WO2005003753A1 - 再石灰化促進剤 - Google Patents

再石灰化促進剤 Download PDF

Info

Publication number
WO2005003753A1
WO2005003753A1 PCT/JP2004/009443 JP2004009443W WO2005003753A1 WO 2005003753 A1 WO2005003753 A1 WO 2005003753A1 JP 2004009443 W JP2004009443 W JP 2004009443W WO 2005003753 A1 WO2005003753 A1 WO 2005003753A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphate
remineralization
starch
reaction
hydroxyapatite
Prior art date
Application number
PCT/JP2004/009443
Other languages
English (en)
French (fr)
Inventor
Reiichiro Sakamoto
Yoshikazu Sunada
Toshiyuki Kimura
Nobuo Uotsu
Akiko Koseki
Yuko Suda
Original Assignee
Oji Paper Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Paper Co., Ltd. filed Critical Oji Paper Co., Ltd.
Priority to JP2005511365A priority Critical patent/JP4403140B2/ja
Publication of WO2005003753A1 publication Critical patent/WO2005003753A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/163Sugars; Polysaccharides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/20Inorganic substances, e.g. oligoelements
    • A23K20/26Compounds containing phosphorus
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/212Starch; Modified starch; Starch derivatives, e.g. esters or ethers
    • A23L29/219Chemically modified starch; Reaction or complexation products of starch with other chemicals
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/30Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
    • A23L29/35Degradation products of starch, e.g. hydrolysates, dextrins; Enzymatically modified starches
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/16Inorganic salts, minerals or trace elements

