WO2005006744A1 - ケーブル延長装置 - Google Patents

ケーブル延長装置 Download PDF

Info

Publication number
WO2005006744A1
WO2005006744A1 PCT/JP2004/009553 JP2004009553W WO2005006744A1 WO 2005006744 A1 WO2005006744 A1 WO 2005006744A1 JP 2004009553 W JP2004009553 W JP 2004009553W WO 2005006744 A1 WO2005006744 A1 WO 2005006744A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
attenuation
frequency
audio signal
band
Prior art date
Application number
PCT/JP2004/009553
Other languages
English (en)
French (fr)
Inventor
Masafumi Mori
Original Assignee
Kowa Company, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kowa Company, Ltd. filed Critical Kowa Company, Ltd.
Priority to EP04747022A priority Critical patent/EP1646230A4/en
Priority to US10/558,524 priority patent/US7440035B2/en
Publication of WO2005006744A1 publication Critical patent/WO2005006744A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/68Circuits for processing colour signals for controlling the amplitude of colour signals, e.g. automatic chroma control circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/36Repeater circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/10Adaptations for transmission by electrical cable
    • H04N7/102Circuits therefor, e.g. noise reducers, equalisers, amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N11/00Colour television systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/641Multi-purpose receivers, e.g. for auxiliary information

