WO2004112079A1 - Magnetron-sputter-kathode mit kühlplatte - Google Patents

Magnetron-sputter-kathode mit kühlplatte Download PDF

Info

Publication number
WO2004112079A1
WO2004112079A1 PCT/DE2004/000208 DE2004000208W WO2004112079A1 WO 2004112079 A1 WO2004112079 A1 WO 2004112079A1 DE 2004000208 W DE2004000208 W DE 2004000208W WO 2004112079 A1 WO2004112079 A1 WO 2004112079A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
back plate
cooling
target
cathode according
Prior art date
Application number
PCT/DE2004/000208
Other languages
English (en)
French (fr)
Inventor
Jörg KREMPEL-HESSE
Andreas Jischke
Uwe Schüssler
Hans Wolf
Original Assignee
Applied Films Gmbh And Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Films Gmbh And Co. Kg filed Critical Applied Films Gmbh And Co. Kg
Priority to JP2006508101A priority Critical patent/JP4532475B2/ja
Priority to DE502004012062T priority patent/DE502004012062D1/de
Priority to AT04709126T priority patent/ATE493750T1/de
Priority to EP04709126A priority patent/EP1627414B1/de
Priority to CN2004800140586A priority patent/CN1795531B/zh
Publication of WO2004112079A1 publication Critical patent/WO2004112079A1/de
Priority to US11/284,439 priority patent/US8715471B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3488Constructional details of particle beam apparatus not otherwise provided for, e.g. arrangement, mounting, housing, environment; special provisions for cleaning or maintenance of the apparatus
    • H01J37/3497Temperature of target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering

