WO2005006527A1 - 電源装置及び電源装置の制御方法 - Google Patents

電源装置及び電源装置の制御方法 Download PDF

Info

Publication number
WO2005006527A1
WO2005006527A1 PCT/JP2004/008225 JP2004008225W WO2005006527A1 WO 2005006527 A1 WO2005006527 A1 WO 2005006527A1 JP 2004008225 W JP2004008225 W JP 2004008225W WO 2005006527 A1 WO2005006527 A1 WO 2005006527A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
unit
capacitor
drive control
control unit
Prior art date
Application number
PCT/JP2004/008225
Other languages
English (en)
French (fr)
Inventor
Hiroshi Usui
Original Assignee
Sanken Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co., Ltd. filed Critical Sanken Electric Co., Ltd.
Priority to US10/541,710 priority Critical patent/US7719860B2/en
Priority to JP2005511487A priority patent/JPWO2005006527A1/ja
Publication of WO2005006527A1 publication Critical patent/WO2005006527A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power supply device capable of reducing power consumption in a standby state so as to return to a normal operation state, and a control method thereof.
  • Some electronic devices may be on standby so that they can immediately return to a normal operation state. In such a standby state, little power is consumed. If power is not consumed, it may be more appropriate to stop the power supply that supplies power to the electronic device as a load, from the viewpoint of power consumption or noise reduction.
  • Such a power supply device is configured to stop the supply of the input voltage and reduce the power consumption assuming that the load is reduced when the current supplied to the load is reduced. It is disclosed in Japanese Patent Publication No. 294267.
  • the present invention has been made in view of such a conventional problem, and has as its object to provide a power supply device capable of starting operation from a standby state in which a signal is not supplied from the outside.
  • the power supply device of the present invention comprises:
  • a voltage generator that generates a voltage to be supplied to the load;
  • a drive control unit that generates a drive signal by applying a drive control voltage necessary for generating a drive signal, and supplies the generated drive signal to the voltage generation unit to drive and control the voltage generation unit;
  • the drive control voltage is applied to the drive control unit, and when the output current supplied to the load becomes less than a preset current value, the drive control unit is stopped, and the drive control unit is stopped.
  • a drive control voltage supply unit that activates the drive control unit after a lapse of a predetermined time.
  • the voltage generator The voltage generator,
  • a transformer having a primary winding and a secondary winding
  • a DC voltage input unit for inputting a DC voltage and applying the input DC voltage to a primary winding of the transformer
  • a switching unit for switching a current flowing in a primary winding of the transformer to generate a voltage in the primary winding of the transformer
  • a rectifying and smoothing unit for rectifying and smoothing a voltage generated in a secondary winding of the transformer and supplying the rectified and smoothed voltage to the load.
  • the drive control unit may be configured to supply a pulse signal for the switching unit to switch the current as a drive signal to the switching unit to drive and control the switching unit.
  • the transformer has a tertiary winding
  • the drive control voltage supply unit controls the drive control voltage supply unit
  • An auxiliary power supply for rectifying the voltage generated in the tertiary winding of the transformer, applying the rectified voltage to the capacitor, and charging the capacitor;
  • the drive control voltage supplied to the drive control unit is equal to or higher than a preset voltage value. Then, a charging control unit that stops charging of the capacitor from the charging circuit unit, an output current supplied to the load is detected, and a current value of the detected output current is compared with a preset current value. An operation stop unit that stops the operation of the drive control unit when the current value of the detected output current is less than a preset current value;
  • the operation stopping unit measures the power time by stopping the operation of the drive control unit, and when the preset time has elapsed after the measurement, the charging control unit restarts charging the capacitor. And a measuring unit.
  • the charging circuit unit includes:
  • a constant current supply unit that supplies a constant current to the capacitor
  • the charging circuit unit includes:
  • a switch which is closed when the DC voltage input unit starts inputting the DC voltage at the time of starting may be interposed.
  • the charging control unit includes a switch control unit that opens the switch to stop charging the capacitor from the charging circuit unit,
  • the time measurement unit measures time after the operation stop unit stops the operation of the drive control unit, and when a preset time has elapsed after the measurement, the switch control unit transmits the switch to the switch control unit. May be configured to output a switch-on signal for closing the capacitor and restart charging the capacitor.
  • a resistor is connected to both ends of the capacitor
  • the time measuring unit is a device in which a predetermined time has elapsed when the voltage at both ends of the capacitor has become equal to or less than a predetermined value due to discharging after the operation stopping unit has stopped the operation of the drive control unit.
  • the charging control section may restart charging the capacitor.
  • the drive control voltage supply unit controls the drive control voltage supply unit
  • a charging circuit that supplies a current from the DC voltage input unit of the voltage generation unit to the capacitor to charge the capacitor, and a charging circuit unit that applies the charged voltage as a drive control voltage to the drive control unit;
  • An auxiliary power supply for rectifying the voltage generated in the tertiary winding of the transformer, applying the rectified voltage to the capacitor, and charging the capacitor;
  • An operation stop unit that stops the operation of the drive control unit
  • a discharge control unit that is supplied with a discharge command signal to discharge the voltage of the capacitor, and when the operation stop unit stops the operation of the drive control unit, supplies the discharge command signal to the discharge control unit.
  • a time measurement unit that stops supplying the discharge command signal to the discharge control unit when a preset time has elapsed after measuring the time.
  • the charging circuit unit includes a current supply unit that supplies a current to the capacitor,
  • the discharge control unit controls the discharge control unit
  • the switch control unit may be configured to close the switch and discharge the voltage of the capacitor.
  • the charging circuit unit includes a resistor interposed between the DC voltage input unit and the capacitor,
  • the discharge control unit controls the discharge control unit
  • the switch control unit may be configured to close the switch and discharge the voltage of the capacitor.
  • a method for driving a power supply device includes:
  • a voltage generator for generating a voltage to be supplied to the load according to the drive signal; and a drive generator for generating the drive signal from the drive control voltage, and supplying the generated drive signal to the voltage generator to drive the voltage generator.
  • a drive control unit for supplying a voltage to the load by controlling the power supply device.
  • the drive control voltage is applied to the drive control unit, a voltage is supplied from the voltage generation unit to the load, and a current flowing through the load is monitored, and the current is set in advance.
  • the application of the drive control voltage to the drive control unit is stopped to stop the operation of the drive control unit, and after a lapse of a predetermined time from the stop, the drive control voltage is applied to the drive control unit. Restarting the supply to the control unit to operate the drive control unit;
  • FIG. 1 is a circuit diagram showing a configuration of a converter according to Embodiment 1 of the present invention.
  • FIG. 2 is a circuit diagram showing a configuration of a load detection circuit in FIG. 1.
  • FIG. 3 is a timing chart showing the operation of the converter of FIG. 1 when the AC power is turned on.
  • FIG. 4 is a timing chart showing a steady operation of the converter of FIG. 1.
  • FIG. 5 is a timing chart showing an operation of the converter of FIG. 1 when a load changes.
  • FIG. 6 is a circuit diagram showing a configuration of a converter according to Embodiment 2 of the present invention.
  • FIG. 7 is a circuit diagram showing a configuration of a converter according to Embodiment 3 of the present invention.
  • FIG. 8 is a circuit diagram showing a configuration of a converter according to Embodiment 4 of the present invention.
  • FIG. 9 is a circuit diagram showing a configuration of a timer shown in FIG.
  • FIG. 10 is a timing chart showing the operation of the converter shown in FIG.
  • FIG. 11 is a circuit diagram showing a configuration of a correction circuit for correcting a collector voltage of a phototransistor.
  • the power supply device will be described as a converter.
  • FIG. 1 shows the configuration of the converter according to the first embodiment.
  • the converter 1 is configured by a flyback converter, and includes an AC-DC converter 2, a voltage converter 3, a rectifying / smoothing unit 4, an output voltage detection unit 5, a control unit 6,
  • the AC-DC conversion unit 2, the voltage conversion unit 3, and the rectification / smoothing unit 4 generate a voltage to be supplied to a load.
  • the rectified and smoothed DC voltage is applied to the primary winding nl of the transformer T. Converts AC power from AC power supply 9 to DC power.
  • the AC-DC converter 2 includes a rectifier circuit 11 and a capacitor C1.
  • the rectifier circuit 11 is configured by a bridge rectifier circuit composed of four diodes (not shown), and performs full-wave rectification on AC power supplied from an AC power supply 9 connected to two input terminals. To do.
  • the capacitor C 1 smoothes the voltage according to the pulsating AC power rectified by the rectifier circuit 11.
  • One end of the capacitor C1 is connected to one output terminal (+) of the rectifier circuit 11, and the other end is connected to the other output terminal (-) of the rectifier circuit 11.
  • the voltage conversion unit 3 performs voltage conversion, and includes a transformer T and a transistor Q1.
  • the transformer T includes a primary winding nl, a secondary winding n2, and a tertiary winding n3, and a voltage of an AC voltage between the primary winding nl and the secondary winding n2. Perform the conversion.
  • One end of the primary winding nl is connected to one end of the capacitor C1.
  • the transistor Q1 is a switching transistor that turns on and off in accordance with a pulse signal supplied to the gate, and corresponds to a switching unit.
  • Transistor Q1 is N channel Field effect transistor (FET).
  • FET Field effect transistor
  • the drain of the transistor Q1 is connected to the other end of the transformer T, the source is connected to the other end of the capacitor C1, and the gate is connected to the PWM control circuit 12 of the control unit 6.
  • the rectifying / smoothing unit 4 rectifies and smoothes an AC voltage generated between both ends of the secondary winding n2 of the transformer T, and includes a diode D1 and a capacitor C2.
  • the diode D1 rectifies the voltage generated between both ends of the secondary winding n2 of the transformer T, and the capacitor C2 smoothes the voltage rectified by the diode D1.
  • the primary winding nl and the secondary winding n2 are designed so that energy is stored in the transformer T when the transistor Q1 is turned on, and that the energy stored in the transformer T is released during the off-time. Is wound on the transformer T.
  • the output voltage detector 5 detects an output voltage, and includes a photodiode D11, a transistor Q11, a Zener diode ZD11, and resistors R11 and R14.
  • One end of the resistor R11 is connected to the output terminal Poutl, and one end of the resistor R12 is connected to the other end of the resistor R11.
  • One end of the resistor R13 is connected to the other end of the resistor R12, and the other end of the resistor R13 is connected to the output terminal Pout2.
  • the photodiode D11 and the phototransistor Q21 of the control unit 6 constitute a photo power plug. By using a photo force blur, the primary side and the secondary side can be insulated.
  • the photodiode D11 emits light with a light emission amount according to the current flowing through the photodiode D11.
  • the anode of the photodiode D11 and one end of the resistor R14 are connected to the output terminal Poutl.
  • the transistor Q11 is configured as an NPN bipolar transistor.
  • the transistor Q11 and the Zener diode ZD11 are for controlling the current flowing through the photodiode Dl1, based on the output voltage.
  • the collector of the transistor Q11 is connected to the force source of the photodiode D11 and the other end of the resistor R14, and the base is connected to the connection point of the resistors R12 and R13.
  • the power source of the Zener diode ZD11 is connected to the emitter of the transistor Q11, and the anode is connected to the output terminal Pout2.
  • the control unit 6 generates a pulse signal as a drive signal for driving the transistor Q1 when a drive control voltage is applied.
  • the controller 6 controls the pulse width of the pulse signal so that the output voltage detected by the output voltage detector 5 becomes a preset voltage (PWM control ).
  • the control section 6 supplies the generated pulse signal as a drive signal to the gate of the transistor Q1.
  • the control section 6 includes a phototransistor Q21 and a PWM control circuit 12.
  • the phototransistor Q21 supplies the voltage detection signal of the output voltage detection unit 5 to the control unit 6, the collector is connected to the PWM control circuit 12, and the emitter is connected to the other end of the capacitor C1. Is done.
  • the phototransistor Q21 receives the light emitted by the photodiode D11 at the base, and applies a collector voltage (collector-emitter voltage) of a level corresponding to the amount of received light to the PWM control circuit 12.
  • the PWM control circuit 12 controls the transistor according to the collector voltage of the phototransistor Q21.
  • the pulse width of the pulse signal supplied to the gate of Q1 is controlled.
  • the PWM control circuit 12 is supplied with a drive control voltage for generating a pulse signal, and the voltage level of the drive control voltage is set to a predetermined level. Operates above the level.
  • the PWM control circuit 12 includes, for example, a triangular wave voltage generation circuit, a signal level comparison circuit, and a pulse signal generation circuit (all not shown). Then, the triangular wave voltage generating circuit generates a triangular wave voltage, and the signal level comparing circuit compares the voltage level of the collector voltage of the phototransistor Q21 with the voltage of the triangular wave generated by the triangular wave voltage generating circuit. Then, the pulse signal generation circuit generates the above-described PWM-controlled pulse signal based on the comparison result of the signal level comparison circuit.