Definitions

  • the present invention relates to a cable extension device capable of displaying a video from a video input source on a video output device arranged at a location distant from the video input source, and more particularly, to compensating a digital audio signal.
  • the present invention relates to a cable extension device capable of stably compensating a video signal by using it as a signal for use and outputting a good video and audio to a video output device to realize an effective presentation.
  • a rectangular wave forming a horizontal and vertical synchronization signal corresponding to a video signal is used as a compensation signal to compensate for attenuation of a transmitted video signal.
  • cable extension devices There are known cable extension devices. In such a cable extension device, it is not necessary to transmit a compensating signal separately from the video signal.Therefore, a compensated good image which does not complicate the structure of the cable extension device is arranged at a remote place. It can be displayed on a video output device, and an effective presentation can be realized.
  • the present invention provides a signal transmitter (2) to which a video signal (for example, a color signal R, G, B) can be inputted, and the signal transmitter (2) and a signal line (5A, 5B, 5C, 5D) and can be connected via the signal lines (5A, 5B, 5C, 5D) from the signal transmitter (2).
  • a cable extension device (1) configured with a signal receiver (3) capable of outputting
  • the signal transmitter (2) includes:
  • An audio signal receiving means (41) for receiving an input of the audio signal (L, R) is provided,
  • the audio signals (L, R) input to the audio signal receiving means (41) are converted into digital data.
  • the signal line (5) is a digital audio signal (LR) in which pulses (PL) of the
  • the signal receiver (3) includes:
  • a digital audio signal (e.g., LR) received from the signal transmitter (2).
  • the video signal received from the signal transmitter (2) is based on the attenuation of the pulse (eg, PL).
  • the signal is received from the signal transmitter (2) based on the attenuation compensation amount (eg, G, G) calculated by the attenuation compensation amount calculating means (60, 61, 62, 63, 67, 68, 69, 70).
  • the attenuation compensation amount calculating means 60, 61, 62, 63, 67, 68, 69, 70.
  • the attenuation compensation amount (for example, G 1, G 2) of the video signal is determined by the digital audio signal (L
  • R is calculated based on the attenuation of the pulses (PL) arranged in the video signal (R, G).
  • the attenuation of the video signal irrespective of the resolution of the image or the type of display can be accurately compensated, so that the attenuation can be compensated stably.
  • the audio signal is output to the signal receiver (3), an effective presentation can be realized by causing the video output device to output the audio together with the excellent video.
  • the signal line (5A, 5B, 5C, 5D) is transmitted while transmitting the audio signal to the signal receiver (3). Can be prevented from increasing and the configuration of the cable extension device (1) can be simplified.
  • the signal receiver (3) converts a pulse (eg, PL) arranged in a digital audio signal (eg, LR) received from the signal transmitter (2) into a plurality of bands.
  • a pulse eg, PL
  • a digital audio signal eg, LR
  • the band separation means (65, 66) For example, the band separation means (65, 66)
  • the attenuation compensation amount calculating means of the signal receiver (3) is configured to calculate the attenuation compensation amount based on the attenuation of each pulse (PL, PL) separated into a plurality of bands by the band separating means (65, 66).
  • the band-based compensation amount calculating means (60, 6) for calculating the attenuation compensation amount (G, G) for each band.
  • the video signal attenuation compensating means of the signal receiver (3) includes an attenuation compensation amount for each band calculated by the band-specific compensation amount calculating means (60, 61, 62, 63, 67, 68, 69, 70). G,
  • the attenuation of the video signal (R, G, ⁇ ) is changed for each band (for example, low band and high band).
  • the attenuation of the video signal can be compensated for finely and the video output device can display a better video.
  • the pulse (PL) arranged in the digital audio signal (LR) output from the digital audio signal transmitting means (41, 43) comprises a rectangular wave.
  • the pulse (PL) arranged in the digital audio signal (LR) is a square wave.
  • a digital audio signal (LR) containing a relatively wide range of frequency components is provided.
  • the cloth can cover most of the frequency components contained in the video signal, it is necessary to compensate for the attenuation of the video signal (R, G, B) that is not related to the frequency distribution of the video signal.
  • the present invention provides the signal transmitter (2),
  • the digital audio signal (LR) output from the digital audio signal transmitting means (41, 43) of the signal transmitter (2) is converted into a signal corresponding to each digital data (DD) of the digital audio signal.
  • a pulse (PL, PL) with a wave number for example, lZT or 2 / T shown in Fig. 5 (b)
  • the digital audio signal transmitting means (41, 43) of the signal transmitter (2) transmits the digital modulated signal (LR) to the signal receiver (3) via the signal line (5A, 5B, 5C, 5D). )
  • the attenuation compensation amount calculating means (60, 61, 62, 63, 67, 68, 69, 70) of the signal receiver (3) is a digitally modulated signal (LR) received from the signal transmitter (2).
  • LR digitally modulated signal
  • the digital audio signal transmitting means (41, 43) transmits a digital modulation signal (LR) in which pulses (PL, PL) of a frequency corresponding to the digital data (DD) are arranged.
  • LR digital modulation signal
  • the intermittent periodic pulse can be output to the signal receiver (3). As a result, even if the digital audio signal (LR) does not have a pulse (PL) or is
  • the signal receiver (3) converts the pulse (PL) arranged in the digital modulation signal (LR) received from the signal transmitter (2) into a plurality of bands (for example, Low and high
  • the attenuation compensation amount calculating means of the signal receiver (3) is configured to calculate the attenuation compensation amount based on the attenuation of each pulse (PL, PL) separated into a plurality of bands by the band separating means (65, 66).
  • the band-based compensation amount calculating means (60, 6) for calculating the attenuation compensation amount (G, G) for each band.
  • the video signal attenuation compensating means of the signal receiver (3) includes an attenuation compensation amount for each band calculated by the band-specific compensation amount calculating means (60, 61, 62, 63, 67, 68, 69, 70). G,
  • the video signals (R, G, B) received from the signal transmitter (2) are reduced.
  • the attenuation of the video signal (R, G, B) is reduced by a periodic pulse (PL, PL).
  • AT AT AT 01 Compensates for each band based on the attenuation of AT1, so the attenuation of video signals (R, G, B) is
  • the noises (PL, PL) arranged in the digital modulation signal (LR) output from the digital audio signal transmitting means (41, 43) include rectangular waves.
  • the periodic pulse (PL, PL) is a square wave, so that the video signal G
  • FIG. 1 is an external view showing an example of a cable extension device to which the present invention is applied.
  • FIG. 2 is an external view showing an example of a signal transmitter and a signal receiver.
  • FIG. 2 (a) is a rear view of the signal transmitter
  • FIG. 2 (b) is a rear view of the signal receiver.
  • FIG. 3 is a block diagram showing an example of a configuration of a signal transmitter and a signal receiver.
  • FIG. 4 is a block diagram showing an example of a configuration of an attenuation compensation unit.
  • FIG. 5 is an explanatory diagram of a modulation process, in which (a) is a time chart showing an example of a serial audio signal, and (b) is a serial modulated signal obtained by modulating the serial audio signal shown in (a). 6 is a time chart showing one example.
  • Fig. 6 is a waveform diagram of an attenuated serial signal.
  • A is a pulse before attenuation
  • (b) is an attenuated pulse shown in (a)
  • (c) is (b)
  • (D) is a high-frequency waveform of the attenuation pulse shown in (b).
  • FIGS. 7A and 7B are explanatory diagrams of a clock pulse regeneration process, wherein FIG. 7A is a time chart showing an example of a serial modulation signal, and FIG. 7B is a clock pulse regeneration process based on the serial modulation signal shown in FIG. It is a time chart which shows an example of a signal.
  • Audio signal receiving means digital audio signal transmitting means (AD converter)
  • Attenuation compensation amount calculating means video signal attenuation compensating means, band-specific compensation amount calculating means, band-specific video signal compensating means (low-frequency image compensating section)
  • Attenuation compensation amount calculation means video signal attenuation compensation means, band-specific compensation amount calculation means, band-specific video signal compensation means (high-frequency image compensation unit)
  • Attenuation compensation amount calculation means band-specific compensation amount calculation means (low-frequency rectangular wave compensation unit)
  • Attenuation compensation amount calculation means band-specific compensation amount calculation means (high-frequency rectangular wave compensation unit)
  • Attenuation compensation amount calculation means Attenuation compensation amount calculation means, band-specific compensation amount calculation means (low-frequency peak detection unit) 68 ...: Attenuation compensation amount calculation means, band-specific compensation amount calculation means (high-frequency peak detection unit) 69: Attenuation compensation amount Calculation means, Compensation amount calculation means for each band (Low-frequency gain adjustment unit) 70: Attenuation compensation amount calculation means, band-specific compensation amount calculation means (high-frequency gain adjustment unit) DD: Digital data
  • G video signal attenuation compensation amount (low-frequency gain, high-frequency gain)
  • Pulses (attenuated pulses) arranged in a digitally modulated signal received from the transmitter
  • Pulses arranged in a digital modulation signal (low-frequency attenuation pulse, high-frequency attenuation pulse)
  • PL, PL Pulse of frequency corresponding to digital data
  • R, G, B Video signal (R signal, G signal, B signal)
  • Video signals (Attenuated R signal, Attenuated G signal) received from the signal transmitter
  • the cable extension device 1 has a signal transmitter 2 and a signal receiver 3, and the signal transmitter 2 is connected to a cable through which a video signal can be freely transmitted. It is configured.
  • Video signals include RGB signals, and component signals such as YPbPr and YCbCr signals (three signals in which a luminance signal and a color difference signal are separated).
  • Cables for RGB signals include BNC cables with BNC (Bayonet Neill Concelman) connectors (not shown) at both ends and DSUB cables with DSUB connectors (not shown) at both ends. As the cable, there is a BNC cable as described above.
  • the signal transmitter 2 is configured such that a cable through which an audio signal can be transmitted is freely connected. ing.
  • the audio signal includes an analog signal or a digital signal.
  • Analog signals include monaural and stereo, and such analog signal cables include, for example, RCA cables having RCA pin plugs at both ends of the cable.
  • the signal transmitter 2 shown in FIG. 1 is connected to, for example, a main body 9 A of a personal computer (personal computer) 9 via an RCA cable 7 A, and has a display 9 B and a BNC cable 6 A of the personal computer 9. Connected through.
  • a video input source need not be limited to the personal computer 9 in particular, and any device may be used as long as the video signal of the RGB signal or the component signal is output by itself.
  • the signal transmitter 2 and the signal receiver 3 are configured to be freely connectable to a cable through which a video signal and an audio signal can be transmitted.
  • a cable is, for example, a LAN cable having a modular plug (not shown) of RJ-45 (Registered Jack-45) at both ends.
  • the LAN cable is a UTP consisting of four twisted-pair wires classified into Category 5 (CAT5) and Category 6 (CAT6) defined by the EIAZTIA (American Electronic Industries Association Z American Telecommunications Industry Association) 568 standard. (Unshield Twisted Pair) Capele.
  • the signal transmitter 2 and the signal receiver 3 shown in Fig. 1 are connected via a LAN cable 5.
  • the LAN cable 5 has a predetermined cable length (for example, 100 m). Therefore, the signal transmitter 2 and the signal receiver 3 are connected to the LAN cable 5 with the longest cable length. It can be arranged at a position separated by a distance.
  • the signal receiver 3 is configured such that a BNC cable or a DSUB cable is freely connectable as a cable for a video signal, and a cable for an audio signal.
  • a BNC cable or a DSUB cable is freely connectable as a cable for a video signal, and a cable for an audio signal.
  • RCA cables can be connected freely.
  • the signal receiver 3 shown in FIG. 1 is connected to, for example, a plasma display 10 via a BNC cable 6B and an RCA cable 7B.
  • the video output device need not be limited to the plasma display 10 in particular. Any video signal such as an RGB signal or a component signal can be input and displayed.
  • FIG. 2 is an external view showing an example of the signal transmitter 2 and the signal receiver 3, (a) showing a rear view of the signal transmitter 2, and (b) showing a rear view of the signal receiver 3.
  • Figure 2 (a) As shown in FIG. 1, the housing 20 is provided, and the housing 20 is provided with a terminal board 20a.
  • the terminal board 20a is provided with an input terminal 21 for a BNC cable, an input terminal 22 for a DSUB cable, and an audio signal input terminal 23 as input terminals, and an output terminal 25a for a LAN cable as an output terminal. 25b is provided.
  • the BNC cable input terminal 21 is composed of five input terminals into which RGB signals can be freely input.
  • the input terminal 21 for the BNC cable has R input terminals 21R, G input corresponding to the R (red) signal R, the G (green) signal G, and the B (blue) signal B of the RGB signal, respectively. It has a terminal 21G and a B input terminal 21B, and an HD input terminal 21H and a VD input terminal 21V respectively corresponding to a horizontal synchronization signal HD and a vertical synchronization signal VD of RGB signals.
  • the R signal R, the G signal G, and the B signal B are simply referred to as color signals R, G, and B when there is no particular need for distinction.
  • the signal HD and the vertical synchronization signal VD are simply referred to as synchronization signals HD and VD.
  • the DSUB cable input terminal 22 is capable of inputting RGB signals freely, and is arranged in three rows in a "D" -shaped shell 22a. It consists of input pins 22R, 22G, 22B, 22H, 22V composed of female pins.
  • the input terminal 22 for the DSUB cable has an R input pin 22R, a G input pin 22G, and a B input pin 22B corresponding to an R signal, a G signal, and a B signal, respectively, and a horizontal synchronization signal HD, and It has an HD input pin 22H and a VD input pin 22V respectively corresponding to the vertical synchronization signal VD.
  • the BNC cable input terminal 21 and the DSUB cable input terminal 22 each function as an input channel, that is, the signal transmitter 2 has two input channels. .
  • the signal transmitter 2 is provided with a selection switch (not shown) for the input channel, for example, on the front side (the back side of the paper surface of FIG. 2). Therefore, the signal transmitter 2 is configured to be able to output a video signal input from any one of the input channels by operating the selection switch by the operator.
  • the number of input channels is not particularly limited to two, and may be one or more than three.
  • the audio signal input terminal 23 is connected to a stereo analog signal (hereinafter referred to as "analog audio signal L, R ". ) Is composed of an inputtable RCA pin jack, and the left analog audio
  • the LAN cable output terminals 25a and 25b are constituted by the above-described RJ-45 modular jacks, and each have an 8-pole contact (not shown) corresponding to the modular plug of the LAN cable 5. ing.
  • the LAN cable 5 has four twisted pair wires as described above.
  • Each twisted pair wire is composed of two twisted signal wires that balance and transmit signals of opposite logic to reduce noise. Therefore, a total of eight signal lines correspond to the eight-pole contacts, respectively.
  • one twisted pair wire is used as one signal line, and LAN cable 5 is connected to four signal lines 5A, 5B, 5C, and 5D. (Shown in the center of Fig. 3). Therefore, as for the contacts of the LAN cable output terminals 25a and 25b, only the output contacts 25R, 25G, 25B and 25A (shown in the center of Fig. 3) corresponding to these signal lines 5A, 5B, 5C and 5D respectively. Will be described.
  • the signal transmitter 2 also connects the video signal input to the BNC cable input terminal 21 or the DSUB cable input terminal 22 and the audio signal input to the audio signal input terminal 23 with a LAN cable.
  • Distribution means (not shown) for distributing to the output terminals 25a and 25b is provided.
  • the number of LAN cable output terminals 25a and 25b need not be particularly two, but may be one or more than three. In that case, the distribution means may be configured to distribute signals corresponding to the number to the respective output terminals.
  • the signal receiver 3 has a housing 30 similarly to the signal transmitter 2 described above, and the housing 30 includes a terminal board 30a. Is provided.
  • the terminal board 30a has an input terminal 31 for a LAN cable as an input terminal, and an output terminal 32 for a BNC cable and an audio signal output terminal 33 as output terminals.
  • the LAN cable input terminal 31 is composed of an RJ-45 modular jack like the LAN cable output terminals 25a and 25b of the signal transmitter 2, and corresponds to the LAN cable 5 modular plug. It has pole contacts (not shown). Also, in the following description Similarly to the LAN cable output terminals 25a and 25b, the input contacts 31R, 31G, and 31B correspond to the signal lines 5A, 5B, 5C, and 5D of the LAN cable 5 among the 8-pole contacts, respectively. , 31A (shown in the center of FIG. 3) only.
  • the BNC cable output terminal 32 is composed of five output terminals that can output RGB signals freely.
  • 32V the BNC cable output terminal 32
  • the audio signal output terminal 33 is configured by an RCA pin jack that can output analog audio signals L and R freely.
  • FIG. 3 is a block diagram showing an example of the configuration of the signal transmitter 2 and the signal receiver 3.
  • the signal transmitter 2 (within the dashed frame) shown on the left side of the figure has a synchronization signal adding unit 40, an AD converting unit 41, a clock generating unit 42, a data processing unit 43, a modulating unit 45, and the like.
  • the synchronization signal adding unit 40 is connected to the input terminal 21 for a BNC cable or the input terminal 22 for a DSUB cable via distribution means (not shown). Specifically, when the input channel is selected as the input terminal 21 for the BNC cable by the selection switch (not shown), the R input terminal 21R, the G input terminal 21G, the B input terminal 21B, and the HD input terminal 21H , And VD input terminals are connected to 21V. On the other hand, when the input terminal 22 for DSUB cable is selected, it is connected to the R input pin 22R, the G input pin 22G, the B input pin 22B, the HD input pin 22H, and the VD input pin 22V.
  • the AD converter 41 is connected to the left audio signal input terminal 23 L and the right audio signal input terminal 23 R of the audio signal input terminal 23.
  • the clock generation unit 42 is connected to the AD conversion unit 41, and the AD conversion unit 41 and the synchronization signal adding unit 40 are connected to the data processing unit 43.
  • the data processing unit 43 is connected to the modulation unit 45.
  • the synchronization signal adding unit 40 is connected to the output contacts 25R, 25G, and 25B of the LAN cable output terminals 25a and 25b, and the modulation unit 45 is connected to the LAN cable output terminal 25a. , 25b are connected to the output contact 25A.
  • the signal receiver 3 (within the dashed frame) shown on the right side of FIG. 3 includes an attenuation compensating section 50, a binarizing section 51, a demodulating section 52, a clock reproducing section 53, a synchronizing signal separating section 55, It has a signal restoring unit 56, an audio signal restoring unit 57, and a DA converter 58.
  • the attenuation compensation unit 50 is connected to the input contacts 31R, 31G, 31B, and 31A of the LAN cable input terminal 31, and the binarization unit 51 is connected to the input contact 31A of the LAN cable input terminal 31. It is connected to the.
  • the attenuation compensation unit 50 is connected to a synchronization signal separation unit 55, and the synchronization signal separation unit 55 is connected to a synchronization signal restoration unit 56.
  • the binarizing section 51 is connected to a demodulating section 52 and a clock reproducing section 53.
  • the demodulation unit 52 and the clock recovery unit 53 are connected to an audio signal recovery unit 57, and the audio signal recovery unit 57 is connected to a synchronization signal recovery unit 56 and a DA conversion unit 58.
  • the synchronization signal separation unit 55 is connected to the R output terminal 32R, the G output terminal 32G, and the B output terminal 32B of the output terminal 32 for the BNC cable. Connected to HD output terminal 32H and VD output terminal 32V of cable output terminal 32.
  • the DA converter 58 is connected to the left audio signal output terminal 33L and the left audio signal output terminal 33R of the audio signal output terminal 33.
  • FIG. 4 is a block diagram showing an example of the configuration of the attenuation compensator 50 shown in FIG.
  • the attenuation compensator (within the dashed frame) 50 constitutes an AGC (automatic gain control) circuit.
  • AGC automatic gain control
  • the low-frequency image compensator 60 includes input contacts 31R, 31G,
  • the low-frequency rectangular wave compensator 62 is connected to the input contact 31 A of the LAN cable input terminal 31.
  • the low-frequency rectangular wave compensator 62 is connected to the lower And a high-pass filter 66.
  • the low-pass filter 65 is connected to a low-frequency gain adjustment unit 69 via a low-frequency peak detection unit 67, while the low-pass filter 66 is connected to a high-frequency gain detection unit via a high-frequency peak detection unit 68. It is connected to the adjustment unit 70.
  • the low-frequency gain adjustment unit 69 is connected to the low-frequency image compensation unit 60 and the low-frequency rectangular wave compensation unit 62 described above, and the high-frequency gain adjustment unit 70 is connected to the high-frequency image compensation unit 61 and It is connected to the high-frequency rectangular wave compensator 63.
  • the cable extension device 1 has the above configuration, for example, in order to output a video signal and an audio signal from the personal computer 9 to, for example, the plasma display 10, the operator uses the personal computer 9, the signal Each of the transmitter 2, the signal receiver 3, and the plasma display 10 is connected via a predetermined cable.
  • the video signal from the personal computer 9 is an RGB signal composed of five signals (color signals R, G, B, and synchronization signals HD, VD), and an audio signal from the personal computer 9 Is a stereo analog sound composed of two signals (left and right analog audio signals L and R).
  • the total number of input signals is seven.
  • the present invention can also be applied to a case where the cable connecting the signal transmitter 2 and the signal receiver 3 can transmit the above-described seven signals individually (that is, the number of signal lines is seven or more).
  • the number of signal lines is seven or more.
  • an embodiment using a cable having a smaller number of signal lines than the number of signals is appropriate. The embodiment will be described in the case where the signal transmitter 2 and the signal receiver 3 are connected via a LAN cable 5 composed of four signal lines as shown in FIG. . At this time, the output terminal for the LAN cable of the signal transmitter 2 uses only 25a.
  • the output contact 25R of the LAN cable output terminal 25a is connected to the input contact 31R of the LAN cable input terminal 31 via the signal line 5A of the LAN cable 5, as shown in the center of FIG. Will be connected.
  • output contact 25G is connected to input contact 31G via signal line 5B
  • output contact 25B is connected to input contact 31B via signal line 5C
  • output contact 25A is connected to signal line 5D.
  • Fig. 1 For a simple explanation, as shown in Fig. 1, only the personal computer 9 is used as the video input source, and the personal computer 9 transmits signals via the BNC cable 6A and the RCA cable 7A. Assume that it is connected to transceiver 2. Also, set the video input source to plasma
  • the plasma display 10 is connected to the signal receiver 3 via the BNC cable 6B and the RCA cable 7B.
  • the operator activates the personal computer 9, the signal transmitter 2, the signal receiver 3, and the plasma display 10, respectively, and inputs a BNC cable by using a selection switch (not shown) of the signal transmitter 2. It is assumed that the terminal 21 is selected as an input channel, and an output command of a video signal and an audio signal is input via input means (not shown) of the personal computer 9.
  • the color signals R, G, B and the synchronization signals HD, VD are output from the main body 9A of the personal computer to the signal transmitter 2 via the display 9B and the BNC cable 6A. Also, the above
  • the signal is output to the signal transmitter 2 via the cable 7A.
  • the output R signal R, G signal G, B signal B, horizontal synchronizing signal HD, and vertical synchronizing signal VD are R input terminals 21R, G, respectively, as shown in the left side of FIG.
  • the signal is input to the synchronization signal adding unit 40 via the input terminal 21G, the B input terminal 21B, the HD input terminal 21H, and the VD input terminal 21V.
  • the audio signal R is connected to the left audio signal input terminal 23L and the right audio signal input terminal 2 respectively.
  • the signal is input to the AD converter 41 via 3R.
  • the synchronization signal adding section 40 converts the input color signals R, G, B and the synchronization signals HD, VD (that is, five signals) into the signal lines 5A, 5B, 5C, 5D of the LAN cable 5.
  • the synchronization signals HD and VD are superimposed on the B signal B for transmission to the signal receiver 3 via three signal lines 5A, 5B and 5C.
  • B signal B on which synchronization signals HD and VD are superimposed is referred to as B signal B.
  • the color signal on which the synchronization signals HD and VD are superimposed does not need to be the B signal B, and the synchronization signals HD and VD are converted into separate color signals (for example, R signal R and B signal B). They may be superimposed.
