WO2005022215A1 - セルロース誘導体を用いた位相差フィルム - Google Patents

セルロース誘導体を用いた位相差フィルム Download PDF

Info

Publication number
WO2005022215A1
WO2005022215A1 PCT/JP2004/012300 JP2004012300W WO2005022215A1 WO 2005022215 A1 WO2005022215 A1 WO 2005022215A1 JP 2004012300 W JP2004012300 W JP 2004012300W WO 2005022215 A1 WO2005022215 A1 WO 2005022215A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
cellulose
retardation film
retardation
group
Prior art date
Application number
PCT/JP2004/012300
Other languages
English (en)
French (fr)
Inventor
Hideyoshi Fujisawa
Kouichi Tanaka
Original Assignee
Nippon Kayaku Kabushiki Kaisha
Polatechno Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Kabushiki Kaisha, Polatechno Co., Ltd filed Critical Nippon Kayaku Kabushiki Kaisha
Priority to EP20040772256 priority Critical patent/EP1666930A1/en
Priority to CA 2536474 priority patent/CA2536474A1/en
Priority to JP2005513463A priority patent/JP4681452B2/ja
Priority to CNB2004800249305A priority patent/CN100445779C/zh
Priority to US10/569,928 priority patent/US7410680B2/en
Priority to TW093125751A priority patent/TW200519142A/zh
Publication of WO2005022215A1 publication Critical patent/WO2005022215A1/ja
Priority to HK06114194A priority patent/HK1093367A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/08Preparation of cellulose esters of organic acids of monobasic organic acids with three or more carbon atoms, e.g. propionate or butyrate
    • C08B3/10Preparation of cellulose esters of organic acids of monobasic organic acids with three or more carbon atoms, e.g. propionate or butyrate with five or more carbon-atoms, e.g. valerate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/10Esters of organic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • C09K2323/031Polarizer or dye
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • C09K2323/035Ester polymer, e.g. polycarbonate, polyacrylate or polyester
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/05Bonding or intermediate layer characterised by chemical composition, e.g. sealant or spacer
    • C09K2323/057Ester polymer, e.g. polycarbonate, polyacrylate or polyester
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/21Circular sheet or circular blank
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31971Of carbohydrate

