WO2004102638A2 - Rf pulsing of a narrow gap capacitively coupled reactor - Google Patents
Rf pulsing of a narrow gap capacitively coupled reactor Download PDFInfo
- Publication number
- WO2004102638A2 WO2004102638A2 PCT/US2004/013707 US2004013707W WO2004102638A2 WO 2004102638 A2 WO2004102638 A2 WO 2004102638A2 US 2004013707 W US2004013707 W US 2004013707W WO 2004102638 A2 WO2004102638 A2 WO 2004102638A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radio frequency
- electrode
- power source
- khz
- frequency power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/32137—Radio frequency generated discharge controlling of the discharge by modulation of energy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/32137—Radio frequency generated discharge controlling of the discharge by modulation of energy
- H01J37/32155—Frequency modulation
- H01J37/32165—Plural frequencies
Definitions
- the invention relates to a method and apparatus for providing a structure on a semiconductor wafer by etching a layer over a substrate.
- a plasma etcher In semiconductor plasma etching applications, a plasma etcher is usually used to transfer a mask pattern into a circuit and line pattern of a desired thin film and/or filmstack (conductors or dielectric insulators) on a wafer. This is achieved by etching away the films (and f ⁇ lmstacks) underneath the mask materials in the opened areas of the mask pattern. This etching reaction may be initiated by the chemically active species and electrically charged particles (ions) generated by generating a plasma from a reactant mixture contained in a vacuum enclosure also referred to as a reactor or process chamber.
- a vacuum enclosure also referred to as a reactor or process chamber.
- the ions may be also accelerated towards the wafer materials through an electric field created between the gas mixture and the wafer materials, generating a directional removal of the etching materials along the direction of the ion trajectory in a manner referred to as anisotropic etching.
- the masking materials may be removed by stripping them away, leaving in its place a replica of the lateral pattern of the original intended mask patterns.
- an apparatus for providing a plasma etch of a layer over a wafer is provided.
- a capacitively coupled process chamber is provided.
- a gas source is in fluid connection with the capacitively coupled process chamber.
- a first electrode is provided within the process chamber.
- a second electrode is spaced apart and opposite from the first electrode.
- a first radio frequency power source is electrically connected to at least one of the first and second electrodes, where the first radio frequency power source provides radio frequency power of between 150 kHz and 10 MHz.
- a second radio frequency power source is electrically connected to at least one of the first and second electrodes, wherein the second radio frequency power source provides a radio frequency power of between 12 MHz and 200 MHz.
- a first modulation control is connected to the first radio frequency power source, to provide a controlled modulation of the first radio frequency power source at a frequency of between 1 kHz to 100 kHz.
- an apparatus for providing a plasma etch of a layer over a wafer is provided.
- a capacitively coupled process chamber is provided.
- a gas source is in fluid connection with the capacitively coupled process chamber.
- a first electrode is provided within the process chamber.
- a second electrode is spaced apart and opposite from the first electrode, where the second electrode is spaced apart from the first electrode forming a gap, and where the wafer is mountable between the first and second electrodes and wherein an aspect ratio of a wafer diameter to gap size is between 6: 1 to 60: 1.
- a first radio frequency power source for providing a power signal at a first frequency is electrically connected to at least one of the first and second electrodes.
- a second radio frequency power source for providing a power signal at a second frequency is electrically connected to at least one of the first and second electrodes, where the first frequency is different than the second frequency.
- a first modulation control is connected to the first radio frequency power source, to provide a controlled modulation of the first radio frequency power source at a frequency of between 1 kHz to 100 kHz.
- a second modulation control is connected to the second radio frequency power source, to provide a controlled modulation of the second radio frequency power source at a frequency of between about 1 kHz to about 100 kHz.
- FIG. 1 is a schematic view of a capacitively coupled process chamber that may be used in the preferred embodiment of the invention.
- FIG. 2 is a flow chart of a process that may use a preferred embodiment of the invention.
- FIG. 3 is a graph of concentration ratios of F + over CF 2 + versus modulation frequency.
- F + may tend to etch the photoresist. Therefore to increase etch selectivity, it maybe desirable to dissociate C F 8 to yield more CF 2 + and less F + . Therefore, it would be desirable to be able to control the ratio of resulting species generated in a plasma.