  • the synchronization signal adding section 40 determines the polarities of the input synchronization signals HD and VD, and determines that the polarity of the synchronization signals HD and VD is positive. The polarity is reversed and superimposed on the B signal B. On the other hand, if the polarity of the synchronization signals HD and VD is determined to be negative, the synchronization signals HD and VD without reversing the polarity are superimposed on the B signal B as they are. [0065]
  • the polarity of the synchronization signals HD and VD differs depending on the resolution of the image and the type of display (there may be positive or negative). In this way, the synchronization signals HD and VD always have the negative polarity and the B signal. By superimposing on B, the signals can be prevented from being mixed with each other, and the signal receiver 3 described later can easily separate the synchronization signals HD and VD from the B signal and the B signal.
  • the synchronization signal adding unit 40 performs the following based on the determination result regarding the polarities of the synchronization signals HD and VD described above. For example, the polarity information PI of “1” when the polarity is positive and “0” when the polarity is negative is output to the data processing unit 43.
  • the synchronization signal adding unit 40 converts the R signal R, the G signal G, and the B signal B into the output of the LAN cable output terminal 25a, respectively.
  • the signal is input to the AD converter 41 via the audio signal input terminals 23L and 23R.
  • the data processing unit 43 converts the input analog audio signals L and R (that is,
  • the conversion unit 41 converts the input analog audio signals L and R into digital signals (AD
  • the clock generation unit 42 is provided with an OSC (crystal oscillator).
  • OSC crystal oscillator
  • a clock panorama CP of a predetermined frequency for example, 11.3 MHz
  • the AD converter 41 divides the frequency of the input clock pulse CP (for example, to 1/256), and receives the frequency of the divided clock pulse CP as the sampling frequency (for example, 44.1 kHz).
  • Analog audio signals L and R are provided with an OSC (crystal oscillator).
  • the bit length (quantization bit number) per sampling is set to 8 bits. Therefore, the AD converter 41 samples the analog audio signals L and R.
  • Pulse, PL of 8-bit digital data DD (1 or 0) is sampled every sampling. Generate sequentially.
  • the 8-bit digital data DD is expressed as audio data SD.
  • the pulse PL of the digital data DD refers to a change in the voltage V corresponding to a change (0 ⁇ 1 or 1 ⁇ 0) in the digital data DD, and the change in the voltage V corresponds to the rise and fall of the voltage V. This is indicated by a falling edge PE (described later).
  • the change in voltage V may be either positive or negative, but here it is assumed that the amplitude of the noise PL is set to a positive voltage “V”.
  • the audio data SD of the sampled analog audio signals L and R is
  • the digital data DD changes from 0 to 1
  • the AD conversion unit 41 correspondingly changes the voltage V from 0 to V. Changes to
  • the noise PL having the amplitude V is arranged between the time points t3 and 14 and between the time points t5 and 17 corresponding to the audio data SD "00101100".
  • the AD converter 41 converts the sampled left and right analog audio signals L and R
  • the audio data SD indicated by the left digital audio signal L is expressed as left audio data SD
  • the audio data SD indicated by the right digital audio signal R is expressed as right audio data SD.
  • the data processing unit 43 When the digital audio signals L and R are input, the data processing unit 43
  • the data processing unit 43 converts the left audio data SD and the right audio data SD into
  • the left and right The area between the audio data SD, SD and the left and right audio data SD, SD
  • non-speech data area NDA such an area is referred to as a non-speech data area NDA.
  • the data processing unit 43 converts the left and right audio data SD, SD for each sampling.
  • the input digital audio signals L and R are serialized by sequentially arranging them in the order of left and right.
  • Serial audio signal LR Audio signal (hereinafter referred to as “serial audio signal LR”).
  • the audio signal input to the signal transmitter 2 is not necessarily an analog signal.
  • a digital signal used for a CD (compact disc), DVD (digital versatile disc), or the like Does not require AD conversion by the AD conversion unit 41.
  • the input audio signal is already a serial signal, parallel data conversion by the data processing unit 43 is not necessary.
  • the data processing unit 43 performs parallel / serial conversion of the digital audio signals L and R,
  • a specific pattern indicating a delimiter for each sampling and the polarity information PI input from the synchronization signal adding unit 40 are respectively added to predetermined positions in the non-audio data area NDA, and the specific pattern and the polarity information PI are added.
  • the added serial audio signal LR is output to the modulator 45.
  • Modulation section 45 receives serial audio signal LR after signal transmitter 2 is activated.
  • the unit 45 determines that the detected voltage V does not exceed a predetermined threshold voltage (for example, V ⁇ 2).
  • the modulating unit 45 determines that the voltage V has not exceeded the predetermined threshold voltage at the corresponding time t1 and generates a pulse PL as shown in FIG. 5 (b).
  • Serial audio signal LR Serial audio signal
  • the modulation unit 45 Since the 0 D voltage V is “0” even at the time point t2, the modulation unit 45 performs the same determination as described above at the corresponding time point tl2, and generates the pulse PL.
  • the modulating section 45 outputs the pulse from time tl 5 to time 17
  • a PL is generated, and a noise PL is generated from time tl7 to time 19.
  • the modulation section 45 converts the input serial audio signal LR into
  • the serial audio signal LR is modulated by outputting a rectangular wave whose period is changed in accordance with the above.
  • the modulation section 45 modulates the modulated
  • the R signal R, the G signal G, and the B signal B output from the synchronization signal adding unit 40 are output contacts 25R, 25R of the LAN cable output terminal 25a, respectively.
  • the R signal R, the G signal G, the B signal B, and the serial modulation signal LR are transmitted from the signal transmitter 2
  • the signal lines 5A, 5B, 5C, and 5D of the LAN cable 5 are transmitted toward the signal receiver 3. That is, seven signals (color signals R, G, B, synchronization signals HD, VD, and left and right analog audio signals L, R) are combined into four signals constituting the LAN cable 5.
  • the signal is transmitted to the signal receiver 3 via the signal lines 5A, 5B, 5C, and 5D.
  • signal lines 5A, 5B, 5C, and 5D constituting LAN cable 5 have the same material, wire diameter, and cable length. Therefore, the respective attenuation rates AQ of the signal lines 5A, 5B, 5C, and 5D change in accordance with only the frequency of the signal transmitted to each.
  • any signal can be represented by sine waves (frequency components) of various frequencies based on Fourier expansion, the amplitude of each frequency component included in the signal irrespective of the signal waveform shape is Therefore, the attenuation is based on the attenuation factor AQ corresponding to each frequency.
  • the color signals R, G, and B have waveforms corresponding to a video that changes every moment.
  • serial modulation signal LR is a square wave as shown in FIG. 5 (b)
  • the same frequency components contained in the same have the same attenuation factor AQ.
  • the color signals R, G, B and the serial modulation signal LR are respectively connected to the signal line 5A.
  • the same frequency components that are included in common are attenuated at the same rate and input to the input contacts 31R, 31G, 31B, and 31A of the LAN cable input terminal 31. Will be done.
  • R is attenuated R signal R, attenuated G signal G, attenuated B signal B,
  • Attenuated serial signal LR Attenuated serial signal LR.
  • attenuated R signal R Attenuated G signal G,
  • the decay B signal B is expressed as attenuated chrominance signals R, G, and B when there is no particular need to distinguish them.
  • the pulse PL of the attenuated serial signal LR (hereinafter referred to as "attenuated pulse PL").
  • FIG. Fig. 6 is a waveform diagram of the attenuated serial signal LR.
  • the pulse PL before decay (b) is the decay pulse PL, (c) is the low-pass waveform of the decay pulse PL, (d
  • the pulse PL of the serial modulation signal LR has a rectangular shape before attenuation.
  • the square wave contains a wide range of frequency components from low to high (in theory, to infinite frequency). Of these, high-frequency components cause the rise and fall of the voltage V to fall. As shown, an edge portion PE is formed.
  • the attenuation factor AQ increases as the frequency increases, so that when the serial modulation signal LR is transmitted through the LAN cable 5, the amplitude of the higher frequency component is attenuated.
  • the pulse PL has an amplitude that does not attenuate uniformly.
  • the amplitude around the edge PE is particularly attenuated, and the attenuated pulse PL (solid line) becomes the pulse PL (dashed line).
  • the pulse PL of the serial modulation signal LR is also a rectangular wave as shown in Fig. 5 (b).
  • the amplitude around the part PE (not shown) is particularly attenuated.
  • the serial modulated signal LR composed of these pulses PL and PL is an analog audio signal.
  • the number of pulses PL and PL changes according to the change in signal L and R, but the waveform
  • the attenuation factor AQ changes only according to the frequency irrespective of the waveform shape, so that the attenuation rate AQ predicted from the frequency distribution of the serial modulation signal LR reduces the reduction of the color signals R, G, and B.
  • the present invention provides an attenuated frequency based on the frequency distribution of the serial modulation signal LR.
  • the attenuated serial signal LR is divided into two parts, a low band and a high band.
  • the attenuated R signal R, the attenuated G signal G, and the attenuated B signal input to the signal receiver 3
  • No.B is the input contact 31R, 31G, 31B of the input terminal 31 for the LAN cable, respectively.
  • the attenuated serial signal LR input to the signal receiver 3 is attenuated by the input contact 31A of the LAN cable input terminal 31.
  • the attenuated serial signal LR input to the low-frequency image compensating unit 60 in the attenuation compensating unit 50 (broken frame) and input to the attenuation compensating unit 50 is converted into the low-frequency rectangular wave compensating unit in the attenuation compensating unit 50.
  • the attenuated serial signal LR is transmitted through the low-frequency square wave compensator 62.
  • the high-frequency rectangular wave compensator 63 outputs the signal in an attenuated form.
  • the output attenuated serial signal LR is branched and sent to the low-pass filter 65 and the high-pass filter 66, respectively.
  • the low-pass filter 65 includes a predetermined high band included in the input attenuated serial signal LR.
  • the frequency component of the low frequency band is cut, and the attenuated serial signal LR (hereinafter, referred to as the "low frequency attenuated signal") consisting of the frequency component of a predetermined low frequency band (hereinafter, referred to as "low frequency component LF").
  • the attenuated serial signal LR hereinafter, referred to as the "low frequency attenuated signal”
  • low frequency component LF the frequency component of a predetermined low frequency band
  • the high-pass filter 66 cuts a predetermined low-band frequency component included in the input attenuated serial signal LR, as shown in FIG. 6 (d).
  • high-frequency attenuated signal LR composed of a predetermined high-band frequency component (hereinafter, referred to as “high-frequency attenuated signal HF”) is passed.
  • the attenuated pulse PL described in b) is a pulse that has passed through the low-pass filter 65 (
  • high-frequency attenuation pulse PL Is indicated by a solid line.
  • the low-pass filter like the unattenuated serial modulated signal LR,
  • the pulse when passing through the filter 66 (hereinafter referred to as “high-frequency noise PL”) is indicated by a broken line.
  • the low-pass filter 65 corresponds to the low-pass pulse PL (dashed line).
  • the high-pass filter 66 responds to the high-pass pulse PL (broken line).
  • the difference voltage ⁇ is larger than the difference voltage ⁇ shown in FIG.
  • the low-pass filter 65 outputs the low-frequency attenuation pulse PL (
  • the low-frequency peak detection unit 67 detects the peak voltage V of the input low-frequency attenuation pulse PL and outputs it to the low-frequency gain adjustment unit 69.
  • the high-frequency peak detector 68 detects the peak voltage V of the input high-frequency decay pulse PL in the same manner as the low-frequency peak detector 67 and outputs the high-frequency gain.
  • the low-frequency gain adjustment unit 69 and the high-frequency gain adjustment unit 70 are each provided with a comparator (not shown). Each of the comparators has a low-frequency gain shown in Figs. 6 (c) and 6 (d). Pulse PL, high
  • the voltage V which is the same as the peak voltage of the band pulse PL, is always input as the reference voltage.
  • the adjustment voltage V is output to the low-frequency video compensator 60 and the low-frequency rectangular wave
  • the difference voltage ⁇ between the input voltage V and voltage V is calculated and calculated.
  • the signal is fed back to the high-frequency rectangular wave compensator 63.
  • the low-frequency image compensating unit 60, the low-frequency rectangular wave compensating unit 62, the high-frequency image compensating unit 61, and the high-frequency rectangular wave compensating unit 63 are each provided with a variable gain amplifier (not shown).
  • the variable gain amplifier provided in the low-frequency image compensating section 60 and the low-frequency rectangular wave compensating section 62 receives the low-frequency gain G (shown in the brackets 60 and 62 in FIG. 4) sequentially.
  • variable gain amplifiers provided in the compensating unit 61 and the high-frequency rectangular wave compensating unit 63 also have the high-frequency gain G (shown in the brackets 60 and 62 in FIG. 4).
  • It is configured to be adjustable based on the voltage obtained by adding the adjustment voltage V.
  • G it is adjusted to a predetermined value based on the input low-frequency gain adjustment voltage V.
  • the low-frequency image compensation unit 60 when the attenuated color signals R, G, and ⁇ are input, the low-frequency image compensation unit 60
  • Low frequency component L commonly included in each of the attenuated chrominance signals R, G, and B
  • the unit 60 converts the attenuated color signals R, G, and B, in which the low frequency component LF is amplified by a predetermined factor, into
  • G Force is adjusted to a predetermined value based on the input high-frequency gain adjustment voltage V.
  • the high-frequency image compensation unit 61 is common to each of the input attenuated color signals R, G, and B.
  • the high-frequency component HF included is amplified by a predetermined factor according to the adjusted high-frequency gain G.
  • both the high band and the low band are amplified by a predetermined factor.
  • the unit 62 like the low-frequency image compensation unit 60 described above, receives the input attenuated serial signal LR.
  • the low-frequency component LF included in is amplified by a predetermined factor according to the adjusted low-frequency gain G.
  • the low-frequency rectangular wave compensator 62 outputs the attenuated serial signal LR in which the low-frequency component LF has been amplified by a predetermined factor to the high-frequency rectangular wave compensator 63.
  • the high-frequency gain adjustment voltage V is fed to the high-frequency rectangular wave compensator 63.
  • High-frequency gain G is adjusted based on the input high-frequency gain adjustment voltage V.
  • the high-frequency rectangular wave compensating unit 63 becomes the same as the high-frequency image compensating unit 61 described above.
  • the high frequency component HF contained in the input attenuated serial signal LR is adjusted
  • Attenuated serial signal LR is for low-frequency audio
  • both the high and low frequency bands are multiplied by a predetermined factor, as in the case of the attenuated chrominance signals R, G, and B described above.
  • the attenuated serial signal LR power amplified by a predetermined factor is again subjected to high-frequency rectangular wave compensation.
  • the hatched area around the edge PE is compensated, and the waveform is restored to the original waveform of the noise PL (the rectangular wave shown in FIG. 6A). Also, the above pulse PL
  • the attenuation pulse PL recovers to the waveform of the pulse PL.
  • the attenuated chrominance signals R, G, and B similarly have the low-frequency gains G,
  • the attenuation factors AQ of the color signals R, G, and B are the same, the attenuation of the respective frequency components of the color signals R, G, and B is compensated for regardless of these changes in the frequency distribution, and the attenuated color signals R , G and B are compensated for without any problem.
  • the attenuated serial signal LR (that is, the audio signal) is used as the attenuated color signals R, G, and B.
  • the signal is used only as a signal for compensating for the attenuation of the attenuated serial signal.
  • the signal whose attenuation has been compensated is output from the high-frequency rectangular wave compensator 63 and used as an audio signal.
  • the force S shown in the configuration shown in Fig. 4 as the AGC circuit, and the signal that has been attenuated based on the amplitude displacement (difference voltage) accompanying the decay of the pulse, which does not necessarily need to be such a configuration, are required.
  • Any configuration may be used as long as it is a circuit for compensating the signal.
  • a configuration may be adopted in which the waveforms separated into bands are respectively amplified by a predetermined gain, and then all the separated waveforms are added.
  • the analog audio signals L and R are arranged in advance by arranging pulses having predetermined waveform shapes.
  • the attenuation of the attenuated chrominance signals R, G, and B can be predicted in accordance with the predicted attenuation AQ.
  • PCM pulse code modulation
  • PPM pulse phase modulation
  • PFM pulse frequency modulation
  • the waveform of the pulse need not necessarily be a rectangular wave, but may be a trapezoidal wave, a triangular wave, or a half-wave sine wave. However, since a rectangular wave includes a wide range of frequencies, a rectangular wave is preferable because it can compensate for finer attenuation.
  • serial audio signal LR corresponds to the digital data DD (High / Lo).
  • periodic pulses can be transmitted. As a result, for example, even when there is no pulse PL (that is, when the low state continues), the attenuation color signals R, G, and B
  • Attenuation can be compensated stably.
  • the signals arranged in serial modulation signal LR are arranged.
  • Nores PL based on the attenuation of PL, one that compensates for the attenuation of the attenuated color signals R, G, B
  • the attenuation of the attenuated chrominance signals R, G, B may be compensated.
  • the high-frequency video signal compensating section 61 outputs the attenuated color signals R, G, B
  • the compensated attenuation color signals R, G, and B are used as the color signals R, G, and B.
  • the signal is output to the synchronizing signal separating unit 55.
  • the attenuation serial signal LR together with the attenuation compensator 50,
  • the binarization section 51 is provided with a comparator (not shown). The comparator shapes the waveform of the input attenuated serial signal LR,
  • the serial modulation signal LR is output to the demodulation unit 52 and the clock reproduction unit 53.
  • the demodulation unit 52 converts the serial modulation signal LR.
  • the demodulation unit 52 When demodulating the serial modulated signal LR, the demodulation unit 52 performs serial demodulation as shown in FIG.
  • the audio signal LR is output to the audio signal restoration unit 57.
  • the audio signal restoration unit 57
  • non-speech data In addition to specifying the position of SD, based on the position of the specified polarity information PI, non-speech data
  • the polarity information PI is separated from the NDA, and the separated polarity information PI is output to the synchronization signal restoration unit 56.
  • HD and VD are separated, and the separated sync signals HD and VD having negative polarities are output to the sync signal restoring unit 56.
  • the synchronization signal restoration unit 56 Based on the polarity information PI received from the audio signal restoration unit 57, the synchronization signal restoration unit 56 generates a signal based on the synchronization signals HD and VD having negative polarities received from the synchronization signal separation unit 55. Restores the synchronization signals HD and VD input to transmitter 2. For example, if the polarity information PI is ⁇ 1 '', the polarity is assumed to be positive, and the polarity of the synchronization signals HD and VD is inverted. If the polarity information PI is ⁇ 0 '', the polarity is assumed to be negative and synchronization is performed. Do not reverse the polarity of signals HD and VD.
  • FIG. Figure 7 illustrates the clock pulse recovery process
  • (a) is a time chart showing an example of the serial modulation signal LR
  • (b) is shown in (a)
  • the clock recovery unit 53 is provided with a one-shot multivibrator (monostable multivibrator) (not shown). When a trigger pulse is input, a pulse width of "3T / 4" is generated. It is set to output PL.
  • the clock recovery section 53 determines that the trigger pulse has been input by the pulse PL from the time point t1.
  • the pulse width of pulse PL from time ti l is extended from TZ2 to 3T / 4.
  • the pulse PL from time point tl2 is input to the clock recovery unit 53.
  • the pulse PL from 3 will be included in the pulse PL. In the same way,
  • the clock reproducing unit 53 periodically arranges the pulses PL according to the pulses PL.
  • the clock recovery unit 53 outputs the pulse PL of the serial modulation signal LR.
  • ⁇ clock pulse A signal in which periodic pulses PL related to each number are arranged (hereinafter referred to as ⁇ clock pulse
  • Playback signal LR ". ) Can be generated.
  • the clock recovery unit 53 is provided with a PLL (Phase Lock Loop) not shown, and when the clock pulse recovery signal LR is generated, the PLL generates the clock pulse.
  • PLL Phase Lock Loop
  • the frequency of the reproduction signal LR is multiplied and the clock generated by the clock generator 42 of the signal transmitter 2 is generated.
  • a clock pulse with the same frequency (for example, 11.3 MHz) as the lock pulse CP (hereinafter referred to as “reproduced clock pulse CP”) is reproduced.
  • the clock recovery section 53 A clock pulse with the same frequency (for example, 11.3 MHz) as the lock pulse CP (hereinafter referred to as “reproduced clock pulse CP”) is reproduced.
  • the clock recovery section 53 A clock pulse with the same frequency (for example, 11.3 MHz) as the lock pulse CP (hereinafter referred to as “reproduced clock pulse CP”) is reproduced.
  • An example of a clock pulse regeneration process using a one-shot multivibrator Is a process that generates a pulse with a fixed period based on the serial modulation signal LR.
  • the audio signal restoring unit 57 receives the reproduced clock pulse CP from the clock reproducing unit 53.
  • the frequency of the reproduction clock pulse CP is divided (for example, to 1Z256). Also voice
  • the audio signal restoring unit 57 converts the frequency of the divided reproduction clock pulse CP into the sampling frequency (for example, 44.
  • the D / Z parallel conversion is performed, and the left and right digital audio signals L and R are output to the DA converter 58.
  • the serial modulation signal LR transmitted through the signal line 5D also has a length different from that of the signal line 5D.
  • the serial modulation signal LR has a phase shift.
  • the signal transmitter 2 Since the signal is a serial modulated signal LR transmitted on signal line 5D, the signal transmitter 2 clock
  • phase shift force S and the signals CP and LR are the same
  • the signal transmitter 2 Since the signal is generated based on the clock pulse CP generated by the ⁇ SC (crystal oscillator), the signal transmitter 2 has the same phase shift amount with respect to the clock pulse CP.
  • the serial modulation signal LR transmitted through the signal line 5D has the reproduction clock pulse CP
  • the log audio signals L and R can be reproduced as before.
  • the separation unit 55 is configured to separate the R signal R, the G signal G, the synchronization signal HD, the B signal B separated from the VD,
  • the B signal B is output to the R output terminal 32R, the G output terminal 32G, and the B output terminal 32B of the BNC cable output terminal 32 of the signal receiver 3, respectively.
  • the synchronization signal restoration unit 56 outputs the restored horizontal synchronization signal HD and the restored vertical synchronization signal VD to the HD output terminal 32HD and the VD output terminal 32VD of the BNC cable output terminal 32, respectively.
  • the DA converter 58 converts the analog audio signals L and R to the audio output terminal 33, respectively.
  • the color signals R, G, B and the synchronization signals HD, VD are transmitted via a BNC cable 6B, and the analog audio signals L, R are transmitted via an RCA cable 7B, as shown in FIG.
  • the color signals R, G, and B are input to the plasma display 10 in a form in which attenuation is compensated, so that a good image without blurring or blurring of characters is displayed on the plasma display 10. Then, the sound is output from the plasma display 10 together with the display of the video.
  • the cable extension device 1 compensates for the attenuation of the video signal by using the audio signal converted into the digital signal as a signal for compensation, the waveform shape is determined.
  • a square wave can be transmitted to the signal receiver 3 stably, and the attenuation of the attenuated chrominance signals R, G, and B, which is related to the image resolution and display model, is accurately compensated.
  • the audio signal can be transmitted to the signal receiver 3 while the video signal is compensated stably, so that the video output device can output good video and audio, and an effective presentation can be performed. Can be realized.
  • the analog audio signals L and R are
  • the audio signal is transmitted.
  • the signal is transmitted to the signal receiver 3, the number of signal lines is relatively small, the attenuation of the video signal can be compensated with a cable, and the configuration of the cable extension device 1 can be simplified.
  • the present invention can be used for a cable extension device installed at both ends of a cable when transmitting a video signal to a video output device located away from a video input source by a cable.

