WO2004112401A1 - 画像処理方法、画像処理プログラム、画像処理装置 - Google Patents

画像処理方法、画像処理プログラム、画像処理装置 Download PDF

Info

Publication number
WO2004112401A1
WO2004112401A1 PCT/JP2004/008110 JP2004008110W WO2004112401A1 WO 2004112401 A1 WO2004112401 A1 WO 2004112401A1 JP 2004008110 W JP2004008110 W JP 2004008110W WO 2004112401 A1 WO2004112401 A1 WO 2004112401A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
image
information
gradient
pixel
Prior art date
Application number
PCT/JP2004/008110
Other languages
English (en)
French (fr)
Inventor
Kenichi Ishiga
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to EP04745740.3A priority Critical patent/EP1641283B1/en
Priority to JP2005506917A priority patent/JP4882374B2/ja
Publication of WO2004112401A1 publication Critical patent/WO2004112401A1/ja
Priority to US11/297,434 priority patent/US7391903B2/en
Priority to US12/153,045 priority patent/US7630546B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • H04N23/843Demosaicing, e.g. interpolating colour pixel values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2209/00Details of colour television systems
    • H04N2209/04Picture signal generators
    • H04N2209/041Picture signal generators using solid-state devices
    • H04N2209/042Picture signal generators using solid-state devices having a single pick-up sensor
    • H04N2209/045Picture signal generators using solid-state devices having a single pick-up sensor using mosaic colour filter
    • H04N2209/046Colour interpolation to calculate the missing colour values