- FIG. 1 is a schematic view of a capacitively coupled process chamber 100 that maybe used in the preferred embodiment of the invention, hi this embodiment, the plasma processing chamber 100 comprises confinement rings 102, an upper electrode 104, a lower electrode 108, a gas source 110, and an exhaust pump 120.
- the substrate wafer 180 is positioned upon the lower electrode 108.
- the lower electrode 108 incorporates a suitable substrate chucking mechanism (e.g., electrostatic, mechanical clamping, or the like) for holding the substrate wafer 180.
- a process chamber top 128 incorporates the upper electrode 104 disposed immediately opposite the lower electrode 108.
- the upper electrode 104, lower electrode 108, and confinement rings 102 define the confined plasma volume 140. Gas is supplied to the confined plasma volume by gas source 110 through a gas inlet 143 and is exhausted from the confined plasma volume through the confinement rings 102 and an exhaust port by the exhaust pump 120.
- the exhaust pump 120 forms a gas outlet for the plasma processing chamber.
- a first RF source 144 and a second RF source 148 are electrically connected to the lower electrode 108.
- the first RF source 144 provides a radio frequency power with a frequency between 150 kHz to 10 MHz. Preferably, this frequency is about 2 MHz.
- the second RF source 148 provides a radio frequency power with a frequency between 12 MHz and 200 MHz. Preferably, this frequency is about 27 MHz. Preferably, the frequency from the second RF source 148 is at least ten times the frequency from the first RF source 144.
- a first pulse modulator 133 is controllable connected to the first RF source 144. The first pulse modulator 133 is able to modulate the first RF source signal at frequencies between 1 kHz to 100 kHz.
- a second pulse modulator 135 is controllably connected to the second RF source 148.
- the second pulse modulator 135 is able to modulate the second RF source signal at frequencies between 1 kHz to 100 kHz.
- the upper electrode 104 is grounded.
- a controller 137 may be controllably connected to the first pulse modulator 133, the second pulse modulator 135, the exhaust pump 120, and the gas source 110.
- the controller 137 may also be controllably connected with other devices, such as the first and second RF sources 144, 148.
- Chamber walls 152 define a plasma enclosure in which the confinement rings 102, the upper electrode 104, and the lower electrode 108 are disposed.
- the gap between the upper and lower electrodes 104, 108 is about 2 cm. Therefore, in this embodiment the aspect ratio between the diameter of the wafer 180 to be processed, which is about the diameter of the lower electrode 108, to the distance between the upper electrode and the lower electrode is 300 mm : 2 cm, which is, 15:1.
- the aspect ratio between the diameter of the wafer to be processed and the electrode gap is between 6:1 to 60:1. More preferably, the aspect ratio is between 10:1 to 40:1.
- this process chamber has an extremely narrow gap between electrodes. Such aspect ratios use gaps that allow a sheath to be a substantial fraction of the bulk plasma.
- the gap between the upper electrode and lower electrode is less than 8 cm. More preferably, the gap between the upper electrode and the lower electrode is between about 0.5 and 4 cm. Most preferably, the gap between the upper electrode and lower electrode is about 2 cm.
- FIG. 2 is a flow chart of a process that may use a preferred embodiment of the invention, hi operation, a wafer 180 with a patterned mask is placed in the process chamber 100 (step 204).
- the wafer 180 is supported by the lower electrode 108.
- An etchant gas mixture is provided by the gas source 110 into the plasma volume 140 (step 206).
- an etchant gas chemistry of Argon, C 4 F 8 , oxygen, and other component gases may be used for etching a dielectric layer over the wafer and under a photoresist mask.
- Modulated first and second RF powers are then provided (step 208) to create and sustain a plasma formed from the etchant gas.
- the plasma is used to etch the layer under the mask (step 210).
- modulation of the RF power in a capacitively coupled process chamber causes a change in the sheath of the plasma.
- Such a change in some systems may only affect a small portion of the plasma volume.
- the inventive process chamber has a thin plasma volume, defined by a thin electrode gap and high aspect ratio, so that the sheath that is affected by the modulation forms a significant part of the plasma volume.