Abstract

  信号受信器の減衰補償量演算手段(60、61、62、63、67、68、69、70)は、信号送信器からのデジタル音声信号LRDに配列されたパルスの減衰に基づいて、映像信号の減衰補償量(GL、GH)を演算し、信号受信器の映像信号減衰補償手段(60、61)は、演算された減衰補償量(GL、GH)に基づいて、映像信号(RAT、GAT、BAT)の減衰を補償するので、画像の解像度やディスプレイの機種に関係なく、映像信号の減衰を安定して補償することが出来、映像出力装置に、良好な映像と共に音声を出力させることが出来る。

Description

明 細 書
ケーブル延長装置
技術分野
[0001] 本発明は、映像入力ソースからの映像を、映像入力ソースから離れた場所に配置 した映像出力装置に表示することの出来る、ケーブル延長装置に係り、詳しくは、デ ジタル音声信号を補償用の信号として利用することにより、映像信号を安定して補償 すると共に、映像出力装置に良好な映像と音声を出力させて、効果的なプレゼンテ ーシヨンを実現することの出来る、ケーブル延長装置に関する。
^景技術
[0002] 従来、この種のケーブル延長装置として、映像信号に対応した水平'垂直同期信 号を構成する矩形波を補償用の信号として利用し、伝送された映像信号の減衰を補 償することの出来る、ケーブル延長装置が知られている。このようなケーブル延長装 置では、映像信号と別に補償用の信号を送信する必要がないので、ケーブル延長 装置の構成を複雑化することなぐ補償された良好な映像を、離れた場所に配置した 映像出力装置に表示させることが出来、効果的なプレゼンテーションを実現すること が出来る。
[0003] しかし、上述した水平 ·垂直同期信号を構成する矩形波は、画像の解像度やディ スプレイの種類に応じてそのパルス幅や周期が変わるため、波形形状が決まった矩 形波を安定して送信することが出来ず、映像信号を正確に補償することが出来ない 不都合があった。その結果、映像信号を安定して補償することが出来ないため、効果 的なプレゼンテーションを実現することが出来ない場合があった。
[0004] 一方、映像を表示させながら、効果音や映像の解説などの音声を出力することに よって、プレゼンテーションをより効果的なものとすることが出来ることから、映像出力 装置に映像と共に音声を出力させることの出来る、ケーブル延長装置が望まれてい た。
[0005] そこで、デジタル音声信号を補償用の信号として利用することにより、映像信号を 安定して補償すると共に、映像出力装置に良好な映像と音声を出力させて、効果的 なプレゼンテーションを実現することの出来る、ケーブル延長装置の開発が望まれる
発明の開示
[0006] 本発明は、映像信号 (例えば色信号 R、 G、 B)を入力することの出来る、信号送信 器(2)を設け、該信号送信器(2)と信号線(5A、 5B、 5C、 5D)を介して接続自在で あって、該信号線(5A、 5B、 5C、 5D)を介して前記信号送信器(2)から受信した前 記映像信号 (例えば色信号 R、 G、 B)を、出力することの出来る、信号受信器(3)を 設けて構成した、ケーブル延長装置(1)において、
前記信号送信器(2)は、
音声信号 (L 、R )の入力を受け付ける、音声信号受付手段 (41)を設け、
A A
前記音声信号受付手段 (41)に入力された音声信号 (L 、R )を、デジタルデー
A A
タ(DD)のパルス (PL)が配列されたデジタル音声信号 (LR )として、前記信号線(5
D
A、 5B、 5C、 5D)を介して前記信号受信器(3)に出力する、デジタル音声信号送信 手段 (41、43)を設け、
前記信号受信器(3)は、
前記信号送信器 (2)から受信したデジタル音声信号 (例えば LR )に配列された
AT
パルス (例えば PL )の減衰に基づいて、前記信号送信器(2)から受信する映像信
AT
号 、G 、 B )の減衰補償量 (例えば G 、 G )を演算する、減衰補償量演算手
AT AT AT L H
段(60、 61、 62、 63、 67、 68、 69、 70)を設け、
前記減衰補償量演算手段(60、 61、 62、 63、 67、 68、 69、 70)により演算された 減衰補償量 (例えば G 、 G )に基づいて、前記信号送信器 (2)から受信した映像信
L H
号 、G 、 B )の減衰を補償する、映像信号減衰補償手段 (60、 61)を設けて
AT AT AT
構成することが出来る。
[0007] これによれば、映像信号の減衰補償量 (例えば G 、 G )は、デジタル音声信号 (L
L H
R )に配列されたパルス(PL )の減衰に基づいて演算され、映像信号 (R 、 G
AT AT AT AT
、 B )の減衰は、上記演算された減衰補償量 (例えば G 、 G )に基づいて補償され
AT L H
るので、従来のように、映像信号に対応した水平'垂直同期信号を補償用の信号とし て利用することなぐ映像信号 (R 、 G 、 B )の減衰を補償することが出来る。これ
AT AT AT により、画像の解像度やディスプレイの機種に関係なぐ映像信号の減衰を正確に補 償することが出来るので、上記減衰を安定して補償することが出来る。し力も、音声信 号が信号受信器 (3)に出力されるので、映像出力装置に良好な映像と共に音声を出 力させて、効果的なプレゼンテーションを実現することが出来る。
[0008] また、映像信号と別に補償用の信号を送信する必要がないので、音声信号を信 号受信器(3)に送信するものでありながら、信号線(5A、 5B、 5C、 5D)の本数増加 を防止することが出来、ケーブル延長装置(1)の構成を簡単にすることが出来る。
[0009] また、本発明は、前記信号受信器 (3)は、前記信号送信器 (2)から受信したデジ タル音声信号 (例えば LR )に配列されたパルス (例えば PL )を、複数の帯域 (例
AT AT
えば低域と高域)に分離する、帯域分離手段 (65、 66)を設け、
前記信号受信器 (3)の減衰補償量演算手段は、前記帯域分離手段 (65、 66)に より複数の帯域に分離されたそれぞれのパルス(PL 、 PL )の減衰に基づいて
ATL ATH
、前記減衰補償量 (G 、 G )を帯域ごとに演算する、帯域別補償量演算手段 (60、 6
L H
1、 62、 63、 67、 68、 69、 70)を有しており、
前記信号受信器 (3)の映像信号減衰補償手段は、前記帯域別補償量演算手段 (60、 61、 62、 63、 67、 68、 69、 70)により演算された帯域ごとの減衰補償量 (G 、
L
G )に基づレ、て、前記信号送信器 (2)から受信した映像信号 (R 、 G 、 B )の減
H AT AT AT
衰を帯域ごとに補償する、帯域別映像信号補償手段 (60、 61)を有する、
ことを特 ί数として構成することも出来る。
[0010] これによれば、映像信号 (R 、G 、 Β )の減衰を帯域 (例えば低域と高域)ごと
AT AT AT
に補償するので、周波数によって異なる減衰率に応じて、映像信号の減衰を補償す ること力 s出来る。これにより、映像信号の減衰をきめ細力べ補償することが出来、映像 出力装置に、更に良好な映像を表示させることが出来る。
[0011] また、本発明は、前記デジタル音声信号送信手段 (41、 43)が出力するデジタル 音声信号 (LR )に配列されたパルス(PL)は、矩形波からなる、
D
ことを特 ί敷として構成することも出来る。
[0012] これによれば、デジタル音声信号 (LR )に配列されたパルス(PL)は矩形波なの
D
で、比較的広い範囲の周波数成分が含まれたデジタル音声信号 (LR )を、信号受
D 信器 (3)に出力することが出来る。これにより、デジタル音声信号 (LR )の周波数分
D
布は、映像信号に含まれるほとんどの周波数成分を網羅することが出来るので、映 像信号の周波数分布に関係なぐ映像信号 (R 、G 、 B )の減衰を補償すること
AT AT AT
が出来る。
[0013] また、本発明は、前記信号送信器 (2)は、
該信号送信器 (2)のデジタル音声信号送信手段 (41、 43)が出力するデジタル 音声信号 (LR )を、前記デジタル音声信号の各デジタルデータ(DD)に対応した周
D
波数(例えば図 5 (b)で示す lZT又は 2/T)のパルス(PL、 PL )が配列された、デ
0 1
ジタル変調信号 (LR )に変換する、デジタル音声信号変換手段 (45)を設け、
DM
前記信号送信器 (2)のデジタル音声信号送信手段 (41、 43)は、前記デジタル 変調信号 (LR )を、前記信号線 (5A、 5B、 5C、 5D)を介して前記信号受信器 (3)
DM
に出力し、
前記信号受信器(3)の減衰補償量演算手段(60、 61、 62、 63、 67、 68、 69、 7 0)は、前記信号送信器 (2)から受信した、デジタル変調信号 (LR )に配列されたパ
AT
ノレス(PL 、 PL )の減衰に基づいて、前記信号送信器(2)から受信する映像信
ATL ATH
号 、G 、 B )の減衰補償量 (例えば G 、 G )を演算する、
AT AT AT L H
ことを特 ί数として構成することも出来る。
[0014] これによれば、デジタル音声信号送信手段 (41、 43)は、デジタルデータ(DD)に 対応した周波数のパルス (PL、 PL )が配列されたデジタル変調信号 (LR )を、信
0 1 DM 号受信器(3)に出力するので、デジタル音声信号 (LR )のパルス (PL)の有無に関
D
係なぐ周期的なパルスを信号受信器 (3)に出力することが出来る。これにより、デジ タル音声信号 (LR )にパルス (PL)のなレ、場合 (Lowの状態が続く場合)があっても
D
、上記周期的なパルスの減衰に基づいて、減衰補償量 (G 、 G )を演算することが
L H
出来るので、映像信号 (R 、G 、 B )の減衰を更に安定して補償することが出来
AT AT AT
る。
[0015] また、本発明は、前記信号受信器 (3)は、前記信号送信器 (2)から受信したデジ タル変調信号 (LR )に配列されたパルス (PL )を、複数の帯域 (例えば低域と高
AT AT
域)に分離する、帯域分離手段 (65、 66)を設け、 前記信号受信器 (3)の減衰補償量演算手段は、前記帯域分離手段 (65、 66)に より複数の帯域に分離されたそれぞれのパルス(PL 、 PL )の減衰に基づいて
ATL ATH
、前記減衰補償量 (G 、 G )を帯域ごとに演算する、帯域別補償量演算手段 (60、 6
L H
1、 62、 63、 67、 68、 69、 70)を有しており、
前記信号受信器 (3)の映像信号減衰補償手段は、前記帯域別補償量演算手段 (60、 61、 62、 63、 67、 68、 69、 70)により演算された帯域ごとの減衰補償量 (G 、
L
G )に基づいて、前記信号送信器 (2)から受信した映像信号 (R 、 G 、 B )の減
H AT AT AT
衰を帯域ごとに補償する、帯域別映像信号補償手段 (60、 61)を有する、
ことを特 ί敷として構成することも出来る。
[0016] これによれば、映像信号 (R 、G 、 B )の減衰を、周期的なパルス(PL、 PL )
AT AT AT 0 1 の減衰に基づいて、帯域ごとに補償するので、映像信号 (R 、 G 、 B )の減衰を
AT AT AT
、安定して補償しながら、しかも、きめ細力べ補償することが出来るので、映像出力装 置に、更に良好な映像を安定して表示させることが出来る。
[0017] また、本発明は、前記デジタル音声信号送信手段 (41、 43)が出力するデジタル 変調信号 (LR )に配列されたノ^レス (PL、 PL )は、矩形波からなる、
DM 0 1
ことを特 ί数として構成することも出来る。
[0018] これによれば、周期的なパルス(PL、 PL )は矩形波なので、映像信号 、 G
0 1 AT A
、 B )の減衰を、安定して補償しながら、しかも、映像信号の周波数分布に関係な
T AT
く補償することが出来る。
[0019] なお、括弧内の番号などは、本発明の理解を助けるために、図面における対応す る要素を便宜的に示すものである。従って、本記述は図面上の記載に限定拘束され るものではなぐまた、この符号の記載により本発明を解釈すべきでない。
図面の簡単な説明
[0020] [図 1]図 1は、本発明が適用されるケーブル延長装置の一例を示す外観図である。
[図 2]図 2は、信号送信器及び信号受信器の一例を示す外観図で、(a)は信号送信 器の背面図、(b)は信号受信器の背面図である。
[図 3]図 3は、信号送信器及び信号受信器の構成の一例を示すブロック図である。
[図 4]図 4は、減衰補償部の構成の一例を示すブロック図である。 [図 5]図 5は、変調処理の説明図で、(a)はシリアル音声信号の一例を示すタイムチヤ ート、 (b)は(a)に示すシリアル音声信号を変調した、シリアル変調信号の一例を示 すタイムチャートである。
[図 6]図 6は、減衰シリアル信号の波形図で、(a)は減衰前のパルス、 (b)は(a)に示 すパルスが減衰した、減衰パルス、 (c)は (b)に示す減衰パルスの低域波形、 (d)は (b)に示す減衰パルスの高域波形である。
[図 7]図 7は、クロックパルス再生処理の説明図で、(a)はシリアル変調信号の一例を 示すタイムチャート、 (b)は(a)に示すシリアル変調信号に基づぐクロックパルス再生 信号の一例を示すタイムチャートである。
符号の説明
1……ケーブル延長装置
2……信号送信器
3……信号受信器
5A、 5B、 5C、 5D……信号線
41……音声信号受付手段、デジタル音声信号送信手段 (AD変換部)
43……デジタル音声信号送信手段 (データ加工部)
45……デジタル音声信号変換手段 (変調部)
60……減衰補償量演算手段、映像信号減衰補償手段、帯域別補償量演算手段 、帯域別映像信号補償手段 (低域映像補償部)
61……減衰補償量演算手段、映像信号減衰補償手段、帯域別補償量演算手段 、帯域別映像信号補償手段 (高域映像補償部)
62……減衰補償量演算手段、帯域別補償量演算手段 (低域矩形波償部)
63……減衰補償量演算手段、帯域別補償量演算手段 (高域矩形波補償部)
65……帯域分離手段(ローパスフィルタ)
66……帯域分離手段 (ハイパスフィルタ)
67……減衰補償量演算手段、帯域別補償量演算手段 (低域ピーク検出部) 68……減衰補償量演算手段、帯域別補償量演算手段 (高域ピーク検出部) 69……減衰補償量演算手段、帯域別補償量演算手段 (低域ゲイン調整部) 70……減衰補償量演算手段、帯域別補償量演算手段 (高域ゲイン調整部) DD……デジタルデータ
G 、 G ……映像信号の減衰補償量 (低域ゲイン、高域ゲイン)
L H
L 、R ……音声信号 (アナログ音声信号)
A A
LR ……信号送信器から受信したデジタル音声信号、信号送信器から受信した
AT
デジタル変調信号 (減衰シリアル信号)
LR ……デジタル音声信号 (シリアル音声信号)
D
LR ……デジタル変調信号 (シリアル変調信号)
DM
PL……デジタルデータのパルス
PL ……信号送信器から受信したデジタル音声信号に配列されたパルス、信号
AT
送信器から受信したデジタル変調信号に配列されたパルス (減衰パルス)
PL 、 PL ……複数の帯域に分離されたパルス、信号送信器から受信したデ
ATL ATH
ジタル変調信号に配列されたパルス(低域減衰パルス、高域減衰パルス)
PL、 PL……デジタルデータに対応した周波数のパルス
0 1
R、 G、 B……映像信号 (R信号、 G信号、 B信号)
R 、G 、 B ……信号送信器から受信した映像信号 (減衰 R信号、減衰 G信号
AT AT AT
、減衰 B信号)
発明を実施するための最良の形態
[0022] ケーブル延長装置 1は、図 1に示すように、信号送信器 2と、信号受信器 3とを有し ており、信号送信器 2は、映像信号が伝送自在なケーブルと接続自在に構成されて いる。
[0023] 映像信号としては、 RGB信号や、 YPbPr信号や YCbCr信号などのコンポーネン ト信号 (輝度信号と色差信号が分離された 3つの信号)がある。 RGB信号用のケープ ルとしては、 BNC (Bayonet Neill Concelman)コネクタ(図示せず)を両端に備 えた BNCケーブルや、 DSUBコネクタ(図示せず)を両端に備えた DSUBケーブル があり、コンポーネント信号用のケーブルとしては、上述と同様、 BNCケーブルがあ る。
[0024] また、信号送信器 2は、音声信号が伝送自在なケーブルが接続自在に構成され ている。音声信号としては、アナログ信号又はデジタル信号がある。アナログ信号に はモノラルやステレオなどがあり、このようなアナログ信号用のケーブルとしては、例え ば、 RCAピンプラグをケーブルの両端に備えた RCAケーブルなどがある。
[0025] 図 1に示す信号送信器 2は、例えばパソコン (パーソナルコンピュータ) 9の本体 9 Aと、 RCAケーブル 7Aを介して接続されており、また、該パソコン 9のディスプレイ 9B と、 BNCケーブル 6Aを介して接続されている。なお、映像入力ソースとしては、特に パソコン 9に限る必要はなぐ RGB信号やコンポーネント信号の映像信号が出力自 在であれば、いずれの装置であってもよい。
[0026] 次いで、信号送信器 2と信号受信器 3は、映像信号と音声信号とが伝送自在なケ 一ブルと接続自在に構成されている。このようなケーブルとしては、例えば、 RJ-45 ( Registered Jack-45)のモジュラプラグ(図示せず)を両端に備えた、 LANケープ ルなどがある。 LANケーブルには、 EIAZTIA (米国電子工業会 Z米国電気通信 工業会)の 568規格で定められるカテゴリ 5 (CAT5)やカテゴリ 6 (CAT6)の区分に 分類された、 4本のツイストペア線からなる UTP (Unshield Twisted Pair)ケープ ルなどがある。
[0027] 図 1に示す信号送信器 2と信号受信器 3とは、 LANケーブル 5を介して接続され ている。 LANケーブル 5は、所定のケーブル長(例えば 100m)を有しており、従って 、信号送信器 2と信号受信器 3は、該 LANケーブル 5が接続された状態で、最長、上 記ケーブル長の距離だけ離れた位置に配置自在である。
[0028] 一方、信号受信器 3は、信号送信器 2と同様に、映像信号用のケーブルとして、 例えば BNCケーブルや DSUBケーブルが接続自在に構成されており、また、音声 信号用のケーブルとして、例えば RCAケーブルが接続自在に構成されてレ、る。
[0029] 図 1に示す信号受信器 3は、例えばプラズマディスプレイ 10と、 BNCケーブル 6B 及び RCAケーブル 7Bを介して接続されている。なお、映像出力装置としては、特に プラズマディスプレイ 10に限る必要はなぐ RGB信号やコンポーネント信号などの映 像信号を入力 ·表示自在であれば、レ、ずれの装置であってもよレ、。
[0030] 図 2は、信号送信器 2及び信号受信器 3の一例を示す外観図で、(a)は信号送信 器 2の背面図、(b)は信号受信器 3の背面図を示している。信号送信器 2は、図 2 (a) に示すように、筐体 20を有しており、筐体 20には、端子盤 20aが設けられている。端 子盤 20aには、入力端子として、 BNCケーブル用入力端子 21、 DSUBケーブル用 入力端子 22、及び音声信号入力端子 23が設けられており、また出力端子として、 L ANケーブル用出力端子 25a、 25bが設けられてレ、る。