Definitions

  • Image processing method image processing program, and image processing device
  • the present invention relates to an image processing method for generating a high-definition, high-quality digital color image.
  • a first image composed of a plurality of pixels represented by a color system composed of a plurality of color components, and each pixel has color information of one color component
  • An image processing method for converting into a second image composed of a plurality of pixels and having at least one common color component in each pixel as color difference information generates color difference information from the color information of the first image.
  • the image conversion step corrects color difference information generated using the color information of the first image based on a color gradient. It is preferable to provide a color difference information correction procedure for performing processing.
  • the color gradient analysis procedure uses a color difference information between color components constituting a color system of the first image to calculate a color index. It is preferable to generate the color gradient and determine the color gradient by examining the degree of color change in the plane of the color index.
  • a plurality of pixels of the first image and a plurality of pixels of the second image correspond in the same positional relationship, and the image conversion procedure is By changing the contribution of the color information of the first image located at the pixel to be processed of the second image according to the magnitude of the color gradient, it is possible to convert the first image into the second image. I like it.
  • the color gradient analysis procedure is performed between a color component constituting the color system of the first image and a color component of the opposite color.
  • a color index is generated using the color difference information, and the color gradient is determined by examining the degree of color change in the plane of the color index.
  • an image processing method comprises: a first image represented by a color system composed of a plurality of color components, wherein each pixel lacks color information of at least one color component; An image input procedure for inputting a second image that has been converted into an image having color information of at least two common color components in each pixel, and color difference information for generating color difference information from the color information of the second image A generation procedure, a color gradient analysis procedure for obtaining a color gradient which is a degree of color change based on the generated color difference information, and a color difference information correction procedure for correcting the color difference information of the second image based on the obtained color gradient.
  • the color gradient analysis procedure in the image processing method according to any one of the first and sixth aspects, the color gradient analysis procedure generates a color index for evaluating a color in pixel units based on the color difference information, It is preferable to calculate the color gradient based on the generated color index.
  • the color gradient analysis procedure includes performing a differential operation for obtaining a gradient in the plane of the generated color index, thereby obtaining a color gradient. Is preferably obtained.
  • the color difference information generating step includes generating a plurality of types of color difference information for one processing target pixel, and performing the color gradient analysis step. It is preferable to generate a color index using color difference information between at least three types of color components by combining the types of color difference information.
  • an image processing method comprises: a first image represented by a color system composed of a plurality of color components, wherein each pixel lacks color information of at least one color component; An image input procedure of inputting a second image that has been converted into an image having color information of at least three common color components in each pixel, and generating chromaticity information by performing color space conversion of the second image Chromaticity information generation procedure, a color gradient analysis procedure for obtaining a color gradient that is a degree of color change based on the generated chromaticity information, and a color gradient included in the second image based on the obtained color gradient.
  • Color difference information correction procedure for correcting color difference information.
  • the color difference information correction procedure is performed for a pixel having a color gradient smaller than a predetermined value. It is preferable to apply a range correction filter to the chrominance plane and perform no correction processing for pixels whose color gradient is larger than a predetermined value, or to apply a range correction filter narrower than the predetermined range.
  • the color gradient analyzing step may be such that the size of the correction filter in a predetermined range is matched with the size of the differential filter for obtaining the color gradient. preferable.
  • the color gradient analysis procedure performs a differential operation for obtaining a color gradient in a plurality of directions. It is preferable to calculate the color gradient by calculating isotropically.
  • the color gradient is calculated from a first derivative operation.
  • the image conversion step includes processing the color information of the color component that bears the luminance of the second image as a processing target of the second image. It is preferable to change the contribution of the color information of the first image located in the pixel according to the magnitude of the color gradient.
  • the image conversion procedure includes at least one of the second image using color information of a plurality of color components of the first image.
  • the first method of generating color information of a color component and the second method of generating color information of one color component of a second image using the color information of one color component of a first image Then, the first image is converted into the second image, and the color gradient analysis procedure determines whether or not there is a color boundary based on the obtained color gradient.
  • the image conversion procedure is based on the color gradient analysis procedure. It is preferable to use the first method for a pixel determined to have no color boundary, and to use the second method for a pixel determined to have a color boundary.
  • the color information of the color component responsible for the luminance of the first image is obtained by deleting the color information of the color component.
  • the color information of the same color component as the color component and the color information of a color component different from the color component are generated by interpolation processing, and the color information of the color component bearing the luminance generated by the interpolation processing is used. Then, it is preferable to convert the first image into the second image.
  • the image conversion step includes the step of using the color information of the color components of the first image in the first method. Generates color information of the color component that carries the luminance of another color system different from the color system in all pixels, and uses the generated color information of the color component that carries the luminance of the other color system. Then, it is preferable to convert the first image into the second image.
  • the color difference information generating procedure generates the color difference information by using at least one of three methods.
  • the color difference information generating step calculates similarity in at least two directions using the color information of the first image, and calculates the calculated similarity. It is preferable to determine the degree of similarity in each direction in at least three stages based on the degree, and to determine at least one of the three methods according to the determination result.
  • a first image composed of a plurality of pixels represented by a color system composed of a plurality of color components and having color information of one color component per pixel is represented by a plurality of Pixel
  • An image processing method for converting each pixel into a second image having color information of at least one common color component in each pixel includes a color difference generating color difference information of a second image from the color information of the first image.
  • a color difference information correcting procedure for correcting the color difference information of the second image independently of the luminance information of the second image.
  • an image processing method includes: a first image that is represented by a color system composed of a plurality of color components, and in which each pixel lacks color information of at least one color component.
  • An image input procedure for inputting a second image that has been converted into an image having color information of at least two common color components in each pixel; and color information power of the second image, color difference information for generating color difference information
  • a color gradient analysis procedure for obtaining a color gradient, which is a degree of color change, based on the generated color difference information, and a second color gradient based on the obtained color gradient, independently of the luminance information of the second image.
  • Color difference information correction procedure for correcting color difference information of an image.
  • the image processing method comprises: a first image represented by a color system composed of a plurality of color components, wherein each pixel lacks color information of at least one color component.
  • a color difference information correction procedure for correcting color difference information included in the second image irrespective of the luminance information.
  • an image processing method includes an image inputting step of inputting an image including a plurality of pixels, and having each pixel having color information of at least two types of common color components, Based on a color conversion procedure for converting color information of color components into luminance information and color difference information, a color gradient analysis procedure for obtaining a color gradient which is a degree of color change based on the color difference information, and a color gradient based on the obtained color gradient. It is preferable to provide a color difference information correction procedure for correcting color difference information irrespective of luminance information.
  • the image processing method according to any one of the twenty-first to twenty-fourth aspects is provided.
  • the color difference information correction procedure it is preferable to determine the range of color information used for color difference correction according to the size of the investigation range of the color gradient obtained by the color gradient analysis procedure.
  • the color gradient analysis procedure performs a process on the color difference information generated in the color difference information generation procedure before obtaining the color gradient. It is preferable to add a correction process.
  • a first image composed of a plurality of pixels represented by a color system composed of a plurality of color components and having one pixel having color information of one color component is represented by a plurality of pixels.
  • the image processing method of converting into a second image composed of pixels and having color information of at least one common color component for each pixel is performed by using the color information of a plurality of color components of the first image.
  • a second color information generation procedure for generating color information of the same color component, and the color information generated by the first color information generation procedure and the color information generated by the second color information generation procedure are stored in the pixel position.
  • the color information synthesis procedure is switched or used in accordance with the weight information synthesis.
  • the first color information generation procedure preferably generates color information of a luminance component different from a color system of the first image. preferable.
  • the first color information generating step includes generating color information of a color difference component different from the color system of the first image, It is preferable that the color information is converted into color information of a color component representing luminance in the color system of the first image, together with color information of a luminance component different from the color system of the first image.
  • the second color information generation step includes a step of representing luminance in a color system of the first image. It is preferable to generate color information for the color components that you want.
  • the first color information generation procedure uses at least nine of the first methods to generate the first color information. It is preferable to generate color information of a luminance component different from the color system of the image.
  • the second color information In the report generation procedure, it is preferable to generate color information of a color component representing luminance using at least one of three methods.
  • the first color information generating step calculates similarity in at least four directions using the color information of the first image, Based on the calculated similarity, it is preferable to determine the degree of similarity in each direction in at least nine steps, and to determine at least nine of the methods to be used according to the determination result.
  • the second color information generating step calculates a similarity in at least two directions using the color information of the first image, Based on the calculated similarity, it is preferable to determine the degree of similarity in each direction in at least three stages, and to determine at least one of the three methods according to the determination result.
  • a color difference information generating procedure for generating color difference information from the color information of the first image
  • a color gradient analysis procedure for obtaining a color gradient, which is a degree of a color change, based on the information, wherein the color information synthesizing procedure includes, for each of the pixel positions, a first color based on the determined color gradient. It is preferable that the color information generated by the information generation procedure and the color information generated by the second color information generation procedure are switched and used or weightedly combined.
  • an image processing program causes a computer to execute the procedure of the image processing method according to any one of the first to thirty-fifth aspects.
  • a computer-readable recording medium records the image processing program according to the thirty-sixth aspect.
  • an image processing device comprises a thirty-sixth image processing program.
  • FIG. 1 is a functional block diagram of an electronic camera according to a first embodiment.
  • FIG. 2 is a diagram showing image data having R component color information in a conversion target pixel [i, j].
  • FIG. 3 is a diagram illustrating image data having color information of a B component in a conversion target pixel [i, j].
  • FIG. 4 is a diagram illustrating image data having G component color information at a pixel to be converted [i, j].
  • [FIG. 5] is a diagram showing image data having G component color information in a conversion target pixel [i, j].
  • FIG. 6 is a flowchart illustrating an outline of an image data conversion process performed by an image processing unit.
  • Garden 7 is a block diagram for explaining the relationship between the processes in the first embodiment.
  • FIG. 8 is a diagram showing an example of a 5 ⁇ 5 size separation type filter.
  • FIG. 9 is a diagram showing an example of median processing in a 5 ⁇ 5 size range.
  • FIG. 10 is a diagram illustrating a state in which a color gradient is checked in a 5 ⁇ 5 range of the same size as the provisional color difference correction filter.
  • Garden 11 is a diagram illustrating a state in which a color gradient is examined in a 9 ⁇ 9 range of the same size as the provisional color difference correction filter in the second embodiment.
  • FIG. 12 is a block diagram for explaining the relationship between processes in Example 2 of the third embodiment.
  • FIG. 13 is a flowchart showing an outline of an image data conversion process performed by an image processing unit according to a fourth embodiment.
  • FIG. 14 is a block diagram for explaining a processing relationship according to the fourth embodiment.
  • FIG. 15 is a diagram showing a color difference correction low-pass filter.
  • Fig. 16 is a diagram showing the relationship between the magnitude of the color gradient and the G component synthesis rate.
  • FIG. 17 is a block diagram for explaining the relationship between the processes in the fifth embodiment.
  • FIG. 18 is a diagram showing nine classifications based on direction indicators.
  • FIG. 19 is a diagram illustrating the position of a pixel to be used and its coefficient (a luminance generation coefficient pattern at the G position) when the conversion target pixel is a G pixel.
  • FIG. 20 is a diagram illustrating the position of a pixel to be used according to a direction index and its coefficient (luminance generation coefficient pattern at R and B positions) when the conversion target pixel is an R pixel or a B pixel.
  • FIG. 21 is a diagram showing a filter for edge enhancement.
  • FIG. 22 is a diagram showing how a program is provided via a recording medium such as a CD-ROM or a data signal from the Internet or the like.
  • FIG. 1 is a functional block diagram of the electronic camera according to the first embodiment.
  • the electronic camera 1 includes an AZD conversion unit 10, an image processing unit 11, a control unit 12, a memory 13, a compressed Z decompression unit 14, and a display image generation unit 15. Also, a memory card interface section 17 for interfacing with a memory card (card-shaped removable memory) 16 and an external interface for interfacing with an external device such as a PC (personal computer) 18 via a predetermined cable or wireless transmission path. An interface unit 19 is provided. Each of these blocks is interconnected via a bus 29.
  • the image processing unit 11 is composed of, for example, a one-chip microprocessor dedicated to image processing.
  • the electronic camera 1 further includes an imaging optical system 20, an image sensor 21, an analog signal processing unit 22, and a timing control unit 23.
  • An optical image of the subject acquired by the imaging optical system 20 is formed on the image sensor 21, and the output of the image sensor 21 is connected to the analog signal processing unit 22.
  • the output of the analog signal processing unit 22 is connected to the A / D conversion unit 10.
  • the output of the control unit 12 is connected to the timing control unit 23, and the output of the timing control unit 23 is connected to the image sensor 21, the analog signal processing unit 22, the A / D conversion unit 10, and the image processing unit 11.
  • the image sensor 21 is composed of, for example, a single-plate CCD or the like.
  • the electronic camera 1 further includes an operation unit 24 and a monitor 25 corresponding to a release button, a mode switching selection button, and the like.
  • the output of the operation unit 24 is connected to the control unit 12, and the output of the display image generation unit 15 is connected to the monitor 25.
  • a monitor 26, a printer 27, and the like are connected to the PC 18, and an application program recorded on a CD-ROM 28 is installed in advance.
  • the PC 18 is connected to the electronic camera 1 and the like via a memory card interface unit (not shown) for interfacing with the memory card 16 and a predetermined cable or wireless transmission path.
  • An external interface unit (not shown) for interfacing with an external device is provided.
  • the control unit 12 when the photographing mode is selected by the operator via the operation unit 24 and the release button is pressed, the control unit 12 Then, timing control is performed on the image sensor 21, the analog signal processing unit 22, and the A / D conversion unit 10.
  • the image sensor 21 generates an image signal corresponding to the optical image.
  • the image signal is subjected to predetermined signal processing in an analog signal processing unit 22, digitized in an A / D conversion unit 10, and supplied to the image processing unit 11 as image data.
  • the image processing unit 11 Since the R (red), G (green), and B (blue) color filters are arranged in the image sensor 21 in a Bay array, the image processing unit 11 The supplied image data is represented in the RGB color system. Each pixel constituting the image data has RGB information and color information of one color component.
  • the image processing unit 11 performs image processing such as gradation conversion and contour enhancement on such image data, in addition to performing image data conversion processing described later.
  • the image data on which such image processing has been completed is subjected to predetermined compression processing by the compression Z decompression unit 14 as necessary, and is recorded on the memory card 16 via the memory card interface unit 17.
  • the image data that has undergone the image processing is recorded on the memory card 16 without being subjected to compression processing, or is converted into a color system used by the monitor 26 and the printer 27 on the PC 18 side.
  • the data may be supplied to the PC 18 via the external interface unit 19.
  • the image data recorded on the memory card 16 is read out via the memory card interface unit 17 and is read out by the compression / decompression unit 12.
  • the image is subjected to the extension processing, and is displayed on the monitor 25 via the display image creation unit 15.
  • the decompressed image data is not displayed on the monitor 25, but is converted into a color system adopted by the monitor 26 and the printer 27 of the PC 18, and transmitted through the external interface unit 19. You can supply it to PC18.
  • the process of converting the image data, which has been subjected to the conversion process described later, into the color system adopted by the monitors 25 and 26 and the printer 27 can be realized by a known technique.
  • Image data captured by the image sensor 21 and input to the image processing unit 11 via the analog signal processing unit 22 and the AZD conversion unit 10 is represented by a Bayer array RGB color system.
  • One pixel contains only one color component Not rare. In other words, it can be said that information on the color image of the subject is thinned out in the Bayer array.
  • this image data is also referred to as pre-conversion RGB image data.
  • This pre-conversion RGB image data is converted into high-definition, high-quality image data containing R, G, and B components at each pixel. That is, high-definition, high-quality image data is generated and restored from the thinned image data.
  • FIG. 2 to FIG. 5 are diagrams for explaining RGB image data before conversion.
  • FIG. 2 and FIG. 5 show which color components are arranged in peripheral pixels according to which color components are arranged in the pixel to be converted.
  • the coordinates of the conversion target pixel are represented by.
  • Fig. 2 shows the case where the pixel to be converted has the R component color information
  • Fig. 3 shows the case where the pixel to be converted [i, j] has the color information of the B component
  • Fig. 4 shows a case where the pixel to be converted has color information of the G component, pixels adjacent in the vertical direction have color information of the B component, and pixels adjacent in the horizontal direction have color information of the R component.
  • 5 has the G component color information in the conversion target pixel [i, j], the R component color information in the vertically adjacent pixels, and the B component color information in the horizontally adjacent pixels. Shows the case.
  • a pixel having color information of the R component is called an R pixel
  • a pixel having color information of the B component is called a B pixel
  • a pixel having color information of the G component is called a G pixel.
  • FIG. 6 is a flowchart illustrating an outline of the image data conversion process performed by the image processing unit 11.
  • FIG. 7 is a block diagram for explaining the relationship between the processes. The outline of the image data conversion processing of the first embodiment performed by the image processing unit 11 will be described with reference to FIGS.
  • the image data conversion processing of the first embodiment utilizes the property that the color change rate of color moiré, color spot noise, and the like is statistically very small as compared with the color change rate of the actual color of the subject.
  • the adaptive false color removal processing is performed using the color gradient as an index. In particular, adaptive false color removal in Bayer interpolation is performed. The processing of each step will be described later in more detail.
  • step S11 a bay surface (301 in FIG. 7), that is, RGB image data before conversion is input.
  • step S12 the degree of similarity is calculated to determine the vertical and horizontal directions (302 in FIG. 7).
  • step S13 based on the vertical / horizontal direction determination, using the color information of each color component of the RGB image data before conversion, the Cr and Cb planes, that is, the color difference information Cr and Cb are applied to all the pixels. Generated (303 in Fig. 7).
  • step S14 provisional color difference correction is performed so that a false color boundary is not erroneously recognized as a color boundary when a color gradient is used as an index (304 in FIG. 7).
  • step S15 color gradient analysis is performed using the color difference information Cr and Cb (305 in FIG. 7).
  • step S16 whether or not to perform the color difference correction processing is switched according to the magnitude of the color gradient (306 in FIG. 7).
  • the color difference correction in step S16 is called adaptive color difference correction.
  • adaptive means appropriate as needed.
  • Adaptive color difference correction refers to performing appropriate color difference correction by making corrections depending on conditions or not.
  • step S17 a G plane is generated based on the direction determination result in step S12 (see FIG.
  • step S18 based on the Cr and Cb planes in step S16 and the G plane in step S17, the image is converted into an RGB color system (308 in FIG. 7), and the converted image data is output.
  • the output image data is subjected to various types of image processing or stored in a memory or the like.
  • the image data conversion processing for all the pixels described above is achieved by repeating the image data conversion processing for the local region of interest. Therefore, from here on, we will use the relational expression that satisfies locally in the region of interest. Hereinafter, details of these processes will be described.
  • the similarity is calculated, and the vertical and horizontal directions are determined.
  • the similarity is calculated for the R pixel and the B pixel.
  • the degree of similarity is obtained by quantifying the degree of similarity between a pixel to be converted and peripheral pixels using color information of a color component in a local area including the pixel to be converted.
  • the vertical similarity and the horizontal similarity are obtained, and it is determined whether the similarity is strong in the vertical direction or the horizontal direction.
  • the color information is a value obtained by performing a predetermined process and digitizing the color signal acquired by the image sensor 21. For example, 1 byte 256 gradations It is.
  • Ch [i, j] ⁇ (
  • condition (3) is not satisfied, that is, if the similarity in either the vertical or horizontal direction can be determined, it is determined whether or not the condition (4) is satisfied.
  • the Cr plane is interpolated.
  • the color difference information Cr of the B pixel and the G pixel is obtained by interpolation processing.
  • Equation (8) for the pixel corresponding to the B pixel, Equation (9) for the pixel corresponding to the G pixel adjacent to the R pixel in the horizontal direction, and Equation (9) for the pixel corresponding to the G pixel and the pixel adjacent to the R pixel in the vertical direction is obtained using Expression (10).
  • the color difference information Cb is obtained in the same manner as the color difference information Cr. In this way, the color difference information Cr and Cb are obtained for all the pixels of the RGB image data before conversion.
  • TCr [i, j] ⁇ 6 * tmp_Cr [i, j] + 4 * (tmp_Cr [i, j-l] + tmp_Cr [i, j + l])
  • the following equation (103) and FIG. 9 show an example of the median process.
  • the median process is a process that sorts all pixel values within the 5x5 size range shown in Fig. 9 and uses the central value (median value).
  • a color gradient is checked to determine a false color and a real color so as not to destroy the color structure portion. Even if the provisional color difference correction processing of step 3 is performed, the contrast of the real colors is more likely to remain than the false colors, so that the statistical properties thereof can be distinguished with extremely high accuracy. At that time, in order to protect the color structure as accurately as possible, a color index surface is created that increases the color contrast between real colors and reduces the color contrast between false colors. In general, false colors tend to appear between opposite colors, so it is better to generate color indices between primary colors. That is, from the color difference signals Cr [i, j] and Cb [i, j] obtained as described above, a color index Cdiff [i, j].
  • the color index uses all color difference information that can be combined between the three primary colors of RGB to improve the protection performance of the color structure.
  • the definition equation of color difference is expanded as follows.
  • FIG. 10 is a diagram for explaining how a color gradient is checked and checked within a 5 ⁇ 5 range of the same size as the provisional color difference correction filter.
  • the color difference correction is performed independently of the luminance information, that is, without using the luminance information.
  • the color difference correction is performed based on only the color difference information and the color gradient irrespective of the luminance information.
  • the threshold ThG By setting a very small value for the threshold ThG, the color mottle noise and the color moiré generation region correspond to the color difference correction target region regardless of the chromatic portion and the achromatic portion, and the color structure portion is well excluded. In the case of 256 gradations, the value is about 5 or less.
  • a filter in a narrower range than the force provisional color difference correction filter that uses the original Cr [i, j] as it is is used.
  • the value of G at the R / B position on the bayer surface is determined by the following equations (108), (109), and (110).
  • Gout [i, j] Bayer signal is substituted as it is.
  • the first embodiment provides a high-quality interpolated image in which the occurrence of false colors inevitable in the color interpolation processing is minimized.
  • adaptive false color noise countermeasures that do not destroy the image structure, regardless of whether they are chromatic or achromatic, it is possible to obtain high-quality interpolated images. That is, by applying an adaptive correction process to the color difference component using the color gradient as an index, a high-quality interpolated image with less false colors can be provided.
  • an image restored by interpolating data in which color components are spatially sampled like a Bayer array has a large change in the luminance component at the Nyquist frequency level, so that the above-described color moire or the like can be obtained.
  • Color spot noise easily occurs at high ISO sensitivity.
  • a subtle interpolation prediction error occurs between RGB, and a moiré phenomenon appears as a beat phenomenon.
  • High ISO color spot noise can be successfully removed without being affected by the structure of the luminance signal.
  • color spot noise generated at high ISO sensitivity can be removed not only in flat areas but also in edges of black and white characters with little color gradient change. You.
  • the second embodiment shows an example in which the color difference correction filter of the first embodiment is further enhanced.
  • the difference from the first embodiment is only a filter used for temporary color difference correction and a differential filter for color gradient analysis.
  • the differential filter for color gradient determination is also increased to prevent the destruction of the color structure.
  • FIG. 1 The configuration of the electronic camera 1 according to the second embodiment, a flowchart showing the outline of the image data conversion processing performed by the image processing section 11, and a block diagram explaining the relationship between the processing are shown in FIG. The description is omitted because it is the same as FIG. 1, FIG. 6, and FIG.
  • the correction filters used in the provisional color difference correction of the second embodiment are as follows. Method 1 (low-pass processing)
  • tmp_Cr [i, j] ⁇ 70 * Cr [i, j] + 56 * (Cr [i-l, j] + Cr [i + l, j])
  • TCr [i, j] ⁇ 70 * tmp_Cr [i, j] + 56 * (tmp_Cr [i, j-l] + tmp_Cr [i, j + l])
  • FIG. 11 is a diagram illustrating a state in which a color gradient is examined in a 9 ⁇ 9 range having the same size as the provisional color difference correction filter.
  • the same effect as that of the first embodiment can be obtained while further strengthening the color difference correction filter of the first embodiment.
  • the color difference correction filter size is set to 9 ⁇ 9, which is larger than the 5 ⁇ 5 size of the first embodiment, it is possible to remove false colors (color moiré and color spots) generated over a longer period.
  • the present invention is applied to interpolated data.
  • JPEG data output by interpolation in an electronic camera Examples of this case are shown in the following three cases.
  • the configuration of the electronic camera 1 according to the third embodiment is the same as that of FIG. 1 according to the first embodiment, and a description thereof will be omitted.
  • the interpolated data is subjected to a color correction process for making a picture.
  • the color space conversion in Example 1 is used to convert to the Lab space.
  • FIG. 12 is a block diagram for explaining the relationship between the processes in Example 2.
  • the interpolated RGB data (401 in Fig. 12) is converted to Lab data (402 in Fig. 12).
  • the provisional color difference correction 304 corresponds to the provisional ab surface correction 403
  • the color gradient analysis 305 corresponds to the color gradient analysis 404
  • the adaptive color difference correction is performed.
  • Positive 306 corresponds to adaptive color difference correction 405
  • color system conversion 308 corresponds to color space conversion 406.
  • Temporary color difference correction “7. Colorimetric system conversion” of the first or second embodiment, Cb and Cr are replaced with a and b. It is defined below only when it cannot be simply replaced.
  • the color index Cdif3 ⁇ 4r is obtained by the following equation (119) or (120).
  • the color space used for checking the color gradient and the color space used for the color difference correction processing do not have to be the same as in Example 2.
  • the color space to be subjected to the color difference correction processing is, for example, an ab plane in the Lab space or an IQ plane in the YIQ space.
  • After correcting the color difference on the ab and IQ planes to see the color gradient For example, convert to HSV space or LCH space.
  • the color gradient is obtained by observing the change in the chromaticity component other than the luminance component according to the following equations (121) and (122).
  • H and S in HSV space and C and H in LCH space are chromaticity components (information).
  • the chromaticity is simply the property of a color excluding brightness. Chrominance is also a concept included in chromaticity.
  • grad is an operator defined in the first embodiment or the second embodiment.
  • the color difference correction is adaptively performed in the same manner as in the first embodiment. As a result, the same effect as in the first embodiment can be obtained.
  • the configuration of the electronic camera 1 according to the fourth embodiment is the same as that of FIG. 1 according to the first embodiment, and a description thereof will be omitted.
  • US Pat. No. 5,382,976 is known as a technique for interpolating a color image picked up by an image pickup device having a color filter of a bay array.
  • the G plane is interpolated while examining the directionality of the bayer plane, and the R and B planes are compared to the G plane and the high frequency components of the G plane are added to the R and B planes.
  • Interpolation of the R and B planes is equivalent to temporarily moving to the space of the chrominance planes R_G and BG, interpolating with the chrominance planes, and then calculating the G planes to return to the original R and B planes.
  • the image processing method according to the fourth embodiment provides an image processing method for generating a high-definition high-quality color image that also has a countermeasure against oblique line jaggy while solving the problem of the color boundary portion. I do.
  • FIG. 13 is a flowchart illustrating an outline of the image data conversion process performed by the image processing unit 11.
  • FIG. 14 is a block diagram for explaining the relationship between the processes. The outline of the image data conversion process performed by the image processing unit 11 will be described with reference to FIGS.
  • step S1 a Bayer surface (101 in FIG. 14), that is, RGB image data before conversion is input.
  • step S2 using the color information of each color component of the RGB image data before conversion, the Cr and Cb planes, that is, the color difference information Cr and Cb are generated in all the pixels (103 in FIG. 14). At this time, the similarity is calculated to determine the vertical and horizontal directions (102 in FIG. 14), and the color difference information Cr and Cb are generated based on the vertical and horizontal determination.
  • step S3 color gradient analysis is performed using the color difference information Cr and Cb (104 in FIG. 14).
  • the color gradient analysis first determines whether the pixel is an achromatic pixel, a chromatic pixel, or a chromatic pixel. In this case, a color index for evaluating a color such as the degree of chromaticity is obtained. The color index is calculated for all pixels, and a color index plane is generated. For each pixel, a color gradient is determined to determine whether there is a color boundary based on the color index of the corresponding pixel and the color indexes of the surrounding pixels. The color gradient is the degree of color change.
  • step S4 G plane generation 1 is performed (105 in FIG. 14). That is, in all the pixels, the color information of the G color component is generated by the interpolation processing.
  • the interpolation method for G-plane generation 1 is a method capable of oblique line resolution. That is, this is an interpolation method that does not generate oblique jaggies.
  • step S5 G plane generation 2 is performed (106 in FIG. 14). Similar to the G plane generation 1, color information of the G color component is generated by interpolation processing for all pixels.
  • the interpolation method for G-plane generation 2 is an interpolation method that may cause diagonal jaggies but does not cause problems at color boundaries.
  • step S6 based on the color gradient analysis result in step S3, the interpolation result of G plane generation 1 in step S4 and the G plane generation 2 in step S5 are synthesized (107 in FIG. 14).
  • the interpolation result of G plane generation 1 is used.
  • the interpolation result of G plane generation 2 is used.
  • the interpolation result of G-plane generation 1 and the interpolation result of G-plane generation 2 are added using a weighting coefficient corresponding to the color gradient.
  • step S7 based on the Cr and Cb planes in step S2 and the G plane in step S6, the image data is converted into the RGB color system (108 in FIG. 14), and the converted image data is output.
  • the output image data is subjected to various types of image processing or stored in a memory or the like.
  • the image data conversion processing for all the pixels described above is achieved by repeating the image data conversion processing for the local region of interest. Therefore, from here on, we will use the relational expression that satisfies locally in the region of interest. Hereinafter, details of these processes will be described.
  • color difference information Cr and Cb Prior to color evaluation, color difference information Cr and Cb are corrected. This is to remove false colors occurring on the color difference plane of Cr and Cb obtained as described above in order to accurately perform color evaluation.
  • a chrominance median filter may be used, in the fourth embodiment, a low-pass filter shown in the following equation (11) and FIG. 15 is used. This process can achieve the purpose of removing false colors at high speed. The false color may be removed by another method.
  • the value of the color index can be used to evaluate the achromatic color or the chromatic color, and in the case of a chromatic color, the chroma of low chromatic color or high chromatic color.
  • the color index uses all color difference information that can be combined between the three primary colors of RGB to improve its accuracy. When the color difference is expanded, the following equation (13) is obtained. In the present embodiment, all color boundaries can be found evenly by using this color index. CdifKlR— G
  • the color gradient is examined in the plane of the color index in order to identify the rising color boundary as a problem of the related art.
  • the power S can be obtained by the following equation (14).
  • an isotropic first-order differential filter for calculating differences from all adjacent pixels was used in order to simultaneously detect color boundaries in all directions.
  • the reason for performing the isotropic differentiation in multiple directions is to detect edges in all directions.
  • a secondary differential filter for calculating the difference between the differences may be used. The first derivative finds the rising or falling edge, and the second derivative finds peaks or valleys.
  • the interpolation method obtained in the G plane generation 1 is an interpolation method capable of oblique line resolution, that is, capable of suppressing the occurrence of oblique line jaggies. However, this is an interpolation method that may cause problems at the color boundary.
  • Let gl be the G interpolation value obtained by this interpolation method.
  • gl [i, j] (G [i, j-l] + G [i, j + l] + G [i-l, j] + G [i + l, j]) / 4
  • G-plane generation 2 Similar to G-plane generation 1, based on the direction index HV [i, j] obtained by the above-described direction determination, the R pixel [i, j] or B pixel [i, j] of the RGB image data before conversion is used. , And G [i, j] of the G color component. That is, the color information of the missing G component in the R pixel or the B pixel is obtained by the interpolation processing.
  • the interpolation method obtained in G-plane generation 2 has an issue of oblique jaggy, but does not cause any problem at the color boundary.
  • G2 be the G interpolation value obtained by this interpolation method.
  • G-interpolation values gl that can be used to prevent oblique hatching found in G-plane generation 1 are usually used.
  • the above-mentioned color gradient is used as a weighting ratio for this switching. Assuming that the weighting ratio of gl at pixel [i, j] is 1- ⁇ and the weighting ratio of g2 is ⁇ , the value of ⁇ is determined by the following equation (24)-equation (26).
  • Equation (8) Cr, Cb plane obtained by equation (10), Cr, Cb plane with appropriate color difference correction added by equation (11), and G plane obtained by equation (27)
  • the color information is converted to the RGB color system using equations (28) and (29).
  • G-plane generation 1 is performed using a general concept of interpolation processing.
  • G-plane generation 1 is performed by another method different from the fourth embodiment.
  • the G plane generation 1 performed in the fifth embodiment is basically based on the method disclosed in WO 02/071761.
  • the configuration of the electronic camera 1 according to the fifth embodiment is the same as that of FIG. 1 of the fourth embodiment, and a description thereof will not be repeated.
  • the flowchart showing the outline of the image data conversion process performed by the image processing unit 11 is different from the color gradient analysis in step S3 in FIG. 13 of the fourth embodiment and the G plane generation 1 in step S4 only in the contents. It is. Therefore, the flow chart of the fifth embodiment is omitted, and FIG. 13 is referred to.
  • FIG. 17 is a block diagram for explaining a processing relationship according to the fifth embodiment.
  • the difference from FIG. 14 of the fourth embodiment is that a diagonal direction determination 201 is added, and a G plane generation 1 (202) is performed based on the results of the vertical and horizontal direction determination 102 and the diagonal direction determination 201. is there. Further, the contents of the color gradient analysis 203 are different from those of the color gradient analysis 104 of the fourth embodiment.
  • the fifth embodiment will be described focusing on the color gradient analysis 203 (step S3) and the G plane generation 1 (202) (step S4).
  • the generation of the Cr, Cb color difference plane is the same as in the fourth embodiment.
  • similarity determination uses vertical and horizontal direction determinations, as in the fourth embodiment.
  • a color index Cdiff [i, j] for evaluating the color in pixel units is obtained.
  • the G plane generation 1 is basically performed based on the method disclosed in WO02 / 071761, so that the G-plane generation 1 is far more chromatic than in US Patent No. 5,629,734. This is to make it possible to take measures against oblique diagonal jaggy without causing problems at the boundary.
  • streaky vertical stripes and horizontal stripes may occur at the boundary portion that applies to a specific color combination. This can cause streaky vertical and horizontal stripes (color boundary jaggies) at the red and blue color boundaries, the green and orange color boundaries, the pink and light blue color boundaries, and the white and yellow color boundaries. is there.
  • the color boundary jaggy occurs particularly at the color boundary between the opposite colors and does not immediately occur at the normal color boundary.
  • the contrast of the target location is improved by using the color difference between the opposite colors as the color index. That is, the color index CdiiffiJ] is obtained using equation (30).
  • Cdiff [i, j] (
  • oblique line resolution that is, G component generation by another method capable of suppressing the occurrence of oblique line jaggies.
  • This is a method in which a luminance component and a color difference component are once generated in another color system, and then converted into RGB components, instead of performing G interpolation. Based on the method disclosed in WO 02/071761.
  • the similarity in the oblique direction is determined using the pixel information in the local area including the conversion target pixel.
  • the diagonal direction is the direction of 45 degrees and 135 degrees.
  • FIG. 18 is further described below.
  • the similarity C45DJ] in the diagonal 45-degree direction is obtained by Expression (32), and the similarity C135DJ] in the diagonal 135-degree direction is obtained by Expression (33).
  • Similarity determination is performed. Using C45 [i, j] and C135 [i, j] obtained above, determine the similarity of the conversion target pixels.
  • similarity is strong in the 45 degree direction, or similar in the 135 degree direction. It is determined whether the similarity is strong or the 45-degree direction and the 135-degree direction cannot be determined.
  • Th2 is a predetermined threshold value, and is set to a value substantially equal to Thl for vertical / horizontal direction determination. For example, a value of about 10 is used for 256 gradations.
  • the difference between the similarities in the 45-degree direction and the 135-degree direction is equal to or smaller than the threshold Th2, it means that it is not possible to determine whether the similarity is strong in the 45-degree direction and the similarity is strong in the 135-degree direction. .
  • condition (34) is not satisfied, that is, if the similarity in either the 45-degree direction or the 135-degree direction can be determined, it is determined whether or not the condition (35) is satisfied.
  • set the direction index DN [i, j] l assuming that the similarity is strong in the 45-degree direction.
  • the calculation of the luminance information Y according to the fifth embodiment is a method of directly weighting and adding the Bayer plane, which is different from the G plane generation of the fourth embodiment, to generate a luminance Y plane. That is, the luminance information Y is directly generated using the color information of each color of the unconverted RGB image data that has not been subjected to the interpolation processing S.
  • Arbitrary color information of RGB image data (Bay surface data) before conversion is represented by A [x, y].
  • the direction of similarity can be classified into nine types as shown in Fig. 18.
  • FIG. 19 is a diagram illustrating positions of pixels to be used and their coefficients (a luminance generation coefficient pattern at the G position) when the pixel to be converted is a G pixel.
  • FIG. 20 is a diagram illustrating the positions of the pixels used in accordance with the direction index and the coefficients (luminance generation coefficient patterns at the R and B positions) when the conversion target pixel is an R pixel or a B pixel.
  • Equation (37) is used when the direction index is [0, 0].
  • Equation (38) is used when the direction index is [0, 1].
  • Equation (39) is used when the direction index is [0, -1].
  • Equation (40) is used when the direction index is [1, 0].
  • Equation (41) is used when the direction index is [1, 1].
  • Equation (42) is used when the direction index is [1, -1].
  • Equation (43) is used when the direction index is [-1, 0].
  • Equation (44) is used when the direction index is [-1, 1].
  • Equation (45) is used when the direction index is [-1, -1].
  • hl35 is represented by the following equations (46) and (55).
  • Examples of generally preferable constant settings include the following examples.
  • edge enhancement processing is performed to return the contrast to an appropriate level.
  • it is only necessary to pass through a simple fixed filter which does not need to consider the directionality.
  • a bandpass filter for performing edge extraction for example, Laplacian shown in Expression (57) and FIG. 21 is used.
  • the calculation of Expression (58) is performed to obtain final luminance information Y.
  • the constant K in equation (58) takes a positive value and is usually set to 1 or more.
  • YH [i, j] ⁇ 8 * Y [i, j]-(Y [i-l, j] + Y [i + l, j] + Y [i, j-l] + Y [i, j + l]
  • the three color information of the Y plane obtained in (58) is converted into the G component by equation (59).
  • G-plane generation 2 is the same as in the fourth embodiment.
  • G-plane synthesis is the same as in the fourth embodiment.
  • the color system conversion is the same as in the fourth embodiment.
  • the high-quality interpolated image with few false colors and false structures is obtained by applying adaptive processing to both the color difference component and the luminance component using the color gradient as an index. Can provide an image. Above all, adaptive false color countermeasures are very effective in removing color moiré and color spot noise at high ISO sensitivity.
  • the power described in the example of the RGB color system of the bay array is not necessarily limited to this content. Color filters of other arrangements may be used.
  • an appropriate interpolation method for a color component responsible for the luminance of a color boundary portion is selected or weighted and added based on a color gradient.
  • a color difference correction low-pass filter process for color difference correction may be inserted before the color system conversion, and the color difference correction low-pass filter may be turned on / off based on a color gradient analysis result. Thereby, a false color other than the color boundary portion can be removed, and the occurrence of color blur at the color boundary portion can be prevented.
  • the type and size of the color difference correction low-pass filter may be selected based on the analysis result of the color gradient.
  • the force shown in the example of the electronic camera is not necessarily limited to this content. It may be a video camera that captures moving images, a personal computer with an image sensor, or a mobile phone. In other words, the present invention can be applied to any device that generates color image data using an image sensor.
  • the present invention can be applied to image data captured by a two-chip image sensor.
  • a single-chip image sensor with an RGB bay array one pixel has information on one color component
  • an image is picked up with a two-chip image sensor with an RGB bay array 1 One pixel has information on two color components.
  • FIG. 22 is a diagram showing this state.
  • the personal computer 400 receives the program via the CD-ROM 404.
  • the personal computer 400 has a function of connecting to the communication line 401.
  • the computer 402 is a server computer that provides the program, and stores the program in a recording medium such as the hard disk 403.
  • the communication line 401 is a communication line such as the Internet or personal computer communication, or a dedicated communication line.
  • the computer 402 reads the program using the hard disk 403, and transmits the program to the personal computer 400 via the communication line 401. That is, a program is transmitted as a data signal on a carrier wave via the communication line 401.
  • the program can be supplied as a computer program product that can be read by various forms of a computer such as a recording medium and a carrier wave.

