WO2005025041A1 - スイッチング電源 - Google Patents

スイッチング電源 Download PDF

Info

Publication number
WO2005025041A1
WO2005025041A1 PCT/JP2004/001890 JP2004001890W WO2005025041A1 WO 2005025041 A1 WO2005025041 A1 WO 2005025041A1 JP 2004001890 W JP2004001890 W JP 2004001890W WO 2005025041 A1 WO2005025041 A1 WO 2005025041A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
circuit
input
comparator
power supply
Prior art date
Application number
PCT/JP2004/001890
Other languages
English (en)
French (fr)
Inventor
Kenichi Kubota
Kenichi Suzuki
Yutaka Sekine
Masaki Ohshima
Haruo Watanabe
Hiroyuki Haga
Yoshihiko Kikuchi
Masanori Hayashi
Kenichi Zenda
Yukihiro Nozaki
Original Assignee
Shindengen Electric Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003313441A external-priority patent/JP4020844B2/ja
Priority claimed from JP2003423925A external-priority patent/JP4020860B2/ja
Priority claimed from JP2003423924A external-priority patent/JP4020859B2/ja
Application filed by Shindengen Electric Manufacturing Co., Ltd. filed Critical Shindengen Electric Manufacturing Co., Ltd.
Priority to AT04712668T priority Critical patent/ATE527746T1/de
Priority to US10/519,450 priority patent/US6984966B2/en
Priority to EP04712668A priority patent/EP1603220B1/en
Priority to CA002500507A priority patent/CA2500507C/en
Publication of WO2005025041A1 publication Critical patent/WO2005025041A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a switching power supply provided with control means for increasing the response speed of a sudden change in load.
  • FIGS. 60 to 62 show a conventional switching power supply.
  • the switching power supply shown in FIG. 60 includes voltage hysteresis control means.
  • the specific configuration is as follows.
  • the negative input of the comparator 42 is connected to the output side of this power supply circuit to amplify the error between the detected voltage and the reference voltage Vref.
  • the output of the comparator 42 is connected to the input of a driver 47, and the output of the driver 47 is connected to the gate of the rectifying switch S1 and the gate of the commutating switch S2 (for example, see U.S. Pat. No. 6,147,778 (page 7, FIG. 3).)
  • the switching power supply shown in FIG. 61 is provided with voltage mode type PWM control means.
  • the specific configuration is as follows.
  • the negative side of the error amplifier 41 is connected to the output side of this power supply circuit so as to amplify the error between the detection voltage and the reference voltage Vref.
  • the output of the error amplifier 41 is connected to the positive input of the comparator 42, the oscillator 48 is connected to the negative input of the comparator 42, and a triangular wave is output from the oscillator 48 to the comparator 42. It is configured to transmit.
  • the output of the comparator 42 is connected to the input of the latch 45, the oscillator 48 is connected to the input of the latch 45, and the oscillator 48 is configured to transmit a square wave to the latch 45. is there.
  • the output of the latch 45 is connected to the input of the driver 47, and the output of the driver 47 is connected to the gate of the rectifier switch S1 and the gate I of the commutation switch S2 (for example, US Pat. See No. 6,147,478, Gazette (Page 7, FIG. 1).
  • the switching power supply shown in FIG. 62 includes current mode type PWM control means.
  • the specific configuration is as follows.
  • the negative side of the error amplifier 41 is connected to the output side of this power supply circuit to amplify the error between the detection voltage and the reference voltage Vref.
  • the output of the error amplifier 41 is connected to the negative input of the comparator 42.
  • the current detection circuit 44 is connected to the output choke L 1, and the current detection circuit 44 is connected to the positive input of the comparator 42.
  • the reset side of the flip-flop circuit 46 is connected to the output of the comparator 42, and the oscillator 48 is connected to the set side of the flip-flop circuit 46.
  • flip flop It is configured to transmit a flop signal to the circuit 46.
  • the output of the flip-flop circuit 46 is connected to the input of the driver 47, and the output of the driver 47 is connected to the gut of the rectifying switch S1 and the gate of the commutation switch S2 (for example, See U.S. Pat. No. 4,943,902 (pages 5-6, FIG. 2).
  • the output voltage is used directly, and when the output voltage falls below a specified level, the switch turns on to increase the inductor current, and the output voltage changes to another specified level.
  • the switch is turned off and the operation of reducing the inductor current is repeated to control the output voltage, so the response speed is fast, but in principle the stability is poor and the output capacitor and load condition The problem was that the operation was very sensitive and the application was severely limited.
  • the duty ratio is determined using the fixed-frequency triangular wave and the error amplification signal, but this method is stable when the frequency of the fixed-frequency triangle wave and the frequency of the error amplification signal are close.
  • the problem is that the frequency band of the error-amplified signal must be reduced to about 1/10 of the fixed-frequency triangular wave because of the impaired performance.
  • the inductor current signal is used instead of the fixed-frequency triangular wave, so that the phase margin with the error amplification signal can be increased.However, the frequency band of the error amplification signal is increased. There was a problem that it could not be raised.
  • Fig. 63 shows an operation waveform diagram when the load current of the switching power supply using the current mode type PWM control means increases rapidly.
  • Fig. 64 shows a case where the load current of the switching power supply also decreases rapidly.
  • 3 is an operation waveform diagram. Specifically, the upper side shows the output voltage waveform, the center shows the inductor current waveform, and the lower side shows the output of the error amplifier 41 and the triangular wave.
  • the load current increases rapidly, the output voltage drops, and the inductor current increases accordingly.
  • the load current decreases rapidly, the output voltage jumps, and the inductor current decreases accordingly.
  • several cycles or more are required until the output voltage stabilizes, and a problem has arisen in that the response speed of the system is reduced in order to obtain stable power supply operation.
  • the present invention has been made in view of the above problems, and provides a switching power supply that can ensure stability without lowering the frequency band of an error-amplified signal.
  • the present invention also provides a novel switching power supply that realizes stable output ripple characteristics.
  • the present invention provides a novel switch that realizes stable oscillation frequency and output ripple characteristics. Provide a switching power supply. Disclosure of the invention
  • a switching power supply including a rectifying switch, a commutation switch, an output choke, and a smoothing capacitor, wherein the output choke and the smoothing capacitor are connected in series,
  • the input of the error amplifier is connected to the output side of this power supply circuit to amplify the error between the detection voltage and the reference voltage, and the output of this error amplifier is connected to one input of the first comparator.
  • the output of the error amplifier is connected to one input of a second comparator via a dividing resistor, and a filter circuit having a resistor and a capacitor is connected in parallel with the commutation switch.
  • the output of the filter circuit is connected to the other input of the first comparator and the other input of the second comparator, and the amplitude of the triangular waveform obtained from the filter circuit is adjusted to the Input level and Suitsuchingu power supply so as to provide a control means for controlling to fit between one of the input level of the second comparator one of comparator, is provided.
  • control is performed such that the amplitude of the triangular waveform obtained from the filter circuit is controlled to fall between one input level of the first comparator and one input level of the second comparator.
  • the triangular wave is generated by turning on / off the output switch connected before the filter consisting of the resistor and the capacitor, so the phase difference between the operating state of the output switch and the error amplification signal Is fixed, and there is an effect that stability can be ensured without lowering the frequency band of the error amplification signal.
  • the control unit connects an output of the error amplifier to one input of a second comparator via a voltage dividing circuit that freely changes a dividing ratio.
  • the amplitude of the triangular waveform obtained from the filter circuit is configured to fall between one input level of the first comparator and one input level of the second comparator.
  • the voltage dividing circuit Preferably, in the voltage dividing circuit, three or more resistors are connected in series to form a voltage dividing ratio variable unit and a voltage dividing ratio fixing unit, and one end of the voltage dividing ratio variable unit is connected to the output of the error amplifier and the output of the error amplifier.
  • the other end of the variable voltage dividing ratio is connected to the input of the first comparator, and the other end of the variable voltage dividing ratio is connected to one input of the second comparator.
  • Switch in parallel with the resistor Connect to detect the discontinuity of the inductor current, and change the voltage division ratio freely.
  • a stable output ripple characteristic can be realized by incorporating a circuit for detecting a discontinuous state of the inductor current and automatically changing the amplitude of the triangular wave.
  • the control means includes a current source that changes in proportion to an input / output potential difference, and the current source is connected between a midpoint of the divided resistor and a ground potential.
  • a second signal is output, and an amplitude of the triangular waveform falls between the first and second signals.
  • two or more of the divided resistors are connected in series, and a current source proportional to the input / output voltage difference is connected between the resistance dividing point and the ground potential, so that the voltage dividing ratio can be freely changed.
  • a circuit for automatically changing the amplitude of the triangular wave in proportion to the input / output voltage difference stable efficiency and output ripple characteristics can be realized under various input / output conditions. There is an effect that can be done.
  • an error amplification signal obtained by amplifying an error between an output voltage of a power supply circuit and a reference voltage by the error amplifier is compared with a triangular waveform obtained from the filter circuit, and And outputting the comparison signal to the rectifying switch, dividing the error amplification signal, and comparing the divided signal with the triangular waveform to generate a second comparison signal.
  • a signal is compared with a clock signal, the second comparison signal is output at the time of a sudden change in load, and the output signal to the rectifying switch is switched from the click signal to the second comparison signal, and the triangle is changed.
  • the amplitude of the waveform is controlled so as to fall between the error amplified signal and the divided voltage signal, and the ON timing of the rectifying switch is fixed by the quick signal in a steady state.
  • control means fixes the timing of turning on the rectifying switch with a click signal even at the time of a sudden increase in load.
  • an error amplification signal obtained by amplifying an error between an output voltage of a power supply circuit and a reference voltage by the error amplifier is compared with a triangular waveform obtained from the filter circuit, and A configuration capable of generating a comparison signal, matching the first comparison signal and the close signal, outputting the result to the rectifier switch, dividing the error amplified signal, and dividing the divided signal into the triangle
  • the second comparison signal is output by comparing the waveform with the waveform, and the output signal to the rectifying switch is switched from the peak signal to the first comparison signal at the time of a sudden change in the load.
  • the amplitude of the angular waveform is controlled so as to fall between the error amplification signal and the divided voltage signal, and the off timing of the rectifying switch is fixed at the constant time by the quick signal.
  • the control means fixes the turning-off timing of the rectifier switch with a clock signal even when the load suddenly decreases.
  • an error-amplified signal obtained by amplifying an error between the output voltage and the reference voltage when the amplitude of the triangular waveform obtained from the filter circuit changes suddenly, and a voltage-divided signal obtained by dividing the error width signal
  • the oscillating frequency is fixed by controlling the rectifier switch on or off timing with a clock signal in the steady state, so that the signal is shifted in phase for multi-phase conversion. This has the effect that the occurrence of blemishes is easy.
  • the oscillation frequency is fixed without using the divided voltage signal, as in the case of using the divided voltage signal. There is an effect that there is.
  • FIG. 1 is a circuit diagram of a switching power supply according to the first embodiment of the present invention.
  • FIG. 2 is an operation waveform diagram of the embodiment shown in FIG.
  • FIG. 3 is an operation waveform diagram in the same manner.
  • FIG. 4 is a circuit diagram of a first modification of the first embodiment.
  • FIG. 5 is a circuit diagram of a second modification of the first embodiment.
  • FIG. 6 is a circuit diagram of a third modification of the first embodiment.
  • FIG. 7 is a circuit diagram of a fourth modification of the first embodiment.
  • FIG. 8 is a circuit diagram of a fifth modification of the first embodiment.
  • FIG. 9 is a circuit diagram of a sixth modification of the first embodiment.
  • FIG. 10 is a circuit diagram of a seventh modification of the first embodiment.
  • FIG. 11 is a circuit diagram of an eighth modification of the first embodiment.
  • FIG. 12 is a circuit diagram of a ninth modification of the first embodiment.
  • FIG. 13 is a circuit diagram of a tenth modification of the first embodiment.
  • FIG. 14 is a circuit diagram of a first modification of the first embodiment.
  • FIG. 15 is a circuit diagram of a switching power supply according to the second embodiment of the present invention.
  • FIG. 16 is an operation waveform diagram of the embodiment shown in FIG.
  • FIG. 17 is a circuit diagram of a first modification of the second embodiment.
  • FIG. 18 is a circuit diagram of a second modification of the second embodiment.
  • FIG. 19 is a circuit diagram of a third modification of the second embodiment.
  • FIG. 20 is a circuit diagram of a fourth modification of the second embodiment.
  • FIG. 21 is a circuit diagram of a fifth modification of the second embodiment.
  • FIG. 22 is a circuit diagram of a sixth modification of the second embodiment.
  • FIG. 23 is a circuit diagram of a seventh modification of the second embodiment.
  • FIG. 24 is a circuit diagram of an eighth modification of the second embodiment.
  • FIG. 25 is a circuit diagram similar to the eighth modification of the second embodiment.
  • FIG. 26 is a circuit diagram similar to the eighth modification of the second embodiment.
  • FIG. 27 is a circuit diagram similar to the eighth modification of the second embodiment.
  • FIG. 28 is a circuit diagram of a switching power supply according to the third embodiment of the present invention.
  • FIG. 29 is an operation waveform diagram of the embodiment shown in FIG. 28 when the input / output potential difference is large.
  • FIG. 30 is an operation waveform diagram of the embodiment shown in FIG. 28 when the input / output potential difference is reduced.
  • FIG. 31 is a circuit diagram of a first modification of the third embodiment.
  • FIG. 32 is a circuit diagram of a second modification of the third embodiment.
  • FIG. 33 is a circuit diagram of a third modification of the third embodiment.
  • FIG. 34 is a circuit diagram of a fourth modification of the third embodiment.
  • FIG. 35 is a circuit diagram of a fifth modification of the third embodiment.
  • FIG. 36 is a circuit diagram of a sixth modification of the third embodiment.
  • FIG. 37 is a circuit diagram of a seventh modification of the third embodiment.
  • FIG. 38 is a circuit diagram of an eighth modification of the third embodiment.
  • FIG. 39 is a circuit diagram similar to the eighth modification of the third embodiment.
  • FIG. 40 is a circuit diagram similar to the eighth modification of the third embodiment.
  • FIG. 41 is a circuit diagram similar to the eighth modification of the third embodiment.
  • FIG. 42 is a circuit diagram of a switching power supply according to the fourth embodiment of the present invention.
  • FIG. 43 is an operation waveform diagram of the embodiment shown in FIG. 43
  • FIG. 44 is a circuit diagram of a first modification of the fourth embodiment.
  • FIG. 45 is a circuit diagram of a second modification of the fourth embodiment.
  • FIG. 46 is a circuit diagram of a third modification of the fourth embodiment.
  • FIG. 47 is a circuit diagram of a fourth modification in which the fourth embodiment shown in FIG. 42 is multi-phased.
  • FIG. 48 is an operation waveform diagram of the fourth modified example shown in FIG.
  • FIG. 49 is a circuit diagram of a fifth modification of the fourth embodiment.
  • FIG. 50 is a circuit diagram of a sixth modification of the fourth embodiment.
  • FIG. 51 is a circuit diagram of a seventh modification of the fourth embodiment.
  • FIG. 52 is a circuit diagram of an eighth modification of the fourth embodiment.
  • FIG. 53 is a circuit diagram of a ninth modification of the fourth embodiment.
  • FIG. 54 is a circuit diagram of a tenth modification of the fourth embodiment.
  • FIG. 55 is a circuit diagram of a first modification of the fourth embodiment.
  • FIG. 56 is a circuit diagram of a twelfth modification of the fourth embodiment.
  • FIG. 57 is a circuit diagram of a thirteenth modification of the fourth embodiment.
  • FIG. 58 is a circuit diagram of a fourteenth modification of the fourth embodiment.
  • FIG. 59 is a circuit diagram of a fifteenth modification of the fourth embodiment.
  • FIG. 60 is a circuit diagram of a conventional switching power supply.
  • FIG. 61 is a circuit diagram of another conventional example different from FIG.
  • FIG. 62 is a circuit diagram of another conventional example.
  • FIG. 63 is an operation waveform diagram of the conventional example shown in FIG.
  • FIG. 64 is an operation waveform diagram in the same manner. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a switching power supply according to the present embodiment.
  • C is a capacitor
  • S is a switching element
  • R is a resistor
  • Z is an impedance
  • 11 is an error amplifier
  • 12 and 13 are comparators
  • 16 is a flip-flop circuit
  • 17 is a driver
  • 21 is a filter circuit. is there.
  • a power supply circuit is provided.
  • a control circuit is connected to the output side of this power supply circuit. The output of this control circuit is connected to a commutation switch S1 and a commutation switch S2.
  • Resistor R for voltage detection at the output side of the power supply circuit comprising a R 2, resistors R!, Connection R 2 Is connected to the negative input of the error amplifier 11, and the error amplifier 11 is configured to amplify the error between the detection voltage and the reference voltage.
  • the output of the error amplifier 11 is connected to the negative input of the first comparator 12, and the output of the error amplifier 11 is also connected to the second comparator 13 via the dividing resistors R 3 and R 4 . Connected to positive input.
  • a filter circuit 21 composed of a resistor R SAW 1 and two capacitors C S AW 1 and C SAW 2 connected in series. is there.
  • the output of the filter circuit 21 is connected to the positive input of the first comparator 12 and the negative input of the second comparator 13.
  • the output of the first comparator 12 is connected to the reset-side input of the flip-flop circuit 16, and the output of the second comparator 13 is connected to the set-side input of the flip-flop circuit 16. Connected to.
  • the output of the flip-flop circuit 16 is connected to the input of the driver 17, the output of the driver 17 is connected to the rectifying switch S 1 and the commutation switch S 2, and is obtained from the filter circuit 21.
  • the configuration is such that the amplitude of the triangular waveform falls between one input level of the first comparator 12 and one input level of the second comparator 13.
  • FIG. 2 shows the operation waveform diagram.
  • the output voltage waveform is shown in the upper part of FIG. 2
  • the inductor current waveform is shown in the center
  • the output of the error amplifier 11 and the output of the error amplifier 11 are divided by resistors in the lower part
  • the filter circuit 21 is used.
  • Each triangular wave is shown to be controlled to fit within the two generated levels.
  • the triangular wave obtained by the filter circuit 21 connected in parallel with the series circuit of the output choke L 1 and the smoothing capacitor C OUT provided in the power supply circuit, and the error between the output voltage and the reference voltage by the error amplifier 11 1 Using the two levels generated by amplifying the signal, the signal obtained by the comparison by the first comparator 12 is input to the reset side of the flip-flop circuit 16.
  • the output choke L 1 and the smoothing capacitor C provided in the power supply circuit.
  • the triangular wave obtained by the filter circuit 21 connected in parallel with the UT series circuit and the signal obtained by amplifying the error between the output voltage and the reference voltage by the error amplifier 11 are divided by resistors R 3 and R 4.
  • the signal obtained by comparing the two levels generated by the second comparator 13 is input to the set side of the flip-flop circuit 16.
  • control is performed such that the amplitude of the triangular wave falls between the two levels. Due to this control, a triangular wave is generated by the filter circuit 21. Therefore, the rising slope of the triangle wave is a period during which the current flowing through the output choke L1 increases, and the falling slope of the triangle wave is a period during which the inductor current decreases.
  • the frequency and duty ratio of the triangular wave change according to the magnitude of the fluctuation.
  • the phase difference between the waveform of the error amplified signal and the triangular wave is fixed at 90 degrees at the maximum.
  • the triangle wave also has an output choke L 1 and a smoothing capacitor C. Since it is generated by turning on / off the rectifier switch S1 connected before the series circuit with u ⁇ , the phase difference between the operation state of the rectifier switch S1 and the error amplification signal is also fixed. . Therefore, stability can be ensured without lowering the frequency band of the error amplification signal, and the response speed as a switching power supply can be dramatically improved.
  • the frequency and phase of the triangular wave (indicating the drive state of the two switches in the power supply) change instantaneously according to the output signal of the error amplifier, and the inductor current also changes accordingly, realizing high-speed response.
  • the output voltage drop can be minimized.
  • Figure 3 shows this operation waveform diagram.
  • the upper part of Fig. 3 shows the output voltage waveform
  • the middle part shows the inductor current waveform
  • the lower part shows the output of the error amplifier 11 and the output of the error amplifier 11 divided by resistors, and the filter circuit 21.
  • Each triangular wave is shown to be controlled to fit within the two generated levels.
  • control is performed so that the amplitude of the triangular wave falls within the above two levels.
  • the rising slope of the triangular wave is the period during which the current flowing through the output choke L1 increases.
  • the frequency and duty ratio of the triangular wave change according to the magnitude of the fluctuation.
  • Triangular wave is also because it is generated by the output choke L 1 and the smoothing capacitor C OUT and the on / off rectifier Suitsuchi S 1 which is connected in front of the series circuit, the operating status and the error amplification signal of the rectifier Suitsuchi S 1 Is also fixed. For this reason, stability can be ensured without lowering the frequency band of the error amplification signal, and the response speed can be dramatically improved as a switching power supply.
  • the frequency and phase of the triangular wave (indicating the drive state of the two switches in the power supply) change instantaneously according to the output signal of the error amplifier, and the inductor current also changes accordingly. It is possible to minimize the output voltage jump.
  • This embodiment includes a resistor R 2 for voltage detection and a resistor R SAW 1 and two capacitors C SAW in parallel with a series circuit of an output choke L 1 and a smoothing capacitor C OUT.
  • the DC component of the error amplifier output signal and the DC component of the triangular wave are substantially at the same level by connecting the filter circuit 21 that is configured by connecting the C SAW 2 in series.
  • FIG. 4 shows a switching power supply according to a first modification of the present embodiment.
  • This switching power supply is configured such that a negative input of an error amplifier 11 is connected to an output side of a power supply circuit, and the error amplifier 11 amplifies an error between a detection voltage and a reference voltage.
  • the output of this error amplifier 11 is connected to the negative input of the first comparator 12, and the output of this error amplifier 11 is also connected to the second comparator 1 via the division resistors R 3 and R 4. Connected to positive input of 3.
  • a filter circuit 22 composed of a resistor R SAW1 and a capacitor C SAW 1 connected in series is connected.
  • the output of the filter circuit 22 is connected to the positive input of the first comparator 12 and to the negative input of the second comparator 13.
  • the output of the first comparator 13 is connected to the reset-side input of the flip-flop circuit 16, and the output of the second comparator 13 is set to the flip-flop circuit 16. Connected to the input on the side.
  • the output of the flip-flop circuit 16 is connected to the input of the driver 17, the output of the driver 17 is connected to the rectifier switch S 1 and the commutation switch S 2, and the angular waveform obtained from the filter circuit 22.
  • the switching power supply configured as described above operates in substantially the same manner as the embodiment shown in FIG. 1 and can maintain stability without lowering the frequency band of the error amplification signal, and can be used as a switching power supply.
  • the response speed can be dramatically improved.
  • no resistor for voltage detection is provided on the output side of the power supply circuit, and the filter circuit 22 has a different configuration from the filter circuit 21 of the embodiment shown in FIG.
  • FIG. 5 shows a switching power supply according to a second modification of the present embodiment.
  • the switching power supply, resistors R for voltage detection at the output side of the power supply circuit, comprising a R 2, resistors R, R 2 Is connected to the negative input of the error amplifier 11, and the error amplifier 11 is configured to amplify the error between the detection voltage and the reference voltage.
  • the output of the error amplifier 11 is connected to the negative input of the first comparator 12, and the output of the error amplifier 11 is also connected to the second comparator 13 via the dividing resistors R 3 and R 4. Connected to the positive input of
  • a filter circuit 23 is provided between the input and output terminals of the output choke L1.
  • This filter circuit 23 is configured as follows. Two resistors R SAW or R SAW2 are connected in series with the commutation switch S 2 at the input end of the output choke L 1, and two resistors are also connected in parallel with the commutation switch S 2 at the output end of the output choke L 1.
  • the capacitors C SAW 1 and C SAW2 are connected to the system IJ.
  • a connection is provided between the resistors R SAW 1 and R SAW2 connected in series and between the capacitors C SAW 1 and C SAW2 connected in series, and these connections are connected to form a filter circuit 23. is there. Said connection is the output of the filter circuit 23, whose output is connected to the positive input of the first comparator 12 and to the negative input of the second comparator 13.
  • the output of the first comparator 12 is connected to the reset-side input of the flip-flop circuit 16, and the output of the second comparator 13 is connected to the set-side input of the flip-flop circuit 16. Connected to.
  • the output of the flip-flop circuit 16 is connected to the input of the driver 17, the output of the driver 17 is connected to the rectifier switch S1 and the commutation switch S2, and the triangular waveform obtained from the filter circuit 23 is obtained.
  • the configuration is such that the amplitude falls between one input level of the first comparator 12 and one input level of the second comparator 13.
  • the switching power supply configured as described above has almost the same use as that of the embodiment shown in FIG. 1, and it is possible to secure the stability without lowering the frequency band of the error amplification signal. Speed can be dramatically improved.
  • FIG. 6 shows a third modification of the present embodiment, and has substantially the same configuration as the modification shown in FIG.
  • This switching power supply is configured such that a negative input of an error amplifier 11 is connected to an output side of a power supply circuit; the error amplifier 11 amplifies an error between a detection voltage and a reference voltage.
  • This switching power supply operates almost in the same way as the modified example shown in Fig. 4, and it is possible to ensure stability without lowering the frequency band of the error amplification signal. Can be improved.
  • FIG. 7 shows a switching power supply according to a fourth modification of the present embodiment.
  • This switching power supply has resistors R 1, R 2 for voltage detection on the output side of the power supply circuit.
  • the connection between these resistors R and R 2 is connected to the negative input of the error amplifier 11. 1 is configured to amplify the error between the detection voltage and the reference voltage. Compare the output of this error amplifier 1 1
  • the output of the error amplifier 11 is also connected to the positive input of the second comparator 13 via the dividing resistors R 3 and R 4 .
  • the output choke L 1 and the smoothing capacitor C Be connected to one resistor R 5 for current detection between a UT, the input side of the resistor R 5 to the positive input of the buffer amplifier 1 5, the output side similarly to the negative input of the buffer amplifier 1 5 Each is connected.
  • the output of the buffer amplifier 15 is connected to a filter circuit 24 configured by connecting a capacitor C SAW 1 and two resistors R SAW 1 and R SAW2 in series. The output of this filter circuit 24 is connected to the positive input of the first comparator 12 and to the negative input of the second comparator 13.
  • the output of the first comparator 13 is connected to the reset-side input of the flip-flop circuit 16, and the output of the second comparator 13 is set to the flip-flop circuit 16. Connected to the input on the side.
  • the output of the flip-flop circuit 16 is connected to the input of the driver 17, the output of the driver 17 is connected to the rectifier switch S 1 and the commutation switch S 2, and the triangular waveform obtained from the filter circuit 24 is obtained.
  • the configuration is such that the amplitude falls between one input level of the first comparator 12 and one input level of the second comparator 13.
  • the switching power supply configured as described above operates in substantially the same manner as the embodiment shown in FIG. 1 and can maintain stability without lowering the frequency band of the error amplification signal, and can be used as a switching power supply.
  • the response speed can be dramatically improved.
  • a resistor R 2 for voltage detection by a filter circuit 24 are constituted by connecting a capacitor C SAW 1 and the two resistors R SAW 1, R SAW2 in series Only high frequency components can be extracted.
  • FIG. 8 shows a switching power supply according to a fifth modification of the present embodiment.
  • the negative input of the error amplifier 11 is connected to the output side of the power supply circuit, and the error amplifier 11 amplifies the error between the detection voltage and the reference voltage.
  • the output of the error amplifier 11 is connected to the negative input of the first comparator 12, and the output of the error amplifier 11 is also connected to the second comparator 13 via the dividing resistors R 3 and R 4 . Connected to positive input.
  • a resistor R 5 for current detection is connected between the output choke L 1 and the smoothing capacitor C OUT, and the input ⁇ of this resistor R 5 is connected to the positive input of the buffer amplifier 15.
  • the output side is also connected to the negative input of buffer amplifier 15 respectively.
  • the output of the buffer amplifier 15 is connected to a filter circuit 25 configured by connecting a capacitor CS AW and a resistor R SAW1 in series.
  • the output of this filter circuit 25 is connected to the positive input of the first comparator 12 and to the negative input of the second comparator 13.
  • the output of the first comparator 13 is connected to the reset-side input of the flip-flop circuit 16, and the output of the second comparator 13 is set to the flip-flop circuit 16. Connected to the input on the side.
  • the output of the flip-flop circuit 16 is connected to the input of the driver 17, the output of the driver 17 is connected to the rectifier switch S 1 and the commutation switch S 2, and the triangular waveform obtained from the filter circuit 25 is obtained.
  • the configuration is such that the amplitude falls between one input level of the first comparator 12 and one input level of the second comparator 13.
  • the switching power supply configured as described above operates almost in the same manner as the modification shown in FIG. 4 and can maintain stability without lowering the frequency band of the error amplification signal.