[0031] BNCケーブル用入力端子 21は、 RGB信号が入力自在な 5個の入力端子により 構成されている。具体的には、 BNCケーブル用入力端子 21は、 RGB信号の、 R (赤 )信号 R、 G (緑)信号 G、及び B (青)信号 Bにそれぞれ対応する、 R入力端子 21R、 G入力端子 21G、及び B入力端子 21Bと、 RGB信号の、水平同期信号 HD、及び垂 直同期信号 VDにそれぞれ対応する、 HD入力端子 21H、及び VD入力端子 21Vと を有している。
[0032] なお、以下の説明では、特に区別の必要がないときは、 R信号 R、 G信号 G、及び B信号 Bを、単に、色信号 R、 G、 Bと表現し、また、水平同期信号 HD、及び垂直同 期信号 VDを、単に、同期信号 HD、 VDと表現する。
[0033] DSUBケーブル用入力端子 22は、上述した BNCケーブル用入力端子 21と同様 に、 RGB信号が入力自在であり、「D」形状のシェル 22a内を 3列に配列された、 15 個のメスピンからなる入力ピン 22R、 22G、 22B、 22H、 22V、 · · ·により構成されてい る。具体的には、 DSUBケーブル用入力端子 22は、 R信号、 G信号、及び B信号に それぞれ対応する、 R入力ピン 22R、 G入力ピン 22G、及び B入力ピン 22Bと、水平 同期信号 HD、及び垂直同期信号 VDにそれぞれ対応する、 HD入力ピン 22H、及 び VD入力ピン 22Vとを有してレ、る。
[0034] これら、 BNCケーブル用入力端子 21及び DSUBケーブル用入力端子 22は、そ れぞれ入力チャンネルとして機能しており、即ち、信号送信器 2は、 2つの入力チャン ネルを有している。また、信号送信器 2には、例えば正面側(図 2の紙面裏側)に、該 入力チャンネルの選択スィッチ(図示せず)が設けられている。従って、信号送信器 2 は、オペレータによる該選択スィッチの操作により、いずれかの入力チャンネルから 入力された映像信号を出力できるように、構成されている。なお、入力チャンネル数 は、特に 2つである必要はなぐ単数又は 3つ以上の複数のいずれでもよい。
[0035] 音声信号入力端子 23は、ステレオのアナログ信号 (以下「アナログ音声信号 L 、 R」という。)が入力自在な RCAピンジャックにより構成されており、左のアナログ音声
A
信号し に対応する、左音声信号入力端子 23Lと、右のアナログ音声信号 R に対応
A A
する、右音声信号入力端子 23Rとを有している。
[0036] LANケーブル用出力端子 25a、 25bは、上述した RJ—45のモジュラジャックにより 構成され、 LANケーブル 5のモジュラプラグに対応して、それぞれ 8極の接触子(図 示せず)を有している。
[0037] ところで、 LANケーブル 5は、上述したように、 4本のツイストペア線を有している。
各ツイストペア線は、ノイズを低減するように互いに逆論理の信号を平衡伝送する、 2 本の信号線が撚り合わせて構成されている。従って、計 8本の信号線が、上記 8極の 接触子にそれぞれ対応してレヽる。
[0038] なお、以下の説明では、発明の理解を容易にするために、 1本のツイストペア線を 1本の信号線として、 LANケーブル 5は、 4本の信号線 5A、 5B、 5C、 5D (図 3中央 に図示)で構成されているものとする。従って、 LANケーブル用出力端子 25a、 25b の接触子については、これら信号線 5A、 5B、 5C、 5Dにそれぞれ対応する、出力接 触子 25R、 25G、 25B、 25A (図 3中央に図示)のみについて説明する。
[0039] また、信号送信器 2には、 BNCケーブル用入力端子 21又は DSUBケーブル用 入力端子 22に入力された映像信号と、音声信号入力端子 23に入力された音声信 号とを、 LANケーブル用出力端子 25a、 25bに分配する、分配手段(図示せず)が設 けられている。なお、 LANケーブル用出力端子 25a、 25bの数は、特に 2つである必 要はなぐ単数又は 3つ以上の複数のいずれでもよい。その場合、上記分配手段を、 その数に応じた信号を各出力端子に分配できるように構成すればよい。
[0040] 一方、信号受信器 3は、図 2 (b)に示すように、上述した信号送信器 2と同様に、 筐体 30を有しており、筐体 30には、端子盤 30aが設けられている。端子盤 30aには、 入力端子として、 LANケーブル用入力端子 31が設けられており、また出力端子とし て、 BNCケーブル用出力端子 32、及び音声信号出力端子 33が設けられている。
[0041] LANケーブル用入力端子 31は、信号送信器 2の LANケーブル用出力端子 25a 、 25bと同様に、 RJ—45のモジュラジャックにより構成され、 LANケーブル 5のモジュ ラプラグに対応して、 8極の接触子(図示せず)を有している。また、以下の説明では 、上述した LANケーブル用出力端子 25a、 25bと同様に、上記 8極の接触子のうち、 LANケーブル 5の信号線 5A、 5B、 5C、 5Dにそれぞれ対応する、入力接触子 31R 、 31G、 31B、 31A (図 3中央に図示)のみについて説明する。
[0042] BNCケーブル用出力端子 32は、信号送信器 2の BNCケーブル用入力端子 21と 同様に、 RGB信号が出力自在な 5個の出力端子により構成されており、 R信号、 G信 号、及び B信号にそれぞれ対応する、 R出力端子 32R、 G出力端子 32G、及び B出 力端子 32Bと、水平同期信号 HD、及び垂直同期信号 VDにそれぞれ対応する、 H D出力端子 32H、及び VD出力端子 32Vとを有している。
[0043] 音声信号出力端子 33は、信号送信器 2の音声信号入力端子 23と同様に、アナ ログ音声信号 L 、R が出力自在な RCAピンジャックにより構成されており、左のアナ
A A
ログ音声信号 L に対応する、左音声信号出力端子 33Lと、右のアナログ音声信号 R
A
に対応する、右音声信号出力端子 33Rとを有している。
A
[0044] 図 3は、信号送信器 2及び信号受信器 3の構成の一例を示すブロック図を示して いる。図中左方に示す信号送信器 (破線枠内) 2は、同期信号付加部 40、 AD変換 部 41、クロック発生部 42、データ加工部 43、及び変調部 45などを有している。
[0045] 同期信号付加部 40は、 BNCケーブル用入力端子 21又は DSUBケーブル用入 力端子 22と、分配手段(図示せず)を介して接続されている。具体的には、選択スィ ツチ(図示せず)により、入力チャンネルが、 BNCケーブル用入力端子 21が選択され た場合、 R入力端子 21R、 G入力端子 21G、 B入力端子 21B、 HD入力端子 21H、 及び VD入力端子 21Vに接続される。一方、 DSUBケーブル用入力端子 22が選択 された場合、 R入力ピン 22R、 G入力ピン 22G、 B入力ピン 22B、 HD入力ピン 22H、 及び VD入力ピン 22Vに接続される。
[0046] AD変換部 41は、音声信号入力端子 23の、左音声信号入力端子 23L、及び右 音声信号入力端子 23Rに接続されている。クロック発生部 42は、 AD変換部 41に接 続されており、 AD変換部 41及び同期信号付加部 40は、データ加工部 43に接続さ れている。また、データ加工部 43は、変調部 45に接続されている。
[0047] そして、同期信号付加部 40は、 LANケーブル用出力端子 25a、 25bの出力接触 子 25R、 25G、 25Bに接続されており、変調部 45は、 LANケーブル用出力端子 25a 、 25bの出力接触子 25Aに接続されている。
[0048] 一方、図 3中右方に示す信号受信器 (破線枠内) 3は、減衰補償部 50、 2値化部 51、復調部 52、クロック再生部 53、同期信号分離部 55、同期信号復元部 56、音声 信号復元部 57、及び DA変換部 58などを有している。
[0049] 減衰補償部 50は、 LANケーブル用入力端子 31の入力接触子 31R、 31G、 31B 、 31Aに接続されており、 2値化部 51は、 LANケーブル用入力端子 31の入力接触 子 31Aに接続されている。
[0050] 減衰補償部 50は、同期信号分離部 55に接続されており、同期信号分離部 55は 、同期信号復元部 56に接続されている。一方、 2値化部 51は、復調部 52、及びクロ ック再生部 53に接続されている。復調部 52、及びクロック再生部 53は、音声信号復 元部 57に接続されており、音声信号復元部 57は、同期信号復元部 56、及び DA変 換部 58に接続されている。
[0051] そして、同期信号分離部 55は、 BNCケーブル用出力端子 32の、 R出力端子 32 R、 G出力端子 32G、及び B出力端子 32Bに接続されており、同期信号復元部 56は 、 BNCケーブル用出力端子 32の、 HD出力端子 32H、及び VD出力端子 32Vに接 続されている。また、 DA変換部 58は、音声信号出力端子 33の、左音声信号出力端 子 33L、及び左音声信号出力端子 33Rに接続されてレ、る。
[0052] 図 4は、図 3に示す減衰補償部 50の構成の一例を示すブロック図を示している。
減衰補償部 (破線枠内) 50は、 AGC (自動利得制御)回路を構成しており、具体的 には、低域映像補償部 60、高域映像補償部 61、低域矩形波補償部 62、高域矩形 波補償部 63、ローパスフィルタ 65、ハイパスフィルタ 66、低域ピーク検出部 67、高域 ピーク検出部 68、低域ゲイン調整部 69、及び高域ゲイン調整部 70などを有している
[0053] 低域映像補償部 60は、 LANケーブル用入力端子 31の入力接触子 31R、 31G、
31Bに接続されており、また、高域映像補償部 61を介して、同期信号分離部 55 (図 3参照)に接続されている。低域矩形波補償部 62は、 LANケーブル用入力端子 31 の入力接触子 31 Aに接続されてレ、る。
[0054] 低域矩形波補償部 62は、高域矩形波補償部 63を介して、ロ 及びハイパスフィルタ 66に接続されている。ローパスフィルタ 65は、低域ピーク検出 部 67を介して、低域ゲイン調整部 69に接続されており、一方、ノ、ィパスフィルタ 66は 、高域ピーク検出部 68を介して、高域ゲイン調整部 70に接続されている。そして、低 域ゲイン調整部 69は、上述した低域映像補償部 60及び低域矩形波補償部 62に接 続されており、高域ゲイン調整部 70は、上述した高域映像補償部 61及び高域矩形 波補償部 63に接続されている。
[0055] ケーブル延長装置 1は、以上のような構成を有するので、例えばパソコン 9からの 映像信号と音声信号とを、例えばプラズマディスプレイ 10に出力させるには、ォペレ ータは、パソコン 9、信号送信器 2、信号受信器 3、及びプラズマディスプレイ 10のそ れぞれの間を、所定のケーブルを介して接続する。
[0056] なお、パソコン 9からの映像信号は、 5つの信号 (色信号 R、 G、 B、及び同期信号 HD、 VD)力 構成される、 RGB信号であり、また、パソコン 9からの音声信号は、 2 つの信号 (左右のアナログ音声信号 L 、R )から構成される、ステレオのアナログ音
A A
声信号であるものとする。従って、入力される信号の数は計 7つである。
[0057] 本発明は、信号送信器 2と信号受信器 3とを接続するケーブルが、上述した 7つの 信号を個別に伝送することが可能な場合にも(つまり信号線の本数が 7本以上の場 合にも)適用することが出来るが、本発明の特徴を説明する例としては、信号の数より 少ない本数の信号線からなるケーブルを用いた実施形態が適切であるので、本発明 の実施の形態では、信号送信器 2と信号受信器 3とが、図 1に示すように、 4本の信号 線で構成される LANケーブル 5を介して接続された場合にっレ、て説明する。この際 、信号送信器 2の LANケーブル用出力端子は、 25aのみを使用するものとする。
[0058] 従って、 LANケーブル用出力端子 25aの出力接触子 25Rは、図 3中央に示すよ うに、 LANケーブル 5の信号線 5Aを介して、 LANケーブル用入力端子 31の入力接 触子 31Rに接続されることになる。同様に、出力接触子 25Gは、信号線 5Bを介して 入力接触子 31Gに、出力接触子 25Bは、信号線 5Cを介して入力接触子 31Bに、出 力接触子 25Aは、信号線 5Dを介して入力接触子 31Aに接続されることになる。
[0059] また、簡便な説明とするために、図 1に示すように、映像入力ソースをパソコン 9の みとして、該パソコン 9を BNCケーブル 6A及び RCAケーブル 7Aを介して、信号送 信器 2に接続したとする。また、映像入力ソースをプラズマ
、該プラズマディスプレイ 10を BNCケーブル 6B及び RCAケーブル 7Bを介して、信 号受信器 3に接続したとする。
[0060] この状態で、オペレータが、パソコン 9、信号送信器 2、信号受信器 3、及びプラズ マディスプレイ 10をそれぞれ起動し、信号送信器 2の選択スィッチ(図示せず)により 、 BNCケーブル入力端子 21を入力チャンネルとして選択し、パソコン 9の入力手段( 図示せず)を介して、映像信号及び音声信号の出力指令を入力したとする。
[0061] すると、色信号 R、 G、 B、及び同期信号 HD、 VDが、パソコンの本体 9Aからディ スプレイ 9B及び BNCケーブル 6Aを介して、信号送信器 2に出力される。また、上記
RGB信号に同期した、アナログ音声信号 L、 R 、パソコンの本体 9A力、ら RCAケ
A A
一ブル 7Aを介して、信号送信器 2に出力される。
[0062] 出力された、 R信号 R、 G信号 G、 B信号 B、水平同期信号 HD、及び垂直同期信 号 VDは、図 3中左方に示すように、それぞれ、 R入力端子 21R、 G入力端子 21G、 B 入力端子 21B、 HD入力端子 21H、及び VD入力端子 21Vを介して、同期信号付加 部 40に入力される。また、出力された、左のアナログ音声信号 L 、及び右のアナログ
A
音声信号 R は、それぞれ、左音声信号入力端子 23L、及び右音声信号入力端子 2
A
3Rを介して、 AD変換部 41に入力される。
[0063] 同期信号付加部 40は、入力された、色信号 R、 G、 B、及び同期信号 HD、 VD ( つまり 5つの信号)を、 LANケーブル 5の信号線 5A、 5B、 5C、 5Dのうち、 3本の信 号線 5A、 5B、 5Cを介して、信号受信器 3に送信するために、同期信号 HD、 VDを、 B信号 Bに重畳する。以下、同期信号 HD、 VDが重畳された B信号 Bを、 B信号 Bと
P
表現する。なお、同期信号 HD、 VDが重畳される色信号は、特に B信号 Bである必 要はなぐまた、同期信号 HD、 VDを、それぞれ別々の色信号 (例えば R信号 R、 B 信号 B)に重畳させてもよい。
[0064] 具体的には、同期信号付加部 40は、入力された同期信号 HD、 VDの極性を判 定し、同期信号 HD、 VDの極性を正と判定した場合、同期信号 HD、 VDの極性を反 転させて B信号 Bに重畳する。一方、同期信号 HD、VDの極性を負と判定した場合、 極性を反転することなぐ同期信号 HD、 VDをそのまま B信号 Bに重畳する。 [0065] 同期信号 HD、 VDの極性は、画像の解像度やディスプレイの機種などによって 異なるが(正又は負の場合があるが)、このように同期信号 HD、 VDを常に負の極性 で B信号 Bに重畳することにより、信号が互いに混ざり合うことを防止することが出来、 後述する信号受信器 3側で、同期信号 HD、 VDを B信号 B力も容易に分離すること
P
が出来る。
[0066] 次いで、同期信号付加部 40は、後述する信号受信器 3側で、同期信号 HD、 VD を復元するために、上述した同期信号 HD、 VDの極性についての判定結果に基づ いて、例えば、極性が正の場合は「1」また負の場合は「0」の、極性情報 PIを、データ 加工部 43に出力する。
[0067] こうして、同期信号 HD、 VDを B信号 Bに重畳すると、同期信号付加部 40は、 R信 号 R、 G信号 G、及び B信号 Bを、それぞれ、 LANケーブル用出力端子 25aの出力
P
接触子 25R、 25G、 25Bに出力する。
[0068] 一方、パソコンの本体 9Aから出力されたアナログ音声信号 L 、 R は、既に述べ
A A
たように、音声信号入力端子 23L、 23Rを介して AD変換部 41に入力されている。後 述するようにデータ加工部 43は、入力されたアナログ音声信号 L 、R (つまり 2つの
A A
信号)を、 LANケーブル 5の信号線 5A、 5B、 5C、 5Dのうち 1本の信号線 5Dを介し て信号受信器 3に送信するために、パラレル/シリアル変換を行うが、これにあたり、 AD変換部 41は、入力されたアナログ音声信号 L 、Rを、デジタル信号に変換 (AD
A A
変換)する。
[0069] 具体的に説明すると、クロック発生部 42には、 OSC (水晶発振器)が設けられて おり、信号送信器 2の起動後、常時、所定周波数 (例えば 11. 3MHz)のクロックパノレ ス CPを AD変換部 41に出力している。 AD変換部 41は、入力されたクロックパルス C Pの周波数を(例えば 1/256に)分周し、分周したクロックパルス CPの周波数を、サ ンプリング周波数 (例えば 44. 1kHz)として、入力されたアナログ音声信号 L 、Rを
A A
、それぞれサンプリングする。
[0070] ここでは、サンプリング 1回あたりのビット長(量子化ビット数)は、 8ビットに設定さ れているものとする。従って、 AD変換部 41は、アナログ音声信号 L 、 Rをサンプリ
A A
ングすると、サンプリング毎に、 8ビットのデジタルデータ DD (1又は 0)のパルス PLを 順次発生させる。なお、以下の説明では、 8ビットのデジタルデータ DDを、音声デー タ SDと表現する。
[0071] デジタルデータ DDのパルス PLとは、デジタルデータ DDの変化(0→1又は 1→0 )に対応した電圧 Vの変化をいい、その電圧 Vの変化は、電圧 Vの立ち上がり及び立 ち下がりを示すエッジ部 PE (後述)で表される。なお、電圧 Vの変化は正負のいずれ でもよいが、ここでは、ノ^レス PLの振幅が、正の電圧「V」に設定されているものとす
0
る。
[0072] 具体的には、サンプリングされたアナログ音声信号 L 、 R の、音声データ SDが、
A A
図 5 (a)に示すように、例えば「00101100」の場合、時点 t3で、デジタルデータ DD が 0→1に変化するので、 AD変換部 41は、これに対応して電圧 Vを 0から Vに変化
0 させ、時点 t4で、デジタルデータ DDが 1→0に変化すると、電圧 Vを 0に変化させる。 従って、デジタルデータ DDが変化する時点 t3、 t4で、エッジ部 PEで電圧の変化が 表された、パルス PLが発生されることになる。
[0073] 同様に、時点 t5で、デジタルデータ DDが再び 0→1に変化すると、 AD変換部 41 は、電圧 Vを再び 0から Vに変化させ、時点 t7で、デジタルデータ DDが 1→0に変化
0
すると、電圧 Vを 0に変化させる。従って、音声データ SD「00101100」に対応して、 時点 t3— 14間、及び時点 t5— 17間で、振幅 Vのノ^レス PLが配列されることになる。
0