Definitions

  • the invention relates to a magnetron sputter cathode with a closure element which can be inserted into an opening in the housing wall of a vacuum chamber, as a result of which the opening is hermetically sealed and the closure element is electrically insulated from the housing wall, with a sputter target on the vacuum side of the Closure element, with a magnet arrangement on its atmosphere side and with a cooling plate operated with a cooling liquid for the sputtering target.
  • the closure element consists of the backing plate of the sputtering target, which is provided with a frame, which makes it possible to insert the backplate in an airtight manner into an opening in the housing wall of the vacuum chamber, so that the backplate connected sputter target is located in the vacuum chamber.
  • On the atmosphere side of the back plate there is a cooling plate with open channels that are closed by the back plate. Behind it is a movable magnet arrangement, the magnetic field of which extends in front of the sputter target.
  • Electrons emerging from the cathode are accelerated by a high voltage applied to the cathode and ionize the gas molecules of a working gas in the vacuum chamber.
  • the resulting positively charged ions hit the sputter target and knock out molecules and atoms there, which are deposited in thin layers on a nem substrate are deposited.
  • the electrons are bundled in front of the sputter target by the magnetic field, so that the ion yield is increased.
  • race tracks are formed in the sputter target.
  • the magnet arrangement can be moved to ensure even removal of the material.
  • the invention is therefore based on the problem of creating a magnetron sputter cathode which has a significantly longer service life than the previously known solutions.
  • the cooling plate be arranged on the vacuum side between the closure element designed as a carrier and the sputtering target.
  • This configuration has the advantage that the cooling plate is located within the vacuum and is therefore closer to the target, which improves the cooling performance.
  • the carrier itself is a separate component that can be designed so that it can absorb and support the effective pressures without causing significant deflections. Since the cooling is in this version inside the vacuum chamber, the carrier needs bushings for the cooling liquid.
  • the carrier preferably has passages for the cooling liquid.
  • the cooling plate according to the invention is not loaded by a differential pressure, the cooling plate can be provided with cooling channels and at the same time form the back plate of the sputtering target.
  • the cooling channels within the cooling plate have a closed cross section, so that one side of the back plate forms a continuous contact surface with the sputtering target. This simplifies the establishment of the connection (bond) between the sputtering target and the back plate designed as a cooling plate. So that the demands on the dimensional stability of the carrier do not become too high under a pressure load, it is proposed that spacers are provided between the back plate and the carrier, to which the edge of the back plate is attached with its side facing away from the sputtering target that a gap remains between the central area of the back plate and the carrier.
  • the spacers can be formed by webs formed in one piece with the carriers, the cooling liquid being passed through the webs.
  • the carrier itself does not become too thick, as a result of which the magnets would have to be arranged too far from the sputtering target, it is further proposed that the carrier have two stiffening ribs on the atmosphere side at least on its long sides. These can also serve to fit the carrier into the opening. Of course, a circumferential stiffening rib can also be provided, so that the carrier takes on a trough-like shape.
  • each sputtering target being assigned a magnet arrangement that generates a race track.
  • the arrangement of several sputtering targets also has the advantage that the individual sputtering targets are not given an excessively large weight and thus remain manageable.
  • each sputter target be composed of a plurality of sputter target segments that abut one another.
  • Each sputter target segment is also assigned its own back plate, which is also segmented for this purpose.
  • Each individual segment has its own cooling water circuit with its own cooling water supply. In principle, segmentation can also be carried out when the back plate is the closure element itself.
  • Such an arrangement also has the advantage that the cooling circuits do not become too long, so that even at the end of the circuit the cooling water is still sufficiently cool and has sufficient cooling capacity so that the target has a uniform temperature overall.
  • Fig.l shows a schematic diagram of a magnetron sputter cathode according to the invention in section and 2 shows a perspective view of a back plate composed of several segments.
  • the sputter cathode 1 consists of a carrier 2, on the vacuum side of which a back plate 3 designed as a cooling plate is initially provided for a sputter target 4. On the atmosphere side there is a magnet arrangement 5, which can be moved back and forth parallel to the sputtering target 4 by means of a displacement system, not shown.
  • the back plate 3 is inserted sealingly into an opening 6 in the housing wall 7 of a vacuum container.
  • an insulator 8 is provided which on the one hand electrically insulates the carrier 2 from the housing wall 7 and at the same time ensures that the connection is airtight.
  • the carrier 2 consists of a plate 10 with a circumferential reinforcing rib 11, which has a flange 12 offset to the outside. Between this flange 12 and the housing wall 7 there is the insulator 8, which rests on the outside of the reinforcing rib 11.
  • the reinforcing ribs 11 are extended towards the vacuum side in webs 13, on which the back plate 3 rests, so that a gap 14 is formed between the plate 10 of the carrier 2 and the back plate 3. In the case of an evacuated chamber, this gap is also evacuated, so that the back plate 3 and thus the sputter target 4 are free of pressure.
  • cooling channels 15 which are supplied with cooling liquid via an inlet 16 and which is returned via a return 17.
  • the inflow 16 and the return 17 are guided through the reinforcement ribs 11 and the web 13.
  • such an arrangement has the advantage that the carrier 2 can be designed in such a way that it is able to maintain the atmospheric pressure prevailing in an evacuated chamber, while the sputter target 4 and the back plate 3 itself do not have any differential pressure are exposed.
  • the gap 14 even allows a slight deflection of the carrier 2 without this having an effect on the sputter target 4.
  • the stability of the carrier 2 is generated in particular by the stiffening rib 11, so that its plate 10 itself does not have to be made very thick, so that the magnets of the magnet arrangement 5 can be arranged relatively close to the sputtering target 4.
  • the back plate 3 can be composed of several segments 3a, 3b, 3c. This is particularly recommended if the target as a whole is to have a relatively large longitudinal extent.
  • the carrier 2 furthermore consists of a continuous plate 10 with stiffening ribs 11 and webs 13 running in the longitudinal direction.
  • the individual segments 3a, 3b, 3c of the back plate 3 are viewed next to one another in the longitudinal direction of the carrier 2 and each span from one to the opposite web 13
  • Each segment 3a, 3b, 3c is individually attached to the carrier 2 and has its own cooling water circuit with its own connection 18a, 18b, 18c to the inlet and outlet 16, 17 on the carrier 2.
  • Magnetron sputter cathode carrier back plate (a, b, c: segments) sputter-target magnet arrangement

Abstract

Um eine relative breite Magnetron-Sputter-Kathode realisieren zu können, wird vorgeschlagen, dass auf der Vakuumseite eines Trägers (2) das Sputter-Target (4) mit einer Rückenplatte (3) angeordnet wird, die zum Träger (2) einen Spalt (14) einhält. Die Rückenplatte (3) ist als Kühlplatte ausgebildet. In ihr befinden sich Kühlmittelkanäle (15), die über einen Zulauf (16) durch den Träger (2) mit Kühlflüssigkeit versorgt werden, die über einen Rücklauf (17) durch den Träger (2) wieder abfliessen kann. Auf der Atmosphärenseite befindet sich eine Magnetanordnung (5).