- the modulation may be used to independently control species dissociation and loss to generation ratios for a significant part of the plasma volume.
- FIG. 3 is a graph of concentration ratios of F + over CF 2 + versus modulation frequency of the higher frequency RF source.
- the graph schematically shows that as the modulation frequency increases the ratio of F + to CF 2 + decreases and that modulation frequency may be used to control the ratio. This is an example of how the invention may be used to control the dissociation ratios of gases in a significant portion of the plasma volume.
- the plasma loss to generation ratio is dependent on various factors, such as the number of ions and electrons and their energies. Modulation may be used to change these various factors. As discussed above, such modulation may mainly affect the sheath region. Since the invention provides a sheath region that is a significant part of the volume, the modulation maybe used to affect a significant volume of the plasma.
- a change in balance is known to alter plasma parameters such as electron temperature (and thereby the plasma species fragmentation/dissociation).
- the invention also provides an added control that may be used to tailor an etch according to the type of etch. For example, in etching a high aspect ratio contact, a lot of sheath is desired, to provide higher energy ions for etching.
- the pulse modulators would have a modulation frequency favoring a high sheath potential, even allowing for increased instantaneous lower frequency power during the pulse-on than would be achievable during continuous- wave operation. If instead a trench is to be etched in a low-k dielectric, ion bombardment should be reduced and therefore the sheath should be reduced. This may be accomplished by modulating the lower frequency that typically controls the wafer sheath, allowing further fine tuning of low ion energies.
- Modulation may also used to change the percentage of the volume affected by the sheath. Therefore, the invention is able to provide an extra control, for controlling etch bias, sheath, and dissociation chemistry.
- the controller is able to cause the modulation of the RF power sources to be synchronized or to be modulated independently of each other.
- other RF power source and electrode arrangements may be used.
- another embodiment may connect the first and second RF sources to the upper electrode.
- etching benefits may be found from the inventive apparatus that has a narrow plasma volume and allows the modulation of dual RF sources.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Plasma Technology (AREA)
- Drying Of Semiconductors (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- ing And Chemical Polishing (AREA)
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AT04751199T ATE470949T1 (de) | 2003-05-06 | 2004-04-29 | Hf-pulsen eines kapazitiv gekoppelten narrow-gap- reaktors |
| DE602004027620T DE602004027620D1 (de) | 2003-05-06 | 2004-04-29 | Hf-pulsen eines kapazitiv gekoppelten narrow-gap-reaktors |
| JP2006532543A JP4794449B2 (ja) | 2003-05-06 | 2004-04-29 | ナローギャップ容量結合リアクタのrfパルシング技術 |
| EP04751199A EP1620876B1 (en) | 2003-05-06 | 2004-04-29 | Rf pulsing of a narrow gap capacitively coupled reactor |
| KR1020127020117A KR101303969B1 (ko) | 2003-05-06 | 2004-04-29 | 좁은 갭 용량 결합형 반응기의 rf 펄싱 |