Definitions

  • the present invention relates to a retardation film using a cellulose derivative useful for an image display device such as a liquid crystal display device.
  • a retardation film has a function of converting linearly polarized light into elliptically polarized light or circularly polarized light, or converting (polarizing) linear polarized light in one direction to another. By using these functions, it is possible to improve, for example, the viewing angle and contrast of a liquid crystal display device.
  • the retardation film is usually obtained by uniaxially or biaxially stretching a plastic film such as polycarbonate, polyarylate, and polyestersulfone. At this time, birefringence occurs due to the anisotropy of the refractive index generated by the stretching, and functions as a retardation film.
  • the optical performance of the retardation film is, for example, the refractive index in the slow axis direction in the front direction of the retardation film at a certain wavelength (the direction in which the refractive index becomes maximum in the plane) and the fast axis direction (the retardation in the plane). It can be determined by a retardation value obtained by a product of a difference between the refractive index in a direction perpendicular to the phase axis direction and the thickness of the retardation film. However, this retardation value has so-called wavelength dependence (wavelength dispersion characteristic) and viewing angle dependence (viewing angle characteristic), and the retardation film considers the overall performance including these various characteristics. Used for various displays.
  • the wavelength dispersion characteristics differ depending on the material used, and a retardation film made of a general polymer material has a retardation value on a longer wavelength side than 550 nm smaller than the retardation value at 550 nm.
  • the phase difference value on the shorter wavelength side than Onm is larger than the phase difference value at 55 Onm.
  • the retardation on the longer wavelength side than 550 nm is 1/4 or less of the wavelength
  • the phase difference on the shorter wavelength side than 550 nm is 1/4 or more of the wavelength.
  • an optical rotator used for a liquid crystal projector or the like is manufactured using a phase difference film (a so-called 1Z2 wavelength plate) having a phase difference of 1Z2 in wavelength
  • linearly polarized light can be rotated as linearly polarized light. Only in the wavelength region where the phase difference is approximately 1Z2, at other wavelengths, the linearly polarized light becomes elliptically polarized light, and a sufficient optical rotation effect cannot be obtained.
  • a retardation film having a wavelength dispersion characteristic that gives an equal retardation to the wavelength over the entire visible region is called an achromatic retardation film, and exhibits such a tendency (achromatic property). For example, it is necessary that the phase difference value on the long wavelength side is larger than the phase difference value at the wavelength 550 nm, and the phase difference value on the short wavelength side is smaller than the phase difference value at the wavelength 550 nm. is there.
  • a method of manufacturing such a retardation film for example, as described in Patent Document 1, a method of laminating a plurality of stretched films with their optical axes intersecting has been proposed.
  • Patent Document 2 by using cellulose acetate obtained by hydrolysis of cellulose triacetate as a polymer for producing a retardation film, a single film can cover a wide visible region. There has been proposed a retardation film that can impart the same degree of retardation to each wavelength.
  • Patent Document 4 discloses that a retardation film obtained by orienting a liquid crystal compound in a specific direction has a wavelength dispersion such that one sheet can provide the same degree of retardation to each wavelength in a wide range of the visible region. It is described as having properties.
  • viewing angle characteristics are generally controlled by a stretching method of a retardation film.
  • a general retardation film obtained by uniaxially stretching a polymer film such as polycarbonate if it is inclined in the direction of the slow axis (the direction in which the refractive index is maximized in the plane of the film), As the angle of inclination from the direction increases, the phase difference value decreases, In the case of tilting in the direction (direction perpendicular to the slow axis in the film plane), the phase difference value increases as the tilt angle from the front direction increases.
  • phase difference value changes with the inclination in this manner, the viewing angle characteristics deteriorate. Therefore, in applications where the viewing angle characteristics are problematic, it is desired that the phase difference value does not change with the inclination. If there is no change in retardation value due to the inclination, there is almost no change in retardation value regardless of the direction of the slow axis or the fast axis, so such a retardation film is desired. .
  • Patent Document 5 discloses that a shrinkable film is occupied with a film to be stretched, and the film is uniaxially stretched, thereby substantially biaxially stretching and tilting. There is disclosed a retardation film in which a change in retardation value accompanying the above is controlled.
  • Patent Document 1 Japanese Patent No. 3174367
  • Patent Document 2 JP-A-2000-137116
  • Patent Document 3 JP-A-2000-98133
  • Patent Document 4 W ⁇ 02 / 093213A1
  • Patent Document 5 Patent No. 2818983
  • Desired wavelength dispersion characteristics ⁇ birefringence differs depending on the intended use.
  • a retardation film made of a polymer having a completely different main chain which is the basic structure of the polymer. This means that a polymer must be synthesized from the main chain for each material with different chromatic dispersion, and depending on the structure, synthesis and molecular weight control may be extremely difficult. There was a problem.
  • birefringence There are two types of birefringence: positive birefringence and negative birefringence.Although the magnitude of the absolute value of birefringence can be controlled by processing conditions, the control of positive and negative is based on the polymer used. It could not be achieved without changing the structure. Further, for example, a so-called cellulose acetate described in Patent Document 2 is used. Retardation films have poor birefringence and must be added with about 10-15% of a plasticizer to enhance stretchability. Addition of a plasticizer causes a further decrease in birefringence. There was a problem.
  • the thickness must be increased, and it has not been possible to sufficiently meet the demand for thinning. Furthermore, the change in the retardation value when the retardation film is inclined in the front direction, that is, the viewing angle characteristic of the retardation film is not always good.
  • the control of the viewing angle characteristic has been achieved only by the stretching method, but the substantial biaxial stretching is performed by bonding a shrinkable film as described in Patent Document 5.
  • the method there is an increase in steps such as lamination of the shrinkable film and peeling after stretching, which causes a problem of cost increase.
  • the inventors of the present invention have conducted intensive studies to solve the above-mentioned problems.
  • the hydroxyl group was substituted by an aliphatic acyl group having 5 to 20 carbon atoms, and the degree of substitution of the hydroxyl group was per unit of cellulose per monomer unit. It has been found that a cellulose derivative having a degree of substitution of 1.00-2.99 can solve these problems without changing the basic skeleton by properly selecting the substituent and the degree of substitution.
  • the hydroxyl group of cellulose is substituted with an aliphatic acyl group having 5 to 20 carbon atoms at a substitution degree of 13 per 1 monomer unit of cellulose, and 0-2 substitution with a substituent other than the aliphatic acyl group.
  • the aliphatic acyl group having 5 to 20 carbon atoms is a linear aliphatic acyl group, and the degree of substitution of the hydroxyl group per monomer unit of cellulose is 1.53, and substitution other than the aliphatic acyl group is performed.
  • the retardation film has the following formula (1) and (2)
  • (Re750 / Re550) is the ratio of the retardation value at 750 nm to the retardation value at 550 nm, and shows a value of 0.05-1.95.
  • (Re450 / Re550) is the retardation value at 450 nm.) Is the ratio to the retardation value at a wavelength of 550 nm and shows a value of 0.05-1.95.
  • is the birefringence of the retardation film at a wavelength of 550 nm and shows a value of 0.0001-0.06
  • A1 And A2 are constants, indicating a value of ⁇ 0.06 ⁇ 0.06. When A1 is a positive value, A2 is a negative value, and when A1 is a negative value, A2 is a positive value.)
  • the retardation film of the present invention is applied to a quarter-wave retardation film constituting a reflection type and a transflective type liquid crystal display device, an antireflection film such as a mirror antireflection film of a touch panel, and a VA mode liquid crystal display device.
  • Visual compensation film such as compensation film used, light such as wave plate for polarizing beam splitter of liquid crystal projector It can be used for a film for improving the efficiency of use and a film for simultaneous compensation of phase difference of one or more wavelengths, such as a wave plate used for a pickup for writing on an optical disk.
  • the retardation film of the present invention is combined with a polarizing film to form a circularly polarizing film, an optical rotation film, an elliptically polarizing film, an optical film, and a composite optical film for an organic electorescence display device, a liquid crystal projector, a liquid crystal display device, and the like.
  • the image display device of the present invention obtained as described above can provide excellent characteristics when the contrast and the viewing angle characteristics are improved as compared with the conventional image display device.
  • FIG. 1 is a graph showing the relationship between the birefringence and retardation ratio Re 750 / Re 550 of a retardation film produced from the cellulose derivative of the present invention.
  • FIG. 2 is a graph showing the relationship between the birefringence and retardation ratio Re45 O / Re550 of a retardation film made from the cellulose derivative of the present invention.
  • FIG. 3 is a graph showing the wavelength dispersion of a retardation film produced from cellulose n-pentanate.
  • FIG. 4 is a graph showing the wavelength dispersion of a retardation film made from cellulose n xanate.
  • FIG. 5 is a graph showing the wavelength dispersion of a retardation film made of cellulose n-heptanoate acetate and cellulose n_octanate.
  • FIG. 6 is a graph showing a relationship between a birefringence index and a retardation ratio Re750ZRe550 of a retardation film made of cellulose n ⁇ tannate.
  • FIG. 7 is a graph showing a relationship between a birefringence index and a retardation ratio Re450ZRe550 of a retardation film made of cellulose n ⁇ tannate.
  • FIG. 8 is a graph showing a relationship between a birefringence index and a retardation ratio Re 75 OZRe 550 of a retardation film made of cellulose n xanate.
  • FIG. 9 is a graph showing a relationship between a birefringence index and a retardation ratio Re45 O / Re550 of a retardation film made of cellulose n xanate.
  • FIG. 10 is a graph showing a relationship between a birefringence index and a retardation ratio Re 75 O / Re 550 of a retardation film made of cellulose n-ptanate acetate.
  • FIG. 11 is a graph showing the relationship between the birefringence index and the retardation ratio Re45 O / Re 550 of a retardation film made of cellulose n-ptanoate acetate.
  • FIG. 12 is a graph showing viewing angle characteristics of retardation films used in Example 12, Example 13, and Comparative Example 2.
  • FIG. 13 is a graph showing the viewing angle characteristics of the retardation film used in Example 24 28.
  • FIG. 14 is a graph showing the wavelength dispersion of the retardation film used in Comparative Example 2.
  • O represents compound 1-1.
  • indicates compounds 1 to 4.
  • X represents compound 2-3.
  • O represents compound 1--1.
  • represents compound 1-3.
  • X represents compound 1-4. ⁇ Compounds 1--5 are shown.
  • X represents compound 2--4.
  • Cellulose that can be used as a starting material in the present invention has a structure in which one unit of the monomer represented by the formula (3) is linked, regardless of the crystal form or the degree of polymerization.
  • n represents the number of linked units, usually 10 or more, preferably 50 or more, more preferably 100 or more, the upper limit is not particularly limited, but is usually 10,000 or less, preferably 5000 or less, more preferably Is less than 2000. Specific examples include natural cellulose, powdered cellulose, crystalline cellulose, regenerated cellulose, cellulose hydrate, rayon and the like. When uniformity of quality, etc. is required, it is preferable to artificially adjust the number of linkages (number of polymerizations). In this case, n is about 100-1000, and in some cases, 150-1000. About 600 is preferable.
  • the cellulose derivative used for producing the retardation film of the present invention is obtained by substituting the hydroxyl group of cellulose with a C5-C20 aliphatic acyl group and can be represented by the following formula (4). [0021] [Formula 2]
  • R 3 is a hydrogen atom or a substituent.
  • R 1 , R 2 and R 3 may be the same or different, Not all of R 2 and R 3 are hydrogen atoms, at least one of which is a C5-C20, more preferably a C5-C16, more preferably a C5-C12 aliphatic acyl group, and the remaining groups May be substituted with another substituent.
  • the C5-C20 aliphatic acyl group can be represented by an X-CO- group, where X is n-butynole, sec-butynole, tert-butynole, n-pentynole, sec-pentynole, neopentynole, n-hexyl, sec-hexinole, cyclohexyl, n-heptinole, n-octinole, n-nonyl, n-desinole, n-pentesinole, n_dotecinole, n-tritenole, n-tetradecinole, n-pentatenole, n- Xadecyl, n-heptadecyl, n-octadecyl, n-nonadecyl and the like are more preferred, and more preferably, X is n-buty
  • the number of substituents per monomer unit (hereinafter referred to as "degree of substitution") per cell unit is preferably 1 to 3 without any problem. It is from 1.00 to 2.99, more preferably from 1.50 to 2.90.
  • the degree of substitution is preferably 2.0 to 2.8, more preferably 2.2 to 2.3 to impart achromaticity.
  • the degree of substitution is preferably 2.0-2.8, more preferably 2.4-2.6. Thereby, achromatic property can be imparted.
  • achromaticity can be imparted by setting the degree of substitution to preferably 1.0 to 2.99, more preferably 1.5 to 2.3.
  • nx when the refractive index in the stretching direction is nx, the refractive index in the direction orthogonal to the in-plane direction is ny, and the refractive index in the thickness direction is nz in the present invention, ny>
  • nz> nx and nz ⁇ ny> nx when the refractive index in the stretching direction is nx, the refractive index in the direction orthogonal to the in-plane direction is ny, and the refractive index in the thickness direction is nz in the present invention.
  • the number of substituents of the aliphatic acyl group having 5 to 20 carbon atoms is 1
  • the sum of the number of the substituents and the number of other substituents is 1.50 to 2.99, preferably 2.00 to 2.90, per monomer unit of cellulose.
  • a substituent other than the C5-C20 aliphatic acyl group a substituent other than a carbamoyl group or a C5 C20 aliphatic acyl group is preferable.
  • a group represented by a Y—CO— group or a Z—NH—CO— group is exemplified.
  • Y is not particularly limited as long as it is a group other than an unsubstituted C5-C20 aliphatic group, but specifically, a substituted or unsubstituted group excluding an unsubstituted C5-C20 aliphatic group.
  • C1 to C20 hydrocarbon residues a substituent other than the C5-C20 aliphatic acyl group.
  • the substituent in the hydrocarbon residue is not particularly limited, but may be a hydroxy group, a halogen atom, an amino group, a cyano group, a C1-C14 acyloxy group, a (C1-C14) alkyloxy group, a phenyl group, a naphthyl group, or the like.
  • examples of the substituent include a C1-C10 alkyl group.
  • Examples of the hydrocarbon residue include a butyl group, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n_butyl group, an isobutyl group, a tert-butyl group, a benzyl group, a 1-naphthylmethyl group, Trifluoromethyl group, aminomethyl group, 2-amino-ethyl group, 3-amino_n-propyl group, 4_amino-n-butyl group, or a group in which those amino groups have been further converted to amido diurethane
  • Unsaturated bonds with 1 to 10 carbon atoms such as vinyl, cyanobiphenyloxy (C3-C10) alkyl, phenylacetylenephenyl (C1-1C20) alkyl, acetylene and cinnamoyl Aliphatic group having, phenylene Honoré group, a naphthyl group, anthracenyl group, Furuoreniru group, Bifue group, include Ashinore group having an aromatic group such as 4 one Torifunoreo port methylphenyl group.
  • Z may be a C1-C10 aliphatic group which may have a substituent, and examples thereof include a vinyl group, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group and a tert-butyl group. Pentyl, neopentyl, hexyl, cyclohexyl, octyl, nonyl, decyl, benzyl, 1-naphthylmethyl, trifluoromethyl and the like.
  • These C5 C20 aliphatic acyl groups and other substituents as the case may be, may be selected from the birefringence, wavelength dispersion characteristics, viscosity, ease of orientation, and processability of the intended cellulose derivative of the present invention.
  • One or a plurality of substituents are appropriately selected according to the reactivity and the like.
  • the degree of substitution of the cellulose hydroxyl group is appropriately selected depending on the birefringence, wavelength dispersion characteristics, viscosity, ease of orientation, processability, reactivity, etc. of the target cellulose derivative of the present invention. It is.
  • the alignment state is fixed by irradiating ultraviolet rays after the alignment treatment in the presence of a photopolymerization initiator, thereby fixing the alignment state, and improving mechanical strength, reliability, and solvent resistance.
  • a retardation film having excellent properties can be obtained.
  • the polymerizable group include those in which the above Y and Z are a bullet group, that is, an atalyloyl group ⁇ a metaatariloyl group.
  • the photopolymerization initiator a compound used in an ordinary ultraviolet curable resin can be used.
  • the photopolymerization initiator examples include 2-methyl-11- [4- (methylthio) phenyl] -12-morpholinopropane-1, 1-hydroxycyclohexylphenyl ketone, and 4_ (2-hydroxyethoxy) —Phenyl (2-hydroxy_2_propyl) ketone, 1_ (4-dodecylphenyl) _2 —hydroxy—2_methylpropane-1-one, 1— (4-isopropylphenyl) —2-hydroxy_2_methyl Propane-1-one, 2-hydroxy_2_methyl-1-phenylpropane-1-one, acetophenone compounds such as ethoxy acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin Benzoin-based compounds such as isobutyl ether, 2,2-dimethoxy-2-phenylphenylphenone, Benzophen
  • auxiliaries include, for example, triethanolamine, methyljetanolamine, triisopropanolamine, n_butylamine, n-methyljetanolamine, getylaminoethyl methacrylate, Michler's ketone, 4, 4'-Jetylaminophenone, 4-dimethylaminoethyl benzoate, 4-di Examples thereof include amine compounds such as (n-butoxy) ethyl methylaminobenzoate and isoaminole 4-dimethylaminobenzoate.
  • the content of the photopolymerization initiator is preferably at least 0.5 part by weight and not more than 10 parts by weight based on 100 parts by weight of the (meth) atalylate compound (including the atalyloyl group in the polymer). Or less, more preferably about 2 to 8 parts by weight.
  • the amount of the auxiliary agent is preferably about 0.5 to 2 times the photopolymerization initiator.
  • the irradiation amount of the ultraviolet ray is preferably about 100 to 1000 mj / cm2 depending on the type of the liquid crystalline compound composition, the type and the amount of the photopolymerization initiator added, and the film thickness.
  • the atmosphere at the time of ultraviolet irradiation may be air or an inert gas such as nitrogen.
  • the film thickness is small, the film is not sufficiently cured due to oxygen damage, and in such a case, the ultraviolet light is irradiated in the inert gas. And hard to cure.
  • a reactive monomer different from the cellulose derivative can be added to the cellulose derivative for producing the retardation film of the present invention.
  • the reactive monomer is preferably a compound that can be photopolymerized by irradiation with ultraviolet light, which has a relatively small change in temperature during polymerization, in order to prevent the relaxation of the orientation of the retardation film.
  • a compound for example, (meth) acrylate B.
  • Examples of (meth) atalylate toy conjugates that can be used include, for example, trimethylolpropane tri (meth) atalylate, pentaerythritol tri (meth) atalylate, pentaerythritol tetra (meth) atalylate, and ditrimethylol propane Reaction products of tetra (meth) atarylate, dipentaerythritol norepentaaphthalate, dipentaerythritol hexaatalylate, pentaerythritol tri (meth) atalylate with 1,6-hexamethylene diisocyanate, Reaction product of pentaerythritol tri (meth) atalylate and isophorone diisocyanate, tris (xaliethyl xishethyl) isocyanurate, tris (metarixakixyl), isocyanurate, glycerol
  • the cellulose derivative of the present invention can be obtained by reacting cellulose represented by the formula (1) with a reagent corresponding to a substituent.
  • a reagent corresponding to a substituent For example, cellulose is dissolved in a mixture of lithium chloride and N, N-dimethylacetoamide, and then a carboxylic acid chloride corresponding to the substituent is added to react the cellulose.
  • One cell rate is obtained.
  • carboxylic acid chloride use carboxylic acid chloride.
  • a corresponding isocyanate ester and, if necessary, a reaction with di-n-butyltin dilaurate as a catalyst are reacted to obtain a cellulose rubamate in which the hydroxyl group of cellulose is replaced by a rubamoyl group.
  • cellulose acylate can be similarly obtained by reacting cellulose in a mixed solution of trifluoroacetic anhydride and carboxylic acid.
  • the degree of substitution of each cellulose derivative can be controlled.
  • the method using the above carboxylic acid chloride is a suitable method for obtaining cellulose acylate having a degree of substitution of about 1.0 to about 2.5.
  • the method using trifluoroacetic anhydride and carboxylic acid is a suitable method for obtaining a cellulose acylate having a degree of substitution of about 2.5 to about 3.0.
  • More strict control of the degree of substitution can be achieved by appropriately adjusting the amount of each reagent used in the reaction, the reaction temperature, the reaction time, and the like.
  • the product is precipitated by adding the reaction solution to water or methanol, and purified by reprecipitation several times.
  • the obtained solid content can be dried to obtain the cellulose derivative of the present invention.
  • Adjustment of the degree of substitution of the cellulose derivative of the present invention can be achieved by adjusting the amount of a substituent-introducing reagent used in the synthesis of the cellulose derivative.
  • the substituent-introducing reagent can be used in a range of 0.5 equivalent to 100 equivalents relative to the amount of hydroxyl groups of the cellulose used as a reaction raw material. Since the reactivity with the cellulose hydroxyl group varies depending on the type of the group-introducing reagent, the amount of the substituent-introducing reagent required to achieve a certain degree of substitution varies.
  • the reaction when obtaining cellulose n-hexanate having a degree of substitution of 2.14, the reaction is carried out for at least 4 hours using 1.05 equivalents of n-hexanoyl lactide based on the hydroxyl groups of cellulose.
  • the reaction when obtaining a cellulose n-hexanate having a degree of substitution of 2.74, the reaction is carried out for 4 hours or more using 1.50 equivalents of n-hexanoyl lactide based on the hydroxyl groups of the cellulose.
  • the production of a retardation film using the cellulose derivative of the present invention is performed by forming a cellulose derivative solution and performing an orientation treatment.
  • a cellulose derivative is dissolved in a solvent.
  • Solvents that can be used include halogenated hydrocarbon solvents such as methylene chloride and chloroform, acetates such as ethyl acetate, butyl acetate, and methyl acetate; Alcohols such as methanol, ethanol, propanol, isopropanol and benzyl alcohol; ketones such as 2-butanone, acetone, cyclopentanone and cyclohexanone; basic solvents such as benzylamine, triethylamine and pyridine; Non-polar solvents such as oxane, benzene, toluene, xylene, anisol, hexane, heptane.
  • the weight concentration of the cellulose derivative is usually 1% -99%, preferably 2.5% -80%, more preferably 5% -50%. These compounds may be used alone, or a plurality of components may be used. Further, a plasticizer may be added as required. Examples of the plasticizer include phthalic acid esters such as dimethyl phthalate ⁇ -ethyl phthalate and ethyl phthalyl ethyl cholate, trimellitic acid esters such as tris (2-ethylhexyl) trimellitate, and dimethyl adipate and dibutyl adipate.
  • phthalic acid esters such as dimethyl phthalate ⁇ -ethyl phthalate and ethyl phthalyl ethyl cholate
  • trimellitic acid esters such as tris (2-ethylhexyl) trimellitate
  • dimethyl adipate and dibutyl adipate dimethyl adipate and dibutyl a
  • Aliphatic dibasic acid esters such as tributyl phosphate and triphenyl phosphate, sebacic esters such as n-butyl sebacate, acetic acid such as glyceryl triacetate or 2-ethylhexyl acetate. Esters are mentioned. These compounds may be used alone or in combination of plural components. However, since these plasticizers may lower the birefringence as described above, they are preferably not usually used. Usually, any of the cellulose derivatives used in the present invention has good stretchability when formed into a film, so that it is not necessary to use a plasticizer. When it is necessary to fix the orientation, a polymerizable compound necessary for fixing the orientation, preferably the above-mentioned acrylic compound and a polymerization initiator, preferably a photopolymerization initiator may be added. Good.
  • the cellulose derivative solution is applied on a substrate having a flat releasable surface, and then the solvent is removed by natural drying or heat drying to obtain a transparent cellulose derivative film.
  • the retardation film of the present invention can be obtained by subjecting the film to an orientation treatment and, if necessary, fixing the orientation.
  • the term "retardation film formed from a cellulose derivative” includes a retardation film or the like in which the orientation is fixed as described above.
  • orientation treatment examples include stretch orientation and shear orientation.
  • stretching orientation general uniaxial stretching can be used.
  • the film is stretched in one direction while heating while fixing both ends of the loin derivative film.
  • both ends of the film are fixed by, for example, a nip roll, and the film is continuously stretched due to a difference in the number of rotations of both rolls.
  • the optimum stretching temperature depends on the type and degree of substitution of the substituents of the cellulose derivative.
  • ° C-200 ° C more preferably 50 ° C-about 180 ° C is good.
  • the temperature is 90 ° C and 160 ° C.
  • the stretching ratio varies depending on the type of cellulose derivative, thickness, and desired retardation value,
  • the stretching speed varies depending on the type of cellulose derivative. However, in the case of cellulose n-hexanate having a degree of hexanoyl group substitution of 2.00 to 2.99, the stretching speed is usually 5 times or less per minute. It is preferably at most 3 times stretching Z minutes, more preferably at least 2 times stretching / minute.
  • the shear orientation it is achieved by sandwiching the cellulose derivative film with a glass plate, bringing the cellulose derivative film into close contact with each other, and shifting the glass plate while heating.
  • the optimum shear temperature varies depending on the type of cellulose derivative.
  • the force S for example, in the case of cellulose n-hexanate having a hexanol group substitution degree of 2.00 to 2.99, usually 50 ° C to 200 ° C, preferably 80 ° C ° C-190 ° C, more preferably 140 ° C force 180 ° C.
  • the retardation film of the present invention thus obtained has a retardation value at a wavelength of 550 nm in the front direction of the film of about 10 to 600 ⁇ .
  • the thickness of the retardation film obtained by the present invention is preferably 30 to 150 / im, more preferably about 30 to 100 / im.
  • the stretching ratio is set at a lower value. It is particularly preferable to set the film thickness to 1.5 to 2.0 times and a thickness of 50 to 100 zm, since a substantially quarter-wave retardation film (having a retardation value of 130 to 140 nm at a wavelength of 550 nm) can be obtained.
  • cellulose n_heptanoate having a degree of substitution of 2.5 to 2.99, a degree of substitution of 1.0 to 2.99, more preferably 1.5 to 2.99, and still more preferably 2.5 to 2.99 2.
  • the film is in the form of a long roll, for example, the both ends of the film are fixed by nip rolls, and the film is continuously stretched by the difference in the number of rotations of the two rolls.
  • the above-mentioned general uniaxial stretching alone does not take measures such as laminating shrinkable films as
  • the stretching temperature at this time varies depending on the type and degree of substitution of the substituents of the cellulose derivative.
  • the optimal stretching temperature is a force S, 40 ° C to 200 ° C, more preferably about 50 ° C to 180 ° C. Les ,.
  • the stretching ratio varies depending on the type and thickness of the cellulose derivative and the desired retardation value, but is preferably from 1.05 to 5.0 times, more preferably from 1.1 to 4.0 times.
  • the thickness of the obtained retardation film is about 10-500 / im, more preferably about 20-300 / im, and still more preferably about 30-1150 / im.
  • the relationship between the birefringence and the wavelength dispersion of the cellulose derivative of the present invention and the retardation film produced from the cellulose derivative is characterized by satisfying the following formulas [1] and [2]. This relationship is illustrated in FIG. 1 and FIG.
  • Re750 / Re550 is the ratio of the phase difference at a wavelength of 750 nm to the phase difference value at a wavelength of 550 nm, and shows a value of 0.05.95.
  • Re450ZRe550 is wavelength 450 This is the ratio of the retardation value at nm to the retardation value at a wavelength of 550 nm, and shows a value of 0.05-5.95.
  • is the birefringence of the retardation film at a wavelength of 550 nm, and indicates a value of 0.0001-0.06.
  • A1 and ⁇ 2 are constants that indicate 0-06-0.06, and A1 force S is a positive value, ⁇ 2 is a negative value, and A1 is a negative value, ⁇ 2 is a positive value. .
  • the values of the constants A1 and ⁇ 2 in the formulas (1) and (2) are determined by the type of the substituent on the cellulose derivative, and the value of the birefringence ⁇ depends on the degree of substitution of the cellulose derivative. .
  • a positive birefringent film and a negative birefringent film can be produced in the range shown in FIGS.
  • the birefringence of the retardation film of the present invention prepared from the cellulose derivative can be changed from positive to negative, and at the same time, the wavelength dispersion also changes.
  • the retardation ratio of a retardation film with a film thickness of 61 / im made from cellulose ⁇ -octanate having a substitution number of 1.80 for the hydroxyl group per one monomer unit of cellulose monomer is 1.93 for Re750 / Re550 and 1.08 for Re450 / Re550.
  • delta eta is _0. 00077 A1 is _5.
  • 39 X 10- 5 ⁇ 2 becomes 6. 16 X 10- 5.
  • This film has a negative birefringence that gives a smaller retardation value as the wavelength becomes longer.
  • the retardation film of the present invention can be used for various image display devices according to its wavelength dispersion characteristics.
  • the retardation film of the present invention having the achromatic wavelength dispersion characteristic has a retardation value at 550 nm of about 137 nm, and the angular force between the absorption axis of the polarizing film and the slow axis of the retardation film is 3 ⁇ 45 °.
  • the circular polarizing film of the present invention can be obtained.
  • the circularly polarizing plate thus obtained is used, for example, in an organic electorifice luminescent display.
  • the retardation film of the present invention having the achromatic wavelength dispersion characteristic has a retardation value at 550 nm of about 275 nm, and the angular force S45 between the absorption axis of the polarizing film and the slow axis of the retardation film.
  • the optical rotatory film of the present invention can be obtained by laminating so as to have a different angle.
  • this optical rotation film in a liquid crystal projector, it is possible to uniformly change the direction of linearly polarized light over a wide wavelength range, thereby improving the light use efficiency and preventing the polarization film from deteriorating due to light absorption.
  • the contrast of the displayed image can be improved.
  • the retardation film of the present invention in which the wavelength dispersion characteristic of the retardation film matches or approximates the wavelength dispersion characteristic of the liquid crystal cell, by using an elliptically polarizing film laminated at a certain angle with the polarizing film.
  • the obtained liquid crystal display device can improve the contrast by compensating for the wavelength dependence of the phase difference of the liquid crystal cell.
  • the contrast of a displayed image can be improved due to an excellent antireflection effect at each wavelength.