Definitions

  • the present invention relates to a phenomenon in which water-soluble calcium phosphate coexisting in the presence of crystalline calcium phosphate is deposited on crystalline calcium phosphate, that is, relime having an effect of promoting a remineralization phenomenon of teeth.
  • the present invention relates to a chemical accelerator.
  • the remineralization accelerator of the present invention is used in fields such as foods, beverages, seasonings, taste improvers, oral hygiene agents, detergents, metal supplements, metal absorption enhancers, cosmetics, feed, and fertilizers. Things.
  • the present invention provides a method for producing a composition comprising a phosphate starch, a maltodextrin phosphate (PMD), an oligosaccharide phosphate (PS) having a remineralization promoting action, and salts thereof. Furthermore, the present invention relates to a method for producing a composition containing reduced maltodextrin phosphate, reduced phosphate oligosaccharide, and salts thereof.
  • PMD maltodextrin phosphate
  • PS oligosaccharide phosphate
  • Patent Document 1 PMDs and POSs having high Ca (calcium) solubilizing activity, and methods for producing them.
  • Patent Document 2 discloses a polyvalent metal salt composition of PMD or PS and a method for producing the same. These inventions relate to PMD and P ⁇ S which have the effect of maintaining poorly water-soluble calcium phosphate water-soluble.
  • a compound having a polymerization degree of dextrose of 10 or less which is a polysaccharide composed of dextrose having glucose 1,4 and d_1,6 bonds, is referred to as maltodextrin (MD). It is called oligosaccharide ( ⁇ S).
  • Patent Document 3 a composition having an anti-corrosion function of POS obtained from potato starch.
  • foods and drinks containing POS obtained from potato starch as a calcium enhancer are disclosed in Patent Document 3, and Patent Document 5 further discloses foods and drinks containing POS obtained from potato starch as a taste-improving agent.
  • the pile caries function includes both a caries prevention function and a caries treatment function, and (1) has a pH buffering action and is caused by an acid produced by oral bacteria. It has the ability to suppress pH drop. (2) It has the ability to suppress the formation of insoluble glucan produced by oral bacteria. (3) It has the ability to promote remineralization of teeth with initial caries. It means to have at least one of the following.
  • P ⁇ S and their sugar alcohols include acidic carbohydrates (oligogalataturonic acid, chondroitin sulfate, chondroitin sulfate oligosaccharide, glucose-1-6-phosphate), organic acids (tartaric acid) Citric acid, malic acid, lactic acid, fumaric acid, maleic acid), nucleic acids (phosphate esters of various nucleosides or nucleotides), amino acids and the like.
  • Patent Document 8 describes that notinite promotes remineralization of teeth.
  • Patent Document 9 describes that xylitol, mannitol, galactitol, and inositol promote tooth remineralization.
  • the effective concentration of these oligosaccharides and sugar alcohols to promote remineralization is several percent. Therefore, it can be said that the fact that the above-mentioned potato starch-derived POS exerts its effectiveness at a concentration as low as 0.2% is a very advantageous feature in terms of use in foods and the like.
  • POS derived from potato starch is composed of a group of oligosaccharides in which one phosphate group is bonded to three to five glucoses having ⁇ -1,4 linkages. This is a mixed composition of oligosaccharides in which two phosphate groups are bonded to two or eight glucoses with 1,4 linkages, and has a very low Ca solubilizing activity even though the phosphorus content is as high as 3% or more.
  • a starch such as a-amylase is used as a raw material by using a phosphate starch obtained by mixing phosphate with starch and roasting.
  • PMD and POS produced by hydrolysis with a degrading enzyme have a low bound phosphorus of around 2%, It has extremely high Ca solubilizing activity.
  • PMD and POS obtained from chemically prepared phosphate starch and POS obtained from natural potato starch have a considerable difference in the function of maintaining Ca solubility.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11-255803
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-145893
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2002-325556
  • Patent Document 4 JP 2002-253170 A
  • Patent Document 5 JP-A-2002-253164
  • Patent Document 6 JP-A-8-104696
  • Patent Document 7 Japanese Patent Application Laid-Open No. 2002-325557
  • Patent Document 8 JP-A-2000-247852
  • Patent Document 9 JP-A-11-12143
  • POS derived from potato starch with bound phosphorus of 3.6% has an excellent remineralization promoting effect, whereas 1.8% of bound phosphorus obtained from chemically prepared phosphoric acid starch. PMD has no remineralization promoting effect.
  • POS derived from potato starch with bound phosphorus of 3.6% contains a large amount of soluble Ca in a reaction system in which hydroxyapatite does not exist, and the amount of soluble Ca decreases when hydroxyapatite is present. This As described above, a large difference in soluble Ca leads to an increase in Ca deposition on hydroxyapatite.
  • the measurement conditions of the remineralization test were improved, and a new remineralization acceleration evaluation method was established using the rate of Ca deposition on crystalline hydroxyapatite as an evaluation criterion.
  • a composition containing PMD and POS which has a remineralization promoting effect at an extremely lower concentration than POS derived from potato starch.
  • the remineralization promotion evaluation method of the present invention has found that substances such as organic acids, monosaccharides, oligosaccharides, and sugar alcohols exhibit a remineralization promotion effect in a certain concentration range.
  • the present invention relates to a substance or composition that exhibits a Ca solubilizing action and a remineralization promoting action at an extremely low concentration, and has a function of maintaining metal ions such as Ca in a soluble state, and an initial tooth sac.
  • the present invention includes the following inventions.
  • Buffer solution pH 7.0
  • KHPO solution water
  • reaction is performed in the same sample with the same amount of added calorie as in the case of the reaction without addition of hydroxyapatite in (ii), and the concentration of soluble calcium in the reaction solution is measured.
  • Calcium solubilization rate (%) [solubility of supernatant of reaction solution without hydroxyapatite addition] calcium / calcium added to reaction solution x 100
  • a sample solution is prepared by dissolving the composition in water and adjusting the pH to 6.5-7.0 with dilute NaOH solution or dilute HC1 solution.
  • the obtained sample solution is used on the day of preparation. Hydroxyapatite-free reaction and hydroxyapatite-added reaction of the same sample and the same amount are performed simultaneously.
  • all water uses purified water (water purified to an electric resistance of 1 ⁇ S or less).
  • the sample solution containing the obtained composition (0.002 mg-50 mg) is added sequentially to make a total volume of 8 mL. 36 ⁇ 0.3 of the vial containing the sample mixture obtained. Leave the sample in the C bath at least 10 minutes, and adjust the pH of the sample mixture to 7.00 ⁇ 0.02. The volume of dilute NaOH solution or diluted HC1 solution used for pH adjustment should be within 100 ⁇ L. After the pH adjustment, the sample mixture is returned to the thermostat and allowed to stand for at least 10 minutes. Then at 36 ⁇ 0.3 ° C pH 1 mL of water into the sample mixture adjusted to 7000 ⁇ 0.02
  • a hydroxyapatite suspension is prepared by previously suspending hydroxyapatite (for example, Hydroxyapatite type 1 manufactured by Sigma-Aldrich Co.) in water at a concentration of 5 mg ZmL.
  • hydroxyapatite for example, Hydroxyapatite type 1 manufactured by Sigma-Aldrich Co.
  • CaCl 3
  • Calcium solubilization rate (%) [Solubility of supernatant of reaction solution without addition of hydroxyapatite, calcium (ppm) / calcium added to reaction solution (ppm)] X 100
  • the ratio of this to the hydroxyapatite added to the reaction solution is set as the calcium deposition rate, and is calculated by the following equation.
  • Calcium deposition rate (%) ⁇ [solubility of supernatant of reaction solution without addition of hydroxyapatite lucidum (ppm)-soluble calcium of reaction supernatant of solution after addition of hydroxyapatite (ppm)] / added to reaction solution Hydroxyapatite (500ppm) ⁇ X 100
  • a composition containing at least one organic acid wherein the amount of the composition added in the remineralization test measurement method described in (2) is at least one of OO lmg-200 mg.
  • a remineralization accelerator which has an action of causing a calcium deposition rate to be 5% or more, preferably 10% or more.
  • composition containing at least one organic acid wherein the CaCl concentration in both reactions of the remineralization test measurement method described in (2) is 5 mM and the KH PO concentration is 3 mM.
  • a remineralization accelerator having an effect of increasing the calcium deposition rate to 5% or more, preferably 10% or more when the amount of the composition is at least 5 mg or 400 mg under the conditions.
  • a composition comprising at least one member selected from the group consisting of monosaccharides, oligosaccharides and sugar alcohols, wherein the composition according to the remineralization test measurement method described in (2) above is used.
  • Carohydrate content power OOmg A remineralization accelerator that has an action of increasing the calcium deposition rate to 5% or more, and preferably 10% or more, when the shear force is at least 100 mg.
  • a remineralization accelerator having an action of achieving a calcium deposition rate of 5% or more, preferably 10% or more when the amount of the composition added is at least 0.02 mg to 100 mg.
  • a composition comprising at least one selected from the group consisting of sugars and sugar alcohols, wherein the amount of the composition added is at least 0.02 mg lOOOO mg in the remineralization test measurement method described in (2) above.
  • a remineralization accelerator that has a calcium deposition rate of 5% or more, preferably 10% or more at the time of shear force.
  • a composition comprising a CaCl concentration of 10-15 mM and a KHPO concentration of 60% of CaCl concentration in both reactions of the remineralization test measurement method described in (2) above.
  • the amount of the composition added is as low as 0.02 mg—100 mg
  • a remineralization accelerator having an action of increasing the calcium deposition rate to 5% or more, preferably 10% or more.
  • a food, beverage, seasoning, taste improving agent, or oral cavity comprising at least one remineralization promoter according to any one of the above (2) to (14) Sanitizers, detergents, metal supplements, metal absorption enhancers, cosmetics, feed or fertilizers.
  • a mixture of reduced maltodextrin and / or reduced oligosaccharide produced by hydrogenating maltodextrin and / or oligosaccharide is mixed with phosphoric acid and Z or a phosphate, followed by roasting.
  • a composition comprising at least one of the obtained reduced maltodextrin phosphate, reduced phosphate oligosaccharide and salts thereof.
  • the present invention has an effect of depositing water-soluble calcium phosphate on crystals when crystalline calcium phosphate is present that only maintains the solubility of a metal salt such as calcium phosphate that cannot exhibit physiological effects due to poor water solubility. That is, the present invention provides a composition having an action of promoting remineralization. Search for remineralization promoting substances based on the Ca solubilization rate and Ca deposition rate by the newly set remineralization test method, and effectively use phosphate starch, PMD, POS, reduced PMD, reduced POS, organic acids, saccharides, etc. Substance found.
  • composition of the present invention exhibiting a remineralization promoting action includes foods, beverages, seasonings, taste improvers, oral hygiene agents, detergents, metal supplements, metal absorption promoters, cosmetics, feeds, fertilizers, and the like. It is used in a wide range of fields. BEST MODE FOR CARRYING OUT THE INVENTION
  • the first important function is to maintain calcium phosphate soluble.
  • Patent Document 1 Japanese Patent Application Laid-Open No. H11-255803
  • the present inventors have set a Ca solubilizing activity measurement method as a function of maintaining phosphoric acid lucidum soluble, and POS, which exhibits extremely high Ca solubilizing activity, Disclosure of PMD.
  • the second important function is the remineralization of calcium phosphate, which is deposited on calcium phosphate crystals, such as tooth crystal components.
  • Patent Document 7 Japanese Patent Application Laid-Open No. 2002-325557 discloses a method for simply measuring the remineralization action.
  • the remineralization phenomenon is described as follows: (1) Calcium (Ca) ions and phosphate ions, which are the constituent components, are supplied to the demineralization part. (2) The supplied Ca ions and phosphate ions are used for enamel crystal growth in the demineralized part.
  • the remineralization promoting substance is a substance that promotes the crystal growth of hydroxyapatite, which is a crystal component of teeth, while suppressing the insolubilization of Ca and phosphoric acid under neutral conditions.
  • a simple remineralization test system applying such a mechanism of remineralization is (A) a step of promoting a Ca precipitation reaction from a solution containing phosphoric acid, Ca and a sample in the presence of tooth components. (B) a step of measuring the Ca concentration or the amount of Ca precipitated in the solution after the precipitation reaction. (C) a step of promoting a Ca precipitation reaction from the solution in the absence of the tooth component. (D) a step of measuring the Ca concentration in the solution or the amount of generated Ca precipitate after the precipitation reaction in the absence of the tooth component. (E) Step of comparing the Ca concentration or the amount of precipitate in steps (B) and (D). It is stated that crystalline hydroxyapatite can be used as a tooth component.
  • reaction solution when the reaction solution was prepared, it was placed in a constant temperature bath at 37 ° C to adjust the temperature so that the reaction could be started at 37 ° C from the beginning of the reaction.
  • the calcium solubilization rate in the absence of apatite was greatly reduced, and the remineralization rate was reduced.
  • the remineralization rate was 55% under the conventional measurement conditions, but decreased to only 5%. .
  • the sample mixture was allowed to stand for at least 10 minutes in a constant temperature bath, and then the pH of the sample mixture was adjusted to 7.00 ⁇ 0.02. Again, the mixture was allowed to stand still for at least 10 minutes in the thermostat, and then the hydroxyapatite-containing reaction system was charged with the hydroxyapatite suspension, and the CaCl solution was immediately charged to start the reaction.
  • the remineralization rates at the respective temperatures of 35, 36, and 37 ° C with the addition of 20 mg of the above-mentioned potato starch-derived POS were 70%, 67%, and 5%.
  • a large difference in remineralization rate was observed between 36 ° C and 37 ° C, which resolved questions about the reproducibility of the measurement results.
  • the concentration of phosphoric acid contained in saliva is about 3 mM, which is higher than the Ca concentration.
  • Ca / P 5/3
  • CaZP molar ratio approaching 5/3 become.
  • what is important here is to maintain a high remineralization rate when the Ca concentration is between 3 mM and 5 mM.
  • the remineralization rate can be compared with the increase or decrease at the same Ca concentration. If the Ca concentration changes, the comparison becomes difficult. That is, when the Ca concentration is high, the Ca deposition rate may be higher than when the Ca concentration is low, even though the remineralization rate is low. Therefore, it was decided to evaluate the remineralization promoting effect by comparing the Ca deposition rate.
  • the trigger of the present invention is that, as described above, POS derived from potato starch and having a bond of 3.6% by weight has an excellent remineralization promoting effect, whereas chemically prepared phosphate PMD of 1.8% by weight of the bond obtained from starch had no remineralization promoting effect.
  • POS derived from potato starch showed a high soluble Ca concentration in a reaction system without hydroxyapatite, and a low soluble Ca concentration in a reaction system with hydroxyapatite. And the remineralization rate increases.
  • the binding P of natural potato starch is less than 0.1% by weight, and the average binding P of potato starch used as a saccharification raw material is about 0.05% by weight.
  • Phosphate starch preparation conditions were changed to produce phosphate starch with less than 1% by weight of bound P and degraded with a-amylase to produce various PMDs with different bound phosphorus.
  • POS derived from potato starch of 3.6% by weight has a remineralization rate of 67% and a Ca deposition rate of 13% with the addition of 20mg.
  • 1 ⁇ 0 with a combined P of 0.23 wt% showed a Ca deposition rate of 10% even if the amount of addition was reduced to 0.02111 ⁇ .
  • the POS derived from potato starch maintains a Ca deposition rate of 13% or more from 2 mg to 0.5 mg of added calories, but the Ca deposition rate becomes 7% when 0.2 mg is added.
  • the Ca deposition rate with the addition of 0.1 mg was reduced to 5%, and the effect of promoting remineralization was not much exhibited.
  • PMD and POS prepared from phosphoric acid starch as raw materials show a 10-fold or more remineralization-promoting action despite the fact that the bound phosphorus is as small as 1/15. Became clear.
  • Patent Document 7 Japanese Patent Application Laid-Open No. 2002-325557
  • PMD derived from phosphate starch shows a strong remineralization-promoting action despite a low amount of bound phosphorus.Comparing the buffering capacity with the amount of added katu, which shows the same Ca deposition rate, PH7.
  • PMD derived from phosphoric acid starch shows a remineralization-promoting effect even at an extremely low concentration that cannot exhibit buffer capacity, and it seems that buffer capacity hardly functions under conditions that promote remineralization. It is.
  • Organic acids are caries-causing substances that dissolve teeth and have never been considered to have a remineralization-promoting effect.
  • Lactic acid is a metabolite produced by the breakdown of carbohydrates by microorganisms in the mouth, and is the most causative substance of caries.
  • Ca 3.0 mM
  • P l.8 mM
  • lOOmg of lactic acid showed an unexpectedly 14% Ca deposition rate.
  • PMD was prepared by preparing a starch containing more than 2% by weight of bound P36.
  • Organic acids expected as remineralization accelerators include, for example, citric acid, malic acid, tartaric acid, dalconic acid, fumaric acid, succinic acid, acetic acid, lactic acid, adipic acid, itaconic acid, phytic acid, Examples include benzoic acid, ascorbic acid, darcono delta ratatone, polyketoglutaric acid, and acidic amino acids.
  • These organic acids are used, for example, as alkali metal salts such as sodium salts and potassium salts, alkaline earth metal salts such as calcium salts and magnesium salts, ammonium salts, iron salts, zinc salts, copper salts and aluminum salts. You can also.
  • the present inventors have found a monosaccharide, an oligosaccharide, and a sugar alcohol having a remineralization promoting action by a new remineralization evaluation method.
  • carbohydrates and xylitol having a remineralizing action have a synergistic action with the PMD composition.
  • Addition of lOOmg xylitol under Ca 3mM, the ability to show 6% Ca deposition rate.
  • Add only 0.2mg of PMD derived from phosphoric acid starch (binding? 0.23% by weight). Showed a high value of 18%.
  • Monosaccharides expected as remineralization accelerators include, for example, glucose, fructose, mannose, galactose, talose, sonorebose, tagatose, deoxygnoleose, psicose, fucose, rhamnose, arose, anorethrose, and growth. , Idose, xylose, arabinose, ribose, deoxyribose, lyxose and the like.
  • Oligosaccharides expected as remineralization promoters include, for example, syrup, sucrose, palatinose, cellobiose, xylobiose, melibiose, chitobiose, kichibiose, and latte.
  • Sugar alcohols expected as remineralization accelerators include, for example, xylitol, sorbitole, maltitol, palatinit, reduced starch syrup, erythritole, xylitoleone, mannitol, galactitol, arabinitol, ratatitol, palatinit, Examples include ribitole, tretone, aritonore, isomaltitol, inositol, queritol, inosose, reduced starch saccharified product, and the like.
  • the Ca concentration in saliva shows a 9% Ca deposition rate
  • Patent Document 1 JP-A-11-255803 PMDs and POSs having excellent ability to maintain calcium phosphate in a soluble state.
  • the present invention relates to a remineralization promoting action that could not be predicted from the disclosure of Patent Document 1, and it is limited that a substance having high Ca solubilizing activity is not necessarily excellent in remineralization promoting action. I found nothing.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2002-325556 discloses a composition having an anti-corrosion function for P ⁇ S derived from potato starch.
  • Remineralized, extremely resistant to PMD and P ⁇ S, prepared from synthetic phosphate starch It has a calcifying effect and, unlike P ⁇ S derived from potato starch, shows a remineralizing effect at a concentration that shows almost no buffering effect, which is quite unexpected.
  • the newly developed remineralization evaluation method shows that organic acids, sugar alcohols, monosaccharides, and oligosaccharides also have effective concentrations that promote remineralization, and that PMD, POS, and remineralization are synergistic. The finding of an effect is an unknown phenomenon.
  • PMD and / or POS produced by allowing at least one kind of starch-degrading enzyme to act on a phosphoric acid starch obtained by phosphorylating starch, regardless of the raw material and the method for producing the same. All the compositions containing PMD and Z or POS, which show a Ca deposition rate of 5% or more, preferably 10% or more according to the remineralization test method of the present invention, are included in the scope of the present invention.
  • phosphoric acid starch with a Ca deposition rate of 5% or more, preferably 10% or more is also a target.
  • Phosphoric acid starch includes phosphoric acid starch in which phosphoric acid is ester-bonded and urea phosphoric acid starch. Is included.
  • Phosphoric acid starch, which is approved as a food additive, is sodium starch phosphate and contains 0.2 to 13% by weight of phosphorus as bound phosphorus, and the content of free phosphorus, that is, inorganic phosphorus, is total phosphorus (total phosphorus). ) Is specified as 20% or less.
  • the starch used as the raw material of the phosphoric acid starch can be any starch of plant origin, such as corn, potato, sweet potato, tapiochi, wheat, barley, and rice. Regardless of the origin, starch obtained by modifying starch by physical or chemical treatment can also be used. Furthermore, starch partially degraded by enzymatic treatment, that is, starch degradation products, can also be used as a raw material. Natural phosphoric acid starch having bound phosphorus such as potato starch can also be used as a raw material, but when synthetic phosphoric acid starch is used as a raw material, the method for synthesizing phosphoric acid starch is not particularly limited.
  • Phosphoric acid starch is usually produced by mixing a starch slurry with phosphoric acid and Z or a phosphate, followed by dehydration and drying-roasting, and adding a phosphoric acid and / or phosphate to a dehydrated starch cake.
  • a method of spraying and drying and roasting a solution, a method of mixing starch dry powder with a phosphoric acid and / or phosphate solution and drying and roasting are used.
  • urea phosphate ester starch can be synthesized by further adding urea as a chemical.
  • the slurry concentration is preferably 30 to 50% by weight from the viewpoint of maintaining uniform fluidity. Or 35-45% by weight.
  • Examples of phosphoric acid and / or phosphate include phosphoric acid, monosodium phosphate, disodium phosphate, trisodium phosphate, sodium tripolyphosphate, sodium pyrophosphate, sodium acid pyrophosphate, and sodium hexametaphosphate.
  • Phosphate such as sodium phosphate such as sodium hexamethaphosphate
  • potassium phosphate such as monopotassium phosphate, dipotassium phosphate, potassium tripolyphosphate and potassium trimetaphosphate
  • monoammonium phosphate and diammonium phosphate A wide range of phosphates such as ammonium salts and phosphorus oxychloride can be used.
  • the amount of phosphoric acid and Z or phosphate added is 0.5-240% by weight, preferably 540% by weight, based on the weight of the starch which varies depending on the type.
  • urea phosphate starch urea-added kettle is required in addition to phosphate.
  • the amount of urea added is 0.5 240% by weight, preferably 560% by weight, based on the weight of the starch.
  • Acids and alkalis can be used to adjust the pH.
  • phosphoric acid can naturally be used, and in addition to phosphoric acid, hydrochloric acid, sulfuric acid, sulfurous acid and the like can be used.
  • alkali NaOH, KOH, Ca (OH) and the like can be used.
  • a mixture of starch and phosphoric acid and / or phosphate (including urea in the case of synthesis of urea phosphate starch) is desirably dried to remove water.
  • the roasting in the post-step of the phosphorylation reaction if there is a large amount of water, it becomes difficult to increase the phosphorylation rate (bound phosphorus / total phosphorus X 100), and the resulting phosphoric acid starch will be colored more. Occurs.
  • the roasting conditions for phosphorylating starch the higher the roasting temperature and the longer the roasting time, the greater the amount of bound phosphorus, but the color of the roasted product becomes reddish brown. Therefore, the roasting conditions are a temperature of 100-250 ° C, preferably 130-200 ° C, and a roasting time of 5 minutes 24 hours, preferably 10 minutes-14 hours. Heating is preferred.