  • the auxiliary power supply unit 7 rectifies the voltage generated in the tertiary winding n3 of the transformer T and supplies the rectified voltage to the PWM control circuit 12, and rectifies the voltage generated in the tertiary winding n3. It has a diode D12. The anode of the diode D12 is connected to one end of the tertiary winding n3, and the cathode is connected to one end of the capacitor C3 of the drive control voltage supply unit 8.
  • the drive control voltage supply unit 8 supplies a constant current to the PWM control circuit 12 when the converter 1 is started, and includes a switch 13, a constant current supply unit 14, a capacitor C3, and a load detection circuit.
  • a circuit 15, a timer 16, and a switch control unit (referred to as “SW control unit” in the figure) 17 are provided.
  • One end of the switch 13 is connected to one end of the capacitor C 1, and one end of the constant current supply unit 14 is connected to the other end of the switch 13.
  • One end of the capacitor C3 is connected to the other of the constant current
  • the other end of the capacitor C3 is connected to the other end of the capacitor C1.
  • the switch 13 and the constant current supply unit 14 charge the capacitor C3, and the switch 13 is controlled by the switch control unit 17 to supply a current between the capacitor C1 and the constant current supply unit 14. Open and close.
  • the constant current supply unit 14 serves to make the current from the capacitor C1 constant via the switch 13 to the capacitor C3, supply the current to the capacitor C3, and charge the capacitor C3.
  • the capacitor C 3 is charged by a current supplied from the constant current supply unit 14 or the auxiliary power supply unit 7, and smoothes a drive control voltage applied to the PWM control circuit 12.
  • the load detection circuit 15 detects a light load by determining the load amount of the load connected between the output terminals Poutl and Pout2. As shown in FIG. It is configured with.
  • the inverting input terminal (one terminal) of the comparator 21 is connected to the collector of the phototransistor Q21.
  • a non-inverting input terminal (+ terminal) of the comparator 21 is supplied with a preset reference voltage Vres.
  • This reference voltage Vref is a voltage set in advance to determine whether or not the load is light.
  • the input terminal of the inverter 22 is connected to the output terminal of the comparator 21, and the output terminal of the inverter 22 is connected to the timer 16.
  • the comparator 21 supplies a low-level signal to the PWM control circuit 12 when the collector voltage of the phototransistor Q21 is equal to or higher than the reference voltage Vref, and when the collector voltage of the phototransistor Q21 becomes lower than the reference voltage Vref, the light load is reduced. And a high-level signal is supplied to the PWM control circuit 12.
  • the timer 16 measures the time since the load detection circuit 15 determines that the load is light. When a predetermined time has elapsed after the measurement, the switch control unit 17 A switch-on signal for turning on 13 is supplied. Note that the preset time is desirably 1 second or more in order to greatly reduce the waiting power.
  • the switch control unit 17 controls the switch 13 to be turned on (closed) and turned off (opened). Sweets Switch 13 is on (closed) when AC power supply 9 is turned on. When the voltage across the capacitor C3 exceeds the voltage set to turn off the switch 13, the switch control unit 17 turns off the switch 13 and stops charging the capacitor C3. When the switch-on signal is supplied from the timer 16, the switch control unit 17 turns on the switch 13 to restart charging.
  • Rectifier circuit 11 rectifies the AC current from AC power supply 9, and capacitor C1 is connected to rectifier circuit.
  • the constant current supply unit 14 is supplied with a direct current from the AC-DC conversion unit 2 via the switch 13, and supplies a constant current to the capacitor C3.
  • the capacitor C3 is charged by the supplied constant current, and the voltage Vc3 across the capacitor C3 rises as shown in Fig. 3 (c).
  • the voltage VI is an operating voltage at which the PWM control circuit 12 operates.
  • the PWM control circuit 12 starts operating.
  • the PWM control circuit 12 supplies a pulse signal as shown in FIG. 4A to the gate of the transistor Q1.
  • the transistor Q1 turns on when the pulse signal supplied to the gate goes high, and turns off when the pulse signal goes low.
  • the diode D12 of the auxiliary power supply unit 7 rectifies the voltage generated in the tertiary winding n3, and applies the rectified voltage to the capacitor C3.
  • the voltage applied to the diode D1 becomes a forward voltage (the voltage of the anode with respect to the cathode is +), so that the diode D1 conducts.
  • the capacitor C2 is charged by supplying the current 12, and smoothes the voltage rectified by the diode D1.
  • Converter 1 applies this DC voltage as an output voltage Vout to the load via terminals Poutl and Pout2.
  • the load is supplied with the output current lout.
  • the photodiode D11 emits light with the amount of light emission according to the amount of current flowing, and the phototransistor Q21 of the control unit 6 receives the light of the photodiode D11 as an output voltage detection signal.
  • the phototransistor Q21 When the phototransistor Q21 receives the light of the photodiode D11, the phototransistor Q21
  • a current corresponding to the amount of received light flows between the collector and the emitter of Q21, and the collector voltage Vpc also rises.
  • the PWM control circuit 12 generates a pulse signal having a pulse width corresponding to the collector voltage Vpc, and supplies the pulse signal to the gate of the transistor Q1.
  • the inverter 22 of the load detection circuit 15 inverts the output signal of the comparator 21 at time t21 and supplies a low-level signal to the timer 16.
  • the timer 16 When a low-level signal is supplied from the load detection circuit 15, the timer 16 measures a predetermined time until time t22, as shown in FIG. 5 (g). Then, at time t22, the timer 16 supplies a switch-on signal for turning on the switch 13 to the switch control unit 17.
  • the switch control unit 17 turns on the switch 13.
  • the switch 13 is turned on, the constant current supply unit 14 supplies a constant current to the capacitor C3, and the voltage Vc3 of the capacitor C3 rises again.
  • the voltage Vc3 becomes equal to or higher than the voltage VI, the PWM control circuit 12 starts operating, and at the same time, the switch control unit 17 turns off the switch 13.
  • the collector voltage Vpc of the phototransistor Q21 having a small output current lout is higher than the reference voltage Vre.
  • the comparator 21 of the load detection circuit 15 outputs a high-level signal to the PWM control circuit 12 again.
  • the PWM control circuit 12 is supplied with a high-level signal and stops operating again.
  • Timer 16 measures time from time t24, and when a predetermined time has elapsed and time t25 is reached, timer 16 starts counting.
  • the switch control section 17 supplies a switch-on signal to the switch control section 17, and the switch control section 17 receives the switch-on signal and turns on the switch 13.
  • the PWM control circuit 12 starts operating again.
  • the switch control unit 17 turns off the switch 13.
  • the PWM control circuit 12 continues to operate.
  • the load detection circuit 15 stops the operation of the PWM control circuit 12 and the timer 16 After the elapse of the predetermined time, the switch control unit 17 turns on the switch 13 and the voltage is applied to the PWM control circuit 12 again.
  • converter 1 can be automatically started without supplying a signal from an external force, and the loss during standby can be extremely reduced. Further, the operation of the PWM control circuit 12 is stopped for one second or more, so that the power during standby can be extremely reduced. If the operation stop period of the PWM control circuit 12 is about 1 second, there is no practical problem at all.
  • the converter according to the second embodiment uses a resistor as a constant current supply unit.
  • FIG. 6 shows a configuration of converter 1 according to the second embodiment.
  • converter 1 includes a resistor R21 as a constant current supply unit of drive control voltage supply unit 8.
  • One end of the resistor R21 is connected to the other end of the switch 13, and the other end of the resistor R21 is connected to one end of the capacitor C3.
  • the constant current supply unit 14 supplies a constant current to the capacitor C3 as in the converter 1 according to the first embodiment, regardless of the voltage level of the DC voltage supplied from the AC-DC conversion unit 2, , A constant current is supplied to the capacitor C3. For this reason, the charging time of the capacitor C3 is constant.
  • the resistor R21 instead of the constant current supply unit 14 shown in the first embodiment, if the voltage level of the DC voltage supplied from the AC-DC conversion unit 2 increases, the resistance R21 The current flowing through the resistor R21 increases, and when the DC voltage level decreases, the current flowing through the resistor R21 decreases. Therefore, the charging time of the capacitor C3 changes, and the time from when the AC power supply 9 is turned on to when the PWM control circuit 12 starts can be changed according to the voltage level of the DC voltage.
  • the converter according to Embodiment 3 is configured such that a switch is connected in parallel with a capacitor in a drive control voltage supply unit.
  • FIG. 7 shows a configuration of converter 1 according to the third embodiment.
  • the converter 1 according to the third embodiment includes a resistor R21 in the drive control voltage supply unit 8, similarly to the converter 1 according to the second embodiment. However, one end of the resistor R21 is connected to one end of the capacitor C1 of the AC-DC converter 2, one end of the switch 13 is connected to one end of the capacitor C3, and the other end of the switch 13 is connected to the other end of the capacitor C3. Connected to the end.
  • switch 13 is off when AC power supply 9 is turned on.
  • the capacitor C3 When the AC power supply 9 is turned on, the capacitor C3 is charged via the resistor R21. When the voltage of the capacitor C3 becomes equal to or higher than the voltage Vc3 of the voltage VI, the PWM control circuit 12 starts operating.
  • the load detection circuit 15 stops the operation of the PWM control circuit 12 and starts the timer 16 at the same time.
  • the timer 16 starts and measures time.
  • the timer 16 outputs a switch-on signal as a signal for instructing the switch control unit 17 to discharge.
  • the switch control section 17 is supplied with a switch-on signal from the timer 16, and the switch 13 is turned on.
  • the timer 16 supplies the switch control unit 17 with a switch-on signal.
  • a switch-off signal for stopping the supply and turning off the switch 13 is output.
  • the switch control unit 17 turns off the switch 13.
  • a constant current supply unit 14 similar to that of the first embodiment can be provided.
  • the timer measures a predetermined time using a time constant of a capacitor.
  • Fig. 8 shows a configuration of converter 1 according to the fourth embodiment.
  • Converter 1 according to the fourth embodiment is configured by connecting resistor R22 in parallel with capacitor C3 of drive control voltage supply unit 8.
  • One end of the resistor R22 is connected to one end of the capacitor C3, and the other end of the resistor R22 is connected to the other end of the capacitor C3.
  • the discharge time constant of this resistor R22 and capacitor C3 is determined according to the respective resistance value and capacitance value.
  • the timer 16 includes a comparator 23, as shown in FIG.
  • the inverting input terminal of the comparator 23 is connected to the connection point between the capacitor C3 and the resistor R22.
  • the reference voltage Vref2 is supplied to the non-inverting input terminal of the comparator 23.
  • the output terminal of the comparator 23 is connected to the switch control unit 17.
  • the output current lout decreases and the When the collector voltage Vpc becomes lower than the reference voltage Vref of the comparator 21 shown in FIG. 2, the load detection circuit 15 stops the operation of the PWM control circuit 12 at time t31.
  • the comparator 23 of the timer 16 monitors the voltage Vc3 of the capacitor C3. As shown in FIG. 10 (e), at time t32 when the voltage Vc3 falls below the reference voltage Vref2, the comparator 2
  • the switch controller 17 receives the high-level signal from the comparator 23, and
  • the switch 13 is turned on.
  • the constant current supply unit 14 supplies a constant current to the capacitor C3.
  • the switch 13 is turned on after the operation of the PWM control circuit 12 is stopped using the time constant of the capacitor C3 and the resistor R22. The predetermined time until can be measured.
  • This correction circuit includes a diode D13, a capacitor C5, and resistors R32 and R33.
  • the transformer T includes a fourth winding n4. One end of the fourth winding n4 is connected to the other end of the third winding n3.
  • the quaternary winding n4 is wound from one end to the other end, similarly to the tertiary winding n3.
  • the anode of the diode D13 is connected to the other end of the quaternary winding n4 of the transformer T, and the force source of the diode D13 is connected to the load detection circuit 15 via the resistor R32.
  • One end of the capacitor C5 is connected to the force source of the diode D13, and the other end of the capacitor C5 is connected to a connection point between the tertiary winding n3 and the quaternary winding n4.
  • the resistor R33 is connected between the load detection circuit 15 and the collector of the phototransistor Q21.
  • a positive voltage proportional to the voltage of the AC power supply 9 is generated as the voltage at one end of the capacitor C5.
  • the correction circuit uses this positive voltage Supply to the collector of transistor Q21.
  • the correction circuit shown in FIG. 11 is not limited as long as it has a configuration that generates a voltage proportional to the voltage of the AC power supply 9.
  • AC power supply 9 supplies an AC voltage.
  • the input is a DC input, the AC-DC converter 2 may not be provided.
  • the load detection circuit 15 may be provided not on the primary side but on the secondary side.
  • the auxiliary power supply unit 7 can be omitted by using the drive control voltage supply unit 8 instead of the auxiliary power supply unit 7.
  • the switch 13 when the collector voltage Vpc of the phototransistor Q21 is lower than the voltage VI, the switch 13 must be closed, and when the collector voltage Vpc reaches the voltage VI, the switch 13 must be opened. At this time, it is preferable that the voltage VI has a hysteresis.
  • the power supply device is not limited to a flyback converter, but may be a forward converter, a push-pull converter, or a bridge converter. Further, the power supply device is not limited to such a switching regulator, but may be a series regulator, which supplies an AC voltage that can be replaced by a DC voltage to a load. Is also good.
  • the present invention can be used for a power supply device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 交流電源(9)が投入されると、定電流供給部(14)は、定電流をコンデンサ(C3)に供給して、コンデンサ(C3)を充電する。コンデンサ(C3)の両端の電圧が所定の電圧以上になると、スイッチ制御部(17)は、スイッチ(13)をオフする。出力電流が低下して軽負荷になると、負荷検出回路(15)は、PWM制御回路(12)の動作を停止させ、タイマ(16)を起動する。タイマ(16)は、起動して、計測した所定時間が経過すると、スイッチ制御部(17)に、スイッチオン信号を供給する。スイッチ制御部(17)は、スイッチオン信号が供給されると、スイッチ(13)をオンする。スイッチ(13)がオンすると、コンデンサ(C3)が再び充電され、PWM制御回路(12)に電圧が印加される。