| CN2004800191395A CN1816893B (zh) | 2003-05-06 | 2004-04-29 | 窄隙电容耦合反应器的射频脉冲调制 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/431,030 | 2003-05-06 | ||
| US10/431,030 US7976673B2 (en) | 2003-05-06 | 2003-05-06 | RF pulsing of a narrow gap capacitively coupled reactor |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2004102638A2 true WO2004102638A2 (en) | 2004-11-25 |
| WO2004102638A3 WO2004102638A3 (en) | 2005-07-28 |
Family
ID=33416370
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2004/013707 Ceased WO2004102638A2 (en) | 2003-05-06 | 2004-04-29 | Rf pulsing of a narrow gap capacitively coupled reactor |
Country Status (9)
| Country | Link |
|---|---|
| US (2) | US7976673B2 (enExample) |
| EP (1) | EP1620876B1 (enExample) |
| JP (1) | JP4794449B2 (enExample) |
| KR (2) | KR20060013386A (enExample) |
| CN (1) | CN1816893B (enExample) |
| AT (1) | ATE470949T1 (enExample) |
| DE (1) | DE602004027620D1 (enExample) |
| TW (1) | TWI460784B (enExample) |
| WO (1) | WO2004102638A2 (enExample) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009033080A (ja) * | 2006-10-06 | 2009-02-12 | Tokyo Electron Ltd | プラズマエッチング装置、プラズマエッチング方法およびコンピュータ読取可能な記憶媒体 |
| US8659335B2 (en) | 2009-06-25 | 2014-02-25 | Mks Instruments, Inc. | Method and system for controlling radio frequency power |
Families Citing this family (39)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2002061173A2 (en) * | 2001-01-29 | 2002-08-08 | The Board Of Regents For Oklahoma State University | Advanced composite ormosil coatings |
| US7887889B2 (en) * | 2001-12-14 | 2011-02-15 | 3M Innovative Properties Company | Plasma fluorination treatment of porous materials |
| US7431857B2 (en) * | 2003-08-15 | 2008-10-07 | Applied Materials, Inc. | Plasma generation and control using a dual frequency RF source |
| US7144521B2 (en) * | 2003-08-22 | 2006-12-05 | Lam Research Corporation | High aspect ratio etch using modulation of RF powers of various frequencies |
| US7838430B2 (en) * | 2003-10-28 | 2010-11-23 | Applied Materials, Inc. | Plasma control using dual cathode frequency mixing |
| US20050241762A1 (en) * | 2004-04-30 | 2005-11-03 | Applied Materials, Inc. | Alternating asymmetrical plasma generation in a process chamber |
| KR20060005560A (ko) * | 2004-07-13 | 2006-01-18 | 삼성전자주식회사 | 플라즈마를 이용하는 반도체 소자 제조 장비 |
| US9083392B2 (en) * | 2005-05-17 | 2015-07-14 | The Regents Of The University Of Michigan | Wireless sensing and communication utilizing RF transmissions from microdischarges |
| KR100777151B1 (ko) * | 2006-03-21 | 2007-11-16 | 주식회사 디엠에스 | 하이브리드형 플라즈마 반응장치 |
| JP5514413B2 (ja) | 2007-08-17 | 2014-06-04 | 東京エレクトロン株式会社 | プラズマエッチング方法 |
| US7736914B2 (en) * | 2007-11-29 | 2010-06-15 | Applied Materials, Inc. | Plasma control using dual cathode frequency mixing and controlling the level of polymer formation |
| CN101736326B (zh) * | 2008-11-26 | 2011-08-10 | 中微半导体设备(上海)有限公司 | 电容耦合型等离子体处理反应器 |
| JP5390846B2 (ja) | 2008-12-09 | 2014-01-15 | 東京エレクトロン株式会社 | プラズマエッチング装置及びプラズマクリーニング方法 |
| US8540844B2 (en) * | 2008-12-19 | 2013-09-24 | Lam Research Corporation | Plasma confinement structures in plasma processing systems |
| US8154209B2 (en) * | 2009-04-06 | 2012-04-10 | Lam Research Corporation | Modulated multi-frequency processing method |