  • the phosphate starch itself having a remineralization-promoting action in which the Ca deposition rate of the phosphate starch obtained by the above-described method is 5% or more is not only the target, but the phosphate starch itself is Even if it does not have the remineralization promoting action, in a food processing process using phosphoric acid starch as a raw material, the starch starch is decomposed by starch-degrading enzymes contained in other raw materials to exhibit remineralization promoting action. In such cases, the original phosphoric acid starch can be a remineralization accelerator.
  • phosphate starch added to foods is hydrolyzed by starch-degrading enzymes contained in human saliva to produce low molecular weight PMD and P ⁇ S, which promote remineralization.
  • the original phosphoric acid starch can be a remineralization accelerator.
  • a method in which starch is reduced in molecular weight and then phosphorylated may be employed. However, it was found that when the molecular weight of starch was reduced, coloring during heating and roasting was advanced, and decolorization and purification became difficult.
  • a phosphorylation reaction using a sugar alcohol mixture produced by hydrogenating a starch hydrolyzate such as a reduced starch hydrolyzate or reduced malt starch syrup will result in a reduced PMD with a high Ca deposition rate.
  • a starch hydrolyzate such as a reduced starch hydrolyzate or reduced malt starch syrup
  • / or a composition comprising reduced POS was found to be produced. Since the composition containing reduced PMD and / or reduced POS obtained by the roasting reaction has a low degree of coloration, it can be used as it is as it is as a commercial product. Becomes possible.
  • colored substances such as reduced PMD and reduced POS produced by phosphorylation using reduced dextrin (reduced starch decomposed product) or reduced malt starch syrup are produced by phosphorylation using starch as a raw material.
  • Less production of colored substances than phosphoric acid starch means that the load on the purification process is smaller than that of conventional reduced PMD or POS produced by hydrogenating PMD or POS obtained by enzymatic decomposition of phosphoric acid starch. This is a manufacturing method suitable for industrial production.
  • the generation of coloring substances is caused by the decomposition of some sugars in the roasting step of phosphorylation.
  • reduced PMD and reduced PS produced by linoxidation using the reduced dextrin and reduced starch syrup of the present invention as raw materials are the same as those of the conventional reduced PMD obtained by hydrogenating dextrin phosphate and oligosaccharide phosphate.
  • Reduced PS appears to be a phosphorylated saccharide with a novel composition that is strictly different.
  • the composition containing PMD and POS of the present invention can be obtained by decomposing the above-mentioned phosphate starch with human amylase to reduce the molecular weight. Because the viscosity decreases due to low molecular weight, food Applications for such applications are greatly expanded. Essentially, any enzyme used for degradation can be used as long as it is an ⁇ - amylase that randomly cuts starch, and two or more enzymes can naturally be used in combination.
  • heat-amylases in addition to heat-resistant liquefied heat-amylase frequently used for industrial starch decomposition (hereinafter also referred to as "liquefaction"), medium-temperature liquefied heat-amylase and saccharified heat-amylase are used.
  • CGTase Cyclomaltodextrin glucanotransferase
  • TVA a- ⁇ y ⁇ of Thermoactinomyces vulgaris
  • a liquefied heat-amylase having heat resistance is excellent in decomposing ability and dissolving power of starch.
  • the conditions under which the hair amylase acts on the phosphate starch vary depending on the type of the enzyme, but a commonly used enzyme operating temperature condition can be employed.
  • the enzyme used can be of any origin which is preferred for thermostable liquefied human amylase that works effectively at 80 110 ° C.
  • Termamyl 120 L and L / S (a product of Bacillus licheniformis, a product of Bacillus licheniformis, and Bacillus
  • neospitase PG2 manufactured by Nagase Seikagaku Kogyo, derived from Bacillus subtilis
  • kristase T manufactured by Daiwa Kasei, derived from Bacillus subtilis
  • Phosphoric acid starch as a substrate is prepared as a slurry having a concentration of 10 to 40% by weight, and calcium hydroxide and / or sodium hydroxide are added thereto, and usually adjusted to 116.0 to 6.3. Since thermostable ⁇ -amylase requires 50 ppm or more calcium 'ion as a stabilizer, calcium hydroxide is mainly used as an alkali for pH adjustment.
  • the amount of the enzyme to be added is 0.0001-0.5% by weight, preferably 0.01-0.2% by weight (vs. starch), which varies greatly depending on the enzyme used.
  • the reaction pH also depends on the enzyme used, usually between pH 4-7.
  • reaction reaction in order to prevent starch aging, the reaction start temperature after the addition of heat-amylase is increased to 100-110 ° C, and the mixture is treated under pressure for 215 minutes.
  • the enzymatic decomposition is carried out at a high temperature of 90-100 ° C for about 30 minutes to 5 hours.
  • the degradation of phosphate starch by heat-amylase does not necessarily require strict decomposition conditions such as 100 110C and pressurization.
  • Bound phosphorus Severe reaction conditions of 1 oo ° C or higher are not always necessary, though depending on the amount, since bound phosphorus plays a role in preventing starch aging.
  • high-temperature treatment of the decomposition reaction is preferable from the viewpoint of improving the filterability of the decomposition liquid and facilitating the operation.
  • phosphoric acid starch was collected to a final concentration of 10-40% by weight, 2.8% by weight of calcium chloride was added to the total volume of lZlOO, and the pH was adjusted to 6.3 with an lN_Na ⁇ H solution. I do. To this, add 0.1% by weight (to starch-bonded starch) of 120L of Termamill and transfer to a pressure vessel. After heating at 105 ° C for 5 minutes, continue liquefaction at 95 ° C for 1 hour.
  • the PMD composition obtained by treating phosphate starch with only sunflower amylase has a very strong remineralization promoting action, and can be obtained as a product if concentrated as it is.
  • the average degree of polymerization of a PMD composition obtained only by the treatment of phosphoric acid starch with amylase is 1050, which falls within the category of dextrin (degree of polymerization of 10 or more 100) rather than oligosaccharide (degree of polymerization of 10 or less). It has a degree of polymerization.
  • the viscosity of the product may increase, which may limit its use as a food.
  • one or more enzymes of various starch-degrading enzymes and glycosyltransferases, including ⁇ -amylase, and one or more enzymes of these enzymes An additional decomposition reaction (hereinafter, referred to as “saccharification reaction”) by an enzyme group obtained by adding ⁇ -dalcosidase to the enzyme can be performed.
  • starch-degrading enzymes such as dalcoamylase, -amylase, and saccharified ⁇ -amylase are recommended as highly effective enzymes for lowering the degree of polymerization of the oligosaccharide composition.
  • gnorecoamylase is mainly used for the additional decomposition for promoting the reduction of molecular weight, and furthermore, pullulanase and human amylase which are debranching enzymes are simultaneously acted on.
  • Patent Document 1 by the present inventors, after treatment with heat-resistant liquefied l-amylase, dextrozyme (manufactured by Novozyms Japan) which is a mixed enzyme preparation of dalcoamylase and pullulanase was used. To reduce the molecular weight. The PMD composition obtained by decomposing the synthesized phosphate starch with liquefied heat-amylase is further added. If you want to understand, Dalcoamylase sales enzyme agent AMG (Novosims Japan,
  • BBA (manufactured by Dienencore, derived from barley), which is a commercial enzyme for amylase, is used.
  • the average degree of polymerization of the POS composition obtained by additional decomposition with dalcoamylase was 114, and the average degree of polymerization of the POS composition obtained by additional decomposition with ⁇ -amylase was 418. .
  • the conditions for the additional degradation reaction by the starch-degrading enzyme vary greatly depending on the type of enzyme, but usually the reaction temperature is 20 70 ° C, the pH is 417, the degradation (saccharification) time is 0.5 96 hours, and the amount of enzyme added Is 0.0001 1% by weight based on the solid content of the raw material.
  • the enzyme used in the additional decomposition reaction can be used at the same time as the liquefied hermylase treatment used in the first decomposition.
  • the enzymatic degradation product of phosphoric acid starch includes insoluble substances such as added enzymes, aggregated proteins generated by a degradation reaction, and undegraded starch. Furthermore, unreacted inorganic phosphorus in the phosphorylation of starch and salts used for neutralization are also contained as impurities. Insoluble substances are removed by filtration or membrane treatment.To remove salts and inorganic phosphorus, desalination treatment by ion exchange resin treatment, nanofiltration (NF) membrane treatment, ion exchange membrane treatment, etc. is required. . By desalting a composition containing PMD and POS obtained by enzymatically decomposing phosphate starch, the ratio of inorganic phosphorus to total phosphorus can be reduced.
  • insoluble substances such as added enzymes, aggregated proteins generated by a degradation reaction, and undegraded starch. Furthermore, unreacted inorganic phosphorus in the phosphorylation of starch and salts used for neutralization are also contained as impurities. Insoluble substances are removed by filtration or
  • Phosphoric acid starch which is a food-added cauldron, can be added to food as it is.
  • ⁇ -amylase is converted to PMD and POS by being degraded by ⁇ -amylase.
  • heat-amylase derived from other raw materials during the processing process.
  • phosphate starch may be converted to PMD or P ⁇ S with high Ca deposition rates.
  • phosphate starch may be converted to PMD or POS by the action of salivary human amylase during chewing as a food even if there is no human amylase in the food.
  • Samples used in this test include compositions containing PMD and / or POS, phosphate starch, compositions containing reduced PMD and Z or reduced POS, organic acids, monosaccharides, oligosaccharides, sugar alcohols, etc.
  • a sample solution was prepared by dissolving each sample in water to form a 2% by weight solution.
  • high concentration sample solutions were also prepared and used as needed.
  • adjust the pH to 6.5 7.0 with a dilute Na ⁇ H solution or dilute HC1 solution to prepare a sample solution.
  • the obtained sample solution is used on the day of preparation.
  • the reaction of adding no hydroxyapatite and the reaction of adding hydroxyapatite in the same amount are performed simultaneously. All water used is purified water (water purified to an electric resistance of 1 ⁇ S or less, for example, demineralized distilled water regenerated with MILLI-Q Labo manufactured by MILLIPORE).
  • the Ca concentration is measured using a Ca measurement kit (for example, Calcium C Test Co., Ltd., manufactured by Wako Pure Chemical Industries) and displayed in ppm.
  • a Ca measurement kit for example, Calcium C Test Co., Ltd., manufactured by Wako Pure Chemical Industries
  • a hydroxyapatite suspension is prepared by previously suspending hydroxyapatite (Hydroxyapatite type 1 manufactured by Sigma-Aldrich Co.) at a concentration of 5 mg / mL in water. Prepare the standard reaction mixture composition in Table 1 as in the case of the reaction without hydroxyapatite. Reaction in the order of HEPES buffer (200 mM, pH 7.0), KH PO (18 mM) solution, water, and sample solution of each concentration
  • the Ca concentration is measured with a Ca measurement kit (eg, Wako Pure Chemical Calcium C Test Co., Ltd.) and expressed in ppm.
  • a Ca measurement kit eg, Wako Pure Chemical Calcium C Test Co., Ltd.
  • the concentration of soluble Ca in the solution after the completion of the reaction for 24 hours without adding hydroxyapatite was measured, and the Ca solubilization rate was calculated from the following equation.
  • Ca solubilization rate (%) [Soluble Ca (ppm) of supernatant of reaction solution without addition of hydroxyapatite / Ca (ppm) added to reaction solution] X 100
  • the soluble Ca concentration in the 24-hour reaction completed solution of hydroxyapatite-added kamut was subtracted from the soluble Ca concentration in the 24-hour reaction completed solution of hydroxyapatite-free kafun.
  • the value is assumed to be the amount of Ca deposited on hydroxyapatite, which is a crystal of calcium phosphate.
  • the ratio to roxyapatite was set as the Ca deposition rate, and was determined by the following equation.
  • Ca deposition rate (%) ⁇ [Soluble Ca (ppm) in supernatant of reaction solution without addition of hydroxyapatite-soluble Ca (ppm) in supernatant of reaction solution after addition of hydroxyapatite] / Hydrogen added to reaction solution Droxyanotite (500ppm) ⁇ X 100
  • the Ca deposition rate of the measurement sample is 5% or more, preferably 10% or more, it is determined that remineralization is promoted.
  • This criterion is set to be preferably 10% or more as the accelerating effect since the Ca deposition rate is about 9% at the Ca concentration of saliva as described above.
  • the Ca deposition rate drops to less than 2% if the substance is active, the Ca deposition rate is 5% at high Ca concentrations. . /.
  • the remineralization promoter of the present invention is used as a component of foods, beverages, seasonings, taste improvers, oral hygiene agents, detergents, metal supplements, metal absorption promoters, cosmetics, feeds, and fertilizers. be able to.
  • the Ca solubilization rate is further increased, and a soft drink containing a large amount of polyvalent metal salts such as Ca, Mg, and Fe can be produced.
  • polyvalent metal salts such as Ca, Mg, and Fe
  • the remineralization promoter of the present invention is used in foods, beverages, seasonings, taste improvers, oral hygiene agents, detergents, metal supplements, metal absorption promoters, cosmetics, feeds and fertilizers, Ca
  • the polyvalent metal salt can be maintained in a soluble state, that is, a state in which it can be used in a living body.
  • the present invention will be described specifically with reference to Examples, but the present invention is not limited to the following Examples.
  • the measurement of the bound phosphorus content and the measurement of the average degree of polymerization of the composition containing PMD and / or POS were performed by the following methods, respectively. I did it.
  • Phosphorus content was measured according to the method described in Starch'-Related Carbohydrate Experimental Method (Society Press Center, Michinori Nakamura et al.).
  • To measure the phosphorus content of the starch phosphate add 0.1% by weight of Termamyl (heat-resistant liquefied human-amylase) to the sample, heat decompose at 95 ° C for 15 minutes, cool with tap water, A homogeneous solution was prepared.
  • hydrochloric acid was added to the enzymatically decomposed solution to adjust the pH to 2, a sample solution was prepared, and phosphorus was measured by the Fiske-Subbarow method. In the case where turbidity was observed during color development, the supernatant was subjected to centrifugation (3000 rpm, 3 minutes) and the absorbance of the supernatant was measured.
  • the total phosphorus content was measured in the same manner as in the case of inorganic phosphorus measurement, and the sample solution adjusted to pH 2 was wet-ashed, and then phosphorus was measured in the same manner.
  • the bound phosphorus content (in each case, wt%, relative to the sample solids) was determined from the following equation.
  • Bound phosphorus content (total phosphorus content-inorganic phosphorus content)
  • the sugar content is measured in accordance with the method described in Experimental Methods for Starch and Related Carbohydrates (Academic Publishing Center, Michinori Nakamura et al.), And the average degree of polymerization of the composition containing PMD and / or POS is determined from total sugar / reducing sugar.
  • the sample solution adjusted to pH 2 was appropriately diluted, and the total sugar was measured by the phenol-sulfuric acid method (Dubois et al., 1956), and the reducing sugar was measured by the Somogyt Nelson method (Nelson, 1944).
  • the measured value was expressed in terms of glucose equivalent weight% (based on the solid content of the sample), and the average degree of polymerization was determined from the following equation.
  • Average degree of polymerization total sugar (% by weight) / reducing sugar (% by weight)
  • phosphate starch was hydrolyzed with a starch-degrading enzyme to prepare a low molecular weight PMD composition.
  • Collect 3 to 4 g of the obtained phosphoric acid starch dry at 105 ° C for 4 hours, allow to cool, precisely weigh 2 g of the dried sample, place it in a lOOmL pressure-resistant glass container, add 70 g of water, and mix uniformly. It was stirred until it became.
  • This 2.8 weight 0/0 of ImL of calcium chloride solution Ka ⁇ E the pH was adjusted to 6.3 with IN-NaO H solution.
  • the bound phosphorus content and the degree of polymerization of the obtained sugar composition were measured. Table 2 shows the results.
  • the average polymerization degree of each composition is about 10 S, and the sugar with phosphorus attached is less susceptible to decomposition than the sugar without phosphorus attached. Will be high. Therefore, the following composition contains almost no POS having a degree of polymerization of 10 or less and is mainly composed of PMD having a degree of polymerization of 11 or more, and is therefore referred to as a PMD composition.
  • the average degree of polymerization of the nine types of PMD compositions was around 150.
  • the original phosphate starch has a slightly lower solubilization rate of Ca.
  • the P ⁇ S composition and the PMD composition did not show any remineralization promoting action, but the action of promoting remineralization was observed at a certain concentration of many organic acids.
  • the organic acid required a larger amount of addition for the Ca deposition rate to be 10% or more.
  • High fructose liquid sugar and palatinose have high Ca solubility, especially high fructose liquid sugar is 600m More than 90% of the calcium phosphate was dissolved with the added amount of g.
  • Fructose-glucose liquid sugar, high-fructose liquid sugar, palatinose and sucrose show a remineralization-promoting effect, and in particular, high fructose liquid sugar has a Ca deposition rate of 15% even with the addition of 400 mg.
  • kristase manufactured by Daiwa Kasei Co., Ltd.
  • the liquefaction reaction was performed at 90 ° C for 1 hour. Next, the solution temperature was cooled to 60 ° C, and thereafter, saccharification reaction was performed at 60 ° C by adding 0.05% by weight (based on solid content) of poramylase (manufactured by Novozyms Japan, Whangamil). After 16 hours, the temperature was raised to 80 ° C and maintained for 2 hours to inactivate the enzyme.
  • poramylase manufactured by Novozyms Japan, Whangamil
  • the combination of the PMD composition and the organic acid showed a marked increase in remineralization promoting effect in all combinations tested. Lactic acid alone has a remineralization-promoting effect when added at lOOmg or more, but not when added at a dose of 50mg (Table 19).
  • Combining a PD of 0.23% by weight with a PMD composition the Ca deposition rate can be much higher than 10%. Adding only 0.2 mg of the PMD composition can reduce the Ca deposition rate to 25%. %.
  • Example 11 Water and potato starch were mixed to prepare 270 kg of a slurry having a starch concentration of 30% by weight, and the pH was adjusted to 6.3 by adding slaked lime. Next, 120 L of Tamamill was added to the jet tucker by adding 0.05% by weight to starch. After maintaining the cooking temperature at 105 ° C and the pressure at lkg / cm 2 (gage pressure), guide it to a high-temperature retention tower, hold it under pressure at 105 ° C for 5 minutes, and then transfer it to an aging tank. It was liquefied by holding at 95 ° C for 2 hours. After cooling the obtained liquefied liquid to 60 ° C., oxalic acid was added to adjust the pH to 4.5. The saccharification reaction was promoted by adding dextrozyme to starch at 0.1% by weight and maintaining the mixture at 60 ° C for 40 hours.
  • the obtained saccharified solution of potato starch was filtered with a filter press, and the clarified solution was passed through a decolorization tower filled with granular activated carbon to be decolorized.
  • the obtained sugar solution is converted into a strongly acidic cation exchange resin (LEVATIT S-100WS), a weakly basic anion exchange resin (LEVATIT MP64-WS), a strongly acidic cation exchange resin (LEVATIT SP-112WS), and a strongly basic anion exchange resin. (LEVACIT MP-600).
  • desalted water was passed through the resin tower to extrude the sugar solution.
  • the POS adsorbed on the anion exchange resin was eluted by passing a 4% by weight caustic soda solution heated to 40 ° C. through the weakly basic anion exchange resin. Effluent volume begins to recover from the 1.0 times the eluate fractions of the resin capacity, by recovering up to 1.7 times the resin volume, Natoriumu salt of 1 3 Rei_3 containing solids 13 wt% solution 3.513 ⁇ 4 (Average degree of polymerization 4, bound phosphorus 3.6%) was obtained.
  • the resulting phosphoric acid starch was dissolved at 20 weight 0/0 concentration shed - 0.1 wt% of Tamaminore 120L as amylase (vs. solids) was added, mosquitoes and CaCl As further Ca concentration of 50ppm ⁇ I got it.
  • the pH was adjusted to 6.0 with NaOH, and the mixture was liquefied at 95 ° C for 2 hours by steam heating.
  • the mixture was heated at 2 ° C. for 2 hours and filtered through a ceramic filter (pore size: 0.2 / i).
  • the filtrate was spray-dried to obtain 6.4 kg of a powdered POS calcium salt composition.
  • the bond P of the obtained POS calcium salt composition was 2.8% by weight, the inorganic P was 0.19% by weight, and the average degree of polymerization was 6.4.
  • a mixed solution of monosodium phosphate and disodium phosphate was added to the starch slurry to dissolve it, dried with a drum dryer and pulverized.
  • the obtained phosphoric acid starch (100 kg) was dissolved at a concentration of 20% by weight, and 120 L of terminol as a heat-amylase was added at 0.05% by weight (based on solid content), and CaCl was calored so that the Ca concentration became 50 ppm. Adjust the pH to 6.0 with NaOH, then heat to 90 ° C with steam heating.
  • a liquefaction reaction was performed for 2 hours. Then, in order to reduce the molecular weight, the solution was cooled down to 60 ° C and added with 0.05% by weight (to solid content) of force, ra-amylase (manufactured by Novozyms Japan) and saccharified at 60 ° C. The reaction was performed. Twenty hours later, Termal Mill 120 L was added in an amount of 0.02% by weight (based on solid content), and the temperature was raised to 80 ° C and maintained for 2 hours.
  • the reaction was stopped by adding 1% by weight (based on solid content) of powdered activated carbon, and the mixture was filtered through a ceramic filter (pore size: 0.2 /).
  • a ceramic filter pore size: 0.2 /.
  • 1000 kg of the obtained permeate was concentrated on a NF membrane (Nitto Denko NTR-7430) processor with a salt rejection of 30%. After concentrating with an evaporator, add NaOH to make ⁇ 6.0 Then, 47 kg of a powdered POS sodium salt composition was obtained.
  • a mixed solution of monosodium phosphate and disodium phosphate was added to the dried starch and dried with a flash dryer.
  • Dissolve 100 kg of the obtained phosphoric acid starch at a concentration of 20% by weight add 120 L of tamminole as a heat-amylase (0.03% by weight to solid content), and further add CaCl to bring the Ca concentration to 50 ppm. I got it. Adjust the pH to 6.3 with NaOH and adjust the temperature to 90 ° C with steam and calo heat.
  • the reaction was stopped by adding 1% by weight (based on solid content) of powdered activated carbon, and the mixture was filtered through a ceramic filter (pore size 0.2 /). Further, the mixture was concentrated by an evaporator and subjected to a spray dryer to obtain 75 kg of a powdery PMD sodium salt composition.
  • the resulting PMD composition had a binding P of 0.25% by weight, an inorganic P of 0.06% by weight, and an average degree of polymerization of 11.
  • the mixture was concentrated with an evaporator, and dried with a spray drier to obtain 85 kg of a calcium-sodium-containing PMD composition containing powder.
  • the binding P was 0.27% by weight
  • the inorganic P was 0.05% by weight
  • the average degree of polymerization was 12.
  • a mixed solution of monosodium phosphate and disodium phosphate was added to the dried starch and dried with a flash dryer.
  • 100 kg of the obtained phosphoric acid starch is dissolved at a concentration of 20% by weight, and klysase (manufactured by Daiwa Kasei) 0.05% by weight (based on solid content) is added as an ⁇ -amylase so that the Ca concentration becomes 50 ppm.
  • the reaction was stopped by adding 1% by weight (based on solid content) of powdered activated carbon, and the mixture was filtered through a ceramic filter (pore size: 0.2 ⁇ ). 900 kg of the obtained permeate was concentrated using a NF membrane (Nitto Denko NTR-7430) processor with a salt rejection of 30%. Further, the mixture was concentrated with an evaporator, and Na ⁇ H was added to adjust the pH to 6.0, followed by spraying to obtain 5 lkg of a powdery PMD sodium salt composition.
  • NF membrane Nito Denko NTR-7430
  • the obtained PMD composition had a binding P of 2.8% by weight, an inorganic P of 0.3% by weight, and an average degree of polymerization of 10%.
  • a remineralization test was performed under the conditions, and the Ca solubilization rate and Ca deposition rate were calculated. The results are shown in Table 41.
  • the present invention is used in the fields of foods, beverages, seasonings, taste improvers, oral hygiene agents, detergents, metal supplements, metal absorption promoters, cosmetics, feeds, and fertilizers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Inorganic Chemistry (AREA)
  • Animal Husbandry (AREA)
  • Zoology (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Cosmetics (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