Description

Beschreibung
Magnetron-Sputter-Kathode
Die Erfindung bezieht sich auf eine Magnetron-Sputter-Kathode mit einem Verschlusselement, das in eine Öffnung der Gehäusewand einer Vakuumkammer einsetzbar ist, wodurch die Öffnung luftdicht verschlossen und das Verschlusselement elektrisch von der Gehäusewand isoliert ist, mit einem Sputter-Target an der Vakuumseite des Ver- schlusselementes, mit einer Magnetanordnung an dessen Atmosphärenseite und mit einer mit einer Kühlflüssigkeit betriebenen Kühlplatte für das Sputter-Target.
Eine derartige Kathode ist unter anderem in der US PS 5,458,759 beschrieben.
Bei der dort beschriebenen Ausführung besteht das Verschlusselement aus der Rückenplatte (backing plate) des Sputter-Targets, die mit einem Rahmen versehen wird, der es ermöglicht, die Rückenplatte luftdicht in eine Öffnung der Gehäusewand der Vakuumkammer einzusetzen, so dass sich das mit der Rückenplatte verbundene Sputter-Target in der Vakuumkammer befindet. An der Atmosphäre-Seite der Rückenplatte befindet sich eine Kühlplatte mit offenen Kanälen, die von der Rückenplatte verschlossen werden. Dahinter befindet sich eine bewegbare Magnetanordnung, deren Magnetfeld vor das Sputter-Target reicht.
Aus der Kathode austretende Elektronen werden durch eine an die Kathode angelegte Hochspannung beschleunigt und ionisieren die Gasmoleküle eines Arbeitsgases in der Vakuumkammer. Die dabei entstehenden positiv geladenen Ionen treffen auf das Sputter-Target und schlagen dort Moleküle und Atome heraus, die in dünnen Schichten auf ei- nem Substrat abgeschieden werden. Durch das Magnetfeld werden die Elektronen vor dem Sputter-Target gebündelt, so dass die lonenausbeute erhöht wird. Entsprechend der Magnetfeldgeometrie bilden sich sogenannte Race-tracks im Sputter-Target aus. Um einen gleichmäßigen Abtrag des Materials zu gewährleisten, lässt sich die Magnetanordnung verschieben.
Die in der US PS 5,458,759 beschriebene Anordnung ist nur für kleine, eine geringe Standzeit aufweisende Sputter- Targets geeignet. Um die Standzeit zu vergrößern, könnte daran gedacht werden, das Sputter-Target zu verbreitern oder mehrere nebeneinander auf dem Verschlusselement anzuordnen. Dabei ist aber Folgendes zu bedenken: Die als Verschlusselement dienende Rückenplatte ist dem Differenzdruck zwischen Vakuum und Atmosphäre ausgesetzt und würde sich daher bei einer zu großen seitlichen Erstreckung durchbiegen. Dies wiederum hätte zur Folge, dass das aus einem spröden Material bestehende Sputter-Target von der Rückenplatte abplatzt bzw. Risse bildet. Auch könnten die das Kühlwasser führenden Kanäle der Kühl- platte nicht mehr dicht genug durch die Rückenplatte verschlossen werden. Die Haltbarkeit einer solchen vergrößert ausgeführten Kathode ist daher nicht sehr groß. Zwar könnte man daran denken, die Rückenplatte dicker und damit stabiler auszuführen, dies hätte aber zur Folge, dass die Kühlwirkung für das Sputter-Target reduziert werden würde. Auch entstünde das Problem, dass das Magnetfeld vor dem Target wegen des größeren Abstandes zu der Magnetanordnung kleiner und somit die Ionenausbeute geringer würde .
Die Erfindung beruht somit auf dem Problem, eine Magnetron-Sputter-Kathode zu schaffen, die eine gegenüber den bisher bekannten Lösungen deutlich vergrößerte Standzeit hat. Zur Lösung des Problems wird vorgeschlagen, dass die Kühlplatte an der Vakuumseite zwischen dem als einen Träger ausgeführten Verschlusselement und dem Sputter-Target angeordnet ist.
Diese Ausgestaltung hat den Vorteil, dass sich die Kühlplatte innerhalb des Vakuums befindet und damit dem Target näher ist, wodurch die Kühlleistung verbessert wird. Der Träger selbst ist ein gesondertes Bauteil, das so ausgestaltet werden kann, dass es die wirkenden Drücke aufnehmen und abstützen kann, ohne dass es zu erheblichen Durchbiegungen kommt. Da sich die Kühlung bei dieser Ausführung innerhalb der Vakuumkammer befindet, benötigt der Träger Durchführungen für die Kühlflüssigkeit.
