温暴露試験の生残率を表 7に示す。 A区は栄養強化アルテミア A投与群、 B 区は栄養強化アルテミア B投与群、 C区は栄養強化アルテミア C投与群をさす。脂肪 酸組成は、脂肪酸分析サンプルを凍結乾燥後、 Bligh— Dyer法で脂質を抽出してメ チルエステル化後、ガスクロマトグラフィーで分析した。構成脂肪酸の割合 (質量%) は、面積百分率より求めた。
[0042] 表 6中、 A区では他区と比較して最も DHA組成が高ぐ B区では EPA組成が最も 高ぐ C区では EPA、 n— 6DPAおよび DHA組成ともにバランス良く含まれているのこ とがわかる。これらから試験飼料および強化アルテミアの脂肪酸組成が、飼育試験後 の魚体中の脂肪酸組成に反映していることがわかる。
表 7より、各区の平均全長には大きな差は見られず、生残率にも差は見られなかつ た。一方、空中露出試験では、 A区と B区はほぼ変らず、 C区で最も高い生残率が見 られた。すなわち、 EPA、 n— 6DPAおよび DHA組成ともにバランス良く含まれてい る飼料を用いた群が最も効果が大き力つた。
また、低水温暴露による生残率は、 12°Cに暴露した場合、 C区で最も高い生残率、 次いで A区、 B区の順であった。 13°Cでも同様の順であった。 14°C 15°Cでは B区 で特に低い生残率であった力 A区、 C区の間には差は見られなかった。 B区は、 12 15°Cのすベての暴露試験において、 A区および C区と比較して特に低い生残率 であった。すなわち、 EPA n— 6 DP Aおよび DHA組成ともにバランス良く含まれて V、る飼料を用いた群が最も効果が大き力つた。
[0043] 空中露出試験で DHAが空中露出試験の耐性向上に効果があることはこれまでの 報告と一致した結果であった (非特許文献 4参照)。しかし、ヨーロッパへダイではレシ チン存在下で EPAの増加により低水温ストレス耐性が改善することが報告されている (非特許文献 3参照)が、今回の結果では、魚体に EPAが単独存在しただけでは低 水温耐性改善効果はなぐ魚体に n— 6DPAと DHAが存在することで若干改善され 、魚体に EPAと n— 6DPAと DHAがバランスよく存在することによって著しく効果のあ ることが明らかになった。
表 6は、アルテミア給餌試験後のマダイ魚体の脂肪酸組成を示す。単位は、質量% である。
表 7は、各種栄養強化したアルテミアを給餌したマダイの試験結果を示す。単位は、 質量%である。
[0044] 表 6
Figure imgf000024_0001
[0045] 表 7 A区 B区 C区 評価方法 \試験区 (栄養強化 (栄養強化 (栄養強化 アルテミァ A アルテ ミア B アルテ ミア C 投与群) 投与群) 投与群) 飼育終了時 (生残率%) 7 3. 2 7 0 . 3 7 5 . 1 全 (mm) 1 5. 8 1 5 . 5 1 6 . 5 空中露出 (生残率%) 7 8 . 3 2 . 5 1 0 0 . 0 低水温暴露 1 2 °C (生残率%) 2 5. 0 5 . 0 7 0 . 0 低水温暴露 1 3 °C (生残率%) 8 0. 0 0 9 0 . 0 低水温暴露 1 4 °C (生残率%) 1 0 0. 0 1 0 . 0 1 0 0 . 0 低水温暴露 1 5 °C (生残率%) 1 0 0. 0 3 5 . 0 1 0 0 . 0