 Caなどの金属イオンを可溶性に維持する機能と、歯の初期う蝕を修復する再石灰化作用を促進する機能などの特性を有する物質や組成物を食品、飲料、調味料、味質改善剤、口腔衛生剤、洗剤、金属補給剤、金属吸収促進剤、化粧品、飼料、肥料に利用する。  本発明は、リン酸でん粉、リン酸マルトデキストリン、還元リン酸マルトデキストリン、リン酸オリゴ糖、還元リン酸オリゴ糖、有機酸、及び糖類からなる群から選ばれる少なくとも1種を含む組成物であって、特定の再石灰化試験反応においてカルシウム沈着率が5%以上、好ましくは10%以上となる作用を有する再石灰化促進剤;並びに前記再石灰化促進剤を含有することを特徴とする食品、飲料、調味料、味質改善剤、口腔衛生剤、洗剤、金属補給剤、金属吸収促進剤、化粧品、飼料又は肥料に関する。

Description

明 細 書
再石灰化促進剤
技術分野
[0001] 本発明は、結晶性のリン酸カルシウムが存在すると共存する水溶性のリン酸カルシ ゥムが結晶性のリン酸カルシウムに沈着する現象、すなわち、歯の再石灰化現象を 促進する作用を有する再石灰化促進剤に関する。本発明の再石灰化促進剤は、食 品、飲料、調味料、味質改善剤、 口腔衛生剤、洗剤、金属補給剤、金属吸収促進剤 、化粧品、飼料、肥料などの分野で利用されるものである。
[0002] また本発明は、再石灰化促進作用を有するリン酸でん粉、リン酸マルトデキストリン (PMD)、リン酸オリゴ糖 (P〇S)、及びそれらの塩類を含む組成物を製造する方法、さ らに還元リン酸マルトデキストリン、還元リン酸オリゴ糖、及びそれらの塩類を含む組 成物を製造する方法に関する。
背景技術
[0003] 本発明者らは、すでに特許文献 1において、高い Ca (カルシウム)可溶化活性を有 する PMDや POS、及びそれらの製造法を開示している。さらに、特許文献 2におい て、 PMDや P〇Sの多価金属塩類組成物並びにそれらの製造方法を開示している。 これらの発明は水溶性に乏しいリン酸カルシウムを水溶性に維持する作用を有する P MDや P〇Sに関するものである。なお、本発明では、 ひ—1 , 4及びひ _1, 6結合の ぶどう糖からなる多糖で、ぶどう糖の重合度が 10を越える化合物をマルトデキストリン (MD)と称し、 10以下の重合度の化合物をオリゴ糖 (〇S)と称する。
[0004] また、本発明者らの一部は共同研究により、特許文献 3において、馬鈴薯でん粉か ら得られる POSの抗ぅ蝕機能を有する組成物を開示し、さらに、特許文献 4において 、同じく馬鈴薯でん粉から得られる POSをカルシウム強化剤として含有する飲食物を 開示し、さらにまた、特許文献 5において、同じく馬鈴薯でん粉から得られる POSを 味質改善剤として含有する飲食物を開示している。
[0005] 馬鈴薯でん粉から得られる POSの抗ぅ蝕機能の発明に当たっては、本発明者らと の共同研究者らにより、馬鈴薯でん粉由来 POSが従来の石灰化現象の抑制、虫歯 菌のミュータンス菌に資化されなレ、、グノレカンを生成しなレ、、 pH緩衝作用を持つなど の作用 (特許文献 6に開示)の他に、虫歯を修復する再石灰化作用を有することが見 出されて、特許文献 3の発明に結びついたものである。同時に、該共同研究者らは、 別に、馬鈴薯でん粉由来 POSを除く pH緩衝作用を有する緩衝剤を含む組成物にも 抗ぅ蝕機能を認めて、特許文献 7で開示している。
[0006] 特許文献 7の発明によれば、杭う蝕機能とは、う蝕予防機能とう蝕治療機能の両方 を含み、(1) pH緩衝作用を有し、 口腔内細菌の産生する酸による pH低下を抑制す る能力を有する。 (2) 口腔内細菌の作る不溶性グルカンの形成を抑制する能力を有 する。 (3)初期う蝕の歯の再石灰化を促進する能力を有する。のいずれか一つ以上 を有することを意味するとしている。抗ぅ蝕機能を有する緩衝剤として、 P〇S及びそれ らの糖アルコール、酸性糖質 (オリゴガラタツロン酸、コンドロイチン硫酸、コンドロイチ ン硫酸オリゴ糖、ぶどう糖一 6—リン酸)、有機酸 (酒石酸、クェン酸、リンゴ酸、乳酸、フ マル酸、マレイン酸)、核酸 (各種ヌクレオシド又はヌクレオチドのリン酸エステル)、アミ ノ酸などを挙げている。
[0007] 一方、オリゴ糖ゃ糖アルコールにも再石灰化を促進するもののあることが知られて いる。特許文献 8には、ノ チニットが歯の再石灰化を促進すると記載されている。特 許文献 9には、キシリトール、マンニトール、ガラクチトール、イノシトールが歯の再石 灰化を促進することが記載されている。ただし、これらのオリゴ糖ゃ糖アルコールが再 石灰化を促進するに有効な濃度は数%濃度とされている。従って、前述の馬鈴薯で ん粉由来の POSが 0.2%という低い濃度で有効性を発揮することは、食品などへの 利用面で極めて有利な特徴であるといえる。
[0008] 馬鈴薯でん粉由来の POSは、特許文献 6に開示されているように、 α -1 , 4結合し た 3— 5個のぶどう糖にリン酸基が 1個結合したオリゴ糖群とひ— 1, 4結合した 2— 8個 のぶどう糖にリン酸基が 2個結合したオリゴ糖群の混合組成物であり、結合リンが 3% 以上と多い割には Ca可溶化活性がかなり低い特徴を有している。これに対して、本 発明者らが特許文献 1に開示しているように、でん粉にリン酸塩を混合してから焙焼 して得られるリン酸でん粉を原料として、 a—アミラーゼなどのでん粉分解酵素で加水 分解して製造される PMDや POSは、結合リンが 2%前後と少なレ、にもかかわらず、 極めて高い Ca可溶化活性を有している。すなわち、化学的に調製したリン酸でん粉 力 得られる PMDや POSと、天然の馬鈴薯でん粉から得られる POSとは、 Caを可 溶性に維持する機能においてかなりの違いが認められる。
[0009] 特許文献 7の発明によれば、緩衝作用を有する POSは全て再石灰化作用を有す るとされている。そこで、化学的に調製したリン酸でん粉から得られる結合リン 1.8% の PMDについて、特許文献 7に開示されている簡易再石灰化試験系で再石灰化作 用を測定すると、試料濃度 0.2%では再石灰化率は 20% (ヒドロキシアパタイト非存 在下の Ca可溶化率ーヒドロキシアパタイト存在下の Ca可溶化率)しか得られず、再石 灰化促進効果を認めることができなかった。一方、馬鈴薯でん粉由来の POSは同じ 試料濃度 0.2%で 55%の再石灰化率となり、特許文献 3に開示されている再石灰化 促進効果が確認された。すなわち、化学的に調製したリン酸でん粉から得られる PM Dや P〇Sには再石灰化促進効果の認められないことが明らかとなった。
特許文献 1:特開平 11 - 255803号公報
特許文献 2:特開 2002 - 145893号公報
特許文献 3:特開 2002 - 325556号公報
特許文献 4 :特開 2002— 253170号公報
特許文献 5:特開 2002— 253164号公報
特許文献 6 :特開平 8 - 104696号公報
特許文献 7:特開 2002 - 325557号公報
特許文献 8:特開 2000 - 247852号公報
特許文献 9:特開平 11 - 12143号公報
発明の開示
発明が解決しょうとする課題
[0010] 前述のように、結合リン 3.6%の馬鈴薯でん粉由来 POSには優れた再石灰化促進 効果が認められるのに対して、化学的に調製したリン酸でん粉から得られる結合リン 1.8%の PMDには再石灰化促進効果が認められない。その原因を考察すると、結合 リン 3.6%の馬鈴薯でん粉由来 POSは、ヒドロキシアパタイトの存在しない反応系で は可溶性の Caが多ぐヒドロキシアパタイトが存在すると可溶性の Caが少なくなる。こ のように、可溶性 Caの差の大きいことがヒドロキシアパタイトへの Ca沈着の増加となる 。一方、リン酸でん粉由来の結合リン 1.8%の PMDは、ヒドロキシアパタイトが存在し ない反応系も、存在する反応系でも、共に可溶性の Caが多くなる。その結果、可溶 性 Caの差がほとんどなくなり、再石灰化率の低下につながつている。
[0011] そこで、馬鈴薯でん粉由来 P〇Sと同じような再石灰化促進作用を有する PMDを得 るべく探索を試みた。結合リンの異なるリン酸でん粉を合成し、でん粉分解酵素によ る分解度の異なる各種 PMD組成物を調製した。さらに、再石灰化試験に用いる PM D組成物の添加量を 50mgから 0.02mgまで変化させて再石灰化反応を行ったところ 、驚いたことに、結合リンが 0.2重量%と低ぐ重合度が 10以上のデキストリンの範疇 に入る鎖長のものが、再石灰化促進作用を有することを見出した。さらに、本発明を 進める中で、再石灰化試験の測定条件を改善し、結晶性のヒドロキシアパタイトへの Caの沈着率を評価基準とする新しい再石灰化促進評価法を設定することにより、馬 鈴薯でん粉由来の POSよりも極めて低い濃度で再石灰化促進効果を示す PMDや POSを含む組成物を見出すことに成功した。また、本発明の再石灰化促進評価法に より、有機酸や単糖、オリゴ糖、糖アルコールなどの物質にも、ある濃度範囲で再石 灰化促進効果を示す物質が存在することを見出した。し力も、 PMDや POSを含む組 成物に有機酸を組み合わせると、 Ca = 15mMのような高い Ca濃度において、高い Ca沈着率を示す条件のあることを見出すに至った。
[0012] 本発明は、極めて低い濃度で Ca可溶化作用及び再石灰化促進作用を発揮する 物質や組成物に関するものであり、 Caなどの金属イオンを可溶性に維持する機能と 、歯の初期う蝕を修復する再石灰化作用を促進する機能などの特性を有する物質や 組成物を食品、飲料、調味料、味質改善剤、 口腔衛生剤、洗剤、金属補給剤、金属 吸収促進剤、化粧品、飼料、肥料に利用しょうとするものである。
課題を解決するための手段
[0013] 本発明者らは、馬鈴薯でん粉由来の POSには優れた再石灰化促進効果が認めら れるにもかかわらず、化学的に調製したリン酸でん粉から得られる PMDや POSには 再石灰化促進効果が認められないことに強い疑問を感じて、再石灰化促進作用の 有効性の高い物質をスクリーニングすべぐ再石灰化試験法の見直し、改善を含め て鋭意検討を進めた結果、馬鈴薯でん粉由来の POSには認められない、より優れた 再石灰化促進効果を有する物質や組成物を見出すことに成功した。
[0014] すなわち、本発明は以下の発明を包含する。
[0015] (1)下記の再石灰化試験測定法において、カルシウム可溶化率及びカルシウム沈着 率を指標としてリン酸カルシウムの再石灰化促進作用を評価する方法。
[0016] 再石灰化試験測定法:
(i) 試料溶液の調製
試料を水に溶解し、 pHを 6.5— 7.0に調整して試料溶液を調製する。同一試料で 同一添カ卩量のヒドロキシアパタイト無添加反応とヒドロキシアパタイト添加反応を同時 進行で行う。
[0017] (ii) ヒドロキシアパタイト無添加反応
ガラス製反応用容器に、緩衝液 (pH7. 0)、 KH PO溶液、水及び
2 4 G)で得た試料 溶液を入れる。得られた試料混合液の入った反応用容器を 36 ± 0. 3°Cの恒温槽に 10分間以上静置してから、試料混合液の pHを 7. 00 ± 0. 02に調整する。 pHの調 整を終えた試料混合液は前記恒温槽に戻して 10分間以上静置する。次いで、 36土 0. 3°Cで pHを 7. 00 ± 0. 02に調整された試料混合液に水を投入してから CaCl溶
2 液を投入し、前記恒温槽に静置して反応を開始する。反応終了後、反応液の一部を 採取して、遠心分離した後、上清を回収して、可溶性のカルシウム濃度を測定する。
[0018] (iii) ヒドロキシアパタイト添カ卩反応
CaCl溶液を投入する前に、水の代わりにヒドロキシアパタイト懸濁液をカ卩えることを
2
除いて、(ii)のヒドロキシアパタイト無添加反応の場合と同様に、同一試料で同一添カロ 量の反応を行い、反応終了液の可溶性のカルシウム濃度を測定する。
[0019] (iv) カルシウム可溶化率の算出
ヒドロキシアパタイト無添加の反応終了液における可溶性のカルシウム濃度を測定 し、下記式から Ca可溶化率を求める。
[0020] カルシウム可溶化率(%) = [ヒドロキシアパタイト無添加反応終了液上清の可溶性力 ルシゥム/反応液に添加したカルシウム] X 100
(v) カルシウム沈着率の算出 同一試料で同一添加量の反応において、ヒドロキシアパタイト無添カ卩反応の終了液 における可溶性のカルシウム濃度からヒドロキシアパタイト添カ卩反応の終了液におけ る可溶性のカルシウム濃度を差し引いた値の、反応液に添加したヒドロキシアパタイト に対する比率をカルシウム沈着率と設定し、下記式で求める。
[0021] カルシウム沈着率(Q/o) = { [ヒドロキシアパタイト無添加反応終了液上清の可溶性力 ルシゥムーヒドロキシアパタイト添加反応終了液上清の可溶性カルシウム] Z反応液 に添加したヒドロキシアパタイト } X 100
(2)リン酸でん粉、リン酸マルトデキストリン、還元リン酸マルトデキストリン、リン酸オリ ゴ糖及び還元リン酸オリゴ糖からなる群から選ばれる少なくとも 1種を含む組成物であ つて、下記の再石灰化試験測定法において当該組成物の添カ卩量が 0.002mg 50 mgの少なくともいずれかの時、カルシウム沈着率が 5%以上、好ましくは 10%以上と なる作用を有する再石灰化促進剤。
[0022] 再石灰化試験測定法:
(i) 試料溶液の調製
試料溶液は当該組成物を水に溶解し、希 NaOH溶液又は希 HC1溶液で pHを 6.5 一 7.0に調整して調製する。得られた試料溶液は調製した当日に使用する。同一試 料で同一添加量のヒドロキシアパタイト無添加反応とヒドロキシアパタイト添加反応を 同時進行で行う。なお、水は全て精製水(電気抵抗が 1 β S以下に精製された水)を 使用する。
[0023] (ii) ヒドロキシアパタイト無添カ卩反応
JIS検定に合格した標準温度計で正確に 36°Cを表示し、温度変化が ± 0. 3°C以 内となる恒温槽を用意する。ガラス製の反応用バイアル瓶 (容量 13. 5mL)に、 HEP ES緩衝液(200mM, pH7. 0) lmL、 KH PO (18mM)溶液 lmL、水、及び (i)で
2 4
得た 0.002mg— 50mgの当該組成物を含む試料溶液を順次入れて、全量を 8mLと する。得られた試料混合液の入ったバイアル瓶を 36 ± 0. 3。Cの恒温槽に 10分間以 上静置してから、試料混合液の pHを 7. 00± 0. 02に調整する。 pH調整に用いる希 NaOH溶液又は希 HC1溶液の添力卩量は 100 μ L以内とする。 pHの調整を終えた試 料混合液は前記恒温槽に戻して 10分間以上静置する。次いで、 36 ± 0. 3°Cで pH を 7· 00 ± 0. 02に調整された試料混合液に水 lmLを投入してから速やかに CaCl
2
(30mM)溶液 lmLを投入し、前記恒温槽に静置して 24時間反応する。反応終了 後、反応液の一部を採取して、 12, 000rpm、 3分間遠心分離した後、上清を回収し て、可溶性のカルシウム濃度を測定する。可溶性のカルシウム濃度はカルシウム測 定キット(例えば、和光純薬製カルシウム Cテストヮコ一)で測定し、 ppm単位で表示 する。
[0024] (iii) ヒドロキシアパタイト添加反応
予め、ヒドロキシアパタイト(例えば、 Sigma- Aldrich Co.製の Hydroxyapatite type 1) を 5mgZmLの濃度で水に懸濁したヒドロキシアパタイト懸濁液を調製する。 CaCl (3
2
OmM)溶液 lmLを投入する前に、水 lmLの代わりに前記ヒドロキシアパタイト懸濁 液 lmLをカ卩えることを除いて、(ii)のヒドロキシアパタイト無添加反応の場合と同様に、 同一試料で同一添加量の反応を行い、反応終了液の可溶性のカルシウム濃度を測 定する。
[0025] (iv) カルシウム可溶化率の算出
ヒドロキシアパタイト無添カ卩の 24時間反応終了液における可溶性のカルシウム濃度 を測定し、下記式から Ca可溶化率を求める。
[0026] カルシウム可溶化率(%) = [ヒドロキシアパタイト無添加反応終了液上清の可溶性力 ルシゥム(ppm) /反応液に添加したカルシウム(ppm) ] X 100
(V) カルシウム沈着率の算出
同一試料で同一添加量の反応において、ヒドロキシアパタイト無添カ卩の 24時間反 応終了液における可溶性のカルシウム濃度からヒドロキシアパタイト添カ卩の 24時間反 応終了液における可溶性のカルシウム濃度を差し引いた値の、反応液に添加したヒ ドロキシアパタイトに対する比率をカルシウム沈着率と設定し、下記式で求める。
[0027] カルシウム沈着率(%) = { [ヒドロキシアパタイト無添加反応終了液上清の可溶性力 ルシゥム(ppm)—ヒドロキシアパタイト添加反応終了液上清の可溶性カルシウム(pp m)] /反応液に添加したヒドロキシアパタイト(500ppm) } X 100
(3)少なくとも 1種の有機酸を含む組成物であって、前記(2)に記載の再石灰化試験 測定法において当該組成物の添加量が O.O lmg— 200mgの少なくともいずれかの 時、カルシウム沈着率が 5%以上、好ましくは 10%以上となる作用を有する再石灰化 促進剤。
[0028] (4)少なくとも 1種の有機酸を含む組成物であって、前記(2)に記載の再石灰化試験 測定法の両反応における CaCl濃度を 5mM、 KH PO濃度を 3mMに置き換えた
2 2 4
条件において当該組成物の添加量が 5mg 400mgの少なくともいずれかの時、力 ルシゥム沈着率が 5%以上、好ましくは 10%以上となる作用を有する再石灰化促進 剤。
[0029] (5)単糖、オリゴ糖及び糖アルコールからなる群から選ばれる少なくとも 1種を含む組 成物であって、前記(2)に記載の再石灰化試験測定法において当該組成物の添カロ 量力 OOmg— lOOOmgの少なくともレ、ずれ力の時、カルシウム沈着率が 5%以上、 好ましくは 10%以上となる作用を有する再石灰化促進剤。
[0030] (6)リン酸でん粉、リン酸マルトデキストリン、還元リン酸マルトデキストリン、リン酸オリ ゴ糖及び還元リン酸オリゴ糖からなる群から選ばれる少なくとも 1種、並びに少なくとも 1種の有機酸を含む組成物であって、前記(2)に記載の再石灰化試験測定法の両 反応における CaCl濃度を 5mM、 KH PO濃度を 3mMに置き換えた条件におい
2 2 4
て当該組成物の添加量が 0. 02mg— lOOOmgの少なくともいずれ力の時、カルシゥ ム沈着率が 5%以上、好ましくは 10%以上となる作用を有する再石灰化促進剤。
[0031] (7)リン酸でん粉、リン酸マルトデキストリン、還元リン酸マルトデキストリン、リン酸オリ ゴ糖及び還元リン酸オリゴ糖からなる群から選ばれる少なくとも 1種、並びに有機酸、 単糖、オリゴ糖及び糖アルコールからなる群から選ばれる少なくとも 1種を含む組成 物であって、前記(2)に記載の再石灰化試験測定法において当該組成物の添加量 が 0. 02mg lOOOmgの少なくともレ、ずれ力の時、カルシウム沈着率が 5%以上、好 ましくは 10%以上となる作用を有する再石灰化促進剤。
[0032] (8)リン酸でん粉、リン酸マルトデキストリン、還元リン酸マルトデキストリン、リン酸オリ ゴ糖及び還元リン酸オリゴ糖からなる群から選ばれる少なくとも 1種、並びに少なくとも 1種の有機酸を含む組成物であって、前記(2)に記載の再石灰化試験測定法の両 反応における CaCl濃度を 10— 15mM、 KH PO濃度を CaCl濃度の 60%モル濃
2 2 4 2
度に置き換えた条件において当該組成物の添加量が 0. 02mg— lOOOmgの少なく ともいずれかの時、カルシウム沈着率が 5%以上、好ましくは 10%以上となる作用を 有する再石灰化促進剤。
[0033] (9)前記組成物が多価金属塩を含む前記(2)— (4)及び(6)— (8)のレ、ずれかに記 載の再石灰化促進剤。
[0034] (10)リン酸マルトデキストリン及びリン酸オリゴ糖力 でん粉及び/又はでん粉分解 物にリン酸及び/又はリン酸塩を混合してから焙焼して得られるリン酸でん粉及び/ 又はリン酸でん粉分解物を少なくとも 1種のでん粉分解酵素で加水分解して製造さ れるリン酸マルトデキストリン及びリン酸オリゴ糖である前記(2)及び(6) (9)のいず れかに記載の再石灰化促進剤。
[0035] (11)リン酸マルトデキストリン、還元リン酸マルトデキストリン、リン酸オリゴ糖及び還元 リン酸オリゴ糖の重合度が 9以上である前記(2)及び(6)—(10)のレ、ずれかに記載 の再石灰化促進剤。
[0036] (12)自身は再石灰化促進作用を示さなレ、リン酸でん粉であって、後に加水分解さ れることによってリン酸マルトデキストリン及び/又はリン酸オリゴ糖を生成した時、前 記(2)に記載の再石灰化試験測定法において、リン酸でん粉から生成するリン酸マ ルトデキストリン及び/又はリン酸オリゴ糖の添加量が 0· 002mg— 50mgの少なくと もいずれかの時、カルシウム沈着率が 5%以上、好ましくは 10%以上となる作用を有 する再石灰化促進剤。
[0037] (13)リン酸でん粉力 でん粉及び/又はでん粉分解物にリン酸及び/又はリン酸塩 を混合した後、焙焼して製造されるリン酸でん粉、リン酸でん粉分解物、及びそれら の塩類である前記(2)、 (6)一 (12)のいずれかに記載の再石灰化促進剤。
[0038] (14)還元リン酸マルトデキストリン及び/又は還元リン酸オリゴ糖力 でん粉及び Z 又はでん粉分解物にリン酸及び Z又はリン酸塩を混合した後、焙焼して得られるリン 酸でん粉及び/又はリン酸でん粉分解物を少なくとも 1種のでん粉分解酵素で加水 分解し、次いで、得られたリン酸マルトデキストリン及び Z又はリン酸オリゴ糖を水添 還元して製造される還元リン酸マルトデキストリン及び/又は還元リン酸オリゴ糖、及 びそれらの塩類である前記(2)、(6)—(9)及び(11)のレ、ずれかに記載の再石灰化 促進剤。 [0039] (15)食品、飲料、調味料、味質改善剤、 口腔衛生剤、洗剤、金属補給剤、金属吸収 促進剤、化粧品、飼料又は肥料の成分として用いられる前記(2)—(14)のいずれか に記載の再石灰化促進剤。
[0040] (16)前記(2)—(14)のいずれかに記載の少なくとも 1種の再石灰化促進剤を含有 することを特徴とする食品、飲料、調味料、味質改善剤、 口腔衛生剤、洗剤、金属補 給剤、金属吸収促進剤、化粧品、飼料又は肥料。
[0041] (17)マルトデキストリン及び/又はオリゴ糖を水添還元して製造された還元マルトデ キストリン及び/又は還元オリゴ糖に、リン酸及び Z又はリン酸塩を混合した後、焙焼 して得られる還元リン酸マルトデキストリン、還元リン酸オリゴ糖及びそれらの塩類の 少なくとも 1種を含む組成物。
[0042] (18)マルトデキストリン及び/又はオリゴ糖を水添還元して製造された還元マルトデ キストリン及び/又は還元オリゴ糖に、リン酸及び Z又はリン酸塩を混合した後、焙焼 して製造することを特徴とする還元リン酸マルトデキストリン、還元リン酸オリゴ糖及び それらの塩類の少なくとも 1種を含む組成物を製造する方法。
[0043] (19)前記(17)に記載の組成物からなる食品、飲料、調味料、味質改善剤、 口腔衛 生剤、洗剤、金属補給剤、金属吸収促進剤、化粧品、飼料又は肥料。
発明の効果
[0044] 本発明は水溶性に乏しい故に生理的効果が発現し得ないリン酸カルシウムなどの 金属塩を可溶性に維持するだけでなぐ結晶性のリン酸カルシウムが存在すると水溶 性のリン酸カルシウムを結晶に沈着させる作用、すなわち、再石灰化の促進作用を 有する組成物を提供するものである。新しく設定した再石灰化試験法による Ca可溶 化率及び Ca沈着率によって再石灰化促進作用物質を探索し、リン酸でん粉、 PMD 、 POS、還元 PMD、還元 POS、有機酸、糖類などの有効物質を見出した。さらに、 再石灰化促進作用における有機酸や糖類と各リン酸化糖との相乗作用も見出し、 C al5mMの高濃度下でも再石灰化促進作用を示す組成物を提供する。
[0045] 本発明の再石灰化促進作用を示す組成物は、食品、飲料、調味料、味質改善剤、 口腔衛生剤、洗剤、金属補給剤、金属吸収促進剤、化粧品、飼料、肥料など広い分 野で利用されるものである。 発明を実施するための最良の形態
[0046] 以下に本発明を詳細に説明する。
本発明において、第一に重要な機能はリン酸カルシウムを可溶性に維持する機能 である。本発明者らは特許文献 1 (特開平 11—255803号公報)において、リン酸力 ルシゥムを可溶性に維持する機能として Ca可溶化活性測定法を設定し、極めて高い Ca可溶化活性を示す POS、 PMDを開示している。次に重要な機能は歯の結晶成 分のようなリン酸カルシウムの結晶にリン酸カルシウムが沈着する再石灰化作用であ る。
[0047] 前述のように、特許文献 7 (特開 2002— 325557号公報)において再石灰化作用を 簡便に測定する方法が開示されている。再石灰化現象を、 (1)構成成分であるカル シゥム (Ca)イオン及びリン酸イオンが脱灰部に供給される。 (2)供給された Caイオン 及びリン酸イオンが脱灰部のエナメル質の結晶成長に供される。と解析して、再石灰 化促進物質とは、中性下で Caとリン酸との不溶化を抑制しつつ、歯の結晶成分であ るヒドロキシアパタイトの結晶成長を促進する物質であるとしている。
[0048] 再石灰化のこのようなメカニズムを応用した簡易再石灰化試験系は、(A)リン酸、 C a及び試料を含む溶液から歯成分の存在下で Ca沈殿反応を進める工程。(B)該沈 殿反応後における溶液中の Ca濃度又は Ca沈殿量を測定する工程。(C)該溶液から 該歯成分の非存在下で Ca沈殿反応を進める工程。 (D)該歯成分の非存在下におけ る沈殿反応の後、溶液中の Ca濃度又は生成した Ca沈殿量を測定する工程。 (E)ェ 程 (B)及び (D)における Ca濃度又は沈殿量を比較する工程。を包含するとし、歯成分 として結晶のヒドキシアパタイトが使用できるとしている。
[0049] 前述のように、本発明者らは Ca可溶化活性の高レ、 PMDに再石灰化促進作用が認 められないことから、馬鈴薯でん粉由来 P〇Sと同じような再石灰化促進作用を有する POSや PMDを得るべく探索を試みた。結合リンの異なるリン酸でん粉を合成し、で ん粉分解酵素による分解度の異なる各種 PMD組成物を調製して再石灰化試験を 繰り返したところ、結合リンが 0.2重量%と低ぐ重合度が 10以上のデキストリンの範 疇に入る鎖長の PMD組成物が、再石灰化促進作用を有することを見出した。