Eine derartige Anordnung erlaubt eine wesentlich breitere Ausführung der Kathode, da der Träger nicht mehr von der Rückenplatte gebildet ist, sondern ein eigenes Bauteil bildet, das entsprechend den auftretenden Druckbelastungen ausgelegt werden kann.
Vorzugsweise weist der Träger Durchleitungen für die Kühlflüssigkeit auf.
Da die Kühlplatte gemäß der Erfindung nicht von einem Differenzdruck belastet ist, kann die Kühlplatte mit Kühlkanälen versehen sein und gleichzeitig die Rückenplatte des Sputter-Targets bilden. Dabei haben die Kühlkanäle innerhalb der Kühlplatte einen geschlossenen Querschnitt, so dass die eine Seite der Rückenplatte eine durchgehende Kontaktfläche zum Sputter-Target ausbildet. Dies vereinfacht die Herstellung der Verbindung (bond) zwischen dem Sputter-Target und der als Kühlplatte ausgeführten Rückenplatte . Damit die Ansprüche an die Formbeständigkeit des Trägers bei einer Druckbelastung nicht zu hoch werden, wird vorgeschlagen, dass zwischen der Rückenplatte und dem Träger Abstandshalter vorgesehen sind, an denen der Rand der Rückenplatte mit ihrer von dem Sputter-Target abgewandten Seite anliegend befestigt ist, so dass zwischen dem zentralen Bereich der Rückenplatte und dem Träger ein Spalt verbleibt. Wenn bei der Befestigung der Rückenplatte an der Trägerplatte ein laterales Spiel an den Abstandshal- tern vorgegeben ist, besteht für die Rückenplatte kein Zwang, einer Durchbiegung des Trägers zu folgen. Die Rückenplatte bleibt gerade und es besteht nicht die Gefahr, dass sich das Sputter-Target von der Rückenplatte löst.
Im einfachsten Fall können die Abstandshalter durch einstückig mit den Trägern ausgebildete Stege geformt sein, wobei die Durchleitung der Kühlflüssigkeit durch die Stege erfolgt.
Dies ermöglicht es unter anderem auch, die Zuleitung zu den Kanälen in der Rückenplatte über die Befestigung der Rückenplatte an den Stegen erfolgen zu lassen.
Damit der Träger selbst nicht zu dick wird, wodurch die Magnete zu sehr von dem Sputter-Target entfernt angeordnet sein müssten, wird weiterhin vorgeschlagen, dass der Träger an der Atmosphärenseite wenigstens an seinen Längsseiten zwei randständige Versteifungsrippen aufweist. Diese können gleichzeitig dazu dienen, den Träger in die Öffnung einzupassen. Selbstverständlich kann auch eine umlaufende Versteifungsrippe vorgesehen werden, so dass der Träger eine wannenförmige Gestalt annimmt.
Bei einer verbreiterten Kathoden-Ausführung kann außerdem vorgesehen werden, dass nicht ein einheitliches Sputter- Target vorgesehen wird, sondern nebeneinander wenigstens zwei längliche Sputter-Targets mit je einer Rückenplatte auf dem Träger anzuordnen, wobei jedem Sputter-Target eine Race-Track erzeugende Magnetanordnung zugeordnet ist.
Die Anordnung von mehreren Sputter-Targets hat auch den Vorteil, dass die einzelnen Sputter-Targets ein nicht zu übermäßig großes Gewicht erhalten und damit handhabbar bleiben.
Aber auch einzelne längliche Sputter-Targets könnten sehr schwer werden. Deshalb wird vorgeschlagen, dass jedes Sputter-Target aus mehreren aneinander stoßenden Sputter- Target-Segmenten zusammengesetzt ist. Weiterhin ist jedem Sputter-Target-Segment eine eigene Rückenplatte zugeordnet, die zu diesem Zweck ebenfalls segmentiert ist. Jedes einzelne Segment weist einen eigenen Kühlwasserkreislauf mit einer eigenen Kühlwasserversorgung auf. Prinzipiell kann eine Segmentierung auch dann vorgenommen werden, wenn die Rückenplatte das Verschlusselement selbst ist.