Claims

請求の範囲
[1] エイコサペンタエン酸を含む微生物の細胞壁破砕処理物、および n— 6ドコサペンタ ェン酸とドコサへキサェン酸とを含む微生物、を含有する動物プランクトン用飼料。
[2] エイコサペンタエン酸を含む微生物に含まれる脂質の総脂肪酸中のエイコサペン タエン酸含量が、 10— 50質量%である請求項 1に記載の動物プランクトン用飼料。
[3] エイコサペンタエン酸を含む微生物が、真正眼点藻類ナンノクロロブシス属(
Nannnochloropsis.sp)である請求項 1または 2に記載の動物プランクトン用飼料。
[4] n— 6ドコサペンタエン酸とドコサへキサェン酸とを含む微生物に含まれる脂質の総 脂肪酸中の n— 6ドコサペンタエン酸含量が 5— 60質量%である請求項 1から 3のい ずれ力 1項に記載の動物プランクトン用飼料。
[5] n— 6ドコサペンタエン酸とドコサへキサェン酸とを含む微生物に含まれる脂質の総 脂肪酸中のドコサへキサェン酸含量が 20— 80質量%である請求項 1から 4のいずれ 力 1項に記載の動物プランクトン用飼料。
[6] n— 6ドコサペンタエン酸とドコサへキサェン酸とを含む微生物に含まれる脂質の総 脂肪酸中の n— 6ドコサペンタエン酸含量が 5— 60質量%で、ドコサへキサェン酸含 量が 20— 80質量%である請求項 1から 5のいずれ力 1項に記載の動物プランクトン 用飼料。
[7] n— 6ドコサペンタエン酸とドコサへキサェン酸とを含む微生物に含まれる脂質の総 脂肪酸中の n— 6ドコサペンタエン酸含量が 10— 30質量%で、ドコサへキサェン酸含 量が 30— 70質量%である請求項 1から 6のいずれ力 1項に記載の動物プランクトン 用飼料。
[8] n— 6ドコサペンタエン酸とドコサへキサェン酸とを含む微生物力 シゾキトリウム属( Schizochytrium.sp)またはトラウストキトリウム属(Thraustochytrium.sp)である請求項 1 力 7のいずれか 1項に記載の動物プランクトン用飼料。
[9] エイコサペンタエン酸を含む微生物の細胞壁破砕処理物と、 n— 6ドコサペンタエン 酸とドコサへキサェン酸とを含む微生物との質量比率力 固体物として 1: 9一 9: 1で ある請求項 1から 8のいずれか 1項に記載の動物プランクトン用飼料。
[10] 動物プランクトン力 ヮムシ、アルテミアおよびミジンコカもなる群より選ばれる 1種ま たは 2種以上である請求項 1から 9のいずれか 1項に記載の動物プランクトン用飼料。
[11] 動物プランクトン用飼料に含まれる脂質の総脂肪酸中のエイコサペンタエン酸含量 力 一 35質量%である請求項 1から 10のいずれ力 1項に記載の動物プランクトン用 飼料。
[12] 動物プランクトン用飼料に含まれる脂質の総脂肪酸中のエイコサペンタエン酸含量 力 一 27質量%であり、 n— 6ドコサペンタエン酸含量が 5— 21質量%であり、かつ、 ドコサへキサェン酸含量が 5— 52質量%である請求項 1から 11のいずれ力 1項に記 載の動物プランクトン用飼料。
[13] 請求項 1から 12のいずれ力 1項に記載の動物プランクトン用飼料を動物プランクト ンに給餌させることにより栄養強化した栄養強化動物プランクトンを、仔稚魚の餌とし て用いることを含む仔稚魚の生産方法。
[14] エイコサペンタエン酸を含む微生物の細胞壁破砕処理物、および n— 6ドコサペンタ ェン酸とドコサへキサェン酸とを含む微生物、を含有する、魚介類へのストレス耐性 付与剤。
[15] ストレス耐性がハンドリング耐性である請求項 14記載のストレス耐性付与剤。
[16] ストレス耐性が低水温暴露耐性である請求項 14記載のストレス耐性付与剤。
PCT/JP2004/013619 2003-09-19 2004-09-17 動物プランクトン用飼料 WO2005027651A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005514053A JP4778792B2 (ja) 2003-09-19 2004-09-17 動物プランクトン用飼料
HK07100625.6A HK1095491A1 (en) 2003-09-19 2007-01-18 Feedstuff for animal plankton

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-328280 2003-09-19
JP2003328280 2003-09-19

Publications (1)

Publication Number Publication Date
WO2005027651A1 true WO2005027651A1 (ja) 2005-03-31

Family

ID=34372895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013619 WO2005027651A1 (ja) 2003-09-19 2004-09-17 動物プランクトン用飼料

Country Status (5)