Abstract

 複数の色成分からなる表色系で表され、1つの画素に1つの色成分の色情報を有する複数の画素からなる第1の画像を、複数の画素からなり各々の画素に少なくとも1つの共通する色成分の色情報を有する第2の画像に変換する画像処理方法は、第1の画像の色情報から色差情報を生成する色差情報生成手順と、生成した色差情報に基づき、色の変化の度合いである色勾配を求める色勾配解析手順と、求めた色勾配に基づき、第1の画像を第2の画像に変換する画像変換手順とを有する。

Description

画像処理方法、画像処理プログラム、画像処理装置
技術分野
[0001] 本発明は、高精細高画質のデジタルカラー画像を生成する画像処理方法に関する 背景技術
[0002] 単板カラー撮像素子等で色成分が空間的にサンプリングされたカラー画像データ に対し色補間処理を行った場合、必ず偽色が発生する。このカラー画像データの画 像構造、中でも特に色構造を破壊せずにこの偽色を適応的に除去する方法が国際 公開第 WO02/060186号に示されている(本願発明者と同一発明者)。この方法 では、一旦色差信号を求めて色指標を算出し、色判定することによって無彩色部で は強レ、偽色除去を行い、有彩色部では弱レ、偽色除去を行う。
発明の開示
発明が解決しょうとする課題
[0003] し力 ながら、国際公開第 WO02/060186号による方法では、有彩色部におけ る偽色に対して強力な対応ができないという問題があった。特に高 ISO感度撮影画 像の場合、偽色の振幅が増大することにより、色斑ノイズという形で有彩色部、無彩 色部関係なく偽色が出現する。このような場合に、画像全体の偽色の除去が必ずしも 十分になされないという問題が生じる可能性があった。
課題を解決するための手段
[0004] 本発明の第 1の態様によると、複数の色成分からなる表色系で表され、 1つの画素 に 1つの色成分の色情報を有する複数の画素からなる第 1の画像を、複数の画素か らなり各々の画素に少なくとも 1つの共通する色成分の色情報を有する第 2の画像に 変換する画像処理方法は、第 1の画像の色情報から色差情報を生成する色差情報 生成手順と、生成した色差情報に基づき、色の変化の度合いである色勾配を求める 色勾配解析手順と、求めた色勾配に基づき、第 1の画像を第 2の画像に変換する画 像変換手順とを有する。 本発明の第 2の態様によると、第 1の態様の画像処理方法において、画像変換手 順は、第 1の画像の色情報を用いて生成された色差情報に対して、色勾配に基づき 補正処理をカ卩える色差情報補正手順を備えるのが好ましい。
本発明の第 3の態様によると、第 2の態様の画像処理方法において、色勾配解析 手順は、第 1の画像の表色系を構成する色成分間の色差情報を利用して色指標を 生成し、色指標の面内で色の変化の度合いを調べて前記色勾配を求めるのが好ま しい。
本発明の第 4の態様によると、第 1の態様の画像処理方法において、第 1の画像の 複数の画素と第 2の画像の複数の画素は、同じ位置関係で対応し、画像変換手順は 、第 2の画像の処理対象画素に位置する第 1の画像の色情報の寄与度を色勾配の 大きさに応じて変更することにより、第 1の画像から第 2の画像に変換するのが好まし レ、。
本発明の第 5の態様によると、第 4の態様の画像処理方法において、色勾配解析 手順は、第 1の画像の表色系を構成する色成分とその反対色の色成分との間の色差 情報を利用して色指標を生成し、色指標の面内で色の変化の度合いを調べて前記 色勾配を求めるのが好ましい。
本発明の第 6の態様によると、画像処理方法は、複数の色成分からなる表色系で 表され、各画素に少なくとも 1つの色成分の色情報が欠落している第 1の画像から、 各々の画素に少なくとも 2つの共通する色成分の色情報を有する画像への変換を経 た第 2の画像を入力する画像入力手順と、第 2の画像の色情報から色差情報を生成 する色差情報生成手順と、生成した色差情報に基づき、色の変化の度合いである色 勾配を求める色勾配解析手順と、求めた色勾配に基づき、第 2の画像の色差情報を 補正する色差情報補正手順とを備える。
本発明の第 7の態様によると、第 1、 6のいずれかの態様の画像処理方法において 、色勾配解析手順は、色差情報に基づき画素単位において色を評価するための色 指標を生成し、生成した色指標に基づき色勾配を求めるのが好ましい。
本発明の第 8の態様によると、第 7の態様の画像処理方法において、色勾配解析 手順は、生成した色指標の面内で勾配を求める微分演算を行うことによって、色勾配 を求めるのが好ましい。
本発明の第 9の態様によると、第 7の態様の画像処理方法において、色差情報生 成手順は、 1つの処理対象画素に対し複数種類の色差情報を生成し、色勾配解析 手順は、複数種類の色差情報を組み合わせて少なくとも 3種類の色成分間の色差情 報を利用して色指標を生成するのが好ましい。
本発明の第 10の態様によると、画像処理方法は、複数の色成分からなる表色系で 表され、各画素に少なくとも 1つの色成分の色情報が欠落している第 1の画像から、 各々の画素に少なくとも 3つの共通する色成分の色情報を有する画像への変換を経 た第 2の画像を入力する画像入力手順と、第 2の画像を色空間変換して色度情報を 生成する色度情報生成手順と、生成した色度情報に基づき、色の変化の度合いであ る色勾配を求める色勾配解析手順と、求めた色勾配に基づき、第 2の画像に含まれ ている色差情報を補正する色差情報補正手順とを備える。
本発明の第 11の態様によると、第 2、 6、 10のいずれかの態様の画像処理方法に おいて、色差情報補正手順は、色勾配が所定値よりも小さい画素に対して、所定の 範囲の補正フィルタを色差面に掛け、色勾配が所定値よりも大きな画素に対しては 補正処理を行わなレ、か所定範囲より狭レ、範囲の補正フィルタを掛けるのが好ましレ、。 本発明の第 12の態様によると、第 11の態様の画像処理方法において、色勾配解 析手順は、所定の範囲の補正フィルタのサイズと色勾配を求める微分フィルタのサイ ズを一致させるのが好ましい。
本発明の第 13の態様によると、第 1、 6、 10のいずれかの態様の画像処理方法に おいて、色勾配解析手順は、色勾配を求めるための微分演算を、複数の方向に対し て等方的に算出して色勾配を求めるのが好ましい。
本発明の第 14の態様によると、第 11の態様の画像処理方法において、色勾配解 析手順は、色勾配を一次微分演算から算出するのが好ましい。
本発明の第 15の態様によると、第 4の態様の画像処理方法において、画像変換手 順は、第 2の画像の輝度を担う色成分の色情報に対して、第 2の画像の処理対象画 素に位置する第 1の画像の色情報の寄与度を色勾配の大きさに応じて変更するのが 好ましい。 本発明の第 16の態様によると、第 15の態様の画像処理方法において、画像変換 手順は、少なくとも、第 1の画像の複数の色成分の色情報を用いて第 2の画像の 1つ の色成分の色情報を生成する第 1の方法と第 1の画像の 1つの色成分の色情報を用 いて第 2の画像の 1つの色成分の色情報を生成する第 2の方法とを使用して、第 1の 画像から第 2の画像に変換し、色勾配解析手順は、求めた色勾配に基づき色境界が あるかなレ、かを判定し、画像変換手順は、色勾配解析手順により色境界がないと判 定された画素については第 1の方法を使用し、色境界があると判定された画素につ いては第 2の方法を使用するのが好ましい。
本発明の第 17の態様によると、第 16の態様の画像処理方法において、画像変換 手順は、第 1の方法において、第 1の画像の輝度を担う色成分の色情報を該色成分 の欠落する画素において該色成分と同じ色成分の色情報と該色成分と異なる色成 分の色情報を用いた補間処理により生成し、補間処理により生成した輝度を担う色 成分の色情報を使用して、第 1の画像から第 2の画像に変換するのが好ましい。 本発明の第 18の態様によると、第 17の態様の画像処理方法において、画像変換 手順は、第 1の方法において、第 1の画像の色成分の色情報を使用して第 1の画像 の表色系とは異なる他の表色系の輝度を担う色成分の色情報をすベての画素にお いて生成し、生成した他の表色系の輝度を担う色成分の色情報を使用して、第 1の 画像から第 2の画像に変換するのが好ましい。
本発明の第 19の態様によると、第 1の態様の画像処理方法において、色差情報生 成手順は、少なくとも 3通りの何れかの方法を用いて、色差情報を生成するのが好ま しい。
本発明の第 20の態様によると、第 19の態様の画像処理方法において、色差情報 生成手順は、第 1の画像の色情報を用いて、少なくとも 2方向に関する類似度を算出 し、算出した類似度に基づき、各方向に対する類似性の強弱を少なくとも 3段階で判 定し、判定結果に応じて少なくとも 3通りの何れの方法を用いるかを決定するのが好 ましい。
本発明の第 21の態様によると、複数の色成分からなる表色系で表され、 1つの画 素に 1つの色成分の色情報を有する複数の画素からなる第 1の画像を、複数の画素 からなり各々の画素に少なくとも 1つの共通する色成分の色情報を有する第 2の画像 に変換する画像処理方法は、第 1の画像の色情報から第 2の画像の色差情報を生 成する色差情報生成手順と、生成した第 2の画像の色差情報に基づき、色の変化の 度合いである色勾配を求める色勾配解析手順と、求めた色勾配に基づき、第 2の画 像の色差情報を補正する色差情報補正手順とを備え、色差情報補正手順は、第 2の 画像の輝度情報とは独立に第 2の画像の色差情報を補正する。
本発明の第 22の態様によると、画像処理方法は、複数の色成分からなる表色系で 表され、各画素に少なくとも 1つの色成分の色情報が欠落している第 1の画像から、 各々の画素に少なくとも 2つの共通する色成分の色情報を有する画像への変換を経 た第 2の画像を入力する画像入力手順と、第 2の画像の色情報力 色差情報を生成 する色差情報生成手順と、生成した色差情報に基づき、色の変化の度合いである色 勾配を求める色勾配解析手順と、求めた色勾配に基づき、第 2の画像の輝度情報と は無関係に、第 2の画像の色差情報を補正する色差情報補正手順とを備える。 本発明の第 23の態様によると、画像処理方法は、複数の色成分からなる表色系で 表され、各画素に少なくとも 1つの色成分の色情報が欠落している第 1の画像から、 各々の画素に少なくとも 3つの共通する色成分の色情報を有する画像への変換を経 た第 2の画像を入力する画像入力手順と、第 2の画像を色空間変換して色度情報を 生成する色度情報生成手順と、生成した色度情報に基づき、色の変化の度合いであ る色勾配を求める色勾配解析手順と、求めた色勾配に基づき、第 2の画像に含まれ ている輝度情報とは無関係に、第 2の画像に含まれている色差情報を補正する色差 情報補正手順とを備える。
本発明の第 24の態様によると、画像処理方法は、複数の画素から成り、各々の画 素に少なくとも 2種類の共通する色成分の色情報を有する画像を入力する画像入力 手順と、画像の色成分の色情報を、輝度情報と色差情報に変換する色変換手順と、 色差情報に基づき、色の変化の度合いである色勾配を求める色勾配解析手順と、求 めた色勾配に基づき、輝度情報とは無関係に、色差情報を補正する色差情報補正 手順とを備えるのが好ましい。
本発明の第 25の態様によると、第 21から 24のいずれかの態様の画像処理方法に おいて、色差情報補正手順は、色勾配解析手順で求めた色勾配の調査範囲の大き さに応じて、色差補正に利用する色情報の範囲を決定するのが好ましい。
本発明の第 26の態様によると、第 21、 22、 24のいずれかの態様の画像処理方法 において、色勾配解析手順は、色勾配を求める前に色差情報生成手順で生成した 色差情報に対して補正処理を加えるのが好ましい。
本発明の第 27の態様によると、複数の色成分からなる表色系で表され、 1つの画 素に 1つの色成分の色情報を有する複数の画素からなる第 1の画像を、複数の画素 からなり各々の画素に少なくとも 1つの共通する色成分の色情報を有する第 2の画像 に変換する画像処理方法は、第 1の画像の複数の色成分の色情報を用いて、第 1の 画像の表色系とは異なる色成分の色情報を生成する第 1の色情報生成手順と、第 1 の画像の 1つの色成分の色情報を用いて、第 1の画像の表色系と同じ色成分の色情 報を生成する第 2の色情生成手順と、第 1の色情報生成手順により生成された色情 報と第 2の色情報生成手順により生成された色情報とを、画素位置に応じて、切り替 えて用いるか、もしくは、加重合成する色情報合成手順とからなる。
本発明の第 28の態様によると、第 27の態様の画像処理方法において、第 1の色情 報生成手順は、第 1の画像の表色系とは異なる輝度成分の色情報を生成するのが 好ましい。
本発明の第 29の態様によると、第 28の態様の画像処理方法において、第 1の色情 報生成手順は、第 1の画像の表色系とは異なる色差成分の色情報を生成し、第 1の 画像の表色系とは異なる輝度成分の色情報と合わせて、第 1の画像の表色系の中の 輝度を代表する色成分の色情報に変換するのが好ましい。
本発明の第 30の態様によると、第 27から 29のいずれかの態様の画像処理方法に おいて、第 2の色情報生成手順は、第 1の画像の表色系の中で輝度を代表する色成 分の色情報を生成するのが好ましレ、。
本発明の第 31の態様によると、第 28から 30のいずれかの態様の画像処理方法に おいて、第 1の色情報生成手順は、少なくとも 9通りの何れかの方法を用いて、第 1の 画像の表色系とは異なる輝度成分の色情報を生成するのが好ましい。
本発明の第 32の態様によると、第 30の態様の画像処理方法において、第 2の色情 報生成手順は、少なくとも 3通りの何れかの方法を用いて、輝度を代表する色成分の 色情報を生成するのが好ましい。
本発明の第 33の態様によると、第 31の態様の画像処理方法において、第 1の色情 報生成手順は、第 1の画像の色情報を用いて、少なくとも 4方向に関する類似度を算 出し、算出した類似度に基づき、各方向に対する類似性の強弱を少なくとも 9段階で 判定し、判定結果に応じて少なくとも 9通りの何れの方法を用いるかを決定するのが 好ましい。
本発明の第 34の態様によると、第 32の態様の画像処理方法において、第 2の色情 報生成手順は、第 1の画像の色情報を用いて、少なくとも 2方向に関する類似度を算 出し、算出した類似度に基づき、各方向に対する類似性の強弱を少なくとも 3段階で 判定し、判定結果に応じて少なくとも 3通りの何れの方法を用いるのかを決定するの が好ましい。
本発明の第 35の態様によると、第 27から 34のいずれかの態様の画像処理方法に おいて、第 1の画像の色情報から色差情報を生成する色差情報生成手順と、生成し た色差情報に基づき、色の変化の度合レ、である色勾配を求める色勾配解析手順とを さらに有し、色情報合成手順は、画素位置のそれぞれにおいて、求めた色勾配に基 づき第 1の色情報生成手順により生成された色情報と第 2の色情報生成手順により 生成された色情報とを、切り替えて用いるカ もしくは、加重合成するのが好ましい。 本発明の第 36の態様によると、画像処理プログラムは、第 1一 35のいずれかの態 様の画像処理方法の手順をコンピュータに実行させるものである。
本発明の第 37の態様によると、コンピュータ読みとり可能な記録媒体は、第 36の態 様の画像処理プログラムを記録したものである。
本発明の第 38の態様によると、画像処理装置は、第 36の画像処理プログラムを搭 載したものである。
図面の簡単な説明
[図 1]第 1の実施の形態における電子カメラの機能ブロック図である。
[図 2]変換対象画素 [i,j]に R成分の色情報を有する画像データを示す図である。
[図 3]変換対象画素 [i,j]に B成分の色情報を有する画像データを示す図である。 園 4]変換対象画素 [i,j]に G成分の色情報を有する画像データを示す図である。 園 5]変換対象画素 [i,j]に G成分の色情報を有する画像データを示す図である。
[図 6]画像処理部が行う画像データ変換処理の概要を示すフローチャートである。 園 7]第 1の実施の形態における処理の関係を説明するためのブロック図である。
[図 8]5x5サイズの分離型フィルタの例を示す図である。
[図 9]5x5サイズの範囲のメディアン処理の例を示す図である。
[図 10]仮色差補正フィルタと同一サイズの 5x5の範囲で、色勾配を調べている様子を 説明する図である。
園 11]第 2の実施の形態において、仮色差補正フィルタと同一サイズの 9x9の範囲で 、色勾配を調べている様子を説明する図である。
園 12]第 3の実施の形態の例 2における処理の関係を説明するためのブロック図であ る。
[図 13]第 4の実施の形態の画像処理部が行う画像データ変換処理の概要を示すフロ 一チャートである。
園 14]第 4の実施の形態における処理の関係を説明するためのブロック図である。
[図 15]色差補正ローパスフィルタを示す図である。
園 16]色勾配の大きさと G成分合成化率の関係を示す図である。
園 17]第 5の実施の形態の処理の関係を説明するためのブロック図である。
園 18]方向指標による 9通り分類を示す図である。
園 19]変換対象画素が G画素の場合において、使用する画素の位置およびその係 数 (G位置の輝度生成係数パターン)を図示する図である。
園 20]変換対象画素が R画素あるいは B画素の場合において、方向指標に応じて使 用する画素の位置およびその係数 (R、 B位置の輝度生成係数パターン)を図示する 図である。
[図 21]エッジ強調のフィルターを示す図である。
[図 22]プログラムを、 CD— ROMなどの記録媒体やインターネットなどのデータ信号を 通じて提供する様子を示す図である。
発明を実施するための最良の形態 [0006] 第 1の実施の形態
(電子カメラの構成)
図 1は、第 1の実施の形態における電子カメラの機能ブロック図である。電子カメラ 1 は、 AZD変換部 10、画像処理部 11、制御部 12、メモリ 13、圧縮 Z伸長部 14、表 示画像生成部 15を備える。また、メモリカード(カード状のリムーバブルメモリ) 16との インタフェースをとるメモリカード用インタフェース部 17および所定のケーブルや無線 伝送路を介して PC (パーソナルコンピュータ) 18等の外部装置とのインタフェースを とる外部インタフェース部 19を備える。これらの各ブロックはバス 29を介して相互に 接続される。画像処理部 11は、例えば、画像処理専用の 1チップ'マイクロプロセッサ で構成される。
[0007] 電子カメラ 1は、さらに、撮影光学系 20、撮像素子 21、アナログ信号処理部 22、タ イミング制御部 23を備える。撮像素子 21には撮影光学系 20で取得された被写体の 光学像が結像し、撮像素子 21の出力はアナログ信号処理部 22に接続される。アナ ログ信号処理部 22の出力は、 A/D変換部 10に接続される。タイミング制御部 23に は制御部 12の出力が接続され、タイミング制御部 23の出力は、撮像素子 21、アナ口 グ信号処理部 22、 A/D変換部 10、画像処理部 11に接続される。撮像素子 21は例 えば単板式 CCDなどで構成される。
[0008] 電子カメラ 1は、さらに、レリーズボタンやモード切り換え用の選択ボタン等に相当す る操作部 24およびモニタ 25を備える。操作部 24の出力は制御部 12に接続され、モ ニタ 25には表示画像生成部 15の出力が接続される。
[0009] なお、 PC18には、モニタ 26やプリンタ 27等が接続されており、 CD— ROM28に記 録されたアプリケーションプログラムが予めインストールされている。また、 PC18は、 不図示の CPU、メモリ、ハードディスクの他に、メモリカード 16とのインタフェースをと るメモリカード用インタフェース部(不図示)や所定のケーブルや無線伝送路を介して 電子カメラ 1等の外部装置とのインタフェースをとる外部インタフェース部(不図示)を 備える。
[0010] 図 1のような構成の電子カメラ 1において、操作部 24を介し、操作者によって撮影モ ードが選択されてレリーズボタンが押されると、制御部 12は、タイミング制御部 23を介 して、撮像素子 21、アナログ信号処理部 22、 A/D変換部 10に対するタイミング制 御を行う。撮像素子 21は、光学像に対応する画像信号を生成する。その画像信号は 、アナログ信号処理部 22で所定の信号処理が行われ、 A/D変換部 10でディジタ ル化され、画像データとして、画像処理部 11に供給される。
[0011] 本実施の形態の電子カメラ 1では、撮像素子 21において、 R (赤)、 G (緑)、 B (青) のカラーフィルタがべィァ配列されているので、画像処理部 11に供給される画像デ ータは RGB表色系で示される。画像データを構成する各々の画素には、 RGBの何 れカ、 1つの色成分の色情報が存在することになる。