Eine solche Anordnung hat auch den Vorteil, dass die Kühlkreisläufe nicht zu lang werden, so dass auch am Ende des Kreislaufes das Kühlwasser noch ausreichend kühl ist und eine ausreichende Kühlkapazität besitzt, so dass das Target insgesamt eine gleichmäßige Temperatur aufweist .
Um die Erfindung zu verdeutlichen, wird im Folgenden anhand eines Ausführungsbeispiels diese näher dargestellt. Dazu zeigen:
Fig.l eine Prinzipdarstellung einer erfindungsgemäßen Magnetron-Sputter-Kathode im Schnitt und Fig.2 eine perspektivische Darstellung einer aus mehreren Segmenten zusammengesetzten Rückenplatte.
Die Sputter-Kathode 1 besteht aus einem Träger 2, an dessen Vakuumseite zunächst eine als Kühlplatte ausgestaltete Rückenplatte 3 für ein Sputter-Target 4 vorgesehen ist. An der Atmosphärenseite befindet sich eine Magnetanordnung 5, die durch ein nicht näher dargestelltes Verschiebesystem parallel zum Sputter-Target 4 hin und her bewegt werden kann.
Die Rückenplatte 3 wird in eine Öffnung 6 in der Gehäusewand 7 eines Vakuumbehälters dichtend eingesetzt. Dazu ist ein Isolator 8 vorgesehen, der einerseits den Träger 2 gegenüber der Gehäusewand 7 elektrisch isoliert und gleichzeitig sicherstellt, dass die Verbindung luftdicht ist.
Der Träger 2 besteht aus einer Platte 10 mit einer umlaufenden Verstärkungsrippe 11, die einen nach außen abgesetzten Flansch 12 aufweist. Zwischen diesem Flansch 12 und der Gehäusewand 7 befindet sich der Isolator 8, der an der Außenseite der Verstärkungsrippe 11 anliegt. Zur Vakuumseite hin sind die Verstärkungsrippen 11 in Stege 13 verlängert, auf denen die Rückenplatte 3 aufliegt, so dass sich zwischen der Platte 10 des Trägers 2 und der Rückenplatte 3 ein Spalt 14 bildet. Bei einer evakuierten Kammer ist auch dieser Spalt evakuiert, so dass die Rückenplatte 3 und damit das Sputter-Target 4 druckfrei sind.
In der Rückenplatte 3 befinden sich Kühlkanäle 15, die über einen Zulauf 16 mit Kühlflüssigkeit versorgt werden, das über einen Rücklauf 17 zurückgeführt wird. Der Zulauf 16 und der Rücklauf 17 werden durch die Verstärkungsrip- pen 11 und den Steg 13 geführt.
Wie schon erwähnt, hat eine solche Anordnung den Vorteil, dass der Träger 2 dahingehend ausgelegt werden kann, dass er in der Lage ist, den bei einer evakuierten Kammer herrschenden Atmosphärendruck zu halten, während das Sputter-Target 4 und die Rückenplatte 3 selbst keinem Differenzdruck ausgesetzt sind.
Der Spalt 14 ermöglicht sogar eine leichte Durchbiegung des Trägers 2, ohne dass sich dies auf das Sputter-Target 4 auswirkt .
Die Stabilität des Trägers 2 wird insbesondere durch die Versteifungsrippe 11 erzeugt, so dass seine Platte 10 selbst nicht sehr dick ausgeführt zu sein braucht, so dass die Magnete der Magnetanordnung 5 relativ nahe dem Sputter-Target 4 angeordnet werden können.
Wie die Figur 2 zeigt, kann die Rückenplatte 3 aus mehreren Segmenten 3a, 3b, 3c zusammengesetzt sein. Dies empfiehlt sich insbesondere, wenn das Target als Ganzes eine relativ große Längsausdehnung haben soll . Der Träger 2 besteht weiterhin aus einer durchgehenden Platte 10 mit in Längsrichtung verlaufenden Versteifungsrippen 11 und Stegen 13. Die einzelnen Segmente 3a, 3b, 3c der Rückenplatte 3 sind in Längsrichtung des Trägers 2 betrachtet nebeneinander gesetzt und überspannen ihn jeweils von einem zum gegenüberliegenden Steg 13. Jedes Segment 3a, 3b, 3c ist einzeln am Träger 2 befestigt und weist einen eigenen Kühlwasserkreislauf mit einem eigenen Anschluss 18a, 18b, 18c zum Zu- bzw. Ablauf 16, 17 am Träger 2 auf. Bezugszeichenliste
Magnetron-Sputter-Kathode Träger Rückenplatte (a, b, c: Segmente) Sputter-Target Magnetanordnung
Öffnung
Gehäuse
Isolator
Trägerplatte
Versteifungsrippe
Flansch
Steg
Spalt
Kanäle
Zulauf
Rücklauf
Anschluss