[0074] AD変換部 41は、サンプリングした左右のアナログ音声信号 L 、 R についてそれ
A A
ぞれ、上述した AD変換を行ない、デジタル信号に変換した音声信号 (以下「デジタ ル音声信号 L 、 R」という。)をデータ加工部 43に出力する。なお、以下の説明では
D D
、左のデジタル音声信号 L が示す音声データ SDを、左音声データ SDと表現し、
D L
右のデジタル音声信号 R が示す音声データ SDを、右音声データ SDと表現する。
D R
[0075] データ加工部 43は、デジタル音声信号 L 、 Rが入力されると、デジタル音声信
D D
号し 、 R をパラレル/シリアル変換する。
D D
[0076] 具体的には、データ加工部 43は、左音声データ SDと、右音声データ SD とを、
L R
所定の順番で配列する。上記配列は、デジタル音声信号 L 、 Rをシリアルィヒするも
D D
のであればどのような順番でもよレ、が、ここでは、左右の音声データ SD 、 SDをサン
L R
プリング毎に左、右の順に配列するように、設定されているものとする。なお、左右の 音声データ SD 、 SDの間の領域と、左右の音声データ SD 、 SDが配列されて次
L R L R
の左右の音声データ SD 、 SDが配列されるまでの領域には、それぞれ、所定のデ
L R
ータ長が設けられており、以下の説明では、このような領域を非音声データ領域 ND Aという。
[0077] 従って、データ加工部 43は、サンプリング毎に、左右の音声データ SD 、 SDを、
L R
左、右の順に、順次配列して、入力されたデジタル音声信号 L 、 Rを、シリアル化し
D D
た音声信号 (以下「シリアル音声信号 LR」という。)に変換する。
D
[0078] なお、信号送信器 2に入力される音声信号は、必ずしもアナログ信号である必要 はなぐ例えば、 CD (コンパクトディスク)、 DVD (デジタル多用途ディスク)などに用 レ、られるデジタル信号の場合は、 AD変換部 41による AD変換は必要ない。また、入 力される音声信号が、既にシリアル信号である場合は、データ加工部 43によるパラレ Jア 変換も必要ない。
[0079] データ加工部 43は、デジタル音声信号 L 、 Rをパラレル/シリアル変換すると、
D D
サンプリングごとの区切りを示す特定のパターンと、同期信号付加部 40から入力され た極性情報 PIとを、それぞれ、非音声データ領域 NDAの所定位置に付加して、特 定のパターン及び極性情報 PIを付加したシリアル音声信号 LRを、変調部 45に出
D
力する。
[0080] こうして、デジタル音声信号 L 、 R力 Sパラレル/シリアル変換されると、変調部 45
D D
は、入力されたシリアル音声信号 LRを、シリアル変調信号 LR に変調する。ここで
D DM
、図 5 (a)に示すシリアル音声信号 LRが変調部 45に入力された場合の、変調処理
D
について具体的に説明する。
[0081] 変調部 45は、信号送信器 2が起動されてから、入力されるシリアル音声信号 LR
D
の電圧 Vを、図 5に示すビットタイム T (lビットあたりの時間幅)毎に検出しており、検 出した電圧 Vが所定の閾電圧(例えば V /2)を超えたか否力、を判定している。変調
0
部 45は、検出した電圧 Vが、所定の閾電圧(例えば V Ζ2)を超えていないと判定し
0
た場合 (つまり Lowが入力された場合)、周期 Τの矩形波を出力し、所定の閾電圧( 例えば V Z2)を超えたと判定した場合(つまり Highが入力された場合)、周期 TZ2
0
の矩形波を出力する。 [0082] 従って、図 5 (a)に示すシリアル音声信号 LR 1 図中左側から(時点 tl側から)、
D
変調部 45に入力されると、入力されたシリアル音声信号 LR の電圧 Vは時点 tlで「0
D
」なので、変調部 45は、対応する時点 ti lで、電圧 Vが所定の閾電圧を超えていな レ、と判定し、図 5 (b)に示すようにパルス PLを発生させる。シリアル音声信号 LR の
0 D 電圧 Vは、時点 t2でも「0」なので、変調部 45は、対応する時点 tl 2で、上述と同様の 判定を行い、パルス PLを発生させる。
0
[0083] シリアル音声信号 LR の電圧 Vが、時点 t3で「V」になると、変調部 45は、対応す
D 0
る時点 tl3で、電圧 Vが所定の閾電圧を超えていると判定し、図 5 (b)に示すようにパ ルス PLを発生させる。
1
[0084] シリアル音声信号 LR の電圧 Vが、時点 t4で再び「0」になると、変調部 45は、対
D
応する時点 tl4で、電圧 Vが所定の閾電圧を超えていないと判定し、再び、上述した パルス PLを発生させる。以下同様に、変調部 45は、時点 tl 5から時点 17までパル
0
ス PLを発生させ、時点 tl7から時点 19までノ^レス PLを発生させる。
1 0
[0085] このように、変調部 45は、図 5に示すように、入力されるシリアル音声信号 LRの
D
電圧 Vの High/Lowに応じて、即ち、シリアル音声信号 LR のデジタルデータ DD
D
に対応させて、周期を変化させた矩形波を出力することにより、シリアル音声信号 LR を変調する。こうして、シリアル音声信号 LRを変調すると、変調部 45は、変調した
D D
シリアル音声信号 LRをシリアル変調信号 LR として、 LANケーブル用出力端子 2
D DM
5aの出力接触子 25Aに出力する。
[0086] こうして、図 3中央に示すように、同期信号付加部 40から出力された、 R信号 R、 G 信号 G、 B信号 Bは、それぞれ、 LANケーブル用出力端子 25aの出力接触子 25R、
P
25G、 25Bを介して、信号送信器 2から出力される。変調部 45から出力されたシリア ル変調信号 LR も同様に、 LANケーブル用出力端子 25aの出力接触子 25Aを介
DM
して、信号送信器 2から出力される。
[0087] R信号 R、 G信号 G、 B信号 B、及びシリアル変調信号 LR は、信号送信器 2か
P DM
ら出力されると、それぞれ、 LANケーブル 5の信号線 5A、 5B、 5C、 5Dを、信号受信 器 3に向かって伝送してゆく。即ち、 7つの信号 (色信号 R、 G、 B、同期信号 HD、 V D、及び左右のアナログ音声信号 L 、R )が、 LANケーブル 5を構成する 4本の信 号線 5A、 5B、 5C、 5Dを介して、信号受信器 3に送信されることになる。
[0088] ところで、映像信号や音声信号などの電気信号がケーブルを伝送すると、これら の信号は、ケーブルを構成する信号線の材質や寸法 (線径や長さ)、信号の周波数 などに応じて減衰する。この量は減衰率 AQ (単位は [dB] )で表され、減衰率 AQは 、材質の抵抗率が大きいほど、線径が小さいほど、信号線が長いほど、信号の周波 数が高いほど大きくなる。
[0089] ここでは、簡便な説明とするため、 LANケーブル 5を構成する信号線 5A、 5B、 5 C、 5Dは、材質、線径、及びケーブル長が、いずれも同じとする。従って、信号線 5A 、 5B、 5C、 5Dの各減衰率 AQは、それぞれに伝送する信号の周波数のみに応じて 変化することになる。
[0090] 一方、あらゆる信号は、フーリエ展開に基づく多様な周波数の正弦波(周波数成 分)によって表すことが出来るので、信号の波形形状に関係なぐ信号に含まれる個 々の周波数成分の振幅は、それぞれの周波数に応じた減衰率 AQに基づいて減衰 することになる。
[0091] 即ち、色信号 R、 G、 Bは、時々刻々と変化する映像に応じた波形であるのに対し
P
、シリアル変調信号 LR は、図 5 (b)に示すように矩形波であるので、色信号 R、 G、
DM
Bと、シリアル変調信号 LR との波形形状は全く異なるものであるが、互いに共通し
P DM
て含まれる同じ周波数成分は、その減衰率 AQが同じである。
[0092] 従って、色信号 R、 G、 B、及びシリアル変調信号 LR は、それぞれ、信号線 5A
P DM
、 5B、 5C、 5Dを伝送することにより、それぞれに共通して含まれる同じ周波数成分 が同じ割合で減衰して、 LANケーブル用入力端子 31の入力接触子 31R、 31G、 31 B、 31Aに入力されることになる。
[0093] 以下の説明では、それぞれ減衰した、色信号 R、 G、 B、及びシリアル変調信号 L
P
R を、図 3中央に示すように、減衰 R信号 R 、減衰 G信号 G 、減衰 B信号 B 、
DM AT AT AT
及び減衰シリアル信号 LR と表現する。また、減衰 R信号 R 、減衰 G信号 G 、減
AT AT AT
衰 B信号 B を、特に区別の必要がないときは、減衰色信号 R 、 G 、 B と表現す
AT AT AT AT
る c
[0094] 二で、減衰シリアル信号 LR のパルス PL (以下「減衰パルス PL 」という。)つ
AT 0 AT いて、図 6に沿って説明する。図 6は、減衰シリアル信号 LR の波形図で、(a)は減
AT
衰前のパルス PL、 (b)は減衰パルス PL 、 (c)は減衰パルス PL の低域波形、(d
0 AT AT
)は減衰パルス PL の高域波形を示している。なお、同図(b)ないし (d)に示す減衰
AT
した波形形状は、発明の理解を容易にするために簡易的に示している。
[0095] シリアル変調信号 LR のパルス PLは、図 6 (a)に示すように、減衰前では矩形
DM 0
波である。矩形波には、低域から高域まで (理論的には無限の周波数まで)の広い範 囲の周波数成分が含まれ、このうち、高域の周波数成分により、電圧 Vの立ち上がり 及び立ち下がりを示す、エッジ部 PEが形成される。
[0096] 減衰率 AQは、上述したように周波数が高いほど大きくなるので、シリアル変調信 号 LR が LANケーブル 5を伝送すると、高域の周波数成分ほど振幅が減衰する。
DM
従って、パルス PLは、その振幅が一律に減衰することなぐ図 6 (b)に示すように、ェ
0
ッジ部 PE周辺の振幅が特に減衰して、減衰パルス PL (実線)は、パルス PL (破線
AT 0
)に対してハッチング部が減衰した波形形状を呈する。
[0097] また、シリアル変調信号 LR のパルス PLも、図 5 (b)に示すように矩形波である
DM 1
ので、 LANケーブル 5を伝送すると、図 6 (b)に示す減衰パルス PL と同様に、エツ
AT
ジ部 PE (図示せず)周辺の振幅が、特に減衰することになる。
[0098] これらパルス PL、 PLで構成されるシリアル変調信号 LR は、アナログ音声信
0 1 DM
号 L 、 R の変化によって、パルス PL、 PLの数が変化するものの、予め、波形形状
A A 0 1
の決まった矩形波(振幅 Vで周期 T又は T/2)で構成されていることから、色信号 R
0
、 G、 Bと異なり、概ね決まった周波数分布 (スペクトラム)を有している。
[0099] 従って、シリアル変調信号 LR の周波数分布から、上述したパルス PL、 PLの
DM 0 1 減衰に基づいて、周波数に応じた減衰率 AQを予測することが出来る。減衰率 AQは 、既に述べたように波形形状に関係なく周波数のみに応じて変化することから、シリ アル変調信号 LR の周波数分布から予測した減衰率 AQで、色信号 R、 G、 Bの減
DM P
衰を補償することが出来る。
[0100] 即ち、本発明は、このシリアル変調信号 LR の周波数分布を元に、減衰した周
DM
波数成分の振幅の変位量を演算し、演算した変位量に応じて、 R信号 R、 G信号 G、 B信号 Bのそれぞれにシリアル変調信号 LR と共通して含まれる、同じ周波数成分
DM の減衰を補償して、色信号 R、 G、 Bの減衰を補償するものである。
[0101] なお、本発明の実施の形態では、減衰シリアル信号 LR を低域と高域との 2つの
AT
帯域に分けて、減衰色信号 R 、G 、 B を補償する一例について説明するが、必
AT AT AT
ずしも 2つの帯域に分ける必要はなぐ例えば、高域側のみを補償して、おおまかに 減衰を補償してもよぐあるいは、減衰をきめ細力べ補償する場合は、 3つ以上の帯域 に分けて減衰を補償するようにしてもょレ、。
[0102] こうして、信号受信器 3に入力された、減衰 R信号 R 、減衰 G信号 G 、減衰 B信
AT AT
号 B は、それぞれ、 LANケーブル用入力端子 31の入力接触子 31R、 31G、 31B
AT
を介して、減衰補償部 50に入力される。また、信号受信器 3に入力された減衰シリア ル信号 LR は、 LANケーブル用入力端子 31の入力接触子 31Aを介して、減衰補
AT
償部 50及び 2値化部 51に入力される。
[0103] 減衰色信号 R 、G 、 B は、減衰補償部 50に入力されると、図 4中左方に示す
AT AT AT
ように、減衰補償部 50 (破線枠)内の低域映像補償部 60に入力され、減衰補償部 5 0に入力された減衰シリアル信号 LR は、減衰補償部 50内の低域矩形波補償部 62
AT
に入力される。
[0104] なお、図 4に示す減衰補償部 50内の低域ゲイン調整部 69及び高域ゲイン調整 部 70から、後述するゲイン調整電圧 V 、 V 力 まだ、低域映像補償部 60、高域
GH GL
映像補償部 61、低域矩形波補償部 62、及び高域矩形波補償部 63に出力されてい なレ、ものとする。従って、減衰シリアル信号 LR は、低域矩形波補償部 62を介して
AT
高域矩形波補償部 63から、減衰したままの形で出力される。出力された減衰シリア ル信号 LR は、分岐されて、ローパスフィルタ 65及びハイパスフィルタ 66に、それぞ
AT
れ入力される。
[0105] ローパスフィルタ 65は、入力された減衰シリアル信号 LR に含まれる、所定高帯
AT
域の周波数成分をカットして、図 6 (c)に示すように、所定低帯域の周波数成分 (以下 「低域周波数成分 LF」という。)からなる減衰シリアル信号 LR (以下「低域減衰信号
AT
LR 」という。)を通過させる。
ATL
[0106] また、ハイパスフィルタ 66は、ローパスフィルタ 65とは逆に、入力された減衰シリア ル信号 LR に含まれる、所定低帯域の周波数成分をカットして、図 6 (d)に示すよう
AT に、所定高帯域の周波数成分 (以下「高域周波数成分 HF」という。)からなる減衰シリ アル信号 LR (以下「高域減衰信号 LR 」という。)を通過させる。
AT ATH
[0107] 図 6 (c)、 (d)に示す低域減衰信号 LR 、及び高域減衰信号 LR では、同図(
ATL ATH
b)で説明した減衰パルス PL 、それぞれ、ローパスフィルタ 65を通過したパルス(
AT
以下「低域減衰パルス PL 」という。)、及びハイパスフィルタ 66を通過したパルス(
ATL
以下「高域減衰パルス PL 」という。)を、実線で示している。なお、同図(c)、(d)に
ATH
は、比較のために、減衰していないシリアル変調信号 LR 力 同様に、ローパスフィ
DM
ルタ 65を通過した場合のパルス(以下「低域パルス PL」という。)、及びハイパスフィ
L
ルタ 66を通過した場合のパルス(以下「高域ノ^レス PL 」という。)を、破線で示してい
H
る。
[0108] 即ち、ローパスフィルタ 65は、図 6 (c)に示すように、低域パルス PL (破線)に対
L
してピーク電圧が差分電圧 Δ Vだけ減衰した、ピーク電圧 V の低域減衰パルス P
L ATL
L (実線)を、低域ピーク検出部 67に出力する。
ATL
[0109] また、ハイパスフィルタ 66は、図 6 (d)に示すように、高域パルス PL (破線)に対し
H
てピーク電圧が差分電圧 Δνだけ減衰した、ピーク電圧 V の高域減衰パルス PL
H ATH
(実線)を、高域ピーク検出部 68に出力する。既に述べたように、周波数が高いほ
ATH
ど減衰率 AQが大きいので、ピーク電圧 Vは図 6 (c)の場合に比べて大きく減衰して
0
、上記差分電圧 Δν は、同図(c)に示す差分電圧 Δνより大きいものとなる。
H L
[0110] こうして、ローパスフィルタ 65から低域減衰信号 LR の低域減衰パルス PL (
ATL ATL
図 6 (c)参照)が出力されると、低域ピーク検出部 67は、入力された低域減衰パルス PL のピーク電圧 V を検出して、低域ゲイン調整部 69に出力する。
ATL ATL
[0111] また、ハイパスフィルタ 66から高域減衰信号 LR の高域減衰パルス PL (図 6
ATH ATH
(d)参照)が出力されると、高域ピーク検出部 68も、上記低域ピーク検出部 67と同様 に、入力された高域減衰パルス PL のピーク電圧 V を検出して、高域ゲイン調
ATH ATH
整部 70に出力する。
[0112] 低域ゲイン調整部 69及び高域ゲイン調整部 70は、それぞれ、図示しない比較器 が設けられており、それぞれの比較器には、図 6 (c)、(d)に示す低域パルス PL、高
L
域パルス PL のピーク電圧と同じ、電圧 V 、常時基準電圧として入力されている。
H 0 [0113] 従って、低域ゲイン調整部 69は、電圧 V が入力されると、入力された、電圧 V
ATL 0 と電圧 V との差分電圧 Δνを演算し、演算した差分電圧 Δνに応じた低域ゲイン
ATL L L
調整電圧 V を、低域映像補償部 60に出力すると共に、低域矩形波補償部 62にフ
GL
イードバックする。
[0114] また、高域ゲイン調整部 70も、上記低域ゲイン調整部 69と同様に、電圧 V
ΑΤΗ
入力されると、入力された、電圧 Vと電圧 V との差分電圧 Δν を演算し、演算し
0 ΑΤΗ Η
た差分電圧 Δν に応じた高域ゲイン調整電圧 V を、高域映像補償部 61に出力す
H GH
ると共に、高域矩形波補償部 63にフィードバックする。
[0115] 低域映像補償部 60、低域矩形波補償部 62、高域映像補償部 61及び高域矩形 波補償部 63は、それぞれ、図示しない可変ゲインアンプが設けられている。低域映 像補償部 60及び低域矩形波補償部 62に設けられてレ、る可変ゲインアンプは、低域 ゲイン G (図 4中の 60、 62のカツコ内に示す。)が、順次入力される低域ゲイン調整
L
電圧 V を加算した電圧に基づいて、調整自在に構成されている。また、高域映像
GL
補償部 61及び高域矩形波補償部 63に設けられている可変ゲインアンプも同様に、 高域ゲイン G (図 4中の 60、 62のカツコ内に示す。)力 順次入力される高域ゲイン
Η
調整電圧 V を加算した電圧に基づいて、調整自在に構成されている。
GH
[0116] 従って、低域映像補償部 60に、低域ゲイン調整電圧 V が入力されると、低域ゲ
GL
イン G 、入力された低域ゲイン調整電圧 V に基づいて所定値に調整される。この
L GL
状態で、減衰色信号 R 、G 、 Β が入力されると、低域映像補償部 60は、入力さ
AT AT AT
れた減衰色信号 R 、 G 、 B のそれぞれに、共通して含まれる低域周波数成分 L
AT AT AT
Fを、調整された低域ゲイン Gに応じて所定倍に増幅させる。そして、低域映像補償
L
部 60は、低域周波数成分 LFが所定倍に増幅された減衰色信号 R 、 G 、 B を、
AT AT AT
高域映像補償部 61に出力する。
[0117] また、高域映像補償部 61に、高域ゲイン調整電圧 V が入力されると、高域ゲイ
GH
ン G 力 入力された高域ゲイン調整電圧 V に基づいて所定値に調整される。この
H GH
状態で、低域映像補償部 60が出力した減衰色信号 R 、 G 、 B が入力されると、