  • the response speed can be dramatically improved.
  • a current detection circuit 14 is connected to the output choke L1, and a capacitor C SAW 1 and two resistors R SAW 1 and R SAW 2 are connected to the output of the current detection circuit 14.
  • a filter circuit 24 configured by connecting in series is connected. Except for this, the configuration is almost the same as that of the fourth modification of FIG.
  • a current detection circuit 14 is connected to the output choke L1, and the output of the current detection circuit 14 is connected to the capacitor C SAW and the resistance R SAW ! Are connected in series to form a filter circuit 25. Except for this, the configuration is almost the same as that of the fifth modification of FIG.
  • the switching power supply of the sixth modification shown in FIG. 9 configured as described above operates almost in the same manner as the switching power supply of FIG. 7, and the switching power supply of the seventh modification shown in FIG. The operation is almost the same as that of the switching power supply shown in FIG.
  • the modification shown in FIG. 11 is the embodiment shown in FIG. 1
  • the modification shown in FIG. 12 is the modification shown in FIG. 4
  • the modification shown in FIG. 13 is the modification shown in FIG.
  • the modified example shown in FIG. 14 corresponds to the modified example shown in FIG. 6, and in these modified examples, the current detection circuit 14 is connected to the rectification switch S1, and the output of the current detection circuit 14 is output. It is connected to the other end of the output choke L resistor R SA W 1 connected to the output terminal of the 1.
  • the switching power supplies shown in FIGS. 11 to 14 configured as described above operate almost in the same manner as the corresponding switching power supplies shown in FIGS. 1, 4, 5, and 6, respectively.
  • these switching power supplies can adjust the output impedance because the current flowing from the current detection circuit 14 is added by the filter circuits 21, 22, 23, and 24.
  • FIG. 15 shows a switching power supply according to the present embodiment.
  • C is a capacitor
  • S is a switching element
  • R is a resistor
  • Z is an impedance
  • 11 is an error amplifier
  • 12 and 13 are comparators
  • 31 is a voltage divider
  • 16 is a flip-flop.
  • Reference numeral 32 denotes a current discontinuous mode detection circuit
  • reference numeral 17 denotes a driver
  • reference numeral 21 denotes a filter circuit.
  • the switching power supply includes a rectifier switch Sl , a commutation switch S2, an output choke L1, and a smoothing capacitor C01JT, and includes an output choke L1 and a smoothing capacitor C0. It has a power supply circuit with OUT connected in series. A control circuit is connected to the output side of this power supply circuit. The output of this control circuit is connected to commutation switch S1 and commutation switch S2.
  • Comprising a resistor R have R 2 for voltage detection at the output side of the power supply circuit, the connection of these resistors R 2 connected to the negative input of the error amplifier 1 1, the detection voltage and the reference voltage at the error amplifier 1 1 Is amplified.
  • the output of this error amplifier 11 is connected to the negative input of the first comparator 12, and the output of this error amplifier 11 is also connected to the voltage divider 31, The output is connected to the positive input of the second comparator 13, the triangular waveform obtained from the filter circuit 21, the first signal obtained by amplifying the error between the output voltage and the reference voltage, and the voltage divider circuit
  • the amplitude of the triangular waveform is configured to fall between the first signal and the second signal.
  • the voltage dividing circuit 31 connects three resistors R 3 , R 4 , and R 5 in series, forms a variable dividing ratio section by the resistors R 3 and R 4 , and connects one end of the resistor R 3 to one end. It is connected between the output of the error amplifier 11 and the negative input of the first comparator 12, and the other end of the resistor R 4 is connected to the positive input of the second comparator 13. Connected to the resistor R 4 series resistor R 5 constitute a division ratio fixed unit, which are grounded and the other end of the resistor R 5. Further, both ends of the resistor R 4 is connected to sweep rate pitch S in parallel.
  • the control terminal of the switch S is connected to a current discontinuous mode detection circuit 32.
  • the current discontinuous mode detection circuit 32 is connected to the input of the driver 17, the rectifying switch S1, and the commutation switch S2. Switch S turns on when the discontinuous current mode is detected, and the voltage division ratio can be changed freely.
  • a filter circuit 21 composed of a resistor R SAW1 and two capacitors C SAW 1 and C SAW2 connected in series is connected.
  • the output of the filter circuit 21 is connected to the positive input of the first comparator 12 and the negative input of the second comparator 13.
  • the configuration is such that the amplitude of the triangular waveform is controlled to fall between one input level of the first comparator 12 and one input level of the second comparator 13.
  • the switching power supply configured as described above operates as follows. First, in the case of the current continuous mode, the operation is substantially the same as that of the switching power supply having the conventional control means, and therefore, the description is omitted.
  • Figure 16 shows the operation waveform diagram.
  • the lower part of Fig. 16 shows the output voltage waveform, the center shows the inductor current waveform, and the upper part shows the output of the error amplifier 11 and the output of the error amplifier 11 divided by resistors, and a filter circuit.
  • Each triangle wave controlled to fall within the two levels generated by 21 is shown.
  • the output voltage becomes unstable. This is detected by the current discontinuous mode detection circuit 32.
  • the current discontinuous mode detection circuit 32 outputs a detection signal to the switch S provided in the voltage dividing circuit 31. As a result, the switch S is turned on. Therefore, the resistance R 4 is clamped, largely changed the voltage dividing ratio of the voltage dividing circuit 3 1, the amplitude of the triangular wave is changed. Thus, an increase in output voltage ripple can be suppressed.
  • the discontinuous current mode detection circuit 32 detects the continuous current mode.
  • the discontinuous current mode detection circuit 32 outputs a detection signal to the switch S provided in the voltage division circuit 31. This turns off switch S. Therefore, the resistance value of the division ratio variable portion of the voltage dividing circuit 3 1 becomes the sum of the resistance R 3 and the resistor R 4, return to normal conditions.
  • FIG. 17 shows a switching power supply according to a first modification of the present embodiment.
  • a negative input of an error amplifier 11 is connected to an output side of a power supply circuit, and the error amplifier 11 amplifies an error between a detection voltage and a reference voltage.
  • the output of the error amplifier 11 is connected to the negative input of the first comparator 12, and the output of the error amplifier 11 is also connected to the positive input of the second comparator 13 via the voltage divider 31. Connected to the input.
  • a filter circuit 22 composed of a resistor R SAW 1 and a capacitor C SAW 1 connected in series is connected. This The output of the filter circuit 22 is connected to the positive input of the first comparator 12 as well as to the negative input of the second comparator 13.
  • the output of the first comparator 13 is connected to the reset-side input of the flip-flop circuit 16, and the output of the second comparator 13 is set to the flip-flop circuit 16. Connected to the input on the side.
  • the output of the flip-flop circuit 16 is connected to the input of the driver 17, the output of the driver 17 is connected to the rectification switch S1 and the commutation switch S2, and the triangular waveform obtained from the filter circuit 22 is obtained.
  • the configuration is such that the amplitude falls between one input level of the first comparator 12 and one input level of the second comparator 13.
  • the switching power supply configured as described above operates in a manner similar to that of the embodiment shown in Fig. 15 and incorporates a circuit that detects the discontinuous state of the inductor current and automatically changes the amplitude of the triangular wave. By doing so, stable output ripple characteristics can be realized.
  • no resistor for voltage detection is provided on the output side of the power supply circuit, and the filter circuit 22 has a different configuration from the filter circuit 21 of the embodiment shown in FIG.
  • FIG. 18 shows a switching power supply according to a second modification of the present embodiment.
  • This switching power supply has resistors R 1 and R 2 for voltage detection on the output side of the power supply circuit.
  • the connection of these resistors R 1 and R 2 is connected to the negative input of the error amplifier 11.
  • the amplifier 11 is configured to amplify the error between the detection voltage and the reference voltage.
  • the output of the error amplifier 11 is connected to the negative input of the first comparator 12, and the output of the error amplifier 11 is also connected to the positive input of the second comparator 13 via the voltage divider 31. Connected to the input.
  • a filter circuit 23 is provided between the input and output terminals of the output choke L1.
  • This filter circuit 23 is configured as follows. Two resistors R SAW or R SAW2 are connected in series with the commutation switch S 2 and on the input side of the output choke L 1, and also in parallel with the commutation switch S 2 and with the output choke Two capacitors C SAW or C S AW2 are connected in series to the output end of L1. A connection is provided between the resistors R SAW and R SAW2 connected in series, and between the capacitors C SAW 1 and C SAW2 connected in series, and these connections are connected to form a filter circuit 23. is there. Said connection is the output of the filter circuit 23, whose output is connected to the positive input of the first comparator 12 and to the negative input of the second comparator 13.
  • the output of the first comparator 13 is connected to the reset-side input of the flip-flop circuit 16, and the output of the second comparator 13 is set to the flip-flop circuit 16. Connected to the input on the side. Connect the output of this flip-flop circuit 16 to the input of driver 17 and The output of the driver 17 is connected to the rectifier switch S 1 and the commutation switch S 2, and the amplitude of the triangular waveform obtained from the filter circuit 23 is compared with the one input level of the first comparator 12 and the second It is configured to fit between one of the input levels of the device 13.
  • the switching power supply configured as described above operates almost the same as the embodiment shown in Fig. 15 and has a built-in circuit that detects the discontinuous state of the inductor current and automatically changes the amplitude of the triangular wave. By doing so, stable output ripple characteristics can be realized.
  • FIG. 19 shows a third modification of the present embodiment, which has a configuration substantially similar to that of the modification shown in FIG.
  • the negative input of the error amplifier 11 is connected to the output side of the power supply circuit, and the error amplifier 11 amplifies the error between the detection voltage and the reference voltage.
  • This switching power supply operates almost in the same way as the modification shown in Fig. 17, and detects a discontinuous state of the inductor current and has a built-in circuit that automatically changes the amplitude of the triangular wave, thereby achieving stable output.
  • the ripple characteristics can be realized.
  • FIG. 20 shows a switching power supply according to a fourth modification of the present embodiment.
  • This switching power supply has a resistor R 2 for voltage detection on the output side of the power supply circuit.
  • the connection of these resistors R 2 is connected to the negative input of the error amplifier 11. It is configured to amplify the error between the detection voltage and the reference voltage at 1.
  • the output of the error amplifier 11 is connected to the negative input of the first comparator 12, and the output of the error amplifier 11 is also connected to the second comparator 13 via the voltage divider 31. Connected to positive input.
  • a current detecting resistor R 6 is connected between the output choke L 1 and the smoothing capacitor C OUT, and the input side of the resistor R 6 is connected to the positive input of the buffer amplifier 15. Also, the output side is connected to the negative input of the buffer amplifier 15 as well.
  • a filter circuit 24 configured by connecting a capacitor C SAW 1 and two resistors R SAW or R SAW 2 in series is connected to the output of the buffer amplifier 15. The output of the filter circuit 24 is connected to the positive input of the first comparator 12 and to the negative input of the second comparator 13.
  • the output of the first comparator 12 is connected to the reset-side input of the flip-flop circuit 16, and the output of the second comparator 13 is connected to the set-side input of the flip-flop circuit 16. Connected to.
  • the output of the flip-flop circuit 16 is connected to the input of the driver 17, the output of the driver 17 is connected to the rectifier switch S 1 and the commutation switch S 2, and the triangular waveform obtained from the filter circuit 24 is obtained.
  • the configuration is such that the amplitude falls between one input level of the first comparator 12 and one input level of the second comparator 13.
  • the switching power supply configured as described above has almost the same operation as the embodiment shown in FIG.
  • a circuit to detect the discontinuous state of the inductor current and automatically change the amplitude of the triangular wave stable output ripple characteristics can be realized.
  • this modification with certain comprise R 2 have resistance R for voltage detection, that the filter circuit 24 capacitor C SAW1 and two resistors R SAW1, R SAW2 are constituted by connecting in series As a result, only high frequency components can be extracted.
  • FIG. 21 shows a switching power supply according to a fifth modification of the present embodiment.
  • This switching power supply is configured such that the negative input of the error amplifier 11 is connected to the output side of the power supply circuit, and the error amplifier 11 amplifies the error between the detection voltage and the reference voltage.
  • the output of the error amplifier 11 is connected to the negative input of the first comparator 12, and the output of the error amplifier 11 is also connected to the second comparator 13 via the voltage divider 31. Connected to positive input.
  • a resistor R 6 for current detection is connected between the output choke L 1 and the smoothing capacitor C OUT, and the input side of the resistor R 6 is connected to the positive input of the buffer amplifier 15. The output side is also connected to the negative input of buffer amplifier 15 respectively.
  • the output of the buffer 15 is connected to a filter circuit 25 configured by connecting a capacitor C SAW and a resistor RS AW1 in series. The output of this filter circuit 25 is connected to the positive input of the first comparator 12 and to the negative input of the second comparator 13.
  • the output of the first comparator 12 is connected to the reset-side input of the flip-flop circuit 16, and the output of the second comparator 13 is connected to the set-side input of the flip-flop circuit 16. Connected to.
  • the output of the flip-flop circuit 16 is connected to the input of the driver 17, the output of the driver 17 is connected to the rectifier switch S 1 and the commutation switch S 2, and the triangular waveform obtained from the filter circuit 25 is obtained.
  • the configuration is such that the amplitude falls between one input level of the first comparator 12 and one input level of the second comparator 13.
  • the switching power supply configured as described above operates almost in the same way as the modification shown in Fig. 17 and incorporates a circuit that detects the discontinuous state of the inductor current and automatically changes the amplitude of the triangular wave. As a result, stable outgoing ripple characteristics can be realized.
  • a current detection circuit 33 is connected to the output choke L1, and a capacitor C SAW1 and two resistors R SAW or R SAW2 are connected in series to the output of the current detection circuit 33.
  • the filter circuit 24 is connected to the filter circuit 24. Except for this, the configuration is almost the same as that of the fourth modification shown in FIG.
  • the switching power supply of the sixth modified example shown in FIG. 22 configured as described above operates in substantially the same manner as the switching power supply shown in FIG.
  • the current detection circuit 33 is connected to the output choke L1, and this current
  • the output of the detection circuit 33 is connected to a filter circuit 25 configured by connecting a capacitor C SAW and a resistor R SAW 1 in series. Except for this, the configuration is almost the same as that of the fifth modified example shown in FIG.
  • the switching power supply of the seventh modified example shown in FIG. 23 configured as described above operates in substantially the same manner as the switching power supply shown in FIG. ⁇
  • the modification shown in FIG. 24 is the embodiment shown in FIG. 15, the modification shown in FIG. 25 is the modification shown in FIG. 17, and the modification shown in FIG. 26 is the modification shown in FIG.
  • the modification shown in FIG. 27 corresponds to the modification shown in FIG. 19.
  • a current detection circuit 34 is connected to the rectifier switch S1, and the current detection circuit 34 Is connected to the output of choke L1 and to the other end of resistor R SAW1 .
  • the switching power supplies shown in Figs. 24 to 27 configured as described above have almost the same functions as the corresponding switching power supplies shown in Figs. 15, 17, 17, and 19. In addition to these, these switching power supplies can adjust the output impedance because the currents flowing from the current detection circuit 34 are added by the filter circuits 21, 22, 23, and 23.
  • FIG. 28 shows a switching power supply according to the present embodiment.
  • C is a capacitor
  • S is a switching element
  • R is a resistor
  • Z is an impedance
  • 11 is an error amplifier
  • 12 and 13 are comparators
  • 36 is a current source
  • 16 is a flip-flop circuit
  • 3 is an amplifier.
  • 17 is a driver
  • 21 is a filter circuit.
  • Comprising a resistor R have R 2 for voltage detection at the output side of the power supply circuit, the connection of these resistors R 2 connected to the negative input 3 ⁇ 4 of the error amplifier 1 1, the detection voltage and the reference voltage at the error amplifier 1 1 It is configured to amplify the error between and.
  • the output of the error amplifier 11 is connected to the negative input of the first comparator 12, and the output of the error amplifier 11 is also connected to the second comparator 13 via the dividing resistors R 3 and R 4 . Connected to positive input.
  • a current source 36 is connected between the midpoint of the split resistors R 3 and R 4 and the ground potential.
  • the output signal of the amplifier 37 is input to the current source 36. Also this amp 3 7
  • the positive input is connected from the input side of the rectifier switch S1, and the negative input of the amplifier 37 is connected from the output side of the output choke L1, so that the input / output potential difference can be detected.
  • a filter circuit 21 composed of a resistor R SAW 1 and two capacitors C SAW 1 and C SAW 2 connected in series is connected. .
  • the output of the filter circuit 21 is connected to the positive input of the first comparator 12 and the negative input of the second comparator 13.
  • the output of the first comparator 13 is connected to the reset-side input of the flip-flop circuit 16, and the output of the second comparator 13 is set to the flip-flop circuit 16. Connected to the input on the side.
  • the output of the flip-flop circuit 16 is connected to the input of the driver 17, the output of the driver 17 is connected to the control terminals of the rectifying switch S 1 and the commutation switch S 2, and is obtained from the filter circuit 21.
  • the configuration is such that the amplitude of the triangular waveform is controlled to fall between one input level of the first comparator 12 and one input level of the second comparator 13.
  • the switching power supply configured as described above operates as follows. This operation waveform diagram is shown in FIGS. 29 and 30.
  • FIG. 29 shows the case where the input / output potential difference becomes large
  • FIG. 30 shows the case where the input / output potential difference becomes small.
  • the input / output potential difference is detected by connecting the input of the amplifier 37 to the input side of the rectifier switch S1 and the output side of the output choke L1.
  • the output signal of the amplifier 37 is output to the current source 36 connected between the midpoint of the dividing resistors R 3 and R 4 and the ground potential. That is, the current flows through the current source 3 6 in proportion to the input output potential difference, due to this, the resistance value of the dividing resistors R 4 is small. Since the resistance of split resistor R 3 is fixed, as shown in FIG. 2 9, the input-to-output voltage level difference increases, the dividing resistors R 3 and amplitude of the voltage division ratio increases triangular wave with split resistor R 4 Also gets bigger. This lowers the oscillation frequency.
  • FIG. 31 shows a switching power supply according to a first modification of the present embodiment.
  • This switching power supply is configured such that the negative input of the error amplifier 11 is connected to the output side of the power supply circuit, and the error amplifier 11 amplifies the error between the detection voltage and the reference voltage.
  • This error amplifier 1 1 To the negative input of the first comparator 12 and the output of this error amplifier 11 to the positive input of the second comparator 13 via the dividing resistors R 3 and R 4. Connected.
  • a current source 36 is connected between the midpoint of the split resistors R 3 and R 4 and the ground potential.
  • the output signal of the amplifier 37 is input to the current source 36.
  • the positive input of this amplifier 37 is connected from the input side of the rectifier switch S1, and the negative input of the amplifier 37 is connected from the output side of the output choke L1 so that the input / output potential difference can be detected. It is.
  • a filter circuit 22 configured by connecting a resistor R S AW 1 and a capacitor C SAW 1 in series is connected.
  • the output of the filter circuit 22 is connected to the positive input of the first comparator 12 and to the negative input of the second comparator 13.
  • the output of the flip-flop circuit 16 is connected to the input of the driver 17, the output of the driver 17 is connected to the rectification switch S1 and the commutation switch S2, and the triangular waveform obtained from the filter circuit 22 is obtained.
  • the configuration is such that the amplitude falls between one input level of the first comparator 12 and one input level of the second comparator 13. .
  • the switching power supply configured as described above operates in substantially the same manner as the embodiment shown in Fig. 28, and incorporates a circuit that automatically changes the amplitude of the triangular wave in proportion to the input / output voltage difference. As a result, stable output ripple characteristics can be realized.
  • a resistor for voltage detection is not provided on the output side of the power supply circuit, and the filter circuit 22 has a different configuration from the filter circuit 21 of the embodiment shown in FIG.
  • FIG. 32 shows a switching power supply according to a second modification of the present embodiment.
  • the sweep rate production kitchen mode power supply comprises a resistor RR 2 for voltage detection at the output side of the power supply circuit, the connection of these resistors R have R 2 connected to the negative input of the error amplifier 1 1, the error amplifier 1 1 Is configured to amplify the error between the detection voltage and the reference voltage.
  • the output of the error amplifier 11 is connected to the negative input of the first comparator 12, and the output of the error amplifier 11 is also connected to the second comparator 13 via the dividing resistors R 3 and R 4. Connected to the positive input of
  • a filter circuit 23 is provided between the input and output terminals of the output choke L1.
  • This filter circuit 23 is configured as follows. Two resistors R SAW1 and R SAW2 are connected in series with the commutation switch S 2 and on the input side of the output choke L 1, and also in parallel with the commutation switch S 2 and the output of the output choke L 1 Two capacitors C SAW at the end ! , C SAW2 are connected in series. A connection is provided between the resistors R S AW1 and R SAW2 connected in series, and between the capacitors C SAW1 and C SAW2 connected in parallel, and the connection is connected to form a filter circuit 23. It is. Said connection is the output of the filter circuit 23, whose output is connected to the positive input of the first comparator 12 and to the negative input of the second comparator 13.
  • the output of the first comparator 13 is connected to the reset-side input of the flip-flop circuit 16, and the output of the second comparator 13 is set to the flip-flop circuit 16. Connected to the input on the side.
  • the output of the flip-flop circuit 16 is connected to the input of the driver 17, the output of the driver 17 is connected to the rectifier switch S1 and the commutation switch S2, and the triangular waveform obtained from the filter circuit 23 is obtained.
  • the configuration is such that the amplitude falls between one input level of the first comparator 12 and one input level of the second comparator 13.
  • the switching power supply configured as described above operates almost the same as the embodiment shown in FIG. 28, and has a circuit for automatically changing the amplitude of the triangular wave in proportion to the input / output voltage difference. As a result, stable outgoing ripple characteristics can be realized.
  • FIG. 33 is a third modification of the present embodiment, and has substantially the same configuration as the modification shown in FIG.
  • the negative input of the error amplifier 11 is connected to the output side of the power supply circuit, and the error amplifier 11 amplifies the error between the detection voltage and the reference voltage.
  • This switching power supply performs almost the same operation as the modification shown in Fig. 32, and has a stable output ripple characteristic by incorporating a circuit that automatically changes the amplitude of the triangular wave in proportion to the input / output voltage difference. Can be realized.
  • FIG. 34 shows a switching power supply according to a fourth modification of the present embodiment.
  • the output of the error amplifier 11 is connected to the negative input of the first comparator 12, and the output of the error amplifier 11 is also connected to the second comparator 13 via the dividing resistors R 3 and R 4. Connected to the positive input of
  • a current detection resistor 16 is connected between the output choke L 1 and the smoothing capacitor C OUT, and the input side of the resistor R 6 is connected to the positive input of the buffer amplifier 15. The output side is also connected to the negative input of buffer amplifier 15 respectively.
  • the output of the buffer amplifier 15 is connected to a filter circuit 24 configured by connecting a capacitor C SAW 1 and two resistors R SAW 1 and R SAW2 in series. The first comparison of the output of this filter circuit 24 It is connected to the positive input of the comparator 12 as well as to the negative input of the second comparator 13.
  • the output of the first comparator 13 is connected to the reset-side input of the flip-flop circuit 16, and the output of the second comparator 13 is set to the flip-flop circuit 16. Connected to the input on the side.
  • the output of the flip-flop circuit 16 is connected to the input of the driver 17, the output of the driver 17 is connected to the rectifier switch S 1 and the commutation switch S 2, and the triangular waveform obtained from the filter circuit 24 is obtained.
  • the configuration is such that the amplitude falls between one input level of the first comparator 12 and one input level of the second comparator 13.
  • the switching power supply configured as described above operates in substantially the same manner as the embodiment shown in FIG. 28, and has a built-in circuit for automatically changing the amplitude of the triangular wave in proportion to the input / output voltage difference. As a result, stable output ripple characteristics can be realized.
  • the resistors R i and R 2 for detecting the voltage are provided, and the filter circuit 24 is configured by connecting the capacitor C SAW and the two resistors R SAW 1 and R SAW 2 in series. As a result, only high frequency components can be extracted.
  • FIG. 35 shows a switching power supply according to a fifth modification of the present embodiment.
  • This switching power supply is configured such that the negative input of the error amplifier 11 is connected to the output side of the power supply circuit, and the error amplifier 11 amplifies the error between the detection voltage and the reference voltage.
  • the output of the error amplifier 11 is connected to the negative input of the first comparator 12, and the output of the error amplifier 11 is also connected to the second comparator 13 via the dividing resistors R 3 and R 4. Connected to the positive input of
  • a current detection resistor 16 is connected between the output choke L 1 and the smoothing capacitor C OUT, and the input side of the resistor R 6 is connected to the positive input of the buffer amplifier 15. The output side is also connected to the negative input of buffer amplifier 15 respectively.
  • the output of the buffer amplifier 15 is connected to a filter circuit 25 configured by connecting a capacitor C SAW and a resistor R SAW 1 in series. The output of this filter circuit 25 is connected to the positive input of the first comparator 12 and to the negative input of the second comparator 13.
  • the output of the first comparator 12 is connected to the reset-side input of the flip-flop circuit 16, and the output of the second comparator 13 is connected to the set-side input of the flip-flop circuit 16. Connected to.
  • the output of the flip-flop circuit 16 is connected to the input of the driver 17, the output of the driver 17 is connected to the rectifying switch S 1 and the commutation switch S 2, and obtained from the filter circuit 25.
  • the amplitude of the obtained triangular waveform falls between one input level of the first comparator 12 and one input level of the second comparator 13.
  • the switching power supply configured as described above has almost the same operation as the modification shown in FIG.
  • a circuit that automatically changes the amplitude of the triangular wave in proportion to the input / output voltage difference stable output ripple characteristics can be realized.
  • a current detection circuit 33 is connected to the output choke L1, and a capacitor C SAW1 and two resistors R SAW1 and R SAW2 are connected in series to the output of the current detection circuit 33 .
  • the filter circuit 24, which is configured by connecting to, is connected. Except for this, the configuration is almost the same as that of the modification shown in FIG.
  • the switching power supply shown in FIG. 36 configured as described above operates almost in the same manner as the switching power supply shown in FIG.
  • the current detection circuit 33 is connected to the output choke L1, and the output of the current detection circuit 33 is configured by connecting the capacitor C S AW and the resistor R SAW1 in series. Filter circuit 25 is connected. Otherwise, the configuration is almost the same as that of the modification shown in FIG.
  • the switching power supply shown in FIG. 37 configured as described above operates almost in the same manner as the switching power supply shown in FIG.
  • the modification shown in FIG. 38 is the embodiment shown in FIG. 28, the modification shown in FIG. 39 is the modification shown in FIG. 31, and the modification shown in FIG. 40 is the modification shown in FIG.
  • the modified example shown in FIG. 41 corresponds to the modified example shown in FIG. 33.
  • the current detection circuit 34 is connected to the rectifier switch S1, and the current detection circuit 34 The output is connected to the other end of the resistor R SAW1 that is connected to the output end of the output choke L1.
  • the switching power supplies shown in FIGS. 38 to 41 configured as described above have almost the same operations as the corresponding switching power supplies shown in FIGS. 28, 31, 32, and 33. However, in addition to these, these switching power supplies can adjust the output impedance because the currents flowing from the current detection circuit 34 are added by the filter circuits 21, 22, 23, and 23.
  • FIG. 42 shows a switching power supply according to this embodiment.
  • C is a capacitor
  • S is a switching element
  • R is a resistor
  • Z is an impedance
  • 11 is an error amplifier
  • 12 and 13 are comparators
  • 39 is an OR circuit
  • 16 is a flip-flop circuit
  • 17 is a driver
  • 21 is a filter circuit.
  • a control circuit is connected to the output side of this power supply circuit. The output of this control circuit is connected to a commutation switch S1 and a commutation switch S2.
  • Comprising a resistor R have R 2 for voltage detection at the output side of the power supply circuit, the resistors R i, the connection of R 2 connected to the negative input of the error amplifier 1 1, the detection voltage in the error amplifier 1 1 It is configured to amplify the error with respect to the reference voltage and output an error amplified signal.
  • the output of the error amplifier 11 is connected to the negative input of the first comparator 12, and the output of the error amplifier 11 is also connected to the output of the second comparator 13 via the dividing resistors R 3 and R 4 . It is connected to the positive input and outputs a divided voltage signal.