Claims

Patentansprüche
1. Magnetron-Sputter-Kathode mit einem Verschlusselement, das in eine Öffnung (6) der Gehäusewand einer Vakuumkammer einsetzbar ist, wodurch die Öffnung (6) luftdicht verschlossen und das Verschlusselement elektrisch von der Gehäusewand isoliert ist, mit einem Sputter-Target (4) an der Vakuumseite des Verschlusselementes, mit einer Magnetanordnung (5) an dessen Atmosphärenseite und mit einer mit einer Kühlflüssigkeit betriebenen Kühlplatte für das Sput- ter-Target (4) , dadurch gekennzeichnet, dass die Kühlplatte an der Vakuumseite zwischen dem als einem Träger (2) ausgeführten Verschlusselement und dem Sputter-Target (4) angeordnet ist.
2. Magnetron-Sputter-Kathode nach Anspruch 1, dadurch gekennzeichnet, dass der Träger (2) Durchleitungen für die Kühlflüssigkeit aufweist.
3. Magnetron-Sputter-Kathode nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Kühlplatte mit Kühlkanälen (15) versehen ist und die Rückenplatte (3) des Sputter-Targets (4) bildet.
4. Magnetron-Sputter-Kathode nach Anspruch 3, dadurch gekennzeichnet, dass die Kühlkanäle (15) innerhalb der Kühlplatte einen geschlossenen Querschnitt aufweisen, und dass eine durchgehende Kontaktfläche zum Sputter-Target (4) besteht.
5. Magnetron-Sputter-Kathode nach Anspruch 1, 2, 3 oder 4, dadurch gekennzeichnet, dass zwischen der Rückenplatte (3) und dem Träger (2) Abstandshalter vorgesehen sind, an denen der Rand der Rückenplatte (3) mit ihrer von dem Sputter-Target (4) abgewandten Seite anliegend befestigt ist, so dass zwischen dem zentralen Bereich der Rückenplatte (3) und dem Träger (2) ein Spalt verbleibt.
6. Magnetron-Sputter-Kathode nach Anspruch 5, dadurch gekennzeichnet, dass die Abstandshalter von einstückig mit dem Träger (2) ausgebildeten Stegen (13) gebildet sind und dass die Durchleitung der Kühlflüssigkeit durch die Stege (13) erfolgt.
7. Magnetron-Sputter-Kathode nach einem der vorhergehenden Ansprüche, dadurch, gekennzeichnet, dass der Träger (2) an der Atmosphärenseite zwei randständige Versteifungsrippen (11) aufweist.
8. Magnetron-Sputter-Kathode nach Anspruch 7, dadurch gekennzeichnet, dass wenigstens zwei längliche Sputter-Targets (4) mit je einer Rückenplatte (3) nebeneinander auf dem Träger (2) angeordnet sind, und dass jedem Sputter-Target (4) eine einen Race-track erzeugende Magnetanordnung (5) zugeordnet ist.
9. Magnetron-Sputter-Kathode nach einem der vorhergehenden Elemente, dadurch gekennzeichnet, dass jedes Sputter-Target (4) aus mehreren aneinanderstoßenden Sputter-Target-Segmenten zusammengesetzt ist.
10. Magnetron-Sputter-Kathode nach Anspruch 9, dadurch gekennzeichnet, dass jedem Sputter-Target-Segment eine Einzelrückenplatte zugeordnet ist, die eine eigene Kühlwasserversorgung aufweist.
PCT/DE2004/000208 2003-05-23 2004-02-07 Magnetron-sputter-kathode mit kühlplatte WO2004112079A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006508101A JP4532475B2 (ja) 2003-05-23 2004-02-07 マグネトロンスパッタカソード電極
DE502004012062T DE502004012062D1 (de) 2003-05-23 2004-02-07 Magnetron-sputter-kathode mit kühlplatte
AT04709126T ATE493750T1 (de) 2003-05-23 2004-02-07 Magnetron-sputter-kathode mit kühlplatte
EP04709126A EP1627414B1 (de) 2003-05-23 2004-02-07 Magnetron-sputter-kathode mit kühlplatte
CN2004800140586A CN1795531B (zh) 2003-05-23 2004-02-07 磁控管溅射阴极
US11/284,439 US8715471B2 (en) 2003-05-23 2005-11-21 Magnetron sputter cathode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10323258.3 2003-05-23
DE10323258A DE10323258A1 (de) 2003-05-23 2003-05-23 Magnetron-Sputter-Kathode

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/284,439 Continuation-In-Part US8715471B2 (en) 2003-05-23 2005-11-21 Magnetron sputter cathode

Publications (1)

Publication Number Publication Date
WO2004112079A1 true WO2004112079A1 (de) 2004-12-23

Family

ID=33482095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/000208 WO2004112079A1 (de) 2003-05-23 2004-02-07 Magnetron-sputter-kathode mit kühlplatte

Country Status (9)