Description

明 細 書
電源装置及び電源装置の制御方法
技術分野
[0001] 本発明は、通常の動作状態に戻れるように待機しているときの消費電力を低減する ことが可能な電源装置及びその制御方法に関する。
背景技術
[0002] 電子機器の中には、通常の動作状態にすぐに戻れるように待機してレ、る場合があ る。このような待機状態では、電力をほとんど消費しない。電力を消費しなければ、負 荷としての電子機器に電力を供給する電源装置を停止させた方が、電力消費あるい はノイズ低減とレ、つた観点からふさわしレ、場合がある。
[0003] このような電源装置として、負荷に供給する電流が少なくなると無負荷になったとし て、入力電圧の供給を停止させ、省電力化を図るようにしたもの力 例えば、特開平 2-294267号公報に開示されている。
[0004] しかし、電源装置が起動しなければ、負荷に電流は流れないから、無負荷状態と同 じである。従って、このような従来の電源装置では、一旦、待機状態になると、外部か ら、電源装置を起動するための起動信号を供給しなければ、いつまでたっても電源 装置は起動しない。言い換えると、従来の電源装置では、外部から起動信号を供給 する必要があり、外部から起動信号を供給できないものでは、このような方法を適用 することができない。
発明の開示
発明が解決しょうとする課題
[0005] 本発明は、このような従来の問題点に鑑みてなされたもので、外部から信号が供給 されることなぐ待機状態から動作を開始させることが可能な電源装置を提供すること を目的とする。
課題を解決するための手段
[0006] この目的を達成するため、本発明の電源装置は、
負荷に供給する電圧を生成する電圧生成部と、 駆動信号生成に必要な駆動制御用電圧が印加されて駆動信号を生成し、生成し た駆動信号を前記電圧生成部に供給して前記電圧生成部を駆動制御する駆動制 御部と、
起動時、前記駆動制御部に前記駆動制御用電圧を印加し、前記負荷に供給する 出力電流が予め設定された電流値未満になると、前記駆動制御部を停止し、前記駆 動制御部を停止してから所定時間経過後に前記駆動制御部を作動させる駆動制御 用電圧供給部と、を備えたものである。
前記電圧生成部は、
1次卷線と 2次卷線とを有するトランスと、
直流電圧を入力して入力した直流電圧を前記トランスの 1次卷線に印加する直流 電圧入力部と、
前記トランスの 1次卷線に流れる電流をスイッチングして、前記トランスの 1次卷線に 電圧を発生させるスィッチング部と、
前記トランスの 2次卷線に発生した電圧を整流し、平滑化して前記負荷に供給する 整流平滑部と、を備え、
前記駆動制御部は、前記スイッチング部が前記電流をスイッチングするためのパル ス信号を駆動信号として前記スイッチング部に供給して前記スイッチング部を駆動制 御するように構成されたものであってもよい。
前記トランスに 3次卷線を備え、
前記駆動制御用電圧供給部は、
充電された電圧を駆動制御用電圧として前記駆動制御部に印加するコ:
前記直流電圧入力部が前記トランスの 1次卷線への直流電圧の入力を開始したと きに、前記電圧生成部の直流電圧入力部から前記コンデンサに電流を供給して前 記コンデンサを充電する充電回路部と、
前記トランスの 3次卷線に発生した電圧を整流して前記コンデンサに印加し、前記 コンデンサを充電する補助電源部と、
前記駆動制御部に供給する駆動制御用電圧が、予め設定された電圧値以上にな ると前記充電回路部から前記コンデンサへの充電を停止させる充電制御部と、 前記負荷に供給する出力電流を検出して、検出した出力電流の電流値と予め設定 された電流値とを比較し、前記検出した出力電流の電流値が予め設定された電流値 未満になると、前記駆動制御部の動作を停止させる動作停止部と、
前記動作停止部が前記駆動制御部の動作を停止させて力 時間を計測し、計測し てから予め設定された時間が経過したときに、前記充電制御部に前記コンデンサへ の充電を再開させる時間計測部と、を備えたものであってもよい。
[0008] 前記充電回路部は、
前記直流電圧入力部と前記コンデンサの一端との間に、
定電流を前記コンデンサに供給する定電流供給部と、
前記直流電圧入力部が直流電圧の入力を開始する起動時には閉じているスィッチ と、が介揷されて構成されたものであってもよい。
[0009] 前記充電回路部は、
前記直流電圧入力部と前記コンデンサの一端との間に、
抵抗と、
前記直流電圧入力部が直流電圧の入力を開始する起動時には閉じているスィッチ と、が介挿されて構成されたものであってもよい。
[0010] 前記充電制御部は、前記スィッチを開いて前記充電回路部から前記コンデンサへ の充電を停止させるスィッチ制御部からなり、
前記時間計測部は、前記動作停止部が前記駆動制御部の動作を停止させてから 時間を計測し、計測してから予め設定された時間が経過したときに、前記スィッチ制 御部に前記スィッチを閉じさせるためのスィッチオン信号を出力して前記コンデンサ への充電を再開させるように構成されたものであってもよい。
[0011] 前記コンデンサの両端に抵抗が接続され、
前記時間計測部は、前記動作停止部が前記駆動制御部の動作を停止させてから 前記コンデンサの両端の電圧が放電により所定値以下になったときに、予め設定さ れた時間が経過したものとして、前記充電制御部に前記コンデンサへの充電を再開 させるものであってもよい。 [0012] 前記トランスに 3次卷線を備え、
前記駆動制御用電圧供給部は、
充電された電圧を駆動制御用電圧として前記駆動制御部に印加するコ 前記電圧生成部の直流電圧入力部から前記コンデンサに電流を供給して前記コン デンサを充電する充電回路部と、
前記トランスの 3次卷線に発生した電圧を整流して前記コンデンサに印加し、前記 コンデンサを充電する補助電源部と、
前記負荷に供給する出力電流を検出して、検出した出力電流の電流値と予め設定 された電流値とを比較し、前記検出した出力電流の電流値が予め設定された電流値 未満になると、前記駆動制御部の動作を停止させる動作停止部と、
放電指令信号が供給されて前記コンデンサの電圧を放電する放電制御部と、 前記動作停止部が前記駆動制御部の動作を停止させたときに、前記放電制御部 に前記放電指令信号を供給し、時間を計測して予め設定された時間が経過したとき に前記放電制御部への放電指令信号の供給を停止する時間計測部と、を備えたも のであってもよい。
[0013] 前記充電回路部は、電流を前記コンデンサに供給する電流供給部からなり、
前記放電制御部は、
前記直流電圧入力部が直流電圧の入力を開始する起動時には開いているスイツ チと、
前記動作停止部が前記駆動制御部の動作を停止させたとき、前記スィッチを閉じ て前記コンデンサの電圧を放電するスィッチ制御部と、力 構成されるものであっても よい。
[0014] 前記充電回路部は、前記直流電圧入力部と前記コンデンサとの間に介揷された抵 抗からなり、
前記放電制御部は、
前記直流電圧入力部が直流電圧の入力を開始する起動時には開いているスイツ チと、 前記動作停止部が前記駆動制御部の動作を停止させたとき、前記スィッチを閉じ て前記コンデンサの電圧を放電するスィッチ制御部と、力 構成されるものであっても よい。
[0015] この目的を達成するため、本発明の電源装置の駆動方法は、
駆動信号に従って、負荷に供給する電圧を生成する電圧生成部と、駆動制御用電 圧から前記駆動信号を生成し、生成した駆動信号を前記電圧生成部に供給して前 記電圧生成部を駆動して負荷に電圧を供給させる駆動制御部と、を備える電源装置 の制御方法であって、
前記電源装置の起動時に、前記駆動制御部に前記駆動制御用電圧を印加して、 前記電圧生成部から前記負荷に電圧を供給させ、負荷に流れる電流をモニタして、 該電流が予め設定された電流値未満になると、前記駆動制御部への前記駆動制御 用電圧の印加を停止して該駆動制御部の動作を停止し、停止させてから所定時間 経過後に前記駆動制御用電圧の前記駆動制御部への供給を再開させて、前記駆 動制御部を作動させる、
ことを特徴とする。
発明の効果
[0016] 本発明によれば、外部から信号が供給されることなぐ待機状態から動作を開始さ せることが可能な電源装置が提供可能である。
図面の簡単な説明
[0017] [図 1]図 1は、本発明の実施の形態 1に係るコンバータの構成を示す回路図である。
[図 2]図 2は、図 1の負荷検出回路の構成を示す回路図である。
[図 3]図 3は、図 1のコンバータの交流電源投入時の動作を示すタイミングチャートで める。
[図 4]図 4は、図 1のコンバータの定常動作を示すタイミングチャートである。
[図 5]図 5は、図 1のコンバータの負荷変化時の動作を示すタイミングチャートである。
[図 6]図 6は、本発明の実施の形態 2に係るコンバータの構成を示す回路図である。
[図 7]図 7は、本発明の実施の形態 3に係るコンバータの構成を示す回路図である。
[図 8]図 8は、本発明の実施の形態 4に係るコンバータの構成を示す回路図である。 [図 9]図 9は、図 8に示すタイマの構成を示す回路図である。
[図 10]図 10は、図 8に示すコンバータの動作を示すタイミングチャートである。
[図 11]図 11は、フォトトランジスタのコレクタ電圧を補正する補正回路の構成を示す 回路図である。
符号の説明
1 コンバータ
2 AC - DC変換部
3 電圧変換部
4 整流平滑部
5 出力電圧検出部
6 制御部
7 補助電源部
8 駆動制御用電圧供給部
9 交流電源
11 整流回路
12 PWM制御回路
13 スィッチ
14 定電流供給部
15 負荷検出回路
16 タイマ
17 スィッチ制御部
21 コンノ、°レータ
22 インバータ
T トランス
nl 1次卷線
n2 2次卷線