[0012] 画像処理部 11は、このような画像データに対し、後述する画像データ変換処理を 行う他に、階調変換や輪郭強調などの画像処理を行う。このような画像処理が完了し た画像データは、必要に応じて、圧縮 Z伸長部 14で所定の圧縮処理が施され、メモ リカード用インタフェース部 17を介してメモリカード 16に記録される。
[0013] なお、画像処理が完了した画像データは、圧縮処理を施さずにメモリカード 16に記 録したり、 PC18側のモニタ 26やプリンタ 27で採用されている表色系に変換して、外 部インタフェース部 19を介して PC18に供給しても良い。また、操作部 24を介し、操 作者によって再生モードが選択されると、メモリカード 16に記録されている画像デー タは、メモリカード用インタフェース部 17を介して読み出されて圧縮/伸長部 12で伸 長処理が施され、表示画像作成部 15を介してモニタ 25に表示される。
[0014] なお、伸長処理が施された画像データは、モニタ 25に表示せず、 PC18側のモニ タ 26やプリンタ 27で採用されている表色系に変換して、外部インタフェース部 19を 介して PC18に供給しても良レ、。また、後述する変換処理が行われた画像データを、 モニタ 25、 26やプリンタ 27で採用されている表色系に変換する処理については、公 知の技術によって実現できる。
[0015] (画像データの変換)
次に、撮像素子 21を介して取得した RGB表色系の画像データを、高精細高画質 な画像データに変換する処理を説明する。撮像素子 21で撮像され、アナログ信号処 理部 22、 AZD変換部 10を介して画像処理部 11に入力される画像データは、べィ ァ配列の RGB表色系で表され、前述した通り、 1つの画素には 1つの色成分しか含 まれていない。すなわち、被写体のカラー像に関する情報がべィァ配列に間引かれ ていると言える。以下、この画像データを変換前 RGB画像データとも言う。この変換 前 RGB画像データを、各画素において R成分、 G成分、 B成分を含む高精細高画質 な画像データに変換する。すなわち、間引かれた画像データから、高精細高画質な 画像データを生成、復元する。
[0016] 図 2—図 5は、変換前 RGB画像データを説明する図である。図 2 図 5は、変換対 象画素にどの色成分が配置されているかによつて周辺の画素にどの色成分が配置さ れているかを示している。変換対象画素の座標を で表す。図 2は変換対象画素 に R成分の色情報を有する場合を示し、図 3は変換対象画素 [i,j]に B成分の色情 報を有する場合を示す。図 4は変換対象画素 に G成分の色情報を有し、縦方向 に隣接する画素に B成分の色情報を有し横方向に隣接する画素に R成分の色情報 を有する場合を示し、図 5は変換対象画素 [i,j]に G成分の色情報を有し、縦方向に隣 接する画素に R成分の色情報を有し横方向に隣接する画素に B成分の色情報を有 する場合を示している。
[0017] 変換前 RGB画像データにおいて、 R成分の色情報を有する画素を R画素、 B成分 の色情報を有する画素を B画素、 G成分の色情報を有する画素を G画素と呼ぶこと にする。
[0018] 図 6は、画像処理部 11が行う画像データ変換処理の概要を示すフローチャートで ある。図 7は、処理の関係を説明するためのブロック図である。図 6、図 7を使用して、 画像処理部 11が行う第 1の実施の形態の画像データ変換処理の概要を説明する。
[0019] 第 1の実施の形態の画像データ変換処理は、統計的に被写体実在色の色変化率 にくらべ、色モアレ、色斑ノイズ等の色変化率が非常に小さいという性質を利用して、 色勾配を指標とした適応的偽色除去処理を行うものである。特に、べィャ補間内での 適応的偽色除去をする。なお、各ステップの処理は、後にさらに詳細に説明する。
[0020] ステップ S11では、ベィァ面(図 7の 301)、すなわち変換前 RGB画像データを入 力する。ステップ S12において、類似度を算出して縦横方向判定を行う(図 7の 302) 。ステップ S 13において、縦横方向判定に基づき、変換前 RGB画像データの各色成 分の色情報を使用して、 Cr、 Cb面、すなわち色差情報 Cr、 Cbをすベての画素にお いて生成する(図 7の 303)。
[0021] ステップ S14では、色勾配を指標として区別するときに偽色の境界が色境界と誤認 定されないように仮色差補正を行う(図 7の 304)。ステップ S15では、色差情報 Cr、 Cbを使用して色勾配解析を行う(図 7の 305)。ステップ S16では、色勾配の大きさに 応じて、色差補正処理をするか否かを切り替える(図 7の 306)。ステップ S16の色差 補正を適応的色差補正と言う。ここで、適応的とは、必要に応じて適切にという意味 である。適応的色差補正とは、条件によって補正をしたり、補正をしなかったり等する ことにより、適切に色差補正をするこという。
[0022] ステップ S17において、ステップ S12の方向判定結果に基づき、 G面生成を行う(図
7の 307)。すなわち、すべての画素において、 G色成分の色情報を補間処理により 生成する。ステップ S18において、ステップ S16の Cr、 Cb面とステップ S17の G面と に基づき、 RGB表色系に変換し(図 7の 308)、変換された画像データを出力する。 出力された画像データは、各種の画像処理が施されたりメモリ等に格納されたりする
[0023] なお、変換前 RGB画像データの画素数と変換後画像データの画素数は同じであり 、 2次元平面において各画素の位置は 1 : 1で対応する。ところで、上述した全ての画 素における画像データ変換処理は、着目する局所領域における画像データ変換処 理を繰り返すことにより達成される。従って、ここからは、着目領域での局所的に満た す関係式を用いて話を進める。以下、これらの処理の詳細について説明する。
[0024] 1.方向判定
1-1.類似度の算出
入力された変換前 RGB画像データの各色成分の色情報を使用して、類似度の算 出を行い、縦横方向判定を行う。まず、 R画素および B画素において、類似度を算出 する。類似度とは、変換対象画素を含む局所領域内の色成分の色情報を使用して、 変換対象画素と周辺画素との類似性の度合いを数値化したものである。本実施の形 態では、縦方向の類似度と横方向の類似度を求め、縦方向に類似性が強いのか横 方向に類似性が強いのかを判定する。色情報とは、撮像素子 21で取得された色信 号を、所定の処理を行いデジタル化した値である。例えば、 1バイト 256階調で表さ れる。
[0025] 画素の座標を [x,y]とし、変換対象画素の座標を [i,j]とする。 G画素の色情報を G[x,y ]、 R画素の色情報を R[x,y]、 B画素の色情報を B[x,y]、 R画素の色情報あるいは B画 素の色情報を代表して Z[x,y]とする。縦方向の類似度 Cv[U]は式 (1)により、横方向の 類似度 Ch[i,j]は式 (2)により求めることができる。
Cv[i,j]={(|G[i,j-l]-Z[iJ]|+|G[iJ+l]-Z[i,j]|)/2
+|G[i,j-l]-G[i,j+l]|}/2 ...(1)
Ch[i,j]={(|G[i-l,j]-Z[i,j]|+|G[i+l,j]-Z[iJ]|)/2
+||G[i-l,j]-G[i+l,j]|}/2 ...(2)
[0026] なお、類似度の算出については、各種の方法が提案されており、適宜本実施の形 態で使用することができる。
[0027] 1-2.類似性判定
次に、類似性判定を行う。上記で求めた Cv[i,j]、 Ch[i,j]を使用して、変換対象画素 の類似性の判定を行う。すなわち、第 1の実施の形態では、縦方向に類似性が強い か、横方向に類似性が強いか、縦横不明かの判定を行う。具体的には、条件 (3)を満 足するときは、縦横類似性が不明として方向指標 HV[i,j]=0をセットする。すなわち、 縦横の類似度間の差分が閾値 Thl以下であれば、縦方向に類似性が強いのか、横 方向に類似性が強いのか判定できないことを意味する。 Thlは所定の閾値であり、 2 56階調のときは 10前後の値とする。画像のノイズが多いときは高めに設定する。
|Cv[i,j]-Ch[i,j]|≤Thl ...(3)
[0028] 条件 (3)が満足しない場合、すなわち、縦横どちらかの方向の類似性が判定できる 場合は、条件 (4)を満足するか否力 ^判定する。条件 (4)を満足するときは、縦方向に 類似性が強いとして、方向指標 HV[i,j]=lをセットする。条件 (4)を満足しない場合は、 横方向に類似性が強いとして方向指標 HV[iJ]=- 1をセットする。なお、類似度 Cv[i,j] 、 Ch[i,j]は、値が小さいほど類似性が強いことを示している。
Cv[i,j]<Ch[i,j] ...(4)
[0029] 2.色差生成
2-1. Cr面生成 次に、 R画素における色差情報 Cr面生成について説明する。変換前 RGB画像デ ータの R画素の色差情報 Crを求める。このとき、上記で求めた類似性の方向指標 HV[i,j]によって異なる式を使用する。 HV[i,j]=lのときは式 (5)、 HV[i,j]=-lのときは式 (6)、 HV[iJ]=0のときは式 (7)を使用して Cr[i,j]を求める。
Cr[i,j]=R[i,j]-(G[i,j-l]+G[i,j+l])/2 ..ズ5)
Cr[i,j]=R[i,j]-(G[i- 1, j]+G[i+ 1 ,j])/2… (6)
Cr[i,j]=R[i,j]-(G[i,j-l]+G[i,j+l]+G[i-l,j]+G[i+lJ])/4 ...(7)
[0030] 2-2. Cr面補間
次に、 Cr面の補間を行う。求めた R画素の色差情報 Crを使用して、 B画素、 G画素 の色差情報 Crを補間処理によって求める。 B画素に対応する画素の場合は式 (8)、 G 画素で横方向に R画素が隣接する画素に対応する画素の場合は式 (9)、 G画素で縦 方向に R画素が隣接する画素に対応する画素の場合は式 (10)を使用して色差情報 Crを求める。
Cr[i,j]=(Cr[i-l,j-l]+Cr[i-l,j+l]+Cr[i+l,j-l]+Cr[i+l,j+l])/4 ...(8)
Cr[i,j]=(Cr[i- 1 ,j]+Cr[i+ 1 ,j])/2 ...(9)
Cr[i,j]=(Cr[i,j-l]+Cr[i,j+l])/2 ...(10)
[0031] 2-3. Cb面生成、補間
色差情報 Cbについても、上記色差情報 Crと同様にして求める。このようにして、変 換前 RGB画像データのすべての画素について、色差情報 Cr、 Cbを求める。
[0032] 3.仮色差補正
2.色差生成で求まった色差面には偽色がふんだんに乗っており、色モアレや高 IS O感度における色斑ノイズの要因となっている。これらは色構造と区別して適応的に 除去されるべきであるが、次節で述べる色勾配を指標として区別するとき、偽色の境 界が色境界と誤認定されないように予め仮の除去をしておく。以下に方法を 2っを紹 介するが、この方法に限らない。
[0033] 方法 1 (ローパス処理)
次式 (101X102)および図 8は、 5x5サイズの分離型フィルタの例を示す。
Horizontal lowpass nltering tmp_Cr[i,j]={6*Cr[i,j]+4*(Cr[i-l,j] + Cr[i+l,j]) + Cr[i-2,j] + Cr[i+2,j]}/16
•••(101)
Vertical lowpass filtering
TCr[i,j]={6* tmp_Cr[i,j]+4*(tmp_Cr[i,j-l]+tmp_Cr[i,j+l])
+tmp_Cr[i,j'-2]+tmp_Cr[i,j'+2]}/16 ...(102)
TCb[i,j]も同様にして求める。
[0034] 方法 2 (メディアン処理)
次式 (103)および図 9は、メディアン処理の例を示す。メディアン処理は、図 9に示す 5x5のサイズの範囲内ですベての画素値をソーティングし、中央にくる値(中央値)を 採用する処理である。
TCr[i,j]=Median{Cr[i+m,j+n]} m=0,± l, ± 2 n=m=0,± l,± 2 ...(103)
[0035] 4.色勾配解析
4-1.色指標の算出
次に、色構造部を破壊しないように、色勾配を調べて偽色と実在色とを判別する。 実在色は、 3.の仮色差補正処理を加えても偽色に比べコントラストが残りやすいので 、その統計的性質から非常に高い確度で区別が可能である。そのときできるだけ精 度よく色構造を守るため、実在色間の色コントラストを上げて偽色間の色コントラストを 下げるような色指標面を作る。一般に偽色は反対色間で現れやすいので、原色間で 色指標を生成するのがよい。すなわち、上述のようにして求まった色差信号 Cr[i,j] ,Cb[i,j]から、次式 (104)を使用して画素単位の色を評価するための色指標 Cdiff[i,j]に 変換する。
Cdiff[i,j]=(|Cr[i,j]|+|Cb[i,j]|+|Cr[i,j]-Cb[i,j]|)/3 ...(104)
[0036] 上記色指標は、 RGB3原色間で組み合わせ可能な全ての色差情報を利用して、色 構造の防御性能を向上させている。色差の定義式を展開すると次のようになる。
CdifKlR- G|+|G- B|+|B- R|)/3 ...(105)
[0037] 4-2.色勾配の評価
次に、単一の色指標面に色コントラスト情報を押し込めた面内で、次式 (106)により、 色勾配 Cgradを調べる。このとき色勾配検出用の微分フィルタサイズを、仮色差補正 フィルタのサイズと同一にして破壊の可能性がある範囲は全て調べられるようにして いる。その結果、色構造非破壊性を高める。図 10は、仮色差補正フィルタと同一サイ ズの 5x5の範囲で、色勾配を調べてレ、る様子を説明する図である。
[数 1]
【数 1】
Cgrad[i, j] = ( ^ | Cdiff [i + m, j + n] - Cdiff [i, j] |) /{ (2 * m max + 1)(2 * n max + 1) - 1} = grad(Cdiff [i, j]) ■ - - (106)
-±l ここで、 mmax=2、 nmax=2である。演算を高速化するために、周辺全画素との微分を 調べなくても、もう少し間引いた画素間微分に減らしてもよい。
[0038] 5.適応的色差補正
次に、次の条件式 (107)により、色勾配の大きさに応じて色差補正処理をするか否 力を切り替える。色勾配の大きい色境界部は元の Cr[i,j]がそのまま使われる。色勾配 は、輝度の勾配とは関係ない値である。
if Cgrad[i,j]≤ThG Cr[i,j]=TCr[i,j] ...(107)
[0039] このように、色差補正は輝度情報とは独立して、すなわち輝度情報を使用しないで 行われる。言い換えれば、色差補正は、輝度情報とは無関係に、色差情報と色勾配 のみに基づいて行われる。閾値 ThGは、非常に小さな値を設定するだけで、有彩色 部、無彩色部を問わず色斑ノイズ、色モアレ発生領域が色差補正対象領域に該当し 、色構造部はうまく除外される。 256階調のときは 5以下程度の値をとる。上記では、色 勾配が閾値 ThGより大きい場合は、元の Cr[i,j]がそのまま使われるとした力 仮色差 補正フィルタより狭い範囲のフィルタをかける場合であってもよい。
[0040] 6. G面補間
次に、ステップ S12で求めた方法判定に基づき、ベィャ面上の R/B位置における G の値を、次式 (108)(109)(110)により求める。
if HV[i,j]=l Gout[i,j]=(G[i,j-l]+G[i,j+l])/2
+(2*Z[i,j]-Z[i,j-2]-Z[i,j+2])/4 ...(108)
else if HV[i,j]=- 1 Gout[i,j]=(G[i-l,j]+G[i+l,j])/2
+(2*Z[i,j]-Z[i-2,j]-Z[i+2,j])/4 ...(109) else Gout[i,j]=(G[i,j-l]+G[i,j+l]+G[i-l,j]+G[i+l,j])/4
+(4*Z[i,j]-Z[i,j-2]-Z[i,j+2]-Z[i-2,j]
-Z[i+2,j])/8 ...(110)
Zは R位置では Z=R、 B位置では Z=Bを表す。ベィャ面上の G位置では、 Gout[i,j]=ベ ィャ信号そのまま代入する。
[0041] 7.表色系変換
適切な偽色除去の加えられた Cr,Cb面と、 G面の 3つの色情報から、次式 (111X112) により RGB表色系への変換を行う。
Figure imgf000019_0001
Bout[i,j]=Cb[i,j']+Gout[i,j] ...(112)
[0042] このようにして、第 1の実施の形態では、色補間処理で必然的に生じる偽色の発生 を最小限に抑えた高品質な補間画像を提供する。とりわけ、画像構造を破壊しない 適応的な偽色ノイズ対策を有彩色部、無彩色部関係なく加えることにより、高品質な 補間画像を得ること力 Sできる。すなわち、色差成分に色勾配を指標として適応的補正 処理を加えることにより、偽色の少ない高品質な補間画像を提供できる。
[0043] —般に、 Bayer配列のように色成分が空間的にサンプリングされたデータを補間して 復元した画像は、ナイキスト周波数レベルの輝度成分の変化が激しいところで、上述 したような色モアレや高 ISO感度時の色斑ノイズが生じやすレ、。すなわち、ナイキスト 周波数レベルの輝度変化を生じているところで、 RGBの間で微妙な補間予測誤差が 生じ、うなり現象となって現れるのが色モアレである。一方、ナイキスト周波数レベル の輝度変化が一様な平坦部であっても、ランダムノイズの振幅の激しさからナイキスト 周波数パターンに近いレベルでの補間予測誤差を生じることによって発生する偽色 が、高 ISO感度における色斑ノイズの大きな要因となっている。
[0044] したがって、第 1の実施形態で示したように、輝度成分とは完全に切り離して、色差 成分単独の情報のみに基づいて色勾配を調べて偽色除去することにより、これら色 モアレや高 ISO色斑ノイズを輝度信号の構造に左右されることなくうまく除去すること が可能となる。さらに、高 ISO感度時に生じている色斑ノイズを、平坦部のみならず、 色勾配変化の少ない白黒文字等のエッジ部においてもきれいに除去することができ る。
[0045] 第 2の実施の形態
第 2の実施の形態は、第 1の実施の形態の色差補正フィルタを更に強化した例を示 す。第 1の実施の形態と異なるのは、 3.仮色差補正で使用するフィルタと、 4.色勾 配解析の微分フィルタのみである。仮色差補正のフィルタサイズを大きくするのに伴 レ、、合わせて色勾配判定の微分フィルタも大きくして色構造の破壊を防ぐ。
[0046] 第 2の実施の形態の電子カメラ 1の構成、画像処理部 11が行う画像データ変換処 理の概要を示すフローチャート、処理の関係を説明するブロック図は、第 1の実施の 形態の図 1、図 6、図 7と同様であるのでその説明を省略する。
[0047] 3.仮色差補正
第 2の実施の形態の仮色差補正で使用する補正フィルタは、次の通りである。 方法 1 (ローパス処理)
次式 (113X114)は、 9x9サイズの分離型フィルタの例を示す。
Horizontal lowpass filtering
tmp_Cr[i,j]={70*Cr[i,j]+56*(Cr[i-l,j]+Cr[i+l,j])
+28*(Cr[i-2,j]+ Cr[i+2,j])+8*(Cr[i-3,j]+ Cr[i+3,j])
+ (Cr[i-4,j]+ Cr[i+4,j])}/256 ...(113)
Vertical lowpass filtering
TCr[i,j]={70* tmp_Cr[i,j]+56*(tmp_Cr[i,j-l]+tmp_Cr[i,j+l])
+28*(tmp_Cr[i,j-2]+tmp_Cr[i,j+2])+8*(tmp_Cr[i,j-3]+tmp_Cr[i,j+3])
+tmp_Cr[i,j-4]+tmp_Cr[i,j+4]}/256 ...(114)
TCb[i,j]も同様。
[0048] 方法 2 (メディアン処理)
次式 (115)は、メディアン処理の例を示す。
TCr[i,j]=Median{Cr[i+m,j+n]} m=0,± l, ±2, ± 3, ±4 n=m=0, ± l, ±2, ± 3,±4 ...(115)
[0049] 4.色勾配解析
4-1.色指標の算出 色指標は、第 1の実施の形態と同様にして求める。
[0050] 4-2.色勾配の評価