  • the acrylic film is set so that the retardation film at a wavelength of 550 nm has a retardation force S50-300 nm, more preferably 100-300 ⁇ m, in which the slow axis of the retardation film of the present invention and the absorption axis or transmission axis of the polarizing film are parallel or orthogonal.
  • the optical film of the present invention can be obtained by laminating using a system or silicon-based pressure-sensitive adhesive or adhesive. By using this optical film and a retardation film that has an average refractive index power in the finolem plane 3 ⁇ 4o, a refractive index in the thickness direction of ne, and ne-no ⁇ 0, VA (vertical alignment) is achieved.
  • the viewing angle characteristics of the liquid crystal display device can be improved.
  • a film satisfying ne-no ⁇ 0 for example, a retardation film biaxially stretched in a film plane described in JP-A-2004-082714 or an ultraviolet region described in JP-A-2003-315556 is selected.
  • Rth (no_n e)
  • Rth required for Xd is preferably about 100 to 300 nm.
  • Such Rth is achieved by appropriately adjusting ne, no, and d.
  • the phase difference value in the front direction of the film at 550 nm is preferably about 0 to 50 nm.
  • Such a film having a ne-no value of 0 and a retardation film of the present invention are laminated.
  • the composite optical film of the present invention can be obtained by laminating such that the slow axis and the slow axis direction of the retardation film of the present invention are parallel or perpendicular to each other) and further laminating the polarizing film. Lamination can be carried out using an acrylic silicone-based pressure-sensitive adhesive or adhesive.
  • the retardation film of the present invention is used as a substrate, and on the retardation film (if necessary, By further forming a directing film on the retardation film and forming an oriented discotic liquid crystal layer on the alignment film or a cholesteric liquid crystal layer having a selective reflection region in the ultraviolet region, a substrate for forming a liquid crystal layer separately is formed. Becomes unnecessary, and the thickness can be reduced and the process can be simplified.
  • the retardation is about 1/4 of the wavelength (for example, the retardation for light having a wavelength of 550 nm).
  • the polarizing film is stuck so that the absorption axis of the polarizing film and the slow axis of the retardation film are at 45 ° or 135 °, which is an embodiment of the present invention.
  • a wide viewing angle circularly polarizing film can be obtained.
  • the retardation of the retardation film of the present invention is about half of the wavelength (for example, the retardation value for light having a wavelength of 550 nm is about 200 nm-300 ⁇ m)
  • the absorption axis of the polarizing film and the absorption axis of the polarizing film are determined.
  • a wide viewing angle optical rotation film according to another embodiment of the present invention (having a function of rotating the polarization axis by 90 °) Can be obtained.
  • the retardation film of the present invention having a retardation of about ⁇ of the wavelength (for example, a retardation force S for light having a wavelength of 550 nm of about 200 nm to 300 nm, more preferably 230 nm to 290 nm).
  • a uniaxially stretched polycarbonate, polyarylate, polyethersulfone, or cycloolefin polymer having a retardation of about 1/4 of the wavelength for example, the retardation value for light of 550 nm wavelength is about 100 nm 150 nm).
  • retardation films of equal strength, or other retardation films having a retardation of about 1Z2 of wavelength for example, a retardation value of about 200 nm 300 nm, more preferably 230 nm 290 nm for light having a wavelength of 550 nm.
  • Phase difference film and phase difference Is about 1/4 of the wavelength for example, the retardation value for light having a wavelength of 550 nm is about 100 nm—15 Onm
  • the retardation film of the present invention is a fast axis (nx direction). That is, by laminating using an adhesive or an adhesive so that the stretching direction) and the slow axis (stretching direction) of the other retardation film are substantially parallel to each other, another embodiment of the present invention can be realized.
  • a composite retardation film can be obtained.
  • This composite retardation film is an achromatic (having substantially the same retardation for each wavelength) and a 1/4 wavelength retardation film with a wide viewing angle.
  • the lamination surface side of the other retardation film is A pressure-sensitive adhesive layer is provided on the substrate, and the retardation film of the present invention and a roll-to-roll can be laminated, so that cost reduction accompanying simplification of the process can be realized.
  • the achromatic, wide viewing angle 1Z4 wavelength retardation film of the present invention is obtained by the same method as described above, wherein the absorption axis of the polarizing film and the slow axis or fast axis of the quarter wavelength retardation film are 45 °.
  • an achromatic, wide-viewing angle circularly polarizing film which is another form of the optical film of the present invention, can be obtained.
  • the fast axis of the retardation film of the present invention having a retardation value of about 200 nm to 300 nm, more preferably 230 nm to 290 nm for light having a wavelength of 550 nm, and the absorption axis of the polarizing film are substantially parallel.
  • the wide viewing angle polarizing film thus obtained has the following characteristics. Normally, when two polarizing films are laminated so that their absorption axes are orthogonal (crossed Nicols), light transmission can be blocked in the front direction with respect to the film surface. In a direction different from the direction, in particular, at a position tilted from the front direction to a direction showing a 45 ° direction in the film plane from the absorption axis direction, there is a problem that light escapes. This is more remarkable as the inclination angle increases.
  • the other polarizing film (which may be a normal polarizing film or a wide-viewing-angle polarizing film which is a form of the optical film of the present invention) is sandwiched between the absorption axes.
  • the absorption axes Are perpendicular to each other (crossed Nicols), and when viewed obliquely in a direction different from each absorption axis, especially at a 45 ° azimuth, almost no light is transmitted, and the same as in the front direction Can block light.
  • the retardation film of the present invention is characterized in that the surface layer is saponified by being immersed in an alkaline aqueous solution, thereby improving the hydrophilicity. Therefore, using the saponified retardation film of the present invention as a support film, it can be directly bonded to a polarizing element constituting a polarizing film by using a polybutyl alcohol-based water-soluble adhesive. Specifically, generally, a polarizing film having a configuration in which a polarizing element is sandwiched between supporting films using an adhesive is generally used.
  • polarizing element for example, after uniaxially stretching a polybutyl alcohol film on which a dichroic dye such as iodine (polyiodine ion) or a dichroic dye is adsorbed and oriented, a crosslinking treatment is performed with boric acid as needed.
  • the support film for example, a triacetylcellulose film having a surface layer having a thickness of about 40 to 100 ⁇ which has been subjected to a chemical treatment is used.
  • a polyvinyl alcohol-based film is formed in the same manner as a normal support film. It can be bonded to the polarizing element by using the above water-soluble adhesive.
  • the thus obtained thin circularly polarizing film, thin optically rotating film, thin elliptically polarizing film, thin optical film, and thin composite optical film of the present invention are obtained because the retardation film of the present invention also functions as a support for the polarizing film.
  • the thickness can be reduced and the cost can be reduced by simplifying the process.
  • the saponification treatment can be achieved by, for example, immersing in an aqueous solution of sodium hydroxide or potassium hydroxide for a certain period of time in an alkaline aqueous solution, followed by washing with water.
  • the concentration of aqueous sodium hydroxide or potassium hydroxide is 0.5-6N, the temperature is about 1060 ° C, and the immersion time is adjusted appropriately according to the degree of saponification treatment. It is.
  • the degree of saponification can be determined by measuring the contact angle of water on the treated film surface with a contact angle meter.
  • the phase difference film of the present invention may be treated so that the water contact angle is 30 ° or less, more preferably 20 ° or less, and further preferably 15 ° or less.
  • the viewing angle characteristics and contrast of the displayed image can be improved.
  • an image display device such as an organic EL (electro-luminescence) display device or a liquid crystal display device
  • the viewing angle characteristics and contrast of the displayed image can be improved.
  • an achromatic, wide viewing angle circularly polarizing film which is one form of the optical film of the present invention, is provided on the display surface side as a circularly polarizing film for preventing reflection of metal electrodes.
  • an achromatic or wide viewing angle circularly polarizing film which is an embodiment of the optical film of the present invention, is used as a circularly polarizing film. Since the high anti-reflection effect at each wavelength is maintained even when obliquely viewed only in the front direction, the contrast of the displayed image is improved, and even if the image is tilted, the same image as the front can be seen. Thus, the viewing angle characteristics can be improved.
  • a TN type or OCB (bend alignment) type liquid crystal display device compensation of a TN (twisted nematic) type liquid crystal cell is performed in a disc with a no- or even-aligned alignment as described in JP-A-2003-315556.
  • the force S that can be achieved using a film with a tick liquid crystal layer, and the viewing angle characteristics of the polarizing film itself cannot be improved.
  • a wide viewing angle polarizing film which is one form of the optical film of the present invention, together with a TN type liquid crystal cell compensation film, it is possible to further increase the viewing angle.
  • the compensation of the VA-type liquid crystal cell itself is performed by using a compensation film as described in Japanese Patent No. 2866372, Japanese Patent Application Laid-Open No. 2002-196137, and Patent No. 2587398.
  • the viewing angle characteristics of the polarizing film itself cannot be improved.
  • a wide viewing angle polarizing film which is one form of the optical film of the present invention, together with a VA liquid crystal cell compensation film, it is possible to further increase the viewing angle.
  • each liquid crystal cell such as TN type, ⁇ CB type, VA, IPS (in-plane switching) type liquid crystal cell
  • the use of a polarizing film with a wide viewing angle makes it possible to further increase the viewing angle.
  • a thin wide-viewing-angle polarizing film which is an embodiment of the thin optical film of the present invention (the retardation film of the present invention was saponified and adhered to the polarizing element with an adhesive).
  • an organic electorescence luminescent display device having a circularly polarizing film, an optical rotation film, an elliptically polarizing film, an optical film, and a composite optical film using the retardation film of the present invention, a liquid crystal projector, and a liquid crystal display
  • the image display device of the present invention including the device and the like can provide excellent characteristics when the contrast and the viewing angle characteristics are improved as compared with the conventional image display device.
  • cellulose used as a raw material in the following Examples 1-4, cellulose (manufactured by Miki Sangyo Co., Ltd.) represented by the formula (1) and having a unit number (degree of polymerization) of about 300 was used.
  • Cellulose n -pentanate was dissolved in a mixed solvent of acetone / DMSO and hydrolyzed using a 1N aqueous sodium hydroxide solution. At the same time, a blank solution containing the same amount of 1N aqueous sodium hydroxide solution in a mixed solution of acetone / DMSO was prepared. The degree of substitution was determined by back titration with 1 N sulfuric acid (n-pentanate per monomer unit of cellulose). Was found to be 2.76.
  • the degree of substitution (the number of substitutions with n-hexanate per monomer unit of cellulose) was determined in the same manner as in Example 1, and found to be 2.43.
  • the degree of substitution (the number of substitutions with n-octanate per monomer unit of cellulose) was determined in the same manner as in Example 1, and found to be 2.14.
  • Example 1 In the same manner as in Example 4, synthesis of various cellulose derivatives and measurement of the degree of substitution were performed. The degree of substitution was controlled by adjusting the amount of acid chloride added. Table 1 shows the synthesized cellulose derivatives and the degree of substitution thereof, including those synthesized in Examples 14 to 14.
  • the cellulose n-pentanate 2 synthesized in Example 5 was dissolved in cyclopentanone to obtain a 10% by weight solution of the polymer.
  • a release film was stuck on a smooth glass plate so that the surface was not disturbed, a cellulose n-pentanate solution was cast thereon, and the solution was dried to produce a transparent film of cellulose n-pentanate.
  • This film was cut into a rectangle, fixed at both ends, stretched to twice the original length under the condition of 150 ° C, cooled to room temperature, and cooled to room temperature using the retardation film of the present invention (thickness: 77 xm 550 nm). Of 132 nm).
  • phase difference at each wavelength was measured using an automatic birefringence meter (KOBRA-21ADH, manufactured by Oji Scientific), and the ratio of the phase difference at 550 nm (Re550) to the phase difference at each wavelength (Ren) was measured.
  • Phase difference ratio: Ren / Re550 was obtained, and the chromatic dispersion characteristics obtained from the results are shown in FIG.
  • the slow axis of this retardation film was parallel to the stretching direction.
  • FIG. 4 shows the wavelength dispersion characteristics of this retardation film obtained in the same manner as in Example 6. The slow axis of this retardation film was parallel to the stretching direction.
  • FIG. 5 shows the wavelength dispersion characteristics of this retardation film obtained in the same manner as in Example 6. The slow axis of this retardation film was parallel to the stretching direction.
  • FIG. 5 shows wavelength dispersion characteristics of this retardation film obtained in the same manner as in Example 6. The slow axis of this retardation film was perpendicular to the stretching direction.
  • the ratio of the phase difference value at a wavelength of 750 nm to the phase difference value at a wavelength of 550 nm is (Re750 / Re550), and the ratio of the phase difference at a wavelength of 450 nm to the alignment difference value at a wavelength of 550 nm is (Re450 / Re550), ⁇ ⁇ Birefringence at 550 nm of a polymer with oriented polymer, A1 and A2 are constants
  • a retardation film of the present invention was produced from compound 1-2 described in Example 5 (cellulose n-pentanate 2: degree of substitution 2.29) in the same manner as in Example 6.
  • the thickness was 77 / im, and the phase difference at a wavelength of 550 nm was 132 nm.
  • the birefringence was 0.00171.
  • An automatic birefringence meter (KOBRA-21ADH, manufactured by Oji Scientific Co., Ltd.) that measures the change in retardation value when the retardation film is tilted up to 50 ° in the slow axis and fast axis directions, respectively, that is, the viewing angle characteristics of the retardation film.
  • the ratio Rn / Ro of the phase difference value Rn of the wavelength 590 nm at the inclination angle n ° with respect to the phase difference value Ro of the wavelength 590 nm in the front direction (0 °) was determined.
  • the results are shown in FIG.
  • the absorption axis of a 180 / im-thick polarizing film (SKN18243T, manufactured by Polatechno) and the slow axis of the retardation film of the present invention were laminated at an angle of 45 degrees using an acrylic pressure-sensitive adhesive.
  • a circularly polarizing film of the invention was produced. The thickness of this circularly polarizing film was 277 zm.
  • this circularly polarizing film was placed on a mirror and the specular antireflection effect was observed, the circularly polarizing film of the present invention became deep black and had a good antireflection effect.
  • a retardation film of the present invention was produced in the same manner as in Example 7 from Compound 2-2 described in Example 5 (cellulose n xanate 2: degree of substitution 2.43). The thickness was 85 ⁇ 550 ⁇ m, and the retardation value at a wavelength of 139 nm was 139 nm. The birefringence was 0.00164. Next, the viewing angle characteristics of this retardation film were evaluated in the same manner as in Example 12. The results are shown in FIGS. 12 and 13. Next, this retardation film was immersed in a 6N aqueous solution of potassium hydroxide at 60 ° C. for 15 minutes, and then sufficiently washed with water.
  • a retardation film of the present invention in which the surface layer was subjected to a kneading treatment.
  • the contact angle of water on the film surface was 15 °.
  • a 100 ⁇ m-thick polarizing film having a support film on only one side of the polarizing element (manufactured by Volatechno, UDN10243T) was coated with a polybutyl alcohol-based adhesive (Nippon Synthetic Chemical Industry, NH26) on the polarizing element side.
  • the saponified retardation film of the present invention is adhered in an arrangement such that the absorption axis of the polarizing film and the slow axis of the retardation film are at 45 ° to obtain the circularly polarizing film of the present invention.
  • the thickness of the obtained circularly polarizing film was 185 ⁇ . This film was evaluated in the same manner as in Example 12, and as a result, the circularly polarizing film of the present invention became deep black and had a good antireflection effect.
  • Example 13 was the same as Example 13 except that the saponified retardation film of the present invention obtained in Example 13 was adhered in such an arrangement that the absorption axis of the polarizing film and the slow axis of the retardation film were orthogonal to each other. The same operation was performed to obtain the optical film of the present invention.
  • a retardation film of the present invention was obtained by performing the same operation as in Example 9 except that the retardation value was 140 nm. The slow axis of this retardation film was perpendicular to the stretching direction. Next, this film was subjected to a saponification treatment in the same manner as in Example 13. Next, the same operation as in Example 14 was performed except that the retardation film was bonded in an arrangement such that the absorption axis of the polarizing film and the stretching direction of the retardation film were parallel, and the same operation as in Example 14 was performed. An optical film was obtained.
  • the composite optical film of the present invention was obtained by bonding together using a system adhesive.
  • Example 15 Except for using the optical film of Example 15, the same operation as in Example 17 was performed to obtain a composite optical film of the present invention.
  • Example 16 Except for using the optical film of Example 16, the same operation as in Example 17 was performed to obtain a composite optical film of the present invention.
  • the polarizing film of a commercially available VA-type liquid crystal display was peeled off, and a polarizing film (SKN 18243T, manufactured by Bora Techno) with a polarizing element sandwiched between two triacetyl cellulose films on the backlight side, and an example on the observation side.
  • the composite optical film prepared in 17 was bonded to a liquid crystal cell using an acrylic adhesive so that the absorption axes of the polarizing films were orthogonal to each other, to obtain a liquid crystal display device of the present invention.
  • the backlight of this liquid crystal display device is turned on, and the image in the black display state is shifted from the front of the display screen by 45 ° from the direction of the absorption axis of the polarizing film. Observation at an angle showed that the black state was maintained even at an angle of 85 °, and that the viewing angle was expanded.
  • a liquid crystal display device of the present invention was obtained in the same manner as in Example 20, except that the composite optical film of Example 18 was used.
  • this liquid crystal display device was evaluated in the same manner as in Example 20, the black state was maintained up to around 70 °, but when tilted at 85 °, almost no light was emitted, and the black state could not be maintained.
  • a liquid crystal display device of the present invention was obtained in the same manner as in Example 20, except that the composite optical film of Example 19 was used.
  • this liquid crystal display device was evaluated in the same manner as in Example 20, the black state was maintained even when tilted by 85 °, and the viewing angle was expanded.
  • a mixture of 50 g of palmitic acid and 8.35 ml of trifluoroacetic anhydride was heated to 55 ° C and stirred for 20 minutes.
  • 1.32 g of cellulose manufactured by Miki Sangyo Co., Ltd.
  • a unit number (polymerization degree) of about 300 represented by the formula (1) was added to the mixture kept at 55 ° C., and stirred for 5 hours.
  • this mixture was added to 1000 ml of methanol, a precipitate was deposited. This was collected by suction filtration, and the precipitate on the filter paper was sufficiently washed with ethyl acetate, and dried in vacuo at 40 ° C. to obtain 5.84 g of a white powder of cellose n-palmitate.
  • the cellulose n-palmitate was dissolved in a mixed solvent of acetone / DMSO, and hydrolyzed using a 1N aqueous sodium hydroxide solution.
  • a solution in which a 1 N sodium hydroxide aqueous solution was added to a mixed solution of acetone ZDM S ⁇ as a blank was also stirred.
  • the degree of substitution (the number of substitution with n-palmitate per monomer unit of cellulose) was determined by back titration of both with 1 N sulfuric acid, and was 2.9.
  • cellulose n-palmitate was dissolved in black-mouthed form to obtain a 5% by weight solution.
  • a release film (Lintec, PET3811) is attached to a smooth glass plate on the side opposite to the release surface using an adhesive, and cellulose n-palmitate is placed on the release surface.
  • the solution was cast and dried at room temperature to prepare an unstretched film of cellulose n-palmitate. This film was cut into a rectangle, and both ends on the short side were fixed.At 60 ° C, one end fixed to 1.5 times the original length was uniaxially stretched in the longitudinal direction to obtain a retardation film. .
  • the thickness of this retardation film was about 80 zm.
  • the retardation value of the obtained retardation film was measured in the same manner as in Example 23, the retardation value at 590 nm was 250 nm.
  • the viewing angle characteristics of this retardation film were evaluated in the same manner as in Examples 12 and 13. The results are shown in FIG.
  • the retardation film is laminated using an adhesive so that the fast axis (stretching direction) of the retardation film is parallel to the slow axis (stretching direction) of the uniaxially stretched polycarbonate film having a retardation value of 120 nm.
  • an achromatic, wide viewing angle retardation film of the present invention was obtained.
  • the direction of the slow axis of the retardation film and the absorption axis of a polarizing film (SKN18243T, manufactured by Volatano Corporation) in which both surfaces of a polarizing element made of polybutyl alcohol in which iodine is adsorbed and oriented are sandwiched by triacetyl cellulose films.
  • the fast axis (stretching direction) of the retardation film of the present invention obtained by stretching the above-mentioned cellulose n-laurate and the absorption axis of the polarizing film (manufactured by Boratechnone clay, SKN18243T) are parallel to each other.
  • a wide viewing angle polarizing film which is one mode of the optical film of the present invention, was obtained.
  • the absorption axis of the wide-viewing-angle polarizing film of the present invention is perpendicular to the absorption axis of another polarizing film (manufactured by Boratechnone, SKN18243T) (cross nicole).
  • the layers were laminated so as to be arranged between the polarizing films. Next, it was placed on a surface light source in this state, and the degree of light emission was evaluated at a position inclined at about 50 ° from the front direction in a direction of 45 ° from each absorption axis. As a result, it was found that when the polarizing film with a wide viewing angle of the present invention was used, light was hardly observed and light was blocked at a wide viewing angle.
  • n-decanoic acid instead of palmitic acid, 49.9 g of n-decanoic acid, 33.8 ml of trifluoroacetic anhydride, and 1 unit of cellulose (manufactured by Miki Sangyo) having about 300 units (degree of polymerization) represented by the formula (1) Except for using 32 g, 3.77 g of cellulose n-decanoate was obtained in the same manner as in Example 23. Next, the degree of substitution was determined by the same operation as in Example 23, and the degree of substitution was 2.9. An unstretched film of cellulose n-decanoate was produced from this cellulose n-decanoate in the same manner as in Example 23.
  • the retardation film of the present invention was obtained in the same manner as in Example 23 except that the stretching temperature was set to 50 ° C. and the uniaxial stretching was performed twice as long as the original length.
  • the thickness of this retardation film was about 95 zm.
  • the retardation value at 590 nm was 267 nm.
  • the rate nz l. 4760.
  • the viewing angle characteristics of this retardation film were evaluated in the same manner as in Example 1213. The results are shown in FIG.
  • n-octylic acid instead of palmitic acid, use 48 ml of n-octylic acid, 35.4 ml of trifluoroacetic anhydride, and 1.38 g of cellulose (manufactured by Miki Sangyo Co., Ltd.) having a unit number (degree of polymerization) represented by the formula (1) of about 300. Except for that, 3.16 g of cellulose n-octanoate was obtained in the same manner as in Example 23. Next, the degree of substitution was determined by the same operation as in Example 23, and the degree of substitution was 2.9. An unstretched film of cellulose n-octanoate was prepared from this cellulose n-octanoate in the same manner as in Example 23.
  • a retardation film of the present invention was obtained in the same manner as in Example 23 except that the stretching temperature was 60 ° C. and the film was uniaxially stretched to 2.0 times the original length.
  • the thickness of this retardation film was about 95 zm.
  • the retardation value at 590 nm was 370 nm.
  • the viewing angle characteristics of this retardation film were evaluated in the same manner as in Example 1213. The results are shown in FIG.
  • Example 26 The procedure of Example 26 was repeated except that the cellulose n-butanate prepared in Example 26 was used, the stretching temperature was 55 ° C, the stretching magnification was 3.0 times, and the thickness of the obtained retardation film was 77 ⁇ .
  • a retardation film of the present invention was obtained.
  • the retardation value of the obtained retardation film was measured in the same manner as in Example 23, the retardation value at 590 nm was 452 nm.
  • the viewing angle characteristics of this retardation film were evaluated in the same manner as in Example 1213. The results are shown in FIG.
  • n-heptanoic acid instead of palmitic acid, use 48 ml of n-heptanoic acid, 39.6 ml of trifluoroacetic anhydride, and 1.55 g of cellulose (manufactured by Miki Sangyo Co., Ltd.) having a unit number (degree of polymerization) represented by the formula (1) of about 300. Except for the above, a procedure was performed in the same manner as that of Example 23 to obtain 3.86 g of cellulose n-ptanoate. Next, when the degree of substitution was determined by the same operation as in Example 23, the degree of substitution was 2.9. I got it. An unstretched film of cellulose n-heptate was prepared from this cellulose n-peptate in the same manner as in Example 23.
  • the retardation film of the present invention was obtained by the same operation as in Example 23 except that the stretching temperature was 80 ° C. and the film was uniaxially stretched to 2.0 times the original length.
  • the thickness of this retardation film was about 95 zm.
  • the retardation value at 590 nm was 266 nm.
  • the rate nz l. 4750.
  • the viewing angle characteristics of this retardation film were evaluated in the same manner as in Example 1213. The results are shown in FIG.
  • a circularly polarizing film was prepared in the same manner as in Example 12 except that a 1/4 wavelength retardation film made of polycarbonate (the retardation value at a wavelength of 550 nm was 141 nm) was used, and its antireflection effect was evaluated. Upon observation, it turned dark purple and did not have a sufficient antireflection effect.
  • FIG. 14 shows the wavelength dispersion characteristics of the retardation film. Further, viewing angle characteristics of this retardation film were evaluated in the same manner as in Example 12-13. The results are shown in FIG. At an inclination angle of 50 degrees, the numerical values of the phase difference ratio (Rn / Ro) are more than 1 apart, indicating that the viewing angle characteristics are not sufficient.
  • a liquid crystal display device was produced in the same manner as in Example 20, except that a polarizing film (SKN18243T, manufactured by Volatechno) in which a polarizing element was sandwiched between two triacetyl cellulose films was also used on the observation surface side.
  • a polarizing film (SKN18243T, manufactured by Volatechno) in which a polarizing element was sandwiched between two triacetyl cellulose films was also used on the observation surface side.
  • a triacetyl cellulose film (manufactured by Fuji Photo Film Co., Ltd., TD80UF, thickness: about 80 ⁇ m) was uniaxially stretched in the same manner as in Example 23 until the length became 1.8 times the original length at 210 ° C.
  • the thickness of the obtained retardation film was 77 zm.
  • the rate nz 1.4874.
  • this triacetyl cellulose film was purified to remove the plasticizer ultraviolet absorber, and the degree of substitution was determined by the same operation as in Example 23. The degree of substitution was 2.9.
  • Example 24 The same operation as in Example 24 was performed except that two polarizing films (SKN18243T, manufactured by Boratechno) were used instead of the wide-viewing angle polarizing film which is an embodiment of the optical film of the present invention in Example 24.
  • the degree of light passage when the absorption axes were arranged orthogonally was evaluated. As a result, it was found that the light was almost completely lost, and the effect of blocking the light was drastically reduced.
  • the retardation film of the present invention obtained from the cellulose derivative of the present invention synthesized in Examples 15 to 15 was obtained by changing the type of the substituent and the degree of substitution as shown in Examples 6-11. It can be seen that the positive and negative wavelength dispersion characteristics and birefringence can be arbitrarily controlled. Further, from Examples 12 and 13 and Comparative Example 1, the circularly polarizing film produced using the retardation film having the achromatic wavelength dispersion characteristic of the present invention has an excellent antireflection effect as compared with Comparative Example 1. You can see that they have.
  • the retardation film of the present invention has a larger birefringence than the retardation film of Comparative Example 2 when the same 1Z4 wavelength retardation film is used. It can be seen that the thickness can be reduced. Further, it can be seen that the change in retardation value when tilted is smaller than that in Comparative Example 2, and the retardation film is more excellent in viewing angle characteristics. Further, by using the retardation film and the polarizing film of the present invention as shown in Examples 14 to 19, the optical film of the present invention and the composite optical film can be obtained. Further, it can be seen that the viewing angle of the liquid crystal display device of the present invention having the composite optical film of the present invention is larger than that of Comparative Example 3.
  • Examples 20 and 22 In comparison with Example 21, it can be seen that Examples 20 and 22 are more excellent in the effect of expanding the viewing angle, and that the retardation value of the retardation film of the present invention at 550 nm is in a more preferable range.
  • the retardation film of the present invention is uniaxially stretched because of nz>ny> nx or ny>nz> nx. It has a biaxial property.
  • the achromatic and wide viewing angle circularly polarizing films of the present invention using the retardation film of the present invention and the achromatic and wide viewing angle of the present invention using the wide viewing angle retardation film have an antireflection effect.
  • the wide viewing angle polarizing film which is an embodiment of the optical film of the present invention, is different from Comparative Example 5 in that the polarizing film and the other polarizing film are arranged such that their absorption axes are orthogonal (crossed Nicols). It can be seen that even when the frontal force is inclined in a direction different from the absorption axis, the light leakage is reduced, and the viewing angle characteristics of the polarizing film are improved.
  • the biaxial retardation film of the present invention obtained in Example 25 28 has a viewing angle characteristic of the retardation film in which the change in retardation value when tilted is smaller than that in Example 13. Is very excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Liquid Crystal (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