n3 3次卷線
D11 フォトダイオード Q12 フォトトランジスタ
Poutl 出力端子
Pout2 出力端子
発明を実施するための最良の形態
[0019] 以下、本発明の実施の形態に係る電源装置を図面を参照して説明する。尚、本発 明の実施の形態では、電源装置をコンバータとして説明する。
[0020] [実施の形態 1]
実施の形態 1に係るコンバータの構成を図 1に示す。
実施の形態 1に係るコンバータ 1は、フライバックコンバータによって構成され、 AC 一 DC変換部 2と、電圧変換部 3と、整流平滑部 4と、出力電圧検出部 5と、制御部 6と
、補助電源部 7と、駆動制御用電圧供給部 8と、を備えて構成される。
[0021] AC - DC変換部 2と、電圧変換部 3と、整流平滑部 4とは、負荷に供給する電圧を 生成するものであり、 AC - DC変換部 2は、交流電圧を入力して整流平滑した直流電 圧を前記トランス Tの 1次卷線 nlに印加する。交流電源 9からの交流電力を直流電力 に変換する。 AC— DC変換部 2は、整流回路 11と、コンデンサ C1と、を備える。
[0022] 整流回路 11は、 4つのダイオード(図示せず)から構成されるブリッジ整流回路によ つて構成され、 2つの入力端に接続された交流電源 9から供給された交流電力を全 波整流するものである。
[0023] コンデンサ C1は、整流回路 11が整流した脈流の交流電力に従って、電圧を平滑 化するものである。コンデンサ C1の一端は、整流回路 11の一方の出力端(+ )に接 続され、他端は、整流回路 11の他方の出力端 (-)に接続される。
[0024] 電圧変換部 3は、電圧変換を行うものであり、トランス Tと、トランジスタ Q1と、を備え る。
[0025] トランス Tは、 1次卷線 nlと、 2次卷線 n2と、 3次卷線 n3と、を備え、 1次卷線 nlと 2 次卷線 n2との間で交流電圧の電圧変換を行う。 1次卷線 nlの一端は、コンデンサ C 1の一端に接続されている。
[0026] トランジスタ Q1は、ゲートに供給されたパルス信号に従ってオン、オフするスィッチ ングトランジスタであり、スイッチング部に相当する。トランジスタ Q1は、 Nチャンネノレ の電界効果トランジスタ(FET)によって構成されている。トランジスタ Q1のドレインは 、トランス Tの他端に接続され、ソースは、コンデンサ C1の他端に接続され、ゲートは 、制御部 6の PWM制御回路 12に接続されている。
[0027] 整流平滑部 4は、トランス Tの 2次卷線 n2の両端間に発生した交流電圧を整流して 平滑化するものであり、ダイオード D1と、コンデンサ C2と、を備える。ダイオード D1は 、トランス Tの 2次卷線 n2の両端間に発生した電圧を整流するものであり、コンデンサ C2は、ダイオード D1が整流した電圧を平滑化するものである。尚、 1次卷線 nlと 2次 卷線 n2とは、トランジスタ Q1がオンしたときにトランス Tにエネルギが蓄積され、オフ している期間でトランス Tに蓄積されたエネルギが放出されるように、トランス Tに卷き 回される。
[0028] 出力電圧検出部 5は、出力電圧を検出するものであり、フォトダイオード D11と、トラ ンジスタ Q11と、ツエナーダイオード ZD11と、抵抗 R11 R14と、を備える。
[0029] 抵抗 R11の一端は、出力端子 Poutlに接続され、抵抗 R12の一端は、抵抗 R11の 他端に接続される。抵抗 R13の一端は、抵抗 R12の他端に接続され、抵抗 R13の他 端は、出力端子 Pout2に接続される。
[0030] フォトダイオード D11と制御部 6のフォトトランジスタ Q21とは、フォト力プラを構成す るものである。フォト力ブラを用いることにより、 1次側と 2次側を絶縁することができる。 フォトダイオード D11は、 自己に流れる電流に応じた発光量で発光する。フォトダイォ ード D11のアノードと抵抗 R14の一端とは、出力端子 Poutlに接続される。
[0031] トランジスタ Q11は、 NPNバイポーラトランジスタ力 構成される。トランジスタ Q11 とツエナーダイオード ZD11とは、出力電圧に基づレ、てフォトダイオード Dl 1に流れる 電流をコントロールするためのものである。トランジスタ Q11のコレクタは、フォトダイォ ード D11の力ソードと抵抗 R14の他端とに接続され、ベースは、抵抗 R12, 13の接 続点に接続される。ツエナーダイオード ZD11の力ソードは、トランジスタ Q11のェミツ タに接続され、アノードは、出力端子 Pout2に接続される。
[0032] 制御部 6は、駆動制御用電圧が印加されてトランジスタ Q1を駆動する駆動信号とし てのパルス信号を生成するものである。制御部 6は、出力電圧検出部 5が検出した出 力電圧が予め設定された電圧となるようにパルス信号のパルス幅を制御(PWM制御 )する。そして、制御部 6は、生成したパルス信号を駆動信号としてトランジスタ Q1の ゲートに供給するものである。制御部 6は、フォトトランジスタ Q21と、 PWM制御回路 12と、を備える。
[0033] フォトトランジスタ Q21は、出力電圧検出部 5の電圧検出信号を制御部 6に供給す るものであり、コレクタは、 PWM制御回路 12に接続され、ェミッタは、コンデンサ C1 の他端に接続される。また、フォトトランジスタ Q21は、フォトダイオード D11が発光し た光をベースで受光し、受光した光の受光量に応じたレベルのコレクタ電圧(コレクタ —ェミッタ間電圧)を PWM制御回路 12に印加する。
[0034] PWM制御回路 12は、フォトトランジスタ Q21のコレクタ電圧に従って、トランジスタ
Q1のゲートに供給するパルス信号のパルス幅を制御するものであり、 PWM制御回 路 12は、パルス信号を生成するための駆動制御用電圧が供給され、この駆動制御 用電圧の電圧レベルが所定レベル以上になって動作する。 PWM制御回路 12は、 例えば、三角波電圧生成回路と、信号レベル比較回路と、パルス信号生成回路と、 から構成される(いずれも図示せず)。そして、三角波電圧生成回路は、三角波電圧 を生成し、信号レベル比較回路は、フォトトランジスタ Q21のコレクタ電圧と三角波電 圧生成回路が生成した三角波の電圧との電圧レベルを比較する。そして、パルス信 号生成回路は、信号レベル比較回路の比較結果に基づいて、前述の PWM制御し たパルス信号を生成する。
[0035] 補助電源部 7は、トランス Tの 3次卷線 n3に発生した電圧を整流して PWM制御回 路 12に供給するものであり、 3次卷線 n3に発生した電圧を整流するためのダイォー ド D12を備える。ダイオード D12のアノードは、 3次卷線 n3の一端に接続され、カソ ードは、駆動制御用電圧供給部 8のコンデンサ C3の一端に接続される。
[0036] 駆動制御用電圧供給部 8は、コンバータ 1の起動時に、 PWM制御回路 12に定電 流を供給するものであり、スィッチ 13と、定電流供給部 14と、コンデンサ C3と、負荷 検出回路 15と、タイマ 16と、スィッチ制御部(図中、「SW制御部」と記す。) 17と、を 備える。
[0037] スィッチ 13の一端は、コンデンサ C1の一端に接続され、定電流供給部 14の一端 は、スィッチ 13の他端に接続される。コンデンサ C3の一端は、定電流供給部 14の他 端に接続され、コンデンサ C3の他端は、コンデンサ C1の他端に接続される。スイツ チ 13と定電流供給部 14とは、コンデンサ C3を充電するものであり、スィッチ 13は、ス イッチ制御部 17に制御されて、コンデンサ C1と定電流供給部 14との間の電流供給 路を開閉する。
[0038] 定電流供給部 14は、コンデンサ C3に、スィッチ 13を介してコンデンサ C1からの電 流を定電流化してコンデンサ C3に供給し、コンデンサ C3を充電するものである。
[0039] コンデンサ C3は、定電流供給部 14又は補助電源部 7から供給された電流によって 充電され、 PWM制御回路 12に印加する駆動制御用電圧を平滑化するためのもの である。
[0040] 負荷検出回路 15は、出力端子 Poutl, Pout2間に接続された負荷の負荷量を判別 して軽負荷を検出するものであり、図 2に示すように、コンパレータ 21とインバータ 22 とを備えて構成される。
[0041] コンパレータ 21の反転入力端子 (一端子)は、フォトトランジスタ Q21のコレクタに接 続される。コンパレータ 21の非反転入力端子(+端子)には、予め設定された参照電 圧 Vre S供給される。この参照電圧 Vrefは、軽負荷か否かを判定するために予め設 定された電圧である。インバータ 22の入力端子は、コンパレータ 21の出力端子に接 続され、インバータ 22の出力端子は、タイマ 16に接続される。
[0042] フライバックコンバータでは、負荷量が軽くなるに従って、即ち、出力電流が低下す るに従って出力電圧は上昇し、フォトトランジスタ Q21のコレクタ電圧は低下する。コ ンパレータ 21は、フォトトランジスタ Q21のコレクタ電圧が参照電圧 Vref以上であれ ば、ローレベルの信号を PWM制御回路 12に供給し、フォトトランジスタ Q21のコレク タ電圧が参照電圧 Vref未満になると、軽負荷と判定してハイレベルの信号を PWM 制御回路 12に供給する。
[0043] タイマ 16は、負荷検出回路 15が軽負荷と判定してからの時間を計測するものであ り、計測してから予め設定された時間が経過したとき、スィッチ制御部 17に、スィッチ 13をオンさせるためのスィッチオン信号を供給する。尚、予め設定された時間は、待 機中の電力を大きく低減するため、 1秒以上であることが望ましい。