| US20110011534A1 (en) * | 2009-07-17 | 2011-01-20 | Rajinder Dhindsa | Apparatus for adjusting an edge ring potential during substrate processing |
| KR101384341B1 (ko) * | 2010-06-10 | 2014-04-14 | 에스티에스반도체통신 주식회사 | 무선 전력과 무선 주파수 신호를 이용하는 스크린 프린팅 장치 |
| US20130059448A1 (en) * | 2011-09-07 | 2013-03-07 | Lam Research Corporation | Pulsed Plasma Chamber in Dual Chamber Configuration |
| US9184028B2 (en) * | 2010-08-04 | 2015-11-10 | Lam Research Corporation | Dual plasma volume processing apparatus for neutral/ion flux control |
| US9793126B2 (en) | 2010-08-04 | 2017-10-17 | Lam Research Corporation | Ion to neutral control for wafer processing with dual plasma source reactor |
| US8869742B2 (en) | 2010-08-04 | 2014-10-28 | Lam Research Corporation | Plasma processing chamber with dual axial gas injection and exhaust |
| US8900403B2 (en) | 2011-05-10 | 2014-12-02 | Lam Research Corporation | Semiconductor processing system having multiple decoupled plasma sources |
| US20120258555A1 (en) * | 2011-04-11 | 2012-10-11 | Lam Research Corporation | Multi-Frequency Hollow Cathode and Systems Implementing the Same |
| US9111728B2 (en) | 2011-04-11 | 2015-08-18 | Lam Research Corporation | E-beam enhanced decoupled source for semiconductor processing |
| US9039911B2 (en) | 2012-08-27 | 2015-05-26 | Lam Research Corporation | Plasma-enhanced etching in an augmented plasma processing system |
| US20130119018A1 (en) * | 2011-11-15 | 2013-05-16 | Keren Jacobs Kanarik | Hybrid pulsing plasma processing systems |
| US9197196B2 (en) * | 2012-02-22 | 2015-11-24 | Lam Research Corporation | State-based adjustment of power and frequency |
| US9114666B2 (en) * | 2012-02-22 | 2015-08-25 | Lam Research Corporation | Methods and apparatus for controlling plasma in a plasma processing system |
| US9030101B2 (en) * | 2012-02-22 | 2015-05-12 | Lam Research Corporation | Frequency enhanced impedance dependent power control for multi-frequency RF pulsing |
| TWI599272B (zh) * | 2012-09-14 | 2017-09-11 | 蘭姆研究公司 | 根據三個或更多狀態之功率及頻率調整 |
| US9230819B2 (en) | 2013-04-05 | 2016-01-05 | Lam Research Corporation | Internal plasma grid applications for semiconductor fabrication in context of ion-ion plasma processing |
| US9245761B2 (en) | 2013-04-05 | 2016-01-26 | Lam Research Corporation | Internal plasma grid for semiconductor fabrication |
| US9017526B2 (en) | 2013-07-08 | 2015-04-28 | Lam Research Corporation | Ion beam etching system |
| US9147581B2 (en) | 2013-07-11 | 2015-09-29 | Lam Research Corporation | Dual chamber plasma etcher with ion accelerator |
| WO2016021063A1 (ja) * | 2014-08-08 | 2016-02-11 | 株式会社島津製作所 | 粒子荷電装置 |
| EP3038132B1 (en) * | 2014-12-22 | 2020-03-11 | IMEC vzw | Method and apparatus for real-time monitoring of plasma etch uniformity |
| JP2018038988A (ja) * | 2016-09-09 | 2018-03-15 | 株式会社島津製作所 | 粒子濃縮装置 |
| TWI792598B (zh) * | 2017-11-17 | 2023-02-11 | 新加坡商Aes 全球公司 | 用於在空間域和時間域上控制基板上的電漿處理之系統和方法,及相關的電腦可讀取媒體 |
| US12266510B2 (en) * | 2022-03-08 | 2025-04-01 | Clean Crop Technologies, Inc. | Plasma treatment device |
Family Cites Families (41)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FI62692C (fi) | 1981-05-20 | 1983-02-10 | Valmet Oy | Pappersmaskinspress med bred presszon |
| US4500563A (en) | 1982-12-15 | 1985-02-19 | Pacific Western Systems, Inc. | Independently variably controlled pulsed R.F. plasma chemical vapor processing |