  • a filter circuit 21 consisting of a resistor R SAW 1 and two capacitors C SAW 1 and C SAW 2 connected in series is connected. .
  • the output of the filter circuit 21 is connected to the positive input of the first comparator 12 and the negative input of the second comparator 13.
  • the output of the first comparator 12 is connected to the reset-side input of the flip-flop circuit 16 so as to output a first comparison signal.
  • the output of the second comparator 13 is connected to one input of the OR circuit 39 to output a second comparison signal.
  • a clock signal is input to the other input of the OR circuit 39, and the output of the OR circuit 39 is connected to the set side of the flip-flop circuit 16 so that the clock signal is output during normal operation.
  • a second comparison signal is output.
  • the output of the flip-flop circuit 16 is connected to the input of the driver 17, the output of the driver 17 is connected to the control terminals of the rectifier switch S1 and the commutation switch S2, and the output is obtained from the filter circuit 21.
  • the amplitude of the triangular waveform is controlled so as to fall between the error amplification signal and the divided voltage signal when the load changes suddenly, and the ON timing of the rectifier switch S1 is fixed at the constant time by the click signal. It is configured to control.
  • the switching power supply configured as described above operates as follows. First, in the steady state, the rectifying switch S1 is turned on and the commutation switch S1 is turned on by inputting the above-mentioned cut-off signal to the set side of the flip-flop circuit 16 via the OR circuit 39. 2 turns off. When the rectifier switch S1 turns on, an output voltage is generated, and the error amplifier 11 connected to the output outputs an error amplification signal. This error-amplified signal is compared with the triangular waveform generated by the filter circuit 21 connected in parallel with the commutation switch S2, and when the triangular waveform becomes larger than the error-amplified signal, the flip-flop circuit 16 is reset. The rectifier switch S1 is turned off and the commutation switch is turned on. The above operation is repeated.
  • the power supply circuit A triangular waveform obtained by the filter circuit 21 connected in parallel with the series circuit of the output choke L 1 and the smoothing capacitor C OUT , and an error amplifier 11 that is generated by amplifying the error between the output voltage and the reference voltage 2 Using the two levels, the first comparison signal obtained by the comparison by the first comparator 12 is input to the reset side of the flip-flop circuit 16.
  • the triangular waveform obtained by the filter circuit 21 connected in parallel with the series circuit of the output choke L 1 and the smoothing capacitor C OUT provided in the power supply circuit, and the output voltage and the reference voltage by the error amplifier 11 Using the two levels generated by dividing the error-amplified signal by resistance division with resistors R 3 and R 4 , the second comparison signal obtained by comparison by the second comparator 13 is ORed. Input to the set side of flip-flop circuit 16 via 3 9. By inputting a signal in this manner, control is performed so that the amplitude of the triangular wave falls between the two levels.
  • the downward slope of the triangular waveform is a period during which the choke current decreases, and the upward slope of the triangular waveform is the output choke L1. This is a period during which the flowing current increases.
  • the frequency and duty ratio of the triangular waveform change according to the magnitude of the fluctuation.
  • Triangular waveform also, the output choke L 1 and because it is generated by the on / off rectifier Suitsuchi S 1 that is connected to the front of the series circuit of the smoothing capacitor C OUT, rectification Suitsuchi S 1 operating status and error amplification signal Is also fixed. Therefore, stability can be ensured without lowering the frequency band of the error amplification signal, and the response speed can be dramatically improved as a switching power supply.
  • the frequency and phase of the triangular waveform (indicating the drive status of the two switches in the power supply) change instantaneously according to the output signal of the error amplifier 11, and the choke current also changes accordingly, resulting in a high-speed response. Therefore, the jump of the output voltage can be suppressed to the maximum.
  • FIG. 43 shows the choke current waveform
  • the lower side shows the output voltage waveform.
  • the triangular waveform obtained by the filter circuit 21 connected in parallel with the series circuit of the output choke L 1 and the smoothing capacitor C OUT provided in the power supply circuit, the output voltage and the reference voltage by the error amplifier 11 A second comparison signal obtained by comparison by the second comparator 13 using the two levels generated by dividing the error amplified signal obtained by amplifying the error of the error by the divided resistors R 3 and R 4. Is input to one input of an OR circuit 39, and a clock signal is input to the other input of the OR circuit 39. The clock signal is output from the OR circuit 39 under normal conditions, but if the load suddenly changes, a second comparison signal is output from the OR circuit 39, and this second comparison signal is output to the flip-flop circuit 16 set side. To enter.
  • the signal output to the rectifier switch S 1 switches from the cut-off signal to the second comparison signal, and the amplitude of the triangular waveform obtained from the filter circuit 21 is separated from the error amplified signal. It falls between the pressure signal.
  • the control is performed so that the amplitude of the triangular waveform falls between the two signals, in this method, when the error amplification signal fluctuates, the frequency and duty ratio of the triangular waveform depend on the magnitude of the fluctuation. Changes.
  • the phase difference between the error amplified signal and the triangular waveform is fixed at 90 degrees at the maximum.
  • Triangular waveform also because it is generated by the output choke L 1 and the smoothing capacitor C OUT and the on-Z off rectifier Suitsuchi S 1 which is connected in front of the series circuit, and operating states of the rectifier Suitsuchi S 1
  • the phase difference from the error amplification signal is also fixed. Therefore, stability can be ensured without lowering the frequency band of the error amplification signal, and the response speed can be dramatically improved as a switching power supply.
  • the frequency and phase of the triangular wave (indicating the drive status of the two switches in the power supply) change instantaneously according to the output signal of the error amplifier 11, and the inductor current also changes accordingly, resulting in a high-speed response. Therefore, the fluctuation of the output voltage can be suppressed to the maximum.
  • FIG. 44 shows a switching power supply according to a first modification of the present embodiment.
  • Switching power supply according to the present modification similar to the embodiment shown in FIG. 4 2, commutation switch S l, commutation Suitsu Ji S 2, comprising an output choke L 1 and smoothing capacitor C OUT, and an output choke L 1 Rights
  • a power supply circuit with a smoothing capacitor C OUT connected in series is provided.
  • a control circuit is connected to the output side of this power supply circuit. The output of this control circuit is connected to a commutation switch S1 and a commutation switch S2.
  • Resistor R for voltage detection at the output side of the power supply circuit comprising a R 2, resistors R i, the connection of R 2 connected to the negative input of the error amplifier 1 1, the detection voltage in the error amplifier 1 1 It is configured to amplify the error with respect to the reference voltage and output an error amplified signal.
  • the output of the error amplifier 11 is connected to the negative input of the first comparator 12, and the output of the error amplifier 11 is also connected to the second comparator 13 via the dividing resistors R 3 and R 4 . It is connected to the positive input and outputs a divided voltage signal.
  • a filter circuit 21 composed of a resistor R SAW 1 and two capacitors C SAW 1 and C SAW 2 connected in series is connected. .
  • the output of the filter circuit 21 is connected to the positive input of the first comparator 12 and the negative input of the second comparator 13.
  • the output of the second comparator 13 is connected to the input on the set side of the flip-flop circuit 16 to output a second comparison signal.
  • the output of the first comparator 12 is connected to one input of the OR circuit 39 to output a first comparison signal.
  • a clock signal is input to the other input of the OR circuit 39, and the output of the OR circuit 39 is connected to the reset side of the flip-flop circuit 16, so that the clock signal is changed during a steady state and the load changes suddenly.
  • the first comparison signal is output.
  • the output of the flip-flop circuit 16 is connected to the input of the driver 17, the output of the driver 17 is connected to the control terminals of the rectifier switch S1 and the commutation switch S2, and the output is obtained from the filter circuit 21.
  • the amplitude of the triangular waveform is controlled so as to fall between the error amplification signal and the divided signal at the time of a sudden change in the load, and the off timing of the rectifying switch S1 is fixed at a constant time by the peak signal. It is configured to control.
  • the switching power supply configured as described above operates in substantially the same manner as the embodiment shown in FIG.
  • the first comparison signal obtained from the first comparator 12 and the clock signal are matched and output to the rectifier switch S1, so that the rectifier switch S
  • the output signal to 1 is switched from the clock signal to the first comparison signal, and the amplitude of the triangular waveform obtained from the filter circuit 21 is changed between the error amplified signal and the divided signals obtained from the divided resistors R 3 and R 4.
  • the effect is different in that the control is performed so as to be within the range, and the off timing of the rectifying switch is fixed by a click signal in a steady state.
  • FIG. 45 shows a switching power supply according to a second modification of the present embodiment.
  • Switching power supply as with the embodiment shown in FIG. 4 2, a rectifying switch S l, commutation Suitsu Ji S 2, the output choke L 1 and includes a smoothing capacitor C OUT, the output choke L 1 and the flat smooth capacitor C OUT Are connected in series.
  • a control circuit is connected to the output side of this power supply circuit. The output of this control circuit is connected to a commutation switch S1 and a commutation switch S2.
  • Comprising a resistor R have R 2 for voltage detection at the output side of the power supply circuit, the connection of these resistors R have R 2 connected to the negative input of the error amplifier 1 1, the detection voltage and the reference in the error amplifier 1 1 It is configured to amplify the error with respect to the voltage and output an error amplified signal.
  • the output of the error amplifier 11 is connected to the negative input of the comparator 12.
  • a filter circuit 21 composed of a resistor R SAW 1 and two capacitors C SAW 1 and C SAW 2 connected in series is connected. .
  • the output of the filter circuit 21 is connected to the positive input of the comparator 12.
  • the output of the comparator 12 is connected to the reset-side input of the flip-flop circuit 16 so as to output a first comparison signal.
  • the clock signal is connected to the set side of the flip-flop circuit 16 to output the clock signal.
  • the output of the flip-flop circuit 16 is connected to the input of the driver 17, the output of the driver 17 is connected to the control terminals of the rectifying switch S1 and the commutation switch S2, and the output from the filter circuit 21 is obtained.
  • a comparison signal is output by comparing the obtained triangular waveform with the error amplification signal, and the control is performed such that the ON timing of the rectification switch S1 is fixed by the clock signal.
  • the switching power supply configured as described above has substantially the same operation as the embodiment shown in FIG. 42 since it is configured by removing components other than the essential members in the embodiment shown in FIG.
  • this modified example is different from the embodiment shown in FIG. 42 in that the second comparator 13 shown in the embodiment shown in FIG. There is no effect of matching the second comparison signal with the quick signal.
  • the error amplification signal is compared with the triangular waveform obtained from the filter circuit 21 and the comparison signal is output to the rectification switch S1, and the rectification switch is output.
  • the timing of ON of S1 is fixed by a clock signal. It is to be noted that, also in the modified examples shown in FIG. 47 and subsequent figures, it is possible to have a configuration in which the ON timing of the rectifier switch S1 is fixed by a quick signal, as in the above modified example.
  • FIG. 46 shows a switching power supply according to a third modification of the present embodiment.
  • the switching power supply according to this modification is a modification of the first modification shown in FIG. 44, and like the first modification shown in FIG. 44, the rectifier switch S l and the commutation switch S 2 , Output choke L 1 and smoothing condenser It includes a capacitors C OUT, are provided with a power supply circuit connected to an output choke L 1 and a smoothing capacitor C OUT in series.
  • a control circuit is connected to the output side of the power supply circuit. The output of this control circuit is connected to a commutation switch S1 and a commutation switch S2.
  • Power comprises a resistor R have R 2 for voltage detection at the output side of the circuit, the resistors Ri, connect the connection portion of the R 2 to the negative input of the error amplifier 1 1, the detection voltage and the reference in the error amplifier 1 1 It is configured to amplify the error with respect to the voltage and output an error amplified signal.
  • the output of the error amplifier 11 is connected to the positive input of the comparator 13 via the division resistors R 3 and R 4 to output a divided signal.
  • a filter circuit 21 composed of a resistor R S AW1 and two capacitors C SAW 1 and C SAW2 connected in series is connected.
  • the output of the filter circuit 21 is connected to the negative input of the comparator 13.
  • the output of the comparator 13 is connected to the input on the set side of the flip-flop circuit 16 so as to output a comparison signal.
  • the clock signal is connected to the reset side of the flip-flop circuit 16 to output the clock signal.
  • the output of the flip-flop circuit 16 is connected to the input of the driver 17, the output of the driver 17 is connected to the control terminals of the rectifier switch S1 and the commutation switch S2, and the triangular wave obtained from the filter circuit 21 is obtained.
  • the configuration and the error amplification signal are compared to output a comparison signal, and control is performed so that the off timing of the rectifier switch S1 is fixed by the above-mentioned peak signal.
  • the switching power supply configured as described above has substantially the same operation as the first modification shown in FIG. 44 because it is configured by removing components other than the essential components in the first modification shown in FIG.
  • this modified example differs from the modified example shown in FIG. 44 in that the first comparator 12 shown in FIG. 44 does not have the first comparator 12 and the first comparison signal output from the first comparator 12 is There is no effect of matching the clock signal with, the error-amplified signal is compared with the triangular waveform obtained from the filter circuit 21, the comparison signal is output to the rectifier switch S 1, and the rectifier switch S 1 is turned off. Fix with a clock signal. Note that, also in the following modified examples, it is possible to have a configuration in which the off timing of the rectifying switch S1 is fixed by a clock signal, as in the above modified example.
  • FIG. 47 shows a fourth modification of the present embodiment, which shows a switching power supply in which the embodiment shown in FIG. 42 is multi-phased.
  • This switching power supply has a common power supply Vin and has two power supply circuits.
  • Two power supply circuit respectively, the rectifier switch S l, commutation Suitsu Ji S 2, comprising an output choke L 1 and smoothing capacitor C OUT, and an output choke L 1 Rights
  • a power supply circuit with a smoothing capacitor C OUT connected in series is provided.
  • the output side of the power supply circuit is used in common, it is connected to the control circuit via a resistor R 2 for voltage detection.
  • Resistor R for voltage detection, connecting the connection portion of the R 2 to the negative input of the error amplifier 1 1, to output an error amplified signal by amplifying the error between the detected voltage and the reference voltage at the error amplifier 1 1 It is configured in The output of this error amplifier 11 is connected to the negative input of two first comparators 12, and the output of the error amplifier 11 is also connected to the output of the error comparator 11 via dividing resistors R 3 and R 4. It is connected to the positive input of a second comparator 13.
  • a filter circuit 21 composed of a resistor R SAW 1 and two capacitors C SAW 1 and C SAW 2 connected in series is connected. .
  • the output of the filter circuit 21 is connected to the positive input of the first comparator 12 and the negative input of the second comparator 13.
  • the output of the first comparator 12 is connected to the reset-side input of the flip-flop circuit 16 so as to output a first comparison signal. Further, the output of the second comparator 13 is connected to one input of the OR circuit 39, and the second comparator 13 outputs the OR circuit 39 second comparison signal. ⁇ ⁇ ⁇ ⁇ A clock signal is input to the other input of the R circuit 39, and the output of this OR circuit 39 is connected to the set side of the flip-flop circuit 16. Then, the second comparison signal is output.
  • the output of the flip-flop circuit 16 is connected to the input of the driver 17, the output of the driver 17 is connected to the control terminals of the rectifier switch S 1 and the commutation switch S 2, and the filter circuit 21
  • the amplitude of the obtained triangular waveform is controlled to fall between the error amplification signal and the divided voltage signal when the load changes suddenly, and the ON timing of the rectifier switch S1 Is controlled in such a manner.
  • the switching power supply configured as described above operates as follows. Since the operation is almost the same as that of the single case shown in Fig. 42 when the load is constant and the load suddenly decreases, the description is omitted.
  • FIG. 48 shows the choke current waveform
  • the lower side shows the output voltage waveform.
  • a triangular waveform obtained by each filter circuit 21 and an error between an output voltage and a reference voltage are amplified by an error amplifier 11 and generated.
  • the first signal is input to the reset side of the flip-flop circuit 16 using two levels.
  • the triangular waveform obtained by the filter circuit 21 and the error amplified signal obtained by amplifying the error between the output voltage and the reference voltage by the error amplifier 11 are divided by resistors R 3 and R 4 to generate a resistance.
  • the second comparison signal obtained by the comparison by the second comparator 13 is input to one input of the OR circuit 39, and the other input of the OR circuit 39 is input. Input a click signal.
  • the OR circuit 39 When the load suddenly changes, the OR circuit 39 outputs a second comparison signal, and the second comparison signal is output to the flip-flop circuit 16. Input to the In the flip-flop circuit 16, the signal output to the rectifier switch S 1 is switched from the cut-off signal to the second comparison signal, and the amplitude of the triangular waveform obtained from the filter circuit 21 is divided by the error amplified signal and the divided voltage. Fits between traffic lights. Therefore, the operation in the case of multi-phase is the same as in the case of single. In this modification, two power supply circuits are provided to achieve multi-phase. However, the same operation can be obtained by providing three or more power supply circuits to achieve multi-phase. Also, in the following modified examples, multi-phase can be realized.
  • FIG. 49 shows a switching power supply according to a fifth modification of the present embodiment.
  • This switching power supply is configured such that the negative input of the error amplifier 11 is connected to the output side of the power supply circuit, and the error amplifier 11 amplifies the error between the detection voltage and the reference voltage.
  • the output of the error amplifier 11 is connected to the negative input of the first comparator 12, and the output of the error amplifier 11 is also connected to the second comparator 13 via the dividing resistors R 3 and R 4. Connected to the positive input of
  • a filter circuit 22 composed of a resistor R SAW 1 and a capacitor C SAW 1 connected in series is connected.
  • the output of the filter circuit 22 is connected to the positive input of the first comparator 12 and to the negative input of the second comparator 13.
  • the output of the first comparator 12 is connected to the reset-side input of the flip-flop circuit 16 to output the first signal.
  • the output of the second comparator 13 is connected to one input of an OR circuit 39.
  • a close signal is input to the other input of the OR circuit 39, and the output of the OR circuit 39 is connected to the set side of the flip-flop circuit 16 so that the close
  • a second comparison signal is output.
  • the output of the flip-flop circuit 16 is connected to the input of the driver 17, and the output of the driver 17 is connected to the control terminals of the rectifier switch S 1 and the commutation switch S 2.
  • the switching power supply configured as described above operates in substantially the same manner as the embodiment shown in FIG. 42, and the ON timing of the rectifier switch S1 is fixed by a clock signal in a steady state, so that oscillation The frequency is fixed.
  • a resistor for voltage detection is not provided on the output side of the power supply circuit, and the filter circuit 22 differs from the filter circuit 21 of the embodiment shown in FIG.
  • FIG. 50 shows a switching power supply according to a sixth modification of the present embodiment.
  • the Suitchin mode power supply comprises a resistor R have R 2 for voltage detection at the output side of the power supply circuit, connected resistors R i, the connection of R 2 to the negative input of the error amplifier 1 1, the error amplifier It is configured to amplify the error between the detection voltage and the reference voltage in 11.
  • the output of the error amplifier 11 is connected to the negative input of the first comparator 12, and the output of the error amplifier 11 is also connected to the second comparator 13 via the dividing resistors R 3 and R 4. Connected to the positive input of
  • a filter circuit 23 is provided between the input and output terminals of the output choke L1.
  • This filter circuit 23 is configured as follows.
  • Two resistors R S AW 1 and R S AW2 are connected in series with the commutation switch S 2 and on the input side of the output choke L 1, and also in parallel with the commutation switch S 2 and output.
  • Two capacitors C S AW :, C S AW 2 are connected in series to the output end side of the chi- yoke L 1.
  • a connection is provided between the resistors R S AW R S AW2 connected in series and the capacitors C S AW 1 and C S AW2 connected in series, and these connections are connected to form a filter circuit 23. It is composed.
  • Said connection is the output of the filter circuit 23, whose output is connected to the positive input of the first comparator 12 and to the negative input of the second comparator 13.
  • the output of the first comparator 12 is connected to the reset-side input of the flip-flop circuit 16 so as to output a first comparison signal. Further, the output of the second comparator 13 is connected to one input of the OR circuit 39 to output a second comparison signal.
  • a clock signal is input to the other input of the OR circuit 39, and the output of the OR circuit 39 is connected to the set side of the flip-flop circuit 16 so that the clock signal is output during normal operation.
  • a second comparison signal is output.
  • the output of the flip-flop circuit 16 is connected to the input of the driver 17, the output of the driver 17 is connected to the control terminals of the rectifier switch S 1 and the commutation switch S 2, and is obtained from the filter circuit 23.
  • the amplitude of the triangular waveform is controlled so that it falls between the error amplification signal and the divided voltage signal when the load changes suddenly. The control is performed such that the ON timing of the switch S1 is fixed by the click signal.
  • the switching power supply configured as described above operates in substantially the same manner as the embodiment shown in FIG. 42, and the ON timing of the rectifying switch S1 is fixed by a click signal in a steady state. As a result, the oscillation frequency is fixed.
  • FIG. 51 is a seventh modification of the present embodiment, and has substantially the same configuration as the modification shown in FIG.
  • the negative input of the error amplifier 11 is connected to the output side of the power supply circuit, and the error amplifier 11 amplifies the error between the detection voltage and the reference voltage.
  • This switching power supply operates in substantially the same manner as the modification shown in FIG. 50, and the oscillation frequency is fixed by fixing the ON timing of the rectifying switch S1 in a steady state with a clock signal.
  • FIG. 52 shows a switching power supply according to an eighth modification of the present embodiment.
  • This switching power supply has a resistor R 2 for voltage detection on the output side of the power supply circuit.
  • the connection of these resistors R 2 is connected to the negative input of the error amplifier 11. It is configured to amplify the error between the detection voltage and the reference voltage at 1.
  • the output of the error amplifier 11 is connected to the negative input of the first comparator 12, and the output of the error amplifier 11 is also connected to the second comparator 13 via the dividing resistors R 3 and R 4. Connected to the positive input of
  • the output of the first comparator 12 is connected to the reset-side input of the flip-flop circuit 16 to output a first comparison signal. Further, the output of the second comparator 13 is connected to one input of the OR circuit 39 to output a second comparison signal. A clock signal is input to the other input of the OR circuit 39, and the output of the OR circuit 39 is connected to the set side of the flip-flop circuit 16 so that the clock signal is output during normal operation. When the load suddenly changes, a second comparison signal is output.
  • the output of the flip-flop circuit 16 is connected to the input of the driver 17, the output of the driver 17 is connected to the control terminals of the rectifier switch S 1 and the commutation switch S 2, and is obtained from the filter circuit 24.
  • the switching power supply configured as described above operates in substantially the same manner as the embodiment shown in FIG. 42, and the ON timing of the rectifier switch S1 is fixed by a clock signal in a steady state, so that oscillation The frequency is fixed.
  • the resistor R! , R 2 , and the filter circuit 24 is composed of a capacitor C SAW1 and two resistors RS AWl . R SAW2 connected in series, so that only high frequency components can be extracted . .
  • FIG. 53 shows a switching power supply according to a ninth modification of the present embodiment.
  • This switching power supply is configured such that the negative input of the error amplifier 11 is connected to the output side of the power supply circuit, and the error amplifier 11 amplifies the error between the detection voltage and the reference voltage.
  • the output of this error amplifier 11 is connected to the negative input of the first comparator 12, and the output of this error amplifier 11 is also connected to the second comparator 13 via the dividing resistors R 3 and R 4.
  • R 3 and R 4 Connected to the positive input of
  • a resistor R 5 for current detection is connected between the output choke L 1 and the smoothing capacitor C OUT, and the input side of the resistor R 5 is connected to the positive input of the buffer amplifier 15. The output side is also connected to the negative input of buffer amplifier 15 respectively.
  • the output of the buffer amplifier 15 is connected to a filter circuit 25 configured by connecting a capacitor C SAW and a resistor R S AW 1 in series. The output of this filter circuit 25 is connected to the positive input of the first comparator 12 and to the negative input of the second comparator 13.
  • the output of the first comparator 12 is connected to the reset-side input of the flip-flop circuit 16 so as to output a first comparison signal. Further, the output of the second comparator 13 is connected to one input of the OR circuit 39 to output a second comparison signal.
  • a clock signal is input to the other input of the OR circuit 39, and the output of the OR circuit 39 is connected to the set side of the flip-flop circuit 16 so that the clock signal is changed during a steady state and the load is suddenly changed. In this case, a second comparison signal is output.
  • the output of the flip-flop circuit 16 is connected to the input of the driver 17, the output of the driver 17 is connected to the control terminals of the rectifier switch S1 and the commutation switch S2, and the The amplitude of the obtained triangular waveform is controlled so as to fall between the error amplification signal and the divided voltage signal when the load changes suddenly, and the ON timing of the rectifier switch S1 is fixed at the steady state by the above-mentioned clock signal in a steady state. It is configured to control.
  • the switching power supply configured as described above operates almost in the same manner as the modification shown in FIG. 49, and the ON timing of the rectifying switch S1 is fixed by a click signal in a steady state.
  • the oscillation frequency is fixed.
  • a current detection circuit 33 is connected to the output choke L1, and a capacitor C SAW1 and two resistors R SAW1 and R SAW 2 are connected to the output of the current detection circuit 33 .
  • a capacitor C SAW1 and two resistors R SAW1 and R SAW 2 are connected to the output of the current detection circuit 33 .
  • R SAW1 and R SAW 2 are connected to the output of the current detection circuit 33 .
  • the switching power supply shown in FIG. 54 configured as described above operates in substantially the same manner as the switching power supply shown in FIG.
  • the current detection circuit 33 is connected to the output choke L1, and the output of the current detection circuit 33 is connected in series with the capacitor C S AW and the resistance R SAW1.
  • the constituent filter circuit 25 is connected. Except for this, the configuration is almost the same as that of the modification shown in FIG.
  • the switching power supply shown in FIG. 55 configured as described above operates almost in the same manner as the switching power supply shown in FIG.
  • the 12th modification shown in FIG. 56 is the embodiment shown in FIG. 42
  • the modification shown in FIG. 57 is the modification shown in FIG. 49
  • the modified example shown in FIG. 59 corresponds to the modified example shown in FIG. 51. These modified examples are such that the current detection circuit 34 is connected to the rectifier switch S1, The output of the circuit 34 is connected to the other end of the resistor R SAW1 connected to the output of the output choke L1.
  • the switching power supplies shown in FIGS. 56 to 59 configured as described above have almost the same functions as the corresponding switching power supplies shown in FIGS. 42, 49, 50 and 51. However, in addition to these, these switching power supplies can adjust the output impedance because the currents flowing from the current detection circuit 34 are added by the filter circuits 21, 22, 23, and 23. Industrial applicability
  • control is performed such that the amplitude of the triangular waveform obtained from the filter circuit falls between one input level of the first comparator and one input level of the second comparator. Since the triangular wave is generated by turning on and off the output switch connected in front of the filter consisting of the resistor and the capacitor, the phase difference between the operating state of the output switch and the error amplification signal is provided. Is fixed, and stability can be ensured without lowering the frequency band of the error amplification signal. Also, by connecting a current detection circuit to the rectifier switch and connecting this current detection circuit to the filter circuit, the current flowing normally and the current flowing through the current detection circuit flow through the filter circuit, and the output impedance is reduced. Can be adjusted.
  • a switching power supply realizes stable output ripple characteristics by detecting a discontinuous state of an inductor current and incorporating a circuit for automatically changing the amplitude of a triangular wave. Can be.
  • the switching power supply has a built-in circuit for automatically changing the amplitude of the triangular wave in proportion to the input / output voltage difference, so that under various input / output conditions, Stable efficiency ⁇ Output ripple characteristics can be realized.
  • the amplitude of the triangular waveform obtained from the filter circuit is obtained by amplifying the error between the output voltage and the reference voltage when the load suddenly changes, and dividing the error amplified signal.
  • the signal is controlled so that it falls within the range of the divided voltage signal, and the rectifying switch is turned on or off in a steady state so that the oscillation frequency is fixed and the phase is shifted for multi-phase. Is easy to occur.
  • the oscillation frequency is fixed as in the case of using the divided voltage signal, and it is easy to generate a signal with a phase shifted for multi-phase.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Television Receiver Circuits (AREA)
  • Amplifiers (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