AT AT AT
高域映像補償部 61は、入力された減衰色信号 R 、 G 、 B のそれぞれに、共通し
AT AT AT
て含まれる高域周波数成分 HFを、調整された高域ゲイン G に応じて所定倍に増幅
H させる。これら減衰色信号 R 、 G 、 B は、低域映像補償部 60により、既に、低域
AT AT AT
周波数成分 LFが所定倍に増幅されているので、高域及び低域の両帯域が所定倍 に増幅されることになる。
[0118] 一方、上記低域ゲイン調整電圧 V 力 低域矩形波補償部 62にフィードバックさ
GL
れると、低域ゲイン G力 S、入力された低域ゲイン調整電圧 V に基づいて所定値に
L GL
調整される。この状態で、減衰シリアル信号 LR が入力されると、低域矩形波補償
AT
部 62は、上述した低域映像補償部 60と同様に、入力された減衰シリアル信号 LR
AT
に含まれる低域周波数成分 LFを、調整した低域ゲイン Gに応じて所定倍に増幅さ
L
せる。そして、低域矩形波補償部 62は、低域周波数成分 LFが所定倍に増幅された 減衰シリアル信号 LR を、高域矩形波補償部 63に出力する。
AT
[0119] また同様に、上記高域ゲイン調整電圧 V 、高域矩形波補償部 63にフィード
GH
バックされると、高域ゲイン G が、入力された高域ゲイン調整電圧 V に基づいて所
H GH
定値に調整される。この状態で、低域矩形波補償部 62が出力した減衰シリアル信号 LR が入力されると、高域矩形波補償部 63は、上述した高域映像補償部 61と同様
AT
に、入力された減衰シリアル信号 LR に含まれる高域周波数成分 HFを、調整され
AT
た高域ゲイン G に応じて所定倍に増幅させる。減衰シリアル信号 LR は、低域音声
H AT
矩形波補償部 62により、既に、高域周波数成分 HFが所定倍に増幅されているので 、上述した減衰色信号 R 、G 、 B と同様に、高域及び低域の両帯域が所定倍に
AT AT AT
if幅されることになる。
[0120] こうして、減衰シリアル信号 LR が所定倍に増幅されると、低域減衰パルス PL
AT ATL
、及び高域減衰パルス PL のそれぞれのピーク電圧 V 、V (図 6 (c)、(d)参
ATH ATL ATH
照)は、元のピーク電圧 Vに近付くので、差分電圧 Δν、 A V が小さくなる。
0 L Η
[0121] 従って、所定倍に増幅された減衰シリアル信号 LR 力 再び、高域矩形波補償
AT
部 63力、ら、ローパスフィルタ 65、及びハイパスフィルタ 66に入力されると、差分電圧 AV、 AV が小さくなつた分、低域ゲイン調整電圧 V 、及び高域ゲイン調整電圧
L H GL
V 力 Μ、さくなるので、低域ゲイン G、及び高域ゲイン G の増分が小さくなる。
GH L Η
[0122] このように、上述したフィードバックを繰り返してゆくと、低域ゲイン G、及び高域ゲ
L
イン G の増分が次第に小さくなりながら、減衰補償部 50に順次入力される減衰色信
Η 号 R 、 G 、 B 、及び減衰シリアル信号 LR 、その低域ゲイン G、及び高域ゲ
AT AT AT AT L
イン G に基づいて、増幅される。そして、図 6 (c)、 (d)に示す低域減衰パルス PL
H ATL
、及び高域減衰パルス PL のそれぞれのピーク電圧力 元のピーク電圧 Vに到達
ATH 0 して、差分電圧 Δν、 A V 力 ¾となったところで、低域ゲイン G、及び高域ゲイン G
L H L Η
が所定値に到達する。
[0123] 従って、差分電圧 A V、 A V 力 SOとなるので、図 6 (b)に示す減衰パルス PL は
L H AT
、エッジ部 PE周辺のハッチング部分が補償されて、その波形形状が、元のノ^レス PL の波形形状(図 6 (a)に示す矩形波)に回復することになる。また、上記パルス PLと
0 0 同様に減衰したパルス PLは、図 5 (b)に示すように、パルス PLと周期のみが(2倍
1 0
で)異なり、比較的似た波形形状なので、その周波数分布がパルス PLと広い範囲で
1
重複している。従って、減衰パルス PL がパルス PLの波形形状に回復することによ
AT 0
り、パルス PLの波形形状もほぼ回復することになる。
1
[0124] 同時に、減衰色信号 R 、 G 、 B も同様に、所定値に到達した低域ゲイン G 、
AT AT AT L
及び高域ゲイン G により、これに含まれる低域周波数成分 LFと高域周波数成分 HF
H
との減衰が補償されて、元の波形形状に回復することになる。
[0125] 色信号 R、 G、 Bの波形形状は、時々刻々と変化する映像に応じて変わるので、そ れぞれの周波数分布も同様に時々刻々と変化するが、既に述べたように、それぞれ の周波数分布に減衰シリアル信号 LR と共通して含まれる、同じ周波数成分は、そ
AT
の減衰率 AQが同じなので、色信号 R、 G、 Bのそれぞれの周波数成分の減衰は、こ れら周波数分布の変化に拘わらず補償され、減衰補償部 50に順次入力される減衰 色信号 R 、 G 、 B は、問題なくその減衰が補償されてゆく。
AT AT AT
[0126] なお、減衰シリアル信号 LR を(つまり音声信号を)、減衰色信号 R 、 G 、 B
AT AT AT AT
の減衰に対する補償用の信号としてのみに利用する例を示したが、減衰シリアル信 号 LR を、上記補償用の信号として利用しながら、更に、減衰シリアル信号 LR の
AT AT
減衰を補償した信号を、高域矩形波補償部 63から出力させて、音声信号として用い ることも可肯である。
[0127] また、 AGC回路として図 4に示す構成を示した力 S、必ずしもこのような構成である 必要はなぐパルスの減衰に伴う振幅の変位量 (差分電圧)に基づいて、減衰した信 号を補償する回路であれば、どのような構成であってもよい。例えば、帯域に分離し た波形をそれぞれ所定ゲインで増幅した後に、分離した全ての波形を加算するような 構成であってもよい。
[0128] このように、アナログ音声信号 L 、 Rを、予め、波形形状の決まったパルスを配列
A A
したデジタル信号に変換するので、これらパルスの減衰に基づいて減衰率 AQを予 測することが出来、予測した減衰率 AQに応じて、減衰色信号 R 、 G 、 B の減衰
AT AT AT
を補償することが出来る。
[0129] なお、上述した AD変換部 41による AD変換として、アナログ信号を量子化したデ ジタル信号に変換する、 PCM (パルス符号変調)について説明したが、パルス力 デ ジタルデータ DDを示すパルスであれば(つまり振幅又はパルス幅が変化するアナ口 グパルスでなければ)、特に上記 PCMに限る必要はなぐ例えば、 PPM (パルス位 相変調)、 PFM (パルス周波数変調)でもよい。また、パルスの波形は、必ずしも矩形 波である必要はなぐ台形波、三角波、半波正弦波でもよい。但し、矩形波は広い範 囲の周波数を含むことから、きめ細力べ減衰を補償出来る点で、矩形波が好ましい。
[0130] また、シリアル音声信号 LR は、そのデジタルデータ DDに対応して(High/Lo
D
wに応じて)周期を変化させたパルス PL、 PL力 なる、シリアル変調信号 LR に
0 1 DM 変調されるので、デジタル音声信号 LR のパルス PLの有無に関係なぐ信号受信器
D
3に、周期的なパルスを送信することが出来る。これにより、例えばパルス PLのない 場合 (つまり Lowの状態が継続する場合)であっても、減衰色信号 R 、G 、 B の
AT AT AT
減衰を安定して補償することが出来る。
[0131] なお、変調処理として、上述したように、シリアル音声信号 LRを、周期 Tとするパ
D
ノレス PLと、周期 T/2とするパルス PLとからなる矩形波に変調する一例を示したが
0 1
、特に、周期を T、 ΤΖ2に限る必要はなぐノ^レス PLとパルス PLとの周期が異なる
0 1
組み合わせであれば、いずれの周期の組み合わせであってもよい。
[0132] また、本発明の実施の形態にあっては、シリアル変調信号 LR に配列されたパ
DM
ノレス PL、 PLの減衰に基づいて、減衰色信号 R 、 G 、 B の減衰を補償する一
0 1 AT AT AT
例を示したが、必ずしも、上述した変調処理後の音声信号により減衰を補償する必 要なぐ変調処理前の音声信号、即ち、シリアル音声信号 LR に配列されたパルス P
D Lの減衰に基づいて、減衰色信号 R 、 G 、 B の減衰を補償してもよい。
AT AT AT
[0133] こうして、高域映像信号補償部 61は、図 4に示すように、減衰色信号 R 、 G 、 B
AT AT
の減衰を補償すると、補償した減衰色信号 R 、 G 、 B を、色信号 R、 G、 Bとし
AT AT AT AT P
て、同期信号分離部 55に出力する。
[0134] ところで、減衰シリアル信号 LR は、既に述べたように、減衰補償部 50と共に、 2
AT
値化部 51に入力されている。 2値化部 51には、図示しないコンパレータが設けられ ており、コンパレータは、入力された減衰シリアル信号 LR の波形形状を整形して、
AT
シリアル変調信号 LR として、復調部 52及びクロック再生部 53に出力する。
DM
[0135] 復調部 52は、シリアル変調信号 LR が入力されると、シリアル変調信号 LR を
DM DM
シリアル音声信号 LR に変換することにより、図 5で説明した変調処理と逆の復調処
D
理を行う。シリアル変調信号 LR を復調すると、復調部 52は、図 3に示すように、シリ
DM
アル音声信号 LRを音声信号復元部 57に出力する。音声信号復元部 57は、シリア
D
ル音声信号 LR が入力されると、シリアル音声信号 LR の非音声データ領域 NDA
D D
に付カ卩した特定のパターンに基づいて、極性情報 PI、及び左右の音声データ SD 、
L
SDの位置を特定すると共に、特定された極性情報 PIの位置に基づいて、非音声デ
R
ータ領域 NDAから極性情報 PIを分離して、分離された極性情報 PIを同期信号復元 部 56に出力する。
[0136] 一方、同期信号分離部 55は、 B信号 Bが入力されると、 B信号 Bから、同期信号
P P
HD、 VDを分離し、分離された、極性が負の同期信号 HD、 VDを、同期信号復元部 56に出力する。
[0137] こうして、同期信号復元部 56は、音声信号復元部 57から受けた極性情報 PIに基 づいて、同期信号分離部 55から受けた極性が負の同期信号 HD、 VDを元に、信号 送信器 2に入力された同期信号 HD、 VDを復元する。例えば、極性情報 PIが「1」の 場合、極性が正であるとして、同期信号 HD、 VDの極性を反転し、一方、極性情報 P Iが「0」の場合、極性が負であるとして、同期信号 HD、 VDの極性を反転させない。
[0138] 一方、クロック再生部 53は、シリアル変調信号 LR が入力されると、シリアル変調
DM
信号 LR に基づいて、クロックパルスを再生する。ここで、クロックパルスの再生処理
DM
について、図 7に沿って説明する。図 7は、クロックパルス再生処理についての説明 図で、(a)はシリアル変調信号 LR の一例を示すタイムチャート、 (b)は(a)に示す
DM
シリアル変調信号 LR に基づぐクロックパルス再生信号の一例を示すタイムチヤ
DM 一 トである。
[0139] クロック再生部 53には、図示しないワンショット 'マルチバイブレータ(単安定マル チバイブレータ)が設けられており、トリガパルスが入力されると、パルス幅が「3T/4 」のノ^レス PLを出力するように設定されている。
2
[0140] 従って、シリアル変調信号 LR 力 図 7 (a)中左側から(時点 ti lから)クロック再
DM
生部 53に入力されると、図 7 (b)に示すように、時点 21で、クロック再生部 53は、時 点 ti lからのパルス PLにより、トリガパルスが入力されたものとして、パルス PLを出
0 2 力する。即ち、時点 ti lからのパルス PLのパルス幅力 TZ2から 3T/4に延長され
0
ることになる。時点 22で、時点 tl 2からのパルス PL 、クロック再生部 53に入力され
0
た場合も同様である。
[0141] 次いで、時点 23で、時点 tl3からのパルス PL 、クロック再生部 53に入力される と、クロック再生部 53は、上述と同様に、トリガノくルスが入力されたものとしてパルス P Lを出力する。この際、時点 t23 'で、時点 tl 3'からのパルス PL力 Sクロック再生部 5
2 1
3に入力される力 パルス PLが既に時点 t23から出力されているので、時点 tl3
2 、 tl
3,からのパルス PLは、当該パルス PLに包含されることになる。以下同様に、クロッ
1 2
ク再生部 53は、パルス PL、 PLに応じて、パルス PLを周期的に配列してゆく。
0 1 2
[0142] こうして、クロック再生部 53は、シリアル変調信号 LR のパルス PL れ
DM 0、 PLのそ
1 ぞれの個数に関係なぐ周期的なパルス PLが配列された信号 (以下「クロックパルス
2
再生信号 LR 」という。)を生成することが出来る。
CP
[0143] また、クロック再生部 53には、図示しない PLL (位相同期ループ)が設けられてお り、クロックパルス再生信号 LR を生成すると、上記 PLLは、生成したクロックパルス
CP
再生信号 LR の周波数を通倍して、信号送信器 2のクロック発生部 42が発生するク
CP
ロックパルス CPと同じ周波数(例えば 11. 3MHz)のクロックパルス(以下「再生クロッ クパルス CP 」という。)を再生する。こうしてクロック再生部 53は、再生クロックパルス
RB
CP を音声信号復元部 57に出力する c
RB
[0144] なお、ワンショット 'マルチバイブレータを用いた、クロックパルス再生処理の一例 を示したが、シリアル変調信号 LR に基づいて、一定周期のパルスを生成する処理
DM
であれば、必ずしもワンショット ·マルチバイブレータを用いる必要はなレ、。
[0145] 音声信号復元部 57は、クロック再生部 53から再生クロックパルス CP が入力され
RB
ると、再生クロックパルス CP の周波数を(例えば 1Z256に)分周する。また、音声
RB
信号復元部 57に入力されたシリアル音声信号 LR の左右の音声データ SD 、 SD
D L R
は、既に述べたように、その配列された位置が特定されているので、音声信号復元部 57は、分周した再生クロックパルス CP の周波数をサンプリング周波数(例えば 44.
RB
1kHz)として、入力されたシリアル音声信号 LRをシリアル
D Zパラレル変換し、左右 のデジタル音声信号 L 、 Rを、 DA変換部 58に出力する。 DA変換部 58は、左右の
D D
デジタル音声信号 L 、Rが入力されると、デジタル音声信号 L 、Rをアナログ音声
D D D D
信号し 、 R に変換する。
A A
[0146] ところで、電気信号は、ケーブルを伝送すると、そのケーブル長に応じて位相ず れが生じることから、信号線 5Dを伝送したシリアル変調信号 LR も、信号線 5Dの長
DM
さに応じて、信号送信器 2のクロックパルス CPに対して、位相ずれが生じている。
[0147] この場合に、信号受信器 3側で、信号送信器 2のクロックパルス CPと同じ周波数 のクロックパルスを発生させたとしても、上記シリアル変調信号 LR は、位相ずれが
DM
生じているため、信号受信器 3側で発生させたクロックパルスと同期が取れない場合 や、たとえ、ほぼ同期が取れたとしても、微小な位相ずれが時間の経過により、音声 データ SDの一部のデータを欠落させてしまう場合がある。従って、アナログ音声信号 L 、Rを元通りに再生するためには、従来、欠落したデータを補間する処理が必要
A A
であった。
[0148] 一方、クロック再生部 53より再生された再生クロックパルス CP は、その元となる
RB
信号が、信号線 5Dを伝送したシリアル変調信号 LR なので、信号送信器 2のクロッ
DM
クパルス CPに対して、位相ずれが生じている力 S、いずれの信号 CP 、LR も、同一
RB DM
の〇SC (水晶発振器)が発生したクロックパルス CPに基づレ、て生成された信号なの で、信号送信器 2のクロックパルス CPに対する位相ずれ量は、いずれも同じである。
[0149] 従って、信号線 5Dを伝送したシリアル変調信号 LR は、再生クロックパルス CP
DM R
に対して、位相ずれが生じないので、当該再生クロックパルス CP と同期を取ること
B RB が出来、上述したような、欠落したデータを補間する処理を行うことなぐシリアル変調 信号 LR の音声データ SDを漏れなぐアナログ音声信号 L、 R に変換して、アナ
DM A A
ログ音声信号 L、Rを元通りに再生することが出来る。
A A
[0150] こうして、 DA変換部 58が、デジタル音声信号 L、 Rを DA変換すると、同期信号
D D
分離部 55は、 R信号 R、 G信号 G、及び同期信号 HD、 VDを分離した B信号 B、即
P
ち、 B信号 Bを、それぞれ、信号受信器 3の BNCケーブル用出力端子 32の、 R出力 端子 32R、 G出力端子 32G、及び B出力端子 32Bに出力する。同期信号復元部 56 は、復元した水平同期信号 HD、及び垂直同期信号 VDを、それぞれ、 BNCケープ ル用出力端子 32の、 HD出力端子 32HD、及び VD出力端子 32VDに出力する。ま た、 DA変換部 58は、アナログ音声信号 L、 Rを、それぞれ、音声出力端子 33の、
A A
左音声出力端子 33L、及び右音声出力端子 33Rに出力する。
[0151] そして、色信号 R、 G、 B、及び同期信号 HD、 VDは、図 1に示すように、 BNCケ 一ブル 6Bを介して、また、アナログ音声信号 L、 R は、 RCAケーブル 7Bを介して、
A A
プラズマディスプレイ 10に入力される。色信号 R、 G、 Bは、上述したように、減衰が補 償された形で、プラズマディスプレイ 10に入力されるので、文字の滲みやボケなどの ない良好な映像が、プラズマディスプレイ 10に表示され、当該映像の表示と共に、音 声がプラズマディスプレイ 10から出力される。
[0152] このように、本発明に係るケーブル延長装置 1は、デジタル信号に変換された音 声信号を補償用の信号として利用して、映像信号の減衰を補償するので、波形形状 が決まった矩形波を信号受信器 3に安定して送信することが出来、画像の解像度や ディスプレイの機種に関係なぐ減衰色信号 R 、G 、B の減衰を正確に補償する
AT AT AT
ことが出来る。
[0153] これにより、映像信号を安定して補償しながら、音声信号を信号受信器 3に送信 することが出来るので、映像出力装置に良好な映像と音声を出力させて、効果的な プレゼンテーションを実現することが出来る。しかも、アナログ音声信号 L、 R は、再
A A
生クロックパルス CP に基づいて、元通りに再生されるので、良好な音声を出力する
RB
ことが出来る。
[0154] また、映像信号と別に補償用の信号を送信する必要がないので、音声信号を信 号受信器 3に送信するものでありながら、信号線の本数が比較的少なレ、ケーブルで 、映像信号の減衰を補償することが出来、ケーブル延長装置 1の構成を簡単にする ことが出来る。
産業上の利用可能性
本発明は、映像入力ソースから離れたところにある映像出力装置に、映像信号を ケーブルにより伝送する際に、該ケーブルの両端に設置されるケーブル延長装置に 利用することが出来る。