[0044] スィッチ制御部 17は、スィッチ 13をオン(閉)、オフ(開)制御するものである。スイツ チ 13は、交流電源 9投入時は、オン(閉)している。スィッチ制御部 17は、コンデンサ C3の両端の電圧が、スィッチ 13をオフするように設定された電圧を越えると、スイツ チ 13をオフして、コンデンサ C3への充電を停止させる。また、スィッチ制御部 17は、 タイマ 16からスィッチオン信号が供給されると、スィッチ 13をオンして、充電を再開さ せる。
次に実施の形態 1に係るコンバータ 1の動作を説明する。
[0045] 図 3 (a)に示すように、時刻 tlOにおいて、交流電源 9が投入されるものとすると、時 刻 tlOでは、スィッチ 13は、図 3 (b)に示すように、オン(閉)する。
[0046] 整流回路 11は、交流電源 9からの交流電流を整流し、コンデンサ C1は、整流回路
11が整流した整流電圧を平滑化する。
[0047] 定電流供給部 14は、 AC— DC変換部 2からスィッチ 13を介して直流電流が供給さ れ、コンデンサ C3に定電流を供給する。
[0048] コンデンサ C3は、供給された定電流によって充電され、コンデンサ C3の両端の電 圧 Vc3は、図 3 (c)に示すように、上昇する。尚、図 3 (c)において、電圧 VIを PWM 制御回路 12が動作する動作電圧とする。時刻 ti lになってコンデンサ C3の電圧 Vc3 が電圧 VIに到達すると、 PWM制御回路 12は、動作を開始する。
[0049] PWM制御回路 12の動作が開始すると、コンデンサ C3の電圧 Vc3は、図 3 (c)に示 すように、ー且、低下し、補助電源部 7からコンデンサ C3に電圧が印加されると、コン デンサ C3の電圧 Vc3は、再び、上昇する。尚、スィッチ制御部 17は、時刻 ti lにお いて、図 3 (b)に示すように、スィッチ 13を開く。
[0050] PWM制御回路 12は、動作が開始すると、トランジスタ Q1のゲートに、図 4 (a)に示 すようなパルス信号を供給する。トランジスタ Q1は、ゲートに供給されたパルス信号 がハイレベルになるとオンし、ローレベルになるとオフする。
[0051] トランジスタ Q1がオンすると、トランジスタ Q1のドレイン一ソース間には、図 4 (b)に 示すようなドレイン電流 Idが流れ、トランジスタ Q1のドレイン一ソース間に印加されるド レイン電圧 Vdsは、図 4 (c)に示すように、ほぼ 0になる。
[0052] トランジスタ Q1がオフすると、ドレイン電流 Idは、図 4 (b)に示すように、 0となり、ドレ イン電圧 Vdsは、図 4 (c)に示すように、コンデンサ C1の両端の電圧 Vclとフライバッ ク電圧とを加算した電圧になる。尚、コンデンサ C2の両端の電圧(出力電圧)を Vc2 とすると、フライバック電圧は、 Vc2 X (nl/n2)で表される。
[0053] トランジスタ Q1がオン、オフすることにより、トランス Tの 3次卷線 n3に電圧が発生し
、補助電源部 7のダイオード D12は、 3次卷線 n3に発生した電圧を整流し、整流した 電圧をコンデンサ C3に印加する。
[0054] 一方、トランス Tの 2次側では、トランジスタ Q1がオンすると、ダイオード D1に印加さ れる電圧は、逆方向電圧(アノードに対する力ソードの電圧が + )となるため、ダイォ ード D1は、非導通となる。このため、 2次卷線 n2には、電流は流れない。そして、トラ ンス Tには、エネルギが蓄積される。
[0055] トランジスタ Q1がオフすると、ダイオード D1に印加される電圧は順方向電圧(カソ ードに対するアノードの電圧が + )になるため、ダイオード D1は導通する。ダイオード
D1が導通すると、トランス Tに蓄積されたエネルギに従って、 2次卷線 n2からダイォ ード D1を介してコンデンサ C2に、図 4 (d)に示すような電流 12が流れる。
[0056] コンデンサ C2は、この電流 12が供給されて充電され、ダイオード D1が整流した電 圧を平滑化する。コンバータ 1は、この直流電圧を出力電圧 Voutとして端子 Poutl,P out2を介して負荷に印加する。負荷には、出力電流 loutが供給される。
[0057] 出力電圧 Voutが立ち上がると、出力電圧検出部 5のトランジスタ Q11のベースにベ ース電流が流れ、トランジスタ Q11のコレクタ—ェミッタ間に電流が流れ、フォトダイォ ード D11にも電流が流れる。トランジスタ Q11のコレクタ-ェミッタ間に流れる電流は 出力電圧 Voutの電圧レベルに応じて制御される。
[0058] フォトダイオード D11は、流れる電流量に応じた発光量で発光し、制御部 6のフォト トランジスタ Q21は、フォトダイオード D11の光を出力電圧検出信号として受光する。
[0059] フォトトランジスタ Q21がフォトダイオード D11の光を受光すると、フォトトランジスタ
Q21のコレクタ—ェミッタ間には、この受光量に応じた量の電流が流れ出し、コレクタ 電圧 Vpcも立ち上がる。
[0060] PWM制御回路 12は、コレクタ電圧 Vpcに応じたパルス幅のパルス信号を生成し、 このパルス信号をトランジスタ Q 1のゲートに供給する。
[0061] 出力電流 loutが低下すると、出力電圧 Voutは上昇し、フォトトランジスタ Q21のコレ クタ電圧 Vpcは低下する。
[0062] 図 5 (e)に示すように、コレクタ電圧 Vpcが、時刻 t21において、負荷検出回路 15の コンパレータ 21の参照電圧 Vref未満になると、負荷検出回路 15のコンパレータ 21は 、図 5 (f)に示すように、ハイレベルの信号を PWM制御回路 12に供給する。 PWM 制御回路 12は、コンパレータ 21からハイレベルの信号が供給されると、動作を停止 する。
[0063] PWM制御回路 12の動作が停止すると、トランス Tの 1次卷線 nlには、電圧が印加 されず、図 5 (c)に示すように、出力電圧 Voutは低下し、図 5 (d)に示すように、出力 電流 loutも 0になる。また、トランス Tの 3次卷線 n3にも電圧は発生せず、スィッチ 13 もオフしているため、コンデンサ C3は放電し、コンデンサ C3の電圧 Vc3は、図 5 (b) に示すように、低下する。
[0064] 負荷検出回路 15のインバータ 22は、時刻 t21において、コンパレータ 21の出力信 号を反転させ、ローレベルの信号をタイマ 16に供給する。
[0065] タイマ 16は、負荷検出回路 15からローレベルの信号が供給されると、図 5 (g)に示 すように、時刻 t22までの所定時間を計測する。そして、時刻 t22になると、タイマ 16 は、スィッチ制御部 17にスィッチ 13をオンさせるためのスィッチオン信号を供給する
[0066] スィッチ制御部 17は、このスィッチオン信号が供給されると、スィッチ 13をオンする 。スィッチ 13がオンすると、定電流供給部 14は、コンデンサ C3に定電流を供給し、コ ンデンサ C3の電圧 Vc3は、再び、上昇する。電圧 Vc3が電圧 VI以上になると、 PW M制御回路 12は、動作を開始し、同時にスィッチ制御部 17は、スィッチ 13をオフす る。
[0067] 図 5 (d)、(e)に示すように、 PWM制御回路 12の動作開始後、時刻 t24において、 出力電流 loutが少なぐフォトトランジスタ Q21のコレクタ電圧 Vpcが参照電圧 Vreは りも低くなると、負荷検出回路 15のコンパレータ 21は、再び、ハイレベルの信号を P WM制御回路 12に出力する。 PWM制御回路 12は、ハイレベルの信号が供給され て、再び、動作を停止する。
[0068] タイマ 16は、時刻 t24から時間を計測し、所定時間が経過して時刻 t25になると、ス イッチ制御部 17にスィッチオン信号を供給し、スィッチ制御部 17は、このスィッチォ ン信号が供給されて、スィッチ 13をオンする。
[0069] スィッチ 13がオンして、コンデンサ C3は充電され、コンデンサ C3の電圧 Vc3が電 圧 VI以上になると、 PWM制御回路 12は、再び、動作を開始する。同時にスィッチ 制御部 17は、スィッチ 13をオフする。出力電流 loutが増えてフォトトランジスタ Q21の コレクタ電圧 Vpcが参照電圧 Vref以上になれば、 PWM制御回路 12は、このまま、動 作を継続する。
[0070] 以上説明したように、本実施の形態 1によれば、出力電流 loutが少なくなつて軽負 荷になると、負荷検出回路 15は PWM制御回路 12の動作を停止させ、タイマ 16が 計測した所定時間が経過すると、スィッチ制御部 17がスィッチ 13をオンして、 PWM 制御回路 12に、再び、電圧が印加される。
[0071] 従って、外部力も信号を供給しなくても、 自動的にコンバータ 1を起動することがで き、且つ、待機時の損失を非常に小さくすることができる。また、 PWM制御回路 12の 動作は、 1秒以上、停止するため、待機中の電力を極めて低くすることができる。尚、 PWM制御回路 12の動作停止期間が 1秒程度であれば、実用上、全く問題はない。
[0072] [実施の形態 2]
実施の形態 2に係るコンバータは、定電流供給部として抵抗を用いるようにしたもの である。
[0073] 実施の形態 2に係るコンバータ 1の構成を図 6に示す。