| KR890004881B1 (ko) | 1983-10-19 | 1989-11-30 | 가부시기가이샤 히다찌세이사꾸쇼 | 플라즈마 처리 방법 및 그 장치 |
| US4585516A (en) * | 1985-03-04 | 1986-04-29 | Tegal Corporation | Variable duty cycle, multiple frequency, plasma reactor |
| US5755886A (en) * | 1986-12-19 | 1998-05-26 | Applied Materials, Inc. | Apparatus for preventing deposition gases from contacting a selected region of a substrate during deposition processing |
| DE3733135C1 (de) * | 1987-10-01 | 1988-09-22 | Leybold Ag | Vorrichtung zum Beschichten oder AEtzen mittels eines Plasmas |
| EP0395415B1 (en) | 1989-04-27 | 1995-03-15 | Fujitsu Limited | Apparatus for and method of processing a semiconductor device using microwave-generated plasma |
| US4889588A (en) | 1989-05-01 | 1989-12-26 | Tegal Corporation | Plasma etch isotropy control |
| KR100324792B1 (ko) * | 1993-03-31 | 2002-06-20 | 히가시 데쓰로 | 플라즈마처리장치 |
| JPH07131671A (ja) * | 1993-10-28 | 1995-05-19 | Matsushita Electric Ind Co Ltd | ダイナミックフォーカス用増幅回路 |
| US5468341A (en) | 1993-12-28 | 1995-11-21 | Nec Corporation | Plasma-etching method and apparatus therefor |
| US5565036A (en) * | 1994-01-19 | 1996-10-15 | Tel America, Inc. | Apparatus and method for igniting plasma in a process module |
| JP3093572B2 (ja) * | 1994-07-07 | 2000-10-03 | 株式会社半導体エネルギー研究所 | ドライエッチング方法 |
| US5683538A (en) | 1994-12-23 | 1997-11-04 | International Business Machines Corporation | Control of etch selectivity |
| US5614060A (en) | 1995-03-23 | 1997-03-25 | Applied Materials, Inc. | Process and apparatus for etching metal in integrated circuit structure with high selectivity to photoresist and good metal etch residue removal |
| US5534751A (en) * | 1995-07-10 | 1996-07-09 | Lam Research Corporation | Plasma etching apparatus utilizing plasma confinement |
| JPH09120957A (ja) | 1995-08-23 | 1997-05-06 | Fujitsu Ltd | プラズマ装置及びプラズマ処理方法 |
| US5983828A (en) | 1995-10-13 | 1999-11-16 | Mattson Technology, Inc. | Apparatus and method for pulsed plasma processing of a semiconductor substrate |
| US6902683B1 (en) * | 1996-03-01 | 2005-06-07 | Hitachi, Ltd. | Plasma processing apparatus and plasma processing method |
| KR970064327A (ko) * | 1996-02-27 | 1997-09-12 | 모리시다 요이치 | 고주파 전력 인가장치, 플라즈마 발생장치, 플라즈마 처리장치, 고주파 전력 인가방법, 플라즈마 발생방법 및 플라즈마 처리방법 |
| JP3663392B2 (ja) | 1996-03-01 | 2005-06-22 | 株式会社日立製作所 | プラズマエッチング処理装置 |
| TW335517B (en) * | 1996-03-01 | 1998-07-01 | Hitachi Ltd | Apparatus and method for processing plasma |
| JPH09330913A (ja) | 1996-06-12 | 1997-12-22 | Matsushita Electric Ind Co Ltd | プラズマ発生方法及びプラズマ発生装置 |
| JP3220383B2 (ja) * | 1996-07-23 | 2001-10-22 | 東京エレクトロン株式会社 | プラズマ処理装置及びその方法 |
| JP3220394B2 (ja) * | 1996-09-27 | 2001-10-22 | 東京エレクトロン株式会社 | プラズマ処理装置 |
| US6214162B1 (en) * | 1996-09-27 | 2001-04-10 | Tokyo Electron Limited | Plasma processing apparatus |
| JP4114972B2 (ja) * | 1997-05-27 | 2008-07-09 | キヤノンアネルバ株式会社 | 基板処理装置 |
| JP3629705B2 (ja) | 1997-06-06 | 2005-03-16 | 東京エレクトロン株式会社 | プラズマ処理装置 |
| US6008130A (en) * | 1997-08-14 | 1999-12-28 | Vlsi Technology, Inc. | Polymer adhesive plasma confinement ring |
| JPH11219938A (ja) | 1998-02-02 | 1999-08-10 | Matsushita Electron Corp | プラズマエッチング方法 |
| US6093332A (en) | 1998-02-04 | 2000-07-25 | Lam Research Corporation | Methods for reducing mask erosion during plasma etching |