[0050] これらの探索研究の過程で、前記簡易再石灰化試験法について、反応条件や評 価方法などを詳細に検討した。その結果、反応条件として、リン酸と Caの濃度及び比 率が再石灰化作用に大きレ、影響を与えることを知った。リン酸カルシウムは Ca濃度 が高くなれば、急激に Caは不溶性となり、 Ca濃度が一定でリン酸濃度だけが高くな つても、 Caは不溶性化する。再石灰化作用を起こすには、取りも直さず、 Caとリン酸 が可溶性の状態で維持されなければならない。結晶のリン酸カルシウムに沈着する 前に Caが不溶化すれば、リン酸カルシウムの結晶の成長に Caやリン酸が供給されな くなり再石灰化作用は起こらなレ、。特に Caは、わずかな濃度変化で劇的に Caの可 溶性状態を変えることが判明した。
[0051] もう一つ、意外にも温度が Caの可溶性を大きく変える因子であった。実験の再現性 に不安があり、正確な温度で再石灰化試験反応を行うこととした。当初は、温度の影 響をあまり考慮しないで、反応時間も長いことから、反応液の調製から反応開始まで 室温で行い、 37°Cのインキュベーターに移して 24時間放置していた。ところ力 温度 の違いが微妙に pHの違いにつながり、 20°C位の室温で調整した pH7.0は、 37°Cで はやや低くなることが分かった。そこで、反応液の調製段階から 37°Cの恒温槽に入 れて温度を調節し、反応初期から 37°Cで反応を開始できるようにすると、 37°C、 24 時間の反応条件で、ヒドロキシアパタイト非存在下の Ca可溶化率が大きく減少して、 再石灰化率が低下することとなった。ちなみに、馬鈴薯でん粉由来の POS (結合リン (^ = 3.6重量%)を 20mg添加して測定すると、再石灰化率は従来の測定条件では 55 %であったものが、わずか 5 %にまで減少した。
[0052] 反応温度の影響を調べるには、正確な温度測定が必要となり、 JIS検定に合格した 標準温度計で正確に 35、 36、 37°Cを表示し、温度変化が ± 0.3°C以内となる恒温 槽を用意した。少量の反応液では pHの調整が困難であり、調整時の温度変化も大 きいので反応液は全量で 10mLとする反応系を設定した。標準的な反応液の組成は 表 1に示す。
[0053] [表 1] 標準反応液組成
HEPES緩衝液 (200 H 7. 0) 1. OmL
試料溶液又は精製水 6. OmL
K H 2 P 04 (麵 1. OmL
C a C 1 2 (30 1. OmL
ヒドロキシァパタイト懸濁液 1. OmL
(5mg/mL)又は精製水
l OinL
CaCl溶液及びヒドロキシアパタイト懸濁液を投入する前に、試料混合液を各温度
2
の恒温槽に 10分間以上静置してから、試料混合液の pHを 7.00± 0.02に調整した 。再度、恒温槽に 10分間以上静置してから、ヒドロキシアパタイト存在反応系ではヒド ロキシアパタイト懸濁液を投入し、速やかに CaCl溶液を投入して反応を開始した。ヒ
2
ドロキシアパタイト非存在反応系ではヒドロキシアパタイト懸濁液の代わりに精製水( 電気抵抗が 1 β S以下に精製された水)を添加してから同様にして反応を開始した。 恒温槽に静置して 24時間反応させた。反応終了後、反応液の一部を採取して、 12,000rpm、 3分間遠心分離した後、上清を回収して、 Ca濃度を測定した。 Ca濃度 は Ca測定キット (和光純薬製カルシウム Cテストヮコ一)で測定した。前述の馬鈴薯で ん粉由来 POSの 20mg添加における、 35、 36、 37°Cの各温度での再石灰化率は、 70%、 67%、 5%であった。 36°Cと 37°Cとの間で、再石灰化率に大きい差が認めら れ、測定結果の再現性に対する疑問が解消されることとなった。
反応温度の影響が極めて大きいことが判明したので、再度、 Caやリン酸の濃度の 影響を調べた。反応温度は体温に近い 36°Cを採用して検討を進めた。 Ca/P (モル 比) = 5/3と一定にして、 Ca濃度を変化させると、 Ca= 1.8mMでは、促進物質を加 えない反応系でも再石灰化率は 60%であった。すなわち、試料なしの反応系でも再 石灰化率は 60%と高い値を示すだけでなぐ試料として馬鈴薯でん粉由来 POSを 2 Omg添加しても再石灰化率はほとんど増加せず、再石灰化促進作用は認められな かった。人の唾液に含まれる Ca濃度は 1.8mM前後といわれており、この条件ではリ ン酸濃度が高くならない限り自然に再石灰化が行われていることになる。このことは、 有機酸によりリン酸カルシウムが溶解した歯の表面に、中性、 Ca= 1.8mMの物理的 条件下で唾液から供給されるリン酸カルシウムが沈着することによって、絶えず歯は 修復されていることを示している。ところが、 Ca濃度が高くなるにつれ、溶解性の Ca 濃度が逆に低下していき、 Ca = 2.5mMでは溶解性 Ca濃度は Ca= 1.8mMの 60% 程度となり、 Ca = 3.0mMでは 50%以下となる。その結果、促進物質を加えない反 応系の再石灰化率は Ca = 2.5mMでは 20%前後、 Ca = 3.0mMでは 6%前後とな る。
[0055] しかし、供給される Caの濃度が高くなつておれば、多少、再石灰化率が減少しても 歯の表面に沈着する Caが減少しなければ歯は修復されると考えることもできる。そこ で、ヒドロキシアパタイトに対する Caの沈着率を調べてみると、 Ca= 1.8mMでは反 応系のヒドロキシアパタイトに対して 9%程度の Caが沈着している計算となる。ところ が、 Ca = 2.5mM、 Ca = 3.0mMの Ca沈着率を同様に求めると、それぞれ、 4%程 度、 2%以下と低下することが判明した。このことは、食品から可溶性の Caが供給され ても、再石灰化の観点からすれば、むしろマイナスに作用することを示している。 36 °C、 24時間、 Ca = 3.0mM、 P= 1.8mMの条件で簡易再石灰化試験を行うと、前述 の馬鈴薯でん粉由来 POSは 20mg添加で再石灰化率が 67%を示し、 Ca沈着率は 13%となる。すなわち、再石灰化促進物質が存在しなければ、 Ca = 3.0mMでは 2 %以下にまで低下する Ca沈着率が、馬鈴薯でん粉由来 POSを添加することにより、 唾液の Ca= 1.8mMにおける Ca沈着率 9%より高い 13%の沈着率に達したこととな る。抗ぅ蝕機能の中でもっとも重要な機能である再石灰化促進作用が、前記のように Ca濃度が高くなつたときに発揮されることにより、特許文献 3 (特開 2002— 325556 号公報)に示されるような、馬鈴薯でん粉由来 P〇Sを含有するガムで再石灰化効果 が確認されることにつながったものと思われる。
[0056] さらに、唾液に含まれるリン酸の濃度は 3mM程度とされており、 Ca濃度より高い濃 度で存在する。リン酸カルシウム結晶のモル比は Ca/P = 5/3であって、 Ca濃度よ りリン酸濃度の低い方が再石灰化には好ましい。唾液の Ca/Pモル比を高くするに は Caの供給が必要であり、 Caを食品から供給すれば、必然的に唾液中の Ca濃度は 2mMより高くなり、 Ca濃度が 5mMに達すれば、 CaZPモル比は 5/3に近づくこと になる。しかし、ここで重要なことは Ca濃度が 3mMから 5mMの間で、再石灰化率を 高く維持することである。前述のように、 Ca/P = 5/3の条件で、再石灰化率は Ca = 3mMでは 6%前後、 Ca = 5mMでは 3%前後となり、 Ca沈着率はいずれも 2%未 満でしかなレ、。
[0057] これまで述べてきたように、再石灰化率は同じ Ca濃度での増減は比較できる力 C a濃度が変われば比較が困難となる。すなわち、 Ca濃度が高い時には、再石灰化率 は低くても Ca沈着率は Ca濃度の低いときよりも大きくなることがある。そこで、 Ca沈着 率を比較することにより、再石灰化促進作用を評価することとした。
[0058] 本発明のきっかけは、前述のように、馬鈴薯でん粉由来で結合 = 3.6重量%の P OSには優れた再石灰化促進効果が認められるのに対して、化学的に調製したリン 酸でん粉から得られる結合 = 1.8重量%の PMDには再石灰化促進効果が認めら れないことであった。簡易再石灰化試験の可溶性 Caの測定値を見ると、馬鈴薯でん 粉由来 POSは、ヒドロキシアパタイトのない反応系では可溶性 Ca濃度が高ぐヒドロ キシアパタイトが存在する反応系では可溶性 Ca濃度が低くなり、再石灰化率が高く なる。一方、リン酸でん粉由来 PMDでは、ヒドロキシアパタイトのない反応系の可溶 性 Ca濃度が高レ、ものの、ヒドロキシアパタイトの存在する反応系でも可溶性 Ca濃度 が高くなるため、再石灰化率が低くなつている。
[0059] 天然の馬鈴薯でん粉の結合 Pは 0.1重量%未満であり、糖化原料として使用されて レ、る馬鈴薯でん粉の平均結合 Pは 0.05重量%程度である。リン酸でん粉の調製条 件を変更して結合 Pが 1重量%未満のリン酸でん粉を作り、 a一アミラーゼで分解して 結合リンの異なる PMDを各種作製した。一例として、結合?ニ ? 重量。/。の PMD について、 36°C、 24時間、 Ca = 3.0mM、 P = 1.8mMの簡易再石灰化試験系で測 定すると、 20mgの添力卩で再石灰化率は 61 %となり、 Ca沈着率は 12%であった。前 述のように、同じ条件で結合? = 3.6重量%の馬鈴薯でん粉由来 POSは 20mgの添 加で再石灰化率は 67%、 Ca沈着率は 13%である。ところ力 驚いたことに結合 P = 0.23重量%の 1^0はその添加量を0.02111§まで少なくしても、 Ca沈着率は 10%を 示すことが判明した。これに対して、馬鈴薯でん粉由来 POSは 2mgから 0. 5mg添カロ まで Ca沈着率が 13%以上を維持するものの、 0. 2mg添加では Ca沈着率は 7%とな り、 0. lmg添加の Ca沈着率は 5%に低下して、再石灰化促進作用をあまり示さなく なる。すなわち、リン酸でん粉を原料として調製される PMDや POSは天然の馬鈴薯 でん粉由来の POSと異なり、結合リンが 1/15と少ないにもかかわらず、 10倍以上の 再石灰化促進作用を示すことが明らかとなった。
[0060] 前述の特許文献 7 (特開 2002—325557号公報)では、緩衝剤が再石灰化促進作 用に有効であるとされている。し力 ながら、リン酸でん粉由来の PMDは結合リンが 少ないにもかかわらず、強い再石灰化促進作用を示しており、同じ Ca沈着率を示す 添カ卩量における緩衝能力を比較すると、 PH7.0の試料液を pH6.0に下げるに要する 塩酸の使用量は、馬鈴薯でん粉由来 POS (結合 = 3.6重量%)の方がリン酸でん粉 由来の PMD (結合? = 0.23重量%)より: 1000倍以上も多く必要とした。すなわち、リ ン酸でん粉由来の PMDは、緩衝能力を発揮し得ない極めて低い濃度でも再石灰化 促進作用を示しており、再石灰化を促進する条件では緩衝能力はほとんど機能して いないと思われる。
[0061] そこで、緩衝剤として広く利用されている有機酸にも注目してみた。有機酸は歯を 溶解する虫歯原因物質であって、到底、再石灰化促進作用を示すとは考えられなか つた。乳酸は口中で糖質が微生物により分解されて生成する代謝産物であり、最も 虫歯の原因物質とされている。驚いたことに、 36°C、 24時間、 Ca = 3.0mM、 P = l. 8mMの条件で再石灰化試験すると、 lOOmgの乳酸添加は意外にも 14%の Ca沈着 率を示した。さらに、 20mg添加まで乳酸は 10%以上の Ca沈着率を示し、その後、 1 Omg添加では Ca沈着率は 5%まで急減した。乳酸の再石灰化促進作用には濃度依 存性が大きぐ 10%以上の Ca沈着率を維持する添加量は 20から 200mgの範囲で しかなかった。これに対して、前述のリン酸でん粉由来の PMD (結合 P = 0.23%)の 添加量は 0. 02mgから 20mgと 1000倍もの広い濃度範囲で 10。 /。以上の Ca沈着率 を維持している。乳酸とリン酸でん粉由来の PMDとの再石灰化促進作用における添 加量の挙動からも、緩衝能力が直接、再石灰化促進作用に結びつくのではなぐ各 成分と Caイオンとの微妙な相互作用が再石灰化促進作用につながっていると推察さ れる。
[0062] さらに、 Ca濃度を 5mMに高くすることができれば、唾液のリン酸濃度とのバランス 力 Sリン酸カルシウム結晶の組成に近づくことになる。従って、 Ca = 5mMの条件で再 石灰化を促進する物質は抗ぅ蝕機能の面でより優れた効果が期待される。ところが、 馬鈴薯でん粉由来の POS (結合 P = 3.6%)やリン酸でん粉由来の PMD (結合 P = 0. 23%)は Ca = 5mMの条件になると、簡易再石灰化試験では再石灰化率が極めて 低ぐ Ca沈着率は 2%未満となった。そこで、結合 Pが 2重量%を超えるリン酸でん粉 を調製して PMDを作成し、 36。C、 24時間、 Ca = 5.0mM、 P = 3.0mMの条件で簡 易再石灰化試験を行った。ところが、結合? = 2.8重量%の PMDは 20mgの添加量 でも、 Ca = 5.0mMでは Ca沈着率は 5%未満でしかなかった。なお、この PMD (結合 = 2.8重量%)は、 Ca = 3.0mMにおいて、 20mgの添加では再石灰化促進作用を あまり示さないが、添加量を 0. 02mgに少なくすると 19%の Ca沈着率が得られるよう になり、再石灰化促進作用を示すことを見出している。
一方、乳酸は添加量 lOOmgにすると、前述の Ca = 5mMの反応条件で Ca沈着率 は 17%が得られ、 PMDや POSでは到底有効性を発揮できない Ca高濃度下で、乳 酸は高い再石灰化作用を示した。し力 ながら、乳酸の添加量をを 20mgに少なくす ると、 Ca沈着率が 2%未満に急減し、単独では高濃度が必要であった。そこで、 100 mgの乳酸に 2mgのリン酸でん粉由来の PMD (結合 13 = 0.23重量%)を加えてみると 、 Ca沈着率が 20%以上に大きく増加して、著しい再石灰化促進作用が出現した。さ らに、乳酸単独では効果を示さない 50mg添加であっても、リン酸でん粉由来の PM D (結合?ニ 重量。/。)をわずかに 0. 2mg加えるだけで、 Ca沈着率が 25%と極め て高い値に達した。 Ca = 5mMの高濃度では、再石灰化は極めて困難であり、促進 作用物質であっても高濃度を要求されることとなる。この時、リン酸でん粉由来の PM Dと有機酸を混合使用すれば、より少ない添加量で再石灰化を促進することができる ようになることが明らかとなった。このような PMDと有機酸との組み合わせによる再石 灰化促進作用における相乗作用の出現は、両者の作用機構が異なることによって起 こると推察される。従って、 PMDと有機酸との相乗作用は単に緩衝作用を有すること が再石灰化促進作用に結びつくものではないことを示しており、作用の異なる再石灰 化促進作用を有する物質の組み合わせにより、より少ない添加量で再石灰化作用を 促進すること力 Sできることになる。 PMDと有機酸との相乗作用程の著しい効果はない 力 組み合わせによる再石灰化の促進は、馬鈴薯でん粉由来の POS (結合 P = 3.6 重量%)でも認められる。 Ca = 3mMでは、馬鈴薯でん粉由来の POSは 0. 5mg添カロ で Ca沈着率が 15%であったものが、 0. 2mg添加では Ca沈着率が 7%に低下する。 これに lOmgの乳酸を添カ卩すると、 Ca沈着率は 16%まで高められ、 P〇Sと乳酸両者 の Ca沈着率の合計値とほぼ同等であった。
[0064] 再石灰化促進剤として期待される有機酸としては、例えばクェン酸、リンゴ酸、酒石 酸、ダルコン酸、フマル酸、コハク酸、酢酸、乳酸、アジピン酸、ィタコン酸、フィチン 酸、安息香酸、ァスコルビン酸、ダルコノデルタラタトン、 ひ—ケトグルタール酸、酸性 アミノ酸が挙げられる。これらの有機酸は、例えばナトリウム塩、カリウム塩等のアル力 リ金属塩、カルシウム塩、マグネシウム塩等のアルカリ土類金属塩、アンモニゥム塩、 鉄塩、亜鉛塩、銅塩、アルミニウム塩として用いることもできる。
[0065] さらに、本発明者らは新しい再石灰化評価法により、再石灰化促進作用を有する単 糖、オリゴ糖、糖アルコールを見出している。その上、再石灰化作用を示す糖質、キ シリトールなどが PMD組成物と相乗作用を示すことを見出した。 Ca = 3mMの条件 で、キシリトールを lOOmg添加すると 6%の Ca沈着率を示す力 これにリン酸でん粉 由来の PMD (結合? = 0.23重量%)をわずかに 0. 2mg加えるだけで、 Ca沈着率が 1 8%と高い値を示した。次いで、単独では促進作用を示さない糖質についても、同様 に再石灰化試験を行うと、糖アルコールではほとんど全ての糖質に微量のリン酸でん 粉由来の PMD (結合? = 0.23重量%)をカ卩えると高い Ca沈着率を示した。さらにまた 、糖アルコール以外の糖質である、単糖、オリゴ糖などについて調べたところ、ほとん ど全ての糖質に微量のリン酸でん粉由来の PMD (結合?ニ ? 重量。/。)をカ卩えると C a沈着率が高められることが判明した。
[0066] 再石灰化促進剤として期待される単糖としては、例えばぶどう糖、果糖、マンノース 、ガラクトース、タロース、ソノレボース、タガトース、デォキシグノレコース、プシコース、 フコース、ラムノース、ァロース、ァノレトロース、グロース、イドース、キシロース、ァラビ ノース、リボース、デォキシリボース、リキソース等が挙げられる。
[0067] 再石灰化促進剤として期待されるオリゴ糖としては、例えば水あめ、ショ糖、パラチ ノース、セロビ才ース、キシロビ才ース、メリビオース、キトビオース、キチビ才ース、ラ クチュロース、ゲンチオビオース、ノ ラチノース、トレハロース、トレハルロース、コウジ ビオース、ニゲロース、ラミナリビオース、ビシァノース、プリメブロース、ロジメナビォ ース、ラタトース、ラフイノース、スタキオース、ッラノース、ソホロース、アロラクトース、 カップリングシュガー、パラチノースオリゴ糖、フラタトオリゴ糖、乳果オリゴ糖、ガラタト オリゴ糖、ゲンチォオリゴ糖、セロオリゴ糖、キシロオリゴ糖等が挙げられる。
[0068] 再石灰化促進剤として期待される糖アルコールとしては、例えばキシリトール、ソル ビトーノレ、マルチトール、パラチニット、還元水あめ、エリスリトーノレ、キシリトーノレ、 マン 二トール、ガラクチトール、ァラビ二トール、ラタチトール、パラチニット、リビトーノレ、トレ イト一ノレ、ァリトーノレ、イソマルチトール、イノシトール、クエルシトール、イノソース、還 元澱粉糖化物等が挙げられる。
[0069] 以上の検討結果から、 Caを溶解する能力が認められる物質には再石灰化促進作 用が認められること、その効果発現には緩衝作用と関係なぐ適度な濃度となる添カロ 量が必要であることが明らかとなった。これらの再石灰化促進物質は添加量が多くて も、再石灰化作用を妨げることがあり、添加量が少なければ全く促進効果を示さない 現象が起こりうる。従って、有効濃度を知ることが重要であり、本発明の再石灰化試 験法による Ca沈着率測定はその点で極めて利用価値の高い評価法である。唾液中 の Ca濃度では 9%の Ca沈着率を示すことから、 Ca沈着率を 10%以上に高めること をもって、再石灰化促進作用ありと判定することが好ましい。し力 ながら、食事によ つて食品由来の Caが加えられて唾液の Ca濃度が高まる Ca = 3— 5mMでは Ca沈着 率が 2%未満に低下することを考えれば、このような Ca高濃度下で 5%以上の Ca沈 着率が得られるなら、再石灰化促進作用ありと判定することができる。
[0070] 本発明者らは、特許文献 1 (特開平 11—255803号公報)においてリン酸カルシゥ ムを可溶性に維持する能力に優れた PMDや POSにつレ、て開示してレ、る。本発明は 、特許文献 1の開示内容からは予測できなかった再石灰化促進作用に関するもので あり、し力、も Ca可溶化活性の高いものが必ずしも再石灰化促進作用に優れるとは限 らないことを見出したものである。さらに特許文献 3 (特開 2002—325556号公報)に おいて、馬鈴薯でん粉由来の P〇Sに抗ぅ蝕機能を有する組成物を開示している。し 力、しながら、合成のリン酸でん粉から調製される PMDや P〇Sに極めて強い再石灰 化作用があり、馬鈴薯でん粉由来の P〇Sと異なり、緩衝作用をほとんど示さない濃 度で再石灰化作用を示すことは全く予測できな力 たことである。また、新しく開発し た再石灰化の評価法により、有機酸や糖アルコール、単糖、オリゴ糖にも再石灰化 促進作用を示す有効濃度が存在することや PMDや POSと再石灰化の相乗作用を 示すことを見出したことは、これまで知られていない現象である。
[0071] 本発明では、原料及びその製造方法の如何を問わず、でん粉をリン酸化して得ら れるリン酸でん粉に少なくとも 1種のでん粉分解酵素を作用させて製造される PMD 及び/又は POSを含む組成物であって、本発明の再石灰化試験法によって Ca沈 着率が 5%以上、好ましくは 10%以上を示す PMD及び Z又は POSを含む組成物 が全てその対象となる。もちろん、 Ca沈着率が 5%以上、好ましくは 10%以上を示す リン酸でん粉も対象であり、リン酸でん粉には、リン酸がエステル結合しているリン酸 エステルでん粉や尿素リン酸エステルでん粉などが含まれる。食品添加物として認可 されているリン酸でん粉は、でん粉リン酸エステルナトリウムであり、結合リンとして 0.2 一 3重量%のリンを含み、遊離のリン、すなわち無機リンの含量は全体のリン (全リン) の 20%以下と規定されてレ、る。
[0072] リン酸でん粉の原料となるでん粉は、とうもろこし、馬鈴薯、甘薯、タピオ力、小麦、 大麦、米など植物起源のでん粉だけでなぐいずれの起源のでん粉でも使用すること ができる。また、起源にかかわらず、でん粉を物理的、化学的処理により変性された でん粉も使用することができる。さらに、酵素処理により部分分解されたでん粉、すな わち、でん粉分解物も同様に原料として使用できる。馬鈴薯でん粉のような結合リン を有する天然のリン酸でん粉も原料となり得るが、合成のリン酸でん粉を原料とする 場合、リン酸でん粉の合成方法は特に限定されない。リン酸でん粉の製造方法として は、通常、でん粉スラリーにリン酸及び Z又はリン酸塩を混合してから脱水し、乾燥- 焙焼する方法、でん粉の脱水ケーキにリン酸及び/又はリン酸塩溶液を噴霧して乾 燥'焙焼する方法、でん粉乾粉にリン酸及び/又はリン酸塩溶液を混合して乾燥'焙 焼する方法などが用いられる。これらの焙焼方法で、さらに薬品として尿素を添加す ると尿素リン酸エステルでん粉を合成することができる。でん粉スラリーを原料とする 場合には、スラリー濃度は均一な流動性を維持する観点から、 30— 50重量%、好ま しくは 35— 45重量%で用いられる。
[0073] リン酸及び/又はリン酸塩としてはリン酸、リン酸一ナトリウム、リン酸ニナトリウム、リ ン酸三ナトリウム、トリポリリン酸ナトリウム、ピロリン酸ナトリウム、酸性ピロリン酸ナトリウ ム、へキサメタリン酸ナトリウム、酸性へキサメタリン酸ナトリウムなどのリン酸ナトリウム 塩やリン酸一カリウム、リン酸二カリウム、トリポリリン酸カリウム、トリメタリン酸カリウムな どのリン酸カリウム塩やリン酸一アンモニゥム、リン酸二アンモニゥムなどのリン酸アン モニゥム塩、さらにォキシ塩化リンなど広くリン酸塩が使用できる。
[0074] リン酸及び Z又はリン酸塩の添加量はその種類によって異なる力 でん粉の重量に 対して 0.5— 240重量%であり、好ましくは 5 40重量%である。なお、尿素リン酸ェ ステルでん粉の合成にはリン酸塩の他に尿素の添カ卩が必要である。尿素の添加量は でん粉の重量に対して 0.5 240重量%であり、好ましくは 5 60重量%である。 pH を調整するために、酸、アルカリを使用することができる。酸としては、当然リン酸を用 レ、ることができ、リン酸以外に塩酸、硫酸、亜硫酸などを使用することができる。アル カリとしては NaOH、 KOH、 Ca(OH)などを用いることができる。
2
[0075] でん粉とリン酸及び/又はリン酸塩との混合物(尿素リン酸エステルでん粉の合成 の場合には尿素も含む)は水分を除くため乾燥するのが望ましい。リン酸化反応とな る後工程の焙焼において、水分が多いとリン酸化率 (結合リン/全リン X 100)を高め ることが困難となり、得られるリン酸でん粉の着色が進むなどの問題が生じる。でん粉 をリン酸化する焙焼の条件としては、焙焼温度が高くなるほど、焙焼時間が長くなる ほど結合リンは増加するが、焙焼品の色が赤褐色となる。従って、焙焼の条件は温度 としては、 100— 250°C、好ましくは 130— 200°Cの温度で、焙焼時間としては、 5分 力 24時間、好ましくは 10分一 4時間の範囲で加熱するのが好ましい。
[0076] これらのリン酸化法以外にも、本発明者らが特許文献 1 (特開平 11—255803号公 報)に開示しているように、でん粉とリン酸及び/又はリン酸塩とを混合した後、糊化- 乾燥してから焙焼する方法も採用される。糊化'乾燥法としては、例えば、でん粉スラ リーにリン酸及び Z又はリン酸塩をカ卩えて溶解した後、ドラムドライヤーで糊化 '乾燥 する方法や、でん粉乾粉にリン酸及び/又はリン酸塩をカ卩えて必要に応じて水を加 えながらエタストルーダー処理して糊化 ·乾燥する方法などがある。 [0077] 本発明では、前述の方法で得られるリン酸でん粉の Ca沈着率が 5%以上となる再 石灰化促進作用を有するリン酸でん粉そのものがその対象となるだけでなぐリン酸 でん粉そのものは前記再石灰化促進作用を有さなくとも、リン酸でん粉を原料とする 食品の加工工程において、他の原料に含まれるでん粉分解酵素によりリン酸でん粉 が分解を受けて再石灰化促進作用を示す場合、元のリン酸でん粉は再石灰化促進 剤となり得る。さらに、食品に添加されたリン酸でん粉は、人の唾液に含まれるでん粉 分解酵素により加水分解を受けて低分子化した PMDや P〇Sを生成し、これらが再 石灰化促進作用を示す場合、当然、元のリン酸でん粉は再石灰化促進剤となり得る 。また、でん粉を低分子化してからリン酸化する方法も採用され得る。しかしながら、 でん粉の低分子化を進めると、加熱焙焼時の着色が進み、脱色精製が困難となるこ とが判明した。このような場合、還元でん粉分解物や還元麦芽水あめのようなでん粉 の加水分解物を水添還元して製造された糖アルコール混合物を原料としてリン酸化 反応を行うと、 Ca沈着率の高い還元 PMD及び/又は還元 POSを含む組成物が製 造されることを見出した。し力も、焙焼反応で得られる還元 PMD及び/又は還元 PO Sを含む組成物は着色度が低いことから、そのまま商品となり得るだけでなぐ精製が 容易であって純度の高い製品を製造することが可能となる。