次式 (116)により、色勾配 Cgradを調べる。このとき色勾配検出用の微分フィルタサイ ズを、仮色差補正フィルタのサイズと同一にして破壊の可能性がある範囲は全て調 ベられるようにしている。その結果、色構造非破壊性を高める。図 11は、仮色差補正 フィルタと同一サイズの 9x9の範囲で、色勾配を調べている様子を説明する図である
[数 2]
【数 2】
Cgrad[i,n = { [ Cdiff [i + m,j + n] - Cdiff ] |)/{ (2* mmax+ 1)(2 * nmax+ 1) - 1} = grad(Cdiff [i, j]) ■ ■ - (1 16) ここで、 mmax=4、 nmax=4である。この場合も実施の形態 1と同様に、間引いたフィル タにしてもよレ、。
[0051] このようにして、第 2の実施の形態では、第 1の実施の形態の色差補正フィルタを更 に強化しながら、第 1の実施の形態と同様な効果を奏する。特に、色差補正フィルタ サイズを第 1の実施の形態の 5x5サイズよりも大きレ、 9x9サイズとしているので、より長 周期にわたって発生する偽色(色モアレや色斑)を除去できる効果を奏する。
[0052] 一第 3の実施の形態一
第 1の実施の形態および第 2の実施の形態では、色補間途中の信号処理として説 明をした。第 3の実施の形態は、補間済のデータに対して本発明を適用するものであ る。例えば、電子カメラ内で補間して出力された JPEGデータなどがある。この場合の 例について、以下 3通りほど示す。第 3の実施の形態の電子カメラ 1の構成は、第 1の 実施の形態の図 1と同様であるのでその説明を省略する。
[0053] (例 1)
1)色空間変換
補間済 RGBデータを、以下の定義の GCbCrデータに変換する。
Cr=R-G ...(117)
Cb=B-G ...(118)
G成分はそのまま。 2)色勾配判定法による適応的偽色除去
第 1の実施の形態あるいは第 2の実施の形態の「3.仮色差補正」一「7.表色系変 換」の処理をそのまま行う。
[0054] (例 2)
補間済データは通常、絵作りのための色補正処理が加わっている。これらの影響を 少なくして色勾配判定するため、例 1の色空間変換ではなぐ Lab空間に変換する。
Luv空間等であってもよレ、。図 12は、例 2における処理の関係を説明するためのブロ ック図である。
[0055] 1)色空間変換
補間済 RGBデータ(図 12の 401)を Labデータに変換する(図 12の 402)。
2)色勾配判定法による適応的偽色除去
第 1の実施の形態の図 7と本実施の形態の図 12において、仮色差補正 304は仮 a b面補正 403に対応し、色勾配解析 305は色勾配解析 404に対応し、適応的色差補 正 306は適応的色差補正 405に対応し、表色系変換 308は色空間変換 406に対応 する。第 1の実施の形態あるいは第 2の実施の形態の「3.仮色差補正」一「7.表色系 変換」の処理において、 Cb,Crを a,bに置き換えて行う。単純に置き換えができないと ころだけ以下で定義する。
[0056] 4.色勾配解析(図 12の 404)
色指標 Cdif¾r、次式 (119)あるいは次式 (120)により求める。
[数 3]
【数 3】
diMiJ] =
Figure imgf000022_0001
■ ■ - (119)
Cdiff[i, J] = (I a[i, + \ b[i, j] \ + \ a[i, j] - b[i,川) / 3 ■ ■ ■ (120)
[0057] (例 3)
例 2のように色勾配を調べるために用いる色空間と色差補正処理する色空間が一 致していなくてもよレ、。色差補正処理する色空間を例えば、 Lab空間の ab面や YIQ空 間の IQ面とする。色勾配を見るため、 ab面や IQ面で色差補正を行った後、色空間を 例えば HSV空間や LCH空間に変換する。変換後、以下の式 (121)や式 (122)により、 輝度成分以外の色度(chromaticity)成分の変化をみて色勾配を求める。 HSV空間の H,Sや LCH空間の C,Hが色度成分 (情報)である。色度(chromaticity)とは、簡単に言 うと明るさを除いた色の性質を言う。色差(chrominance)も色度(chromaticity)に含ま れる概念である。
HSV空間の場合
Cgrad[i,j]=|grad(S[i,j])|+|grad(H[i,j])| ...(121)
LCH空間の場合
Cgrad[iJ]=|grad(C[i,j])|+|grad(H[i,j])| ...(122)
ただし、 gradは第 1の実施の形態や第 2の実施の形態で定義した演算子である。
[0058] このように、第 3の実施の形態では、色度成分を有する色空間において、該色度成 分に基づき色勾配を求めている。そして、求めた色勾配に基づき、第 1の実施の形態 と同様に適応的に色差補正を行う。これにより、第 1の実施の形態と同様な効果を奏 する。
[0059] 第 4の実施の形態
第 4の実施の形態は、色勾配判定による輝度成分生成法の切替えについて説明 する。第 4の実施の形態の電子カメラ 1の構成は、第 1の実施の形態の図 1と同様で あるのでその説明を省略する。
[0060] 従来、べィャ配列のカラーフィルタを備えた撮像素子で撮像されたカラー画像を補 間する技術として、米国特許第 5,382,976号が知られている。これは、べィャ面の方 向性を調べながら G面を補間し、 R,B面の補間は G面になぞらえて G面の高周波成分 を R,B面に上乗せする方式である。 R,B面の補間は、一旦色差面 R_G,B-Gの空間に 移行し、色差面で補間してから G面をカ卩算して元の R,Bに戻すのと等価である。しかし ながら、 G面の補間は補間対象画素近傍に存在する G成分の平均値だけで補間して いるため、凹凸のある構造物をうまく予測することができず、斜め線に対してはいわゆ る斜線ジャギーが発生してしまう問題がある。
[0061] これに対処する 1つの方法として、米国特許第 5,629,734号に示されるように、 G成 分の補間においても G面を R,B面になぞらえる方法がある。これは色差 R-G,B_Gが常 に一定と仮定し、 R,G,Bが全て同様の振る舞いをするとの前提の下に組み立てられう るアルゴリズムである。
[0062] 一方、別の対処方法として、本願発明者が発明した国際公開第 02/071761号に開 示された方法がある。この方法では、輝度成分を G面で補間するのではなぐ RGB力 S 加重合成された別の色空間の輝度成分に直接変換する段階で、中心画素の凹凸情 報を取り込んで斜線ジャギー対策する。
[0063] し力、しながら、米国特許第 5,629,734号のような対処を施した場合、色差一定の仮定 が成り立たない色境界部では、復元画像に破綻を来す問題がある。すなわち、 G補 間時の近傍 G平均値に対する Rもしくは B成分による補正項が逆に悪さをし、過補正 が生じて色境界部の至る所で黒や白のブッブッ状のもの(オーバーシュート)が発生 する。
[0064] 一方の国際公開第 02/071761号の方式では、米国特許第 5,629,734号に比べ遥か に色境界部で問題を起こさせずに斜線ジャギー対策を可能とする。しかし、ごくまれ にある特定の色組み合わせに当てはまる境界部で、筋状の縦縞、横縞(色境界ジャ ギー)が発生する場合がある。
[0065] 第 4の実施の形態の画像処理方法は、このような色境界部の問題を解決しつつ、 斜線ジャギー対策も施された高精細高画質なカラー画像を生成する画像処理方法 を提供する。
[0066] 図 13は、画像処理部 11が行う画像データ変換処理の概要を示すフローチャートで ある。図 14は、処理の関係を説明するためのブロック図である。図 13、図 14を使用し て、画像処理部 11が行う画像データ変換処理の概要を説明する。
[0067] ステップ S1では、ベィァ面(図 14の 101)、すなわち変換前 RGB画像データを入 力する。ステップ S2において、変換前 RGB画像データの各色成分の色情報を使用 して、 Cr、 Cb面、すなわち色差情報 Cr、 Cbをすベての画素において生成する(図 1 4の 103)。このとき類似度を算出して縦横方向判定を行い(図 14の 102)、縦横方向 判定に基づき色差情報 Cr、 Cbを生成する。
[0068] ステップ S3では、色差情報 Cr、 Cbを使用して色勾配解析を行う(図 14の 104)。色 勾配解析は、まず、該当画素が無彩色画素なのか、有彩色画素なのか、有彩色の場 合はその彩色度がどの程度かなどの色を評価する色指標を求める。すべての画素に ついて色指標を求め、色指標面を生成する。各画素について、該当画素の色指標と 周辺画素の色指標とに基づき、色勾配をもとめ色境界があるかどうか解析する。色勾 配とは、色の変化の度合いである。
[0069] ステップ S4において、 G面生成 1を行う(図 14の 105)。すなわち、すべての画素に おいて、 G色成分の色情報を補間処理により生成する。 G面生成 1の補間方法は、斜 線解像が可能な方法である。すなわち、斜線ジャギーを発生させない補間方法であ る。次に、ステップ S5において、 G面生成 2を行う(図 14の 106)。 G面生成 1と同様に 、すべての画素において、 G色成分の色情報を補間処理により生成する。 G面生成 2 の補間方法は、斜線ジャギーの発生の可能性はあるが色境界部での問題が発生し ない補間方法である。
[0070] ステップ S6において、ステップ S3の色勾配解析結果に基づき、ステップ S4の G面 生成 1とステップ S5の G面生成 2の補間結果を合成する(図 14の 107)。例えば、色 勾配が弱いとき、すなわち色の変化が平坦であるときは、 G面生成 1の補間結果を使 用し、色勾配が強いとき、すなわち色境界部では、 G面生成 2の補間結果を使用する 。あるいは、色勾配に応じた加重係数で、 G面生成 1の補間結果と G面生成 2の補間 結果を加算する。
[0071] ステップ S7において、ステップ S2の Cr、 Cb面とステップ S6の G面とに基づき、 RG B表色系に変換し(図 14の 108)、変換された画像データを出力する。出力された画 像データは、各種の画像処理が施されたりメモリ等に格納されたりする。
[0072] なお、変換前 RGB画像データの画素数と変換後画像データの画素数は同じであり 、 2次元平面において各画素の位置は 1 : 1で対応する。ところで、上述した全ての画 素における画像データ変換処理は、着目する局所領域における画像データ変換処 理を繰り返すことにより達成される。従って、ここからは、着目領域での局所的に満た す関係式を用いて話を進める。以下、これらの処理の詳細について説明する。
[0073] 以下「1-2-3. Cb面生成、補間」までの処理は、第 1の実施の形態と同様であるので 、説明を省略する。
1. Cr,Cb色差面生成 1-1.方向判定
1-1-1.類似度の算出
1-1-2.類似性判定
1-2.色差生成
1-2-1. Cr面生成
1-2-2. Cr面補間
1- 2-3. Cb面生成、補間
[0074] 1-2-4.色差補正
色評価に先立ち色差情報 Cr、 Cbの補正を行う。色評価を正確に行うため、前述の ようにして取得した Cr、 Cbの色差面に生じている偽色を除去するためである。色差メ ディアンフィルタを使用してもよいが、第 4の実施の形態では、以下の式 (11)および図 15で示されるローパスフィルタを使用する。この処理は、偽色を除去するという目的 を高速に達成することができる。なお、他の方法によって偽色を除去するようにしても よい。
Cr[i,j]={4* Cr[i,j]
+2*(Cr[i-2,j]+ Cr[i+2,j]+Cr[i,j-2]+ Cr[i,j+2])
+l*(Cr[i-2,j-2]+Cr[i+2,j-2]+Cr[i-2,j+2]+Cr[i+2,j+2])}/16 ...(11)
[0075] Cb[i,j]も同様にして求める。
[0076] 2.色勾配解析
2- 1.色指標の算出
上述のようにして求まった色差情報 Cr[i,j],Cb[i,j]から、式 (12)を使用して画素単位 の色を評価するための色指標 Cdiff[i,j]を求める。
Cdiff[i,j]=(|Cr[i,j]|+|Cb[i,j]|+|Cr[i,j]-Cb[i,j]|)/3 ...(12)
[0077] 色指標は、その値により無彩色か有彩色か、有彩色の場合低彩色か高彩色かの彩 度を評価することができる。上記色指標は、 RGB3原色間で組み合わせ可能な全ての 色差情報を利用して、その精度を向上させている。色差を展開すると次の式 (13)のよ うになる。本実施の形態では、この色指標を使用することにより、あらゆる色境界がま んべんなく見つかる。 CdifKlR— G|+|G— B|+|B— R|)/3 ...(13)
[0078] 2-2.色勾配の評価
このようにべィャ復元画像で予測される色が精度よく求まった段階で、従来技術の 問題として浮上している色境界部を識別するため、色指標の面内で色の勾配を調べ る。変換対象画素 [U]における色勾配を grad_Cdiff[i,j]で表すと、次式 (14)により求める こと力 Sできる。
grad_Cdiff[i,j]=
(ICdif — l,j]— Cdiff[i,j]|+|Cdiff[i+l,j]-CdiffO,j]|
+ |Cdiff[i,j— 1]-Cdiff[i,j]| + |Cdiff[i,j+l]-Cdiff[i,j]|
+ |Cdiff[i-l,j— l]-Cdiff[i,j]| + |Cdiff[i+l,j+l]-Cdiff[i,j]|
+ |Cdiff[i-l,j+l]-Cdiff[i,j]| + |Cdiff[i+l,j-l]-Cdiff[i,j]|)/8 ...(14)
式 (14)の色勾配の演算には、あらゆる方向の色境界部を同時に検知するため、隣 接する全ての画素との差分を求める等方型の一次微分フィルタを用いた。このように 複数の方向に等方的に微分をほどこすのは、すべての方向のエッジを検出するため である。なお、差分の差分を求める二次微分フィルタを用いてもよい。一次微分では 立ち上がりあるいは立ち下がりのエッジを見つけ、二次微分では山あるいは谷を見つ けること力 Sできる。
[0079] 3. G面生成 1
前述した方向判定で求めた方向指標 HV[i,j]に基づいて、変換前 RGB画像データ の R画素 [i,j]あるいは B画素 [i,j]における、 G色成分の色情報 G[i,j]を求める。すなわ ち、 R画素あるいは B画素における欠落する G成分の色情報を補間処理により求める 。 G面生成 1で求める補間方法は、斜線解像が可能な、すなわち斜線ジャギーの発 生をおさえることが可能な補間方法である。ただし、色境界部での問題は生じる可能 性のある補間方法である。この補間方法で求まる G補間値を glとする。
[0080] 方向指標 HV[i,j]=lのとき、すなわち縦方向に類似性が強いと判断されたとき、式 (15)を使用して gl[i,j]を求める。方向指標 HV[i,j]=-lのとき、すなわち横方向に類似 性が強いと判断されたとき、式 (16)を使用して gl[i,j]を求める。方向指標 HV[i,j]=0のと き、すなわち縦横類似性が不明と判断されたとき、式 (17)を使用して gl[U]を求める。 gl[i,j]=(G[i,j-l]+G[i,j+l])/2+(2*Z[i,j]-Z[i,j-2]-Z[i,j+2])/4 ...(15)
gl[i,j]=(G[i-l,j]+G[i+l,j])/2+(2*Z[i,j]-Z[i-2,j]-Z[i+2,j])/4 ...(16)
gl[i,j]=(G[i,j-l]+G[i,j+l]+G[i-l,j]+G[i+l,j])/4
+(4*Z[i,j]-Z[i,j-2]-Z[iJ+2]-Z[i-2,j]-Z[i+2,j])/8 ...(17)
なお、 Zは R画素では Z=R、 B画素では Z=Bを表す。
[0081] 変換前 RGB画像データの G画素 [U]における gl[i,j]は、 G画素 [i,j]の値をそのまま 使用する。
[0082] 4. G面生成 2
G面生成 1と同様に、前述した方向判定で求めた方向指標 HV[i,j]に基づいて、変 換前 RGB画像データの R画素 [i,j]あるいは B画素 [i,j]における、 G色成分の色情報 G[i,j]を求める。すなわち、 R画素あるいは B画素における欠落する G成分の色情報を 補間処理により求める。 G面生成 2で求める補間方法は、斜線ジャギー発生の問題 はあるが、色境界部での問題は生じない補間方法である。この補間方法で求まった G補間値を g2とする。
[0083] 方向指標 HV[i,j]=lのとき、すなわち縦方向に類似性が強いと判断されたとき、式 (18)を使用して g2[i,j]を求める。方向指標 HV[i,j]=-lのとき、すなわち横方向に類似 性が強いと判断されたとき、式 (19)を使用して g2[i,j]を求める。方向指標 HV[i,j]=0のと き、すなわち縦横類似性が不明と判断されたとき、式 (20)を使用して g2[i,j]を求める。 g2[i,j]=(G[i,j-l]+G[i,j+l])/2 ...(18)
g2[i,j]=(G[i-l,j]+G[i+l,j])/2 ...(19)
g2[i,j]=(G[i,j-l]+G[i,j+l]+G[i-l,j]+G[i+l,j])/4 ...(20)
[0084] 変換前 RGB画像データの G画素 [U]における g2[i,j]は、 G画素 [i,j]の値をそのまま 使用する。
[0085] ここで、式 (18)—式 (20)の別解として、斜線ジャギーの抑制がある程度可能な以下 の式 (21) 式 (23)のような工夫をカ卩えてもよい。 G色成分の補間において凹凸情報を G色成分自身で予測するので、色境界部での問題は式 (18) 式 (20)と同様、全く起こ らなレ、。方向指標 HV[i,j]=lのとき、すなわち縦方向に類似性が強いと判断されたとき 、式 (21)を使用して g2[ij]を求める。方向指標 HV[iJ]=_lのとき、すなわち横方向に類 似性が強いと判断されたとき、式 (22)を使用して g2[i,j]を求める。方向指標 HV[i,j]=0 のとき、すなわち縦横類似性が不明と判断されたとき、式 (23)を使用して g2[i,j]を求め る。
Figure imgf000029_0001
+(2*G[i-lJ]-G[i-lJ-2]-G[i-lJ+2])/8
+(2*G[i+l,j]-G[i+l,j-2]-G[i+l,j+2])/8 ...(21)
Figure imgf000029_0002
+(2*G[iJ-l]-G[i-2J-l]-G[i+2J-l])/8
+(2*G[i,j+l]-G[i-2,j+l]-G[i+2,j+l])/8 ...(22)
g2[iJ]=(G[i,j-l]+G[i,j+l]+G[i-l,j]+G[i+l,j])/4
+(2*G[i-lJ]-G[i-lJ-2]-G[i-lJ+2])/16
+(2*G[i+l,j]-G[i+l,j-2]-G[i+l,j+2])/16
+(2*G[iJ-l]-G [ト 2J-l]-G[i+2,卜 1])/16
+(2*G[i,j+l]-G[i-2,j+l]-G[i+2,j+l])/16 ...(23)
[0086] 5. G面合成
5-1.加重比率の決定
前述の通り 2通りの G面生成法を示したが、通常は G面生成 1で求められた斜線ジャ ギー対策が可能な G補間値 glを用い、問題の生じる色境界部では G面生成 2で求め られた G補間値 g2を用いる。この切り替えの加重比率として前述の色勾配を用いる。 画素 [i,j]における glの加重比率を 1- λ、 g2の加重比率を λとすると、 λの値は以下 式 (24)—式 (26)により決定する。
if grad_Cdiff[i,j]≤thl λ [i,j]=0 ...(24)
else if grad_Cdiff[i,j]≤th2 λ [i,j]=grad_Cdiff[i,j]/th2 ...(25)
else ^ [i,j]=l ...(26)
[0087] これを模式図で示すと図 16のようになる。閾値 thl、 th2の値は、 256階調で表されて いるとき、 thl=0 4、 th2=6 10のような値を採るとよレ、。すなわち、色勾配の小さいと ころでは glを用い、色勾配の大きいところでは g2を用レ、、その中間的なところでは色 勾配の大きさそのものを指標として加重合成してレ、る。場合によっては thl=th2として gl,g2の切り替えのみで中間部分を省略しても良い。
[0088] 5-2.加重合成処理
上記加重比率 λを用いて 2通りの G補間値 gl,g2を、式 (27)により加重合成する。