図 6に示すように、実施の形態 2に係るコンバータ 1は、駆動制御用電圧供給部 8の 定電流供給部として抵抗 R21を備える。抵抗 R21の一端は、スィッチ 13の他端に接 続され、抵抗 R21の他端は、コンデンサ C3の一端に接続される。
[0074] 実施の形態 1に係るコンバータ 1のように、定電流供給部 14がコンデンサ C3に定 電流を供給する場合、 AC - DC変換部 2から供給される直流電圧の電圧レベルに関 わらず、コンデンサ C3に定電流が供給される。このため、コンデンサ C3の充電時間 は一定となる。
[0075] しかし、実施の形態 1に示す定電流供給部 14の代わりに抵抗 R21を備えることによ り、 AC— DC変換部 2から供給される直流電圧の電圧レベルが高くなれば、抵抗 R21 に流れる電流は増え、直流電圧の電圧レベルが低くなれば、抵抗 R21に流れる電流 は低下する。このため、コンデンサ C3の充電時間は変化し、交流電源 9が投入され てから PWM制御回路 12が起動するまでの時間を、直流電圧の電圧レベルに従って 変化させることができる。
[0076] [実施の形態 3]
実施の形態 3に係るコンバータは、駆動制御用電圧供給部において、コンデンサと 並列にスィッチが接続されて構成されたものである。
実施の形態 3に係るコンバータ 1の構成を図 7に示す。
[0077] 実施の形態 3に係るコンバータ 1は、実施の形態 2に係るコンバータ 1と同様に、駆 動制御用電圧供給部 8に抵抗 R21を備える。但し、抵抗 R21の一端は、 AC—DC変 換部 2のコンデンサ C1の一端に接続され、スィッチ 13の一端は、コンデンサ C3の一 端に接続され、スィッチ 13の他端は、コンデンサ C3の他端に接続される。
[0078] 実施の形態 3に係るコンバータ 1の動作を説明する。
実施の形態 3に係るコンバータ 1では、スィッチ 13は、交流電源 9が投入されるとき 、オフしている。
交流電源 9が投入されると、コンデンサ C3は、抵抗 R21を介して充電される。コン デンサ C3の電圧 Vc3力 電圧 VI以上になると、 PWM制御回路 12は動作を開始す る。
[0079] PWM制御回路 12の動作が開始すると、負荷に出力電流 loutが供給される。この 出力電流 loutが低下して、フォトトランジスタ Q21のコレクタ電圧 Vpcが参照電圧 Vref 未満になると、負荷検出回路 15は、 PWM制御回路 12の動作を停止させると同時に 、タイマ 16を起動する。
[0080] タイマ 16は、起動して時間を計測する。また、タイマ 16は、起動すると、スィッチ制 御部 17に放電を指令する信号としてスィッチオン信号を出力する。スィッチ制御部 1 7は、タイマ 16からスィッチオン信号が供給されて、スィッチ 13はオンする。
[0081] スィッチ 13がオンすると、コンデンサ C3の電圧は放電し、 PWM制御回路 12の動 作は停止する。
[0082] 所定時間が経過すると、タイマ 16は、スィッチ制御部 17に、スィッチオン信号の供 給を停止してスィッチ 13をオフするためのスィッチオフ信号を出力する。スィッチ制 御部 17は、タイマ 16からスィッチオフ信号が供給されると、スィッチ 13をオフする。
[0083] スィッチ 13がオフすると、コンデンサ C3は、再び、充電されて、コンデンサ C3の電 圧 Vc3が電圧 VI以上になると、 PWM制御回路 12は、動作を開始する。
[0084] 以上説明したように、本実施の形態 3によれば、スィッチ 13とコンデンサ C3とを並 列に接続しても、実施の形態 1に係るコンバータ 1と同様の効果を得ることができる。
[0085] 尚、抵抗 R21の代わりに、実施の形態 1と同様の定電流供給部 14を備えることもで きる。
[0086] [実施の形態 4]
実施の形態 4に係るコンバータは、タイマがコンデンサの時定数を利用して所定時 間を計測するようにしたものである。
[0087] 実施の形態 4に係るコンバータ 1の構成を図 8に示す。
実施の形態 4に係るコンバータ 1は、駆動制御用電圧供給部 8のコンデンサ C3に 並列に抵抗 R22を接続することによって構成される。
[0088] 抵抗 R22の一端は、コンデンサ C3の一端に接続され、抵抗 R22の他端は、コンデ ンサ C3の他端に接続される。この抵抗 R22とコンデンサ C3との放電時定数は、それ ぞれの抵抗値、容量値に従って決定される。
[0089] タイマ 16は、図 9に示すように、コンパレータ 23を備える。コンパレータ 23の反転入 力端子は、コンデンサ C3と抵抗 R22との接続点に接続される。コンパレータ 23の非 反転入力端子には、参照電圧 Vref2が供給される。コンパレータ 23の出力端子は、 スィッチ制御部 17に接続される。
[0090] 次に実施の形態 4に係るコンバータ 1の動作を説明する。
実施の形態 4に係るコンバータ 1では、交流電源 9が投入されるとき、スィッチ 13は オンしている。
交流電源 9が投入され、コンデンサ C3の電圧 Vc3が電圧 VI以上になると、 PWM 制御回路 12は、動作を開始するとともに、スィッチ制御部 17は、スィッチ 13をオフす る。
[0091] 図 10 (a) (c)に示すように、出力電流 loutが低下して、フォトトランジスタ Q21のコ レクタ電圧 Vpcが、図 2に示すコンパレータ 21の参照電圧 Vref未満になると、負荷検 出回路 15は、時刻 t31において、 PWM制御回路 12の動作を停止させる。
[0092] PWM制御回路 12の動作が停止すると、コンデンサ C3の電圧 Vc3は、図 10 (d)に 示すように、抵抗 R22の抵抗値、コンデンサ C3の容量値によって決定される時定数 に従って放電される。
[0093] タイマ 16のコンパレータ 23は、コンデンサ C3の電圧 Vc3を監視する。図 10 (e)に 示すように、電圧 Vc3が参照電圧 Vref2以下になる時刻 t32において、コンパレータ 2
3は、ハイレベルの出力信号をスィッチ制御部 17に供給する。
[0094] スィッチ制御部 17は、コンパレータ 23から、ハイレベルの信号が供給されて、図 10
(f)に示すように、スィッチ 13をオンする。スィッチ 13がオンすると、定電流供給部 14 は、コンデンサ C3に定電流を供給する。
[0095] 以上説明したように、本実施の形態 4によれば、コンデンサ C3と抵抗 R22との時定 数を利用して、 PWM制御回路 12の動作が停止してから、スィッチ 13をオンするまで の所定時間を計測することができる。
[0096] 尚、本発明を実施するにあたっては、種々の形態が考えられ、上記実施の形態に 限られるものではない。
[0097] 例えば、図 11に示すようなフォトトランジスタ Q21のコレクタ電圧 Vpcを補正する回 路を備えること力 Sできる。この補正回路は、ダイオード D13と、コンデンサ C5と、抵抗 R32, R33と、を備えて構成される。また、トランス Tは、 4次卷線 n4を備える。 4次卷 線 n4の一端は、 3次卷線 n3の他端に接続される。 4次卷線 n4は、 3次卷線 n3と同じ ように、一端から他端へと卷かれている。ダイオード D13のアノードは、トランス Tの 4 次卷線 n4の他端に接続され、ダイオード D13の力ソードは、抵抗 R32を介して負荷 検出回路 15に接続される。コンデンサ C5の一端は、ダイオード D13の力ソードに接 続され、コンデンサ C5の他端は、 3次卷線 n3と 4次卷線 n4との接続点に接続される 。抵抗 R33は、負荷検出回路 15とフォトトランジスタ Q21のコレクタとの間に接続され る。
[0098] このような構成の補正回路を備えることにより、コンデンサ C5の一端の電圧は、交 流電源 9の電圧に比例した正電圧が発生する。補正回路は、この正電圧をフォトトラ ンジスタ Q21のコレクタに供給する。
[0099] 図 1に示すように、フォトトランジスタ Q21のコレクタを負荷検出回路 15に直接接続 するようにすると、交流電源 9の電圧に従って軽負荷の判定レベルが変化する。しか し、補正回路を備えることにより、軽負荷の判定レベルの変化は、ほぼ 0になる。尚、 交流電源 9の電圧に比例した電圧を発生するような構成のものであれば、図 11に示 すような補正回路には限定されない。
[0100] 各実施の形態では、交流電源 9が交流電圧を供給するようにした。しかし、直流入 力であってもよぐ直流入力であれば、 AC— DC変換部 2を備えなくてもよい。
[0101] 負荷検出回路 15は、 1次側でなくても、 2次側に備えるようにしてもよい。
駆動制御用電圧供給部 8を補助電源部 7の代わりに用いて補助電源部 7を省くこと もできる。但し、この場合、フォトトランジスタ Q21のコレクタ電圧 Vpcが電圧 VI未満で あれば、スィッチ 13を閉じ、コレクタ電圧 Vpcが電圧 VIに到達すれば、スィッチ 13を 開くように構成される必要がある。この時、電圧 VIはヒステリシスを有することがのぞ ましい。
[0102] 電源装置は、フライバックコンバータに限られるものではなぐフォワードコンバータ 、プッシュプルコンバータ、ブリッジコンバータであってもよい。さらに、電源装置は、こ のようなスイッチングレギユレ一タには限られず、シリーズレギユレータであってもよレヽ し、直流電圧だけでなぐ交流電圧を負荷に供給するようなものであってもよい。
[0103] 本出願は、 2003年 7月 15日にされた、 日本国特許出願特願 2003—274894に基 づく。本明細書中に、その明細書、特許請求の範囲、図面全体を参照として取り込む ものとする。
産業上の可能性
[0104] 本発明は、電源装置に利用可能である。