 本発明は炭素数が5から20の少なくとも1種類の脂肪族アシル基により水酸基が置換され、該水酸基の置換度が1~3であるセルロース誘導体から形成されたフィルムを配向処理して得られた位相差フィルムに関するものであり、膜原料の該セルロース誘導体を適宜選択して位相差フィルムを作製することにより、種々の波長分散特性、複屈折の正負、視野角特性を有する位相差フィルムを得ることができるもので、特にアクロマティック位相差フィルム及び複屈折性の高い位相差フィルム等を得ることができる。

Description

明 細 書
セルロース誘導体を用レ、た位相差フィルム 技術分野
[0001] 本発明は、液晶表示装置等の画像表示装置に有用なセルロース誘導体を用いた 位相差フィルムに関する。
背景技術
[0002] 位相差フィルムは、直線偏光を楕円偏光や円偏光に変換したり、ある方向にある直 線偏光を別の方向に変換 (旋光)したりすることができる機能を有しており、これらの 機能を利用することにより、例えば液晶表示装置の視野角やコントラスト等を改善す ること力 Sできる。この位相差フィルムは、通常ポリカーボネート、ポリアリレート、ポリエ 一テルサルフォン等のプラスチックフィルムを一軸または二軸延伸することによって得 られる。このとき、延伸によって発生する屈折率の異方性によって複屈折が発生し、 位相差フィルムとして機能する。位相差フィルムの光学的性能は、例えば、ある波長 における位相差フィルム正面方向での遅相軸方向(面内で屈折率が最大となる方向 )の屈折率と進相軸方向(面内で遅相軸方向と直交する方向)の屈折率の差と位相 差フィルムの厚さの積によって求められる位相差値によって決めることができる。しか しながら、この位相差値にはいわゆる波長依存性 (波長分散特性)と視野角依存性( 視野角特性)があり、位相差フィルムはこれら諸特性を含めた総合的な性能を考慮し て種々のディスプレイに使用される。
[0003] 波長分散特性は用いる材質によって異なっており、一般的なポリマーを材料に作 成された位相差フィルムは、 550nmよりも長波長側の位相差値が 550nmにおける 位相差値より小さく、 55 Onmよりも短波長側の位相差値が 55 Onmにおける位相差値 よりも大きい。
[0004] したがって 1/4位相差フィルムを作製するために 550nmにおける位相差値を 137 . 5nmに合わせたとしても、 550nmよりも長波長側の位相差は波長の 1/4以下にな り、 550nmよりも短波長側の位相差は波長の 1/4以上になる。
[0005] このことは、例えば、その位相差が波長の 1/4になるような位相差フィルム(レヽわゆ る 1/4波長板)を用いて反射防止フィルターを作製した場合、反射防止効果が十分 に得られるのは、位相差が略 1/4となるような波長領域のみで、それ以外の波長で は円偏光が楕円偏光となってしまい、結果として十分な反射防止効果が得られない という問題を生じてしまう。また、その位相差が波長の 1Z2になるような位相差フィル ム(いわゆる 1Z2波長板)を用いて液晶プロジェクタ一等に用いられる旋光子を作製 した場合、直線偏光を直線偏光として回転できるのは位相差が略 1Z2となるような波 長領域のみで、それ以外の波長では直線偏光が楕円偏光となってしまい、十分な旋 光効果が得られなくなってしまう。
[0006] 可視領域全域に渡って波長に対して等しい位相差を付与するような波長分散特性 を有する位相差フィルムはァクロマティック位相差フィルムと呼ばれ、そのような傾向( ァクロマティック性)を示すには、例えば、波長 550nmにおける位相差値よりも長波 長側の位相差値の方が大きぐ波長 550nmにおける位相差値よりも短波長側の位 相差値の方が小さレ、ことが必要である。そのような位相差フィルムを作製する方法とし ては、例えば特許文献 1に記載されているように、複数の延伸フィルムをそれらの光 軸を交差させて積層する方法が提案されている。また、特許文献 2に記載されている ように、位相差フィルムを作製するためのポリマーにセルローストリアセテートの加水 分解にて得られるセルロースアセテートを用いることで、フィルム 1枚で可視領域の広 い範囲で各波長に同程度の位相差を付与できる位相差フィルムが提案されている。
[0007] 特許文献 3に記載されているようなラビング処理基板上での配向が可能な液晶性 化合物およびそれらを複数混合した組成物を用いて、該化合物を特定の方向に配 向させて位相差フィルムを作製する手法も知られている。また、特許文献 4には液晶 性化合物を特定の方向に配向させて得られた位相差フィルムが、 1枚で可視領域の 広い範囲で各波長に同程度の位相差を付与できるような波長分散特性を有すること が記載されている。
[0008] 一方、視野角特性は、一般的に位相差フィルムの延伸方法によって制御される。ポ リカーボネートなどのような高分子フィルムを一軸延伸して得られる一般的な位相差 フィルムの場合、遅相軸(フィルム面内で屈折率が最大となる方向)方向に傾斜した 場合は、正面方向からの傾斜角が大きくなるほど位相差値は小さくなり、逆に進相軸 (フィルム面内で遅相軸と直交する方向)方向に傾斜した場合は、正面方向からの傾 斜角が大きくなるほど位相差値は大きくなる。この傾向はポリアリレート、ポリエーテル サルフォン、ゼォノア(日本ゼオン性)やアートン JSR製)といったシクロォレフインポ リマー等、他の一般的な一軸延伸した位相差フィルムに共通して見られる傾向である 。このように傾斜に伴い位相差値が変化すると、視野角特性が悪くなるため、視野角 特性が問題となる用途においては傾斜に伴う位相差値変化が無いことが望まれる。 傾斜に伴う位相差値変化が全く無い場合、遅相軸方向、進相軸方向、いずれの方 向に傾斜しても位相差値の変化はほとんど無くなるので、そのような位相差フィルム が望まれる。
[0009] この問題を解決するため、特許文献 5には、延伸されるフィルムに収縮性フィルムを 貝占り合わせ、これを一軸延伸することにより、実質的に二軸延伸を行レ、、傾斜に伴う 位相差値の変化を制御した位相差フィルムが開示されている。
[0010] 特許文献 1 :特許第 3174367号公報
特許文献 2 :特開 2000— 137116号公報
特許文献 3 :特開 2000— 98133号公報
特許文献 4 :W〇02/093213A1
特許文献 5 :特許第 2818983
発明の開示
発明が解決しょうとする課題
[0011] 所望とする波長分散特性ゃ複屈折性は、 目的とする用途によって異なる。しかしな がら、これまでは所望とする波長分散特性を得るためにはポリマーの基本構造である 主鎖部分が全く異なるポリマーからなる位相差フィルムを使用しなければならなかつ た。このことは、波長分散の異なる材料ごとにポリマーを主鎖部分から合成しなけれ ばならず、構造によってはその合成、分子量制御が極めて困難となる場合があるた め、任意に波長分散を選べないという問題があった。また、複屈折性は正の複屈折 性と負の複屈折性とがあるが、複屈折の絶対値の大きさは加工条件で制御できるも のの、正と負の制御は用いるポリマーの基本構造を変えなければ達成できなかった。 また、例えば特許文献 2に記載されているようないわゆるセルロースアセテートを用い た位相差フィルムは、複屈折性が乏しい上に、延伸性を高めるために可塑剤を 10— 15%程度添加しなければならず、可塑剤の添加はさらなる複屈折性の低下を引き起 こすという問題があった。このため、例えば、 1/4波長位相差フィルムとして必要な位 相差値を得る場合には、厚さを厚くしなければならず、薄型化への要望には十分応 えることができなかった。さらに、位相差フィルムを正面方向力 傾斜させた際の位相 差値の変化、いわゆる位相差フィルムの視野角特性も必ずしも良いとは言えなかつ た。
[0012] 一方、視野角特性の制御はこれまで、延伸方法でしか達成できなかったが、特許文 献 5に記載されているような収縮性フィルムを貼り合わせて実質的な二軸延伸を行う 方法では、収縮性フィルムの貼り合せや、延伸後の剥離といった工程の増加があり、 それに伴うコストアップの問題を引き起こしていた。
課題を解決するための手段
[0013] 本発明者等は前記の課題を解決すべく鋭意研究の結果、炭素数が 5から 20の脂 肪族ァシル基により水酸基が置換され、水酸基の置換度がセルロース 1モノマーュニ ット当りの置換度が、 1. 00-2. 99であるセルロース誘導体は置換基と置換度を適 当に選択することにより、基本骨格を変えることなぐこれらの問題を解決しうることを 見出した。即ち、該セルロースの置換基の構造や置換度を変えることにより、波長分 散特性および複屈折性の正負を任意に制御できること、該セルロース誘導体の選択 により複屈折性の高いフィルム得ることができることから厚さを薄くできること、更に、 該セルロース誘導体の選択により、特許文献 5に記載されているような実質的な二軸 延伸を行うことなしに、一軸延伸のみで二軸性が発現し、視野角特性をも制御した位 相差フィルムが得られることを見出し、本発明に至った。
[0014] 即ち、本発明は、
(1)セルロースの水酸基が炭素数が 5から 20の脂肪族ァシル基により、セルロース 1 モノマーユニット当り 1一 3の置換度で置換され、該脂肪族アシノレ基以外の置換基で 0— 2の置換度で置換されたセルロース誘導体から形成された位相差フィルム、
(2)炭素数が 5から 20の脂肪族アシノレ基による水酸基の置換度がセルロース 1モノ マーユニット当り 1 · 00-2. 99である上記(1)に記載の位相差フィルム、 (3)炭素数が 5から 20の脂肪族ァシル基以外の置換基が該脂肪族ァシル基とは構 造の異なる脂肪族ァシル基、芳香族ァシル基、アルキル力ルバモイル基、芳香族力 ルバモイル基、トラン骨格を有するァシル基、ビフヱニル骨格を有するァシル基又は 重合性基のいずれかであり、該脂肪族ァシル基とそれ以外の置換基でのセルロース 1モノマーユニット当りの水酸基の合計置換度が 1. 50-2. 99である上記(1)に記 載の位相差フィルム、
(4)炭素数が 5から 20の脂肪族アシノレ基が直鎖の脂肪族ァシル基で、セルロース 1 モノマーユニット当りの水酸基の置換度が 1. 5 3であり、該脂肪族ァシル基以外の 置換基が炭素数 1一 4のァシル基であり、その置換度が 0— 1. 5である上記(1)に記 載の位相差フィルム、
(5)炭素数 1一 4のアシノレ基がァセチル基である上記(4)に記載の位相差フィルム、
(6)該位相差フィルムが下記式(1)及び(2)
(Re750/Re550)=Al/An+l (1)
(Re450/Re550)=A2/An+l (2)
(式中(Re750/Re550)は波長 750nmにおける位相差値の波長 550nmにおける 位相差値に対する比率であり 0· 05-1. 95の値を示す。 (Re450/Re550)は波長 450nmにおける位相差値の波長 550nmにおける位相差値に対する比率であり 0. 05-1. 95の値を示す。 Δηは位相差フィルムの波長 550nmにおける複屈折であり 、 0. 0001—0· 06の値を示す。 A1および A2は定数で- 0· 06—0. 06の値を示し、 A1が正の値のとき A2は負の値であり、 A1が負の値のとき A2は正の値になる。 ) の関係を満たすことを特徴とする上記(1)又は(2)に記載の位相差フィルム、
(7)上記(1)ないし(6)に記載の位相差フィルムと他の位相差フィルムとを積層してな る、複合位相差フィルム、
(8)上記(1)ないし(7)に記載の位相差フィルム若しくは複合位相差フィルムと偏光 フィルムを積層してなる、円若しくは楕円偏光フィルム又は旋光フィルム、
(9)上記(1)ないし (6)に記載の位相差フィルムの遅相軸と偏光フィルムの吸収軸ま たは透過軸とが平行または直交になるよう積層してなる光学フィルム、
(10)フィルム面内の平均屈折率を ne、厚さ方向の屈折率を noとするとき、 ne— no< 0、厚さを dとするとき、 Rth= (no-ne) X dで求められる Rthが 100— 300nm 550 nmにおけるフィルム正面方向の位相差値が 0— 50nmであるフィルム、上記(6)また は(7)のいずれか 1項に記載の位相差フィルム及び偏光フィルムが積層され、かつそ の位相差フィルムの遅相軸と偏光フィルムの吸収軸または透過軸とが平行または直 交になるよう積層された複合光学フィルム、
(11)偏光フィルムを構成する偏光素子と上記(6)または(7)のレ、ずれか 1項に記載 の位相差フィルムとが直接積層されてレ、ることを特徴とする上記(8)なレ、し(10)のい ずれか 1項に記載の円若しくは楕円偏光フィルム又は旋光フィルムまたは光学フィル ム、
(12)上記(6)または(7)のレ、ずれ力 4項に記載の位相差フィルムあるいは上記(6) ないし(11)のいずれ力、 1項に記載の円若しくは楕円偏光フィルムまたは旋光フィル ムまたは光学フィルムまたは複合光学フィルムを備えてなる画像表示装置、
(13)画像表示装置が液晶表示装置である、上記(12)に記載の画像表示装置、
(14) n—ペンタノィル基の置換度が 2. 0—2. 98であるセルロース n—ペンタネート、
(15) n キサノィル基の置換度が 2· 0—2. 9であるセルロース n キサネート、
( 16) n—ヘプタノィル基の置換度が 1. 5—2. 9であるセルロース n プタネート、
( 17) n—ヘプタノィル基の置換度が 1. 5-2. 8、ァセチル基の置換度が 0. 02— 1. 0であるセルロース n プタネートアセテート
( 18) n—オタタノィル基の置換度が 1. 0-2. 9であるセルロース n—ォクタネート、 に関する。
発明の効果
本発明のセル口ース誘導体およびこれを含有する樹脂組成物を用レ、て位相差フィ ルムを作製することにより、波長分散、複屈折の正負、視野角特性を制御することが できる。また、用いるセルロース誘導体によっては、十分な複屈折性を有するために 厚さを薄くできる。さらに、本発明の位相差フィルムは、反射型および半透過型液晶 表示装置を構成する 1/4波長位相差フィルム、タツチパネルの鏡面反射防止フィル ムのような反射防止フィルム、 VAモード液晶表示装置に用いる補償フィルムのような 視覚補償フィルム、液晶プロジェクターの偏光ビームスプリツター用波長板のような光 利用効率向上用のフィルム、光ディスクの書き込み用ピックアップに用いる波長板の ような 1波長または 2波長以上の位相差同時補償フィルムに用いることができる。本発 明の位相差フィルムは偏光フィルムと組み合わせて、円偏光フィルム、旋光フィルム、 楕円偏光フィルム、光学フィルム、複合光学フィルムとして、有機エレクト口ルミネッセ ンス型表示装置、液晶プロジェクター、液晶表示装置等に用いることができ、こうして 得られた本発明の画像表示装置は従来の画像表示装置に比べてコントラストや視野 角特性が向上するといつた優れた特性を付与できる。
図面の簡単な説明
[図 1]図 1は本発明のセルロース誘導体より作製した位相差フィルムの複屈折と位相 差比 Re 750/Re 550の関係を示したグラフ
[図 2]図 2は本発明のセルロース誘導体より作製した位相差フィルムの複屈折と位相 差比 Re45 O/Re 550の関係を示したグラフ
[図 3]図 3はセルロース n—ペンタネートより作製した位相差フィルムの波長分散を示し たグラフ
[図 4]図 4はセルロース n キサネートより作製した位相差フィルムの波長分散を示し たグラフ
[図 5]図 5はセルロース n—ヘプタネートアセテートおよびセルロース n_ォクタネートよ り作製した位相差フィルムの波長分散を示したグラフ
[図 6]図 6はセルロース n ^ンタネートより作製した位相差フィルムの複屈折率と位相 差比 Re750ZRe550の関係を示したグラフ
[図 7]図 7はセルロース n ^ンタネートより作製した位相差フィルムの複屈折率と位相 差比 Re450ZRe550の関係を示したグラフ
[図 8]図 8はセルロース n キサネートより作製した位相差フィルムの複屈折率と位 相差比 Re 75 OZRe 550の関係を示したグラフ
[図 9]図 9はセルロース n キサネートより作製した位相差フィルムの複屈折率と位 相差比 Re45 O/Re 550の関係を示したグラフ
[図 10]図 10はセルロース n プタネートアセテートより作製した位相差フィルムの複 屈折率と位相差比 Re 75 O/Re 550の関係を示したグラフ [図 11]図 11はセルロース n プタネートアセテートより作製した位相差フィルムの複 屈折率と位相差比 Re45 O/Re 550の関係を示したグラフ
[図 12]図 12は実施例 12、実施例 13および比較例 2で用レ、た位相差フィルムの視野 角特性を示したグラフ
園 13]図 13は実施例 24 28で用いた位相差フィルムの視野角特性を示したグラフ 園 14]図 14は比較例 2で用いた位相差フィルムの波長分散を示したグラフ
符号の説明
図 3
O 化合物 1 - 1を示す。
□ 化合物 1 - 2を示す。
X 化合物 1 3を示す。
△ 化合物 1 - 4を示す。
〇 化合物 1 5を示す。
図 4
◊ 化合物 2- -1 示す。
□ 化合物 2- -2を示す。
X 化合物 2- -3を示す。
Δ 化合物 2- - 4を示す。
図 5
◊ 化合物 3- - 1を示す。
□ 化合物 3- - 2を示す。
X 化合物 3- - 3を示す。
Δ 化合物 4- -1を示す。
図 6及び図 7
O 化合物 1- -1を示す。
□ 化合物 1- -2を示す。
△ 化合物 1- -3を示す。
X 化合物 1- -4を示す。 氺 化合物 1- -5 示す。
図 8及び図 9
O 化合物 2- -1を示す。
□ 化合物 2- -2を示す。
Δ 化合物 2- -3を示す。
X 化合物 2- -4を示す。
図 10及び図 11
□ 化合物 3- -1を示す。
◊ 化合物 3- -2を示す。
Δ 化合物 3- -3を示す。
図 12
〇 実施例 12における位相差フィルムを進相軸方向へ傾斜した場合を示す。 □ 実施例 12における位相差フィルムを遅相軸方向へ傾斜した場合を示す。
X 実施例 13における位相差フィルムを進相軸方向へ傾斜した場合を示す。 △ 実施例 13における位相差フィルムを遅相軸方向へ傾斜した場合を示す。 秦 比較例 2における位相差フィルムを進相軸方向へ傾斜した場合を示す。 ▲ 比較例 2における位相差フィルムを遅相軸方向へ傾斜した場合を示す。 図 13
國 実施例 13における位相差フィルムを進相軸方向へ傾斜した場合を示す。 □ 実施例 13における位相差フィルムを遅相軸方向へ傾斜した場合を示す。
X 実施例 24における位相差フィルムを進相軸方向へ傾斜した場合を示す。 - 実施例 24における位相差フィルムを遅相軸方向へ傾斜した場合を示す。 • 実施例 25における位相差フィルムを進相軸方向へ傾斜した場合を示す。 〇 実施例 25における位相差フィルムを遅相軸方向へ傾斜した場合を示す。 ♦ 実施例 26における位相差フィルムを進相軸方向へ傾斜した場合を示す。 O 実施例 26における位相差フィルムを遅相軸方向へ傾斜した場合を示す。 ▲ 実施例 27における位相差フィルムを進相軸方向へ傾斜した場合を示す。 △ 実施例 27における位相差フィルムを遅相軸方向へ傾斜した場合を示す。 * 実施例 28における位相差フィルムを進相軸方向へ傾斜した場合を示す。
+ 実施例 28における位相差フィルムを遅相軸方向へ傾斜した場合を示す。
図 14
X 比較例 2を示す。
発明を実施するための最良の形態
[0018] 本発明を詳細に説明する。
本発明において出発原料として使用しうるセルロースとしては、結晶形態や重合度に 関わらず、式(3)に示すモノマー 1ユニットが連結した構造、
[0019] [化 1]
Figure imgf000011_0001
即ち、 D—グノレコピラノースが 4結合で連結した構造であれば用いることができ る。上記式において、 nはユニットの連結数を示し、通常 10以上、好ましくは 50以上、 より好ましくは 100以上であり、上限は特に制限はないが通常 10000以下、好ましく は 5000以下、よりこのましくは 2000以下である。具体的には天然セルロース、粉末 セルロース、結晶セルロース、再生セルロース、セルロース水和物又はレーヨン等が 挙げられる。また、品質の均一性等が要求されるときには人工的に連結数 (重合数) が調整されたものを用いるのが好ましぐその場合には、 nが 100— 1000程度、場合 によっては 150— 600程度のものが好ましい。
[0020] 本発明の位相差フィルム作製に用いるセルロース誘導体はセルロースの水酸基を C5— C20脂肪族ァシル基で置換したもので、下記式 (4)で表わすことができる。 [0021] [化 2]
Figure imgf000012_0001
[0022] 式 (4)中 nは前記と同じであり、
Figure imgf000012_0002
及び R3は水素原子又は置換基である。 R1 、 R2及び R3は同じであっても異なっていても良いが、
Figure imgf000012_0003
R2及び R3の全てが水素原 子ということは無ぐ少なくとも 1つが C5— C20、より好ましくは C5— C 16、さらに好ま しくは C5— C 12の脂肪族ァシル基であり、残りの基はその他の置換基で置換されて レ、てもよい。 C5— C20脂肪族ァシル基は、 X— CO—基で表すことができ、 Xは n—ブ チノレ、 sec-ブチノレ、 tert-ブチノレ、 n—ペンチノレ、 sec-ペンチノレ、ネオペンチノレ、 n—へ キシル、 sec-へキシノレ、シクロへキシル、 n—へプチノレ、 n—ォクチノレ、 n—ノニル、 n—デ シノレ、 n—ゥンテシノレ、 n_ドテシノレ、 n—トリテンノレ、 n—テトラデシノレ、 n—ペンタテンノレ 、 n—へキサデシル、 n—へプタデシル、 n—ォクタデシル、 n—ノナデシル等が挙げられ 、より好ましくは、 Xが n—ブチル、 sec-ブチル、 tert-ブチル、 n—ペンチル、 sec-ペンチ ノレ、ネオペンチノレ、 n_へキシノレ、 sec-へキシノレ、シクロへキシノレ、 n_へプチノレ、 n—ォ クチル、 n—ノニル等である。また、直鎖の C5— C20脂肪族ァシル基は好ましいもの の一つであり、上記 Xとして例示したアルキル基のうち、直鎖のアルキルに含まれるも のがより好ましい。
[0023] 上記 C5— C20脂肪族アシノレ基で置換されたセルロース誘導体において、セル口 ース 1モノマーユニットあたりの置換基数(以下置換度という)は、 1一 3であれば支障 fまなく、通常 1. 00—2. 99であり、より好ましく fま 1. 50—2. 90である。特 (こ、セノレ口 ース n ^ンタネートの場合、置換度は好ましくは、 2. 0- 2. 8、より好ましくは、 2. 2 一 2· 3とすることによりァクロマティック性を付与することができる。セルロース n—へキ サネートの場合、置換度は好ましくは、 2. 0- 2. 8、より好ましくは 2. 4- 2. 6とする ことによりァクロマティック性を付与できる。セルロース n—へプタネートの場合、置換度 は好ましくは 1. 0— 2. 99、より好ましくは 1. 5— 2. 3とすることによりァクロマティック 性を付与できる。