G[iJ]=(l- λ [i,j])*gl[i,j]+ λ [i,j]*g2[i,j] ...(27)
[0089] 6.表色系変換
式 (8) 式 (10)で求まった Cr,Cb面、あるいは、式 (11)により適切な色差補正の加えら れた Cr,Cb面と、式 (27)で求まった G面の 3つの色情報から式 (28)式 (29)により RGB表 色系への変換を行う。
R[i,j]=Cr[i,j]+G[i,j] ...(28)
Figure imgf000030_0001
[0090] このように色勾配の強度に応じて補間法を変えることにより、斜線ジャギー対策と色 境界部での破綻の抑制を両立する画像生成、復元が可能となる。特に、第 4の実施 の形態では、従来技術で問題となる色境界部での黒や白のブッブッ状のもの(ォー バーシュート)の発生を抑えることができる。従って、偽構造の少ない高品質な補間 画像を提供できる。
[0091] 第 5の実施の形態
第 4の実施の形態では、一般的な補間処理の考え方を採用して G面生成 1を行つ た。しかし、第 5の実施の形態では、第 4の実施の形態とは異なる別方式で G面生成 1を行う例を示す。第 5の実施の形態で行う G面生成 1は、基本的には、国際公開第 02/071761号に開示された方法に基づくものである。
[0092] 第 5の実施の形態の電子カメラ 1の構成は、第 4の実施の形態の図 1と同様である のでその説明を省略する。また、画像処理部 11が行う画像データ変換処理の概要を 示すフローチャートは、第 4の実施の形態の図 13のステップ S3の色勾配解析とステ ップ S4の G面生成 1の内容が異なるのみである。従って、第 5の実施の形態のフロー チャートは省略し、図 13を参照することとする。
[0093] 図 17は、第 5の実施の形態における処理の関係を説明するためのブロック図である 。第 4の実施の形態の図 14と異なるところは、斜め方向判定 201が追加され、 G面生 成 1 (202)は縦横方向判定 102と斜め方向判定 201の結果に基づいて行うところで ある。また、色勾配解析 203の内容が第 4の実施の形態の色勾配解析 104と異なる。 以下、この色勾配解析 203 (ステップ S3)と G面生成 1 (202) (ステップ S4)を中心に 第 5の実施の形態を説明する。
[0094] 1. Cr,Cb色差面生成
Cr,Cb色差面生成は第 4の実施の形態と同様である。 Cr,Cb色差面生成では、第 4 の実施の形態と同様に、類似性の判定は縦横方向判定を使用する。
[0095] 2.色勾配解析
2-1.色指標の算出
Cr,Cb色差面生成で求まった色差情報 Cr[i,j],Cb[i,j]から、画素単位の色を評価す るための色指標 Cdiff[i,j]を求める。ところで、第 4の実施の形態では、オーバーシユー トの生じるあらゆる色境界を検出する必要があつたが、第 5の実施の形態では、後述 する Y面生成時に起きる筋状の縦縞、横縞発生箇所を抽出し、その箇所には別方式 で対処することを狙レ、としてレ、る。
[0096] これは、第 5の実施の形態では、基本的に、国際公開第 02/071761号に開示された 方法に基づき G面生成 1を行うので、米国特許第 5,629,734号に比べ遥かに色境界 部の問題を起こさせずに斜線ジャギー対策を可能とするためである。しかし、第 5の 実施の形態の G面生成 1であっても、ある特定の色組み合わせに当てはまる境界部 で、筋状の縦縞、横縞(色境界ジャギー)が発生する場合がある。これは、赤と青の色 境界、緑とオレンジの色境界、ピンクと水色の色境界、白と黄色の色境界等で、筋状 の縦縞、横縞 (色境界ジャギー)が発生する可能性がある。中でも反対色間の対で起 こりやすいことが分かった。これは、方向性を考慮して RGB—定比率で合成すること により通常の色境界部や斜め線構造物では滑らかに連結しているはずの輝度面力 特定の色の組み合わせ領域では、 RGB色の色情報が相互に干渉しあって、合成後 の輝度成分に局所的なモアレ現象を生じさせているためであると推測される。
[0097] 従って、第 5の実施の形態の G面生成 1では、色境界ジャギーが、特に反対色間の 色境界部で発生しやすぐ通常の色境界では発生しない事実から、反対色色境界部 の検出能力を上げるため、色指標として反対色間色差を利用して識別対象箇所のコ ントラストを上げる工夫をする。すなわち、式 (30)を使用して色指標 CdiiffiJ]を求める。 Cdiff[i,j]=(|Cr[i,j]-Cb[i,j]/2|+|Cb[i,j]-Cr[i,j]/2|
+|Cr[i,j]/2+Cb[i,j]/2|)/3 ...(30)
[0098] 上記色指標の色差部分を展開すると、次式 (31)のようになる。 R (赤)と Cy (シアン)、 G (緑)と Mg (マゼンタ)、 B (青)と Ye (イェロー)は反対色(補色)の関係にある。
CdifKlR- (G+B)/2|+|G_(B+R)/2|+|B-(R+G)/2|)/3
=(|R-Cy|+|G-Mg|+|B-Ye|)/3 ...(31)
[0099] 2-2.色勾配の評価
第 4の実施の形態と同様に行う。
[0100] 3. G面生成 1
4の実施の形態とは異なり、斜線解像、すなわち斜線ジャギーの発生を抑えるこ とが可能な別の方式による G成分生成を行う。これは、 G補間をするのではなぐ一旦 別の表色系で輝度成分と色差成分を生成した後に RGB成分に変換する方式である 。国際公開第 02/071761号に開示された方法に基づくものである。
[0101] 3-1.斜め方向判定
3-1-1.類似度の算出
変換前 RGB画像データの R画素あるいは B画素において、変換対象画素を含む 局所領域内の画素情報を使用して、斜め方向の類似性を判定する。斜め方向とは、 斜め 45度、斜め 135度の方向である。図 18で示すと、斜め 45度は [HV,DN]=[0, 1]の 方向で、斜め 135度は [HV,DN]=[0,-1]の方向である。図 18については、さらに後述 する。斜め 45度方向の類似度 C45DJ]は式 (32)により、斜め 135度方向の類似度 C135DJ]は式 (33)により求める。
C45[i,j]={(|G[i,j-l]-G[i-l,j]|+| G[i+l,j]-G[iJ+l]|)/2
+(|Z[i+l,j-l]-Z[i,j]|+|Z[i-l,j+l]-Z[i,j]|)/2}/2 ...(32)
C135[i,j]={(|G[i,j-l]-G[i+l,j]|+|G[i-l,j]-G[i,j+l]|)/2
+(|Z[i-l,j-l]-Z[i,j]|+|Z[i+l,j+l]-Z[i,j]|)/2}/2 ...(33)
[0102] 3-1-2.類似性判定
次に、類似性判定を行う。上記で求めた C45[i,j]、 C135[i,j]を使用して、変換対象画 素の類似性の判定を行う。ここでは、 45度方向に類似性が強レ、か、 135度方向に類 似性が強いか、 45度方向 135度方向の判定は不能かの判定を行う。具体的には、 条件 (34)を満足するときは、 45度方向 135度方向の判定は不能として方向指標 DN[i,j]=0をセットする。 Th2は所定の閾値であり、縦横方向判定の Thlと同程度の値 とする。例えば、 256階調のときは 10前後の値とする。 45度方向 135度方向の類似 度間の差分が閾値 Th2以下であれば、 45度方向に類似性が強いの力 135度方向 に類似性が強レ、のか判定できなレ、ことを意味する。
|C45[i,j]-C135[i,j]|≤Th2 ...(34)
[0103] 条件 (34)が満足しない場合、すなわち、 45度方向 135度方向どちらかの方向の類 似性が判定できる場合は、条件 (35)を満足するか否力、を判定する。満足するときは、 45度方向に類似性が強いとして、方向指標 DN[i,j]=lをセットする。条件 (35)を満足し ない場合は、 135度方向に類似性が強いとして方向指標 DN[iJ]=_lをセットする。な お、類似度 C45[i,j]、 C135DJ]は、値が小さいほど類似性が強いことを示している。
C45[i,j]<C135[i,j] ...(35)
[0104] 3-2.輝度 Y面生成
3-2-1.加重加算
第 5の実施の形態の輝度情報 Yの計算は、第 4の実施の形態の G面生成ではなぐ ベィァ面を直接加重加算して輝度 Y面を生成する方式である。すなわち、補間処理 力 Sまだ行われていない変換前 RGB画像データの各色の色情報を使用して、輝度情 報 Yを直接生成するものである。変換前 RGB画像データ(ベィァ面のデータ)の任意 の色情報を A[x,y]で表すことにする。
[0105] 第 4の実施の形態と同様に求めた縦横方向指標 HV[i,j]および上記で求めた斜め 方向指標 DN[i,j]に基づいて、変換前 RGB画像データの R画素あるいは B画素に対 応する画素 [i,j]における輝度情報 γすなわち Y[i,j]を求める。この縦横方向指標
HV[i,j]および斜め方向指標 DN[i,j]の組み合わせにより、類似性の方向が図 18に示 すように 9通りに分類できる。
[0106] 方向指標 [HV,DN]、すなわち類似性の方向に応じて、以下に示すように式 (37)— (45)の 1つを選択して Y[iJ]を計算する。変換対象画素 [U]が G画素のときは式 (36)を 使用し、変換対象画素 [U]が G画素以外のときは以下の方向指標に応じた式 (37)— 00 (45)のいずれかの式を使用する。なお、図 19は、変換対象画素が G画素の場合にお いて、使用する画素の位置およびその係数 (G位置の輝度生成係数パターン)を図 示する図である。図 20は、変換対象画素が R画素あるいは B画素の場合において、 方向指標に応じて使用する画素の位置およびその係数 (R、 B位置の輝度生成係数 パターン)を図示する図である。
[0107] 方向指標 [ 0, 0]のとき式 (37)を使用する。
方向指標 [ 0, 1]のとき式 (38)を使用する。
方向指標 [ 0,-1]のとき式 (39)を使用する。
方向指標 [ 1, 0]のとき式 (40)を使用する。
方向指標 [ 1, 1]のとき式 (41)を使用する。
方向指標 [ 1,-1]のとき式 (42)を使用する。
方向指標 [- 1, 0]のとき式 (43)を使用する。
方向指標 [-1, 1]のとき式 (44)を使用する。
方向指標 [-1,-1]のとき式 (45)を使用する。
]=Y ...(36)
G
Y[i,j ]=Y hv ...(37)
RB
Y[i,j ]=Y 45 ...(38)
RB
Y[i,j ]=Y 135 ...(39)
RB
Y[i,j ]=Y v ...(40)
RB
Y[i,j ]=Y v45 ...(41)
RB
Y[i,j ]=Y vl35 ...(42)
RB
Y[i,j ]=Y h ...(43)
RB
Y[i,j ]=Y h45 ...(44)
RB
Y[i,j ]=Y hl35 ...(45)
[0109] ここで、上記 Y、 Y hv、 Y 45、 Y 135、 Y v、 Y v45、 Y vl35、 Y h、 Y h45、 Y
G RB RB RB RB RB RB RB RB I
hl35は、以下の式 (46) (55)で表される。
Y =ひ *A[i,j]
G
+( /4)*{A[i-l,j]+A[i+l,j]+A[i,j-l]+A[i,j+l]} ...(46) [f'!]V*(2/ £/ )=9^ 入
(G9)"" {[I+f'l-!]V*(2/21)+[I-f'l+!]V*(2/n)+
[I+ +!]V*(Z/2S)+ [卜 n_!]V*(2/Is)}*(Z/ £/ )+
{[f'T+!]V*2A+[f'l-!]V*IA}* 70 +
a
[f'!]V*(2/ £/ )= 入
(29)"· {[ΐ+Π+!]ν s+[I-f'I— !]V*IS}*(2/
{[I+f'!]V*Zn+[I-f'!]V*In}* 70 +
an
[f'!]V*(2/ S, )=SeTA A
(is " {[ΐ+Π— !]v ι+[τ— τ+!]ν*τι}*(2/ +
{[I+f'!]V*2n+[T-f'!]V*In}* 10 +
an
[f'!]V*(S/ ^ )=S 八 A
(OS)-" {[τ+Π-!]ν*(2/2ΐ)+[τ-Γ'τ+!]ν*(2/ )+
[I+n+!]V*(2/Ss)+[I-n-!]V*(S/Is)}*(2/ 3 )+
{[I+f'!]V*2n+[T-f'!]V*In}* 10 +
[f'!]V*(S/ =Λ A (6 )… {[I+f'I+!]V*2s+ [卜 ·「'ΐ— !]V*IS}*(2/ +
{[τ+Π]ν*(2/2η)+[ΐ-Π]ν*(ζ/τη)+
[f'l+!]V*(Z/ZA) + [ΓΊ-!]ν*(Ζ/ΙΛ)}* » +
<s&
[f'!]V*(2/ S, )=9GI 入
(8 )… {[ΐ+Γΐ-!]ν*21+[Ι-Γ'Τ+!]ν*Ι¾*(Ζ/ £/ )+
{[τ+Π]ν*(2/2η)+[ΐ-Π]ν*(ζ/τη)+
[f'l+!]V*(Z/ZA) + [ΓΊ-!]ν*(Ζ/ΙΛ)}* 10 +
[f'!]V*(2/ )=S 入
(L y {[I+f'l-!]V*(2/21)+[I-f'l+!]V*(2/n)+
[I+n+!]V*(Z/2s)+ [卜 n_!]V*(2/Is)}*(Z/ £/ )+
{[i+f'!]v*(s/sn)+[i- π]ν*(2/τη)+
[·「'τ+!]ν*(2/2Λ)+[·「'τ-!]ν*(2/τΛ)}* » +
an
[f'!]V*(S/ =ΛΙί A
0ΪΪ800請 Zdf/ェ:) d εε io i請 OAV + a *{vl*A[i-l,j]+v2*A[i+l,j]}
+(i3 /2)*{tl*A[i+lJ—l]+t2*AD- l,j+l]} ...(54)
Figure imgf000036_0001
+ a *{vl*A[i-l,j]+v2*A[i+l,j']}
+( j3 /2)*{sl*A[i-l,j-l]+s2*A[i+l,j+l]} ...(55)
[0110] ただし、上記定数 (係数)には以下の制約条件 (56)が付く。また、これらは全て正ま たは零の値をとる。
α + β =l,p+q=l,ul+u2=l,vl+v2=l,sl+s2=l,tl+t2=l ...(56)
一般的に好ましい定数の設定には以下のような例がある。
ul =u2,vl =v2,sl = s2,tl =t2
(α,β )=(1/3, 2/3), (4/9, 5/9),(5/ll, 6/11), (1/2, 1/2), (5/9,4/9),
(3/5, 2/5), (2/3, 1/3)
定数 α, j3は、輝度に占める R,G,B比率を決めるパラメータで、 Y= a *G+ β *(R+B)/2 の関ィ系にある。
[0111] 3-2-2.エッジ強調
上述のようにして求まった Y面は正の係数のみで構成されているので、エッジ強調 処理を施して適正なレベルのコントラストに戻す。エッジ強調処理をする場合は、方 向性を考慮しなくてもよい簡略な固定フィルタを通すだけでよい。エッジ抽出を行うた めのバンドパスフィルタ一として、例えば式 (57)および図 21で示すラプラシアンを用 いる。さらに、式 (58)の演算を行い最終的な輝度情報 Yを求める。式 (58)における定 数 Kは正の値をとり、通常 1以上に設定する。
YH[i,j]={8*Y[i,j]-(Y[i-l,j]+Y[i+l,j]+Y[i,j-l]+Y[i,j+l]
+Y[i-l,j-l]+Y[i+l,j-l]+Y[i-lJ+l]+Y[i+lJ+l])}/16...(57)
Y[i,j']=Y[i,j]+K*YH[i,j] ...(58)
[0112] 3-2-3.表色系変換
第 4の実施の形態と同様に式 (8)—式 (10)で求まった Cr,Cb面、あるいは、式 (11)によ り適切な色差補正の加えられた Cr,Cb面と、式 (58)で求まった Y面の 3つの色情報から 式 (59)により G成分への変換を行う。これにより求まる G成分を glとする。 gl[i,j]=Y[i,j]-( β /2)*Cr[i,j]-( β /2)*Cb[i,j] ...(59)
[0113] 4. G面生成 2
G面生成 2は、第 4の実施の形態と同様である。
[0114] 5. G面合成
G面合成は、第 4の実施の形態と同様である。
[0115] 6.表色系変換
表色系変換は、第 4の実施の形態と同様である。
[0116] このように色勾配の強度に応じて補間法を変えることにより、斜線ジャギー対策と色 境界部での破綻の抑制を両立する画像生成、復元が可能となる。第 5の実施の形態 では、特に従来技術で問題となる反対色間色境界に発生しやすい筋状の縦縞、横 縞の色境界ジャギーの発生を抑えることができる。従って、偽構造の少ない高品質な 補間画像を提供できる。
[0117] 上記第 1の実施の形態から第 5の実施の形態では、色差成分'輝度成分ともに色勾 配を指標として適応的処理を加えることにより偽色 ·偽構造の少ない高品質な補間画 像を提供できる。なかでも適応的偽色対策は、色モアレ除去や高 ISO感度における 色斑ノイズ対策に強力に威力を発揮する。
[0118] なお、上記実施の形態では、べィァ配列の RGB表色系の例を説明した力 必ずし もこの内容に限定する必要はない。他の配列のカラーフィルタであってもよい。
[0119] また、上記実施の形態では、類似性の判定に各種の計算式を示したが、必ずしも 実施の形態に示した内容に限定する必要はない。他の、適切な計算式により類似性 を判定するようにしてもよい。また、 G面生成や Y面生成の計算においても各種の計 算式を示したが、必ずしも実施の形態に示した内容に限定する必要はない。他の、 適切な計算式により輝度情報を生成するようにしてもよい。
[0120] また、上記第 4、 5の実施の形態では、色差補正でローパスフィルタ(図 16)、エッジ 強調でバンドパスフィルタ(図 21)の例を示したが、必ずしもこれらの内容に限定する 必要はない。他の構成のローパスフィルタやバンドパスフィルタであってもよレ、。
[0121] また、上記第 4、 5の実施の形態では、色勾配に基づき色境界部の輝度を担う色成 分の適切な補間方法を選択あるいは加重加算する例を示したが、必ずしもこれらの 内容に限定する必要はない。例えば、 6.表色系変換の手前に色差補正をするための 色差補正ローパスフィルタ処理を挿入し、色勾配の解析結果に基づき、その色差補 正ローパスフィルタのオンオフを行うようにしてもよい。これにより、色境界部以外の偽 色が取れ、色境界部での色にじみの発生を防ぐことができる。また、色勾配の解析結 果に基づき、色差補正ローパスフィルタの種類やサイズを選択するようにしてもよい。
[0122] また、上記実施の形態では、電子カメラの例で示した力 必ずしもこの内容に限定 する必要はない。動画を撮像するビデオカメラや、撮像素子つきパーソナルコンビュ ータゃ携帯電話などであってもよい。すなわち、撮像素子によりカラー画像データを 生成するあらゆる装置に適用できる。
[0123] また、上記実施の形態では、単板式撮像素子の例で示したが、必ずしもこの内容に 限定する必要はない。本発明は、 2板式の撮像素子で撮像した画像データにも適用 すること力 Sできる。 RGBべィァ配列の単板式撮像素子で撮像した場合は、 1つの画 素には 1つの色成分の情報を有し、 RGBべィァ配列の 2板式撮像素子で撮像した場 合は、 1つの画素には 2つの色成分の情報を有する。
[0124] パーソナルコンピュータなどに適用する場合、上述した処理に関するプログラムは、 CD— ROMなどの記録媒体やインターネットなどのデータ信号を通じて提供すること ができる。図 22はその様子を示す図である。パーソナルコンピュータ 400は、 CD— R OM404を介してプログラムの提供を受ける。また、パーソナルコンピュータ 400は通 信回線 401との接続機能を有する。コンピュータ 402は上記プログラムを提供するサ 一バーコンピュータであり、ハードディスク 403などの記録媒体にプログラムを格納す る。通信回線 401は、インターネット、パソコン通信などの通信回線、あるいは専用通 信回線などである。コンピュータ 402はハードディスク 403を使用してプログラムを読 み出し、通信回線 401を介してプログラムをパーソナルコンピュータ 400に送信する。 すなわち、プログラムをデータ信号として搬送波にのせて、通信回線 401を介して送 信する。このように、プログラムは、記録媒体や搬送波などの種々の形態のコンビユー タ読み込み可能なコンピュータプログラム製品として供給できる。
[0125] 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
日本国特許出願 2003年第 167923号(2003年 6月 12日出願)