電源回路の出力側に電圧検出部を設け、この電圧検出部を誤差アンプの負の入力に接続して検出電圧と基準電圧との誤差を増幅するように構成し、この誤差アンプの出力を第一の比較器の負の入力に接続し、同じくこの誤差アンプの出力を分割抵抗を介して第二の比較器の負の入力に接続してあり、整流スイッチと転流スイッチとの間にフィルタ回路を接続し、このフィルタ回路の出力を第一の比較器並びに第二の比較器の正の入力に接続して、フィルタ回路より得られる三角波形の振幅が第一の比較器の一方の入力レベルと第二の比較器の一方の入力レベルとの間に収まるように制御する制御手段を設けるようにしたスイッチング電源。誤差増幅信号の周波数帯域を下げなくても安定性を確保することができる。また、安定した出力リップル特性を実現するスイッチング電源が提供される。

Description

明細書
スィツチング電源 技術分野
本発明は、 負荷急変の応答速度の高速化を図るための制御手段を備えたスィツチング 電源に関するものである。 背景技術
従来のスィツチング電源を図 6 0乃至図 6 2に示す。 図 6 0に示すスィツチング電源 は電圧ヒステリシス制御手段を備えてある。 具体的構成は以下の通りである。 この電源 回路の出力側に比較器 4 2の負の入力を接続して検出電圧と基準電圧 V ref との誤差を 増幅するように構成してある。 この比較器 4 2の出力をドライバ 4 7の入力に接続し、 このドライバ 4 7の出力を整流スィツチ S 1のゲート並びに転流スィツチ S 2のゲート に接続してある (例と して米国特許第 6 1 4 7 4 7 8号公報(第 7頁、第 3図)参照。)。 図 6 1に示すスイッチング電源は電圧モード型 P WM制御手段を備えてある。 具体的 構成は以下の通りである。 この電源回路の出力側に誤差アンプ 4 1の負の入力を接続し て検出電圧と基準電圧 V ref との誤差を増幅するように構成してある。 この誤差アンプ 4 1の出力を比較器 4 2の正の入力に接続し、 この比較器 4 2の負の入力に発振器 4 8 を接続して、 この発振器 4 8から比較器 4 2に三角波を送信するように構成してある。 この比較器 4 2の出力をラッチ 4 5の入力に接続し、 このラッチ 4 5の入力に発振器 4 8を接続し、 この発振器 4 8からラッチ 4 5に矩形波を送信するように構成してある。 さらに、 ラッチ 4 5の出力をドライバ 4 7の入力に接続し、 このドライバ 4 7の出力を 整流スィツチ S 1のゲート並びに転流スィツチ S 2のゲー I、に接続してある (例として 米国特許第 6 1 4 7 4 7 8号公報 (第 7頁、 第 1図) 参照。)。
図 6 2に示すスイッチング電源は電流モード型 P WM制御手段を備えてある。 具体的 構成は以下の通りである。 この電源回路の出力側に誤差アンプ 4 1の負の入力を接続し て検出電圧と基準電圧 V ref との誤差を増幅するように構成してある。 この誤差アンプ 4 1の出力を比較器 4 2の負の入力に接続してある。 出力チョーク L 1に電流検出回路 4 4を接続し、 この電流検出回路 4 4を比較器 4 2の正の入力に接続してある。 この比 較器 4 2の出力にフリ ップフ口ップ回路 4 6のリセッ ト側を接続し、 このフリ ップフロ ップ回路 4 6のセッ ト側に発振器 4 8を接続し、 この発振器 4 8からフリ ップフロップ 回路 4 6にフロップ信号を送信するように構成してある。 このフリ ップフ口ップ回路 4 6の出力をドライバ 4 7の入力に接続し、 このドライバ 4 7の出力を整流スィツチ S 1 のグート並びに転流スィツチ S 2のゲートに接続してある (例として米国特許第 4 9 4 3 9 0 2号公報 (第 5— 6頁、 第 2図) 参照。)。
先ず、 電圧ヒステリシス制御手段を備えたスイッチング電源では、 出力電圧を直接使 い、 出力電圧が規定のレベルよりも下がったらスィツチがオンしてインダクタ電流を増 加させ、 出力電圧が規定の別のレベルよりも上がったらスィッチがオフしてインダクタ 電流を減少させる動作を繰り返すことにより出力電圧の制御を行うため応答速度は速い が、 原理的に安定性に乏しい方式であり、 出力コンデンサや負荷の状態に非常に敏感な 動作をするため用途を著しく限定するという課題が生じた。
続いて、 電圧モード型 P WM制御では、 固定周波数三角波と誤差増幅信号とを使って デューティ比を決定しているが、 この方法では固定周波数三角波の周波数と誤差増幅信 号の周波数が近くなると安定性が損なわれるため、 誤差増幅信号の周波数帯域を固定周 波数三角波に対して 1 / 1 0程度まで落とす必要があつたという課題が生じた。
また、 電流モード型 P WM制御では、 固定周波数三角波の代わりにインダクタ電流信 号を用いることで、 誤差増幅信号との位相余裕を大きく取れるようになつたが、 誤差増 幅信号の周波数帯域を大きく上げることはできないという課題が生じた。
図 6 3には、 電流モード型 P WM制御手段を用いたスイッチング電源の負荷電流が急 増した場合の動作波形図を示し、 図 6 4には、 同じくスイッチング電源の負荷電流が急 減した場合の動作波形図を示してある。 具体的には、 上側は出力電圧波形、 中央はイン ダクタ電流波形、 下側は誤差アンプ 4 1の出力及び三角波を示してある。 これらの図で 示す通り、 負荷電流が急激に増加すると、 出力電圧が落ち込み、 これに伴い、 インダク タ電流が増加する。 また、 負荷電流が急激に減少すると、 出力電圧が跳ね上がり、 これ に伴い、 インダクタ電流が減少する。 しかし、 出力電圧が安定するまでには数周期以上 必要になり、 安定した電源動作を得るために、 系の応答速度が遅くなるという課題が生 じた。
本発明は、 上記問題に鑑みてなされたものであり、 誤差増幅信号の周波数帯域を下げ なくても安定性を確保することができるスィツチング電源を提供する。
また、 本発明は、 安定した出力リ ップル特性を実現する新規のスイッチング電源を提 供する。
さらに、 本発明は、 安定した発振周波数 . 出力リ ップル特性を実現する新規のスイツ チング電源を提供する。 発明の開示
上記目的を達成するため、 本発明の 1つの態様によれば、 整流スィッチ、 転流スイツ チ、 出力チョーク並びに平滑コンデンサを備え、 前記出力チョークと平滑コンデンサを 直列に接続したスィッチング電源であって、 この電源回路の出力側に誤差アンプの入力 を接続して検出電圧と基準電圧との誤差を増幅するように構成し、 この誤差アンプの出 力を第一の比較器の一方の入力に接続し、 同じくこの誤差アンプの出力を分割抵抗を介 して第二の比較器の一方の入力に接続してあり、 前記転流スィッチと並列に、 抵抗及び コンデンサを備えたフィルタ回路を接続し、 このフィルタ回路の出力を前記第一の比較 器の他方の入力、 並びに第二の比較器の他方の入力に接続して、 前記フィルタ回路より 得られる三角波形の振幅が前記第一の比較器の一方の入力レベルと第二の比較器の一方 の入力レベルとの間に収まるように制御する制御手段を設けるようにしたスィツチング 電源、 が提供される。
上記構成のスィツチング電源によれば、 フィルタ回路より得られる三角波形の振幅が 第一の比較器の一方の入力レベルと第二の比較器の一方の入力レベルとの間に収まるよ うに制御する制御手段を設けてあることにより、 三角波は抵抗とコンデンサで構成レた フィルタの手前で接続してある出力スィツチのオン/オフにより生成されるため、 出力 スィツチの動作状態と誤差増幅信号との位相差が固定され、 誤差増幅信号の周波数帯域 を下げなくても安定性を確保することができる効果がある。
また、 整流スィッチに電流検出回路を接続し、 この電流検出回路をフィルタ回路に接 続することにより、 ブイルタ回路には通常流れる電流と電流検出回路を経由して流れる 電流とが流れ、 出力インピーダンスの調整をすることができる効果がある。
好ましくは、 上記スイッチング電源において、 前記制御手段は、 この誤差アンプの出 力を、 分圧比を自在に変化させる電圧分圧回路を介して第二の比較器の一方の入力に接 続し、 前記フィルタ回路より得られる三角波形の振幅が前記第一の比較器の一方の入力 レベルと第二の比較器の一方の入力レベルとの間に収まるように構成する。
好ましくは、 前記電圧分圧回路は、 抵抗を 3つ以上直列に接続して、 分圧比可変部と 分圧比固定部とを構成し、 前記分圧比可変部の一端を前記誤差アンプの出力と前記第一 の比較器の入力間に接続し、 同じく分圧比可変部の他端を前記第二の比較器の一方の入 力に接続してあり、 前記分圧比可変部に設けた少なく とも一の抵抗と並列にスィッチを 接続し、 インダクタ電流が不連続状態になったことを検出して、 分圧比を自在に変化さ せるようにする。
本発明によれば、 インダクタ電流の不連続状態を検出し、 三角波の振幅を自動的に変 化させる回路を内蔵することにより、 安定した出カリ ップル特性を実現することができ る効果がある。
好ましくは、 上記スイ ッチング電源において、 前記制御手段は、 入出力電位差に比例 して変化する電流源を備え、 この電流源は、 前記分割抵抗の中点と接地電位との間に接 続して第二の信号を出力するように構成し、 前記三角波形の振幅が前記第一及ぴ第二の 信号の間に収まるように構成する。
好ましくは、 前記分割抵抗を 2つ以上直列に接続し、 抵抗分割点と接地電位との間に 入出力電圧差に比例する電流源を接続して、 分圧比を自在に変化させるようにする。 本発明によれば、 入出力電圧差に比例して三角波の振幅を自動的に変化させる回路を 内蔵することにより、 様々な入出力条件において、 安定した効率 · 出力リ ップル特性を 実現することができる効果がある。
好ましくは、 上記スイッチング電源において、 前記誤差アンプで電源回路の出力電圧 と基準電圧との誤差を増幅して得た誤差増幅信号を、 前記フィルタ回路より得られる三 角波形とを比較して第一の比較信号を前記整流スィツチに出力し、 前記誤差増幅信号を 分圧して、 この分圧信号を前記三角波形とを比較して第二の比較信号を生成可能な構成 とし、 前記第二の比較信号とクロック信号とを付き合わせ、 負荷急変時に前記第二の比 較信号を出力して、 前記整流スィツチへの出力信号を前記ク口ック信号から第二の比較 信号へ切り換えて、 前記三角波形の振幅が前記誤差増幅信号と前記分圧信号との間に収 まるように制御し、 定常時に前記整流スィツチのオンのタイミングを前記ク口ック信号 で固定するようにする。
好ましくは、 前記制御手段は、 負荷急増時においても、 前記整流スィッチのオンのタ ィミングをク口ック信号で固定するようにする。
好ましくは、 上記スイッチング電源において、 前記誤差アンプで電源回路の出力電圧と 基準電圧との誤差を増幅して得た誤差増幅信号を、 前記フィルタ回路より得られる三角 波形とを比較して第一の比較信号を生成可能な構成とし、 前記第一の比較信号とク口ッ ク信号とを付き合わせ、 前記整流スィッチに出力し、 前記誤差増幅信号を分圧して、 こ の分圧信号を前記三角波形とを比較して第二の比較信号を出力し、 負荷急変時に前記整 流スィツチへの出力信号を前記ク口ック信号から第一の比較信号へ切り換えて、 前記三 角波形の振幅が前記誤差増幅信号と前記分圧信号との間に収まるように制御し、 定常時 に前記整流スィツチのオフのタイミングを前記ク口ック信号で固定するようにする。 好ましくは、 前記制御手段は、 負荷急減時においても、 前記整流スィッチのオフのタ イミングをクロック信号で固定するようにする。
本発明によれば、 フィルタ回路より得られる三角波形の振幅が負荷急変時に出力電 圧と基準電圧との誤差を増幅した誤差増幅信号と、 この誤差增幅信号を分圧して得られ る分圧信号との間に収まるように制御し、 定常時に整流スィツチのオン又はオフのタイ ミングをクロック信号で固定するようにしたことにより、 発振周波数が固定となり、 マ ルチフェーズ化のための位相をずらした信号の発生が容易であるという効果がある。 また、 本発明によれば、 分圧信号を用いなくても、 分圧信号を用いた場合と同様に、 発振周波数が固定となり、 マルチフェーズ化のための位相をずらした信号の発生が容易 であるという効果がある。 図面の簡単な説明
図 1は、 本発明の第 1実施形態に係るスィツチング電源の回路図である。
図 2は、 図 1に示す実施形態の動作波形図である。
図 3は、 同じく動作波形図である。
図 4は、 第 1実施形態の第 1変形例の回路図である。
図 5は、 第 1実施形態の第 2変形例の回路図である。
図 6は、 第 1実施形態の第 3変形例の回路図である。
図 7は、 第 1実施形態の第 4変形例の回路図である。
図 8は、 第 1実施形態の第 5変形例の回路図である。
図 9は、 第 1実施形態の第 6変形例の回路図である。
図 1 0は、 第 1実施形態の第 7変形例の回路図である。
図 1 1は、 第 1実施形態の第 8変形例の回路図である。
図 1 2は、 第 1実施形態の第 9変形例の回路図である。
図 1 3は、 第 1実施形態の第 1 0変形例の回路図である。
図 1 4は、 第 1実施形態の第 1 1変形例の回路図である。
図 1 5は、 本発明の第 2実施形態に係るスイッチング電源の回路図である。
図 1 6は、 図 1 5に示す実施形態の動作波形図である。
図 1 7は、 第 2実施形態の第 1変形例の回路図である。 図 1 8は、 第 2実施形態の第 2変形例の回路図である。
図 1 9は、 第 2実施形態の第 3変形例の回路図である。
図 2 0は、 第 2実施形態の第 4変形例の回路図である。
図 2 1は、 第 2実施形態の第 5変形例の回路図である。
図 2 2は、 第 2実施形態の第 6変形例の回路図である。
図 2 3は、 第 2実施形態の第 7変形例の回路図である。
図 2 4は、 第 2実施形態の第 8変形例の回路図である。
図 2 5は、 第 2実施形態の第 8変形例と類似の回路図である。
図 2 6は、 第 2実施形態の第 8変形例と類似の回路図である。
図 2 7は、 第 2実施形態の第 8変形例と類似の回路図である。
図 2 8は、 本発明の第 3実施形態に係るスィツチング電源の回路図である。
図 2 9は、 図 2 8に示す実施形態の入出力電位差が大きくなった場合の動作波形図で ある。
図 3 0は、 図 2 8に示す実施形態の入出力電位差が小さくなった場合の動作波形図で ある。
図 3 1は、 第 3実施形態の第 1変形例の回路図である。
図 3 2は、 第 3実施形態の第 2変形例の回路図である。
図 3 3は、 第 3実施形態の第 3変形例の回路図である。
図 3 4は、 第 3実施形態の第 4変形例の回路図である。
図 3 5は、 第 3実施形態の第 5変形例の回路図である。
図 3 6は、 第 3実施形態の第 6変形例の回路図である。
図 3 7は、 第 3実施形態の第 7変形例の回路図である。
図 3 8は、 第 3実施形態の第 8変形例の回路図である。
図 3 9は、 第 3実施形態の第 8変形例と類似の回路図である。
図 4 0は、 第 3実施形態の第 8変形例と類似の回路図である。
図 4 1は、 第 3実施形態の第 8変形例と類似の回路図である。
図 4 2は、 本発明の第 4実施形態に係るスィツチング電源の回路図である。
図 4 3は、 図 4 2に示す実施形態の動作波形図である。
図 4 4は、 第 4実施形態の第 1変形例の回路図である。
図 4 5は、 第 4実施形態の第 2変形例の回路図である。
図 4 6は、 第 4実施形態の第 3変形例の回路図である。 図 4 7は、 図 4 2に示す第 4実施形態をマルチフェーズ化した第 4変形例の回路図で ある
図 4 8は、 図 4 7に示す第 4変形例の動作波形図である。
図 4 9は、 第 4実施形態の第 5変形例の回路図である。
図 5 0は、 第 4実施形態の第 6変形例の回路図である。
図 5 1は、 第 4実施形態の第 7変形例の回路図である。
図 5 2は、 第 4実施形態の第 8変形例の回路図である。
図 5 3は、 第 4実施形態の第 9変形例の回路図である。
図 5 4は、 第 4実施形態の第 1 0変形例の回路図である。
図 5 5は、 第 4実施形態の第 1 1変形例の回路図である。
図 5 6は、 第 4実施形態の第 1 2変形例の回路図である。
図 5 7は、 第 4実施形態の第 1 3変形例の回路図である。
図 5 8は、 第 4実施形態の第 1 4変形例の回路図である。
図 5 9は、 第 4実施形態の第 1 5変形例の回路図である。
図 6 0は、 従来例のスィツチング電源の回路図である。
図 6 1は、 図 6 0とは別の従来例の回路図である。
図 6 2は、 同じく別の従来例の回路図である。
図 6 3は、 図 6 2に示す従来例の動作波形図である。
図 6 4は、 同じく動作波形図である。 発明を実施するための最良の形態
以下、 添付図面を用いて本発明の第 1実施形態に係るスィツチング電源を説明する。 図 1は本実施形態に係るスイッチング電源を示す。 Cはコンデンサ、 Sはスイッチング 素子、 Rは抵抗、 Zはインピーダンス、 1 1は誤差アンプ、 1 2 , 1 3は比較器、 1 6 はフリ ップフロップ回路、 1 7はドライバ、 2 1はフィルタ回路である。
本実施形態に係るスイ ッチング電源は、 整流スィ ッチ S l、 転流スィッチ S 2、 出力 チョーク L 1並びに平滑コンデンサ C O U Tを備え、 出力チョーク L 1 と平滑コンデンサ C O U Tとを直列に接続した電源回路を備えてある。 この電源回路の出力側に制御回路を 接続してある。 この制御回路の出力は整流スィツチ S 1 と転流スィツチ S 2に接続して ある。
電源回路の出力側に電圧検出用の抵抗 R , , R 2を備え、 これら抵抗 R !, R 2の接続 部を誤差アンプ 1 1の負の入力に接続し、 この誤差アンプ 1 1で検出電圧と基準電圧と の誤差を増幅するように構成してある。 この誤差アンプ 1 1の出力を第一の比較器 1 2 の負の入力に接続し、 同じくこの誤差アンプ 1 1の出力を分割抵抗 R 3, R 4を介して第 二の比較器 1 3の正の入力に接続してある。
出力チョーク L 1 と平滑コンデンサ C O U Tとの直列回路と並列に、 抵抗 R S A W 1と 2 つのコンデンサ C S AW 1 , C S A W 2とを直列に接続して構成するフィルタ回路 2 1を接続 してある。 このフィルタ回路 2 1の出力を第一の比較器 1 2の正の入力、 並びに第二の 比較器 1 3の負の入力に接続してある。
第一の比較器 1 2の出力をフリ ップフ口ップ回路 1 6のリセッ ト側の入力に接続する とともに、 第二の比較器 1 3の出力をフリ ップフロップ回路 1 6のセッ ト側の入力に接 続してある。 このフリ ップフ口ップ回路 1 6の出力を ドライバ 1 7の入力に接続し、 こ のドライバ 1 7の出力を整流スィツチ S 1並びに転流スィツチ S 2に接続し、 フィルタ 回路 2 1より得られる三角波形の振幅が第一の比較器 1 2の一方の入力レベルと第二の 比較器 1 3の一方の入力レベルとの間に収まるように構成してある。
以上のように構成してあるスイッチング電源は以下のような作用をする。 先ず、 負荷 電流が急激に増加した場合について説明する。 この動作波形図を図 2に示す。 なお、 図 2の上側には出力電圧波形を、 中央にはインダクタ電流波形を、 下側には誤差アンプ 1 1の出力、 誤差アンプ 1 1の出力を抵抗分割したもの、 並びにフィルタ回路 2 1により 生成された 2つのレベル内に収まるように制御される三角波をそれぞれ示してある。 負 荷電流が急激に増加すると、 図 2に示す通り、 出力電圧が瞬間的に落ち込み、 インダク タ電流が急激に増加する。
このとき、 電源回路に備えた出力チョーク L 1 と平滑コンデンサ C O U Tとの直列回路 と並列に接続したフィルタ回路 2 1により得られる三角波と、 誤差アンプ 1 1により出 力電圧と基準電圧との誤差を増幅して生成される 2つのレベルとを使い、 第一の比較器 1 2で比較して得られた信号をフリ ップフ口ップ回路 1 6のリセッ ト側に入力する。 こ れとともに、 電源回路に備えた出力チョーク L 1 と平滑コンデンサ C。U Tとの直列回路 と並列に接続したフィルタ回路 2 1により得られる三角波と、 誤差アンプ 1 1により出 力電圧と基準電圧との誤差を増幅した信号から分割抵抗 R 3, R 4により抵抗分割して生 成される 2つのレベルとを使い、 第二の比較器 1 3で比較して得られた信号をフリ ップ フ口ップ回路 1 6のセッ ト側に入力する。 このように信号を入力することにより、 三角 波の振幅が前記 2つのレベルの間に収まるように制御を行っている。 この制御によって、 フィルタ回路 2 1により三角波を生成するため、 三角波の登り傾 斜は出力チョーク L 1を流れる電流が増加する期間であり、 三角波の下り傾斜はインダ クタ電流が減少する期間である。 この方式では、 誤差増幅信号が変動したとき、 その変 動量の大きさに応じて三角波の周波数及ぴデューティ比が変化する。 前記 2つのレベル の間に三角波が収まるように制御を行うことで、 誤差増幅信号と三角波との波形の位相 差は最大 9 0度で固定される。 三角波はまた、 出力チョーク L 1 と平滑コンデンサ C。 u τとの直列回路の手前に接続されている整流スィツチ S 1のオン/オフにより生成され るため、 整流スィツチ S 1の動作状態と誤差増幅信号との位相差も固定されることにな る。 このため、 誤差増幅信号の周波数帯域を下げなくても安定性を確保することが可能 となり、 スイッチング電源として応答速度を飛躍的に改善することができる。
また、誤差増幅アンプの出力信号に応じて、 (電源における 2つのスィツチの駆動状態 を示す) 三角波の周波数及び位相が瞬時に変化し、 それに応じてインダクタ電流も変化 するために高速な応答が実現できており、 出力電圧の落ち込みを最小限に抑えることが できる。
続いて、 負荷電流が急激に減少した場合について説明する。 この動作波形図を図 3に 示す。 なお、 図 3の上側には出力電圧波形を、 中央にはインダクタ電流波形を、 下側に は誤差アンプ 1 1の出力、 誤差アンプ 1 1の出力を抵抗分割したもの、 並びにフィルタ 回路 2 1により生成された 2つのレベル内に収まるように制御される三角波をそれぞれ 示してある。 負荷電流が急激に減少すると、 図 3に示す通り、 出力電圧が瞬間的に跳ね 上がり、 インダクタ電流が急激に減少する。
このとき、 負荷電流が急激に増加した場合と同様に、 三角波の振幅が前記 2つのレべ ルの間に収まるように制御を行っているため、 三角波の下り傾斜はィンダクタ電流が減 少する期間であり、 三角波の登り傾斜は出力チョーク L 1を流れる電流が増加する期間 である。 この方式では、 誤差増幅信号が変動したとき、 その変動量の大きさに応じて三 角波の周波数及びデューティ比が変化する。 前記 2つのレベルの間に三角波が収まるよ うに制御を行うことで、 誤差増幅信号と三角波との波形め位相差は最大 9 0度で固定さ れる。 三角波はまた、 出力チョーク L 1 と平滑コンデンサ C O U Tとの直列回路の手前に 接続されている整流スィツチ S 1のオン/オフにより生成されるため、 整流スィツチ S 1の動作状態と誤差増幅信号との位相差も固定されることになる。 このため、 誤差増幅 信号の周波数帯域を下げなくても安定性を確保することが可能となり、 スィツチング電 源として応答速度を飛躍的に改善することができる。 また、誤差増幅アンプの出力信号に応じて、 (電源における 2つのスィツチの駆動状態 を示す) 三角波の周波数及ぴ位相が瞬時に変化し、 それに応じてインダクタ電流も変化 するために高速な応答が実現できており、 出力電圧の跳ね上がりを最大限に抑えること ができる。
なお、 この実施形態は電圧検出用の抵抗 Rい R2を備えてあるとともに、 出力チョー ク L 1 と平滑コンデンサ COUTとの直列回路と並列に、 抵抗 RSAW 1と 2つのコンデン サ C SAWい C SAW 2とを直列に接続して構成するフィルタ回路 2 1を接続してあること により、 誤差アンプ出力信号の直流成分と三角波の直流成分とをほぼ同じレベルにして いる。
図 4は、 本実施形態第 1変形例に係るスイッチング電源を示す。 このスイッチング電 源は、 電源回路の出力側に誤差アンプ 1 1の負の入力を接続し、 この誤差アンプ 1 1で 検出電圧と基準電圧との誤差を増幅するように構成してある。 この誤差アンプ 1 1の出 力を第一の比較器 1 2の負の入力に接続し、 同じく この誤差アンプ 1 1の出力を分割抵 抗 R3, R4を介して第二の比較器 1 3の正の入力に接続してある。
出力チョーク L 1 と平滑コンデンサ C ουτとの直列回路と並列に、 抵抗 RSAW1とコ ンデンサ C SAW 1とを直列に接続して構成するフィルタ回路 2 2を接続してある。 この フィルタ回路 2 2の出力を第一の比較器 1 2の正の入力、 並びに第二の比較器 1 3の負 の入力に接続してある。
第一の比較器 1 2の出力をフリ ップフ口ップ回路 1 6のリセッ ト側の入力に接続する とともに、 第二の比較器 1 3の出力をフリ ップフ口ップ回路 1 6のセッ ト側の入力に接 続してある。 このフリ ップフロップ回路 1 6の出力をドライバ 1 7の入力に接続し、 こ のドライバ 1 7の出力を整流スィツチ S 1並びに転流スィツチ S 2に接続し、 フィルタ 回路 2 2より得られるミ角波形の振幅が第一の比較器 1 2の一方の入力レベルと第二の 比較器 1 3の一方の入力レベルとの間に収まるように構成してある。