Country Link
JP (1) JP4778792B2 (ja)
KR (1) KR20060065719A (ja)
CN (1) CN100579388C (ja)
HK (1) HK1095491A1 (ja)
WO (1) WO2005027651A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159700A1 (ja) * 2014-04-15 2015-10-22 独立行政法人水産総合研究センター 動物プランクトン用餌料組成物、その製造方法、及び動物プランクトンの養殖方法
JP2017514528A (ja) * 2014-05-08 2017-06-08 エム. スミス,ドナルド ヒトの健康のためのω−3が豊富な食肉を生産するためのウシ及びバイソン用の飼料栄養補助剤としての全藻の選択、生産、及び給餌
JP2018019642A (ja) * 2016-08-03 2018-02-08 国立大学法人高知大学 魚類の養殖方法および魚類用飼料
JP2018504887A (ja) * 2014-12-12 2018-02-22 ディーエスエム アイピー アセッツ ビー.ブイ. 水産養殖試料における使用のための試料添加材料
US10272123B2 (en) 2012-10-30 2019-04-30 Donald M. Smith Selecting, producing, and feeding whole algae as a feed supplement for cattle and bison to produce meat high in omega 3'S for human health
EP3431579A4 (en) * 2016-03-16 2019-11-06 Kaneka Corporation FOOD COMPOSITION, PROCESS FOR PRODUCING ZOOPLANCTON, ZOOPLANCTON, AND ZOOPLANCTON GROWTH PROMOTER AND SURVIVAL RATE AMPLIFIER
US11419350B2 (en) 2016-07-01 2022-08-23 Corbion Biotech, Inc. Feed ingredients comprising lysed microbial cells
CN115088649A (zh) * 2022-07-22 2022-09-23 大连海洋大学 一种欧洲海鲈低温胁迫下补偿生长的工厂化循环水养殖方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101822323B (zh) * 2009-03-02 2012-08-22 中国水产科学研究院东海水产研究所 轮虫营养强化剂水乳化型鱼油的制备与应用
KR101323873B1 (ko) * 2011-11-03 2013-10-30 부경대학교 산학협력단 성장률이 우수한 나노클로롭시스 속 신균주 및 이의 용도
CN103141440B (zh) * 2012-10-23 2014-04-30 中国水产科学研究院东海水产研究所 一种营养强化卤虫体内氨基酸的方法
CN103141439B (zh) * 2012-10-23 2014-06-04 中国水产科学研究院东海水产研究所 一种营养强化卤虫体内dha、epa和ara的方法
CN103156092B (zh) * 2013-03-22 2014-11-26 山东省海洋水产研究所 一种以微藻粉作为脂肪源的海水鱼配合饲料及加工方法
KR101934550B1 (ko) * 2016-11-03 2019-01-02 어업회사법인 가비 주식회사 명태의 인공종묘 생산방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287060A (ja) * 1985-10-11 1987-04-21 Nisshin Oil Mills Ltd:The アルテミア用飼料
JPH11276091A (ja) * 1998-03-27 1999-10-12 Nisshin Oil Mills Ltd:The 動物性プランクトン用飼料

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1017679B (zh) * 1985-10-11 1992-08-05 日清制油株式会社 卤虫饲料