[0078] このように還元デキストリン (還元でん粉分解物)や還元麦芽水あめを原料としてリン 酸化して製造される還元 PMDや還元 POSの着色物質生成が、でん粉を原料として リン酸化して製造されるリン酸でん粉の着色物質生成より少ないことは、リン酸でん粉 を酵素分解して得られる PMDや POSを水添還元して製造される従来の還元 PMD や還元 POSに比べて精製工程の負荷が少なくなり、工業生産に適した製造法である 。しかも、着色物質の生成はリン酸化の焙焼工程で一部の糖が分解することによって 起こるとされている。従って、本発明の還元デキストリンや還元水あめを原料としてリ ン酸化により製造される還元 PMDや還元 P〇Sは、リン酸デキストリンやリン酸オリゴ 糖を水添還元して得られる従来の還元 PMDや還元 P〇Sとは、厳密には異なる新規 な組成を有するリン酸化糖であると思われる。
[0079] 本発明の PMDや POSを含む組成物は、前述のリン酸でん粉をひ—アミラーゼで分 解して低分子化することにより得られる。低分子化により粘度が低下するため、食品 などへの利用用途が大きく拡大される。本来、分解に用いる酵素はでん粉をランダム に切断する α _アミラーゼであれば全て用いることができ、当然 2種以上の酵素を混 合して用いることもできる。 ひ—アミラーゼとしては、工業的なでん粉の分解(以下、「 液化」ともいう)に多用されている耐熱性液化型ひ—アミラーゼの他に、中温性液化型 ひ—アミラーゼ、糖化型ひ—アミラーゼ、糖転移酵素の CGTase (Cyclomaltodextrin glucanotransferase)や TVA (Thermoactinomyces vulgarisの a— ^y ~セ)など力使 用できる。しかし、工業生産に適応した酵素としては耐熱性の液化型ひ—アミラーゼ が分解能力及びでん粉の溶解力において優れている。リン酸でん粉にひ—アミラー ゼを作用させる条件は、酵素の種類により異なるが、通常用いられている酵素の作用 温度条件を採用することができる。用いる酵素は 80 1 10°Cで有効に作用する耐熱 性液化型ひ—アミラーゼが好ましぐいずれの起源のものでも使用できる。具体的に は、細菌起源の高耐熱性ひ—アミラーゼであるターマミル 1 20L及び L/S (ノボザィ ムズ ジャパン製、 Bacillus licheniformis由来及び同由来と Bacillus
stearothermophilus混合物)、ネオスピターゼ PG2 (ナガセ生化学工業製、 Bacillus subtilis由来)、クライスターゼ T (大和化成製、 Bacillus subtilis由来)などの巿販酵 素を用いることができる。
[0080] 基質となるリン酸でん粉は 10— 40重量%濃度のスラリーとし、水酸化カルシウム及 び/又は水酸化ナトリウムをカ卩えて、通常 116.0—6.3に調整する。耐熱性 α—アミ ラーゼは安定剤として 50ppm以上のカルシウム 'イオンを必要とするので、 pH調整 用アルカリとしては水酸化カルシウムが主に使用される。酵素添加量は使用する酵 素によって大きく異なる力 0.0001— 0.5重量%、好ましくは 0.01— 0.2重量% (対 でん粉)である。反応の pHも使用する酵素によって異なる力 通常 pH4— 7の間で行 われる。工業生産におけるでん粉分解反応 (液化反応)では、でん粉の老化を防ぐた め、 ひ—アミラーゼ添加後の反応開始温度を 100— 1 10°Cに高めて 2 15分、加圧 条件で処理した後、 90 100°Cの高温で 30分一 5時間程度酵素分解を進めて行わ れている。
[0081] ひ—アミラーゼによるリン酸でん粉の分解は工業生産における分解反応と異なり、必 ずしも 100 1 10°C、加圧というような厳しい分解条件を必要とはしなレ、。結合リンの 多寡によって異なるものの、結合リンがでん粉の老化を防ぐ役割を果たすことから、 1 oo°c以上の厳しい反応条件は必ずしも必要ではない。し力 ながら、分解反応の高 温処理は分解液の濾過性をよくして操業を容易にするなどの面から好ましい。具体 的には、最終濃度として 10— 40重量%となるようにリン酸でん粉を採取し、 2.8重量 %の塩化カルシウムを全液量の lZlOO量加え、 lN_Na〇H溶液でpHを6.3に調 節する。これに、ターマミル 120Lを 0.1重量% (対リン酸結合でん粉)加えて耐圧容 器に移す。 105°Cで 5分間加熱後、 95°Cで 1時間液化反応を継続する。
[0082] リン酸でん粉をひ—アミラーゼのみで処理して得られる PMD組成物は極めて強い 再石灰化促進作用を有しており、そのまま濃縮すれば製品となり得る。しかし、リン酸 でん粉のひ—アミラーゼ処理のみで得られる PMD組成物の平均重合度は 10 50 であり、オリゴ糖 (重合度 10以下)よりもデキストリン (重合度 10 数 100)の範疇に入 る重合度を有している。通常のオリゴ糖より分子量がかなり大きいため、そのまま製品 として濃縮すれば、製品の粘度が高くなつて食品としての使用に制限が起こる場合も ある。さらに製品の重合度を小さくして、粘度を下げるには、 α -アミラーゼを含む各 種でん粉分解酵素や糖転移酵素の 1種又は 2種以上の酵素、さらにこれら各種酵素 の 1種以上の酵素に α—ダルコシダーゼを加えた酵素群による追加分解反応(以下、 「糖化反応」という)を行うことができる。なかでも、ダルコアミラーゼ、 —アミラーゼ、 糖化型 α—アミラーゼなどのでん粉分解酵素がオリゴ糖組成物の重合度の低下に有 効性の高い酵素として推奨される。他に、単独では重合度低下作用が少ないものの 、グノレコアミラーゼなどとの組み合わせにより効果を示す酵素として、液化型 α _アミ フ1 ~~セ、 CGTase (Cyclomaltodextrm glucanotransferase)、プノレフナ1 ~~ゼ、イソ/ ^フ ーゼ、 TVAなどが挙げられる。
[0083] 従来技術では、低分子化を進めるための追加分解にはグノレコアミラーゼが主に使 用され、さらに、枝切り酵素であるプルラナーゼやひ—アミラーゼを同時に作用させて いる。本発明者らによる先願発明(特許文献 1)においても、耐熱性液化型ひ-アミラ ーゼで処理した後、ダルコアミラーゼとプルラナーゼの混合酵素剤であるデキストロ ザィム(ノボザィムズ ジャパン製)を使用して低分子化を進めている。合成したリン酸 でん粉を液化型ひ—アミラーゼで分解処理して得られた PMD組成物をさらに追加分 解する場合、ダルコアミラーゼの巿販酵素剤 AMG (ノボザィムズ ジャパン製、
Aspergillus niger由来)、 _アミラーゼの巿販酵素剤である BBA (ジエネンコア製、 大麦由来)が用いられる。なお、ダルコアミラーゼにより追加分解して得られる POS組 成物の平均重合度は 1一 4であり、 β—アミラーゼで追加分解して得られる POS組成 物の平均重合度は 4一 8であった。でん粉分解酵素による追加分解反応の条件は酵 素の種類によって大きく異なるが、通常、反応温度は 20 70°C、 pHは 4一 7、分解( 糖化)時間は 0.5 96時間、酵素添力卩量は原料の固形分に対して 0.0001 1重量 %である。なお、追加分解反応に用いる酵素は最初の分解で使用する液化型ひ—ァ ミラーゼ処理と同時に用いることもできる。
[0084] リン酸でん粉の酵素分解物には、添加酵素や分解反応で生成する凝集タンパク質 や未分解でん粉など不溶性物質が含まれる。さらに、でん粉のリン酸化反応における 未反応の無機リンや中和に用いた塩類なども不純物として含まれている。不溶性物 質は濾過や膜処理で除去されるが、塩類や無機リンを除くにはイオン交換樹脂処理 、ナノフィルトレーシヨン (NF)膜処理、イオン交換膜処理などによる脱塩処理が必要 である。リン酸でん粉を酵素分解して得られる PMDや POSを含む組成物を脱塩処 理することにより、全リンに対する無機リン比率を減少させることができる。原料のリン 酸でん粉の無機リン比率が 20%以上と高くとも、これらの脱塩精製処理により、食品 添加物として規定されているでん粉リン酸エステルナトリウムと同等の無機リン比率が 20%以下となる PMDや POSを含む組成物を得ることができる。
[0085] なお、食品添カ卩物であるリン酸でん粉は、そのまま食品に添加することができる。し かも、 α—アミラーゼによって低分子化されて PMDや POSに変換されるので、リン酸 でん粉をそのまま食品に加えて使用しても、加工工程中に他原料由来のひ—アミラー ゼが存在すれば、リン酸でん粉が高い Ca沈着率を有する PMDや P〇Sに変換される 可能性がある。また、食品にひ—アミラーゼが存在しなくとも、食品として咀嚼中に唾 液のひ—アミラーゼの作用によりリン酸でん粉は PMDや POSに変換される可能性が ある。さらに、咀嚼だけでリン酸でん粉の低分子化が不十分な場合でも、小腸では膝 液のひ—アミラーゼの作用により PMDや POSに変換される可能性がある。すなわち 、リン酸でん粉を高分子のままで食品に添カ卩しても、体内で PMDや P〇Sが生成し、 高い Ca沈着率を示す可能性がある。勿論、前述のように、リン酸でん粉を耐熱性液 化型 α—アミラーゼによって低分子化すれば、粘度が低ぐ Ca沈着率の高い PMD や POSを含む組成物が安価に大量に工業生産され、食品への利用が大きく広げら れると期待される。
[0086] 次に、本発明における再石灰化試験法の測定方法と Ca沈着率の定義を示す。
[0087] (1)試料溶液の調製
本試験に用いる試料は、 PMD及び/又は POSを含む組成物、リン酸でん粉、還 元 PMD及び Z又は還元 POSを含む組成物、有機酸、単糖、オリゴ糖、糖アルコー ルなどであり、基本的に各試料を水に溶解して濃度 2重量%溶液としたものを試料溶 液とした。しかし、必要に応じて高い濃度の試料溶液も調製して使用した。なお、最 終濃度の調整直前に、希 Na〇H溶液又は希 HC1溶液で pHを 6.5 7.0に調整して 試料溶液を調製する。得られた試料溶液は調製した当日に使用する。同一試料で 同一添加量のヒドロキシアパタイト無添加反応とヒドロキシアパタイト添加反応を同時 進行で行う。なお、水は全て精製水(電気抵抗が 1 β S以下に精製された水、例えば 、蒸留水の脱塩水を MILLIPORE社製 MILLI-Q Laboで再生成した水)を使用する
[0088] (2)ヒドロキシアパタイト無添加反応
反応初期の温度は厳密を要するため、 JIS検定に合格した標準温度計で正確に 36 °Cを表示し、温度変化が ± 0. 3°C以内となる恒温槽を用意する。 (1)で得た試料溶 液を必要に応じて水で希釈して表 1の標準反応液組成を調製する。反応用バイアル 瓶(ガラス製、容量 13. 5mL)に、 HEPES緩衝液(200mM, pH7. 0)、 KH P〇 (1
2 4
8mM)溶液、水、各濃度の試料溶液の順に入れる。得られた試料混合液の入ったバ ィアル瓶を 36 ± 0. 3°Cの恒温槽に 10分間以上静置してから、試料混合液の pHを 7 . 00 ± 0. 02に調整する。 pH調整に用いる希 Na〇H溶液又は希 HC1溶液の添加量 は 100 μ L以内とする。 pHの調整を終えた試料混合液は前記恒温槽に戻して 10分 間以上静置する。次いで、 36 ± 0. 3°Cで pHを 7. 00± 0. 02に調整された試料混 合液に水 lmLを投入してから直ちに CaCl (30mM)溶液 lmLを投入して前記恒
2
温槽に静置し、 24時間反応する。反応終了後、反応液の一部を採取して、 12, 000 rpm、 3分間遠心分離した後、上清を回収して、 Ca濃度を測定する。 Ca濃度は Ca測 定キット(例えば、和光純薬製カルシウム Cテストヮコ一)で測定し、 ppm単位で表示 する。
[0089] (3)ヒドロキシアパタイト添加反応
予め、ヒドロキシアパタイト(Sigma-Aldrich Co.製の Hydroxyapatite type 1)を 5mg/ mLの濃度で水に懸濁したヒドロキシアパタイト懸濁液を調製する。ヒドロキシァパタイ ト無添加反応の場合と同様に、表 1の標準反応液組成を調製する。 HEPES緩衝液( 200mM, pH7. 0)、 KH PO (18mM)溶液、水、各濃度の試料溶液の順に反応
2 4
用バイアル瓶に入れる。得られた試料混合液の入ったバイアル瓶を 36 ± 0. 3。Cの恒 温槽に 10分間以上静置してから、試料混合液の pHを 7. 00 ± 0. 02に調整する。 p H調整に用いる希 NaOH溶液又は希 HC1溶液の添力卩量は 100 μ L以内とする。 pH の調整を終えた試料混合液は前記恒温槽に戻して 10分間以上静置する。次いで、 36 ± 0. 3。Cで pHを 7. 00 ± 0. 02に調整された試料混合 ί夜に、前記ヒドロキシァハ。 タイト懸濁液 lmLを投入してから直ちに CaCl (30mM)溶液 lmLを投入して前記
2
恒温槽に静置し、 24時間反応する。反応終了後、反応液の一部を採取して、 12, 0 00rpm、 3分間遠心分離した後、上清を回収して、 Ca濃度を測定する。 Ca濃度は C a測定キット(例えば、和光純薬製カルシウム Cテストヮコ一)で測定し、 ppm単位で表 示する。
[0090] (4) Ca可溶化率の算出
ヒドロキシアパタイト無添カ卩の 24時間反応終了液における可溶性の Ca濃度を測定 し、下記式から Ca可溶化率を求めた。
[0091] Ca可溶化率(%) = [ヒドロキシアパタイト無添加反応終了液上清の可溶性 Ca (ppm ) /反応液に添加した Ca (ppm) ] X 100
(5) Ca沈着率の算出
同一試料で同一添カ卩量の反応において、ヒドロキシアパタイト無添カ卩の 24時間反 応終了液における可溶性の Ca濃度からヒドロキシアパタイト添カ卩の 24時間反応終了 液における可溶性の Ca濃度を差し引いた値は、リン酸カルシウムの結晶であるヒドロ キシアパタイトに沈着した Ca量であるとして、その差し引き値の反応液に添加したヒド ロキシアパタイトに対する比率を Ca沈着率と設定し、下記式で求めた。
[0092] Ca沈着率(%) = { [ヒドロキシアパタイト無添加反応終了液上清の可溶性 Ca(ppm)- ヒドロキシアパタイト添加反応終了液上清の可溶性 Ca(ppm)]/反応液に添加したヒ ドロキシァノ タイト(500ppm) } X 100
本測定条件において、測定試料の Ca沈着率が 5%以上、好ましくは 10%以上とな れば再石灰化促進作用ありと判定する。この判定基準は、前述のように唾液の Ca濃 度では、 Ca沈着率が 9%程度となることから、 10%以上を促進作用として好ましいと 設定したものである。し力、しながら、 Ca濃度が 3 5mMの高い濃度では、作用物質 カ ければ Ca沈着率は 2%未満にまで大きく低下することを考えれば、 Ca濃度が高 い条件では Ca沈着率が 5。/。以上でも再石灰化促進効果ありと判定できる。
[0093] 本発明の再石灰化促進剤は、食品、飲料、調味料、味質改善剤、 口腔衛生剤、洗 剤、金属補給剤、金属吸収促進剤、化粧品、飼料及び肥料の成分として用いること ができる。
[0094] 例えば、有機酸を含まない飲料に PMD (結合 P= 0.23重量%)を 0.02重量%加え れば、 Ca/P (モル比) = 5/3の条件で中性では 120ppmの Caは 100%溶解し、 C a沈着率 19%の再石灰化促進作用に優れた飲料となる。また、乳酸 0.5重量%を含 む飲料は、同じ条件で 200ppmの Caを 50%も溶解できなレ、が、これに PMD (結合 P = 0.23重量)を 0.02重量%加えただけで、 Caは 100%溶解し、 Ca沈着率 25%の 飲料となる。有機酸を含む酸性の飲料では、さらに Ca可溶化率が高くなり、 Ca、 Mg 、 Feなどの多価金属塩類を多く含む清涼飲料を製造することが可能となる。本発明 の再石灰化促進剤を食品、飲料、調味料、味質改善剤、 口腔衛生剤、洗剤、金属補 給剤、金属吸収促進剤、化粧品、飼料及び肥料に利用すれば、 Caを始めとする多 価金属塩類を可溶性の状態を維持する、すなわち、生体内での利用が可能な状態 に維持することができる。
実施例
[0095] 以下、実施例により本発明を具体的に説明するが、本発明は下記実施例により、そ の技術的範囲が限定されるものではない。なお、実施例中、結合リン含量の測定、及 び PMD及び/又は POSを含む組成物の平均重合度の測定は、各々以下の方法に よって行った。
[0096] [結合リン含量の測定]
リン含量はでん粉'関連糖質実験法 (学会出版センター、中村道徳ら)に記載の方 法に準じて測定した。リン酸でん粉のリン含量を測定するため、試料にターマミル 12 0L (耐熱性液化型ひ—アミラーゼ) 0. 1重量%を加えて 95°C, 15分間加熱分解して から水道水で冷却し、均一な溶液を調製した。さらに、水溶性となる無機リンを全てォ ルトリン酸とするため、酵素分解した溶液に塩酸を添加して pH2に調整して試料溶液 とし、 Fiske-Subbarow法でリンを測定した。なお、発色時に濁りが認められるものは 遠心分離(3000rpm, 3分間)して上清の吸光度を測定した。
[0097] 全リン含量は無機リン測定時に pH2に調整した試料溶液を湿式灰化処理してから 、同様にリンを測定した。結合リン含量 (いずれも重量%,対試料固形分)は以下の 式から求めた。
[0098] 結合リン含量 = (全リン含量一無機リン含量)
[PMD及び/又は POSを含む組成物の平均重合度の測定]
糖含量はでん粉 ·関連糖質実験法 (学会出版センター、中村道徳ら)に記載の方法 に準じて測定し、 PMD及び/又は POSを含む組成物の平均重合度は全糖/還元 糖から求めた。リン含量測定の場合と同様に pH2に調整した試料溶液を適宜希釈し て、全糖はフエノールー硫酸法(Duboisら, 1956)で、還元糖は Somogy卜 Nelson法( Nelson, 1944)で測定した。測定値はぶどう糖換算重量% (対試料固形分)で表示し 、平均重合度は下記式から求めた。
[0099] 平均重合度 =全糖 (重量%) /還元糖 (重量%)
(実施例 1)
コーンスターチ(乾粉、水分 13重量0 /O) 930gをへンシェノレミキサーに入れて 1800r pmで撹拌しながら、別に調製した一定濃度のリン酸一ナトリウム溶液 100gを流速 20 一 25g/分で投入して混合した。次に、混合物を棚段乾燥機にて、 90°Cの温風で水 分が 5重量%以下となるまで乾燥してから、続いて 175°Cの熱風で 1時間焙焼した。 リン酸一ナトリウム濃度の異なる溶液を用いて、この操作を 9回繰り返して、結合リンが 少ない 9種のでん粉リン酸エステルナトリウム(リン酸でん粉のナトリウム塩)を得た。 [0100] 次いで、リン酸でん粉をでん粉分解酵素で加水分解して低分子化 PMD組成物を 調製した。得られたリン酸でん粉を 3— 4g採取して 105°Cで 4時間乾燥し、放冷後、 乾燥試料 2gを精秤して lOOmLの耐圧ガラス容器に入れ、水を 70g加えて、均一に なるまで攪拌した。これに 2. 8重量0 /0の塩化カルシウム溶液を ImLカ卩え、 IN-NaO H溶液で pHを 6. 3に調節した。次いで、 ひ一アミラーゼとして、クライスターゼ L (大和 化成製)を水で 10倍に希釈した液を 20 μ L加え、耐圧ガラス容器をガス加熱した沸 騰水中に置いて、時々攪拌しながら 2時間加熱した。加熱終了後、放冷してから 1N -塩酸溶液を加えて pHを 2に調節し、さらに水を加えて全量を 100gとした(濃度 2重 量0 /0)。
[0101] 得られた糖組成物の結合リン含量と重合度を測定した。結果を表 2に示す。なお、 各組成物の平均重合度は 10前後である力 S、リンの結合した糖の方がリンの結合しな い糖よりも分解を受けにくいため、リンの結合した多糖の方が重合度は高いことにな る。従って、下記組成物には、重合度 10以下の POSはほとんど含まれず、重合度 1 1以上の PMD主体の組成物であることから、 PMD組成物と称する。
[表 2] 結合リンの少ない P MD組成物(低分子)
Figure imgf000031_0001
結合リンの異なる前記 9種類の PMD組成物について、 Ca = 3. OmM、 P= l . 8m Mの標準条件で再石灰化試験を行い、 Ca可溶化率及び Ca沈着率を算出した。結 果を表 3、 4に示す。なお、再石灰化試験における再石灰化促進剤の添力卩量は mg単 位で表示した。 [表 3] 結合リンの少ない P M D組成物 (低分子)の C a可溶化率
(C a可溶化率 = %)
Figure imgf000032_0001
[表 4] 結合リンの少ない P MD組成物 (低分子)の C a沈着率
(C a沈着率 = %)
Figure imgf000032_0002
結合リンの少ない PMD組成物の中では、結合リンが多くなるにつれ Ca可溶化率が 高くなり、結合 P = 0. 03重量%の PMD組成物(平均重合度 = 19)を除く全ての低 結合リン PMD組成物(低分子)が再石灰化促進作用を示した。結合 P = 0. 20重量 %以上の PMD組成物は全て 0. 2mgの少ない添加量で高い Ca沈着率が得られた。
(実施例 2)
実施例 1で得られたリン酸でん粉の加水分解条件を沸騰水加熱 15分に短縮するこ とにより、低結合リン PMD組成物(中分子)を得た。得られた糖組成物の結合リン含 量と重合度を測定した。結果を表 5に示す。 [表 5]
結合リンの少ない PMD組成物(中分子)
Figure imgf000033_0001
前記 9種類の PMD組成物の平均重合度は 150前後であった。 Ca=3. OmM、 P =1.8mMの標準条件で再石灰化試験を行い、 Ca可溶化率及び Ca沈着率を算出 した。結果を表 6、 7に示す。
[表 6] 結合リンの少ない PMD組成物(中分子)の C a可溶化率
Figure imgf000033_0002
[表 7] 結合リンの少ない P MD組成物冲分子)の C a沈着率
(C a沈着率 = %)
Figure imgf000034_0001
同じ結合リンの少なレ、リン酸でん粉を原料として酵素分解しても、実施例 1の低結 合リン PMD組成物(低分子)に比べて、重合度の大きい中分子では、 Ca可溶化率 がやや低くなる。しかし、全ての低結合リン PMD組成物(中分子)が再石灰化促進作 用を示すだけでなぐ 0. 2mgの少ない添加量で高い Ca沈着率が得られた。
[0103] (実施例 3)
実施例 1で得られた結合リンの少ないリン酸でん粉 9種類の結合リン含量と重合度 を測定した。結果を表 8に示す。
[表 8] 結合リンの少ないリン酸でん粉
Figure imgf000034_0002
[0104] 前記 9種類の結合リンの少なレ、リン酸でん粉の平均重合度は 490— 880であった。
Ca = 3. OmM P = l . 8mMの標準条件で再石灰化試験を行い、 Ca可溶化率及び Ca沈着率を算出した。結果を表 9、 10に示す。
[表 9] 結合リンの少ないリン酸でん粉の C a可溶化率
(C a可溶化率 = %)
Figure imgf000035_0001
[表 10] 結合リンの少ないリン酸でん粉の C a沈着率
(C a沈着率 = %)
Figure imgf000035_0002
酵素分解して得られる低結合リン PMD組成物(低分子及び中分子)に比べて、元 のリン酸でん粉は Ca可溶化率がやや低レ、。結合 P = 0. 07重量%のリン酸でん粉( 重合度 = 880)を除くリン酸でん粉は再石灰化促進作用を示し、結合 P = 0. 37重量
%以上のリン酸でん粉は 0. 5mgの添加量で、 10%以上の高い Ca沈着率が得られ た。
(実施例 4)
結合リンの多い PMDを得るため、リン酸一ナトリウムの添力卩量を多くして実施例 1に 準じてリン酸でん粉を調製し、 α—アミラーゼとしてターマミル 120Lで 2時間加水分 解した。得られた糖組成物の結合リン含量と重合度を測定した。結果を表 11に示す
[表 11]
結合リンの多い PMD組成物(低分子)
Figure imgf000036_0001
前記 5種類の PMD組成物について、 Ca = 3. OmM、 P = l.8mMの標準条件で 再石灰化試験を行い、 Ca可溶化率及び Ca沈着率を算出した。結果を表 12、 13に 示す。
[表 12] 結合リンの多い PMD組成物(低分子)の C a可溶化率
(C a可溶化率 =%)
Figure imgf000036_0002
[表 13] 結合リンの多い PMD組成物(低分子)の C a沈着率
(C a沈着率 =%)
PMD組成物 (mg) 20 2 0. 0.02 0.002
(i) 5 14 19 15 7
(ii) 6 14 19 16 9
(iii) 5 13 18 16 10
(iv) 4 11 18 19 13
(v) 4 10 18 19 14 結合リンの多レ、PMD組成物は極めて高レ、Ca可溶化率を示した力 20mgの添カロ 量では Ca沈着率が低くなつた。ヒドロキシアパタイト存在下でも可溶性の Caが多くな るため、 Ca可溶化率が高くても Ca沈着率が低くなる。一方、 0· 002mgの極少ない 添加量でも、高い Ca沈着率を示している。
[0106] (実施例 5)
還元デキストリン (東和化成製、 P〇一 10) 930gをヘンシェルミキサーに入れて 180 Orpmで撹拌しながら、別に調製した一定濃度のリン酸一ナトリウム溶液 100gを流速 20— 25g/分で投入して混合した。次に、これを棚段乾燥機にて、 90°Cの温風で水 分が 5重量%以下となるまで乾燥してから、続いて 175°Cの熱風で 1時間焙焼した。 リン酸一ナトリウム濃度の異なる溶液を用いて、この操作を 3回繰り返して、結合リンの 異なる 3種のリン酸エステル結合還元デキストリン (還元 PMD)のナトリウム塩を得た。