以上のように構成してあるスィツチング電源は図 1に示す実施形態とほぼ同様の作用 をし、 誤差増幅信号の周波数帯域を下げなくても安定性を確保することが可能となり、 スイ ッチング電源として応答速度を飛躍的に改善することができる。 但し、 本実施形態 では、 電源回路の出力側に電圧検出用の抵抗を設けておらず、 また、 フィルタ回路 2 2 は図 1に示す実施形態のフィルタ回路 2 1 と構成が異なる。
図 5は、 本実施形態の第 2変形例に係るスイッチング電源を示す。 このスイッチング 電源は、 電源回路の出力側に電圧検出用の抵抗 R , R2を備え、 これら抵抗 R , R 2 の接続部を誤差アンプ 1 1の負の入力に接続し、 この誤差アンプ 1 1で検出電圧と基準 電圧との誤差を増幅するように構成してある。 この誤差アンプ 1 1の出力を第一の比較 器 1 2の負の入力に接続し、 同じくこの誤差アンプ 1 1の出力を分割抵抗 R 3, R4を介 して第二の比較器 1 3の正の入力に接続してある。
この変形例では、 出力チョーク L 1の入出力端間にフィルタ回路 2 3を設けてある。 このフィルタ回路 2 3は以下のように構成してある。 出力チョーク L 1の入力端に転流 スィッチ S 2と並列に 2つの抵抗 R SAWい RSAW2を直列に接続し、 同じく出力チョー ク L 1の出力端に転流スィツチ S 2と並列に 2つのコンデンサ CSAW 1, CSAW2を直歹 IJ に接続してある。 直列に接続した抵抗 RSAW 1, RSAW2の間、 並びに直列に接続したコ ンデンサ CSAW 1, C SAW2の間に接続部を設け、 これら接続部を接続してフィルタ回路 2 3を構成してある。 前記接続部はフィルタ回路 2 3の出力部であり、 出力を第一の比 較器 1 2の正の入力、 並びに第二の比較器 1 3の負の入力に接続してある。
第一の比較器 1 2の出力をフリ ップフ口ップ回路 1 6のリセッ ト側の入力に接続する とともに、 第二の比較器 1 3の出力をフリ ップフロップ回路 1 6のセッ ト側の入力に接 続してある。 このフリ ップフロップ回路 1 6の出力をドライバ 1 7の入力に接続し、 こ のドライバ 1 7の出力を整流スィツチ S 1並びに転流スィツチ S 2に接続し、 フィルタ 回路 2 3より得られる三角波形の振幅が第一の比較器 1 2の一方の入力レベルと第二の 比較器 1 3の一方の入力レベルとの間に収まるように構成してある。
以上のように構成してあるスィツチング電源は図 1に示す実施形態とほぼ同様の 用 をし、 誤差増幅信号の周波数帯域を下げなくても安定性を確保することが可能となり、 スィツチング電源として応答速度を飛躍的に改善することができる。
図 6は、 本実施形態の第 3変形例であり、 図 5に示す変形例とはほぼ同様の構成を有 する。 このスイッチング電源は、 電源回路の出力側に誤差アンプ 1 1の負の入力を接続 し;この誤差アンプ 1 1で検出電圧と基準電圧との誤差を増幅するように構成してある。 このスイッチング電源は図 4に示す変形例とほぼ同様の作用をし、 誤差増幅信号の周波 数帯域を下げなくても安定性を確保することが可能となり、 スイッチング電源として応 答速度を飛躍的に改善することができる。
図 7は、 本実施形態の第 4変形例に係るスイッチング電源を示す。 このスイッチング 電源は、 電源回路の出力側に電圧検出用の抵抗 R ,, R2を備え、 これら抵抗 Rい R 2 の接続部を誤差アンプ 1 1の負の入力に接続し、 この誤差アンプ 1 1で検出電圧と基準 電圧との誤差を増幅するように構成してある。 この誤差アンプ 1 1の出力を第一の比較 器 1 2の負の入力に接続し、 同じく この誤差アンプ 1 1の出力を分割抵抗 R 3, R4を介 して第二の比較器 1 3の正の入力に接続してある。
この変形例では、 出力チョーク L 1 と平滑コンデンサ C。UTとの間に電流検出用の抵 抗 R5を接続してあり、 この抵抗 R5の入力側をバッファアンプ 1 5の正の入力に、 出力 側を同じくバッファアンプ 1 5の負の入力にそれぞれ接続してある。 このバッファアン プ 1 5の出力にコンデンサ CSAW 1と 2つの抵抗 RSAW 1, RSAW2とを直列に接続して 構成するフィルタ回路 24を接続してある。 このフィルタ回路 24の出力を第一の比較 器 1 2の正の入力、 並びに第二の比較器 1 3の負の入力に接続してある。
第一の比較器 1 2の出力をフリ ップフ口ップ回路 1 6のリセッ ト側の入力に接続する とともに、 第二の比較器 1 3の出力をフリ ップフ口ップ回路 1 6のセッ ト側の入力に接 続してある。 このフリ ップフロップ回路 1 6の出力をドライバ 1 7の入力に接続し、 こ のドライバ 1 7の出力を整流スィツチ S 1並びに転流スィツチ S 2に接続し、 フィルタ 回路 2 4より得られる三角波形の振幅が第一の比較器 1 2の一方の入力レベルと第二の 比較器 1 3の一方の入力レベルとの間に収まるように構成してある。
以上のように構成してあるスィツチング電源は図 1に示す実施形態とほぼ同様の作用 をし、 誤差増幅信号の周波数帯域を下げなくても安定性を確保することが可能となり、 スイ ッチング電源として応答速度を飛躍的に改善することができる。 また、 この変形例 は電圧検出用の抵抗 R2を備えてあるとともに、 フィルタ回路 24をコンデンサ C SAW 1と 2つの抵抗 RSAW 1, RSAW2とを直列に接続して構成してあることにより、 高 周波成分のみを取り出すことができる。
図 8は、 本実施形態の第 5変形例に係るスイッチング電源を示す。 このスイッチング 電源は、 電源回路の出力側に誤差アンプ 1 1の負の入力を接続し、 この誤差アンプ 1 1 で検出電圧と基準電圧との誤差を増幅するように構成してある。 この誤差アンプ 1 1の 出力を第一の比較器 1 2の負の入力に接続し、 同じくこの誤差アンプ 1 1の出力を分割 抵抗 R3, R4を介して第二の比較器 1 3の正の入力に接続してある。
この変形例では、 出力チョーク L 1 と平滑コンデンサ COUTとの間に電流検出用の抵 抗 R5を接続してあり、 この抵抗 R 5の入力侧をバッファアンプ 1 5の正の入力に、 出力 側を同じくバッファアンプ 1 5の負の入力にそれぞれ接続してある。 このバッファアン プ 1 5の出力をコンデンサ CS AWと抵抗 RSAW1とを直列に接続して構成するフィルタ 回路 2 5に接続してある。このフィルタ回路 2 5の出力を第一の比較器 1 2の正の入力、 並びに第二の比較器 1 3の負の入力に接続してある。 第一の比較器 1 2の出力をフリ ップフ口ップ回路 1 6のリセッ ト側の入力に接続する とともに、 第二の比較器 1 3の出力をフリ ップフ口ップ回路 1 6のセッ ト側の入力に接 続してある。 このフリ ップフロップ回路 1 6の出力をドライバ 1 7の入力に接続し、 こ のドライバ 1 7の出力を整流スィツチ S 1並びに転流スィツチ S 2に接続し、 フィルタ 回路 2 5より得られる三角波形の振幅が第一の比較器 1 2の一方の入力レベルと第二の 比較器 1 3の一方の入力レベルとの間に収まるように構成してある。
以上のように構成してあるスィツチング電源は図 4に示す変形例とほぼ同様の作用を し、 誤差増幅信号の周波数帯域を下げなくても安定性を確保することが可能となり、 ス ィツチング電源として応答速度を飛躍的に改善することができる。
図 9に示す第 6変形例は、 出力チョーク L 1に電流検出回路 1 4を接続し、 この電流 検出回路 1 4の出力にコンデンサ C S A W 1と 2つの抵抗 R S A W 1 , R S A W 2とを直列に接 続して構成するフィルタ回路 2 4を接続してある。 これ以外については図 7の第 4変形 例とほぼ同様の構成である。 また、 図 1 0に示す第 7変形例も出力チョーク L 1に電流 検出回路 1 4を接続し、 この電流検出回路 1 4の出力をコンデンサ C S A Wと抵抗 R S A W !とを直列に接続して構成するフィルタ回路 2 5を接続してある。 これ以外については 図 8の第 5変形例とほぼ同様の構成である。
以上のように構成してある図 9に示す第 6変形例のスィツチング電源は図 7に示すス イッチング電源とほぼ同様の作用をし、 図 1 0に示す第 7変形例のスイッチング電源は 図 8に示すスィツチング電源とほぼ同様の作用をする。
図 1 1に示す変形例は図 1に示す実施形態に、 図 1 2に示す変形例は図 4に示す変形 例に、 図 1 3に示す変形例は、 図 5に示す変形例に、 図 1 4に示す変形例は図 6に示す 変形例に対応するもので、 これらの変形例は、 整流スィ ッチ S 1に電流検出回路 1 4を 接続し、 この電流検出回路 1 4の出力を出力チョーク L 1の出力端に接続した抵抗 R S A W 1の他端に接続してある。
以上のように構成してある図 1 1乃至図 1 4に示すスィツチング電源は、 それぞれ対 応する図 1、図 4、図 5並びに図 6に示すスィツチング電源とほぼ同様の作用をするが、 これらに加え、 これらのスイッチング電源は、 フィルタ回路 2 1 , 2 2 , 2 3 , 2 4で 電流検出回路 1 4から流れた電流を加えるため、 出力インピーダンスを調整することが できる。
次に、 本発明の第 2実施形態に係るスイッチング電源を説明する。 なお、 上述の第 1 実施形態と同一の部分には同一の符号を付し、 その説明を省略する。 図 1 5は本実施形態に係るスイッチング電源を示す。 Cはコンデンサ、 Sはスィッチ ング素子、 Rは抵抗、 Zはインピーダンス、 1 1は誤差アンプ、 1 2, 1 3は比較器、 3 1は電圧分圧回路、 1 6はフリ ップフ口ップ回路、 3 2は電流不連続モード検出回路、 1 7はドライバ、 2 1はフィルタ回路である。
本実施形態に係るスイ ッチング電源は、 第 1実施形態と同様、 整流スィ ッチ S l、 転 流スィッチ S 2、 出力チョーク L 1並びに平滑コンデンサ C0lJTを備え、 出力チョーク L 1 と平滑コンデンサ COUTとを直列に接続した電源回路を備えてある。 この電源回路 の出力側に制御回路を接続してある。 この制御回路の出力は整流スィッチ S 1 と転流ス イッチ S 2に接続してある。
電源回路の出力側に電圧検出用の抵抗 Rい R2を備え、 これら抵抗 R2の接続 部を誤差アンプ 1 1の負の入力に接続し、 この誤差アンプ 1 1で検出電圧と基準電圧と の誤差を増幅するように構成してある。 この誤差アンプ 1 1の出力を第一の比較器 1 2 の負の入力に接続し、 同じくこの誤差アンプ 1 1の出力を電圧分圧回路 3 1に接続し、 この電圧分圧回路 3 1の出力を第二の比較器 1 3の正の入力に接続し、 フィルタ回路 2 1より得られる三角波形と、 出力電圧と基準電圧との誤差を増幅した第一の信号と、 電 圧分圧回路 3 1により第一の信号を分圧して得られる第二の信号とを用いて、 三角波形 の振幅が第一の信号と第二の信号との間に収まるように構成してある。
具体的に、 電圧分圧回路 3 1は 3つの抵抗 R3, R4, R5を直列に接続し、 抵抗 R3 と抵抗 R 4で分圧比可変部を構成し、抵抗 R 3の一端を誤差アンプ 1 1の出力と第一の比 較器 1 2の負の入力間に接続し、 抵抗 R4の他端を第二の比較器 1 3の正の入力に接続 してある。 抵抗 R4と直列に接続する抵抗 R5は分圧比固定部を構成し、 この抵抗 R5の 他端を接地してある。 また、 抵抗 R4の両端に並列にスィ ッチ Sを接続してある。 この スィツチ Sの制御端子には電流不連続モード検出回路 3 2を接続してあり、 この電流不 連続モード検出回路 3 2はドライバ 1 7の入力及び、 整流スィツチ S 1並びに転流スィ ツチ S 2の制御端子に接続してあり、 電流不連続モードを検出した場合に、 スィ ッチ S がオンして分圧比を自在に変更できるようにしてある。
出力チョーク L 1 と平滑コンデンサ COUTとの直列回路と並列に、 抵抗 RSAW1と 2 つのコンデンサ C SAW 1, CSAW2とを直列に接続して構成するフィルタ回路 2 1を接続 してある。 このフィルタ回路 2 1の出力を第一の比較器 1 2の正の入力、 並びに第二の 比較器 1 3の負の入力に接続してある。
第一の比較器 1 2の出力をフリ ップフ口ップ回路 1 6のリセッ ト側の入力に接続する とともに、 第二の比較器 1 3の出力をフリ ップフロップ回路 1 6のセッ ト側の入力に接 続してある。 このフリ ップフロップ回路 1 6の出力をドライバ 1 7の入力に接続し、 こ のドライバ 1 7の出力を整流スィツチ S 1並びに転流スィツチ S 2の制御端子に接続し、 フィルタ回路 2 1より得られる三角波形の振幅が第一の比較器 1 2の一方の入力レベル と第二の比較器 1 3の一方の入力レベルとの間に収まるように制御する構成にしてある。 以上のように構成してあるスイッチング電源は以下のような作用をする。 先ず、 電流 連続モードの場合については、 従来の制御手段を有するスィツチング電源とほぼ同様の 作用をするため、 説明を省略する。
続いて、 不連続電流モードになった場合について説明する。 この動作波形図を図 1 6 に示す。 なお、 図 1 6の下側には出力電圧波形を、 中央にはインダクタ電流波形を、 上 側には誤差アンプ 1 1の出力、 誤差アンプ 1 1の出力を抵抗分割したもの、 並びにフィ ルタ回路 2 1により生成された 2つのレベル内に収まるように制御される三角波をそれ ぞれ示してある。
図 1 6の中央の図に示すように、 電流が不連続モードになると、 出力電圧が不安定に なる。 これを電流不連続モード検出回路 3 2が検出する。 この電流不連続モード検出回 路 3 2は検出信号を電圧分圧回路 3 1に設けたスィッチ Sに出力する。 これによりスィ ツチ Sはオンする。 そのため、 抵抗 R 4はクランプされ、 電圧分圧回路 3 1の電圧分圧 比が大きく変化し、 三角波の振幅が変化する。 これにより、 出力電圧のリ ップルの増加 を抑制することができる。
電流不連続モ一ドから電流連続モードに切り替わると、 電流不連続モード検出回路 3 2が電流連続モードを検出する。 この電流不連続モード検出回路 3 2は検出信号を電圧 分圧回路 3 1に設けたスィッチ Sに出力する。 これによりスィッチ Sはオフする。 その ため、 電圧分圧回路 3 1の分圧比可変部の抵抗値は抵抗 R 3と抵抗 R 4との和となり、 通 常の状態に戻る。
図 1 7は、 本実施形態の第 1変形例に係るスイッチング電源を示す。 このスィッチ ング電源は、 電源回路の出力側に誤差アンプ 1 1の負の入力を接続し、 この誤差アンプ 1 1で検出電圧と基準電圧との誤差を増幅するように構成してある。 この誤差アンプ 1 1の出力に第一の比較器 1 2の負の入力に接続し、 同じく この誤差アンプ 1 1の出力を 電圧分圧回路 3 1を介して第二の比較器 1 3の正の入力に接続してある。
出力チョーク L 1 と平滑コンデンサ C 0 U Tとの直列回路と並列に、 抵抗 R S A W 1とコ ンデンサ C S A W 1とを直列に接続して構成するフィルタ回路 2 2を接続してある。 この フィルタ回路 2 2の出力を第一の比較器 1 2の正の入力、 並びに第二の比較器 1 3の負 の入力に接続してある。
第一の比較器 1 2の出力をフリ ップフ口ップ回路 1 6のリセッ ト側の入力に接続する とともに、 第二の比較器 1 3の出力をフリ ップフ口ップ回路 1 6のセッ ト側の入力に接 続してある。 このフリ ップフロップ回路 1 6の出力をドライバ 1 7の入力に接続し、 こ のドライバ 1 7の出力を整流スィツチ S 1並びに転流スィツチ S 2に接続し、 フィルタ 回路 2 2より得られる三角波形の振幅が第一の比較器 1 2の一方の入力レベルと第二の 比較器 1 3の一方の入力レベルとの間に収まるように構成してある。
以上のように構成してあるスィツチング電源は図 1 5に示す実施形態とほ 同様の作 用をし、 インダクタ電流の不連続状態を検出し、 三角波の振幅を自動的に変化させる回 路を内蔵することにより、 安定した出力リ ップル特性を実現することができる。 但し、 本変形例では、 電源回路の出力側に電圧検出用の抵抗を設けておらず、 また、 フィルタ 回路 2 2は図 1 5に示す実施形態のフィルタ回路 2 1 と構成が異なる。
図 1 8は、 本実施形態の第 2変形例に係るスイッチング電源を示す。 このスィッチン グ電源は、 電源回路の出力側に電圧検出用の抵抗 R 1, R 2を備え、 これら抵抗 R 1 , R 2の接続部を誤差アンプ 1 1の負の入力に接続し、 この誤差アンプ 1 1で検出電圧と 基準電圧との誤差を増幅するように構成してある。 この誤差アンプ 1 1の出力を第一の 比較器 1 2の負の入力に接続し、 同じく この誤差アンプ 1 1の出力を電圧分圧回路 3 1 を介して第二の比較器 1 3の正の入力に接続してある。
この変形例では、 出力チョーク L 1の入出力端間にフィルタ回路 2 3を設けてある。 このフィルタ回路 2 3は以下のように構成してある。 転流スィ ッチ S 2と並列に、 かつ 出力チョーク L 1の入力端側に 2つの抵抗 RSAWい RSAW2を直列に接続し、 同じく転 流スィ ッチ S 2と並列に、 かつ出力チョーク L 1の出力端側に 2つのコンデンサ C SAW い C S AW2を直列に接続してある。 直列に接続した抵抗 R SAWい RSAW2の間、 並び に直列に接続したコンデンサ CSAW 1, C SAW2の間に接続部を設け、 これら接続部を接 続してフィルタ回路 2 3を構成してある。 前記接続部はフィルタ回路 2 3の出力部であ り、 出力を第一の比較器 1 2の正の入力、 並びに第二の比較器 1 3の負の入力に接続し てある。
第一の比較器 1 2の出力をフリ ップフ口ップ回路 1 6のリセッ ト側の入力に接続する とともに、 第二の比較器 1 3の出力をフリ ップフ口ップ回路 1 6のセッ ト側の入力に接 続してある。 このフリ ップフロップ回路 1 6の出力をドライバ 1 7の入力に接続し、 こ のドライバ 1 7の出力を整流スィツチ S 1並びに転流スィツチ S 2に接続し、 フィルタ 回路 2 3より得られる三角波形の振幅が第一の比較器 1 2の一方の入力レベルと第二の 比較器 1 3の一方の入力レベルとの間に収まるように構成してある。
以上のように構成してあるスィツチング電源は図 1 5に示す実施形態とほぼ同様の作 用をし、 インダクタ電流の不連続状態を検出し、 三角波の振幅を自動的に変化させる回 路を内蔵することにより、 安定した出力リ ップル特性を実現することができる。
図 1 9は、 本実施形態の第 3変形例であり、 図 1 8に示す変形例とはほぼ同様の構成 を有する。 このスイッチング電源は、 電源回路の出力側に誤差アンプ 1 1の負の入力を 接続し、 この誤差アンプ 1 1で検出電圧と基準電圧との誤差を増幅するように構成して ある。 このスイ ッチング電源は図 1 7に示す変形例とほぼ同様の作用をし、 インダクタ 電流の不連続状態を検出し、 三角波の振幅を自動的に変化させる回路を内蔵することに より、 安定した出カリ ップル特性を実現することができる。
図 2 0は、 本実施形態の第 4変形例に係るスイッチング電源を示す。 このスィッチン グ電源は、 電源回路の出力側に電圧検出用の抵抗 Rい R 2を備え、 これら抵抗 Rい R 2の接続部を誤差アンプ 1 1の負の入力に接続し、 この誤差アンプ 1 1で検出電圧と基 準電圧との誤差を増幅するように構成してある。 この誤差アンプ 1 1の出力を第一の比 較器 1 2の負の入力に接続し、 同じくこの誤差アンプ 1 1の出力を電圧分圧回路 3 1を 介して第二の比較器 1 3の正の入力に接続してある。
この変形例では、 出力チヨ一ク L 1 と平滑コンデンサ C O U Tとの間に電流検出用の抵 抗 R 6を接続してあり、 この抵抗 R 6の入力側をバッファアンプ 1 5の正の入力に、 出 力側を同じくバッファアンプ 1 5の負の入力にそれぞれ接続してある。 このバッファァ ンプ 1 5の出力にコンデンサ C S A W 1と 2つの抵抗 R S A Wい R S A W 2とを直列に接続し て構成するフィルタ回路 2 4を接続してある。 このフィルタ回路 2 4の出力を第一の比 較器 1 2の正の入力、 並びに第二の比較器 1 3の負の入力に接続してある。
第一の比較器 1 2の出力をフリ ップフロップ回路 1 6のリセッ ト側の入力に接続する とともに、 第二の比較器 1 3の出力をフリ ップフ口ップ回路 1 6のセッ ト側の入力に接 続してある。 このフリ ップフロップ回路 1 6の出力をドライバ 1 7の入力に接続し、 こ のドライバ 1 7の出力を整流スィツチ S 1並びに転流スィツチ S 2に接続し、 フィルタ 回路 2 4より得られる三角波形の振幅が第一の比較器 1 2の一方の入力レベルと第二の 比較器 1 3の一方の入力レベルとの間に収まるように構成してある。
以上のように構成してあるスィツチング電源は図 1 5に示す実施形態とほぼ同様の作 用をし、 インダクタ電流の不連続状態を検出し、 三角波の振幅を自動的に変化させる回 路を内蔵することにより、 安定した出カリ ップル特性を実現することができる。 また、 この変形例は電圧検出用の抵抗 Rい R2を備えてあるとともに、 フィルタ回路 24をコ ンデンサ CSAW1と 2つの抵抗 RSAW1, R SAW2とを直列に接続して構成してあること により、 高周波成分のみを取り出すことができる。
図 2 1は、 本実施形態の第 5変形例に係るスイ ッチング電源を示す。 このスィッチン グ電源は、 電源回路の出力側に誤差アンプ 1 1の負の入力を接続し、 この誤差アンプ 1 1で検出電圧と基準電圧との誤差を増幅するように構成してある。 この誤差アンプ 1 1 の出力を第一の比較器 1 2の負の入力に接続し、 同じくこの誤差アンプ 1 1の出力を電 圧分圧回路 3 1を介して第二の比較器 1 3の正の入力に接続してある。
この変形例では、 出力チョーク L 1 と平滑コンデンサ COUTとの間に電流検出用の抵 抗 R 6を接続してあり、 この抵抗 R 6の入力側をバッファアンプ 1 5の正の入力に、 出 力側を同じくバッファアンプ 1 5の負の入力にそれぞれ接続してある。 このバッファァ ンプ 1 5の出力をコンデンサ CSAWと抵抗 RS AW1とを直列に接続して構成するフィル タ回路 2 5に接続してある。 このフィルタ回路 2 5の出力を第一の比較器 1 2の正の入 力、 並びに第二の比較器 1 3の負の入力に接続してある。
第一の比較器 1 2の出力をフリ ップフロップ回路 1 6のリセッ ト側の入力に接続する とともに、 第二の比較器 1 3の出力をフリ ップフ口ップ回路 1 6のセッ ト側の入力に接 続してある。 このフリ ップフロップ回路 1 6の出力をドライバ 1 7の入力に接続し、 こ のドライバ 1 7の出力を整流スィツチ S 1並びに転流スィツチ S 2に接続し、 フィルタ 回路 2 5より得られる三角波形の振幅が第一の比較器 1 2の一方の入力レベルと第二の 比較器 1 3の一方の入力レベルとの間に収まるように構成してある。
以上のように構成してあるスィツチング電源は図 1 7に示す変形例とほぼ同様の作用 をし、 インダクタ電流の不連続状態を検出し、 三角波の振幅を自動的に変化させる回路 を内蔵することにより、 安定した出カリ ップル特性を実現することができる。
図 2 2に示す第 6変形例は、 出力チョーク L 1に電流検出回路 3 3を接続し、 この電 流検出回路 3 3の出力にコンデンサ CSAW1と 2つの抵抗 RSAWい RSAW2とを直列に 接続して構成するフィルタ回路 24を接続してある。 これ以外については図 2 0に示す 第 4変形例とほぼ同様の構成である。 以上のように構成してある図 2 2に示す第 6変形 例のスィツチング電源は図 2 0に示すスィツチング電源とほぼ同様の作用をする。 図 2 3に示す第 7変形例も出力チョーク L 1に電流検出回路 3 3を接続し、 この電流 検出回路 3 3の出力をコンデンサ CSAWと抵抗 RSAW 1とを直列に接続して構成するフ ィルタ回路 2 5を接続してある。 これ以外については図 2 1に示す第 5変形例とほぼ同 様の構成である。 以上のように構成してある図 2 3に示す第 7変形例のスィツチング電 源は図 2 1に示すスィツチング電源とほぼ同様の作用をする。 ·
図 2 4に示す変形例は図 1 5に示す実施態様に、 図 2 5に示す変形例は図 1 7に示す 変形例に、 図 2 6に示す変形例は、 図 1 8に示す変形例に、 図 2 7に示す変形例は図 1 9に示す変形例に対応するもので、 これらの変形例は、 整流スィッチ S 1に電流検出回 路 3 4を接続し、 この電流検出回路 3 4の出力を出力チョーク L 1の出力端に接続した 抵抗 RSAW 1の他端に接続してある。 ' 以上のように構成してある図 2 4乃至図 2 7に示すスィツチング電源は、 それぞれ対 応する図 1 5、 図 1 7、 図 1 8並びに図 1 9に示すスイッチング電源とほぼ同様の作用 をするが、 これらに加え、 これらのスイッチング電源は、 フィルタ回路 2 1 , 2 2, 2 3, 2 3で電流検出回路 3 4から流れた電流を加えるため、 出力インピーダンスを調整 することができる。
次に、 本発明の第 3実施形態に係るスィツチング電源を説明する。
図 2 8は本実施形態に係るスイッチング電源を示す。 Cはコンデンサ、 Sはスィッチン グ素子、 Rは抵抗、 Zはインピーダンス、 1 1は誤差アンプ、 1 2, 1 3は比較器、 3 6は電流源、 1 6はフリ ップフロップ回路、 3 7はアンプ、 1 7は ドライバ、 2 1はフ ィルタ回路である。