Country Link
US (1) US8715471B2 (de)
EP (1) EP1627414B1 (de)
JP (1) JP4532475B2 (de)
KR (1) KR100760900B1 (de)
CN (1) CN1795531B (de)
AT (1) ATE493750T1 (de)
DE (2) DE10323258A1 (de)
TW (1) TWI258788B (de)
WO (1) WO2004112079A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336029A (ja) * 2005-05-31 2006-12-14 Fts Corporation:Kk 連続スパッタ装置および連続スパッタ方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2353102B1 (es) * 2009-08-14 2011-12-30 Consejo Superior De Investigaciones Científicas (Csic) Dispositivo magnetron y procedimiento de erosion uniforme de un blanco empleando dicho dispositivo
DE102012110284B3 (de) * 2012-10-26 2013-11-14 Von Ardenne Anlagentechnik Gmbh Sputterbeschichtungseinrichtung und Vakuumbeschichtungsanlage
JP5950866B2 (ja) 2013-05-15 2016-07-13 株式会社神戸製鋼所 成膜装置及び成膜方法
KR101913791B1 (ko) 2014-07-22 2018-11-01 어플라이드 머티어리얼스, 인코포레이티드 타겟 어레인지먼트, 그를 구비한 프로세싱 장치 및 그의 제조 방법
CN104611674B (zh) * 2014-11-10 2017-08-25 芜湖真空科技有限公司 平面磁控阴极
KR101965266B1 (ko) * 2017-08-02 2019-04-03 한국알박(주) 전자석 어셈블리의 제조 방법
CN112144034B (zh) * 2019-06-27 2022-12-30 昆山世高新材料科技有限公司 一种冷却背板
JP7362327B2 (ja) * 2019-07-18 2023-10-17 東京エレクトロン株式会社 ターゲット構造体及び成膜装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4127261C1 (en) * 1991-08-17 1992-06-04 Forschungsges Elektronenstrahl Sputtering equipment for coating large substrates with ferromagnetic and non-magnetic material - has cathode target comprising sub-targets, and cooling plates contg. magnet unit and poles shoes
DE4127262C1 (en) * 1991-08-17 1992-06-04 Forschungsges Elektronenstrahl Sputtering equipment for coating large substrates with (non)ferromagnetic material - consisting of two sub-targets electrically isolated and cooling plates whose gap in between is that in region of pole units
DE19746988A1 (de) * 1997-10-24 1999-05-06 Leybold Ag Zerstäuberkathode
WO1999031290A1 (de) * 1997-12-17 1999-06-24 Unaxis Trading Ag Magnetronsputterquelle
DE19947935A1 (de) * 1999-09-28 2001-03-29 Fraunhofer Ges Forschung Einrichtung zum Magnetronzerstäuben
US6494999B1 (en) * 2000-11-09 2002-12-17 Honeywell International Inc. Magnetron sputtering apparatus with an integral cooling and pressure relieving cathode

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2058466T3 (es) 1988-03-01 1994-11-01 Unilever Nv Compuestos de amonio cuaternario para utilizacion en sistemas de blanqueo.
JPH0287836A (ja) 1988-09-26 1990-03-28 Matsushita Electric Works Ltd データ伝送システム
JPH0295782A (ja) 1988-09-30 1990-04-06 Toshiba Seiki Kk 往復揺動型ピストンポンプ
DE4106770C2 (de) * 1991-03-04 1996-10-17 Leybold Ag Verrichtung zum reaktiven Beschichten eines Substrats
US5458759A (en) * 1991-08-02 1995-10-17 Anelva Corporation Magnetron sputtering cathode apparatus
DE4127260C1 (en) * 1991-08-17 1992-04-16 Forschungsgesellschaft Fuer Elektronenstrahl- Und Plasmatechnik Mbh, O-8051 Dresden, De Magnetron sputter source
JPH05263224A (ja) * 1992-03-16 1993-10-12 Shincron:Kk スパッタ電極
US5487822A (en) * 1993-11-24 1996-01-30 Applied Materials, Inc. Integrated sputtering target assembly
DE4413655A1 (de) * 1994-04-20 1995-10-26 Leybold Ag Beschichtungsanlage
JP3877230B2 (ja) * 1994-06-03 2007-02-07 キヤノンアネルバ株式会社 スパッタリング装置
DE19506513C2 (de) * 1995-02-24 1996-12-05 Fraunhofer Ges Forschung Einrichtung zur reaktiven Beschichtung
JPH093637A (ja) * 1995-06-23 1997-01-07 Kojundo Chem Lab Co Ltd 分割スパッタリングターゲット
JP3628395B2 (ja) * 1995-09-25 2005-03-09 株式会社アルバック スパッタカソード
JP3863932B2 (ja) * 1995-10-02 2006-12-27 三井金属鉱業株式会社 分割ターゲットを用いたマグネトロンスパッタリング方法
JPH11350123A (ja) * 1998-06-05 1999-12-21 Hitachi Ltd 薄膜製造装置および液晶表示基板の製造方法
KR100291330B1 (ko) * 1998-07-02 2001-07-12 윤종용 반도체장치제조용스퍼터링설비및이를이용한스퍼터링방법
JP2000192234A (ja) * 1998-12-28 2000-07-11 Matsushita Electric Ind Co Ltd プラズマ処理装置
AU2001277271A1 (en) * 2000-07-27 2002-02-13 Atf Technologies, Inc. Low temperature cathodic magnetron sputtering
JP2002105634A (ja) * 2000-09-29 2002-04-10 Shibaura Mechatronics Corp スパッタリング装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4127261C1 (en) * 1991-08-17 1992-06-04 Forschungsges Elektronenstrahl Sputtering equipment for coating large substrates with ferromagnetic and non-magnetic material - has cathode target comprising sub-targets, and cooling plates contg. magnet unit and poles shoes
DE4127262C1 (en) * 1991-08-17 1992-06-04 Forschungsges Elektronenstrahl Sputtering equipment for coating large substrates with (non)ferromagnetic material - consisting of two sub-targets electrically isolated and cooling plates whose gap in between is that in region of pole units
DE19746988A1 (de) * 1997-10-24 1999-05-06 Leybold Ag Zerstäuberkathode
WO1999031290A1 (de) * 1997-12-17 1999-06-24 Unaxis Trading Ag Magnetronsputterquelle
DE19947935A1 (de) * 1999-09-28 2001-03-29 Fraunhofer Ges Forschung Einrichtung zum Magnetronzerstäuben
US6494999B1 (en) * 2000-11-09 2002-12-17 Honeywell International Inc. Magnetron sputtering apparatus with an integral cooling and pressure relieving cathode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336029A (ja) * 2005-05-31 2006-12-14 Fts Corporation:Kk 連続スパッタ装置および連続スパッタ方法