Claims

請求の範囲
[1] 映像信号を入力することの出来る、信号送信器を設け、該信号送信器と信号線を介 して接続自在であって、該信号線を介して前記信号送信器から受信した前記映像信 号を、出力することの出来る、信号受信器を設けて構成した、ケーブル延長装置にお いて、
刖記信号 信器は、
音声信号の入力を受け付ける、音声信号受付手段を設け、
前記音声信号受付手段に入力された音声信号を、デジタルデータのパルスが配 列されたデジタル音声信号として、前記信号線を介して前記信号受信器に出力する
、デジタル音声信号送信手段を設け、
前記信号受信器は、
前記信号送信器から受信したデジタル音声信号に配列されたパルスの減衰に基 づいて、前記信号送信器から受信する映像信号の減衰補償量を演算する、減衰補 償量演算手段を設け、
前記減衰補償量演算手段により演算された減衰補償量に基づいて、前記信号送 信器から受信した映像信号の減衰を補償する、映像信号減衰補償手段を設けて構 成したケーブル延長装置。
[2] 前記信号受信器は、前記信号送信器力 受信したデジタル音声信号に配列された パルスを、複数の帯域に分離する、帯域分離手段を設け、
前記信号受信器の減衰補償量演算手段は、前記帯域分離手段により複数の帯 域に分離されたそれぞれのノ^レスの減衰に基づいて、前記減衰補償量を帯域ごとに 演算する、帯域別補償量演算手段を有しており、
前記信号受信器の映像信号減衰補償手段は、前記帯域別補償量演算手段によ り演算された帯域ごとの減衰補償量に基づいて、前記信号送信器から受信した映像 信号の減衰を帯域ごとに補償する、帯域別映像信号補償手段を有する、
ことを特徴とする請求項 1記載のケーブル延長装置。
[3] 前記デジタル音声信号送信手段が出力するデジタル音声信号に配列されたパルス は、矩形波からなる、 ことを特徴とする請求項 1記載のケーブル延長装置。
[4] 前記信号送信器は、
該信号送信器のデジタル音声信号送信手段が出力するデジタル音声信号を、前 記デジタル音声信号の各デジタルデータに対応した周波数のパルスが配列された、 デジタル変調信号に変換する、デジタル音声信号変換手段を設け、
前記信号送信器のデジタル音声信号送信手段は、前記デジタル変調信号を、前 記信号線を介して前記信号受信器に出力し、
前記信号受信器の減衰補償量演算手段は、前記信号送信器から受信したデジ タル変調信号に配列されたパルスの減衰に基づいて、前記信号送信器から受信す る映像信号の減衰補償量を演算する、
ことを特徴とする請求項 1記載のケーブル延長装置。
[5] 前記信号受信器は、前記信号送信器から受信したデジタル変調信号に配列された パルスを、複数の帯域に分離する、帯域分離手段を設け、
前記信号受信器の減衰補償量演算手段は、前記帯域分離手段により複数の帯 域に分離されたそれぞれのノ^レスの減衰に基づいて、前記減衰補償量を帯域ごとに 演算する、帯域別補償量演算手段を有しており、
前記信号受信器の映像信号減衰補償手段は、前記帯域別補償量演算手段によ り演算された帯域ごとの減衰補償量に基づいて、前記信号送信器から受信した映像 信号の減衰を帯域ごとに補償する、帯域別映像信号補償手段を有する、
ことを特徴とする請求項 4記載のケーブル延長装置。
[6] 前記デジタル音声信号送信手段が出力するデジタル変調信号に配列されたパルス は、矩形波からなる、
ことを特徴とする請求項 4記載のケーブル延長装置。
PCT/JP2004/009553 2003-07-10 2004-07-06 ケーブル延長装置 WO2005006744A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04747022A EP1646230A4 (en) 2003-07-10 2004-07-06 CABLE EXTENSION DEVICE
US10/558,524 US7440035B2 (en) 2003-07-10 2004-07-06 Cable extending device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003194921A JP4426222B2 (ja) 2003-07-10 2003-07-10 ケーブル延長装置
JP2003-194921 2003-07-10

Publications (1)

Publication Number Publication Date
WO2005006744A1 true WO2005006744A1 (ja) 2005-01-20

Family

ID=34055705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009553 WO2005006744A1 (ja) 2003-07-10 2004-07-06 ケーブル延長装置

Country Status (4)

Country Link
US (1) US7440035B2 (ja)
EP (1) EP1646230A4 (ja)
JP (1) JP4426222B2 (ja)
WO (1) WO2005006744A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2429868B (en) * 2005-09-03 2010-11-10 Amulet Electronics Ltd Video display system

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4293519B2 (ja) * 2003-04-28 2009-07-08 興和株式会社 ケーブル延長装置
TWI243890B (en) 2004-04-07 2005-11-21 Aten Int Co Ltd Cable length detection apparatus and method for a keyboard video mouse switch
JP4744185B2 (ja) * 2005-04-25 2011-08-10 興和株式会社 受信器、及び該受信器を備えた映像信号伝送装置
JP4309449B2 (ja) * 2007-11-30 2009-08-05 株式会社東芝 ノイズ削減回路及びノイズ削減方法並びに映像装置
US8184723B2 (en) 2008-02-29 2012-05-22 Analog Devices, Inc. Feedback system and apparatus for video compensation
US8558955B2 (en) * 2008-11-03 2013-10-15 Intersil Americas Inc. Cable equalization locking
US8390740B2 (en) 2008-11-03 2013-03-05 Intersil Americas Inc. Systems and methods for cable equalization
US8457312B2 (en) * 2008-11-18 2013-06-04 Aten International Co., Ltd. Cable length detection and signal compensation apparatus and method for a keyboard video mouse switch and extender
KR101352788B1 (ko) * 2009-03-12 2014-01-16 삼성전자주식회사 신호전달장치
CN102088585A (zh) * 2009-12-08 2011-06-08 鸿富锦精密工业(深圳)有限公司 电子设备
US8872978B2 (en) 2011-06-09 2014-10-28 Intersil Americas LLC Cable equalization and monitoring for degradation and potential tampering
US11056252B2 (en) * 2018-07-19 2021-07-06 Douglas W Schroeder Electrical signal transmission cable system and method of using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0396076A (ja) * 1989-09-07 1991-04-22 Toshiba Corp 映像信号遅延回路
JPH04108272A (ja) * 1990-08-28 1992-04-09 Matsushita Electric Works Ltd 映像信号補正装置
JPH05167986A (ja) * 1991-12-17 1993-07-02 Mitsubishi Electric Corp 映像信号記録再生装置
JPH09232894A (ja) * 1996-02-26 1997-09-05 Ikegami Tsushinki Co Ltd 伝送信号処理装置の伝送状態表示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1596774A (en) * 1977-03-21 1981-08-26 Rca Corp Automatic cable equalizer circuit
US4984079A (en) * 1989-07-26 1991-01-08 Hughes Aircraft Company Video preamplifier circuit
US5751338A (en) * 1994-12-30 1998-05-12 Visionary Corporate Technologies Methods and systems for multimedia communications via public telephone networks
US6618774B1 (en) * 1999-03-17 2003-09-09 Adder Technology Ltd. Computer signal transmission system
DE60323818D1 (de) * 2002-03-15 2008-11-13 Gennum Corp System und verfahren zum kompensieren von leitungsverlusten über eine strecke für eine digitale visuelle schnittstelle (dvi)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0396076A (ja) * 1989-09-07 1991-04-22 Toshiba Corp 映像信号遅延回路
JPH04108272A (ja) * 1990-08-28 1992-04-09 Matsushita Electric Works Ltd 映像信号補正装置
JPH05167986A (ja) * 1991-12-17 1993-07-02 Mitsubishi Electric Corp 映像信号記録再生装置
JPH09232894A (ja) * 1996-02-26 1997-09-05 Ikegami Tsushinki Co Ltd 伝送信号処理装置の伝送状態表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1646230A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2429868B (en) * 2005-09-03 2010-11-10 Amulet Electronics Ltd Video display system

Also Published As

Publication number Publication date
EP1646230A4 (en) 2007-10-24
JP2005033403A (ja) 2005-02-03
US7440035B2 (en) 2008-10-21
EP1646230A1 (en) 2006-04-12
JP4426222B2 (ja) 2010-03-03
US20060234546A1 (en) 2006-10-19

Similar Documents

Publication Publication Date Title
WO2005006744A1 (ja) ケーブル延長装置
EP1995910A2 (en) Synchronization of a split audio, video, or other data stream with separate sinks
US20040006484A1 (en) Method and system for media content data distribution and consumption
EP0478377B1 (en) Horizontal edge compensation circuits
EP1618762A1 (en) A multi-channel speaker system and a connection system thereof
DE102011104268A1 (de) Kopfhörer, Audiogerät, Audiosystem und Verfahren zur Signalübertragung
US6028946A (en) Microphone with associated amplifier
JP2004193908A (ja) 可視光通信装置
US5946604A (en) MIDI port sound transmission and method therefor
US6288747B1 (en) Multichannel television sound stereo and surround sound encoder suitable for use with video signals encoded in plural formats
US20060282561A1 (en) Method and apparatus for audio and video signal transmission
JP4293519B2 (ja) ケーブル延長装置
US7181028B2 (en) Audio converting device and converting method thereof
JPH0583689A (ja) 多重伝送方式およびその装置
US5953043A (en) Signal transmission system
JP2001127668A (ja) 送受信装置及び送受信方法。
JPH0434871B2 (ja)
JPS5837735B2 (ja) パルスヘンチヨウホウシキ
JP2767912B2 (ja) 信号伝送装置
US7142579B2 (en) Apparatus for providing high quality audio output by median filter in audio systems
US20050117068A1 (en) System and method for the wireless transmission of audio and video information
JP2529375B2 (ja) パルス多重伝送方式における復調回路
JPH09224198A (ja) 動画像無線伝送アダプタ
JPS60130289A (ja) 映像信号変換装置
JPH01132288A (ja) 映像信号処理装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006234546

Country of ref document: US

Ref document number: 10558524

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004747022

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004747022

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10558524

Country of ref document: US