本実施形態に係るスイッチング電源は、 整流スィ ッチ S l、 転流スィッチ S 2、 出力 チョーク L 1並びに平滑コンデンサ COUTを備え、 出力チョーク L 1 と平滑コンデンサ C。UTとを直列に接続した電源回路を備えてある。 この電源回路の出力側に制御回路を 接続してある。 この制御回路の出力は整流スィツチ S 1 と転流スィツチ S 2に接続して ある。
電源回路の出力側に電圧検出用の抵抗 Rい R2を備え、 これら抵抗 R2の接続 部を誤差アンプ 1 1の負の入 ¾に接続し、 この誤差アンプ 1 1で検出電圧と基準電圧と の誤差を増幅するように構成してある。 この誤差アンプ 1 1の出力を第一の比較器 1 2 の負の入力に接続し、 同じく この誤差アンプ 1 1の出力を分割抵抗 R 3, R4を介して第 二の比較器 1 3の正の入力に接続してある。
分割抵抗 R3, R4の中点と接地電位との間に電流源 3 6を接続してある。 この電流源 3 6にはアンプ 3 7の出力信号が入力できるようにしてある。 また、 このアンプ 3 7の 正の入力は整流スィツチ S 1の入力側から接続してあり、 アンプ 3 7の負の入力は出力 チョーク L 1の出力側から接続し、 入出力電位差を検出できるようにしてある。
出力チョーク L 1 と平滑コンデンサ C O U Tとの直列回路と並列に、 抵抗 R S A W 1と 2 つのコンデンサ C S A W 1 , C S A W 2とを直列に接続して構成するフィルタ回路 2 1を接続 してある。 このフィルタ回路 2 1の出力を第一の比較器 1 2の正の入力、 並びに第二の 比較器 1 3の負の入力に接続してある。
第一の比較器 1 2の出力をフリ ップフ口ップ回路 1 6のリセッ ト側の入力に接続する とともに、 第二の比較器 1 3の出力をフリ ップフ口ップ回路 1 6のセッ ト側の入力に接 続してある。 このフリ ップフロップ回路 1 6の出力をドライバ 1 7の入力に接続し、 こ のドライバ 1 7の出力を整流スィツチ S 1並びに転流スィツチ S 2の制御端子に接続し、 フィルタ回路 2 1より得られる三角波形の振幅が第一の比較器 1 2の一方の入力レベル と第二の比較器 1 3の一方の入力レベルとの間に収まるように制御する構成にしてある。 以上のように構成してあるスイッチング電源は以下のような作用をする。 なお、 この 動作波形図を図 2 9及び図 3 0で示し、図 2 9では、入出力電位差が大きくなった場合、 図 3 0では、 入出力電位差が小さくなった場合を示す。
本実施形態では、 アンプ 3 7の入力を整流スィツチ S 1の入力側と出力チョーク L 1 の出力側に接続することにより、 入出力電位差を検出する。 アンプ 3 7の出力信号は分 割抵抗 R 3 , R 4の中点と接地電位との間に接続した電流源 3 6に出力される。 即ち、 入 出力電位差に比例して電流源 3 6に電流が流れ、 これに伴い、 分割抵抗 R 4の抵抗値は 小さくなる。 分割抵抗 R 3の抵抗値は一定であるため、 図 2 9に示すように、 入出力電 位差が大きくなると、分割抵抗 R 3と分割抵抗 R 4との電圧分圧比が大きくなり三角波の 振幅も大きくなる。 これにより発振周波数が低くなる。
逆に入出力電位差が小さくなると、アンプ 3 7の出力信号は小さくなり、これに伴い、 電流源に流れる電流も小さくなると、 分割抵抗 R 4の抵抗値は大きくなる。 分割抵抗 R 3 の抵抗値は一定であるため、 図 3 0に示すように、 入出力電位差が小さくなると、 分割 抵抗 R 3と分割抵抗 R 4との電圧分圧比が小さくなり、 三角波の振幅も小さくなる。 これ により発振周波数が高くなる。 以上の動作により入出力電圧の変動に対し発振周波数の 変化が抑制させるため、安定した発振周波数 '出力リ ップル特性を実現する事が出来る。 図 3 1は、 本実施形態の第 1変形例に係るスイッチング電源を示す。 このスィ ッチン グ電源は、 電源回路の出力側に誤差アンプ 1 1の負の入力を接続し、 この誤差アンプ 1 1で検出電圧と基準電圧との誤差を増幅するように構成してある。 この誤差アンプ 1 1 の出力に第一の比較器 1 2の負の入力に接続し、 同じく この誤差アンプ 1 1の出力を分 割抵抗 R3, R4を介して第二の比較器 1 3の正の入力に接続してある。
分割抵抗 R 3, R4の中点と接地電位との間に電流源 3 6を接続してある。 この電流源 3 6にはアンプ 3 7の出力信号が入力できるようにしてある。 また、 このアンプ 3 7の 正の入力は整流スィツチ S 1の入力側から接続してあり、 アンプ 3 7の負の入力は出力 チョーク L 1の出力側から接続し、 入出力電位差を検出できるようにしてある。
出力チョーク L 1 と平滑コンデンサ C0UTとの直列回路と並列に、 抵抗 RS AW 1とコ ンデンサ CSAW 1とを直列に接続して構成するフィルタ回路 22を接続してある。 この フィルタ回路 2 2の出力を第一の比較器 1 2の正の入力、 並びに第二の比較器 1 3の負 の入力に接続してある。
第一の比較器 1 2の出力をフリ ップフロップ回路 1 6のリセッ ト側の入力に接続する とともに、 第二の比較器 1 3の出力をフリ ップフロップ回路 1 6のセッ ト側の入力に接 続してある。 このフリ ップフロップ回路 1 6の出力をドライバ 1 7の入力に接続し、 こ のドライバ 1 7の出力を整流スィツチ S 1並びに転流スィツチ S 2に接続し、 フィルタ 回路 2 2より得られる三角波形の振幅が第一の比較器 1 2の一方の入力レベルと第二の 比較器 1 3の一方の入力レベルとの間に収まるように構成してある。.
以上のように構成してあるスィツチング電源は図 2 8に示す実施形態とほぼ同様の作 用をし、 入出力電圧差に比例して三角波の振幅を自動的に変化させる回路を内蔵するこ とにより、 安定した出力リ ップル特性を実現することができる。 但し、 本変形例では、 電源回路の出力側に電圧検出用の抵抗を設けておらず、 また、 フィルタ回路 2 2は図 2 8に示す実施態様のフィルタ回路 2 1 と構成が異なる。
図 3 2は、 本実施形態の第 2変形例に係るスイ ッチング電源を示す。 このスィ ッチン グ電源は、 電源回路の出力側に電圧検出用の抵抗 R R2を備え、 これら抵抗 Rい R 2の接続部を誤差アンプ 1 1の負の入力に接続し、 この誤差アンプ 1 1で検出電圧と基 準電圧との誤差を増幅するように構成してある。 この誤差アンプ 1 1の出力を第一の比 較器 1 2の負の入力に接続し、 同じく この誤差アンプ 1 1の出力を分割抵抗 R 3, R4を 介して第二の比較器 1 3の正の入力に接続してある。
この変形例では、 出力チョーク L 1の入出力端間にフィルタ回路 2 3を設けてある。 このフィルタ回路 2 3は以下のように構成してある。 転流スィッチ S 2と並列に、 かつ 出力チョーク L 1の入力端側に 2つの抵抗 RSAW1, RSAW2を直列に接続し、 同じく転 流スィツチ S 2 と並列に、 かつ出力チョーク L 1の出力端側に 2つのコンデンサ C SAW !, CSAW2を直列に接続してある。 直列に接続した抵抗 RS AW1, RSAW2の間、 並ぴ に直列に接続したコンデンサ CSAW1, C SAW2の間に接続部を設け、 これら接続部を接 続してフィルタ回路 2 3を構成してある。 前記接続部はフィルタ回路 2 3の出力部であ り、 出力を第一の比較器 1 2の正の入力、 並びに第二の比較器 1 3の負の入力に接続し てある。
第一の比較器 1 2の出力をフリ ップフ口ップ回路 1 6のリセッ ト側の入力に接続する とともに、 第二の比較器 1 3の出力をフリ ップフ口ップ回路 1 6のセッ ト側の入力に接 続してある。 このフリ ップフロップ回路 1 6の出力をドライバ 1 7の入力に接続し、 こ のドライバ 1 7の出力を整流スィツチ S 1並びに転流スィツチ S 2に接続し、 フィルタ 回路 2 3より得られる三角波形の振幅が第一の比較器 1 2の一方の入力レベルと第二の 比較器 1 3の一方の入力レベルとの間に収まるように構成してある。
以上のように構成してあるスィツチング電源は図 2 8に示す実施形態とほぼ同様の作 用をし、 入出力電圧差に比例して三角波の振幅を自動的に変化させる回路を內蔵するこ とにより、 安定した出カリ ップル特性を実現することができる。
図 3 3は、 本実施形態の第 3変形例であり、 図 3 2に示す変形例とはほぼ同様の構成 を有する。 このスイッチング電源は、 電源回路の出力側に誤差アンプ 1 1の負の入力を 接続し、 この誤差アンプ 1 1で検出電圧と基準電圧との誤差を増幅するように構成して ある。 このスイ ッチング電源は図 3 2に示す変形例とほぼ同様の作用をし、 入出力電圧 差に比例して三角波の振幅を自動的に変化させる回路を内蔵することにより、 安定した 出力リ ップル特性を実現することができる。
図 3 4は、 本実施形態の第 4変形例に係るスイッチング電源を示す。 このスィッチン グ電源は、 電源回路の出力側に電圧検出用の抵抗 Ri, R2を備え、 これら抵抗 R , R 2の接続部を誤差アンプ 1 1の負の入力に接続し、 この誤差アンプ 1 1で検出電圧と基 準電圧との誤差を増幅するように構成してある。 この誤差アンプ 1 1の出力を第一の比 較器 1 2の負の入力に接続し、 同じく この誤差アンプ 1 1の出力を分割抵抗 R3, R4を 介して第二の比較器 1 3の正の入力に接続してある。
この変形例では、 出力チョーク L 1 と平滑コンデンサ COUTとの間に電流検出用の抵 抗1 6を接続してあり、 この抵抗 R6の入力側をバッファアンプ 1 5の正の入力に、 出力 側を同じくバッファアンプ 1 5の負の入力にそれぞれ接続してある。 このバッファアン プ 1 5の出力にコンデンサ C SAW 1と 2つの抵抗 RSAW 1, RSAW2とを直列に接続して 構成するフィルタ回路 24を接続してある。 このフィルタ回路 24の出力を第一の比較 器 1 2の正の入力、 並びに第二の比較器 1 3の負の入力に接続してある。
第一の比較器 1 2の出力をフリ ップフ口ップ回路 1 6のリセッ ト側の入力に接続する とともに、 第二の比較器 1 3の出力をフリ ップフ口ップ回路 1 6のセッ ト側の入力に接 続してある。 このフリ ップフロップ回路 1 6の出力をドライバ 1 7の入力に接続し、 こ のドライバ 1 7の出力を整流スィツチ S 1並びに転流スィツチ S 2に接続し、 フィルタ 回路 2 4より得られる三角波形の振幅が第一の比較器 1 2の一方の入力レベルと第二の 比較器 1 3の一方の入力レベルとの間に収まるように構成してある。
以上のように構成してあるスィツチング電源は図 2 8に示す実施態様とほぼ同様の作 用をし、 入出力電圧差に比例して三角波の振幅を自動的に変化させる回路を内蔵するこ とにより、 安定した出力リ ップル特性を実現することができる。 また、 この変形例は電 圧検出用の抵抗 R i, R 2を備えてあるとともに、 フィルタ回路 2 4をコンデンサ C S A W と 2つの抵抗 R S A W 1 , R S A W 2とを直列に接続して構成してあることにより、 高周波 成分のみを取り出すことができる。
図 3 5は、 本実施形態の第 5変形例に係るスイッチング電源を示す。 このスィッチン グ電源は、 電源回路の出力側に誤差アンプ 1 1の負の入力を接続し、 この誤差アンプ 1 1で検出電圧と基準電圧との誤差を増幅するように構成してある。 この誤差アンプ 1 1 の出力を第一の比較器 1 2の負の入力に接続し、 同じく この誤差アンプ 1 1の出力を分 割抵抗 R 3 , R 4を介して第二の比較器 1 3の正の入力に接続してある。
この変形例では、 出力チョーク L 1 と平滑コンデンサ C O U Tとの間に電流検出用の抵 抗1 6を接続してあり、 この抵抗 R 6の入力側をバッファアンプ 1 5の正の入力に、 出力 側を同じくバッファアンプ 1 5の負の入力にそれぞれ接続してある。 このバッファアン プ 1 5の出力をコンデンサ C S A Wと抵抗 R S A W 1とを直列に接続して構成するフィルタ 回路 2 5を接続してある。このフィルタ回路 2 5の出力を第一の比較器 1 2の正の入力、 並びに第二の比較器 1 3の負の入力に接続してある。
第一の比較器 1 2の出力をフリ ップフロップ回路 1 6のリセッ ト側の入力に接続する とともに、 第二の比較器 1 3の出力をフリ ップフ口ップ回路 1 6のセッ ト側の入力に接 続してある。 このフリ ップフ口ップ回路 1 6の出力をドライバ 1 7の入力に接銃し、 こ のドライバ 1 7の出力を整流スィツチ S 1並びに転流スィツチ S 2に接続し、 フィルタ 回路 2 5より得られる三角波形の振幅が第一の比較器 1 2の一方の入力レベルと第二の 比較器 1 3の一方の入力レベルとの間に収まるように構成してある。
以上のように構成してあるスィツチング電源は図 3 1に示す変形例とほぼ同様の作用 をし、 入出力電圧差に比例して三角波の振幅を自動的に変化させる回路を内蔵すること により、 安定した出力リップル特性を実現することができる。
図 3 6に示す第 6変形例は、 出力チョーク L 1に電流検出回路 3 3を接続し、 この電 流検出回路 3 3の出力にコンデンサ C SAW1と 2つの抵抗 RSAW1, RSAW2とを直列に 接続して構成するフィルタ回路 2 4を接続してある。 これ以外については図 3 4に示す 変形例とほぼ同様の構成である。 以上のように構成してある図 3 6に示すスィツチング 電源は図 3 4に示すスィツチング電源とほぼ同様の作用をする。
図 3 7に示す第 7変形例も出力チョーク L 1に電流検出回路 3 3を接続し、 この電流 検出回路 3 3の出力をコンデンサ CS AWと抵抗 RSAW1とを直列に接続して構成するフ ィルタ回路 2 5を接続してある。 これ以外については図 3 5に示す変形例とほぼ同様の 構成である。 以上のように構成してある図 3 7に示すスィツチング電源は図 3 5に示す スィツチング電源とほぼ同様の作用をする。
図 3 8に示す変形例は図 2 8に示す実施形態に、 図 3 9に示す変形例は図 3 1に示す 変形例に、 図 4 0に示す変形例は、 図 3 2に示す変形例に、 図 4 1に示す変形例は図 3 3に示す変形例に対応するもので、 これらの変形例は、 整流スィッチ S 1に電流検出回 路 34を接続し、 この電流検出回路 3 4の出力を出力チョーク L 1の出力端に接続した 抵抗 RSAW1の他端に接続してある。
以上のように構成してある図 3 8乃至図 4 1に示すスィツチング電源は、 それぞれ対 応する図 2 8、 図 3 1、 図 3 2並びに図 3 3に示すスイッチング電源とほぼ同様の作用 をするが、 これらに加え、 これらのスイッチング電源は、 フィルタ回路 2 1 , 2 2 , 2 3, 2 3で電流検出回路 34から流れた電流を加えるため、 出力インピーダンスを調整 することができる。
次に、 本発明の第 4実施形態に係るスイッチング電源を説明する。 図 42は本実施形 態に係るスィツチング電源を示す。 Cはコンデンサ、 Sはスィツチング素子、 Rは抵抗、 Zはインピーダンス、 1 1は誤差アンプ、 1 2, 1 3は比較器、 3 9は OR回路、 1 6 はフリ ップフロップ回路、 1 7はドライバ、 2 1はフィルタ回路である。
本実施形態に係るスイッチング電源は、 整流スィッチ S l、 転流スィッチ S 2、 出力 チョーク L 1並びに平滑コンデンサ COUTを備え、 出力チョーク L 1 と平滑コンデンサ C oリ τとを直列に接続した電源回路を備えてある。 この電源回路の出力側に制御回路を 接続してある。 この制御回路の出力は整流スィツチ S 1 と転流スィツチ S 2に接続して ある。 電源回路の出力側に電圧検出用の抵抗 Rい R 2を備え、 これら抵抗 R i , R 2の接続 部を誤差アンプ 1 1の負の入力に接続し、 この誤差アンプ 1 1で検出電圧と基準電圧と の誤差を増幅して誤差増幅信号を出力するように構成してある。 この誤差アンプ 1 1の 出力に第一の比較器 1 2の負の入力に接続し、 同じくこの誤差アンプ 1 1の出力を分割 抵抗 R 3 , R 4を介して第二の比較器 1 3の正の入力に接続し、 分圧信号を出力するよう にしてある。
出力チョーク L 1 と平滑コンデンサ C O U Tとの直列回路と並列に、 抵抗 R S A W 1と 2 つのコンデンサ C S A W 1, C S A W 2とを直列に接続して構成するフィルタ回路 2 1を接続 してある。 このフィルタ回路 2 1の出力を第一の比較器 1 2の正の入力、 並びに第二の 比較器 1 3の負の入力に接続してある。
第一の比較器 1 2の出力をフリ ップフロップ回路 1 6のリセッ ト側の入力に接続し、 第一の比較信号を出力するようにしてある。 また、 第二の比較器 1 3の出力を O R回路 3 9の一方の入力に接続して、 第二の比較信号を出力するようにしてある。 O R回路 3 9の他方の入力にはク口ック信号を入力し、 フリ ップフ口ップ回路 1 6のセッ ト側にこ の O R回路 3 9の出力を接続して、 定常時にはクロック信号を、 負荷急変した際には第 二の比較信号をそれぞれ出力するようにしてある。 このフリ ップフロップ回路 1 6の出 力をドライバ 1 7の入力に接続し、 このドライバ 1 7の出力を整流スィツチ S 1並びに 転流スィツチ S 2の制御端子に接続し、 フィルタ回路 2 1より得られる三角波形の振幅 が負荷急変時に前記誤差増幅信号と前記分圧信号との間に収まるように制御し、 定常時 に整流スィツチ S 1のオンのタイミングを前記ク口ック信号で固定するように制御する 構成にしてある。
以上のように構成してあるスイッチング電源は以下のような作用をする。 先ず、 定常 時については、 前記ク口ック信号が O R回路 3 9を介しフリ ップフ口ップ回路 1 6のセ ッ ト側に入力される事で整流スィツチ S 1がオンし転流スィツチ S 2はオフする。 整流 スィッチ S 1がオンする事で出力電圧が発生し出力に接続されている誤差アンプ 1 1が 誤差増幅信号を出力する。 この誤差増幅信号と、 転流スィッチ S 2と並列に接続された フィルタ回路 2 1によって生成された三角波形を比較し、 三角波形が誤差増幅信号より 大きくなった時にフリ ップフロップ回路 1 6のリセッ ト側に入力される事で整流スィッ チ S 1がオフし転流スィツチがオンする。 以上を繰り返して動作する。
次に負荷が急減した場合について説明する。 負荷電流が急激に減少すると、 出力電圧 が瞬間的に跳ね上がり、 チョーク電流が急激に減少する。 このとき、 電源回路に備えた 出力チョーク L 1 と平滑コンデンサ C O U Tとの直列回路と並列に接続したフィルタ回路 2 1により得られる三角波形と、 誤差アンプ 1 1により出力電圧と基準電圧との誤差を 増幅して生成される 2つのレベルとを使い、 第一の比較器 1 2で比較して得られた第一 の比較信号をフリ ップフロップ回路 1 6のリセッ ト側に入力する。 これとともに、 電源 回路に備えた出力チョーク L 1 と平滑コンデンサ C O U Tとの直列回路と並列に接続した フィルタ回路 2 1により得られる三角波形と、 誤差アンプ 1 1により出力電圧と基準電 圧との誤差を増幅した信号から分割抵抗 R 3 , R 4により抵抗分割して生成される 2つの レベルとを使い、 第二の比較器 1 3で比較して得られた第二の比較信号を O R回路 3 9 を介してフリ ップフロップ回路 1 6のセッ ト側に入力する。 このように信号を入力する ことにより、 三角波の振幅が前記 2つのレベルの間に収まるように制御を行っている。 三角波形の振幅が前記 2つのレベルの間に収まるように制御を行っているため、 三角 波形の下り傾斜はチョーク電流が減少する期間であり、 三角波形の登り傾斜は出力チヨ ーク L 1を流れる電流が増加する期間である。 この方式では、 誤差増幅信号が変動した とき、 その変動量の大きさに応じて三角波形の周波数及びデューティ比が変化する。 前 記 2つのレベルの間に三角波形が収まるように制御を行うことで、 誤差増幅信号と三角 波形との波形の位相差は最大 9 0度で固定される。 三角波形はまた、 出力チョーク L 1 と平滑コンデンサ C O U Tとの直列回路の手前に接続されている整流スィツチ S 1のオン /オフにより生成されるため、 整流スィツチ S 1の動作状態と誤差増幅信号との位相差 も固定されることになる。 このため、 誤差増幅信号の周波数帯域を下げなくても安定性 を確保することが可能となり、 スィツチング電源として応答速度を飛躍的に改善するこ とができる。
また、誤差アンプ 1 1の出力信号に応じて、 (電源における 2つのスィツチの駆動状態 を示す) 三角波形の周波数及び位相が瞬時に変化し、 それに応じてチョーク電流も変化 するために高速な応答が実現できており、 出力電圧の跳ね上がりを最大限に抑えること ができる。
続いて、 負荷が急増した場合について説明する。 この動作波形図を図 4 3に示す。 な お、 図 4 3の上側にはチョーク電流波形を、 下側には出力電圧波形をそれぞれ示してあ る。 負荷電流が急激に増大すると、 図 4 3に示す通り、 出力電圧が瞬間的に落ち込み、 チョーク電流が急激に増大する。
このとき、 電源回路に備えた出力チョーク L 1 と平滑コンデンサ C O U Tと並列に接続 したフィルタ回路 2 1により得られる三角波形と、 誤差アンプ 1 1により出力電圧と基 準電圧との誤差を増幅して生成される 2つのレベルとを使い、 第一の比較器 1 2で比較 して得られた第一の比較信号をフリ ップフロップ回路 1 '6のリセッ ト側に入力する。 こ れとともに'、 電源回路に備えた出力チョーク L 1 と平滑コンデンサ C O U Tとの直列回路 と並列に接続したフィルタ回路 2 1により得られる三角波形と、 誤差アンプ 1 1により 出力電圧と基準電圧との誤差を増幅した誤差増幅信号から分割抵抗 R 3 , R 4により抵抗 分割して生成される 2つのレベルとを使い、 第二の比較器 1 3で比較して得られた第二 の比較信号を O R回路 3 9の一方の入力に入力し、 この O R回路 3 9の他方の入力にク ロック信号を入力する。 定常時では O R回路 3 9からクロック信号を出力するが、 負荷 急変すると、 O R回路 3 9から第二の比較信号が出力し、 この第二の比較信号をフリ ツ プフロップ回路 1 6のセッ ト側に入力する。 フリ ップフロップ回路 1 6では、 整流スィ ツチ S 1に出力する信号がク口ック信号から第二の比較信号に切り換わり、 フィルタ回 路 2 1より得られる三角波形の振幅が誤差増幅信号と分圧信号との間に収まる。
三角波形の振幅が前記 2つの信号の間に収まるように制御を行っているため、 この方 式では、 誤差増幅信号が変動したとき、 その変動量の大きさに応じて三角波形の周波数 及びデューティ比が変化する。 前記 2つのレベルの間に三角波形が収まるように制御を 行うことで、 誤差増幅信号と三角波形との波形の位相差は最大 9 0度で固定される。 三 角波形はまた、 出力チョーク L 1 と平滑コンデンサ C O U Tとの直列回路の手前に接続さ れている整流スィツチ S 1のオン Zオフにより生成されるため、 整流スィツチ S 1の動 作状態と誤差増幅信号との位相差も固定されることになる。 このため、 誤差増幅信号の 周波数帯域を下げなくても安定性を確保することが可能となり、 スィツチング電源とし て応答速度を飛躍的に改善することができる。
また、誤差アンプ 1 1の出力信号に応じて、 (電源における 2つのスィツチの駆動状態 を示す) 三角波の周波数及ぴ位相が瞬時に変化し、 それに応じてインダクタ電流も変化 するために高速な応答が実現できており、 出力電圧の変動を最大限に抑えることができ る。
図 4 4は、 本実施形態の第 1変形例に係るスイッチング電源を示す。 本変形例に係る スイッチング電源は、 図 4 2に示す実施態様と同様に、 整流スィッチ S l、 転流スイツ チ S 2、 出力チョーク L 1並びに平滑コンデンサ C O U Tを備え、 出力チョーク L 1 と平 滑コンデンサ C O U Tとを直列に接続した電源回路を備えてある。 この電源回路の出力側 に制御回路を接続してある。 この制御回路の出力は整流スィツチ S 1 と転流スィツチ S 2に接続してある。 電源回路の出力側に電圧検出用の抵抗 R , R 2を備え、 これら抵抗 R i, R 2の接続 部を誤差アンプ 1 1の負の入力に接続し、 この誤差アンプ 1 1で検出電圧と基準電圧と の誤差を増幅して誤差増幅信号を出力するように構成してある。 この誤差アンプ 1 1の 出力を第一の比較器 1 2の負の入力に接続し、 同じくこの誤差アンプ 1 1の出力を分割 抵抗 R 3 , R 4を介して第二の比較器 1 3の正の入力に接続し、 分圧信号を出力するよう にしてある。
出力チョーク L 1 と平滑コンデンサ C O U Tとの直列回路と並列に、 抵抗 R S A W 1と 2 つのコンデンサ C S A W 1 , C S A W 2とを直列に接続して構成するフィルタ回路 2 1を接続 してある。 このフィルタ回路 2 1の出力を第一の比較器 1 2の正の入力、 並びに第二の 比較器 1 3の負の入力に接続してある。