[0024] また、セルロース n—へプタネートの置換度が 2. 5-2. 99であれば、通常のー軸延 伸を行なうことにより、フィルム面内の延伸方向(あるいはフィルム面内でそれと直交 する方向)と厚さ方向の 2方向に配向した二軸性を有するフィルムを得ることができる (以後これを二軸性が発現するともいう)。この二軸性は、本発明の場合、延伸方向の 屈折率が nx、それと面内で直交する方向の屈折率が ny、厚さ方向の屈折率を nzと するとき、 ny>nz >nx、 nz≥ny >nxとなることを特徴とする。セルロース n_オタタネ ート、セノレロース n—ノナネート、セノレロース n—デカネート、セノレロース n_ゥンデカネ ート、セノレロース n_ドデカネート、セノレロース n_トリデカネート、セノレロース n—テトラデ 力ネート、セノレロース n—ペンタテカネート、セノレロース n—へキサテ力ネート、セノレロー ス n—ヘプタデカネート、セルロース n—ォクタデカネート、セルロース n—ナノデカネー ト、セルロース n—エイコサネート等炭素数 8から 20のァシル基で置換されたセルロー ス、より好ましくはセルロース n—ォクタネート、セルロース n—ノナネート、セルロース n ーデカネート、セノレロース n—ゥンデ力ネート、セノレロース n—ドデカネート、セノレロース n —トリデカネート、セルロース n—テトラデカネート、セルロース n—ペンタデカネート、セ ルロース n—へキサデ力ネート等の炭素数 8— 16のァシル基で置換されたセルロース の場合、置換度力 M列えば 1. 0— 2. 99、好ましくは 1. 5— 2. 99、より好ましくは 2. 5 一 2· 99であるとき二軸性が発現する。
[0025] この二軸性は、本発明の場合、延伸方向の屈折率が nx、それと面内で直交する方 向の屈折率が ny、厚さ方向の屈折率を nzとするとき、 ny>nz >nx、 nz≥ny>nxと なることを特徴とする。炭素数 5から 20の脂肪族置換基および、該脂肪族置換基とは 異なる置換基を含む場合は、異なる置換基を含む場合、炭素数が 5から 20の脂肪族 ァシル基の置換基数が 1. 00以上でその他の置換基数との和はセルロース 1モノマ 一ュニッ卜あたり、 1. 50 2. 99であり、より好ましくは 2. 00-2. 90である。
[0026] 式 (4)における、 C5— C20脂肪族アシノレ基以外のその他の置換基として好ましレ、 ものは力ルバモイル基又は C5 C20脂肪族ァシル基以外のァシル基である。具体 的には、 Y— CO—基又は Z—NH— CO—基で示される基が挙げられる。ここで Yとして は、非置換の C5— C20脂肪族基以外の基であれば特に問わなレ、が、具体的には、 非置換の C5— C20脂肪族基を除ぐ置換又は非置換の C1一 C20の炭化水素残基 が挙げられる。該炭化水素残基における置換基としては特に制限はないが、ヒドロキ シ基、ハロゲン原子、アミノ基、シァノ基、 C1一 C14ァシルォキシ基、(C1一 C14)ァ ルキルォキシ基、フエニル基、ナフチル基等が挙げられ、該炭化水素残基が芳香族 基であるときは置換基として C1一 C10アルキル基も挙げられる。
[0027] 該炭化水素残基としては例えば、ビュル基、メチル基、ェチル基、プロピル基、イソ プロピル基、 n_ブチル基、イソブチル基、 tert-ブチル基、ベンジル基、 1_ナフチルメ チル基、トリフルォロメチル基、アミノメチル基、 2—ァミノ—ェチル基、 3—ァミノ _n—プ 口ピル基、 4_アミノー n—ブチル基、若しくはそれらのァミノ基がさらにアミドゃウレタン に変換された基、ヒドロキシ置換(C1一 C4)アルキル基、若しくはそのヒドロキシル基 が更に(C1一 C14)ァシル基若しくは(C1一 C14)アルキル基で置換された基、(C1 一 C3)アルキル基で置換されていてもよいビニル基、シァノビフエニルォキシ(C3— C10)アルキル基、フエ二ルァセチレエルフェニル(C1一 C20)アルキル基、ァセチレ ン基及びシンナモイル基等の炭素数 1一 10の不飽和結合を有する脂肪族基、フエ二 ノレ基、ナフチル基、アントラセニル基、フルォレニル基、ビフエ二ル基、 4一トリフノレオ口 メチルフエニル基等の芳香族基を有するアシノレ基が挙げられる。又 Zとして置換基を 有してもよい C1一 C10脂肪族基を挙げることができ、ビニル基、メチル基、ェチル基 、プロピル基、イソプロピル基、 n—ブチル基、イソブチル基、 tert-ブチル基、ペンチル 基、ネオペンチル基、へキシル基、シクロへキシル基、ォクチル基、ノニル基、デシル 基、ベンジル基、 1_ナフチルメチル基、トリフルォロメチル基等がそれぞれ挙げられ る。
[0028] これらの C5 C20脂肪族ァシル基及び場合によりそれ以外のその他の置換基は、 目的とする本発明のセルロース誘導体の複屈折性、波長分散特性、粘度、配向のし 易さ、加工性、反応性等に応じて適宜 1種又は複数の置換基が選択される。又、セ ルロース水酸基の置換度についても、 目的とする本発明のセルロース誘導体の複屈 折性、波長分散特性、粘度、配向のし易さ、加工性、反応性等に応じて適宜選択さ れる。
[0029] セルロース誘導体に重合性基を導入することにより、光重合開始剤の存在下、配向 処理後に紫外線を照射して重合させることにより配向状態を固定化し、機械的強度 や信頼性、耐溶剤性に優れた位相差フィルムを得ることができる。重合性基としては 、例えば上記 Yや Zがビュル基のもの、即ちアタリロイル基ゃメタアタリロイル基が挙げ られる。光重合開始剤としては、通常の紫外線硬化型樹脂に使用される化合物を用 レ、ることができる。
[0030] 該光重合開始剤の具体例としては、 2—メチルー 1一 [4— (メチルチオ)フエニル]一 2_ モルホリノプロパン— 1、 1—ヒドロキシシクロへキシルフェニルケトン、 4_ (2—ヒドロキシ エトキシ)—フエニル(2—ヒドロキシ _2_プロピル)ケトン、 1_ (4—ドデシルフェニル)_2 —ヒドロキシ— 2_メチルプロパン— 1—オン、 1— (4—イソプロピルフエ二ル)— 2—ヒドロキ シ _2_メチルプロパン— 1—オン、 2—ヒドロキシ _2_メチル—1—フエニルプロパン— 1— オン、ジェトキシァセトフエノン等のァセトフエノン系化合物、ベンゾイン、ベンゾインメ チルエーテル、ベンゾインェチルエーテル、ベンゾインイソプロピルエーテル、ベンゾ インイソブチルエーテル、 2, 2—ジメトキシー 2_フエニルァセトフエノン等のベンゾイン 系化合物、ベンゾィル安息香酸、ベンゾィル安息香酸メチル、 4 フエニルベンゾフエ ノン、ヒドロキシベンゾフエノン、 4_ベンゾィルー 4しメチルジフエ二ルサルファイド、 3, 3'—ジメチルー 4ーメトキシベンゾフエノン等のベンゾフエノン系化合物、チォキサンソン 、 2 クロルチオキサンソン、 2—メチルチオキサンソン、 2, 4 ジメチルチオキサンソン 、イソプロピルチォキサンソン、 2, 4—ジクロォチォキサンソン、 2, 4 ジェチルチオキ サンソン、 2, 4—ジイソプロピルチオキサンソン等のチォキサンソン系化合物等が挙 げられる。これらの光重合開始剤は 1種類でも複数でも任意の割合で混合して使用 すること力 Sできる。
[0031] ベンゾフエノン系化合物やチォキサンソン系化合物を用いる場合には、光重合反 応を促進させるために、助剤を併用することも可能である。そのような助剤としては例 えば、トリエタノールァミン、メチルジェタノールァミン、トリイソプロパノールァミン、 n_ ブチルァミン、 n—メチルジェタノールァミン、ジェチルアミノエチルメタアタリレート、ミ ヒラーケトン、 4, 4'ージェチルァミノフエノン、 4—ジメチルァミノ安息香酸ェチル、 4—ジ メチルァミノ安息香酸 (n—ブトキシ)ェチル又は 4ージメチルァミノ安息香酸イソアミノレ 等のアミン系化合物が挙げられる。前記光重合開始剤の含有量は、(メタ)アタリレー ト化合物(ポリマー中にアタリロイル基がある場合には、これも含む) 100重量部に対 して、好ましくは 0. 5重量部以上 10重量部以下、より好ましくは 2重量部以上 8重量 部以下程度がよい。また、助剤は光重合開始剤に対して、 0. 5倍から 2倍量程度が よい。
[0032] また、紫外線の照射量は、該液晶性配合組成物の種類、光重合開始剤の種類と添 加量、膜厚によって異なる力 100— 1000mj/cm2程度がよい。また、紫外線照射 時の雰囲気は空気中でも窒素などの不活性ガス中でもよいが、膜厚が薄くなると、酸 素障害により十分に硬化しないため、そのような場合は不活性ガス中で紫外線を照 射して硬化させるのが好ましレ、。
[0033] 本発明の位相差フィルムを作製するためのセルロース誘導体には、上記光重合開 始剤の他に、セルロース誘導体とは異なる反応性モノマーを加えることも可能である 。反応性モノマーとしては、位相差フィルムの配向緩和を防ぐために、重合時の温度 変化が比較的少ない紫外線照射による光重合可能な化合物が好ましぐそのような 化合物としては例えば、(メタ)アタリレートイ匕合物が挙げられる。
[0034] 使用しうる(メタ)アタリレートイ匕合物としては例えば、トリメチロールプロパントリ(メタ) アタリレート、ペンタエリスリトールトリ(メタ)アタリレート、ペンタエリスリトールテトラ(メタ )アタリレート、ジトリメチロールプロパンテトラ(メタ)アタリレート、ジペンタエリスリトー ノレペンタアタリレート、ジペンタエリスリトールへキサアタリレート、ペンタエリスリトール トリ (メタ)アタリレートと 1 , 6-へキサメチレンジイソシァネートとの反応生成物、ペンタ エリスリトールトリ (メタ)アタリレートとイソホロンジイソシァネートとの反応生成物、トリス( アタリ口キシェチル)イソシァヌレート、トリス(メタアタリ口キシェチル)イソシァヌレート、 グリセロールトリグリシジノレエーテルと(メタ)アクリル酸との反応生成物、力プロラタトン エーテルと(メタ)アクリル酸との反応生成物、トリグリセロールジ (メタ)アタリレート、プ ロピレングリコールジグリシジルエーテルと(メタ)アクリル酸との反応生成物、ポリプロ ピレングリコールジ(メタ)アタリレート、トリプロピレングリコールジ(メタ)アタリレート、ポ リエチレングリコールジ(メタ)アタリレート、テトラエチレングリコールジ(メタ)アタリレー ト、トリエチレングリコールジ(メタ)アタリレート、ペンタエリスリトールジ(メタ)アタリレー ト、 1, 6—へキサンジオールジグリシジルエーテルと(メタ)アクリル酸との反応生成物 、 1 , 6—へキサンジオールジ(メタ)アタリレート、グリセロールジ(メタ)アタリレート、ェ チレングリコールジグリシジルエーテルと(メタ)アクリル酸との反応生成物、ジェチレ ングリコールジグリシジルエーテルと(メタ)アクリル酸との反応生成物、ビス(アタリロキ ェチルイソシァヌレート、ビスフエノーノレ Aジグリシジルエーテルと (メタ)アクリル酸との 反応性生物、テトラヒドロフルフリル (メタ)アタリレート、力プロラタトン変性テトラヒドロフ ルフリル(メタ)アタリレート、 2—ヒドロキシェチル(メタ)アタリレート、 2—ヒドロキシプロピ ノレ(メタ)アタリレート、ポリプロピレングリコール(メタ)アタリレート、ポリエチレングリコ ール(メタ)アタリレート、フエノキシヒドロキシプロピル (メタ)アタリレート、アタリロイルモ ノレホリン、メトキシポリエチレングリコール(メタ)アタリレート、メトキシテトラエチレンダリ コール (メタ)アタリレート、メトキシトリエチレングリコール (メタ)アタリレート、メトキシェ チレングリコール(メタ)アタリレート、メトキシェチル(メタ)アタリレート、グリシジル(メタ )アタリレート、グリセロール(メタ)アタリレート、ェチルカルビトール(メタ)アタリレート、 2_エトキシェチル(メタ)アタリレート、 N, N—ジメチルアミノエチル(メタ)アタリレート、 2-シァノエチル(メタ)アタリレート、ブチルダリシジルエーテルと(メタ)アクリル酸との 反応生成物、ブトキシトリエチレングリコール (メタ)アタリレート又はブタンジオールモ ノ (メタ)アタリレート等が挙げられる。これらの化合物は単独で用いても良いし、複数 を混合して用いても良い。このような反応性化合物を用レ、、適切な条件下で重合させ ることにより、所望の配向状態を固定化することができる。
本発明で使用するセルロース誘導体の具体的な合成方法を示す。
本発明のセルロース誘導体は、式(1)に示すセルロースと置換基に対応する試薬と を反応させることにより得ることができる。例えば、セルロースを塩化リチウム、 N, N- ジメチルァセトアミド混合液中に溶解させ、次に置換基に対応するカルボン酸クロライ ドを加えて反応させることにより、セルロースの水酸基がアシノレ基に置換されたセル口 一スァシレートが得られる。力ルバモイル基を導入する場合は、カルボン酸クロライド の代わりに対応するイソシアン酸エステル、必要に応じて触媒としてジラウリン酸ジー n 一ブチルすずを加えて反応させることにより、セルロースの水酸基が力ルバモイル基 に置換されたセルロース力ルバメートが得られる。また、ァシル化を行う他の方法とし ては、セルロースをトリフルォロ酢酸無水物とカルボン酸の混合液中で反応させること により、同様にセルロースァシレートを得ることができる。この反応の反応条件を適宜 選択することにより、各セルロース誘導体の置換度を制御することができる。例えばセ ルロースァシレートの場合、上記カルボン酸クロライドを用いる方法は、置換度約 1. 0—約 2. 5程度のセルロースァシレートを得る際には好適な方法である。一方、トリフ ルォロ酢酸無水物とカルボン酸を用いる方法は、置換度約 2. 5 約 3. 0のセルロー スァシレートを得る際に好適な方法である。より厳密に置換度を制御するには反応に 用いる各試薬の量や反応温度や反応時間などを適宜調節することによって達成され る。反応後、水またはメタノール中に反応溶液を添加することで生成物を析出させ、 数回再沈殿を行い精製する。得られた固形分を乾燥して、本発明のセルロース誘導 体を得ること力 Sできる。
[0036] 本発明のセルロース誘導体の置換度調整は、該セルロース誘導体合成時に用いる 置換基導入用試薬の量を調整することにより達成される。置換基導入用試薬は反応 原料に用いるセルロースの水酸基量に対して、 0. 5当量一 100当量の範囲で用いる ことができ、多く用いるほど高い置換度のセルロース誘導体を得ることができる力 置 換基導入用試薬の種類によってセルロース水酸基との反応性が異なるため、ある置 換度を達成するために必要な置換基導入用試薬の量はそれぞれ異なる。例えば、 置換度 2. 14のセルロース n—へキサネートを得る場合、セルロースの水酸基に対し て 1. 05当量の n—へキサノイルク口リドを用いて、 4時間以上反応を行う。一方、置換 度 2. 74のセルロース n—へキサネートを得る場合には、セルロースの水酸基に対して 、 1. 50当量の n—へキサノイルク口リドを用いて、 4時間以上反応を行う。
[0037] 本発明のセルロース誘導体を用いた位相差フィルムの作製はセルロース誘導体溶 液の製膜と配向処理により行われる。具体的な方法としては、まずセルロース誘導体 を溶剤に溶解する。使用しうる溶剤としては、塩化メチレン、クロ口ホルム等のハロゲ ン化炭化水素溶媒、酢酸ェチル、酢酸ブチル、酢酸メチルのような酢酸エステル類、 メタノーノレ、エタノール、プロパノール、イソプロパノール、ベンジルアルコールのよう なアルコール類、 2—ブタノン、アセトン、シクロペンタノン、シクロへキサノンのようなケ トン類、ベンジルァミン、トリェチルァミン、ピリジンのような塩基系溶媒、シクロへキサ ン、ベンゼン、トルエン、キシレン、ァニソール、へキサン、ヘプタンのような非極性溶 媒が挙げられる。セルロース誘導体の重量濃度は通常 1 %— 99%、好ましくは 2. 5 %— 80%、より好ましくは 5%— 50%である。これらの化合物は 1種類のみ配合して も良いし、複数成分を配合しても良い。さらに必要に応じて可塑剤をカ卩えても良い。 可塑剤としてはジメチルフタレートゃジェチルフタレート、ェチルフタリルェチルダリコ レートのようなフタル酸エステル、トリス(2—ェチルへキシル)トリメリテートのようなトリメ リト酸エステル、ジメチルアジペートやジブチルアジペートのような脂肪族二塩基酸ェ ステル、トリブチルホスフェートやトリフエニルホスフェートのような正燐酸エステル、セ バシン酸一ジー n_ブチル等のセバシン酸エステル、グリセルトリアセテート又は 2—ェ チルへキシルアセテートのような酢酸エステルが挙げられる。これらの化合物は 1種 類のみ配合しても良いし、複数成分を配合しても良い。しかし、これらの可塑剤は前 記したように複屈折性を低くめる可能性があるので、通常使用しない方が好ましい。 通常本発明で使用するセルロース誘導体はいずれもフィルムにしたときの延伸性が よいので可塑剤の使用は必要としない。また、配向を固定化する必要がある場合は、 配向を固定化するために必要な重合性化合物、好ましくは前記したアクリル系化合 物及び重合開始剤、好ましくは光重合開始剤を配合してもよい。
次いで該セルロース誘導体溶液を表面の平坦な離形性のある基板の上に塗布した 後、自然乾燥又は加熱乾燥にて溶媒を除去して透明なセルロース誘導体フィルムと する。
次にこのフィルムに配向処理、必要に応じて配向の固定化を施すことにより、本発 明の位相差フィルムを得ることができる。本発明における、セルロース誘導体から形 成された位相差フィルムと言った場合、このように配向の固定化が行われた位相差フ イルム等をも含むものである。
配向処理としては例えば、延伸配向又はせん断配向が挙げられる。延伸配向の場 合は、一般的な一軸延伸を用いることができ、そのような方法としては例えば、該セル ロース誘導体フィルムの両端を固定して加温しながら一方向に延伸する。または、フ イルムが長尺のロール状である場合には、例えばニップロールにてフィルムの両端を 固定し、両ロールの回転数の差により連続的に延伸する。延伸する際の温度は、セ ルロース誘導体の置換基の種類や置換度によって最適な延伸温度は異なるが、 50
°C一 200°C、より好ましくは 50°C— 180°C程度が良レ、。例えば、へキサノィル基の置 換度が 2. 00—2. 99のセルロース n_へキサネートの場合は 90°C 160°Cである。 延伸倍率はセルロース誘導体の種類、厚さ、所望とする位相差値によって異なるが、
1. 05倍から 5. 0倍、より好ましくは 1. 1倍から 4. 0倍程度が良い。例えば、へキサノ ィル基の置換度が 2. 00—2. 99のセルロース n—へキサネートの場合は 1. 1倍一 3. 0倍程度である。延伸速度も延伸温度と同様、セルロース誘導体の種類によって最 適延伸速度は異なるが,へキサノィル基の置換度が 2. 00-2. 99のセルロース n— へキサネートの場合通常 5倍延伸/分以下、好ましくは 3倍延伸 Z分以下、より好ま しくは 2倍延伸/分以下である。せん断配向の場合は、該セルロース誘導体フィルム をガラス板で挟み込んで密着させ加温しながらガラス板をずらすことにより達成される 。セルロース誘導体の種類によって最適せん断温度は異なる力 S、例えばへキサノィ ル基の置換度が 2. 00—2. 99のセルロース n—へキサネートの場合通常 50°C— 20 0°C、好ましくは 80°C— 190°C、より好ましくは 140°C力 180°Cである。こうして得ら れる本発明の位相差フィルムのフィルム正面方向の波長 550nmにおける位相差値 は、 10— 600應程度である。
[0039] また、本発明で得られる位相差フィルムの厚さは 30— 150 /i m、より好ましくは 30 一 100 /i m程度が良い。特に、置換度 2. 2— 2. 3のセルロース n—ペンタネート、ま たは置換度 2. 4-2. 6のセルロース n—へキサネートからなる本発明の位相差フィル ムの場合、延伸倍率を 1. 5-2. 0倍、厚さを 50 100 z mとすることにより、略 1/4 波長位相差フィルム(波長 550nmにおける位相差値が 130 140nm)を得ることが できるため、特に好ましい。
[0040] また、置換度が 2. 5— 2. 99のセルロース n_ヘプタネート、置換度が 1. 0— 2. 99 、より好ましくは 1. 5— 2. 99、さらに好ましくは 2. 5—2. 99のセノレロース n—才クタネ ート、セノレロース n—ノナネート、セノレロース n—デカネート、セノレロース n_ゥンデカネ ート、セルロース n—ドデカネート、セルロース n—トリデカネート、セルロース n—テトラデ 力ネート、セノレロース n—ペンタデカネート、セノレロース n—へキサデ力ネート、セノレロー ス n—ヘプタデカネート、セルロース n—ォクタデカネート、セルロース n—ナノデカネー ト、セルロース n_ィコサネート等、炭素数 7— 20、より好ましくは置換度が 2. 5-2. 9 9のセノレロース n—ヘプタネート、置換度力 0—2. 99、より好ましく fま 1. 5— 2. 99 、さらに好ましくは 2. 5—2. 99のセルロース n_ォクタネート、セルロース n—ノナネー ト、セノレロース n—デカネート、セノレロース n_ゥンデ力ネート、セノレロース n—ドデカネ一 ト、セノレロース n—トリデカネート、セノレロース n—テトラデカネート、セノレロース n—ペンタ デカネート、セルロース n_へキサデ力ネート等の炭素数 7— 16のセルロース誘導体 の場合において、一般的な一軸延伸、即ち例えば、該セルロース誘導体フィルムの 両端を固定して加温しながら一方向に延伸する力、、または、フィルムが長尺のロール 状である場合には、例えばニップロールにてフィルムの両端を固定し、両ロールの回 転数の差により連続的に延伸することによって、特許文献 5に記載されているような収 縮性フィルムを貼り合わせる等の手段をとることなぐ上記一般的な一軸延伸のみで
、上述したようなフィルム面内の延伸方向(あるいはフィルム面内でそれと直交する方 向)と厚さ方向に配向したいわゆる二軸性が発現する。このときの延伸温度はセル口 ース誘導体の置換基の種類や置換度によって最適な延伸温度は異なる力 S、40°C— 200°C、より好ましくは 50°C— 180°C程度が良レ、。延伸倍率はセルロース誘導体の 種類、厚さ、所望とする位相差値によって異なるが、 1. 05倍から 5. 0倍、より好ましく は 1. 1倍から 4. 0倍程度が良レ、。また、得られる位相差フィルムの厚さは 10— 500 /i m、より好ましくは 20— 300 /i m、さらに好ましくは 30— 1150 /i m程度力 S良レヽ。 本発明のセルロース誘導体および該セルロース誘導体より作製した位相差フィルム の複屈折と波長分散との関係は、下記式 [1]および [2]の関係を満たすことを特徴と する。この関係を図示すると図 1および図 2のようになる。
(Re750/Re550) =Al/ A n+ l [1]
(Re450/Re550) =A2/ A n+ l [2]
(Re750/Re550)は波長 750nmにおける位相差ィ直の波長 550nmにおける位相 差値に対する比率であり 0. 05 1. 95の値を示す。 (Re450ZRe550)は波長 450 nmにおける位相差値の波長 550nmにおける位相差値に対する比率であり 0· 05— 1. 95の値を示す。 Δ ηは位相差フィルムの波長 550nmにおける複屈折であり 0· 00 01—0. 06の値を示す。 A1および Α2ίま定数で一 0· 06-0. 06のィ直を示し、 A1力 S 正の値のとき Α2は負の値であり、 A1が負の値のとき Α2は正の値になる。