Claims

請求の範囲
[1] 複数の色成分からなる表色系で表され、 1つの画素に 1つの色成分の色情報を有 する複数の画素力、らなる第 1の画像を、複数の画素力、らなり各々の画素に少なくとも 1 つの共通する色成分の色情報を有する第 2の画像に変換する画像処理方法であつ て、
前記第 1の画像の色情報から色差情報を生成する色差情報生成手順と、 前記生成した色差情報に基づき、色の変化の度合レ、である色勾配を求める色勾配 解析手順と、
前記求めた色勾配に基づき、前記第 1の画像を第 2の画像に変換する画像変換手 順とを有する。
[2] 請求項 1に記載の画像処理方法にぉレ、て、
前記画像変換手順は、第 1の画像の色情報を用いて生成された色差情報に対して 、前記色勾配に基づき補正処理を加える色差情報補正手順を備える。
[3] 請求項 2に記載の画像処理方法において、
前記色勾配解析手順は、第 1の画像の表色系を構成する色成分間の色差情報を 利用して色指標を生成し、前記色指標の面内で色の変化の度合いを調べて前記色 勾配を求める。
[4] 請求項 1に記載の画像処理方法において、
前記第 1の画像の複数の画素と前記第 2の画像の複数の画素は、同じ位置関係で 対応し、
前記画像変換手順は、第 2の画像の処理対象画素に位置する第 1の画像の色情 報の寄与度を前記色勾配の大きさに応じて変更することにより、前記第 1の画像から 前記第 2の画像に変換する。
[5] 請求項 4に記載の画像処理方法において、
前記色勾配解析手順は、第 1の画像の表色系を構成する色成分とその反対色の 色成分との間の色差情報を利用して色指標を生成し、前記色指標の面内で色の変 化の度合レ、を調べて前記色勾配を求める。
[6] 画像処理方法であって、 複数の色成分からなる表色系で表され、各画素に少なくとも 1つの色成分の色情報 が欠落している第 1の画像から、各々の画素に少なくとも 2つの共通する色成分の色 情報を有する画像への変換を経た第 2の画像を入力する画像入力手順と、 前記第 2の画像の色情報から色差情報を生成する色差情報生成手順と、 前記生成した色差情報に基づき、色の変化の度合レ、である色勾配を求める色勾配 解析手順と、
前記求めた色勾配に基づき、前記第 2の画像の色差情報を補正する色差情報補 正手順とを備える。
[7] 請求項 1、 6のいずれかに記載の画像処理方法において、
前記色勾配解析手順は、前記色差情報に基づき画素単位において色を評価する ための色指標を生成し、生成した色指標に基づき色勾配を求める。
[8] 請求項 7に記載の画像処理方法において、
前記色勾配解析手順は、前記生成した色指標の面内で勾配を求める微分演算を 行うことによって、前記色勾配を求める。
[9] 請求項 7に記載の画像処理方法において、
前記色差情報生成手順は、 1つの処理対象画素に対し複数種類の色差情報を生 成し、
前記色勾配解析手順は、前記複数種類の色差情報を組み合わせて少なくとも 3種 類の色成分間の色差情報を利用して色指標を生成する。
[10] 画像処理方法であって、
複数の色成分からなる表色系で表され、各画素に少なくとも 1つの色成分の色情報 が欠落している第 1の画像から、各々の画素に少なくとも 3つの共通する色成分の色 情報を有する画像への変換を経た第 2の画像を入力する画像入力手順と、 前記第 2の画像を色空間変換して色度情報を生成する色度情報生成手順と、 前記生成した色度情報に基づき、色の変化の度合レ、である色勾配を求める色勾配 解析手順と、
前記求めた色勾配に基づき、前記第 2の画像に含まれてレ、る色差情報を補正する 色差情報補正手順とを備える。
[11] 請求項 2、 6、 10のいずれかに記載の画像処理方法において、
前記色差情報補正手順は、前記色勾配が所定値よりも小さい画素に対して、所定 の範囲の補正フィルタを色差面に掛け、前記色勾配が所定値よりも大きな画素に対 しては補正処理を行わなレ、か前記所定の範囲より狭レ、範囲の補正フィルタを掛ける
[12] 請求項 11に記載の画像処理方法にぉレ、て、
前記色勾配解析手順は、前記所定の範囲の補正フィルタのサイズと色勾配を求め る微分フィルタのサイズを一致させる。
[13] 請求項 1、 6、 10のいずれかに記載の画像処理方法において、
前記色勾配解析手順は、前記色勾配を求めるための微分演算を、複数の方向に 対して等方的に算出して色勾配を求める。
[14] 請求項 11に記載の画像処理方法にぉレ、て、
前記色勾配解析手順は、前記色勾配を一次微分演算から算出する。
[15] 請求項 4に記載の画像処理方法にぉレ、て、
前記画像変換手順は、第 2の画像の輝度を担う色成分の色情報に対して、前記第 2の画像の処理対象画素に位置する第 1の画像の色情報の寄与度を前記色勾配の 大きさに応じて変更する。
[16] 請求項 15に記載の画像処理方法において、
前記画像変換手順は、少なくとも、前記第 1の画像の複数の色成分の色情報を用 いて前記第 2の画像の 1つの色成分の色情報を生成する第 1の方法と前記第 1の画 像の 1つの色成分の色情報を用いて前記第 2の画像の 1つの色成分の色情報を生 成する第 2の方法とを使用して、第 1の画像から第 2の画像に変換し、
前記色勾配解析手順は、前記求めた色勾配に基づき色境界があるかないかを判 定し、
前記画像変換手順は、前記色勾配解析手順により前記色境界がないと判定された 画素については前記第 1の方法を使用し、前記色境界があると判定された画素につ レ、ては前記第 2の方法を使用する。
[17] 請求項 16に記載の画像処理方法において、 前記画像変換手順は、前記第 1の方法において、前記第 1の画像の輝度を担う色 成分の色情報を該色成分の欠落する画素において該色成分と同じ色成分の色情報 と該色成分と異なる色成分の色情報を用いた補間処理により生成し、前記補間処理 により生成した輝度を担う色成分の色情報を使用して、第 1の画像から第 2の画像に 変換する。
[18] 請求項 17に記載の画像処理方法において、
前記画像変換手順は、前記第 1の方法において、前記第 1の画像の色成分の色情 報を使用して前記第 1の画像の表色系とは異なる他の表色系の輝度を担う色成分の 色情報をすベての画素において生成し、前記生成した他の表色系の輝度を担う色 成分の色情報を使用して、第 1の画像から第 2の画像に変換する。
[19] 請求項 1に記載の画像処理方法にぉレ、て、
前記色差情報生成手順は、少なくとも 3通りの何れかの方法を用いて、前記色差情 報を生成する。
[20] 請求項 19に記載の画像処理方法において、
前記色差情報生成手順は、前記第 1の画像の色情報を用いて、少なくとも 2方向に 関する類似度を算出し、前記算出した類似度に基づき、各方向に対する類似性の強 弱を少なくとも 3段階で判定し、前記判定結果に応じて前記少なくとも 3通りの何れの 方法を用いるかを決定する。
[21] 複数の色成分からなる表色系で表され、 1つの画素に 1つの色成分の色情報を有 する複数の画素からなる第 1の画像を、複数の画素からなり各々の画素に少なくとも 1 つの共通する色成分の色情報を有する第 2の画像に変換する画像処理方法であつ て、
前記第 1の画像の色情報から第 2の画像の色差情報を生成する色差情報生成手 順と、
前記生成した第 2の画像の色差情報に基づき、色の変化の度合レ、である色勾配を 求める色勾配解析手順と、
前記求めた色勾配に基づき、前記第 2の画像の色差情報を補正する色差情報補 正手順と を備え、
前記色差情報補正手順は、第 2の画像の輝度情報とは独立に第 2の画像の色差情 報を補正する。
[22] 画像処理方法であって、
複数の色成分からなる表色系で表され、各画素に少なくとも 1つの色成分の色情報 が欠落している第 1の画像から、各々の画素に少なくとも 2つの共通する色成分の色 情報を有する画像への変換を経た第 2の画像を入力する画像入力手順と、
前記第 2の画像の色情報から色差情報を生成する色差情報生成手順と、 前記生成した色差情報に基づき、色の変化の度合レ、である色勾配を求める色勾配 解析手順と、
前記求めた色勾配に基づき、前記第 2の画像の輝度情報とは無関係に、前記第 2 の画像の色差情報を補正する色差情報補正手順とを備える。
[23] 画像処理方法であって、
複数の色成分からなる表色系で表され、各画素に少なくとも 1つの色成分の色情報 が欠落している第 1の画像から、各々の画素に少なくとも 3つの共通する色成分の色 情報を有する画像への変換を経た第 2の画像を入力する画像入力手順と、
前記第 2の画像を色空間変換して色度情報を生成する色度情報生成手順と、 前記生成した色度情報に基づき、色の変化の度合レ、である色勾配を求める色勾配 解析手順と、
前記求めた色勾配に基づき、前記第 2の画像に含まれている輝度情報とは無関係 に、前記第 2の画像に含まれている色差情報を補正する色差情報補正手順とを備え る。
[24] 画像処理方法であって、
複数の画素から成り、各々の画素に少なくとも 2種類の共通する色成分の色情報を 有する画像を入力する画像入力手順と、
前記画像の色成分の色情報を、輝度情報と色差情報に変換する色変換手順と、 前記色差情報に基づき、色の変化の度合いである色勾配を求める色勾配解析手 順と、 前記求めた色勾配に基づき、前記輝度情報とは無関係に、前記色差情報を補正 する色差情報補正手順とを備える。
[25] 請求項 21から 24のいずれかに記載の画像処理方法において、
前記色差情報補正手順は、前記色勾配解析手順で求めた色勾配の調査範囲の 大きさに応じて、色差補正に利用する色情報の範囲を決定する。
[26] 請求項 21、 22、 24のいずれかに記載の画像処理方法において、
前記色勾配解析手順は、前記色勾配を求める前に前記色差情報生成手順で生成 した色差情報に対して補正処理を加える。
[27] 複数の色成分からなる表色系で表され、 1つの画素に 1つの色成分の色情報を有 する複数の画素力、らなる第 1の画像を、複数の画素力、らなり各々の画素に少なくとも 1 つの共通する色成分の色情報を有する第 2の画像に変換する画像処理方法であつ て、
前記第 1の画像の複数の色成分の色情報を用いて、前記第 1の画像の表色系とは 異なる色成分の色情報を生成する第 1の色情報生成手順と、
前記第 1の画像の 1つの色成分の色情報を用いて、第 1の画像の表色系と同じ色 成分の色情報を生成する第 2の色情生成手順と、
前記第 1の色情報生成手順により生成された色情報と前記第 2の色情報生成手順 により生成された色情報とを、画素位置に応じて、切り替えて用いる力、もしくは、カロ 重合成する色情報合成手順とからなる。
[28] 請求項 27に記載の画像処理方法において、
前記第 1の色情報生成手順は、前記第 1の画像の表色系とは異なる輝度成分の色 情報を生成する。
[29] 請求項 28に記載の画像処理方法において、
前記第 1の色情報生成手順は、前記第 1の画像の表色系とは異なる色差成分の色 情報を生成し、前記第 1の画像の表色系とは異なる輝度成分の色情報と合わせて、 第 1の画像の表色系の中の輝度を代表する色成分の色情報に変換する。
[30] 請求項 27から 29のいずれかに記載の画像処理方法において、
前記第 2の色情報生成手順は、前記第 1の画像の表色系の中で輝度を代表する色 成分の色情報を生成する。
[31] 請求項 28から 30のいずれかに記載の画像処理方法において、
前記第 1の色情報生成手順は、少なくとも 9通りの何れかの方法を用いて、前記第 1 の画像の表色系とは異なる輝度成分の色情報を生成する。
[32] 請求項 30に記載の画像処理方法において、
前記第 2の色情報生成手順は、少なくとも 3通りの何れかの方法を用いて、前記輝 度を代表する色成分の色情報を生成する。
[33] 請求項 31に記載の画像処理方法にぉレ、て、
前記第 1の色情報生成手順は、前記第 1の画像の色情報を用いて、少なくとも 4方 向に関する類似度を算出し、前記算出した類似度に基づき、各方向に対する類似性 の強弱を少なくとも 9段階で判定し、前記判定結果に応じて前記少なくとも 9通りの何 れの方法を用いるかを決定する。
[34] 請求項 32に記載の画像処理方法において、
前記第 2の色情報生成手順は、前記第 1の画像の色情報を用いて、少なくとも 2方 向に関する類似度を算出し、前記算出した類似度に基づき、各方向に対する類似性 の強弱を少なくとも 3段階で判定し、前記判定結果に応じて前記少なくとも 3通りの何 れの方法を用いるの力を決定する。
[35] 請求項 27から 34のいずれかに記載の画像処理方法において、
前記第 1の画像の色情報から色差情報を生成する色差情報生成手順と、 前記生成した色差情報に基づき、色の変化の度合レ、である色勾配を求める色勾配 解析手順とをさらに有し、
前記色情報合成手順は、前記画素位置のそれぞれにおいて、前記求めた色勾配 に基づき前記第 1の色情報生成手順により生成された色情報と前記第 2の色情報生 成手順により生成された色情報とを、切り替えて用いる力、、もしくは、加重合成する。
[36] 請求項 1一 35のいずれか 1項に記載の画像処理方法の手順をコンピュータに実行 させるための画像処理プログラム。
[37] 請求項 36の画像処理プログラムを記録したコンピュータ読みとり可能な記録媒体。
[38] 請求項 36の画像処理プログラムを搭載した画像処理装置。
PCT/JP2004/008110 2003-06-12 2004-06-10 画像処理方法、画像処理プログラム、画像処理装置 WO2004112401A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP04745740.3A EP1641283B1 (en) 2003-06-12 2004-06-10 Image processing method, image processing program, image processor
JP2005506917A JP4882374B2 (ja) 2003-06-12 2004-06-10 画像処理方法、画像処理プログラム、画像処理装置
US11/297,434 US7391903B2 (en) 2003-06-12 2005-12-09 Image processing method, image processing program and image processing processor for interpolating color components
US12/153,045 US7630546B2 (en) 2003-06-12 2008-05-13 Image processing method, image processing program and image processor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003167923 2003-06-12
JP2003-167923 2003-06-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/297,434 Continuation US7391903B2 (en) 2003-06-12 2005-12-09 Image processing method, image processing program and image processing processor for interpolating color components