Claims

請求の範囲
[1] 負荷に供給する電圧を生成する電圧生成部(2, 3, 4)と、
駆動信号生成に必要な駆動制御用電圧が印加されて駆動信号を生成し、生成し た駆動信号を前記電圧生成部(2, 3, 4)に供給して前記電圧生成部(2, 3, 4)を駆 動制御する駆動制御部(6)と、
起動時、前記駆動制御部(6)に前記駆動制御用電圧を印加し、前記負荷に供給 する出力電流が予め設定された電流値未満になると、前記駆動制御部(6)を停止し 、前記駆動制御部を停止してから所定時間経過後に前記駆動制御部(6)を作動さ せる駆動制御用電圧供給部(8)と、を備えた、
ことを特徴とする電源装置。
[2] 前記電圧生成部は、
1次卷線と 2次卷線とを有するトランス (T)と、
交流電圧を入力して、入力した交流電圧を整流'平滑した直流電圧を前記トランス (T)の 1次卷線に印加する直流電圧入力部(2)と、
前記トランス (T)の 1次卷線に流れる電流をスイッチングして、前記トランス (T)の 1 次卷線に電圧を発生させるスイッチング部(Q1)と、
前記トランス (T)の 2次卷線に発生した電圧を整流し、平滑化して前記負荷に供給 する整流平滑部 (4)と、を備え、
前記駆動制御部(6)は、前記スイッチング部(Q1)が前記電流をスイッチングするた めのパルス信号を駆動信号として前記スイッチング部(Q1)に供給して前記スィッチ ング部(Q1)を駆動制御する、
ことを特徴とする請求項 1に記載の電源装置。
[3] 前記トランス (T)に 3次卷線 (n3)を備え、
前記駆動制御用電圧供給部(8)は、
充電された電圧を駆動制御用電圧として前記駆動制御部(6)に印加するコンデン サ(C3)と、
前記直流電圧入力部(2)が前記トランス (T)の 1次卷線への直流電圧の入力を開 始したときに、前記電圧生成部(2, 3, 4)の直流電圧入力部(2)から前 r (C3)に電流を供給して前記コンデンサを充電する充電回路部(13、 14、 R21)と、 前記トランス (T)の 3次卷線 (n3)に発生した電圧を整流して前記コンデンサ(C3) に印加し、前記コンデンサ(C3)を充電する補助電源部(7)と、
前記駆動制御部(6)に供給する駆動制御用電圧が、予め設定された電圧値以上 になると前記充電回路部(13、 14、 R21)から前記コンデンサ(C3)への充電を停止 させる充電制御部(17)と、
前記負荷に供給する出力電流を検出して、検出した出力電流の電流値と予め設定 された電流値とを比較し、前記検出した出力電流の電流値が予め設定された電流値 未満になると、前記駆動制御部(6)の動作を停止させる動作停止部(15)と、 前記動作停止部(15)が前記駆動制御部(6)の動作を停止させてから時間を計測 し、計測してから予め設定された時間が経過したときに、前記充電制御部(17)に前 記コンデンサ(C3)への充電を再開させる時間計測部(16)と、を備えた、 ことを特徴とする請求項 2に記載の電源装置。
[4] 前記充電回路部は、
前記直流電圧入力部(2)と前記コンデンサ(C3)の一端との間に、
定電流を前記コンデンサ(C3)に供給する定電流供給部(14)と、
前記直流電圧入力部が直流電圧の入力を開始する起動時には閉じているスィッチ (13)と、が介挿されて構成されたものである、
ことを特徴とする請求項 3に記載の電源装置。
[5] 前記充電回路部は、
前記直流電圧入力部(2)と前記コンデンサ(C3)の一端との間に、
抵抗 (R21)と、
前記直流電圧入力部(2)が直流電圧の入力を開始する起動時には閉じているスィ ツチ(13)と、が介揷されて構成されたものである、
ことを特徴とする請求項 3に記載の電源装置。
[6] 前記充電制御部は、前記スィッチ(13)を開いて前記充電回路部(13、 14、 R21) から前記コンデンサ(C3)への充電を停止させるスィッチ制御部(17)から構成され、 前記時間計測部(16)は、前記動作停止部(15)が前記駆動制御部(6)の動作を 停止させてから時間を計測し、計測してから予め設定された時間が経過したときに、 前記スィッチ制御部(17)に前記スィッチ(13)を閉じさせるためのスィッチオン信号 を出力して前記コンデンサ(C3)への充電を再開させる、
ことを特徴とする請求項 4に記載の電源装置。
[7] 前記コンデンサ(C3)の両端に抵抗 (R22)が接続され、
前記時間計測部(16)は、前記動作停止部(15)が前記駆動制御部(6)の動作を 停止させてから前記コンデンサ(C3)の両端の電圧が放電により所定値以下になつ たときに、予め設定された時間が経過したものとして、前記充電制御部(17)に前記 コンデンサ (C3)への充電を再開させる、
ことを特徴とする請求項 3に記載の電源装置。
[8] 前記トランス (T)に 3次卷線 (n3)を備え、
前記駆動制御用電圧供給部は、
充電された電圧を駆動制御用電圧として前記駆動制御部(6)に印加するコンデン サ(C3)と、
前記電圧生成部(2, 3, 4)の直流電圧入力部から前記コンデンサに電流を供給し て前記コンデンサを充電する充電回路部 (R21)と、
前記トランス (T)の 3次卷線 (n3)に発生した電圧を整流して前記コンデンサ(C3) に印加し、前記コンデンサ(C3)を充電する補助電源部(7)と、
前記負荷に供給する出力電流を検出して、検出した出力電流の電流値と予め設定 された電流値とを比較し、前記検出した出力電流の電流値が予め設定された電流値 未満になると、前記駆動制御部(6)の動作を停止させる動作停止部(15)と、 放電指令信号が供給されて前記コンデンサ (C3)の電圧を放電する放電制御部(1 3、 17)と、
前記動作停止部(15)が前記駆動制御部(6)の動作を停止させたときに、前記放 電制御部(13、 17)に前記放電指令信号を供給し、時間を計測して予め設定された 時間が経過したときに前記放電制御部(13、 17)への放電指令信号の供給を停止 する時間計測部(16)と、を備えた、
ことを特徴とする請求項 2に記載の電源装置。
[9] 前記充電回路部は、電流を前記コンデンサ(C3)に供給する電流供給部(14)から なり、
前記放電制御部は、
前記直流電圧入力部(2)が直流電圧の入力を開始する起動時には開いているスィ 前記動作停止部(15)が前記駆動制御部(6)の動作を停止させたとき、前記スイツ チ(13)を閉じて前記コンデンサ(C3)の電圧を放電するスィッチ制御部(17)と、から 構成される、
ことを特徴とする請求項 8に記載の電源装置。
[10] 前記充電回路部は、前記直流電圧入力部(2)と前記コンデンサ (C3)との間に介 揷された抵抗からなり、
前記放電制御部は、
前記直流電圧入力部(2)が直流電圧の入力を開始する起動時には開いているスィ 前記動作停止部(15)が前記駆動制御部(6)の動作を停止させたとき、前記スイツ チ(13)を閉じて前記コンデンサ(C3)の電圧を放電するスィッチ制御部(17)と、力 構成される、
ことを特徴とする請求項 8に記載の電源装置。
[11] 駆動信号に従って、負荷に供給する電圧を生成する電圧生成部(2, 3, 4)と、駆 動制御用電圧から前記駆動信号を生成し、生成した駆動信号を前記電圧生成部(2 , 3, 4)に供給して前記電圧生成部(2, 3, 4)を駆動して負荷に電圧を供給させる駆 動制御部(6)と、を備える電源装置の制御方法であって、
前記電源装置の起動時に、前記駆動制御部(6)に前記駆動制御用電圧を印加し て、前記電圧生成部から前記負荷に電圧を供給させ、負荷に流れる電流をモニタし て、該電流が予め設定された電流値未満になると、前記駆動制御部(6)への前記駆 動制御用電圧の印加を停止して該駆動制御部(6)の動作を停止し、停止させてから 所定時間経過後に前記駆動制御用電圧の前記駆動制御部(6)への供給を再開さ せて、前記駆動制御部を作動させる、 :とを特徴とする電源装置の制御方法。
PCT/JP2004/008225 2003-07-15 2004-06-11 電源装置及び電源装置の制御方法 WO2005006527A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/541,710 US7719860B2 (en) 2003-07-15 2004-06-11 Power supply and its controlling method
JP2005511487A JPWO2005006527A1 (ja) 2003-07-15 2004-06-11 電源装置及び電源装置の制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-274894 2003-07-15
JP2003274894 2003-07-15

Publications (1)

Publication Number Publication Date
WO2005006527A1 true WO2005006527A1 (ja) 2005-01-20

Family

ID=34056098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008225 WO2005006527A1 (ja) 2003-07-15 2004-06-11 電源装置及び電源装置の制御方法

Country Status (3)

Country Link
US (1) US7719860B2 (ja)
JP (2) JPWO2005006527A1 (ja)
WO (1) WO2005006527A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007027158A1 (en) * 2005-09-01 2007-03-08 Creative Technology Ltd A load detector for an ac-ac power supply
JP2009291066A (ja) * 2008-05-29 2009-12-10 Power Integrations Inc 調整されない休止モードを電力変換器内で実現するための方法および装置
JP2010183828A (ja) * 2009-02-05 2010-08-19 Power Integrations Inc 制御回路、および電力変換器の出力を制御するための方法
JP2011527557A (ja) * 2008-07-11 2011-10-27 イーエム・ミクロエレクトロニク−マリン・エス アー 電圧変換器を有する電源ユニット
US8599582B2 (en) 2010-12-06 2013-12-03 Power Integrations, Inc. Method and apparatus for implementing an unregulated dormant mode with output reset in a power converter
JP2019022399A (ja) * 2017-07-21 2019-02-07 新日本無線株式会社 スイッチング電源装置
CN109617418A (zh) * 2019-01-04 2019-04-12 无锡芯朋微电子股份有限公司 轻载控制电路