第二の比較器 1 3の出力をフリ ップフロップ回路 1 6のセッ ト側の入力に接続し、 第 二の比較信号を出力するようにしてある。 また、 第一の比較器 1 2の出力を O R回路 3 9の一方の入力に接続して、 第一の比較信号を出力するようにしてある。 O R回路 3 9 の他方の入力にはク口ック信号を入力し、 フリ ップフロップ回路 1 6のリセッ ト側にこ の O R回路 3 9の出力を接続して、 定常時にはクロック信号を、 負荷急変した際には第 一の比較信号をそれぞれ出力するようにしてある。 このフリ ップフロップ回路 1 6の出 力をドライバ 1 7の入力に接続し、 このドライバ 1 7の出力を整流スィツチ S 1並びに 転流スィツチ S 2の制御端子に接続し、 フィルタ回路 2 1より得られる三角波形の振幅 が負荷急変時に前記誤差増幅信号と前記分圧信号との間に収まるように制御し、 定常時 に整流スィツチ S 1のオフのタイミングを前記ク口ック信号で固定するように制御する 構成にしてある。
以上のように構成してあるスィツチング電源は図 4 2に示す実施態様とほぼ同様な作 用をする。 ただし、 本変形例は、 第一の比較器 1 2から得られる第一の比較信号とクロ ック信号とを付き合わせ、 整流スィ ッチ S 1に出力し、 負荷急変時に整流スィ ッチ S 1 への出力信号をクロック信号から第一の比較信号へ切り換えて、 フィルタ回路 2 1から 得られる三角波形の振幅が誤差増幅信号と分割抵抗 R 3 , R 4から得られる分圧信号との 間に収まるように制御し、 定常時に前記整流スィツチのオフのタイミングをク口ック信 号で固定するようにした点で作用は異なる。 なお、 以下の変形例においても上記変形例 のように、 定常時に整流スィツチ S 1のオフのタイミングをク口ック信号で固定する構 成を有することが可能である。
図 4 5は、 本実施形態の第 2変形例に係るスイッチング電源を示す。 本変形例に係る スイッチング電源は、 図 4 2に示す実施形態と同様に、 整流スィッチ S l、 転流スイツ チ S 2、 出力チョーク L 1並びに平滑コンデンサ C O U Tを備え、 出力チョーク L 1 と平 滑コンデンサ C O U Tとを直列に接続した電源回路を備えてある。 この電源回路の出力側 に制御回路を接続してある。 この制御回路の出力は整流スィツチ S 1 と転流スィツチ S 2に接続してある。
電源回路の出力側に電圧検出用の抵抗 Rい R 2を備え、 これら抵抗 Rい R 2の接続 部を誤差アンプ 1 1の負の入力に接続し、 この誤差アンプ 1 1で検出電圧と基準電圧と の誤差を増幅して誤差増幅信号を出力するように構成してある。 この誤差アンプ 1 1の 出力を比較器 1 2の負の入力に接続してある。
出力チョーク L 1 と平滑コンデンサ C O U Tとの直列回路と並列に、 抵抗 R S A W 1と 2 つのコンデンサ C S A W 1 , C S A W 2とを直列に接続して構成するフィルタ回路 2 1を接続 してある。 このフィルタ回路 2 1の出力を比較器 1 2の正の入力に接続してある。 比較器 1 2の出力をフリ ップフロップ回路 1 6のリセッ ト側の入力に接続し、 第一の 比較信号を出力するようにしてある。 また、 クロック信号をフリ ップフロップ回路 1 6 のセッ ト側に接続して、 クロック信号を出力するようにしてある。 このフリ ップフロッ プ回路 1 6の出力をドライバ 1 7の入力に接続し、 このドライバ 1 7の出力を整流スィ ツチ S 1並びに転流スィツチ S 2の制御端子に接続し、 フィルタ回路 2 1より得られる 三角波形と誤差増幅信号とを比較して比較信号を出力して、 整流スィツチ S 1のオンの タイミングを前記クロック信号で固定するように制御する構成にしてある。
以上のように構成してあるスィツチング電源は図 4 2に示す実施形態において必要不 可欠な部材以外を取り除いて構成したため図 4 2に示す実施態様とほぼ同様な作用をす る。 ただし、 本変形例は、 図 4 2に示す実施態様と異なり、 図 4 2に示す実施態様で示 す第二の比較器 1 3が無いため、 第二の比較器 1 3より出力される第二の比較信号とク 口ック信号とを付き合わせる作用はなく、 誤差増幅信号をフィルタ回路 2 1より得られ る三角波形とを比較して比較信号を整流スィツチ S 1に出力し、 整流スィツチ S 1のォ ンのタイミングをクロック信号で固定する。 なお、 図 4 7以下の変形例においても上記 変形例のように、 整流スィツチ S 1のオンのタイミングをク口ック信号で固定する構成 を有することが可能である。
図 4 6は、 本実施形態の第 3変形例に係るスイッチング電源を示す。 本変形例に係る スィツチング電源は図 4 4に示す第 1変形例の変形例であり、 図 4 4に示す第 1変形例 と同様に、 整流スィ ッチ S l、 転流スィ ッチ S 2、 出力チョーク L 1並びに平滑コンデ ンサ COUTを備え、 出力チョーク L 1 と平滑コンデンサ COUTとを直列に接続した電源 回路を備えてある。 この電源回路の出力側に制御回路を接続してある。 この制御回路の 出力は整流スィツチ S 1 と転流スィツチ S 2に接続してある。
電源回路の出力側に電圧検出用の抵抗 Rい R2を備え、 これら抵抗 Ri, R2の接続 部を誤差アンプ 1 1の負の入力に接続し、 この誤差アンプ 1 1で検出電圧と基準電圧と の誤差を増幅して誤差増幅信号を出力するように構成してある。 この誤差アンプ 1 1の 出力を分割抵抗 R3, R4を介して比較器 1 3の正の入力に接続し、 分圧信号を出力する ようにしてある。 '
出力チョーク L 1 と平滑コンデンサ COUTとの直列回路と並列に、 抵抗 RS AW1と 2 つのコンデンサ CSAW 1, CSAW2とを直列に接続して構成するフィルタ回路 2 1を接続 してある。 このフィルタ回路 2 1の出力を比較器 1 3の負の入力に接続してある。 比較器 1 3の出力をフリ ップフロップ回路 1 6のセッ ト側の入力に接続し、 比較信号 を出力するようにしてある。 また、 クロック信号をフリ ップフロップ回路 1 6のリセッ ト側に接続して、 クロック信号を出力するようにしてある。 このフリ ップフロップ回路 1 6の出力をドライバ 1 7の入力に接続し、 このドライバ 1 7の出力を整流スィツチ S 1並びに転流スィツチ S 2の制御端子に接続し、 フィルタ回路 2 1 より得られる三角波 形と誤差増幅信号とを比較して比較信号を出力して、 整流スィツチ S 1のオフのタイミ ングを前記ク口ック信号で固定するように制御する構成にしてある。
以上のように構成してあるスィツチング電源は図 44に示す第 1変形例において必要 不可欠な部材以外を取り除いて構成したため図 44に示す第 1変形例とほぼ同様な作用 をする。 ただし、 本変形例は、 図 44に示す変形例と異なり、 図 44に示す第一の比較 器 1 2が無いため、 第一の比較器 1 2より出力される第一の比較信号とク口ック信号と を付き合わせる作用はなく、 誤差増幅信号をフィルタ回路 2 1 より得られる三角波形と を比較して比較信号を整流スィツチ S 1に出力し、 整流スィツチ S 1のオフのタイミン グをクロック信号で固定する。 なお、 以下の変形例においても上記変形例のように、 整 流スィツチ S 1のオフのタイミングをクロック信号で固定する構成を有することが可能 である。
図 4 7は、 本実施形態の第 4変形例であり、 図 4 2に示す実施態様をマルチフェーズ 化したスイ ッチング電源を示す。 このスイッチング電源は、 共通の電源 Vinを有し、 2 つの電源回路を有する。 2つの電源回路は、 それぞれ、 整流スィッチ S l、 転流スイツ チ S 2、 出力チョーク L 1並びに平滑コンデンサ COUTを備え、 出力チョーク L 1 と平 滑コンデンサ C O U Tとを直列に接続した電源回路を備えてある。 これら電源回路の出力 側は共通になっており、 電圧検出用の抵抗 R 2を介して制御回路を接続してある。 電圧検出用の抵抗 R , R 2の接続部を誤差アンプ 1 1の負の入力に接続し、 この誤差 増幅器 1 1で検出電圧と基準電圧との誤差を増幅して誤差増幅信号を出力するように構 成してある。 この誤差アンプ 1 1の出力には 2つ設けた第一の比較器 1 2の負の入力に 接続してあり、 同じく この誤差アンプ 1 1の出力を分割抵抗 R 3 , R 4を介して 2つ設け た第二の比較器 1 3の正の入力に接続してある。
出力チョーク L 1 と平滑コンデンサ C O U Tとの直列回路と並列に、 抵抗 R S A W 1と 2 つのコンデンサ C S A W 1 , C S A W 2とを直列に接続して構成するフィルタ回路 2 1を接続 してある。 このフィルタ回路 2 1の出力を第一の比較器 1 2の正の入力、 並びに第二の 比較器 1 3の負の入力に接続してある。
第一の比較器 1 2の出力をフリ ップフロップ回路 1 6のリセッ ト側の入力に接続し、 第一の比較信号を出力するようにしてある。 また、 第二の比較器 1 3の出力を O R回路 3 9の一方の入力に接続して、 第二の比較器 1 3から O R回路 3 9 第二の比較信号を 出力するようにしてある。 〇R回路 3 9の他方の入力にはクロック信号を入力し、 フリ ップフロップ回路 1 6のセッ ト側にこの O R回路 3 9の出力を接続して、 定常時にはク 口ック信号を、負荷急変した際には第二の比較信号をそれぞれ出力するようにしてある。 このフリ ップフ口ップ回路 1 6の出力をドライバ 1 7の入力に接続し、 このドライバ 1 7の出力を整流スィツチ S 1並びに転流スィツチ S 2の制御端子に接続し、 フィルタ回 路 2 1より得られる三角波形の振幅が負荷急変時に誤差増幅信号と分圧信号との間に収 まるように制御し、 定常時に整流スィツチ S 1·のオンのタイミングをク口ック信号で固 定するように制御する構成にしてある。
以上のように構成してあるスィツチング電源は以下のような作用をする。 定常時及び 負荷急減時については、 図 4 2に示すシングルの場合とほぼ同様の作用をするため、 説 明を省略する。
次に負荷が急増した場合について説明する。 この動作波形図を図 4 8に示す。 なお、 図 4 8の上側にはチョーク電流波形を、 下側には出力電圧波形をそれぞれ示してある。 負荷電流が急激に増大すると、 図 4 8に示す通り、 出力電圧が瞬間的に落ち込み、 それ ぞれのチョーク電流が急激に増大する。
このときも、 図 4 2に示す実施態様と同様にそれぞれのフィルタ回路 2 1により得ら れる三角波形と、 誤差アンプ 1 1により出力電圧と基準電圧との誤差を増幅して生成さ れる 2つのレベルとを使い、 第一の信号をフリ ップフ口ップ回路 1 6のリセッ ト側に入 力する。 これとともに、 フィルタ回路 2 1により得られる三角波形と、 誤差アンプ 1 1 により出力電圧と基準電圧との誤差を増幅した誤差増幅信号から分割抵抗 R 3 , R 4によ り抵抗分割して生成される 2つのレベルとを使い、 第二の比較器 1 3で比較して得られ た第二の比較信号を O R回路 3 9の一方の入力に入力し、 この O R回路 3 9の他方の入 力にク口ック信号を入力する。定常時では O R回路 3 9からク口ック信号を出力する力 負荷急変すると、 O R回路 3 9から第二の比較信号が出力し、 この第二の比較信号をフ リ ップフロップ回路 1 6のセッ ト側に入力する。 フリ ップフロップ回路 1 6では、 整流 スィツチ S 1に出力する信号がク口ック信号から第二の比較信号に切り換わり、 フィル タ回路 2 1より得られる三角波形の振幅が誤差増幅信号と分圧信号との間に収まる。 よ つて、 マルチフェーズ化した場合もシングルの場合と同様に作用する。 なお、 本変形例 では電源回路を 2つ設けてマルチフェーズ化したが、 電源回路を 3つ以上設けてマルチ フェーズ化しても同様な作用をする。 また、 以下の変形例においてもマルチフェーズ化 が可能である。
図 4 9は、 本実施形態の第 5変形例に係るスイッチング電源を示す。 このスィッチン グ電源は、 電源回路の出力側に誤差アンプ 1 1の負の入力を接続し、 この誤差アンプ 1 1で検出電圧と基準電圧との誤差を増幅するように構成してある。 この誤差アンプ 1 1 の出力を第一の比較器 1 2の負の入力に接続し、 同じくこの誤差アンプ 1 1の出力を分 割抵抗 R 3 , R 4を介して第二の比較器 1 3の正の入力に接続してある。
出力チョーク L 1 と平滑コンデンサ C O U Tとの直列回路と並列に、 抵抗 R S A W 1とコ ンデンサ C S A W 1とを直列に接続して構成するフィルタ回路 2 2を接続してある。 この フィルタ回路 2 2の出力を第一の比較器 1 2の正の入力、 並びに第二の比較器 1 3の負 の入力に接続してある。
第一の比較器 1 2の出力をフリ ップフ口ップ回路 1 6のリセッ ト側の入力に接続し、 第一の信号を出力するようにしてある。 また、 第二の比較器 1 3の出力を O R回路 3 9 の一方の入力に接続してある。 O R回路 3 9の他方の入力にはク口ック信号を入力し、 フリ ップフ口ップ回路 1 6のセッ ト側にこの O R回路 3 9の出力を接続して、 定常時に はク口ック信号を、 負荷急変した際には第二の比較信号をそれぞれ出力するようにして ある。 このフリ ップフロップ回路 1 6の出力をドライバ 1 7の入力に接続し、 このドラ ィバ 1 7の出力を整流スィツチ S 1並びに転流スィツチ S 2の制御端子に接続し、 フィ ルタ回路 2 2より得られる三角波形の振幅が負荷急変時に誤差増幅信号と分圧信号との 間に収まるように制御し、 定常時に整流スィツチ S 1のオンのタイミングを前記ク口ッ ク信号で固定するように制御する構成にしてある。
以上のように構成してあるスィツチング電源は図 4 2に示す実施形態とほぼ同様の作 用をし、 定常時に整流スィツチ S 1のオンのタイミングをクロック信号で固定するよう にしたことにより、 発振周波数が固定となる。 但し、 本変形例では、 電源回路の出力側 に電圧検出用の抵抗を設けておらず、 また、 フィルタ回路 2 2は図 4 2に示す実施形態 のフィルタ回路 2 1 と構成が異なる。
図 5 0は、 本実施形態の第 6変形例に係るスイッチング電源を示す。 このスィッチン グ電源は、 電源回路の出力側に電圧検出用の抵抗 Rい R 2を備え、 これら抵抗 R i, R 2の接続部を誤差アンプ 1 1の負の入力に接続し、 この誤差アンプ 1 1で検出電圧と基 準電圧との誤差を増幅するように構成してある。 この誤差アンプ 1 1の出力に第一の比 較器 1 2の負の入力に接続し、 同じく この誤差アンプ 1 1の出力を分割抵抗 R 3, R4を 介して第二の比較器 1 3の正の入力に接続してある。
この変形例では、 出力チョーク L 1の入出力端間にフィルタ回路 2 3を設けてある。 このフィルタ回路 2 3は以下のように構成してある。 転流スィ ッチ S 2と並列に、 かつ 出力チョーク L 1の入力端側に 2つの抵抗 RS AW 1, RS AW2を直列に接続し、 同じく転 流スィツチ S 2と並列に、 かつ出力チヨーク L 1の出力端側に 2つのコンデンサ C S AW :, C S AW 2を直列に接続してある。 直列に接続した抵抗 RS AW RS AW2の間、 並び に直列に接続したコンデンサ C S AW 1, C S AW2の間に接続部を設け、 これら接続部を接 続してフィルタ回路 2 3を構成してある。 前記接続部はフィルタ回路 2 3の出力部であ り、 出力を第一の比較器 1 2の正の入力、 並びに第二の比較器 1 3の負の入力に接続し てある。
第一の比較器 1 2の出力をフリ ップフ口ップ回路 1 6のリセッ ト側の入力に接続し、 第一の比較信号を出力するようにしてある。 また、 第二の比較器 1 3の出力を OR回路 3 9の一方の入力に接続して、 第二の比較信号を出力するようにしてある。 O R回路 3 9の他方の入力にはク口ック信号を入力し、 フリ ップフ口ップ回路 1 6のセッ ト側にこ の OR回路 3 9の出力を接続して、 定常時にはクロック信号を、 負荷急変した際には第 二の比較信号をそれぞれ出力するようにしてある。 このフリ ップフロップ回路 1 6の出 力をドライバ 1 7の入力に接続し、 このドライバ 1 7の出力を整流スィツチ S 1並びに 転流スィツチ S 2の制御端子に接続し、 フィルタ回路 2 3より得られる三角波形の振幅 が負荷急変時に誤差増幅信号と分圧信号との間に収まるように制御し、 定常時に整流ス イッチ S 1のオンのタイミングを前記ク口ック信号で固定するように制御する構成にし てある。
以上のように構成してあるスィツチング電源は図 4 2に示す実施態様とほぼ同様の作 用をし、 定常時に整流スィツチ S 1のオンのタイミングをク口ック信号で固定するよう にしたことにより、 発振周波数が固定となる。
図 5 1は、 本実施形態の第 7変形例であり、 図 5 0に示す変形例とはほぼ同様の構成 を有する。 このスイッチング電源は、 電源回路の出力側に誤差アンプ 1 1の負の入力を 接続し、 この誤差アンプ 1 1で検出電圧と基準電圧との誤差を増幅するように構成して ある。 このスイッチング電源は図 5 0に示す変形例とほぼ同様の作用をし、 定常時に整 流スィッチ S 1のオンのタイミングをクロック信号で固定するようにしたことにより、 発振周波数が固定となる。
図 5 2は、 本実施形態の第 8変形例に係るスイッチング電源を示す。 このスィッチン グ電源は、 電源回路の出力側に電圧検出用の抵抗 Rい R 2を備え、 これら抵抗 Rい R 2の接続部を誤差アンプ 1 1の負の入力に接続し、 この誤差アンプ 1 1で検出電圧と基 準電圧との誤差を増幅するように構成してある。 この誤差アンプ 1 1の出力を第一の比 較器 1 2の負の入力に接続し、 同じく この誤差アンプ 1 1の出力を分割抵抗 R 3, R 4を 介して第二の比較器 1 3の正の入力に接続してある。
この変形例では、 出力チヨーク L 1 と平滑コンデンサ C O U Tとの間に電流検出用の抵 抗 R 5を接続してあり、 この抵抗 R 5の入力側をバッファアンプ 1 5の正の入力に、 出力 側を同じくバッファアンプ 1 5の負の入力にそれぞれ接続してある。 このバッファアン プ 1 5の出力にコンデンサ C S AW 1と 2つの抵抗 R S A W 1 , R S AW 2とを直列に接続して 構成するフィルタ回路 2 4を接続してある。 このフィルタ回路 2 4の出力を第一の比較 器 1 2の正の入力、 並びに第二の比較器 1 3の負の入力に接続してある。
第一の比較器 1 2の出力をフリ ップフロップ回路 1 6のリセッ ト側の入力に接続し、 . 第一の比較信号を出力するようにしてある。 また、 第二の比較器 1 3の出力を O R回路 3 9の一方の入力に接続して、 第二の比較信号を出力するようにしてある。 O R回路 3 9の他方の入力にはク口ック信号を入力し、 フリ ップフ口ップ回路 1 6のセッ ト側にこ の O R回路 3 9の出力を接続して、 定常時にはクロック信号を、 負荷急変した際には第 二の比較信号をそれぞれ出力するようにしてある。 このフリ ップフロップ回路 1 6の出 力をドライバ 1 7の入力に接続し、 このドライバ 1 7の出力を整流スィツチ S 1並びに 転流スィツチ S 2の制御端子に接続し、 フィルタ回路 2 4より得られる三角波形の振幅 が負荷急変時に誤差増幅信号と分圧信号との間に収まるように制御し、 定常時に整流ス イッチ S 1のオンのタイミングを前記ク口ック信号で固定するように制御する構成にし てある。
以上のように構成してあるスィツチング電源は図 4 2に示す実施形態とほぼ同様の作 用をし、 定常時に整流スィツチ S 1のオンのタイミングをクロック信号で固定するよう にしたことにより、 発振周波数が固定となる。 また、 この変形例は電圧検出用の抵抗 R !, R2を備えてあるとともに、 フィルタ回路 24をコンデンサ CSAW1と 2つの抵抗 R S AW l . RSAW2とを直列に接続して構成してあることにより、 高周波成分のみを取り出 すことができる。
図 5 3は、 本実施形態の第 9変形例に係るスイッチング電源を示す。 このスィ ッチン グ電源は、 電源回路の出力側に誤差アンプ 1 1の負の入力を接続し、 この誤差アンプ 1 1で検出電圧と基準電圧との誤差を増幅するように構成してある。 この誤差アンプ 1 1 の出力を第一の比較器 1 2の負の入力に接続し、 同じく この誤差アンプ 1 1の出力を分 割抵抗 R3, R4を介して第二の比較器 1 3の正の入力に接続してある。
この変形例では、 出力チョーク L 1 と平滑コンデンサ COUTとの間に電流検出用の抵 抗 R5を接続してあり、 この抵抗 R5の入力側をバッファアンプ 1 5の正の入力に、 出力 側を同じくバッファアンプ 1 5の負の入力にそれぞれ接続してある。 このバッファアン プ 1 5の出力をコンデンサ C SAWと抵抗 R S AW 1とを直列に接続して構成するフィルタ 回路 2 5に接続してある。このフィルタ回路 2 5の出力を第一の比較器 1 2の正の入力、 並びに第二の比較器 1 3の負の入力に接続してある。
第一の比較器 1 2の出力をフリ ップフ口ップ回路 1 6のリセッ ト側の入力に接続し、 第一の比較信号を出力するようにしてある。 また、 第二の比較器 1 3の出力を OR回路 3 9の一方の入力に接続して、 第二の比較信号を出力するようにしてある。 OR回路 3 9の他方の入力にはク口ック信号を入力し、 フリ ップフロップ回路 1 6のセッ ト側にこ の OR回路 3 9の出力を接続して、 定常時にはクロック信号を、 負荷急変した際には第 二の比較信号をそれぞれ出力するようにしてある。 このフリ ップフロ ップ回路 1 6の出 力をドライバ 1 7の入力に接続し、 このドライバ 1 7の出力を整流スィツチ S 1並びに 転流スィツチ S 2の制御端子に接続し、 フィルタ回路 2 5より得られる三角波形の振幅 が負荷急変時に誤差増幅信号と分圧信号との間に収まるように制御し、 定常時に整流ス イッチ S 1のオンのタイミングを前記ク口ック信号で固定するように制御する構成にし てある。 以上のように構成してあるスィツチング電源は図 4 9に示す変形例とほぼ同様の作用 をし、 定常時に整流スィツチ S 1のオンのタイミングをク口ック信号で固定するように したことにより、 発振周波数が固定となる。
図 54に示す第 1 0変形例は、 出力チヨ一ク L 1に電流検出回路 3 3を接続し、 この 電流検出回路 3 3の出力にコンデンサ C SAW1と 2つの抵抗 RSAW1, R SAW 2とを直列 に接続して構成するフィルタ回路 24を接続してある。 これ以外については図 5 2に示 す変形例とほぼ同様の構成である。 以上のように構成してある図 5 4に示すスィッチン グ電源は図 5 2に示すスィツチング電源とほぼ同様の作用をする。
図 5 5に示す第 1 1変形例も出力チョーク L 1に電流検出回路 3 3を接続し、 この電 流検出回路 3 3の出力をコンデンサ CS AWと抵抗 RSAW1とを直列に接続して構成する フィルタ回路 2 5を接続してある。 これ以外については図 5 3に示す変形例とほぼ同様 の構成である。 以上のように構成してある図 5 5に示すスィツチング電源は図 5 3に示 すスィツチング電源とほぼ同様の作用をする。
図 5 6に示す第 1 2変形例は図 4 2に示す実施形態に、 図 5 7に示す変形例は図 4 9 に示す変形例に、 図 5 8に示す変形例は図 5 0に示す変形例に、 図 5 9に示す変形例は 図 5 1に示す変形例に対応するもので、 これらの変形例は、 整流スィ ッチ S 1に電流検 出回路 34を接続し、 この電流検出回路 34の出力を出力チョーク L 1の出力端に接続 した抵抗 RSAW1の他端に接続してある。
以上のように構成してある図 5 6乃至図 5 9に示すスィツチング電源は、 それぞれ対 応する図 4 2、 図 4 9、 図 5 0並びに図 5 1に示すスイッチング電源とほぼ同様の作用 をするが、 これらに加え、 これらのスイッチング電源は、 フィルタ回路 2 1 , 2 2, 2 3, 2 3で電流検出回路 3 4から流れた電流を加えるため、 出力インピーダンスを調整 することができる。 産業上の利用可能性
本発明の 1つの態様によれば、 フィルタ回路より得られる三角波形の振幅が第一の比 較器の一方の入力レベルと第二の比較器の一方の入力レベルとの間に収まるように制御 する制御手段を設けてあることにより、 三角波は抵抗とコンデンサで構成したフィルタ の手前で接続してある出力スィツチのオン オフにより生成されるため、 出力スィツチ の動作状態と誤差増幅信号との位相差が固定され、 誤差増幅信号の周波数帯域を下げな くても安定性を確保できる。 また、 整流スィッチに電流検出回路を接続し、 この電流検出回路をフィルタ回路に接 続することにより、 フィルタ回路には通常流れる電流と電流検出回路を経由して流れる 電流とが流れ、 出力インピーダンスの調整できる。
本発明の別の態様によれば、 スイッチング電源は、 インダクタ電流の不連続状態を検 出し、 三角波の振幅を自動的に変化させる回路を内蔵することにより、 安定した出カリ ップル特性を実現することができる。
本発明のさらに別の態様によれば、 スイ ッチング電源は、 入出力電圧差に比例して三 角波の振幅を自動的に変化させる回路を内蔵することにより、 様々な入出力条件におい て、 安定した効率♦ 出カリップル特性を実現することができる。
本発明のさらに別の態様によれば、 フィルタ回路より得られる三角波形の振幅が負荷 急変時に出力電圧と基準電圧との誤差を増幅した誤差増幅信号と、 前記誤差増幅信号を 分圧して得られる分圧信号との間に収まるように制御し、 定常時に整流スィツチのオン 又はオフのタイ ミングを固定するようにしたことにより、 発振周波数が固定となり、 マ ルチフェーズ化のための位相をずらした信号の発生が容易である。
また、 分圧信号を用いなくても、 分圧信号を用いた場合と同様に、 発振周波数が固定 となり、 マルチフェーズ化のための位相をずらした信号の発生が容易である。