Publications (1)

Publication Number Publication Date
WO2004112401A1 true WO2004112401A1 (ja) 2004-12-23

Family

ID=33549317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008110 WO2004112401A1 (ja) 2003-06-12 2004-06-10 画像処理方法、画像処理プログラム、画像処理装置

Country Status (5)

Country Link
US (2) US7391903B2 (ja)
EP (1) EP1641283B1 (ja)
JP (3) JP4882374B2 (ja)
CN (1) CN100544450C (ja)
WO (1) WO2004112401A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001629A1 (fr) * 2006-06-29 2008-01-03 Olympus Corporation dispositif de traitement d'image, programme de traitement d'image et procédé de traitement d'image
WO2009011308A1 (ja) * 2007-07-13 2009-01-22 Acutelogic Corporation 画像処理装置及び撮像装置、画像処理方法及び撮像方法、画像処理プログラム
WO2009022505A1 (ja) * 2007-08-10 2009-02-19 Olympus Corporation 画像処理装置、画像処理方法及びプログラム
WO2009022541A1 (ja) * 2007-08-10 2009-02-19 Olympus Corporation 画像処理装置、画像処理プログラム、画像処理方法
WO2009066770A1 (ja) * 2007-11-22 2009-05-28 Nikon Corporation デジタルカメラおよびデジタルカメラシステム
JP2009147925A (ja) * 2007-11-22 2009-07-02 Nikon Corp デジタルカメラおよびデジタルカメラシステム
JP2009153013A (ja) * 2007-12-21 2009-07-09 Sony Corp 撮像装置、色ノイズ低減方法および色ノイズ低減プログラム
JP2009246963A (ja) * 2008-03-28 2009-10-22 Seiko Epson Corp 画像処理装置、画像処理方法、およびプログラム
CN102300035A (zh) * 2010-06-25 2011-12-28 杨国屏 降低数字图像中黑色含量的方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7477781B1 (en) * 2002-10-10 2009-01-13 Dalsa Corporation Method and apparatus for adaptive pixel correction of multi-color matrix
WO2007077730A1 (ja) * 2005-12-28 2007-07-12 Olympus Corporation 撮像システム、画像処理プログラム
KR100780932B1 (ko) * 2006-05-30 2007-11-30 엠텍비젼 주식회사 컬러 보간 방법 및 장치
JP2008078922A (ja) * 2006-09-20 2008-04-03 Toshiba Corp 固体撮像装置
TW200820799A (en) * 2006-10-18 2008-05-01 Realtek Semiconductor Corp Method and apparatus for restraining error image colors
JP4783830B2 (ja) * 2007-01-11 2011-09-28 富士通株式会社 画像補正プログラム、画像補正方法、画像補正装置
JP5041886B2 (ja) * 2007-06-13 2012-10-03 オリンパス株式会社 画像処理装置、画像処理プログラム、画像処理方法
KR101340518B1 (ko) * 2007-08-23 2013-12-11 삼성전기주식회사 영상의 색수차 보정 방법 및 장치
JP5272581B2 (ja) * 2008-08-25 2013-08-28 ソニー株式会社 画像処理装置、撮像装置、画像処理方法およびプログラム
JP5486273B2 (ja) * 2008-12-26 2014-05-07 キヤノン株式会社 画像処理装置及び画像処理方法
JP2010268426A (ja) * 2009-04-15 2010-11-25 Canon Inc 画像処理装置、画像処理方法およびプログラム
TWI401963B (zh) * 2009-06-25 2013-07-11 Pixart Imaging Inc Dynamic image compression method for face detection
TWI389571B (zh) * 2009-09-30 2013-03-11 Mstar Semiconductor Inc 影像處理方法以及影像處理裝置
US20130100310A1 (en) * 2010-07-05 2013-04-25 Nikon Corporation Image processing device, imaging device, and image processing program
JP2012053606A (ja) * 2010-08-31 2012-03-15 Sony Corp 情報処理装置および方法、並びにプログラム
JP6131546B2 (ja) 2012-03-16 2017-05-24 株式会社ニコン 画像処理装置、撮像装置および画像処理プログラム
JP5904281B2 (ja) 2012-08-10 2016-04-13 株式会社ニコン 画像処理方法、画像処理装置、撮像装置および画像処理プログラム
JP2014082541A (ja) * 2012-10-12 2014-05-08 National Institute Of Information & Communication Technology 互いに類似した情報を含む複数画像のデータサイズを低減する方法、プログラムおよび装置
KR102009185B1 (ko) 2013-01-10 2019-08-09 삼성전자 주식회사 컬러 프린지 제거 방법
WO2014122804A1 (ja) * 2013-02-05 2014-08-14 富士フイルム株式会社 画像処理装置、撮像装置、画像処理方法及びプログラム
JP6270423B2 (ja) * 2013-11-14 2018-01-31 キヤノン株式会社 画像処理装置およびその制御方法
CN104717474B (zh) * 2013-12-16 2017-07-25 瑞昱半导体股份有限公司 图像处理方法、模块及包含其的电子设备
DE102014010061A1 (de) * 2014-07-07 2016-01-07 Heidelberger Druckmaschinen Ag Verfahren zur Berechung von Ersatzfarben für Sonderfarben
JP2017050830A (ja) * 2015-09-04 2017-03-09 パナソニックIpマネジメント株式会社 照明装置、照明システム、及びプログラム
US10460422B2 (en) * 2015-11-10 2019-10-29 Sony Corporation Image processing device and image processing method
JP6563358B2 (ja) * 2016-03-25 2019-08-21 日立オートモティブシステムズ株式会社 画像処理装置及び画像処理方法
JP6862272B2 (ja) * 2017-05-15 2021-04-21 キヤノン株式会社 信号処理装置、信号処理方法およびプログラム
JP6929174B2 (ja) * 2017-09-13 2021-09-01 キヤノン株式会社 画像処理装置及び画像処理方法及びプログラム
CN113877827B (zh) * 2021-09-14 2023-06-16 深圳玩智商科技有限公司 物流件抓取方法、抓取设备及存储介质

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10200906A (ja) * 1997-01-08 1998-07-31 Ricoh Co Ltd 撮像信号処理方法、撮像信号処理装置、及び機械読み取り可能な記録媒体
JPH11103466A (ja) * 1997-07-31 1999-04-13 Fuji Film Microdevices Co Ltd 画像信号処理装置及びプログラムを記録した媒体
JP2001061157A (ja) * 1999-06-14 2001-03-06 Nikon Corp 画像処理方法、画像処理プログラムを記録した機械読み取り可能な記録媒体、および画像処理装置
JP2001245314A (ja) * 1999-12-21 2001-09-07 Nikon Corp 補間処理装置および補間処理プログラムを記録した記録媒体
WO2002060186A1 (fr) 2001-01-25 2002-08-01 Nikon Corporation Procede de traitement d'image, programme de traitement d'image et processeur d'image
WO2002071761A1 (fr) * 2001-03-05 2002-09-12 Nikon Corporation Programme et dispositif de traitement d'images
JP2002359856A (ja) * 2001-06-01 2002-12-13 Mega Chips Corp データ変換回路およびデジタル・カメラ
JP2003061105A (ja) * 2001-06-07 2003-02-28 Seiko Epson Corp 画像処理方法、画像処理プログラム、画像処理装置およびそれを用いたディジタルスチルカメラ
JP2003102025A (ja) * 2001-09-20 2003-04-04 Canon Inc 画像処理方法、撮像装置およびプログラム
JP2003163939A (ja) * 2001-08-27 2003-06-06 Agilent Technol Inc 適応モザイク減少法を実装するディジタル画像処理方法
WO2003101119A1 (fr) * 2002-05-24 2003-12-04 Nikon Corporation Procede de traitement d'images, programme de traitement d'images et processeur d'images

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6361239A (ja) * 1986-09-01 1988-03-17 Fuji Photo Film Co Ltd カラ−フイルム検定装置のオフセツトドリフト補正方法
JP3028553B2 (ja) 1990-04-09 2000-04-04 ソニー株式会社 画像処理装置及び画像処理方法
JPH04252667A (ja) * 1991-01-29 1992-09-08 Fujitsu Ltd カラ−画像読取装置
JP3252422B2 (ja) 1991-12-28 2002-02-04 ソニー株式会社 画像処理装置
US5382976A (en) * 1993-06-30 1995-01-17 Eastman Kodak Company Apparatus and method for adaptively interpolating a full color image utilizing luminance gradients
US5629734A (en) * 1995-03-17 1997-05-13 Eastman Kodak Company Adaptive color plan interpolation in single sensor color electronic camera
JP3624483B2 (ja) * 1995-09-29 2005-03-02 富士写真フイルム株式会社 画像処理装置
JP4016470B2 (ja) 1997-12-09 2007-12-05 カシオ計算機株式会社 カラー撮像装置及びカラー画像補正方法
US6421084B1 (en) * 1998-03-02 2002-07-16 Compaq Computer Corporation Method for interpolating a full color image from a single sensor using multiple threshold-based gradients
US6392699B1 (en) * 1998-03-04 2002-05-21 Intel Corporation Integrated color interpolation and color space conversion algorithm from 8-bit bayer pattern RGB color space to 12-bit YCrCb color space
US6356276B1 (en) 1998-03-18 2002-03-12 Intel Corporation Median computation-based integrated color interpolation and color space conversion methodology from 8-bit bayer pattern RGB color space to 12-bit YCrCb color space
US6075889A (en) 1998-06-12 2000-06-13 Eastman Kodak Company Computing color specification (luminance and chrominance) values for images
US6697107B1 (en) * 1998-07-09 2004-02-24 Eastman Kodak Company Smoothing a digital color image using luminance values
US6542187B1 (en) * 1998-07-09 2003-04-01 Eastman Kodak Company Correcting for chrominance interpolation artifacts
US6687414B1 (en) * 1999-08-20 2004-02-03 Eastman Kodak Company Method and system for normalizing a plurality of signals having a shared component
US6631206B1 (en) * 1999-08-30 2003-10-07 University Of Washington Image filtering in HSI color space
US6671401B1 (en) * 1999-09-08 2003-12-30 Eastman Kodak Company Removing color moire patterns from digital images having known chromaticities
JP3699873B2 (ja) 1999-10-27 2005-09-28 オリンパス株式会社 画像処理装置
US7158178B1 (en) * 1999-12-14 2007-01-02 Intel Corporation Method of converting a sub-sampled color image
US6980326B2 (en) * 1999-12-15 2005-12-27 Canon Kabushiki Kaisha Image processing method and apparatus for color correction of an image
JP3548504B2 (ja) * 2000-06-26 2004-07-28 キヤノン株式会社 信号処理装置、信号処理方法、及び撮像装置
JP3726653B2 (ja) * 2000-07-27 2005-12-14 ノーリツ鋼機株式会社 画像処理方法、画像処理装置および画像処理方法を実行するプログラムを記録した記録媒体
JP4055927B2 (ja) * 2000-08-25 2008-03-05 シャープ株式会社 画像処理装置およびデジタルカメラ
EP1439715A1 (en) * 2003-01-16 2004-07-21 Dialog Semiconductor GmbH Weighted gradient based colour interpolation for colour filter array

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10200906A (ja) * 1997-01-08 1998-07-31 Ricoh Co Ltd 撮像信号処理方法、撮像信号処理装置、及び機械読み取り可能な記録媒体
JPH11103466A (ja) * 1997-07-31 1999-04-13 Fuji Film Microdevices Co Ltd 画像信号処理装置及びプログラムを記録した媒体
JP2001061157A (ja) * 1999-06-14 2001-03-06 Nikon Corp 画像処理方法、画像処理プログラムを記録した機械読み取り可能な記録媒体、および画像処理装置
JP2001245314A (ja) * 1999-12-21 2001-09-07 Nikon Corp 補間処理装置および補間処理プログラムを記録した記録媒体
WO2002060186A1 (fr) 2001-01-25 2002-08-01 Nikon Corporation Procede de traitement d'image, programme de traitement d'image et processeur d'image
WO2002071761A1 (fr) * 2001-03-05 2002-09-12 Nikon Corporation Programme et dispositif de traitement d'images
JP2002359856A (ja) * 2001-06-01 2002-12-13 Mega Chips Corp データ変換回路およびデジタル・カメラ
JP2003061105A (ja) * 2001-06-07 2003-02-28 Seiko Epson Corp 画像処理方法、画像処理プログラム、画像処理装置およびそれを用いたディジタルスチルカメラ
JP2003163939A (ja) * 2001-08-27 2003-06-06 Agilent Technol Inc 適応モザイク減少法を実装するディジタル画像処理方法
JP2003102025A (ja) * 2001-09-20 2003-04-04 Canon Inc 画像処理方法、撮像装置およびプログラム
WO2003101119A1 (fr) * 2002-05-24 2003-12-04 Nikon Corporation Procede de traitement d'images, programme de traitement d'images et processeur d'images

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1641283A4

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101480057B (zh) * 2006-06-29 2011-01-05 奥林巴斯株式会社 图像处理装置、图像处理方法
JP2008035470A (ja) * 2006-06-29 2008-02-14 Olympus Corp 画像処理装置、画像処理プログラム、画像処理方法
WO2008001629A1 (fr) * 2006-06-29 2008-01-03 Olympus Corporation dispositif de traitement d'image, programme de traitement d'image et procédé de traitement d'image
US8018501B2 (en) 2006-06-29 2011-09-13 Olympus Corporation Image processing apparatus, computer-readable recording medium recording image processing program, and image processing method
WO2009011308A1 (ja) * 2007-07-13 2009-01-22 Acutelogic Corporation 画像処理装置及び撮像装置、画像処理方法及び撮像方法、画像処理プログラム
JP2009021962A (ja) * 2007-07-13 2009-01-29 Acutelogic Corp 画像処理装置及び撮像装置、画像処理方法及び撮像方法、画像処理プログラム
KR101344824B1 (ko) 2007-07-13 2013-12-26 실리콘 하이브 비.브이. 이미지 프로세싱 기기, 이미징 기기, 이미지 프로세싱 방법, 이미징 방법 및 이미징 프로세싱 프로그램
US8542299B2 (en) 2007-07-13 2013-09-24 Intel Benelux B.V. Image processing device, imaging device, image processing method, imaging method, and image processing program for pseudo-color suppression in an image
US8106974B2 (en) 2007-07-13 2012-01-31 Silicon Hive B.V. Image processing device, imaging device, image processing method, imaging method, and image processing program
US8184183B2 (en) 2007-08-10 2012-05-22 Olympus Corporation Image processing apparatus, image processing method and program with direction-dependent smoothing based on determined edge directions
JP2009044676A (ja) * 2007-08-10 2009-02-26 Olympus Corp 画像処理装置、画像処理方法及びプログラム
WO2009022541A1 (ja) * 2007-08-10 2009-02-19 Olympus Corporation 画像処理装置、画像処理プログラム、画像処理方法
WO2009022505A1 (ja) * 2007-08-10 2009-02-19 Olympus Corporation 画像処理装置、画像処理方法及びプログラム
JP2009147925A (ja) * 2007-11-22 2009-07-02 Nikon Corp デジタルカメラおよびデジタルカメラシステム
WO2009066770A1 (ja) * 2007-11-22 2009-05-28 Nikon Corporation デジタルカメラおよびデジタルカメラシステム
US8259213B2 (en) 2007-11-22 2012-09-04 Nikon Corporation Digital camera and digital camera system
JP2009153013A (ja) * 2007-12-21 2009-07-09 Sony Corp 撮像装置、色ノイズ低減方法および色ノイズ低減プログラム
US8363123B2 (en) 2007-12-21 2013-01-29 Sony Corporation Image pickup apparatus, color noise reduction method, and color noise reduction program
JP2009246963A (ja) * 2008-03-28 2009-10-22 Seiko Epson Corp 画像処理装置、画像処理方法、およびプログラム
CN102300035A (zh) * 2010-06-25 2011-12-28 杨国屏 降低数字图像中黑色含量的方法

Also Published As

Publication number Publication date
US7391903B2 (en) 2008-06-24
CN100544450C (zh) 2009-09-23
US20080247643A1 (en) 2008-10-09
JP5206850B2 (ja) 2013-06-12
EP1641283B1 (en) 2019-01-09
EP1641283A4 (en) 2007-02-28
JP5206851B2 (ja) 2013-06-12
JP4882374B2 (ja) 2012-02-22
CN1806448A (zh) 2006-07-19
JP2012034378A (ja) 2012-02-16
US7630546B2 (en) 2009-12-08
JP2012016051A (ja) 2012-01-19
EP1641283A1 (en) 2006-03-29
US20060092298A1 (en) 2006-05-04
JPWO2004112401A1 (ja) 2006-07-20

Similar Documents

Publication Publication Date Title
JP4882374B2 (ja) 画像処理方法、画像処理プログラム、画像処理装置
JP3985679B2 (ja) 画像処理方法、画像処理プログラム、画像処理装置
JP4054184B2 (ja) 欠陥画素補正装置
US8295595B2 (en) Generating full color images by demosaicing noise removed pixels from images
EP1781043B1 (en) Image processor and computer program product
CN1937781B (zh) 图像处理设备和图像处理方法
EP1729523B1 (en) Image processing method
JP2009153013A (ja) 撮像装置、色ノイズ低減方法および色ノイズ低減プログラム
JP3972816B2 (ja) 画像処理装置および表色系変換方法
EP2056607B1 (en) Image processing apparatus and image processing program
US7623705B2 (en) Image processing method, image processing apparatus, and semiconductor device using one-dimensional filters
JP2003123063A (ja) 画像処理装置
JP3633561B2 (ja) 画像処理装置、画像処理方法およびプログラム
JP4280462B2 (ja) 信号処理装置及び方法
JP4958926B2 (ja) 信号処理装置及び方法
KR101327790B1 (ko) 영상 보간 방법 및 장치
JP2012100215A (ja) 画像処理装置、撮像装置および画像処理プログラム
JP2004007167A (ja) 画像処理方法、画像処理プログラム、画像処理装置
JP2003348608A (ja) 画像処理方法、画像処理プログラム、画像処理装置
KR100816299B1 (ko) 허위 색 억제 장치 및 방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005506917

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11297434

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20048162871

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004745740

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004745740

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11297434

Country of ref document: US