[0042] 式(1)および式(2)における定数 A1および Α2の値は、該セルロース誘導体の置 換基の種類により決まり、複屈折 Δ ηの値は該セルロース誘導体の置換度に依存す る。本発明のセルロース誘導体からは、図 1および図 2に示す範囲で、正の複屈折性 のフィルムおよび負の複屈折性のフィルムを作製することができる。通常の場合、該 セルロース誘導体の置換度を大きくすると、該セルロース誘導体より作製した本発明 の位相差フィルムの複屈折を正から負へ変えることが出来、同時に波長分散も変化 する。式(1)および式(2)を満たす範囲であれば、該セルロース誘導体の置換基の 種類と置換度を変化させることにより該セルロース誘導体力 任意の波長分散を有 する位相差フィルムを得ることができる。例えばセルロースモノマー 1モノマーユニット あたりの水酸基に対する置換数 1. 80のセルロース η—ォクタネートより作製した膜厚 61 /i mの位相差フィルムの位相差比 Re750/Re550は 0. 93 Re450/Re550 は 1. 08 Δ ηは _0. 00077 A1は _5. 39 X 10— 5 Α2は 6. 16 X 10— 5となる。この フィルムは長波長ほど小さな位相差値を与える負の複屈折性を持つフィルムである。 置換数 2. 76のセルロース η キサネートより作製した膜厚 77 μ mの位相差フィル ムの位申目差 ·ttReYSO/ReSSOiま 1. 14 Re450/Re550iま 0. 91 Δ ηίま 0. 000 35 Α1は 4. 9 X 10 Α2は一 0· 315 X 1CT5となる。このフィルムは長波長ほど大き な位相差値を与えるために広い範囲で一定の割合の位相差が得られるので、いわゆ るァクロマティック位相差フィルムとして用いることができる。
[0043] 本発明の位相差フィルムは、その波長分散特性に応じて種々の画像表示装置に 使用することができる。例えば、上記ァクロマティックな波長分散特性を有する本発明 の位相差フィルムの 550nmにおける位相差値を約 137nmにし、偏光フィルムの吸 収軸と該位相差フィルムの遅相軸とのなす角力 ¾5° になるようにアクリル系ゃシリコ ン系の粘着剤や接着剤を用いて積層することにより、本発明の円偏光フィルムを得る こと力 Sできる。こうして得られた円偏光板を例えば有機エレクト口ルミネッセンス型表示 装置を用いることにより、電極部における反射を抑制できるため、表示画像の視認性 を大幅に向上させることができる。同様に、上記ァクロマティックな波長分散特性を有 する本発明の位相差フィルムの 550nmにおける位相差値を約 275nmにし、偏光フ イルムの吸収軸と該位相差フィルムの遅相軸とのなす角力 S45° になるように積層す ることにより、本発明の旋光フィルムが得られる。この旋光フィルムを液晶プロジェクタ 一に用いることにより広い波長範囲で均一に直線偏光の向きを変えることが可能とな るため、光の利用効率を向上させたり、光の吸収による偏光フィルムの劣化を防いだ り、表示画像のコントラストを向上させることができる。また、位相差フィルムの波長分 散特性が液晶セルとの波長分散特性と一致または近似するような本発明の位相差フ イルムを用いて、偏光フィルムとある角度で積層した楕円偏光フィルムを用いて得ら れた液晶表示装置は、液晶セルの持つ位相差の波長依存性を補償し、コントラストを 向上させることができる。また、上記円偏光板を反射型または反射半透過型液晶表 示装置に用いることにより、各波長での優れた反射防止効果により、表示画像のコン トラストを向上させることができる。
また、波長 550nmにおける位相差値力 S50— 300nm、より好ましくは 100— 300η mである本発明の位相差フィルムの遅相軸と偏光フィルムの吸収軸または透過軸と が平行または直交になるようアクリル系やシリコン系の粘着剤や接着剤を用いて積層 することにより、本発明の光学フィルムを得ることができる。この光学フィルムと、フィノレ ム面内の平均屈折率力 ¾o、厚さ方向の屈折率が neあり、 ne— no < 0の関係を持つよ うな位相差フィルムを用いることにより、 VA (ヴアーティカルアラインメント:垂直配向) 型液晶表示装置の視野角特性を改善することができる。 ne— no < 0となるようなフィ ルムとしては例えば、特開 2004—082714号公報に記載のフィルム面内で二軸延伸 した位相差フィルムや、特開 2003— 315556に記載の紫外域に選択反射域を有す るコレステリック液晶を配向させて固定化したフィルムや、特許第 2866372号公報に 記載のディスコティック液晶を円盤面が基板面に対して略水平配向させて固定化し たフィルムや一軸延伸したフィルムを 2枚、それぞれの遅相軸が直交するように積層 したフィルムなどが挙げられる。具体的には、 VA型液晶表示装置の視野角特性を改 善するためには、 ne—ηοく 0となるようなフィルムの厚さを dとするとき、 Rth= (no_n e) X dで求められる Rthが 100— 300nm程度が好ましぐそのような Rthにするには 、 ne、 no、 dを適宜調整することによって達成される。このとき、 550nmにおけるフィ ルム正面方向の位相差値は 0— 50nm程度が良レ、。このような ne— noく 0となるよう なフィルムと本発明の位相差フィルムとを積層(ne— no< 0となるようなフィルムにおい て、正面方向に位相差がある場合は、該フィルムの遅相軸と本発明の位相差フィル ムの遅相軸方向とが平行または直交になるように積層)し、さらに偏光フィルムと積層 することにより、本発明の複合光学フィルムを得ることができる。積層はアクリル系ゃシ リコン系の粘着剤や接着剤を用レ、て行うことができるが、特に、本発明の位相差フィ ルムを基板とし、該位相差フィルム上 (必要に応じて該位相差フィルム上にさらに配 向膜を形成し、該配向膜上)に配向したディスコティック液晶層や紫外域に選択反射 域を有するコレステリック液晶層を形成することで、別途液晶層形成のための基板が 不要となり、薄型化と工程の簡略化が可能となる。
[0045] 次に、本発明の炭素数 8から 20の本発明の二軸性を有する位相差フィルムの場合 、位相差が波長の 1/4程度(例えば波長 550nmの光に対しての位相差値が約 130 nm— 150nm)であれば、偏光フィルムの吸収軸と該位相差フィルムの遅相軸とが 4 5° または 135° になるように貼り合わせることにより、本発明の一形態である広視野 角円偏光フィルムを得ることができる。また、本発明の位相差フィルムの位相差が波 長の 1/2程度(例えば波長 550nmの光に対しての位相差値が約 200nm— 300η m)であれば、偏光フィルムの吸収軸と該位相差フィルムの遅相軸とが 45° または 1 35° になるように貼り合わせることにより、本発明の他の一形態である広視野角旋光 フィルム (偏光軸を 90° 回転する機能を有する)を得ることができる。
[0046] また、例えば、位相差が波長の 1/2程度(例えば波長 550nmの光に対しての位 相差値力 S約 200nm— 300nm、より好ましくは 230nm— 290nm)の本発明の位相 差フィルムと、位相差が波長の 1/4程度(例えば波長 550nmの光に対しての位相 差値が約 lOOnm 150nm)の一軸延伸されたポリカーボネートやポリアリレート、ポ リエーテルサルフォン、シクロォレフインポリマー等力、らなる他の位相差フィルム、また は、位相差が波長の 1Z2程度(例えば波長 550nmの光に対しての位相差値が約 2 OOnm 300nm、より好ましくは 230nm 290nm)の他の位相差フィルムと位相差 が波長の 1/4程度(例えば波長 550nmの光に対しての位相差値が約 lOOnm— 15 Onm)の本発明の位相差フィルムとを、本発明の位相差フィルムの進相軸(nx方向、 即ち、延伸方向)と他の位相差フィルムの遅相軸 (延伸方向)を実質的に平行になる ように粘着剤や接着剤を用いて積層することにより、本発明の他の一形態である複合 位相差フィルムを得ることができる。この複合位相差フィルムは、ァクロマティック(各 波長に対して略等しい位相差を有する)、広視野角の 1/4波長位相差フィルムとな る。このとき、他の位相差フィルムの遅相軸が長尺方向であって、本発明の位相差フ イルムの進相軸が長尺方向である場合には、他の位相差フィルムの積層面側に粘着 剤層を設け、本発明の位相差フィルムとロールッゥロールにより積層が可能となり、ェ 程の簡略化に伴う低コスト化が実現できる。この本発明のァクロマティック、広視野角 の 1Z4波長位相差フィルムを上記と同様の方法により、偏光フィルムの吸収軸と該 1 /4波長位相差フィルムの遅相軸または進相軸とが 45° または 135° になるように 貝占り合わせることにより、本発明の光学フィルムの他の一形態であるァクロマティック、 広視野角円偏光フィルムを得ることができる。
さらに、波長 550nmの光に対しての位相差値が約 200nm— 300nm、より好ましく は 230nm— 290nmである本発明の位相差フィルムの進相軸と偏光フィルムの吸収 軸とが実質的に平行になるように粘着剤や接着剤を用いて積層することにより本発明 の光学フィルムの他の一形態である広視野角偏光フィルムを得ることができる。このと き、偏光フィルムが長尺状で吸収軸が長尺方向であって、本発明の位相差フィルム が長尺状で進相軸が長尺方向にある場合には、一方のフィルムの積層面側に粘着 剤または接着剤層を設け、ロールッゥロールによる積層が可能となり、工程の簡略化 に伴う低コストィ匕が実現できる。こうして得られた広視野角偏光フィルムは次の特徴を 有する。通常、偏光フィルムは、 2枚を各々の吸収軸が直交(クロスニコル)になるよう に積層した場合、フィルム面に対し正面方向は光の透過を遮断することができるが、 各々の吸収軸の方向とは異なる方向、特に吸収軸方向からフィルム面内で 45° 方 位を示す方向へ正面方向から傾斜させた位置では、光が抜けてしまうという問題があ る。これは傾斜角が大きくなればなるほど顕著である。し力 ながら、本発明の光学フ イルムの一形態である広視野角偏光フィルムを少なくとも一枚用い、本発明の位相差 フィルムを挟むようにもう一方の偏光フィルム(これは通常の偏光フィルムでも、本発 明の光学フィルムの一形態である広視野角偏光フィルムであってもよレ、。)を、各々の 吸収軸が直交(クロスニコル)になるように積層して、各々の吸収軸とは異なる方向、 特に 45° 方位で正面方向力 傾斜させて観察しても、光はほとんど透過せず、正面 方向と同様に光を遮断することができる。
さらに、本発明の位相差フィルムは、アルカリ性水溶液に浸漬することで、表層がケ ン化処理され、親水性が向上する特徴を有する。従ってケン化処理された本発明の 位相差フィルムを支持フィルムとして用レ、、ポリビュルアルコール系の水溶性接着剤 を用いて、偏光フィルムを構成する偏光素子と直接接着することができる。具体的に は、偏光フィルムは通常、偏光素子を支持フィルムで接着剤を用いて挟持した構成 のものが一般的に用いられている。偏光素子としては、例えば、ヨウ素(多ヨウ素ィォ ン)や二色性染料などの二色性色素を吸着配向させたポリビュルアルコールフィルム を一軸延伸後、必要に応じてホウ酸により架橋処理することによって得られる厚さ 10 一 40 μ m程度の偏光素子や、一軸延伸されたポリビュルアルコールフィルムを一軸 延伸した後に脱水処理して得られるポリェン型の厚さ 10-40 μ m程度の偏光素子 が用いられ、また、支持フィルムとしては、例えば、厚さ 40— 100 μ ΐη程度の表層が 鹼化処理されたトリアセチルセルロースフィルムを用いている。ここで、鹼化処理され たトリアセチルセルロースフィルムの代わりに、ケン化処理された本発明の位相差フィ ルムを少なくとも片方の支持フィルムとして使用することにより、通常の支持フィルムと 同様、ポリビニルアルコール系の水溶性接着剤を用いて、偏光素子と接着することが できる。こうして得られた本発明の薄型円偏光フィルム、薄型旋光フィルム、薄型楕円 偏光フィルム、薄型光学フィルム、薄型複合光学フィルムは、本発明の位相差フィル ムが偏光フィルムの支持体としても機能するため、通常の偏光フィルムに粘着剤等で 別途本発明の位相差フィルムを貼り合わせる場合と比べて薄型化、工程の簡略化に よる低コスト化が可能となる。なお、ケン化処理は、例えば、水酸化ナトリウムもしくは 水酸化カリウムの水溶液とレ、つたアルカリ性水溶液中に一定時間浸漬後、水洗する ことによって達成される。水酸化ナトリウムもしくは水酸化カリウム水溶液の濃度は 0. 5— 6N、温度は 10 60°C程度、浸漬時間はケン化処理の程度に応じて適宜調節さ れる。ケン化処理の程度は処理されたフィルム面における水の接触角を接触角計に より測定することで知ること力 Sできる。本発明の位相差フィルムのケンィ匕処理は、水の 接触角が 30° 以下、より好ましくは 20° 以下、さらに好ましくは 15° 以下になるよう 処理するのが良い。
こうして得られた本発明の光学フィルムを有機 EL (エレクト口ルミネッセンス)型表示 装置のような画像表示装置や液晶表示装置に用いることにより、表示された画像の 視野角特性やコントラストを向上させることができる。例えば有機 EL型表示装置の場 合、表示面側に、金属電極の反射を防ぐための円偏光フィルムとして、上記の本発 明の光学フィルムの一形態であるァクロマティック、広視野角円偏光フィルムを用いる ことにより、各波長において高い反射防止効果が得られるため、表示画像のコントラ ストを向上させることができる。また、液晶表示装置の場合、反射型や反射半透過型 液晶表示装置では、円偏光フィルムとして、上記の本発明の光学フィルムの一形態 であるァクロマティック、広視野角円偏光フィルムを用いることにより、各波長での高 い反射防止効果が正面方向だけでなぐ傾斜して観察した場合でも維持されるため 、表示画像のコントラストが向上し、傾斜しても正面と同様の画像を見ることが可能と なり、視野角特性を向上させることができる。さらに、 TN型や OCB (ベンド配向)型液 晶表示装置の場合、 TN (ツイステツドネマティック)型液晶セルの補償は特開 2003— 315556に記載されているように、ノ、イブリツド配向したディスコティック液晶層を有す るフィルムを用いて達成できる力 S、偏光フィルムそのものの視野角特性は改善するこ とはできない。 OCB型液晶セルの場合も同様である。しかし、本発明の光学フィルム の一形態である広視野角偏光フィルムを TN型液晶セル補償フィルムと併用すること により、さらなる広視野角化が可能となる。また、同様に VA型液晶表示装置におい ても、 VA型液晶セル自体の補償は、特許 2866372号公報、特開 2002—196137 号公報、特許第 2587398号公報に記載されているような補償フィルムを用いて達成 できるが、偏光フィルムそのものの視野角特性は改善することはできなレ、。しかし、本 発明の光学フィルムの一形態である広視野角偏光フィルムを VA液晶セル補償フィ ルムと併用することにより、さらなる広視野角化が可能となる。例えば、 TN型、〇CB 型、 VA、 IPS (インプレーンスイッチング)型液晶セルといった各液晶セルを補償する 補償フィルムにより液晶セル自身の補償を行った後、本発明の光学フィルムの一形 態である広視野角偏光フィルムを用いることにより、さらなる広視野角化が可能となる 。このとき、広視野角偏光フィルムの代わりに、本発明の薄型光学フィルムの一形態 である薄型広視野角偏光フィルム(本発明の位相差フィルムをケン化処理し、接着剤 により偏光素子と接着したもの)を用いることにより本発明の液晶表示装置全体の厚 さを薄くすることができる。
[0050] 以上のように本発明の位相差フィルムを用いた円偏光フィルム、旋光フィルム、楕 円偏光フィルム、光学フィルム、複合光学フィルムを有する有機エレクト口ルミネッセ ンス型表示装置、液晶プロジェクター、液晶表示装置等を含む本発明の画像表示装 置は従来の画像表示装置に比べてコントラストや視野角特性が向上するといつた優 れた特性を付与できる。
実施例
[0051] 以下実施例により本発明を更に詳細に説明する。
なお,下記実施例 1一 4において原料として使用するセルロースは、式(1)で示され るユニット数 (重合度)が約 300のセルロース(三木産業社製)を使用した。
[0052] 実施例 1
セルロース n—^ iンタネート 3 (ィ匕合物 1一 3) (置換度 2. 76)の合成と置換度の測定 塩化リチウム 12. 6gをジメチルァセトアミド 150mlに添カ卩し 80°Cにて 30分撹拌して 完全に溶解した後、ジメチルァセトアミド含浸セルロース(セルロース含率:56. 4重 量0 /0) 3. Ogを添カ卩した。 50°Cにて 30分間撹拌し、 n_バレロイルクロリド 7. 1mlをカロ え再び 80°Cに昇温し、 2. 5時間撹拌した。撹拌を停止して反応内容物を水 2リットル に注いでセルロース n—ペンタネートを再沈殿させた。ろ取後、水 100mlにて 3回、メ タノール 50mlにて 2回洗浄して得られた固形分を 6時間真空乾燥し、セルロース n— ペンタネートの白色粉末を 3. 2g得た。
セルロース n—ペンタネートをアセトン/ DMSOの混合溶媒に溶解し、 1N水酸化ナ トリウム水溶液を用いて加水分解した。同時にブランクとしてアセトン /DMSOの混 合液に前記と同量の 1 N水酸化ナトリウム水溶液を入れた溶液を用意した。 1 N硫酸 にて両者を逆滴定して置換度(セルロース 1モノマーユニットあたりの n—ペンタネート による置換数)を求めたところ、 2. 76であった。
[0053] 実施例 2
セルロース n—へプタネートアセテート 1 (化合物 3— 1)の合成と置換度
ジメチルァセトアミド含侵セルロース(セルロース含率: 56. 4重量0 /0) 3. Ogと n_へ プタノイルクロリド 3. 6mlを用いて実施例 1と同様な方法でセルロース n—ヘプタネ一 ト 2. 9gを合成した。 n—ヘプタノィルよる置換度は 1. 54であった。このセルロース n_ ヘプタネート 1. 5gをアセトンに溶解し、ァセチノレクロリド 5. 5mlを用いて実施例 1と同 様な方法でセルロース n—ヘプタネートアセテート 1. 4gを合成した。ァセチルによる 置換度は 0. 93であった。
[0054] 実施例 3
セルロース n—へキサネート 2 (化合物 2— 2)の合成と置換度
塩化リチウム 210gをジメチルァセトアミド 2. 5リットルに添カ卩し 80°Cにて 30分撹拌 して完全に溶解した後、ジメチルァセトアミド含浸セルロース(セルロース含率: 55· 7 重量%) 50. Ogを添加した。 50°Cにて 90分間撹拌し、 n-へキサノイルクロリド 79. 2 mlを加え再び 80°Cに昇温し、 3時間撹拌した。撹拌を停止して反応内容物を水 5リツ トルに注いでセルロース n—ペンタネートを再沈殿させた。ろ取後、 50%メタノール溶 液 1リットルにて 3回洗浄して得られた固形分を 48時間真空乾燥し、セルロース n-へ キサネートの白色粉末を 57. 2g得た。
実施例 1と同様にして置換度(セルロース 1モノマーユニットあたりの n—へキサネー トによる置換数)を求めたところ、 2. 43であった。
[0055] 実施例 4
セルロース n—ォクタネート 1 (化合物 4_1)の合成
塩化リチウム 210gをジメチルァセトアミド 2. 5リットルに添カ卩し 80°Cにて 30分撹拌 して完全に溶解した後、ジメチルァセトアミド含浸セルロース(セルロース含率: 55. 7 重量%) 50. Ogを添カ卩した。 50°Cにて 90分間撹拌し、 n-オタタノイルクロリド 114ml をカロえ再び 80°Cに昇温し、 6時間撹拌した。撹拌を停止して反応内容物を水 5リット ノレに注いでセルロース n—ォクタネートを再沈殿させた。ろ取後、 50%メタノール溶液 1リットルにて 3回洗浄して得られた固形分を 48時間真空乾燥し、セルロース n—オタ タネートの白色粉末を 54.6g得た。
実施例 1と同様にして置換度(セルロース 1モノマーユニットあたりの n—ォクタネート による置換数)を求めたところ、 2. 14であった。
[0056] 実施例 5
各種セルロース誘導体の合成と置換度
実施例 1一実施例 4と同様な方法で各種のセルロース誘導体の合成と置換度の測 定を行った。添加する酸クロリドの量を調節して置換度を制御した。合成したセル口 ース誘導体及びその置換度を、実施例 1一 4で合成したものも含めて表 1に示した。
[0057] [表 1] 合成したセル口一ス誘導体と置換度
化合物略号
セル口ース n —ペンタネ -卜 1 化合物 1一 1 2. 24 セノレ口 —ス n —ペンタネ - -卜 2 化合物 1一 2 2. 29 セノレ口ース n一^ ^ンタネ -卜 3 化合物 1一 3 2. 76 セノレ口'ース n —ペンタネ -卜 4 化合物 1 -4 2. 91 セル口'ース n一ペンタネ -卜 5 化合物 1一 5 2. 98 セル口'ース n —へキサネ -卜 1 化合物 2一 1 2. 14 セノレ口' —ス n一へキサネ- -卜 2 化合物 2一 2 2. 43 セノレ口'ース n —へキサネ -卜 3 化合物 2一 3 2. 54 セル口'ース n一へキサネ -卜 4 化合物 2一 4 2. 74 セル口'ース n一ヘプタネ -トァセテ -卜 1 化合物 3一 1 1. 54/0. 93 セル口. -ス n一ヘプタネ一 -トァセテ- -卜 2 化合物 3 -2 2. 30/0. 02 セノレ口、ース n —ヘプタネ - -トァセテ— -卜 3 化合物 3一 3 2. 84/0. 08 セル口、 -ス n一オタタネ一 -卜 1 化合物 4 - - 1 2. 14
(注)上表において セルロース n—へプタネートアセテート 1の置換度 1.54/0.93 は n—へプタネートでの置換度が 1.54であり、アセテートでの置換度が 0.93である ことを意味する。他の同様な表現も同じ意味を示す。
実施例 6 セルロース n—ペンタネート 2からの位相差フィルムの作製
実施例 5で合成したセルロース n—ペンタネート 2をシクロペンタノンに溶解し、ポリマ 一の 10重量%溶液とした。平滑なガラス板に離型フィルムを表面が乱れぬよう貼り込 み、その上にセルロース n—ペンタネート溶液をキャストし、それを乾燥してセルロース n—ペンタネートの透明なフィルムを作製した。このフィルムを長方形に切り取り両端を 固定し、 150°Cの条件下、もとの 2倍の長さになるまで延伸し、室温まで冷却して、本 発明の位相差フィルム(厚さ 77 x m 550nmに対する位相差値 132nm)を得た。ま た、 自動複屈折計 (KOBRA— 21ADH,王子計測製)を用いて各波長における位相 差値を測定し、 550nmに対する位相差値 (Re550)と各波長での位相差値 (Ren)の 比 (位相差比: Ren/Re550)を求め、その結果から得られた波長分散特性を図 3に 示した。なお、この位相差フィルムの遅相軸は延伸方向と平行であった。
[0059] 実施例 7
セルロース n キサネート 2からの位相差フィルムの作製
実施例 3で合成したセルロース n キサネート 2をシクロペンタノンに溶解し、ポリ マーの 20重量%溶液とした。平滑なガラス板に離型フィルムを表面が乱れぬよう貼り 込み、その上にセルロース n キサネート溶液をキャスト、それを乾燥して透明なフ イルムを作製した。このフィルムを長方形に切り取り両端を固定し、 120°C条件下、も との 1. 8倍の長さになるまで延伸し、室温まで冷却して本発明の位相差フィルム (厚 さ 79 μ ΐη 550nmに対する位相差値 129nm)を得た。実施例 6と同様にして得られ た、この位相差フィルムの波長分散特性を図 4に示した。なお、この位相差フィルムの 遅相軸は延伸方向と平行であった。
[0060] 実施例 8
セルロースヘプタネートアセテート 1からの位相差フィルムの作製
実施例 2で合成したセルロース n_ヘプタネートアセテート 1 (置換度 1. 54/0. 93) (化合物 3—1)をシクロペンタノンに溶解し、ポリマーの 15重量%溶液とした。平滑な ガラス板に離型フィルムを表面が乱れぬよう貼り込み、その上にセルロース n—ヘプタ ネートアセテート溶液をキャストし、それを乾燥して透明なフィルムを作製した。このフ イルムを長方形に切り取り両端を固定し、 100°C条件下、もとの 1. 6倍の長さになるま で延伸処理し、室温まで冷却して本発明の位相差フィルム(厚さ 46 /i m、 550nmに 対する位相差値 46nm)を得た。実施例 6同様にして得られた、この位相差フィルム の波長分散特性を図 5に示した。なお、この位相差フィルムの遅相軸は延伸方向と 平行であった。