[0107] 得られた還元 PMDを 3— 4g採取して 105°Cで 4時間乾燥し、放冷後、乾燥試料 2g を精秤して lOOmLのガラス容器に入れ、水をカ卩えて全量を 100gとした(濃度 2重量 %)。結合リン含量は、 (i)0. 17重量%、 (ii)0. 20重量%、 (iii)O. 25重量。/。であった。 3種の還元 PMDについて、 Ca = 3. OmM、 P= l . 8mMの標準条件で再石灰化試 験を行い、 Ca可溶化率及び Ca沈着率を算出した。結果を表 14、 15に示す。
[表 14] 還元 P MD組成物の C a可溶化率
(C a可溶化率 = %)
Figure imgf000037_0001
[表 15] 還元 P MD組成物の C a沈着率
(C a沈着率 = %) 還元 P MD組成物 (mg) 20 2 0. 2 0. 02 0. 002
(i) 17 20 19 18 7
(i i) 14 20 20 18 11
(i i i) 11 20 20 19 12 3種の還元デキストリンのリン酸化物は着色が少なぐ極めて高レ、Ca可溶化率を示 した。リン酸カルシウムを可溶化する能力に優れているだけでなぐいずれの還元リン 酸デキストリンも 2mgから 0. 02mgの少ない添加量までの範囲で高レ、 Ca沈着率を示 した。
(実施例 6)
各種有機酸(市販の食品添加物)について、 Ca = 3. OmM、 P = l . 8mMの標準 条件で再石灰化試験を行い、 Ca可溶化率及び Ca沈着率を算出した。結果を表 16、 17に示す。
[表 16]
有機酸の C a可溶化率
Figure imgf000038_0001
[表 17] 有機酸の C a沈着率
( C a沈着率 = %)
Figure imgf000039_0001
試験した全ての有機酸に高い可溶性が認められ、多くの有機酸は 50mgの添カロ量 でリン酸カルシウムの 90%以上を溶解した。また、全ての有機酸で再石灰化促進作 用を示したが、 Ca沈着率が 10%以上となるに必要な添加量は有機酸によって大きく 異なり、 POS組成物や PMD組成物に比べて有機酸はかなり多くの添加量が必要で ある。
(実施例 7)
各種有機酸(市販の食品添加物)について、より Ca濃度の高い Ca = 5. OmM、 P = 3. OmMの条件で再石灰化試験を行い、 Ca可溶化率及び Ca沈着率を算出した。 結果を表 18、 19に示す。
[表 18] C a = 5 mMにおける有機酸の C a可溶化率
(C a可溶'匕率 = %) 乳 酸 (mg) zoo 100 5八0 lu 1 1 Λ0
C a可溶化率 lOO 90 43 31 27 酢 酸(Dig) 400 200 100 50 10
C a ¾ Λ
溶ィ匕率 lOO 100 40 21 15 クルコン酸(mg) 200 100 50 10 八
C a可溶化率 99 55 34 25 コハク酸 (mg> 200 100 50 10 5
C a可溶ィ匕率 100 lOO 100 33 28 クェン酸(mg) 20 10 5 0. 2 0. 1
C a可溶ィ匕率 100 98 76 43 31 リンコ酸(mg) 200 100 50 20 2 し a口 J¾"1b华 yy I UU I UU bo 40 酒石酸 (Dig) 200 100 50 20 L
C a可溶化率 lOO 100 100 37 35 フマル酸 (mg) 200 100 50 20 5
C a可溶化率 97 88 58 45 32 ァスコルビン酸 (mg) 200 100 50 20 5
C a可溶化率 50 53 30 26 17 安息香酸 (mg) 200 100 50 20 5
C a可溶化率 100 37 31 24 25
Figure imgf000041_0001
Ca = 5mMの濃度では、 P〇S組成物や PMD組成物は全く再石灰化促進作用を 示さなかったが、多くの有機酸がある濃度で再石灰化を促進する作用が認められた 。 Ca = 3mMに比べて、 Ca沈着率が 10%以上となるには有機酸はさらに多くの添加 量を必要とした。
(実施例 8)
各種糖アルコールについて、 Ca = 3. OmM、 P = l . 8mMの標準条件で再石灰化 試験を行い、 Ca可溶化率及び Ca沈着率を算出した。結果を表 20 21に示す。
[表 20] 糖アルコールの C a可溶化率
(C a可溶化率 = %)
Figure imgf000042_0001
[表 21] 糖アルコールの C a沈着率
(C a沈着率 = %)
Figure imgf000042_0002
還元水あめ(P〇一 20)を除く糖アルコールに高い Ca可溶性が認められ、多くが 60 Omgの添加量でリン酸カルシウムの 90%以上を溶解した。糖アルコールは再石灰化 促進作用を示し、還元水あめ(P〇一 20)を除く糖アルコールは 600mg以上の添加量 で高レ、Ca沈着率を示した。
(実施例 9)
各種単糖、オリゴ糖について、 Ca = 3. OmM、 P= l. 8mMの標準条件で再石灰 化試験を行い、 Ca可溶化率及び Ca沈着率を算出した。結果を表 22、 23に示す。
[表 22] 単糖、 オリゴ糖の C a可溶化率
(C a可溶化率 =%)
Figure imgf000043_0001
[表 23] 単糖、 オリゴ糖の C a沈着率
(C a沈着率 =%)
Figure imgf000043_0002
高果糖液糖、パラチノースに高い Ca可溶性が認められ、特に高果糖液糖は 600m gの添加量でリン酸カルシウムの 90%以上を溶解した。果糖ぶどう糖液糖、高果糖液 糖、パラチノース及びショ糖が再石灰化促進作用を示し、特に高果糖液糖は 400mg の添加量でも Ca沈着率 15%が得られている。
[0112] (実施例 10)
実施例 1に準じてリン酸でん粉 (結合リン =0. 3%、乾燥重量 12. 5kg)を調製した 。得られたリン酸でん粉 10kgを 20重量%濃度で溶解し、 ひ—アミラーゼとしてクライス ターゼ(大和化成製) 0. 05重量% (対固形分)をカ卩えて、さらに Ca濃度が 50ppmと なるように CaClをカロえた。これを Na〇Hで pHを 6. 3に調整して力、ら蒸気加熱により
2
90°Cとして 1時間液化反応を行った。次いで、液温を 60°Cまで冷却してから、 ひ—ァ ミラーゼ(ノボザィムズ ジャパン製、ファンガミル)を 0. 05重量% (対固形分)加えて 60°Cで糖化反応を行った。 16時間後、 80°Cに昇温して 2時間保持して酵素を失活 させた。
[0113] 粉末活性炭 1重量% (対固形分)を加えて、セラミックフィルター(ポアサイズ 0. 2 β ) で濾過して脱色処理した。得られた透過液 160kgを食塩阻止率 30%の NF膜(日東 電工 NTR— 7430)処理機にかけて濃縮した。さらに、エバポレーターで濃縮してから NaOHを添加して ρΗ6· 0とし、スプレードライヤーにかけて粉末の PMDナトリウム塩 組成物(結合 Ρ = 0. 23重量%、平均重合度 = 10) 7kgを得た。
[0114] PMD組成物と有機酸とを組み合わせた組成物について、 Ca = 5. 0mM、 P = 3.
OmMの条件で再石灰化試験を行い、 Ca可溶化率及び Ca沈着率を算出した。結果 を表 24、 25に示す。
[表 24]
C a=5mMにおける PMD組成物(結合 P=0.23%、 平均 重合度 =10)と有機酸の組合せ組成物の C a可溶化率
Figure imgf000045_0001
[表 25]
C a = 5 mMにおける P MD組成物(結合 P =0. 23¾, 平均
重合度 = 10)と有機酸の組合せ組成物の C a沈着率
(C a沈着率
Figure imgf000046_0001
PMD組成物は単独では Ca = 5mMの条件では全く再石灰化促進作用を示さず、 クェン酸などの一部の有機酸も単独ではあまり再灰化促進作用を示さなかった。表 2 5に示すように、 PMD組成物と有機酸との組み合わせでは、試験した全ての組み合 わせで再石灰化促進作用の著しい増加が認められた。乳酸は、単独では lOOmg以 上の添加量で再石灰化促進作用を示すが、 50mgの添加量では促進作用を示さな レ、 (表 19)。し力、し、結合 P = 0. 23重量%の PMD組成物を組み合わせると、 Ca沈着 率が 10%を大きく上回るだけでなぐ PMD組成物をわずか 0. 2mg加えただけで Ca 沈着率は 25%にも達した。同様な現象が全ての有機酸で認められ、 Ca = 5mMの 条件ではあまり促進作用を示さなかったクェン酸、ァスコルビン酸、安息香酸などで も、わずかな PMD組成物の添加により、高い Ca沈着率が得られて著しい再石灰化 促進作用の増加が認められた。
(実施例 11) 水と馬鈴薯澱粉を混合して澱粉濃度 30重量%のスラリー 270kgを調製し、消石灰 を添加して pH 6. 3に調整した。次いで、ターマミル 120Lを対澱粉 0. 05重量%添 加してジェットタッカーに導入した。クッキングの温度を 105°C、圧力を lkg/cm2 (ゲ ージ圧)に保持してから高温滞留塔に導いて、加圧下、 105°Cで 5分間保持した後、 熟成槽に移して 95°Cにて 2時間保持することによって液化した。得られた液化液を 6 0°Cに冷却した後、シユウ酸を添加して pH4. 5に調節した。デキストロザィムを対澱 粉 0. 1重量%添加して 60°C、 40時間保持することで糖化反応を進めた。
[0116] 次いで、得られた馬鈴薯澱粉の糖化液をフィルタープレスにて濾過し、清澄液は粒 状活性炭を充填した脱色塔に通液して脱色した。得られた糖液を強酸性カチオン交 換樹脂 (レバチット S-100WS)、弱塩基性ァニオン交換樹脂 (レバチット MP64-WS)、強 酸性カチオン交換樹脂 (レバチット SP- 112WS)、強塩基性ァニオン交換樹脂 (レバチッ ト MP-600)に順次通液した。通液終了後、樹脂塔に脱塩水を通液して糖液を押し出 した。ァニオン交換樹脂に吸着した POSの溶出は、弱塩基性ァニオン交換樹脂に 4 0°Cに加温した 4重量%の苛性ソーダ溶液を通液して行った。溶出液量が樹脂容量 の 1. 0倍の溶出液画分から回収を始め、樹脂容量の 1. 7倍までを回収して、固形分 13重量%を含む13〇3のナトリゥム塩溶液3.51¾ (平均重合度4、結合リン 3. 6%)が 得られた。
[0117] POSナトリウム塩組成物と有機酸とを組み合わせた組成物について、 Ca = 3. 0m M、 P= l . 8mMの標準条件で再石灰化試験を行い、 Ca可溶化率及び Ca沈着率を 算出した。結果を表 26、 27に示す。添加量の少ない特定の有機酸に POSナトリウム 塩組成物を 0. 2mg加えて添加すると再石灰化促進作用の増加が認められた。
[表 26] P O Sナトリゥム塩組成物(結合 P =3. 6¾ 平均重合度 =4) と有機酸の組合せ組成物の C a可溶化率
(C a可溶化率 = %)
Figure imgf000048_0001
[表 27] P〇 Sナトリゥム塩組成物(結合 P =3. 6¾, 平均重合度 =4)と
有機酸の組合せ組成物の C a沈着率
(C a沈着率 = %)
Figure imgf000049_0001
(実施例 12)
実施例 10の PMD組成物(結合 P = 0. 23重量%、平均重合度 = 10)と有機酸とを 組み合わせた組成物について、 Ca= 3. OmM、 P = l . 8mMの標準条件で再石灰 化試験を行い、 Ca可溶化率及び Ca沈着率を算出した。結果を表 28、 29に示す。添 加量の少ない特定の有機酸に PMD組成物を 0.02mg加えて添加すると再石灰化 促進作用の増加が認められた。
[表 28]
PMD組成物(結合 P=0.23%, 平均重合度 =10)と有機酸の
組合せ組成物の C a可溶化率
Figure imgf000050_0001
[表 29] PMD組成物(結合 P=0.23%、 平均重合度 =10)と有機酸の
組合せ組成物の C a沈着率
(C a沈着率=%)
Figure imgf000051_0001
(実施例 13)
実施例 10の PMD組成物(結合 P = 0.23重量%、平均重合度 = 10)と糖アルコー ルとを組み合わせた組成物について、 Ca = 3. OmM、 P=l.8mMの標準条件で再 石灰化試験を行い、 Ca可溶化率及び Ca沈着率を算出した。結果を表 30、 31に示 す。
[表 30] PMD組成物 (結合 P=0.23%, 平均重合度 =10)と
糖アルコールの組合せ組成物の C a可溶化率
(Ca可溶化率 =%)
Figure imgf000052_0001
[表 31]
PMD組成物(結合 P=0.23%、 平均重合度 =10)と
糖アルコールの組合せ組成物の C a沈着率
(Ca沈着率 =%)
Figure imgf000052_0002
キシリトール lOOmgに前記 PMD組成物を 0.2mg加えて添加すると、 PMD組成物 単独よりも高い Ca沈着率が得られた。
(実施例 14)
実施例 10の PMD組成物(結合 P = 0.23重量%、平均重合度 = 10)と単糖やオリ ゴ糖とを組み合わせた組成物についても、 Ca = 3. OmM、 P=l.8mMの標準条件 で再石灰化試験を行い、 Ca可溶化率及び Ca沈着率を算出した。結果を表 32、 33 に示す。
[表 32]
PMD組成物(結合 P=0.23¾、 平均重合度 =10)と
糖類の組合せ組成物の C a可溶化率
(C a可溶化率 =%)
Figure imgf000053_0001
33]
P MD組成物 (結合 P =0. 23%、 平均重合度 = 10)と
糖類の組合せ組成物の C a沈着率
(C a沈着率 = %)
Figure imgf000054_0001
水あめ (G2 = 70%)100mgに PMD組成物(結合リン =0. 23%、平均重合度 = 10 ) 0.2mgを加えて添加すると、 PMD組成物単独よりも高い Ca沈着率が得られた。
[0119] (実施例 15)
実施例 1に準じてリン酸でん粉 (結合 P = 3. 1重量%、乾燥重量 12. 5kg)を調製し た。得られたリン酸でん粉を 20重量0 /0濃度で溶解し、 ひ—アミラーゼとしてターマミノレ 120Lを 0. 1重量% (対固形分)加えて、さらに Ca濃度が 50ppmとなるように CaCl をカ卩えた。 NaOHで pHを 6. 0に調整してから蒸気加熱により 95°Cとして 2時間液化 反応を行った。次いで低分子化を進めるため、液温を 60°Cまで冷却してから、 β -ァ ミラーゼ(ΒΒΑ) Ο. 04重量% (対固形分)、ターマミル 120Lを 0. 01重量% (対固形 分)加えて、 60°Cで 20時間糖ィ匕反応を行った。
[0120] 反応終了時に粉末活性炭 1重量% (対固形分)を加えて反応を停止し、セラミックフ ィルター(ポアサイズ 0. 2 )で濾過した。低分子画分を除くため、得られた透過液 16 Okgを食塩阻止率 30%の NF膜(日東電工 NTR— 7430)処理機にかけて濃縮した。 次いで、カチオン交換樹脂(三菱化学製、 SK-1B) 11Lに通してカチオンを除き、 C a (〇H) を添加して pH5. 0としてから粉末活性炭 1重量% (対固形分)を加えて、 50
2
°Cで 2時間加温処理してセラミックフィルター(ポアサイズ 0. 2 /i )で濾過した。濾過液 をスプレードライヤーにかけて粉末の POSカルシウム塩組成物 6. 4kgを得た。
[0121] 得られた POSカルシウム塩組成物の結合 Pは 2. 8重量%、無機 Pは 0. 19重量%、 平均重合度 6. 4であった。 Ca = 3. 0mM、 P = l . 8mMの標準条件で再石灰化試 験を行い、 Ca可溶化率及び Ca沈着率を算出した。結果を表 34に示す。
[表 34]
P〇Sカルシウム塩組成物 (結合 P =2. 8%、 平均重合度 = 6. 4) の C a可溶化率と C a沈着率
( C a沈着率 = %)
Figure imgf000055_0001
(実施例 16)
でん粉スラリーにリン酸一ナトリウムとリン酸ニナトリウムの混合液を添加して溶解し、 ドラムドライヤーにて乾燥して粉砕した。でん粉とリン酸塩の混合物を流動層に投入 して、 170°C、 2時間焙焼し、リン酸でん粉 (結合 P = l . 7重量%、乾燥重量 250kg) を調製した。得られたリン酸でん粉 100kgを 20重量%濃度で溶解し、 ひ—アミラーゼ としてターマミノレ 120Lを 0. 05重量% (対固形分)加えて、さらに Ca濃度が 50ppmと なるように CaClをカロえた。 NaOHで pHを 6. 0に調整してから蒸気加熱により 90°Cと
2
して 2時間液化反応を行った。次いで低分子化を進めるため、液温を 60°Cまで冷却 して力、ら、 ひ—アミラーゼ(ノボザィムズ ジャパン製、ファンガミル)を 0. 05重量% (対 固形分)加えて 60°Cで糖化反応を行った。 20時間後、ターマミル 120Lを 0. 02重量 % (対固形分)加えて、 80°Cに昇温して 2時間保持した。
[0122] 粉末活性炭 1重量% (対固形分)を加えて反応を停止し、セラミックフィルター(ポア サイズ 0. 2 / )で濾過した。低分子画分を除くため、得られた透過液 1000kgを食塩 阻止率 30%の NF膜(日東電工 NTR-7430)処理機にかけて濃縮した。さらに、ェ バポレーターで濃縮してから NaOHを添加して ρΗ6· 0とし、スプレードライヤーにか けて粉末の POSナトリウム塩組成物 47kgを得た。
[0123] 得られた POSナトリウム塩組成物の結合 Pは 1. 8重量%、無機 Pは 0. 18重量%、 平均重合度 8であった。 Ca = 3. OmM、 P= l . 8mMの標準条件で再石灰化試験を 行い、 Ca可溶化率及び Ca沈着率を算出した。結果を表 35に示す。
[表 35]
P O Sナトリウム塩組成物 (結合 P = l. 8¾, 平均重合度 = 8> の C a可溶化率と C a沈着率
( C a沈着率 = %)
Figure imgf000056_0001
(実施例 17)
乾燥したでん粉にリン酸一ナトリウムとリン酸ニナトリウムの混合液を添加してフラッ シュドライヤーにて乾燥した。でん粉とリン酸塩の混合物を流動層に投入して、 180 °C、 1時間焙焼し、リン酸でん粉 (結合 P = 0. 32重量%、乾燥重量 500kg)を調製し た。得られたリン酸でん粉 100kgを 20重量%濃度で溶解し、 ひ—アミラーゼとしてタ 一マミノレ 120Lを 0. 03重量% (対固形分)加えて、さらに Ca濃度が 50ppmとなるよう に CaClをカロえた。 NaOHで pHを 6. 3に調整して力ら蒸気カロ熱により 90°Cとして 3
2
時間液化反応を行った。
[0124] 粉末活性炭 1重量% (対固形分)を加えて反応を停止し、セラミックフィルター(ポア サイズ 0· 2 / )で濾過した。さらに、エバポレーターで濃縮して力もスプレードライヤ 一にかけて粉末の PMDナトリウム塩組成物 75kgを得た。
[0125] 得られた PMD組成物の結合 Pは 0. 25重量%、無機 Pは 0. 06重量%、平均重合 度 11であった。 Ca = 3. OmM、 P= l . 8mMの標準条件で再石灰化試験を行い、 C a可溶化率及び Ca沈着率を算出した。結果を表 36に示す。
[表 36] P MD組成物 (結合 P =0. 25%、 平均重合度 = 1 1)の
C a可溶化率と C a沈着率
( C a沈着率 = %)
Figure imgf000057_0001
(実施例 18)
実施例 17のリン酸でん粉 (結合 P = 0. 32重量%) 100kgを 20重量%濃度で溶解 し、中温性の α—アミラーゼとして BAN240L (ノボザィムズ ジャパン製)を 0. 1重量 % (対固形分)加えて、さらに Ca濃度が 50ppmとなるように CaClをカロえた。 NaOH
2
で pHを 6. 3に調整してから加温し、 80°Cで 3時間液化反応を行った。
[0126] 反応液を 90°Cに高くし、塩酸をカ卩えて ρΗ4· 5として反応を停止し、粉末活性炭 1 重量%(対固形分)、 CaClを加えて 60°Cで 2時間放置した。セラミックフィルター(ポ
2
ァサイズ 0. 2 μ )で濾過してから、エバポレーターで濃縮し、スプレードライヤーにか けて粉末のカルシウム 'ナトリウム含有 PMD組成物 85kgを得た。
[0127] 得られた PMD組成物の結合 Pは 0. 27重量%、無機 Pは 0. 05重量%、平均重合 度 12であった。 Ca = 3. OmM、 P= l . 8mMの標準条件で再石灰化試験を行い、 C a可溶化率及び Ca沈着率を算出した。結果を表 37に示す。
[表 37]
P MD組成物 (結合 Ρ =0. 27ίΚ、 平均重合度 = 12)の
C a可溶化率と C a沈着率
( C a沈着率
Figure imgf000057_0002
(実施例 19)
乾燥したでん粉にリン酸一ナトリウムとリン酸ニナトリウムの混合液を添加してフラッ シュドライヤーにて乾燥した。でん粉とリン酸塩の混合物を流動層に投入して、 180 °C、 2時間焙焼し、リン酸でん粉 (結合 P = 3. 2重量%、乾燥重量 500kg)を調製した 。得られたリン酸でん粉 100kgを 20重量%濃度で溶解し、 α -アミラーゼとしてクライ スターゼ(大和化成製) 0. 05重量% (対固形分)をカ卩えて、さらに Ca濃度が 50ppm となるように CaClをカロえた。 NaOHで pHを 6. 3に調整してから蒸気加熱により 90°C
2
として 1時間液化反応を行った。次いで、液温を 60°Cまで冷却してから、 ひ-アミラー ゼ(ノボザィムズ ジャパン製、ファンガミル)を 0. 05重量% (対固形分)加えて 60°C で糖化反応を行った。 16時間後、 80°Cに昇温して 2時間保持して酵素を失活させた
[0128] 粉末活性炭 1重量% (対固形分)を加えて反応を停止し、セラミックフィルター(ポア サイズ 0. 2 μ )で濾過した。得られた透過液 900kgを食塩阻止率 30%の NF膜(日 東電工 NTR— 7430)処理機にかけて濃縮した。さらに、エバポレーターで濃縮して 力、ら Na〇Hを添加して pH6. 0とし、スプレードライヤーにかけて粉末の PMDナトリウ ム塩組成物 5 lkgを得た。
[0129] 得られた PMD組成物の結合 Pは 2. 8重量%、無機 Pは 0. 3重量%、平均重合度 1 0であった。 Ca = 3. 0mM、 P= l . 8mMの標準条件で再石灰化試験を行い、 Ca可 溶化率及び Ca沈着率を算出した。結果を表 38に示す。
[表 38]
P MD組成物 (結合 P =2. 8¾、 平均 S合度 = 10)の
C a可溶化率と C a沈着率
(C a沈着率 = %)
Figure imgf000058_0001
(実施例 20)
水 9. lkgに無水リン酸水素ニナトリウム 0. 25kgを攪拌しながら添加して溶解し、 次いでリン酸二水素ナトリウム '二水塩 1. 18kgを添カ卩して溶解した。リン酸ナトリウム が完全に溶解してから還元デキストリン (東和化成製、 PO-10) 7. 8kgを少量ずつ 添加して溶解した。さらに、水をカ卩えて全量を 30kgとしてから、除菌フィルターでろ過 した。得られたろ過液をスプレードライヤーにかけて粉末化した。還元デキストリンとリ ン酸塩の混合粉末品を棚段乾燥機にて、 90°Cの温風で水分が 2重量%以下となる まで乾燥してから、続いて 170°Cの熱風で 2時間焙焼した。得られたリン酸エステル 結合還元デキストリン(還元 PMD)のナトリウム塩は、 2. 9重量%の結合 Pを含んでお り、 Ca = 3. OmM、 P= l . 8mMの標準条件で再石灰化試験を行った。算出された Ca可溶化率及び Ca沈着率の結果を表 39に示す。
[表 39] 還元 P M D組成物(結合 P =2, 9%)の a可溶化率と C a沈着率
( C a沈着率 = %)
Figure imgf000059_0001
(実施例 21)
実施例 4で得られた PMD組成物 (iv) (結合 P = 2. 7重量%、平均重合度 = 10)と 2 種の有機酸とを組み合わせた組成物について、 Ca= 10mM、 P = 6. OmMの条件 で再石灰化試験を行い、 Ca可溶化率及び Ca沈着率を算出した。結果を表 40に示 す。
[表 40]
C a = 1 OmMにおける PMD組成物(結合 P=2. Ί%、
平均重合度 =10)と 2種有機酸との組合せ組成物の
C a可溶化率及び C a沈着率
Figure imgf000060_0001
(実施例 22)
実施例 4で得られた PMD組成物 (iv) (結合 P = 2.7重量%、平均重合度 = 10)と 2 種の有機酸とを組み合わせた組成物について、 Ca=12mM、 P = 7.2mMの条件 で再石灰化試験を行い、 Ca可溶化率及び Ca沈着率を算出した。結果を表 41に示 す。
[表 41]
C a= 1 2mMにおける PMD組成物(結合 P=2.7%、
平均重合度 =10)と 2種有機酸との組合せ組成物の
C a可溶化率及び C a沈着率
Figure imgf000061_0001
(実施例 23)
実施例 4で得られた PMD組成物 Gv) (結合 Ρ = 2· 7重量。 /。、平均重合度 = 10)と 2 種の有機酸とを組み合わせた組成物について、 Ca=15mM、 P = 9. OmMの条件 で再石灰化試験を行い、 Ca可溶化率及び Ca沈着率を算出した。結果を表 42に示 す。
[表 42]
C a = 1 5mMにおける P MD組成物(結合 P = 2. 7¾,
平均重合度 = 10)と 2種有機酸との組合せ組成物の
C a可溶化率及び C a沈着率
Figure imgf000062_0001
産業上の利用可能性
本発明は、食品、飲料、調味料、味質改善剤、口腔衛生剤、洗剤、金属補給剤、金 属吸収促進剤、化粧品、飼料、肥料などの分野で利用される。