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4400426B2 (ja) * 2004-11-19 2010-01-20 サンケン電気株式会社 スイッチング電源装置
ITTO20070860A1 (it) * 2007-11-29 2009-05-30 St Microelectronics Srl Circuito e relativo metodo di auto-alimentazione per un convertitore di tensione
ITTO20070859A1 (it) * 2007-11-29 2009-05-30 St Microelectronics Srl Convertitore di tensione isolato con retroazione al primario, e relativo metodo di controllo della tensione di uscita
ITTO20070862A1 (it) * 2007-11-29 2009-05-30 St Microelectronics Srl Convertitore di tensione isolato con retroazione al primario e rete di snubber passiva, e relativo metodo di controllo
US7770039B2 (en) * 2008-05-29 2010-08-03 iGo, Inc Primary side control circuit and method for ultra-low idle power operation
AU2011213788B2 (en) * 2008-05-29 2011-10-13 Igo, Inc. Primary side control circuit and method for ultra-low idle power operation
US7779278B2 (en) 2008-05-29 2010-08-17 Igo, Inc. Primary side control circuit and method for ultra-low idle power operation
US7795759B2 (en) 2008-06-27 2010-09-14 iGo, Inc Load condition controlled power strip
US7800252B2 (en) 2008-06-27 2010-09-21 Igo, Inc. Load condition controlled wall plate outlet system
US7795760B2 (en) 2008-07-25 2010-09-14 Igo, Inc. Load condition controlled power module
US8553431B2 (en) * 2009-02-03 2013-10-08 Iwatt Inc. Switching power converter with load impedance detection
US8164932B2 (en) * 2009-02-12 2012-04-24 Apple Inc. Power converter with automatic mode switching
CN101854119A (zh) * 2009-04-03 2010-10-06 通嘉科技股份有限公司 控制方法与电源控制集成电路、电源供应器
CN101807850B (zh) * 2010-04-23 2012-08-29 合肥日源电气信息技术有限公司 可避免光伏逆变器辅助电源反复启停的电路
JP5323992B2 (ja) * 2010-07-14 2013-10-23 新電元工業株式会社 絶縁型スイッチング電源
JP2012034496A (ja) * 2010-07-30 2012-02-16 Canon Inc 高電圧発生装置及び画像形成装置
KR101822067B1 (ko) * 2010-10-28 2018-03-08 페어차일드코리아반도체 주식회사 Led 발광 장치
JP5316902B2 (ja) 2010-11-05 2013-10-16 ブラザー工業株式会社 電源システム及び画像形成装置
JP2012125090A (ja) 2010-12-10 2012-06-28 Hitachi Media Electoronics Co Ltd スイッチング電源およびそれを搭載した表示装置
KR101088915B1 (ko) 2011-05-04 2011-12-07 코칩 주식회사 전원 어댑터
JP5828273B2 (ja) * 2011-12-01 2015-12-02 富士電機株式会社 スイッチング電源装置
JP5927877B2 (ja) * 2011-12-06 2016-06-01 富士電機株式会社 スイッチング電源装置
DE102011122197B4 (de) * 2011-12-23 2018-06-07 Albert-Ludwigs-Universität Freiburg Spannungswandler mit geringer Anlaufspannung
CN102594116B (zh) * 2012-03-06 2014-09-24 广州金升阳科技有限公司 一种电源启动电路
US8897038B2 (en) * 2012-07-31 2014-11-25 Dialog Semiconductor Inc. Switching power converter dynamic load detection
JP5983172B2 (ja) * 2012-08-10 2016-08-31 富士電機株式会社 スイッチング電源装置及びスイッチング電源装置の制御回路
CN102904452A (zh) * 2012-09-27 2013-01-30 温州大学 基于离网光伏发电系统的辅助电源
US8854842B2 (en) 2012-12-11 2014-10-07 Dialog Semiconductor Inc. Digital communication link between secondary side and primary side of switching power converter
JP6040768B2 (ja) * 2012-12-28 2016-12-07 ブラザー工業株式会社 スイッチング電源、電源供給システム及び画像形成装置
KR101415720B1 (ko) * 2013-01-22 2014-07-04 코칩 주식회사 대기전력 저감장치
US9318963B2 (en) 2013-03-13 2016-04-19 Dialog Semiconductor Inc. Switching power converter with secondary to primary messaging
US9379625B2 (en) 2013-12-26 2016-06-28 Dialog Semiconductor Inc. Current meter for load modulation communication receiver architecture
JP6364894B2 (ja) 2014-04-01 2018-08-01 ブラザー工業株式会社 電源システムおよび画像形成装置
WO2018046776A1 (es) * 2016-09-07 2018-03-15 Chaves Garcia Jordi Fuente de alimentación conmutada de 24-240 voltios
CN113054854B (zh) * 2021-03-31 2022-09-23 华为技术有限公司 一种电源转换电路和适配器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000023461A (ja) * 1998-07-02 2000-01-21 Hitachi Ltd 電源回路
JP2000228873A (ja) * 1999-02-05 2000-08-15 Sharp Corp スイッチング電源装置
EP1160964A2 (en) * 2000-06-01 2001-12-05 Sony Corporation Power supplying apparatus and methods
JP2003052174A (ja) * 2001-08-08 2003-02-21 Fuji Electric Co Ltd スイッチング電源装置
JP2003164150A (ja) * 2001-11-28 2003-06-06 Nichicon Corp スイッチング電源

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294287A (ja) 1989-05-09 1990-12-05 Sanyo Electric Co Ltd ディスク回転制御装置
JP2900876B2 (ja) * 1996-03-19 1999-06-02 サンケン電気株式会社 表示装置の電源装置
US6100767A (en) 1997-09-29 2000-08-08 Sanyo Electric Co., Ltd. Phase-locked loop with improved trade-off between lock-up time and power dissipation
JP2001346329A (ja) * 2000-06-01 2001-12-14 Sony Corp 電源供給装置および方法
JP4122721B2 (ja) * 2001-04-09 2008-07-23 サンケン電気株式会社 スイッチング電源
JP3741035B2 (ja) * 2001-11-29 2006-02-01 サンケン電気株式会社 スイッチング電源装置
JP4062307B2 (ja) * 2002-05-30 2008-03-19 サンケン電気株式会社 コンバータ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000023461A (ja) * 1998-07-02 2000-01-21 Hitachi Ltd 電源回路
JP2000228873A (ja) * 1999-02-05 2000-08-15 Sharp Corp スイッチング電源装置
EP1160964A2 (en) * 2000-06-01 2001-12-05 Sony Corporation Power supplying apparatus and methods
JP2003052174A (ja) * 2001-08-08 2003-02-21 Fuji Electric Co Ltd スイッチング電源装置
JP2003164150A (ja) * 2001-11-28 2003-06-06 Nichicon Corp スイッチング電源

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2442659B (en) * 2005-09-01 2010-09-08 Creative Tech Ltd A load detector for an AC-AC power supply
GB2442659A (en) * 2005-09-01 2008-04-09 Creative Tech Ltd A load detector for an AC-AC power supply
WO2007027158A1 (en) * 2005-09-01 2007-03-08 Creative Technology Ltd A load detector for an ac-ac power supply
US8908395B2 (en) 2008-05-29 2014-12-09 Power Integrations, Inc. Method and apparatus for implementing an unregulated dormant mode with an event counter in a power converter
US9154041B2 (en) 2008-05-29 2015-10-06 Power Integrations, Inc. Method and apparatus for implementing an unregulated dormant mode in a power converter
US9774268B2 (en) 2008-05-29 2017-09-26 Power Integrations, Inc. Method and apparatus for implementing an unregulated dormant mode with an event counter in a power converter
US9484822B2 (en) 2008-05-29 2016-11-01 Power Integrations, Inc. Method and apparatus for implementing an unregulated dormant mode with an event counter in a power converter
JP2009291066A (ja) * 2008-05-29 2009-12-10 Power Integrations Inc 調整されない休止モードを電力変換器内で実現するための方法および装置
JP2015015896A (ja) * 2008-05-29 2015-01-22 パワー・インテグレーションズ・インコーポレーテッド 調整されない休止モードを電力変換器内で実現するための装置
JP2011527557A (ja) * 2008-07-11 2011-10-27 イーエム・ミクロエレクトロニク−マリン・エス アー 電圧変換器を有する電源ユニット
JP2014223020A (ja) * 2009-02-05 2014-11-27 パワー・インテグレーションズ・インコーポレーテッド 制御回路および電力変換器
JP2010183828A (ja) * 2009-02-05 2010-08-19 Power Integrations Inc 制御回路、および電力変換器の出力を制御するための方法
US10079544B2 (en) 2009-02-05 2018-09-18 Power Integrations, Inc. Method and apparatus for implementing an unregulated dormant mode with an event counter in a power converter
US10284100B2 (en) 2009-02-05 2019-05-07 Power Integrations, Inc. Method and apparatus for implementing an unregulated dormant mode with an event counter in a power converter
US8599582B2 (en) 2010-12-06 2013-12-03 Power Integrations, Inc. Method and apparatus for implementing an unregulated dormant mode with output reset in a power converter
JP2019022399A (ja) * 2017-07-21 2019-02-07 新日本無線株式会社 スイッチング電源装置
CN109617418A (zh) * 2019-01-04 2019-04-12 无锡芯朋微电子股份有限公司 轻载控制电路
CN109617418B (zh) * 2019-01-04 2020-02-21 无锡芯朋微电子股份有限公司 轻载控制电路

Also Published As

Publication number Publication date
JPWO2005006527A1 (ja) 2006-08-24
US20060098462A1 (en) 2006-05-11
JP4748197B2 (ja) 2011-08-17
JP2008306927A (ja) 2008-12-18
US7719860B2 (en) 2010-05-18

Similar Documents

Publication Publication Date Title
JP4748197B2 (ja) 電源装置
CN109088544B (zh) 开关电源装置
JP4013898B2 (ja) 電源装置起動方法、電源装置の起動回路及び電源装置
JP3652351B2 (ja) スイッチング電源装置
WO2010146642A1 (ja) スイッチング電源装置および半導体装置
US20050078492A1 (en) Switching power supply
WO2003103121A1 (ja) コンバータ
CN111684697B (zh) 开关电源装置的控制装置
US10530235B1 (en) Systems for and methods of synchronous rectification in a switching power converter
JP3236587B2 (ja) スイッチング電源装置
US11233448B2 (en) Switching control circuit and switching control method
WO2010125751A1 (ja) スイッチング電源装置
US20220166303A1 (en) Integrated circuit and power supply circuit
JP6032749B2 (ja) スイッチング電源装置
JP3425403B2 (ja) 半導体装置、および、この半導体装置を用いたスイッチング電源装置
JP2007295800A (ja) 電源回路
JP2005198375A (ja) 同期整流回路および電力変換器
US12088207B2 (en) Power supply circuit
JP2001224169A (ja) スイッチング電源用半導体装置
JPH1028374A (ja) 電源装置
JP2005039921A (ja) スイッチング電源装置
JP2001231253A (ja) 寿命予知回路および電源装置
JP2016093011A (ja) スイッチング電源
JP4680453B2 (ja) スイッチング電源
JP2011010422A (ja) スイッチング電源装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005511487

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006098462

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10541710

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10541710

Country of ref document: US

122 Ep: pct application non-entry in european phase