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287060A (ja) * 1985-10-11 1987-04-21 Nisshin Oil Mills Ltd:The アルテミア用飼料
JPH11276091A (ja) * 1998-03-27 1999-10-12 Nisshin Oil Mills Ltd:The 動物性プランクトン用飼料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LOGUE J.A.: "Dietay n-3 long-chain polyunsaturated fatty acid deprivation, tissue lipid composition, ex vivo prostaglandin production, and stress tolerance in juvenile Dover Sole (Solea solea L.)", LIPIDS, vol. 35, no. 7, 2000, pages 745 - 755, XP002982459 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10272123B2 (en) 2012-10-30 2019-04-30 Donald M. Smith Selecting, producing, and feeding whole algae as a feed supplement for cattle and bison to produce meat high in omega 3'S for human health
WO2015159700A1 (ja) * 2014-04-15 2015-10-22 独立行政法人水産総合研究センター 動物プランクトン用餌料組成物、その製造方法、及び動物プランクトンの養殖方法
JP2017514528A (ja) * 2014-05-08 2017-06-08 エム. スミス,ドナルド ヒトの健康のためのω−3が豊富な食肉を生産するためのウシ及びバイソン用の飼料栄養補助剤としての全藻の選択、生産、及び給餌
JP2018504887A (ja) * 2014-12-12 2018-02-22 ディーエスエム アイピー アセッツ ビー.ブイ. 水産養殖試料における使用のための試料添加材料
JP2020103312A (ja) * 2014-12-12 2020-07-09 ディーエスエム アイピー アセッツ ビー.ブイ.Dsm Ip Assets B.V. 水産養殖試料における使用のための試料添加材料
US10874120B2 (en) 2014-12-12 2020-12-29 Dsm Ip Assets B.V. Feed supplement material for use in aquaculture feed
US11930832B2 (en) 2014-12-12 2024-03-19 Dsm Ip Assets B.V. Feed supplement material for use in aquaculture feed
EP3431579A4 (en) * 2016-03-16 2019-11-06 Kaneka Corporation FOOD COMPOSITION, PROCESS FOR PRODUCING ZOOPLANCTON, ZOOPLANCTON, AND ZOOPLANCTON GROWTH PROMOTER AND SURVIVAL RATE AMPLIFIER
US11419350B2 (en) 2016-07-01 2022-08-23 Corbion Biotech, Inc. Feed ingredients comprising lysed microbial cells
JP2018019642A (ja) * 2016-08-03 2018-02-08 国立大学法人高知大学 魚類の養殖方法および魚類用飼料
JP7057911B2 (ja) 2016-08-03 2022-04-21 国立大学法人高知大学 ブリの養殖方法
CN115088649A (zh) * 2022-07-22 2022-09-23 大连海洋大学 一种欧洲海鲈低温胁迫下补偿生长的工厂化循环水养殖方法

Also Published As

Publication number Publication date
JPWO2005027651A1 (ja) 2007-11-15
CN1852662A (zh) 2006-10-25
HK1095491A1 (en) 2007-05-11
JP4778792B2 (ja) 2011-09-21
KR20060065719A (ko) 2006-06-14
CN100579388C (zh) 2010-01-13

Similar Documents

Publication Publication Date Title
Waiho et al. Larval rearing of mud crab (Scylla): What lies ahead
Das et al. Important live food organisms and their role in aquaculture
Becker Microalgae for aquaculture: the nutritional value of microalgae for aquaculture
Harel et al. Advanced DHA, EPA and ArA enrichment materials for marine aquaculture using single cell heterotrophs
Shields et al. Algae for aquaculture and animal feeds
Becker Microalgae for aquaculture: nutritional aspects
JP5096655B2 (ja) 水生生物用のdha高含有餌生物の培養方法
US11930832B2 (en) Feed supplement material for use in aquaculture feed
WO2005027651A1 (ja) 動物プランクトン用飼料
WO2018143083A1 (ja) 餌用生物用油脂組成物、餌用生物用油脂組成物の製造方法及び餌用生物の製造方法
JPH0662760A (ja) 稚仔魚用の餌料生物栄養強化油脂組成物、稚仔魚用餌料生物、およびそれを用いた稚仔魚増養殖方法
ES2250343T3 (es) Cris de especies acuaticas con organismos presa ricos en dha.
JP2628428B2 (ja) 仔稚魚用生物餌料と仔稚魚の増養殖方法
JPH03277242A (ja) アルテミアの栄養強化飼料
JPH03123449A (ja) 仔魚用餌料生物と仔魚の増養殖方法
JPS6127029B2 (ja)
TWI552683B (zh) 生產dha之微藻於水產養殖之用途
JPS5847446A (ja) 稚仔魚用飼料
JPS6143977B2 (ja)
Siddhnath et al. Bio Enriched Feeds: A Promising Feed for Hatchery
JPS6127030B2 (ja)
Saravana Bhavan et al. Comparison of nutritional quality of sunflower oil and cod liver oil enriched with Artemia nauplii for assessing their efficacies on growth of the prawn Macrobrachium rosenbergii post larvae
JPH11276092A (ja) 養魚用飼料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480026955.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514053

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067005326

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020067005326

Country of ref document: KR

122 Ep: pct application non-entry in european phase