[0061] 実施例 9
セルロース 11_ォクタネート 1からの位相差フィルムの作製
実施例 4で合成したセルロース n—ォクタネート 1 (ィ匕合物 4—1)をシクロペンタノンに 溶解し、ポリマーの 15重量%溶液とした。平滑なガラス板に離型フィルムを表面が乱 れぬよう貼り込み、その上にセルロース n—ォクタネート溶液をキャストした後、乾燥し て透明なフィルムを作製した。このフィルムを長方形に切り取り両端を固定し、 100°C 条件下、もとの 1. 6倍の長さになるまで延伸した後、室温まで冷却し、本発明の位相 差フイノレム(厚さ 75 x m、 550nmに対する位相差値 75nm)を得た。実施例 6同様に して得られた、この位相差フィルムの波長分散特性を図 5に示した。なお、この位相 差フィルムの遅相軸は延伸方向と直交であった。
[0062] 実施例 10
上記実施例 6— 9で使用したセルロース誘導体以外のセルロース誘導体での位相 差フィルムの作成と波長分散特性
上記実施例 6 - 9で使用したセルロース誘導体以外の、前記表 1に記載されたセル ロース誘導体を用いて、置換基の種類に応じてそれぞれ実施例 6— 9に記載したと 同様な方法で位相差フィルムを作製し、実施例 6と同様にして、 550nmの波長に対 する位相差比を求め、これらの位相差フィルムの波長分散特性を第 3— 5図に示した
[0063] 実施例 11
複屈折と位相差比の関係より定数 A1および A2の算出
位相差比と複屈折の関係から、下記式(1)および(2)の定数 A1および A2を算出し (測定点 1つごとの定数 Aを加重平均して求めた)、置換基の種類が同じであれば同 一の定数を示し、置換度の違いにより波長分散を制御できることを確認した。これを 図 6から図 11に示した。 (Re750/Re550) =Al/ A n+ l (1)
(Re450/Re550) =A2/ A n+ l (2)
(波長 750nmにおける位相差値の波長 550nmにおける位相差値に対する比率を( Re750/Re550)、波長 450nmにおける位相差ィ直の波長 550nmにおける位ネ目差 値に対する比率を(Re450/Re550)、 Δ ηを配向された高分子の波長 550nmにお ける複屈折、 A1および A2は定数)
求められた各セルロース誘導体における A1および A2の値は下記する。 セルロース誘導体 A1 ( X 10— 5 ) A2 ( X 10— 5 )
セルロース n—ペンタネート 5. 02 -3. 64
セノレロース n_へキサネート 6. 52 -4. 85
セノレロース n—ヘプタネートアセテート 7. 51 -4. 96
[0064] 実施例 12
1/4波長位相差フィルムおよび円偏光フィルムの作製
実施例 5に記載の化合物 1一 2 (セルロース n—ペンタネート 2:置換度 2. 29)から実 施例 6と同様の方法で本発明の位相差フィルムを作製した。厚さは 77 /i m、 550nm の波長の位相差は 132nmであった。また、複屈折は 0. 00171であった。この位相 差フィルムの遅相軸および進相軸方向にそれぞれ 50° まで傾斜した際の位相差値 変化、即ち位相差フィルムの視野角特性を自動複屈折計 (KOBRA— 21ADH, 王 子計測製)を用いて測定し、正面方向(0° )の波長 590nmの位相差値 Roに対する 傾斜角 n° における波長 590nmの位相差値 Rnの比 Rn/Roを求めた。結果を図 1 2に示した。次に、厚さ 180 /i mの偏光フィルム(ポラテクノ社製、 SKN18243T)の 吸収軸と本発明の位相差フィルムの遅相軸とが 45度の角度でアクリル系粘着剤を用 いて積層して本発明の円偏光フィルムを作製した。この円偏光フィルムの厚さは 277 z mであった。次にこの円偏光フィルムを鏡の上に置いて、鏡面反射防止効果を観 察したところ、本発明の円偏光フィルムは深い黒色となり良い反射防止効果を有して いた。
[0065] 実施例 13
1/4波長位相差フィルムのケン化処理および円偏光フィルムの作製 実施例 5に記載の化合物 2— 2 (セルロース n キサネート 2:置換度 2. 43)から実 施例 7と同様の方法にて本発明の位相差フィルムを作製した。厚さは 85 μ ΐη 550η mの波長の位相差値は 139nmであった。また、複屈折は 0. 00164であった。次に、 この位相差フィルムの視野角特性を実施例 12と同様に評価した。結果を図 12およ び図 13に示した。次に、この位相差フィルムを 60°C 6Nの水酸化カリウム水溶液に 15分間浸漬後、水で十分洗浄した。次いで、 30°Cで 30分間乾燥して表層がケンィ匕 処理された本発明の位相差フィルムを得た。このフィルム表面の水の接触角は 15° であった。次に偏光素子の片面にのみ支持フィルムを有する厚さ 100 μ mの偏光フ イルム(ボラテクノ製、 UDN10243T)の偏光素子面側にポリビュルアルコール系接 着剤(日本合成化学工業製、 NH26)を用いて、ケン化処理された本発明の位相差 フィルムを偏光フィルムの吸収軸と該位相差フィルムの遅相軸とが 45° になるような 配置で貼りあわせ、本発明の円偏光フィルムを得た。得られた円偏光フィルムの厚さ は 185 μ ΐηであった。このフィルムを実施例 12と同様の評価を行った結果、本発明 の円偏光フィルムは深い黒色となり良い反射防止効果を有していた。
[0066] 実施例 14
光学フィルムの作製
実施例 13で得られたケン化処理された本発明の位相差フィルムを偏光フィルムの 吸収軸と該位相差フィルムの遅相軸とが直交になるような配置で貼りあわせる以外は 実施例 13と同様の操作を行レ、、本発明の光学フィルムを得た。
[0067] 実施例 15
光学フィルムの作製
化合物 2—2 (セルロース n_へキサネート 2 :置換度 2. 43)を用いて、 550nmにおけ る位相差値が 50nmである以外は実施例 13と同様の操作により、ケン化処理された 本発明の位相差フィルムを得た。次に実施例 14と同様の操作により、本発明の光学 フィルムを得た。
[0068] 実施例 16
光学フィルムの作製
セルロース n—ォクタネート 1 (化合物 4—1)を用いて、厚さ力 Sl40 x m 550nmにお ける位相差値が 140nmである以外は、実施例 9と同様の操作を行い本発明の位相 差フィルムを得た。この位相差フィルムの遅相軸は延伸方向と直交であった。次にこ のフィルムを実施例 13と同様の操作によりケン化処理を行った。次に、この位相差フ イルムを偏光フィルムの吸収軸と該位相差フィルムの延伸方向とが平行になるような 配置で貼りあわせる以外は実施例 14と同様の操作を行レ、、本発明の光学フィルムを 得た。
[0069] 実施例 17
複合光学フィルムの作製
実施例 14で得られた本発明の光学フィルムに、 550nmにおけるフィルム正面方向 の位相差値が略 Onm、厚さ 50 μ m、 no_ne = 0. 0024、 Rth=約 120nmである位 相差フィルムをアクリル系粘着剤を用いて貼りあわせて、本発明の複合光学フィルム を得た。
[0070] 実施例 18
複合光学フィルムの作製
実施例 15の光学フィルムを用いる以外は、実施例 17と同様の操作を行い、本発明 の複合光学フィルムを得た。
[0071] 実施例 19
複合光学フィルムの作製
実施例 16の光学フィルムを用いる以外は、実施例 17と同様の操作を行い、本発明 の複合光学フィルムを得た。
[0072] 実施例 20
液晶表示装置の作製および視野角特性評価
市販の VA型液晶表示装置の偏光フィルムを剥離し、バックライト側には偏光素子 を 2枚のトリァセチルセルロースフィルムで挟持した偏光フィルム(ボラテクノ製、 SKN 18243T)を、観察面側には実施例 17で作製した複合光学フィルムを各々の偏光フ イルムの吸収軸が直交するようにアクリル系粘着剤を用いて液晶セルに貼りあわせて 本発明の液晶表示装置を得た。この液晶表示装置のバックライトを点灯させ、黒表示 状態の画像を表示画面正面方向から偏光フィルムの吸収軸方向より 45° の方向に 傾斜して観察したところ、 85° 傾斜しても黒状態が維持されており、視野角が拡大さ れていた。
[0073] 実施例 21
液晶表示装置の作製および視野角特性評価
実施例 18の複合光学フィルムを用いる以外は、実施例 20と同様の操作により、本 発明の液晶表示装置を得た。この液晶表示装置を実施例 20と同様に評価したところ 、 70° 付近までは黒状態が維持されていたが、 85° 傾斜するとほとんど光が抜けて しまい、黒状態が維持できなかった。
[0074] 実施例 22
液晶表示装置の作製および視野角特性評価
実施例 19の複合光学フィルムを用いる以外は、実施例 20と同様の操作により、本発 明の液晶表示装置を得た。この液晶表示装置を実施例 20と同様に評価したところ、 85° 傾斜しても黒状態が維持されており、視野角が拡大されていた。
[0075] 実施例 23
パルミチン酸 50gとトリフルォロ酢酸無水物 8. 35mlの混合液を 55°Cに加熱し、 20 分間撹拌した。次に式(1)で示されるユニット数 (重合度)が約 300のセルロース(三 木産業社製) 1. 32gを 55°Cに保った該混合液中に加え、 5時間撹拌した。次にこの 混合物を 1000mlのメタノール中に加えると沈殿物が析出した。これを吸引濾過にて 回収し、濾紙上の沈殿物を酢酸ェチルで十分洗浄し、 40°Cで真空乾燥してセル口 ース n—パルミテートの白色粉末 5. 84gを得た。
次にこのセルロース n—パルミテートをアセトン /DMSOの混合溶媒に溶解し、 1N 水酸化ナトリウム水溶液を用いて加水分解した。同時にブランクとしてアセトン ZDM S〇の混合液に 1 N水酸化ナトリウム水溶液を入れた溶液の撹拌も行つた。 1 N硫酸 にて両者を逆滴定して置換度(セルロース 1モノマーユニットあたりの n—パルミテート による置換数)を求めたところ、 2. 9であった。
次に得られたセルロース n—パルミテートをクロ口ホルムに溶解し、 5重量%の溶液とし た。次に離型フィルム(リンテック社製、 PET3811)を離型面とは反対側の面を粘着 剤を用いて平滑なガラス板に貼り合わせ、その離型面上にセルロース n—パルミテー ト溶液を流延し、室温で乾燥してセルロース n—パルミテートの未延伸フィルムを作製 した。このフィルムを長方形に切り取り短辺側の両端を固定し、 60°Cで、もとの 1. 5倍 の長さになるまで固定した一端を長手方向に一軸延伸して位相差フィルムを得た。こ の位相差フィルムの膜厚は約 80 z mであった。次に自動複屈折計(KOBRA— 21A DH,王子計測製)を用いて 590nmにおける位相差値を測定したところ、 120nmで あった。また、アッベ屈折計 (ァタゴ社製、アッベ屈折計 1T)を用いて、得られた本発 明の位相差フィルムの屈折率を測定したところ、延伸方向の屈折率 nx= l . 4900、 フィルム面内で延伸方向と直交する方向の屈折率 ny= l . 4915、厚さ方向の屈折 率 nz = l . 4925であった。
実施例 24
パルミチン酸の代わりにラウリン酸を 14. 3g用いる以外は、実施例 23と同様な方法 にてセルロース n—ラウレート 8. 96gを得た。次に実施例 1と同様の操作により置換度 を求めたところ、置換度は 2. 9であった。このセルロース n—ラウレートを実施例 23と 同様の操作によりセルロース n—ラウレートの未延伸フィルムを作製した。次に延伸温 度を 80°Cでもとの長さの 1. 5倍に一軸延伸する以外は、実施例 23と同様の操作に より本発明の位相差フィルムを得た。この位相差フィルムの膜厚は 130 μ mであった 。得られた位相差フィルムの位相差値を実施例 23と同様に測定したところ、 590nm における位相差値は 250nmであった。また、得られた位相差フィルムの屈折率は、 延伸方向の屈折率 nx= l . 4790、フィルム面内で延伸方向と直交する方向の屈折 率 ny= l . 4810、厚さ方向の屈折率 nz= 1. 4818であった。この位相差フィルムの 視野角特性を実施例 12、 13と同様に評価した。結果を図 13に示した。
次にこの位相差フィルムの進相軸(延伸方向)と位相差値が 120nmの一軸延伸ポ リカーボネートフィルムの遅相軸 (延伸方向)とが平行になるように粘着剤を用いて積 層することにより、本発明のァクロマティック、広視野角位相差フィルムを得た。この位 相差フィルムの遅相軸方向と、ヨウ素を吸着配向させたポリビュルアルコールからな る偏光素子の両面をトリアセチルセルロースフィルムで挟持した偏光フィルム(ボラテ タノ社製、 SKN18243T)の吸収軸とが 45° になるようにアクリル系粘着剤を用いて 積層し、本発明の光学フィルムの一形態であるァクロマティック、広視野角円偏光フィ ルムを得た。この円偏光フィルムをガラス板に偏光フィルムが最前面になるよう配置し て反射防止効果を評価したところ、正面方向の反射は深い黒色であり可視光のァク 口マティックで反射防止効果が得られていることが確認された。さらに正面方向から上 下左右各約 50° 傾斜させた位置で同様に反射の状態を評価したところ、反射は深 い黒色を維持しており、ァクロマティックでし力、も広い視野角で反射防止効果が得ら れていることが分かった。
[0077] 次に、上記セルロース n—ラウレートを延伸して得た本発明の位相差フィルムの進相 軸 (延伸方向)と偏光フィルム(ボラテクノネ土製、 SKN18243T)の吸収軸とが平行に なるようにアクリル系粘着剤を用いて積層し、本発明の光学フィルムの一形態である 広視野角偏光フィルムを得た。次に、本発明の広視野角偏光フィルムの吸収軸ともう 一枚の偏光フィルム(ボラテクノネ土製、 SKN18243T)の吸収軸とが直交(クロスニコ ノレ)するように、かつ、本発明の位相差フィルムが各偏光フィルム間に配置されるよう に積層した。次にこの状態で面光源上に配置し、各々の吸収軸から 45° の方位の 方向に正面方向から約 50° 傾斜させた位置で光の抜け具合を評価した。その結果 、本発明の広視野角偏光フィルムを用いた場合は光の抜けがほとんど観察されず広 い視野角で、光を遮断していることが分かった。
[0078] 実施例 25
パルミチン酸の代わりに n—デカン酸を 49. 9g、トリフルォロ酢酸無水物を 33. 8ml 、式(1)で示されるユニット数 (重合度)が約 300のセルロース(三木産業社製)を 1 · 32g用いる以外は、実施例 23と同様な方法にてセルロース n—デカネート 3. 77gを 得た。次に実施例 23と同様の操作により置換度を求めたところ、置換度は 2. 9であ つた。このセルロース n—デカネートを実施例 23と同様の操作によりセルロース n—デ 力ネートの未延伸フィルムを作製した。次に延伸温度を 50°Cでもとの長さの 2. 0倍に 一軸延伸する以外は、実施例 23と同様の操作により本発明の位相差フィルムを得た 。この位相差フィルムの膜厚は約 95 z mであった。得られた位相差フィルムの位相差 値を実施例 23と同様に測定したところ、 590nmにおける位相差値は 267nmであつ た。また、得られた位相差フィルムの屈折率は、延伸方向の屈折率 nx = l . 4712、 フィルム面内で延伸方向と直交する方向の屈折率 ny= l . 4740、厚さ方向の屈折 率 nz = l . 4760であった。この位相差フィルムの視野角特性を実施例 12 13と同様 に評価した。結果を図 13に示した。
[0079] 実施例 26
パルミチン酸の代わりに n—ォクチル酸を 48ml、トリフルォロ酢酸無水物を 35. 4ml 、式(1)で示されるユニット数 (重合度)が約 300のセルロース(三木産業社製)を 1. 38g用いる以外は、実施例 23と同様な方法にてセルロース n—ォクタネート 3. 16gを 得た。次に実施例 23と同様の操作により置換度を求めたところ、置換度は 2. 9であ つた。このセルロース n—ォクタネートを実施例 23と同様の操作によりセルロース n—ォ クタネートの未延伸フィルムを作製した。次に延伸温度を 60°Cでもとの長さの 2. 0倍 に一軸延伸する以外は、実施例 23と同様の操作により本発明の位相差フィルムを得 た。この位相差フィルムの膜厚は約 95 z mであった。得られた位相差フィルムの位相 差値を実施例 23と同様に測定したところ、 590nmにおける位相差値は 370nmであ つた。また、得られた位相差フィルムの屈折率は、延伸方向の屈折率 nx= l . 4720 、フィルム面内で延伸方向と直交する方向の屈折率 ny= l . 4759、厚さ方向の屈折 率 nz = l . 4730であった。この位相差フィルムの視野角特性を実施例 12 13と同様 に評価した。結果を図 13に示した。
[0080] 実施例 27
実施例 26で作製したセルロース n—才クタネートを用レ、、延伸温度を 55°C、延伸倍 率を 3· 0倍、得られる位相差フィルムの厚さを 77 μ ΐηにする以外は実施例 26と同様 の操作により、本発明の位相差フィルムを得た。得られた位相差フィルムの位相差値 を実施例 23と同様に測定したところ、 590nmにおける位相差値は 452nmであった 。この位相差フィルムの視野角特性を実施例 12 13と同様に評価した。結果を図 13 に示した。
[0081] 実施例 28
パルミチン酸の代わりに n—ヘプタン酸を 48ml、トリフルォロ酢酸無水物を 39. 6ml 、式(1)で示されるユニット数 (重合度)が約 300のセルロース(三木産業社製)を 1. 55g用いる以外は、実施例 23と同様な方法にてセルロース n プタネート 3. 86gを 得た。次に実施例 23と同様の操作により置換度を求めたところ、置換度は 2. 9であ つた。このセルロース n プタネートを実施例 23と同様の操作によりセルロース n— ヘプタネートの未延伸フィルムを作製した。次に延伸温度を 80°Cでもとの長さの 2. 0 倍に一軸延伸する以外は、実施例 23と同様の操作により本発明の位相差フィルムを 得た。この位相差フィルムの膜厚は約 95 z mであった。得られた位相差フィルムの位 相差値を実施例 23と同様に測定したところ、 590nmにおける位相差値は 266nmで あった。また、得られた位相差フィルムの屈折率は、延伸方向の屈折率 nx= l . 473 2、フィルム面内で延伸方向と直交する方向の屈折率 ny= l . 4760、厚さ方向の屈 折率 nz = l . 4750であった。この位相差フィルムの視野角特性を実施例 12 13と同 様に評価した。結果を図 13に示した。
[0082] 比較例 1
ポリカーボネート製 1/4波長位相差フィルムの評価
ポリカーボネート製 1/4波長位相差フィルム(550nmの波長の位相差値は 141nm であった。)を用いる以外は、実施例 12と同様な方法で円偏光フィルムを作成し、そ の反射防止効果を観察したところ、暗紫色となり、十分な反射防止効果を有していな かった。
[0083] 比較例 2
厚さは 200 μ ΐηの、可塑剤としてジェチルフタレートを含む置換度 2. 5のセルロー スアセテート位相差フィルムを実施例 6と同様に評価したところ、 550nmにおける位 相差値は 144nm、複屈折は 0. 00072であった。また、この位相差フィルムの波長 分散特性を図 14に示した。さらに、この位相差フィルムの視野角特性を実施例 12 1 3と同様に評価した。結果を図 12に示した。傾斜角 50度では位相差比 (Rn/Ro)の 数値が 1より大きく離れており、視野角特性が充分でないことがわかる。
[0084] 比較例 3
液晶表示装置の視野角特性評価
偏光素子を 2枚のトリァセチルセルロースフィルムで挟持した偏光フィルム(ボラテクノ 製、 SKN18243T)を観察面側にも用いる以外は、実施例 20と同様の操作により液 晶表示装置を作製した。この液晶表示装置を実施例 20と同様に評価したところ、約 4 0° 傾斜した位置から急激に光が抜けてしまい、黒状態が維持できなかった。 [0085] 比較例 4
トリァセチルセルロースフィルム(富士写真フィルム社製、 TD80UF、厚さ約 80 μ m )を実施例 23と同様の方法で、 210°Cでもとの 1. 8倍の長さになるまで一軸延伸した 。得られた位相差フィルムの厚さは 77 z mであり、位相差値を実施例 23と同様に測 定したところ、 590nmにおける位相差値は 77nmであった。また、得られた位相差フ イルムの屈折率は、延伸方向の屈折率 nx= l . 4875、フィルム面内で延伸方向と直 交する方向の屈折率 ny= l . 4885、厚さ方向の屈折率 nz= 1. 4874であった。また 、このトリァセチルセルロースフィルムを精製して可塑剤紫外線吸収剤を取り除き、実 施例 23と同様の操作により置換度を求めたところ、置換度は 2. 9であった。
[0086] 比較例 5
実施例 24の本発明の光学フィルムの一形態である広視野角偏光フィルムの代わり に、偏光フィルム(ボラテクノ社製、 SKN18243T)を 2枚用いる以外は、実施例 24と 同様の操作により、各々の吸収軸が直交になるよう配置されたときの光の抜け具合を 評価した。その結果、光はほとんど抜けており、光を遮断する効果が激減していること が分かった。
[0087] 実施例 1一 5で合成された本発明のセルロース誘導体から得られた本発明の位相差 フィルムは、実施例 6— 11に示すように、置換基の種類と置換度を変えることにより波 長分散特性および複屈折性の正負を任意に制御できることが分かる。また、実施例 1 2、 13と比較例 1より、本発明のァクロマティックな波長分散特性を有する位相差フィ ルムを用いて作製した円偏光フィルムは比較例 1に比べて優れた反射防止効果を有 していることが分かる。また、実施例 12、 13と比較例 2より、本発明の位相差フィルム は、同じ 1Z4波長位相差フィルムとした場合、比較例 2の位相差フィルムに比べて、 複屈折が大きいため、厚みを薄くすることができることが分かる。さらに、傾斜した際 の位相差値の変化も比較例 2に比べて少なぐ位相差フィルムの視野角特性に優れ ていることが分かる。さらに、実施例 14一 19示すように本発明の位相差フィルムと偏 光フィルムを用いることにより、本発明の光学フィルム、および複合光学フィルムを得 ること力 Sできる。さらに、本発明の複合光学フィルムを有する本発明の液晶表示装置 は比較例 3と比べて視野角が拡大していることが分かる。さらには実施例 20、 22と実 施例 21との比較においては、実施例 20、 22の方がより視野角拡大効果に優れてお り、本発明の位相差フィルムの 550nmにおける位相差値がより好ましい範囲であるこ とが分かる。一方、実施例 23— 28と比較例 4から分かるように、本発明の位相差フィ ルムは nz >ny >nxまたは ny >nz >nxとなっていることから一軸延伸であるにも関 わらず、二軸性を有していることが分かる。さらに、実施例 24に示すように、本発明の 位相差フィルムを用いて作製したァクロマティック、広視野角位相差フィルムを用いた 本発明のァクロマティック、広視野角円偏光フィルムは、反射防止効果に優れ、しか も傾斜してもその効果を維持していることが分かる。また、本発明の光学フィルムの一 形態である広視野角偏光フィルムは比較例 5と比べて、もう一方の偏光フィルムと各 々の吸収軸が直交(クロスニコル)するように配置した際、各々の吸収軸とは異なる方 向に正面方向力 傾斜させても光の抜けが低減されており、偏光フィルムとしての視 野角特性が向上していることが分かる。また、実施例 25 28で得られた本発明の二 軸性を有する位相差フィルムは、傾斜した際の位相差値の変化が実施例 13よりもさ らに少なぐ位相差フィルムの視野角特性が非常に優れていることが分かる。