Also Published As

Publication number Publication date
JP4532475B2 (ja) 2010-08-25
EP1627414A1 (de) 2006-02-22
TWI258788B (en) 2006-07-21
JP2006526073A (ja) 2006-11-16
KR20060018222A (ko) 2006-02-28
EP1627414B1 (de) 2010-12-29
DE502004012062D1 (de) 2011-02-10
ATE493750T1 (de) 2011-01-15
CN1795531B (zh) 2011-12-21
TW200428453A (en) 2004-12-16
US8715471B2 (en) 2014-05-06
KR100760900B1 (ko) 2007-09-21
CN1795531A (zh) 2006-06-28
US20060118412A1 (en) 2006-06-08
DE10323258A1 (de) 2004-12-23

Similar Documents

Publication Publication Date Title
AT392808B (de) Luftleitkasten zum stabilisieren einer laufenden warenbahn, wie z.b. einer papierbahn
DE3135208A1 (de) Kathodenanordnung zur abstaeubung von material von einem target in einer kathodenzerstaeubungsanlage
WO2004112079A1 (de) Magnetron-sputter-kathode mit kühlplatte
EP0144572A2 (de) Magnetronkatode zum Zerstäuben ferromagnetischer Targets
DE10362259B4 (de) Längserstreckte Vakuumanlage zur ein- oder beidseitigen Beschichtung flacher Substrate
EP1840936A1 (de) Sputterkammer zum Beschichten eines Substrats
EP1722005A1 (de) Verfahren zum Betreiben einer Sputterkathode mit einem Target
EP1710829A1 (de) Magnetanordnung für ein Planar-Magnetron
DE3012935C2 (de) Zerstäubungsvorrichtung mit magnetischer Verstärkung
DE102010041376A1 (de) Verdampfereinrichtung für eine Beschichtungsanlage und Verfahren zur Koverdampfung von mindestens zwei Substanzen
DE102010028734A1 (de) Gasseparationsanordnung einer Vakuumbeschichtungsanlage
DE4233895C2 (de) Vorrichtung zur Behandlung von durch einen Wickelmechanismus bewegten bahnförmigen Materialien mittels eines reaktiven bzw. nichtreaktiven, durch Hochfrequenz- oder Pulsentladung erzeugten Niederdruckplasmas
DE3009019A1 (de) Papierbahnschleuse an einer vakuum- oder gaskammer
DE60005137T2 (de) Magnetische anordnung zur effizienten verwendung eines targets beim zerstäuben eines kegelstumpfförmigen targets
EP1475458B1 (de) Vorrichtung zum Beschichten eines Substrats.
DE102013104086B3 (de) Elektronenstrahl-Verdampfungsanordnung und Verfahren zum Elektronenstrahl-Verdampfen
DE19747923C2 (de) Sputterkathode
DE102008008320A1 (de) Transporteinrichtung für horizontale Vakuumbeschichtungsanlagen
WO2016075189A1 (de) Kammerdeckel zum abdichten einer kammeröffnung in einer gasseparationskammer und gasseparationskammer
DE1414569C (de) Ionen Vakuumpumpe
DE202011002012U1 (de) Vakuumbeschichtungsanlage mit Pump- und Magnetronanordnung
DE102008023248A1 (de) Ionenquelle mit substrukturiertem Emissionsspalt
DE102012103710A1 (de) Modulare Durchlauf-Plasmabearbeitungsanlage
DE1414569B2 (de) Ionen-vakuumpumpe
DE102021105388A1 (de) Sputtervorrichtung und Beschichtungsanordnung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057021615

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004709126

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11284439

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20048140586

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006508101

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 3490/CHENP/2005

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2004709126

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057021615

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 11284439

Country of ref document: US