Claims

請求の範囲
[1] 下記の再石灰化試験測定法において、カルシウム可溶化率及びカルシウム沈着率 を指標としてリン酸カルシウムの再石灰化促進作用を評価する方法。
再石灰化試験測定法:
(i) 試料溶液の調製
試料を水に溶解し、 pHを 6.5— 7.0に調整して試料溶液を調製する。同一試料で 同一添加量のヒドロキシアパタイト無添加反応とヒドロキシアパタイト添加反応を同時 進行で行う。
(ii) ヒドロキシアパタイト無添加反応
ガラス製反応用容器に、緩衝液 (pH7. 0)、 KH PO溶液、水及び (i)で得た試料
2 4
溶液を入れる。得られた試料混合液の入った反応用容器を 36 ± 0. 3°Cの恒温槽に 10分間以上静置してから、試料混合液の pHを 7. 00 ± 0. 02に調整する。 pHの調 整を終えた試料混合液は前記恒温槽に戻して 10分間以上静置する。次いで、 36土 0. 3°Cで pHを 7. 00 ± 0. 02に調整された試料混合液に水を投入してから CaCl溶
2 液を投入し、前記恒温槽に静置して反応を開始する。反応終了後、反応液の一部を 採取して、遠心分離した後、上清を回収して、可溶性のカルシウム濃度を測定する。
(iii) ヒドロキシアパタイト添加反応
CaCl溶液を投入する前に、水の代わりにヒドロキシアパタイト懸濁液をカ卩えることを
2
除いて、(ii)のヒドロキシアパタイト無添加反応の場合と同様に、同一試料で同一添カロ 量の反応を行い、反応終了液の可溶性のカルシウム濃度を測定する。
(iv) カルシウム可溶化率の算出
ヒドロキシアパタイト無添加の反応終了液における可溶性のカルシウム濃度を測定 し、下記式から Ca可溶化率を求める。
カルシウム可溶化率(%) = [ヒドロキシアパタイト無添加反応終了液上清の可溶性力 ルシゥム/反応液に添加したカルシウム] X 100
(V) カルシウム沈着率の算出
同一試料で同一添加量の反応において、ヒドロキシアパタイト無添カ卩反応の終了液 における可溶性のカルシウム濃度からヒドロキシアパタイト添カ卩反応の終了液におけ る可溶性のカルシウム濃度を差し引いた値の、反応液に添加したヒドロキシアパタイト に対する比率をカルシウム沈着率と設定し、下記式で求める。
カルシウム沈着率(%) = { [ヒドロキシアパタイト無添加反応終了液上清の可溶性力 ルシゥムーヒドロキシアパタイト添加反応終了液上清の可溶性カルシウム] z反応液 に添加したヒドロキシアパタイト } X 100
[2] リン酸でん粉、リン酸マルトデキストリン、還元リン酸マルトデキストリン、リン酸オリゴ 糖及び還元リン酸オリゴ糖からなる群から選ばれる少なくとも 1種を含む組成物であつ て、下記の再石灰化試験測定法において当該組成物の添加量が 0.002mg 50m gの少なくともいずれかの時、カルシウム沈着率が 5%以上となる作用を有する再石 灰化促進剤。
再石灰化試験測定法:
(i) 試料溶液の調製
試料溶液は当該組成物を水に溶解し、希 NaOH溶液又は希 HC1溶液で pHを 6.5 一 7.0に調整して調製する。得られた試料溶液は調製した当日に使用する。同一試 料で同一添加量のヒドロキシアパタイト無添加反応とヒドロキシアパタイト添加反応を 同時進行で行う。なお、水は全て精製水(電気抵抗が 1 β S以下に精製された水)を 使用する。
(ii) ヒドロキシアパタイト無添加反応
JIS検定に合格した標準温度計で正確に 36°Cを表示し、温度変化が ± 0. 3°C以 内となる恒温槽を用意する。ガラス製の反応用バイアル瓶 (容量 13. 5mL)に、 HEP ES緩衝液(200mM, pH7. 0) lmL、 KH PO ( 18mM)溶液 lmL、水、及び (i)で
2 4
得た 0.002mg— 50mgの当該組成物を含む試料溶液を順次入れて、全量を 8mLと する。得られた試料混合液の入ったバイアル瓶を 36 ± 0. 3。Cの恒温槽に 10分間以 上静置してから、試料混合液の pHを 7. 00 ± 0. 02に調整する。 pH調整に用いる希 NaOH溶液又は希 HC1溶液の添力卩量は 100 μ L以内とする。 pHの調整を終えた試 料混合液は前記恒温槽に戻して 10分間以上静置する。次いで、 36 ± 0. 3°Cで pH を 7. 00 ± 0. 02に調整された試料混合液に水 lmLを投入してから CaCl (30mM)
2 溶液 lmLを投入し、前記恒温槽に静置して 24時間反応する。反応終了後、反応液 の一部を採取して、 12, 000rpm、 3分間遠心分離した後、上清を回収して、可溶性 のカルシウム濃度を測定する。可溶性のカルシウム濃度はカルシウム測定キットで測 定し、 ppm単位で表示する。
(iii) ヒドロキシアパタイト添加反応
予め、ヒドロキシアパタイトを 5mg/mLの濃度で水に懸濁したヒドロキシアパタイト 懸濁液を調製する。 CaCI (30mM)溶液 ImLを投入する前に、水 ImLの代わりに
2
前記ヒドロキシアパタイト懸濁液 ImLを加えることを除いて、(ii)のヒドロキシアパタイト 無添加反応の場合と同様に、同一試料で同一添加量の反応を行い、反応終了液の 可溶性のカルシウム濃度を測定する。
(iv) カルシウム可溶化率の算出
ヒドロキシアパタイト無添カ卩の 24時間反応終了液における可溶性のカルシウム濃度 を測定し、下記式から Ca可溶化率を求める。
カルシウム可溶化率(%) = [ヒドロキシアパタイト無添加反応終了液上清の可溶性力 ルシゥム(ppm) /反応液に添加したカルシウム(ppm) ] X 100
(V) カルシウム沈着率の算出
同一試料で同一添加量の反応において、ヒドロキシアパタイト無添カ卩の 24時間反 応終了液における可溶性のカルシウム濃度からヒドロキシアパタイト添カ卩の 24時間反 応終了液における可溶性のカルシウム濃度を差し引いた値の、反応液に添加したヒ ドロキシアパタイトに対する比率をカルシウム沈着率と設定し、下記式で求める。 カルシウム沈着率(%) = { [ヒドロキシアパタイト無添加反応終了液上清の可溶性力 ルシゥム(ppm)—ヒドロキシアパタイト添加反応終了液上清の可溶性カルシウム(pp m)]/反応液に添加したヒドロキシアパタイト(500ppm) } X 100
[3] 少なくとも 1種の有機酸を含む組成物であって、請求項 2記載の再石灰化試験測定 法において当該組成物の添加量が O.Olmg— 200mgの少なくともいずれかの時、力 ルシゥム沈着率が 5%以上となる作用を有する再石灰化促進剤。
[4] 少なくとも 1種の有機酸を含む組成物であって、請求項 2記載の再石灰化試験測定 法の両反応における CaCI濃度を 5mM、 KH PO濃度を 3mMに置き換えた条件
2 2 4
において当該組成物の添加量が 5mg— 400mgの少なくともいずれかの時、カルシ ゥム沈着率が 5%以上となる作用を有する再石灰化促進剤。
[5] 単糖、オリゴ糖及び糖アルコールからなる群から選ばれる少なくとも 1種を含む組成 物であって、請求項 2記載の再石灰化試験測定法において当該組成物の添加量が lOOmg lOOOmgの少なくともレ、ずれ力、の時、カルシウム沈着率が 5%以上となる 作用を有する再石灰化促進剤。
[6] リン酸でん粉、リン酸マルトデキストリン、還元リン酸マルトデキストリン、リン酸オリゴ 糖及び還元リン酸オリゴ糖からなる群から選ばれる少なくとも 1種、並びに少なくとも 1 種の有機酸を含む組成物であって、請求項 2記載の再石灰化試験測定法の両反応 における CaCl濃度を 5mM、 KH PO濃度を 3mMに置き換えた条件において当
2 2 4
該組成物の添加量が 0. 02mg— lOOOmgの少なくともレ、ずれ力、の時、カルシウム沈 着率が 5%以上となる作用を有する再石灰化促進剤。
[7] リン酸でん粉、リン酸マルトデキストリン、還元リン酸マルトデキストリン、リン酸オリゴ 糖及び還元リン酸オリゴ糖からなる群から選ばれる少なくとも 1種、並びに有機酸、単 糖、オリゴ糖及び糖アルコールからなる群から選ばれる少なくとも 1種を含む組成物 であって、請求項 2記載の再石灰化試験測定法において当該組成物の添加量が 0. 02mg— lOOOmgの少なくともレ、ずれ力 の時、カルシウム沈着率が 5%以上となる作 用を有する再石灰化促進剤。
[8] リン酸でん粉、リン酸マルトデキストリン、還元リン酸マルトデキストリン、リン酸オリゴ 糖及び還元リン酸オリゴ糖からなる群から選ばれる少なくとも 1種、並びに少なくとも 1 種の有機酸を含む組成物であって、請求項 2記載の再石灰化試験測定法の両反応 における CaCl濃度を 10— 15mM、 KH PO濃度を CaCl濃度の 60%モル濃度に
2 2 4 2
置き換えた条件において当該組成物の添加量が 0. 02mg lOOOmgの少なくとも いずれかの時、カルシウム沈着率が 5%以上となる作用を有する再石灰化促進剤。
[9] 前記組成物が多価金属塩を含む請求項 2 4及び 6 8のいずれか 1項に記載の 再石灰化促進剤。
[10] リン酸マルトデキストリン及びリン酸オリゴ糖力 でん粉及び/又はでん粉分解物に リン酸及び Z又はリン酸塩を混合してから焙焼して得られるリン酸でん粉及び Z又は リン酸でん粉分解物を少なくとも 1種のでん粉分解酵素で加水分解して製造されるリ ン酸- 酸オリゴ糖である請求項 2及び 6— 9のいずれか 1項 記載の再石灰化促進剤。
[11] リン酸マルトデキストリン、還元リン酸マルトデキストリン、リン酸オリゴ糖及び還元リン 酸オリゴ糖の重合度が 9以上である請求項 2及び 6 10のいずれか 1項に記載の再 石灰化促進剤。
[12] 自身は再石灰化促進作用を示さなレ、リン酸でん粉であって、後に加水分解されるこ とによってリン酸マルトデキストリン及び Z又はリン酸オリゴ糖を生成した時、請求項 2 記載の再石灰化試験測定法において、リン酸でん粉から生成するリン酸マルトデキス トリン及び/又はリン酸オリゴ糖の添加量が 0.002mg 50mgの少なくともいずれか の時、カルシウム沈着率が 5%以上となる作用を有するリン酸でん粉を含む再石灰化 促進剤。
[13] リン酸でん粉力 でん粉及び/又はでん粉分解物にリン酸及び Z又はリン酸塩を 混合した後、焙焼して製造されるリン酸でん粉、リン酸でん粉分解物、及びそれらの 塩類である請求項 2、 6— 12のいずれか 1項に記載の再石灰化促進剤。
[14] 還元リン酸マルトデキストリン及び/又は還元リン酸オリゴ糖力 でん粉及び/又は でん粉分解物にリン酸及び/又はリン酸塩を混合した後、焙焼して得られるリン酸で ん粉及び/又はリン酸でん粉分解物を少なくとも 1種のでん粉分解酵素で加水分解 し、次いで、得られたリン酸マルトデキストリン及び/又はリン酸オリゴ糖を水添還元し て製造される還元リン酸マルトデキストリン及び/又は還元リン酸オリゴ糖、及びそれ らの塩類である請求項 2、 6— 9及び 11のいずれか 1項に記載の再石灰化促進剤。
[15] 食品、飲料、調味料、味質改善剤、 口腔衛生剤、洗剤、金属補給剤、金属吸収促 進剤、化粧品、飼料又は肥料の成分として用いられる請求項 2— 14のいずれか 1項 に記載の再石灰化促進剤。
[16] 請求項 2— 14に記載の少なくとも 1種の再石灰化促進剤を含有することを特徴とす る食品、飲料、調味料、味質改善剤、 口腔衛生剤、洗剤、金属補給剤、金属吸収促 進剤、化粧品、飼料又は肥料。
[17] マルトデキストリン及び Z又はオリゴ糖を水添還元して製造された還元マルトデキス トリン及び/又は還元オリゴ糖に、リン酸及び/又はリン酸塩を混合した後、焙焼して 得られる還元リン酸マルトデキストリン、還元リン酸オリゴ糖及びそれらの塩類の少なく とも 1種を含む組成物。
[18] マルトデキストリン及び/又はオリゴ糖を水添還元して製造された還元マルトデキス トリン及び/又は還元オリゴ糖に、リン酸及び/又はリン酸塩を混合した後、焙焼して 製造することを特徴とする還元リン酸マルトデキストリン、還元リン酸オリゴ糖及びそれ らの塩類の少なくとも 1種を含む組成物を製造する方法。
[19] 請求項 17に記載の組成物からなる食品、飲料、調味料、味質改善剤、口腔衛生剤 、洗剤、金属補給剤、金属吸収促進剤、化粧品、飼料又は肥料。
PCT/JP2004/009443 2003-07-07 2004-07-02 再石灰化促進剤 WO2005003753A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005511365A JP4403140B2 (ja) 2003-07-07 2004-07-02 再石灰化促進剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-193100 2003-07-07
JP2003193100 2003-07-07

Publications (1)

Publication Number Publication Date
WO2005003753A1 true WO2005003753A1 (ja) 2005-01-13

Family

ID=33562439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009443 WO2005003753A1 (ja) 2003-07-07 2004-07-02 再石灰化促進剤

Country Status (2)

Country Link
JP (1) JP4403140B2 (ja)
WO (1) WO2005003753A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249316A (ja) * 2005-03-11 2006-09-21 Oji Paper Co Ltd リン酸澱粉の製造方法
JP2010215558A (ja) * 2009-03-17 2010-09-30 Lion Corp 歯の脱灰抑制剤及び口腔用組成物
JP2012131750A (ja) * 2010-12-24 2012-07-12 San-Ei Sucrochemical Co Ltd 歯牙エナメル質の再石灰化促進剤
FR3011466A1 (fr) * 2013-10-09 2015-04-10 Roquette Freres Utilisation d'un polyol dans la remineralisation de l'email
JP2015221821A (ja) * 2015-08-11 2015-12-10 サンエイ糖化株式会社 歯牙エナメル質の再石灰化促進剤
WO2019159914A1 (ja) * 2018-02-14 2019-08-22 王子ホールディングス株式会社 カルシウム溶解促進剤
CN114289492A (zh) * 2021-12-29 2022-04-08 上海应用技术大学 磷酸盐土壤改良剂在农田固碳协同调控镉污染中的应用方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002145893A (ja) * 2000-11-06 2002-05-22 Oji Cornstarch Co Ltd リン酸オリゴ糖及びリン酸デキストリンの多価金属塩類組成物並びにそれらの製造方法
JP2002325556A (ja) * 2001-02-28 2002-11-12 Ezaki Glico Co Ltd リン酸化オリゴ糖を含有する抗う蝕機能を有する組成物
JP2002542185A (ja) * 1999-04-15 2002-12-10 ダブリューエム リグリー ジュニア カンパニー 食品用酸にカルシウムを含む歯に有益なチューインガム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002542185A (ja) * 1999-04-15 2002-12-10 ダブリューエム リグリー ジュニア カンパニー 食品用酸にカルシウムを含む歯に有益なチューインガム
JP2002145893A (ja) * 2000-11-06 2002-05-22 Oji Cornstarch Co Ltd リン酸オリゴ糖及びリン酸デキストリンの多価金属塩類組成物並びにそれらの製造方法
JP2002325556A (ja) * 2001-02-28 2002-11-12 Ezaki Glico Co Ltd リン酸化オリゴ糖を含有する抗う蝕機能を有する組成物

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249316A (ja) * 2005-03-11 2006-09-21 Oji Paper Co Ltd リン酸澱粉の製造方法
JP2010215558A (ja) * 2009-03-17 2010-09-30 Lion Corp 歯の脱灰抑制剤及び口腔用組成物
JP2012131750A (ja) * 2010-12-24 2012-07-12 San-Ei Sucrochemical Co Ltd 歯牙エナメル質の再石灰化促進剤
FR3011466A1 (fr) * 2013-10-09 2015-04-10 Roquette Freres Utilisation d'un polyol dans la remineralisation de l'email
WO2015052447A1 (fr) * 2013-10-09 2015-04-16 Roquette Freres Utilisation d'un polyol dans la remineralisation de l'email
CN105611911A (zh) * 2013-10-09 2016-05-25 罗盖特公司 多元醇在牙釉质再矿化中的用途
JP2015221821A (ja) * 2015-08-11 2015-12-10 サンエイ糖化株式会社 歯牙エナメル質の再石灰化促進剤
WO2019159914A1 (ja) * 2018-02-14 2019-08-22 王子ホールディングス株式会社 カルシウム溶解促進剤
JP2019137645A (ja) * 2018-02-14 2019-08-22 王子ホールディングス株式会社 カルシウム溶解促進剤
CN114289492A (zh) * 2021-12-29 2022-04-08 上海应用技术大学 磷酸盐土壤改良剂在农田固碳协同调控镉污染中的应用方法

Also Published As

Publication number Publication date
JPWO2005003753A1 (ja) 2006-11-24
JP4403140B2 (ja) 2010-01-20

Similar Documents

Publication Publication Date Title
JP4983258B2 (ja) イソサイクロマルトオリゴ糖及びイソサイクロマルトオリゴ糖生成酵素とそれらの製造方法並びに用途
AU762500B2 (en) Process for processing sucrose into glucose and fructose
JP3490106B2 (ja) 任意に水素添加された非消化性多糖類の製法
CN100469892C (zh) 葡聚糖的生产方法和制备方法
CN104171793B (zh) 包含异麦芽酮糖的异麦芽低聚糖组合物、其制备方法及其用途
JPH08104696A (ja) リン酸化糖とその製造方法
JP2000169502A (ja) 分枝マルトデキストリンとその製造方法
JP5828589B2 (ja) 環状構造保有分岐状グルカンの工業的製造方法
JP4753588B2 (ja) 澱粉分解物の製造方法及び白色デキストリン
JP4568035B2 (ja) 環状マルトシルマルトース及び環状マルトシルマルトース生成酵素とそれらの製造方法並びに用途
AU2005299923A1 (en) Process for the production of maltodextrins and maltodextrins
JP2729406B2 (ja) 難消化性ヘテロ多糖類の製造法
JP2002325557A (ja) 抗う蝕機能を有する組成物
EP3405500A1 (en) Maltosyl-isomaltooligosaccharides
WO2005003753A1 (ja) 再石灰化促進剤
JP4200537B2 (ja) 高いCa可溶化活性を有するリン酸結合澱粉とそのオリゴ糖組成物及びそれらの製造方法
JP4729332B2 (ja) 脱灰抑制用組成物及びそれを含有する飲食物
JP4164367B2 (ja) 分岐環状四糖とその製造方法ならびに用途
TWI329673B (ja)
JP5255603B2 (ja) 環状マルトシルマルトース及び環状マルトシルマルトース生成酵素とそれらの製造方法並びに用途
JP2005013227A5 (ja)
JPH11158197A (ja) リン酸化糖およびその製造方法
JP2007020567A (ja) リン酸化糖組成物及びその製造方法
US11578091B2 (en) Process for the manufacture of maltosyl-isomaltooligosaccharides (MIMO)
JP4755333B2 (ja) リン酸オリゴ糖及びリン酸デキストリンの多価金属塩類組成物並びにそれらの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005511365

Country of ref document: JP

122 Ep: pct application non-entry in european phase