Claims

請求の範囲
[1] セルロースの水酸基が炭素数が 5から 20の脂肪族ァシル基により、セルロース 1モ ノマーユニット当り 1一 3の置換度で置換され、該脂肪族アシノレ基以外の置換基で 0 一 2の置換度で置換されたセルロース誘導体から形成された位相差フィルム。
[2] 炭素数が 5から 20の脂肪族アシノレ基による水酸基の置換度がセルロース 1モノマ 一ユニット当り 1. 00—2. 99である請求項 1に記載の位相差フィルム。
[3] 炭素数が 5から 20の脂肪族ァシル基以外の置換基が該脂肪族ァシル基とは構造 の異なる脂肪族ァシル基、芳香族ァシル基、アルキル力ルバモイル基、芳香族カル バモイル基、トラン骨格を有するァシル基、ビフヱニル骨格を有するアシノレ基又は重 合性基のいずれかであり、該脂肪族ァシル基とそれ以外の置換基でのセルロース 1 モノマーユニット当りの水酸基の合計置換度が 1. 50-2. 99である請求項 1に記載 の位相差フィルム。
[4] 炭素数が 5から 20の脂肪族アシノレ基が直鎖の脂肪族ァシル基で、セルロース 1モノ マーユニット当りの水酸基の置換度が 1. 5— 3であり、該脂肪族ァシル基以外の置 換基が炭素数 1一 4のァシル基であり、その置換度が 0— 1. 5である請求項 1に記載 の位相差フィルム。
[5] 炭素数 1一 4のアシノレ基がァセチル基である請求項 4に記載の位相差フィルム。
[6] 該位相差フィルムが下記式(1)及び(2)
(Re750/Re550) =Al/ A n+ l (1)
(Re450/Re550) =A2/ A n+ l (2)
(式中(Re750ZRe550)は波長 750nmにおける位相差値の波長 550nmにおける 位相差値に対する比率であり 0. 05- 1. 95の値を示す。 (Re450ZRe550)は波長 450nmにおける位相差値の波長 550nmにおける位相差値に対する比率であり 0. 05—1. 95の値を示す。 Δ ηは位相差フィルムの波長 550nmにおける複屈折であり 、 0. 0001—0· 06の値を示す。 A1および A2は定数で- 0· 06—0. 06の値を示し、 A1が正の値のとき A2は負の値であり、 A1が負の値のとき A2は正の値になる。 ) の関係を満たすことを特徴とする請求項 1に記載の位相差フィルム。
[7] 請求項 1ないし 6に記載の位相差フィルムと他の位相差フィルムとを積層した複合 位相差フィルム。
請求項 1ないし 7に記載の位相差フィルム若しくは複合位相差フィルムと偏光フィル ムを積層してなる、円若しくは楕円偏光フィルム又は旋光フィルム。
請求項 1ないし 6に記載の位相差フィルムの遅相軸と偏光フィルムの吸収軸または 透過軸とが平行または直交になるよう積層してなる光学フィルム。
フィルム面内の平均屈折率を ne、厚さ方向の屈折率を noとするとき、 ne— no< 0 厚さを dとするとき、 Rth= (no-ne) X dで求められる Rthが 100— 300nm 550nm におけるフィルム正面方向の位相差値が 0— 50nmであるフィルム、請求項 6または 7 のいずれ力、 1項に記載の位相差フィルム及び偏光フィルムが積層され、かつその位 相差フィルムの遅相軸と偏光フィルムの吸収軸または透過軸とが平行または直交に なるよう積層された複合光学フィルム。
偏光フィルムを構成する偏光素子と請求項 6または 7のいずれ力 4項に記載の位相 差フィルムとが直接積層されていることを特徴とする請求項 8ないし 10のいずれか 1 項に記載の円若しくは楕円偏光フィルム又は旋光フィルムまたは光学フィルム。 請求項 6または 7のいずれか 1項に記載の位相差フィルムあるいは請求項 6ないし 1 1のいずれか 1項に記載の円若しくは楕円偏光フィルムまたは旋光フィルムまたは光 学フィルムまたは複合光学フィルムを備えてなる画像表示装置。
画像表示装置が液晶表示装置である、請求項 12に記載の画像表示装置。
n—ペンタノィル基の置換度が 2. 0—2. 98であるセルロース n—ペンタネート。 n キサノィル基の置換度が 2. 0—2. 9であるセルロース n キサネート。
n—ヘプタノィル基の置換度が 1. 5— 2. 9であるセルロース n プタネート。
n—ヘプタノィル基の置換度が 1. 5-2.
8、ァセチル基の置換度が 0. 02- 1. 0で あるセルロース n—ヘプタネートアセテート。
n—オタタノィル基の置換度が 1. 0-2. 9であるセルロース n—ォクタネート。
PCT/JP2004/012300 2003-08-28 2004-08-26 セルロース誘導体を用いた位相差フィルム WO2005022215A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP20040772256 EP1666930A1 (en) 2003-08-28 2004-08-26 Phase shift films made by using cellulose derivatives
CA 2536474 CA2536474A1 (en) 2003-08-28 2004-08-26 Retardation film using cellulose derivative
JP2005513463A JP4681452B2 (ja) 2003-08-28 2004-08-26 セルロース誘導体を用いた位相差フィルム
CNB2004800249305A CN100445779C (zh) 2003-08-28 2004-08-26 使用纤维素衍生物的延迟膜
US10/569,928 US7410680B2 (en) 2003-08-28 2004-08-26 Retardation film made by using cellulose derivatives
TW093125751A TW200519142A (en) 2003-08-28 2004-08-27 Phase difference film composed of cellulose derivatives
HK06114194A HK1093367A1 (en) 2003-08-28 2006-12-28 Retardation film using cellulose derivative

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003-305182 2003-08-28
JP2003305182 2003-08-28
JP2003-395445 2003-11-26
JP2003395445 2003-11-26
JP2003431930 2003-12-26
JP2003-431930 2003-12-26

Publications (1)

Publication Number Publication Date
WO2005022215A1 true WO2005022215A1 (ja) 2005-03-10

Family

ID=34279543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012300 WO2005022215A1 (ja) 2003-08-28 2004-08-26 セルロース誘導体を用いた位相差フィルム

Country Status (9)

Country Link
US (1) US7410680B2 (ja)
EP (1) EP1666930A1 (ja)
JP (1) JP4681452B2 (ja)
KR (1) KR101015509B1 (ja)
CN (1) CN100445779C (ja)
CA (1) CA2536474A1 (ja)
HK (1) HK1093367A1 (ja)
TW (1) TW200519142A (ja)
WO (1) WO2005022215A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006010828A (ja) * 2004-06-23 2006-01-12 Fuji Photo Film Co Ltd セルロースアシレートフィルムとその製造方法
JP2006267278A (ja) * 2005-03-22 2006-10-05 Fuji Photo Film Co Ltd 光学補償シート、偏光板および液晶表示装置
JP2006335842A (ja) * 2005-06-01 2006-12-14 Konica Minolta Opto Inc セルロースエステル化合物、セルロースエステルフィルム、セルロースエステルフィルムの製造方法、偏光板、及び液晶表示装置
JP2007206368A (ja) * 2006-02-01 2007-08-16 Nippon Kayaku Co Ltd セルロース誘導体を用いた位相差フィルム
JP2008266559A (ja) * 2007-03-28 2008-11-06 Fujifilm Corp セルロース体組成物、セルロース体フィルム、光学補償シート、偏光板および液晶表示装置
JP2008285650A (ja) * 2007-04-19 2008-11-27 Fujifilm Corp セルロース体組成物、セルロース体フィルム、位相差フィルム、光学補償フィルム、反射防止フィルム、偏光板および画像表示装置
JP2009298826A (ja) * 2008-06-10 2009-12-24 Fujifilm Corp セルロース誘導体、セルロース誘導体フィルム、及びその用途
JP2014041347A (ja) * 2012-07-26 2014-03-06 Sanyo Chem Ind Ltd 逆波長分散フィルム用樹脂組成物並びにこれからなる逆波長分散フィルム及び逆波長分散シート
JP2017203051A (ja) * 2016-05-09 2017-11-16 株式会社ダイセル 混合脂肪酸セルロースエステル及び混合脂肪酸セルロースエステルの製造方法
JP2019502796A (ja) * 2015-12-22 2019-01-31 エスエーピーピーアイ ネザーランズ サーヴィシーズ ビー.ヴイ 無水グルコース単位を含む生体高分子のアシル化

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4802186B2 (ja) * 2005-02-22 2011-10-26 日本化薬株式会社 セルロース誘導体を用いた位相差フィルム
JPWO2007026591A1 (ja) * 2005-08-30 2009-03-05 コニカミノルタオプト株式会社 光学フィルム及びその製造方法、並びにそれを用いた偏光板及び液晶表示装置
JP2007062334A (ja) * 2005-09-02 2007-03-15 Fujifilm Corp セルロースアシレート樹脂フィルム及びその製造方法
US20070292680A1 (en) * 2006-06-12 2007-12-20 Fujifilm Corporation Optical film, production method of optical film, polarizing plate and liquid crystal display device
JP4892313B2 (ja) * 2006-10-13 2012-03-07 富士フイルム株式会社 セルロース化合物、セルロースフィルム、光学補償シート、偏光板および液晶表示装置
KR100861513B1 (ko) * 2007-01-29 2008-10-02 삼성정밀화학 주식회사 포피린 착물을 함유하는 복굴절성의 실리콘 포피린셀룰로오스 화합물, 및 이로부터 형성된 위상차 보상 필름
US20090096962A1 (en) * 2007-05-14 2009-04-16 Eastman Chemical Company Cellulose Esters with High Hyrdoxyl Content and Their Use in Liquid Crystal Displays
US20090269591A1 (en) 2008-04-24 2009-10-29 Crysoptix Kk Organic Compound, Optical Film and Method of Production thereof
EP2742372B1 (en) 2011-08-12 2015-09-16 Dow Global Technologies LLC Optical retardation film and method of manufacturing
JP2014010300A (ja) * 2012-06-29 2014-01-20 Nitto Denko Corp 偏光板および有機elパネル
US9395549B2 (en) * 2014-12-16 2016-07-19 Volfoni R&D EURL Stereoscopic three dimensional imaging system
KR101927432B1 (ko) * 2015-02-11 2018-12-10 동우 화인켐 주식회사 고내구성 편광판 및 이를 구비한 표시장치
US11248314B2 (en) 2016-11-22 2022-02-15 Nutrition & Biosciences USA 4, Inc. Process for making polyacrylonitrile fibers
WO2018098068A1 (en) * 2016-11-22 2018-05-31 E. I. Du Pont De Nemours And Company In situ functionalization of polysaccharides and compositions thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000137116A (ja) * 1998-10-30 2000-05-16 Teijin Ltd 位相差板及びそれを用いた液晶表示装置
JP2001091473A (ja) * 1999-09-22 2001-04-06 Olympus Optical Co Ltd 基板検査装置
JP2003058320A (ja) * 2001-08-20 2003-02-28 Fuji Photo Film Co Ltd タッチパネルおよび反射型液晶表示装置
JP2003240955A (ja) * 2002-02-21 2003-08-27 Konica Corp 光学フィルム、偏光板、光学フィルムロ−ル、光学フィルムを用いた表示装置、光学フィルムの製造方法
JP2004148811A (ja) * 2002-10-08 2004-05-27 Fuji Photo Film Co Ltd セルロースアシレートフイルムの製造方法、セルロースアシレートフイルム、並びにそれを用いた光学機能性シート、偏光板、液晶表示装置及びハロゲン化銀写真感光材料

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US524456A (en) 1894-08-14 Temporary binder
JP2818983B2 (ja) 1990-10-24 1998-10-30 日東電工株式会社 複屈折性フィルムの製造方法
JP3174367B2 (ja) 1991-10-07 2001-06-11 日東電工株式会社 積層波長板及び円偏光板
US5750677A (en) * 1994-12-30 1998-05-12 Eastman Chemical Company Direct process for the production of cellulose esters
US6599443B1 (en) 1998-03-05 2003-07-29 Rockwell Technologies, Llc Film
DE69932272T2 (de) 1998-03-05 2007-07-12 Rockwell International Corp., Thousand Oaks Optische Verzögerungsschicht
JP4163825B2 (ja) 1999-09-22 2008-10-08 富士フイルム株式会社 位相差板の製造方法
AU2002238896A1 (en) 2001-03-14 2002-09-24 Fuji Photo Film Co., Ltd. Phase difference plate comprising polymer film containing compound having rod-shaped molecular structure
JP4452019B2 (ja) 2001-05-10 2010-04-21 日本化薬株式会社 位相差フィルム及びそれを有する画像表示装置
US7038744B2 (en) * 2002-01-09 2006-05-02 Konica Corporation Polarizing plate having a stretched film on a side thereof and liquid crystal display employing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000137116A (ja) * 1998-10-30 2000-05-16 Teijin Ltd 位相差板及びそれを用いた液晶表示装置
JP2001091473A (ja) * 1999-09-22 2001-04-06 Olympus Optical Co Ltd 基板検査装置
JP2003058320A (ja) * 2001-08-20 2003-02-28 Fuji Photo Film Co Ltd タッチパネルおよび反射型液晶表示装置
JP2003240955A (ja) * 2002-02-21 2003-08-27 Konica Corp 光学フィルム、偏光板、光学フィルムロ−ル、光学フィルムを用いた表示装置、光学フィルムの製造方法
JP2004148811A (ja) * 2002-10-08 2004-05-27 Fuji Photo Film Co Ltd セルロースアシレートフイルムの製造方法、セルロースアシレートフイルム、並びにそれを用いた光学機能性シート、偏光板、液晶表示装置及びハロゲン化銀写真感光材料

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006010828A (ja) * 2004-06-23 2006-01-12 Fuji Photo Film Co Ltd セルロースアシレートフィルムとその製造方法
JP4530735B2 (ja) * 2004-06-23 2010-08-25 富士フイルム株式会社 セルロースアシレートフィルムとその製造方法
JP2006267278A (ja) * 2005-03-22 2006-10-05 Fuji Photo Film Co Ltd 光学補償シート、偏光板および液晶表示装置
JP2006335842A (ja) * 2005-06-01 2006-12-14 Konica Minolta Opto Inc セルロースエステル化合物、セルロースエステルフィルム、セルロースエステルフィルムの製造方法、偏光板、及び液晶表示装置
JP2007206368A (ja) * 2006-02-01 2007-08-16 Nippon Kayaku Co Ltd セルロース誘導体を用いた位相差フィルム
JP4656523B2 (ja) * 2006-02-01 2011-03-23 日本化薬株式会社 セルロース誘導体を用いた位相差フィルム
JP2008266559A (ja) * 2007-03-28 2008-11-06 Fujifilm Corp セルロース体組成物、セルロース体フィルム、光学補償シート、偏光板および液晶表示装置
JP2008285650A (ja) * 2007-04-19 2008-11-27 Fujifilm Corp セルロース体組成物、セルロース体フィルム、位相差フィルム、光学補償フィルム、反射防止フィルム、偏光板および画像表示装置
JP2009298826A (ja) * 2008-06-10 2009-12-24 Fujifilm Corp セルロース誘導体、セルロース誘導体フィルム、及びその用途
JP2014041347A (ja) * 2012-07-26 2014-03-06 Sanyo Chem Ind Ltd 逆波長分散フィルム用樹脂組成物並びにこれからなる逆波長分散フィルム及び逆波長分散シート
JP2019502796A (ja) * 2015-12-22 2019-01-31 エスエーピーピーアイ ネザーランズ サーヴィシーズ ビー.ヴイ 無水グルコース単位を含む生体高分子のアシル化
JP2017203051A (ja) * 2016-05-09 2017-11-16 株式会社ダイセル 混合脂肪酸セルロースエステル及び混合脂肪酸セルロースエステルの製造方法

Also Published As

Publication number Publication date
JPWO2005022215A1 (ja) 2007-11-01
TW200519142A (en) 2005-06-16
CN100445779C (zh) 2008-12-24
KR101015509B1 (ko) 2011-02-16
JP4681452B2 (ja) 2011-05-11
EP1666930A1 (en) 2006-06-07
US7410680B2 (en) 2008-08-12
CN1846154A (zh) 2006-10-11
US20070036916A1 (en) 2007-02-15
CA2536474A1 (en) 2005-03-10
KR20060056990A (ko) 2006-05-25
HK1093367A1 (en) 2007-03-02

Similar Documents

Publication Publication Date Title
WO2005022215A1 (ja) セルロース誘導体を用いた位相差フィルム
JP4802186B2 (ja) セルロース誘導体を用いた位相差フィルム
JP5120379B2 (ja) 位相差フィルムの製造方法、位相差フィルム、偏光板及び液晶表示装置
JP4074872B2 (ja) 光学補償偏光板、画像表示装置、及び液晶表示装置
US20120003402A1 (en) Retardation Film Produced by Using Cellulose Derivative
JP2013152430A (ja) 光学フィルム、積層フィルム、及びそれらの製造方法
WO2005111675A1 (en) Optical compensation polarizing plate, image display unit and liquid crystal display unit
JP2009251017A (ja) 楕円偏光板、及びそれを用いた液晶表示装置
TW201500205A (zh) 偏光板及其製造方法以及光學膜材料
WO2017154817A1 (ja) 光学補償層付偏光板およびそれを用いた有機elパネル
JP5071257B2 (ja) 位相差フィルム、位相差フィルムの製造方法、偏光板及び液晶表示装置
WO2008050603A1 (fr) Dispositif d&#39;affichage à cristaux liquides en mode ips et procédé de fabrication dudit dispositif
JP2007286578A (ja) 偏光板一体型光学補償フィルム及び液晶表示装置
JP5170093B2 (ja) 液晶表示装置
JP2008112172A (ja) Ipsモード液晶表示装置用光学補償偏光板、画像表示装置、及び液晶表示装置
WO2015016296A1 (ja) 偏光板の製造方法
JP4656523B2 (ja) セルロース誘導体を用いた位相差フィルム
JP5446862B2 (ja) 横電界スイッチングモード型液晶表示装置
CN116438478A (zh) 光学显示装置模块和包括其的光学显示装置
JP4538412B2 (ja) セルロース誘導体から得られる光学フィルム
WO2022091471A1 (ja) 位相差層付偏光板および画像表示装置
JPWO2009087905A1 (ja) 積層位相差フィルム、偏光板及び液晶表示装置
CN118151281A (zh) 带相位差层的偏振片以及图像显示装置
KR20240099034A (ko) 위상차층 부착 편광판 및 위상차층 부착 편광판을 포함하는 화상 표시 장치
CN118226558A (zh) 带相位差层的偏振片及包含带相位差层的偏振片的图像显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480024930.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020067003049

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005513463

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004772256

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2536474

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007036916

Country of ref document: US

Ref document number: 10569928

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067003049

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004772256

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10569928

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2004772256

Country of ref document: EP