Claims

請求の範囲
1 . 整流スィッチ、 転流スィッチ、 出力チョーク並びに平滑コンデンサを備え、 前記 出力チョークと平滑コンデンサを直列に接続したスィツチング電源であって、 この電源 回路の出力側に誤差アンプの入力を接続して検出電圧と基準電圧との誤差を増幅するよ うに構成し、 この誤差アンプの出力を第一の比較器の一方の入力に接続し、 同じくこの 誤差アンプの出力を分割抵抗を介して第二の比較器の一方の入力に接続してあり、 前記 転流スィッチと並列に、 抵抗及びコンデンサを備えたフィルタ回路を接続し、 このフィ ルタ回路の出力を前記第一の比較器の他方の入力、 並びに第二の比較器の他方の入力に 接続して、 前記フィルタ回路より得られる三角波形の振幅が前記第一の比較器の一方の 入力レベルと第二の比較器の一方の入力レベルとの間に収まるように制御する制御手段 を設けてあることを特徴とするスィツチング電源。
2 . 前記制御手段は、 この誤差アンプの出力を、 分圧比を自在に変化させる電圧分圧 回路を介して第二の比較器の一方の入力に接続し、 前記フィルタ回路より得られる三角 波形の振幅が前記第一の比較器の一方の入力レベルと第二の比較器の一方の入力レベル との間に収まるように構成してあることを特徴とする請求の範囲第 1項のスィツチング 電源。 '
3 . 前記電圧分圧回路は、 抵抗を 3つ以上直列に接続して、 分圧比可変部と分圧比固 定部とを構成し、 前記分圧比可変部の一端を前記誤差アンプの出力と前記第一の比較器 の入力間に接続し、 同じく分圧比可変部の他端を前記第二の比較器の一方の入力に接続 してあり、 前記分圧比可変部に設けた少なく とも一の抵抗と並列にスィツチを接続し、 ィンダクタ電流が不連続状態になったことを検出して、 分圧比を自在に変化させるよう にしてあることを特徴とする請求の範囲第 2項記載のスィツチング電源。
4 . 前記制御手段は、入出力電位差に比例して変化する電流源を備え、 この電流源は、 前記分割抵抗の中点と接地電位との間に接続して第二の信号を出力するように構成し、 前記三角波形の振幅が前記第一及ぴ第二の信号の間に収まるように構成してあることを 特徴とする請求の範囲第 1項記載のスィツチング電源。
5 . 前記分割抵抗を 2つ以上直列に接続し、 抵抗分割点と接地電位との間に入出力電 圧差に比例する電流源を接続して、 分圧比を自在に変化させるようにしてあることを特 徴とする請求の範囲第 4項記載のスイツチング電源。
6 . 前記誤差アンプで電源回路の出力電圧と基準電圧との誤差を増幅して得た誤差増 幅信号を、 前記フィルタ回路より得られる三角波形とを比較して第一の比較信号を前記 整流スィッチに出力し、 前記誤差増幅信号を分圧して、 この分圧信号を前記三角波形と を比較して第二の比較信号を生成可能な構成とし、 前記第二の比較信号とク口ック信号 とを付き合わせ、 負荷急変時に前記第二の比較信号を出力して、 前記整流スィッチへの 出力信号を前記ク口ック信号から第二の比較信号へ切り換えて、 前記三角波形の振幅が 前記誤差増幅信号と前記分圧信号との間に収まるように制御し、 定常時に前記整流スィ ツチのオンのタイミングを前記ク口ック信号で固定するようにしたことを特徴とする請 求の範囲第 1項記載のスィツチング電源。
7 . 前記制御手段は、 負荷急増時においても、 前記整流スィ ッチのオンのタイミング をクロック信号で固定するようにしたことを特徴とする請求の範囲第 6項記載のスィッ チング電源。
8 . 前記誤差アンプで電源回路の出力電圧と基準電圧との誤差を増幅して得た誤差増 幅信号を、 前記フィルタ回路より得られる三角波形とを比較して第一の比較信号を生成 可能な構成とし、 前記第一の比較信号とクロック信号とを付き合わせ、 前記整流スイツ チに出力し、 前記誤差増幅信号を分圧して、 この分圧信号を前記三角波形とを比較して 第二の比較信号を出力し、 負荷急変時に前記整流スィツチへの出力信号を前記クロック 信号から第一の比較信号へ切り換えて、 前記三角波形の振幅が前記誤差増幅信号と前記 分圧信号との間に収まるように制御し、 定常時に前記整流スィツチのオフのタイミング を前記クロック信号で固定するようにしたことを特徴とする請求の範囲第 1項記載のス ィツチング電源。
9 . 前記制御手段は、 負荷急減時においても、 前記整流スィ ッチのオフのタイミング をク口ック信号で固定するようにしたことを特徴とする請求の範囲第 8項記載のスィッ チング電源。
PCT/JP2004/001890 2003-09-05 2004-02-19 スイッチング電源 WO2005025041A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT04712668T ATE527746T1 (de) 2003-09-05 2004-02-19 Schaltbares netzgerät
US10/519,450 US6984966B2 (en) 2003-09-05 2004-02-19 Switching power supply
EP04712668A EP1603220B1 (en) 2003-09-05 2004-02-19 Switching power supply
CA002500507A CA2500507C (en) 2003-09-05 2004-02-19 Switching power supply

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003-313441 2003-09-05
JP2003313441A JP4020844B2 (ja) 2003-09-05 2003-09-05 スイッチング電源
JP2003-423925 2003-12-22
JP2003-423924 2003-12-22
JP2003423925A JP4020860B2 (ja) 2003-12-22 2003-12-22 スイッチング電源
JP2003423924A JP4020859B2 (ja) 2003-12-22 2003-12-22 スイッチング電源

Publications (1)

Publication Number Publication Date
WO2005025041A1 true WO2005025041A1 (ja) 2005-03-17

Family

ID=34279562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001890 WO2005025041A1 (ja) 2003-09-05 2004-02-19 スイッチング電源

Country Status (7)

Country Link
US (1) US6984966B2 (ja)
EP (1) EP1603220B1 (ja)
KR (1) KR100607807B1 (ja)
AT (1) ATE527746T1 (ja)
CA (1) CA2500507C (ja)
TW (1) TWI231643B (ja)
WO (1) WO2005025041A1 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3829765B2 (ja) * 2002-06-26 2006-10-04 株式会社デンソー 電源回路
JP2005086931A (ja) * 2003-09-10 2005-03-31 Renesas Technology Corp スイッチング電源装置とそれに用いられる半導体集積回路
US7714562B2 (en) * 2005-12-05 2010-05-11 Panasonic Corporation Hysteretic switching regulator
WO2007099489A2 (en) * 2006-02-28 2007-09-07 Nxp B.V. Improved window comparator with accurate levels for use in dc-dc converters
CN101071991A (zh) * 2006-05-12 2007-11-14 鸿富锦精密工业(深圳)有限公司 减少输出纹波的开关电源
JP4686745B2 (ja) * 2006-06-05 2011-05-25 トレックス・セミコンダクター株式会社 スイッチング電源回路
US7576527B1 (en) * 2006-07-20 2009-08-18 Marvell International Ltd. Low power DC-DC converter with improved load regulation
US7768246B2 (en) * 2006-07-27 2010-08-03 Richtek Technology Corp. Output ripple control circuit and method for a PWM system
US20100013446A1 (en) * 2008-07-17 2010-01-21 International Business Machines Corporation method for controlling the supply voltage for an integrated circuit and an apparatus with a voltage regulation module and an integrated circuit
TWI377773B (en) * 2009-05-08 2012-11-21 Richtek Technology Corp Pwm controller and method for a dc-to-dc converter
EP2337203B1 (en) * 2009-12-15 2013-05-22 Nxp B.V. Circuit for a switch mode power supply
JP5578861B2 (ja) * 2010-01-18 2014-08-27 トレックス・セミコンダクター株式会社 スイッチング電源回路
JP5676961B2 (ja) 2010-07-30 2015-02-25 スパンション エルエルシー 電源の制御回路、電子機器及び電源の制御方法
US8896284B2 (en) 2011-06-28 2014-11-25 Texas Instruments Incorporated DC-DC converter using internal ripple with the DCM function
US9077242B2 (en) * 2012-09-27 2015-07-07 Semiconductor Components Industries, Llc Converter and method which remains biased for operation in the pulse frequency modulation mode and pulse width modulation mode
EP2728725B1 (en) * 2012-10-30 2017-08-02 Dialog Semiconductor GmbH Hysteretic power converter with current shaping
JP2015012694A (ja) * 2013-06-28 2015-01-19 株式会社東芝 電源回路
CN103401403A (zh) * 2013-07-03 2013-11-20 武汉鑫双易科技开发有限公司 电感充电电荷控制方法及其在开关电源中的应用
CN105375740B (zh) * 2014-09-01 2018-01-30 台达电子工业股份有限公司 功率转换电路
KR101690305B1 (ko) * 2014-10-16 2016-12-27 주식회사 솔루엠 컨버터
US9660628B2 (en) * 2014-12-08 2017-05-23 Analog Devices Global Resistor controlled timer circuit with gain ranging
KR101725640B1 (ko) * 2015-06-30 2017-04-11 한국광기술원 Led 전원공급장치
KR102452518B1 (ko) * 2015-12-09 2022-10-12 삼성디스플레이 주식회사 전원 공급부 및 그의 구동방법
DE102016205037A1 (de) * 2016-03-24 2017-09-28 Robert Bosch Gmbh Gleichspannungs-Konverter und Verfahren zur Regelung eines Gleichspannungs-Konverters
KR102502419B1 (ko) * 2016-06-02 2023-02-22 삼성전기주식회사 단일 비교기를 갖는 멀티 페이즈 전원 장치
DE102016220199A1 (de) * 2016-10-17 2018-04-19 Continental Automotive Gmbh Gleichspannungswandler und Verfahren zum Betreiben eines Gleichspannungswandlers
US10116207B1 (en) * 2017-08-15 2018-10-30 Dialog Semiconductor (Uk) Limited Hysteretic controller with fixed-frequency continuous conduction mode operation
US11689101B2 (en) * 2020-11-12 2023-06-27 Psemi Corporation Mixed-mode power converter control
US11594965B2 (en) 2020-12-14 2023-02-28 Psemi Corporation Power converter counter circuit with under-regulation detector

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108193U (ja) * 1983-12-21 1985-07-23 太陽誘電株式会社 トランジスタ安定化直流電源装置
JPH07222437A (ja) * 1994-02-02 1995-08-18 Matsushita Electric Ind Co Ltd スイッチング電源装置
JPH10215567A (ja) * 1997-01-29 1998-08-11 Sanyo Electric Co Ltd 電源回路
JPH11187649A (ja) * 1997-12-17 1999-07-09 New Japan Radio Co Ltd 同期型dc/dcコンバータ
JP2001025238A (ja) * 1999-07-09 2001-01-26 Sharp Corp 直流安定化電源装置
US20020140408A1 (en) 2001-03-30 2002-10-03 Hwang Jeffrey H. Technique for limiting current through a reactive element in a voltage converter

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196963A (ja) 1982-05-08 1983-11-16 Sumitomo Metal Ind Ltd 薄肉管の端面バリ取り方法
US4943902A (en) * 1987-11-23 1990-07-24 Viteq Corporation AC to DC power converter and method with integrated line current control for improving power factor
US5481178A (en) * 1993-03-23 1996-01-02 Linear Technology Corporation Control circuit and method for maintaining high efficiency over broad current ranges in a switching regulator circuit
JPH09140126A (ja) * 1995-05-30 1997-05-27 Linear Technol Corp 適応スイッチ回路、適応出力回路、制御回路およびスイッチング電圧レギュレータを動作させる方法
US5734259A (en) * 1995-09-29 1998-03-31 Cherry Semiconductor Corporation Balanced delta current method for current control in a hysteretic power supply
US6127815A (en) * 1999-03-01 2000-10-03 Linear Technology Corp. Circuit and method for reducing quiescent current in a switching regulator
US6181120B1 (en) * 1999-09-01 2001-01-30 Intersil Corporation Current mode dc/dc converter with controlled output impedance
US6188206B1 (en) * 1999-12-08 2001-02-13 Intel Corporation Dynamic hysteresis voltage regulation
US6518738B1 (en) * 2000-03-29 2003-02-11 Semiconductor Components Industries, Llc Switching regulator control circuit with proactive transient response
US6674274B2 (en) * 2001-02-08 2004-01-06 Linear Technology Corporation Multiple phase switching regulators with stage shedding
JP4364554B2 (ja) 2002-06-07 2009-11-18 株式会社ルネサステクノロジ スイッチング電源装置及びスイッチング電源システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108193U (ja) * 1983-12-21 1985-07-23 太陽誘電株式会社 トランジスタ安定化直流電源装置
JPH07222437A (ja) * 1994-02-02 1995-08-18 Matsushita Electric Ind Co Ltd スイッチング電源装置
JPH10215567A (ja) * 1997-01-29 1998-08-11 Sanyo Electric Co Ltd 電源回路
JPH11187649A (ja) * 1997-12-17 1999-07-09 New Japan Radio Co Ltd 同期型dc/dcコンバータ
JP2001025238A (ja) * 1999-07-09 2001-01-26 Sharp Corp 直流安定化電源装置
US20020140408A1 (en) 2001-03-30 2002-10-03 Hwang Jeffrey H. Technique for limiting current through a reactive element in a voltage converter

Also Published As

Publication number Publication date
KR100607807B1 (ko) 2006-08-02
EP1603220A4 (en) 2010-12-15
TW200511700A (en) 2005-03-16
ATE527746T1 (de) 2011-10-15
EP1603220B1 (en) 2011-10-05
US20050212498A1 (en) 2005-09-29
KR20060023931A (ko) 2006-03-15
CA2500507C (en) 2007-06-12
EP1603220A1 (en) 2005-12-07
TWI231643B (en) 2005-04-21
CA2500507A1 (en) 2005-03-17
US6984966B2 (en) 2006-01-10

Similar Documents

Publication Publication Date Title
WO2005025041A1 (ja) スイッチング電源
US7417413B2 (en) Ripple converter
US7403365B2 (en) Over-current detection circuit and method for power-supply device
US7002817B2 (en) DC-to-DC converter with improved transient response
US8305065B2 (en) Power supplying apparatus including a pulse-width modulation oscillator and smoothing filters
JP3571012B2 (ja) スイッチング電源装置
CN112688542B (zh) 控制电路以及应用其的开关变换器
US6683798B2 (en) Switching power supply with transfer function control circuit
US10177663B2 (en) DC-DC converting circuit and multi-phase power controller thereof
JP4020735B2 (ja) スイッチング電源
JP4020844B2 (ja) スイッチング電源
JP5151966B2 (ja) スイッチング電源
JP4020860B2 (ja) スイッチング電源
JP4364021B2 (ja) スイッチング電源
JP2009055695A (ja) スイッチング電源
US11929671B2 (en) Current-mode control for multistage interleaved resonant converters
US11916484B2 (en) Multiphase DC-DC power converter
JP4020859B2 (ja) スイッチング電源
JP4342351B2 (ja) スイッチング電源
JP2007159275A (ja) Dc−dcコンバータ
JP2005051927A (ja) スイッチング電源装置
JP2593250Y2 (ja) スイッチング電源
JPH0591734A (ja) チヨツパー方式dcdcコンバータ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1020047019293

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10519450

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2500507

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004712668

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004712668

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020047019293

Country of ref document: KR