| JP2000031128A (ja) | 1998-05-06 | 2000-01-28 | Mitsubishi Electric Corp | エッチング処理装置及びエッチング処理方法、並びに半導体装置の製造方法及び半導体装置 |
| US6073577A (en) * | 1998-06-30 | 2000-06-13 | Lam Research Corporation | Electrode for plasma processes and method for manufacture and use thereof |
| JP4578651B2 (ja) | 1999-09-13 | 2010-11-10 | 東京エレクトロン株式会社 | プラズマ処理方法およびプラズマ処理装置、プラズマエッチング方法 |
| JP2001110798A (ja) * | 1999-10-04 | 2001-04-20 | Ulvac Japan Ltd | プラズマcvd装置及び薄膜製造方法 |
| US6363882B1 (en) | 1999-12-30 | 2002-04-02 | Lam Research Corporation | Lower electrode design for higher uniformity |
| JP3792999B2 (ja) * | 2000-06-28 | 2006-07-05 | 株式会社東芝 | プラズマ処理装置 |
| US6726804B2 (en) * | 2001-01-22 | 2004-04-27 | Liang-Guo Wang | RF power delivery for plasma processing using modulated power signal |
| US6777344B2 (en) | 2001-02-12 | 2004-08-17 | Lam Research Corporation | Post-etch photoresist strip with O2 and NH3 for organosilicate glass low-K dielectric etch applications |
| US6777037B2 (en) | 2001-02-21 | 2004-08-17 | Hitachi, Ltd. | Plasma processing method and apparatus |
| US6770166B1 (en) | 2001-06-29 | 2004-08-03 | Lam Research Corp. | Apparatus and method for radio frequency de-coupling and bias voltage control in a plasma reactor |
-
2003
- 2003-05-06 US US10/431,030 patent/US7976673B2/en not_active Expired - Fee Related
-
2004
- 2004-04-29 KR KR1020057021083A patent/KR20060013386A/ko not_active Ceased
- 2004-04-29 EP EP04751199A patent/EP1620876B1/en not_active Expired - Lifetime
- 2004-04-29 WO PCT/US2004/013707 patent/WO2004102638A2/en not_active Ceased
- 2004-04-29 DE DE602004027620T patent/DE602004027620D1/de not_active Expired - Lifetime
- 2004-04-29 CN CN2004800191395A patent/CN1816893B/zh not_active Expired - Fee Related
- 2004-04-29 AT AT04751199T patent/ATE470949T1/de not_active IP Right Cessation
- 2004-04-29 KR KR1020127020117A patent/KR101303969B1/ko not_active Expired - Fee Related
- 2004-04-29 JP JP2006532543A patent/JP4794449B2/ja not_active Expired - Fee Related
- 2004-05-04 TW TW093112507A patent/TWI460784B/zh not_active IP Right Cessation
-
2011
- 2011-07-07 US US13/177,627 patent/US8337713B2/en not_active Expired - Fee Related
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009033080A (ja) * | 2006-10-06 | 2009-02-12 | Tokyo Electron Ltd | プラズマエッチング装置、プラズマエッチング方法およびコンピュータ読取可能な記憶媒体 |
| US8852385B2 (en) | 2006-10-06 | 2014-10-07 | Tokyo Electron Limited | Plasma etching apparatus and method |
| US10229815B2 (en) | 2006-10-06 | 2019-03-12 | Tokyo Electron Limited | Plasma etching apparatus and method |
| US10861678B2 (en) | 2006-10-06 | 2020-12-08 | Tokyo Electron Limited | Plasma etching apparatus and method |
| US8659335B2 (en) | 2009-06-25 | 2014-02-25 | Mks Instruments, Inc. | Method and system for controlling radio frequency power |
| US8912835B2 (en) | 2009-06-25 | 2014-12-16 | Mks Instruments Inc. | Method and system for controlling radio frequency power |
Also Published As
| Publication number | Publication date |
|---|---|
| US20040221958A1 (en) | 2004-11-11 |
| US7976673B2 (en) | 2011-07-12 |
| KR20060013386A (ko) | 2006-02-09 |
| TWI460784B (zh) | 2014-11-11 |
| CN1816893A (zh) | 2006-08-09 |
| KR20120098951A (ko) | 2012-09-05 |
| DE602004027620D1 (de) | 2010-07-22 |
| CN1816893B (zh) | 2012-09-19 |
| EP1620876A2 (en) | 2006-02-01 |
| US20110263130A1 (en) | 2011-10-27 |
| KR101303969B1 (ko) | 2013-09-03 |
| US8337713B2 (en) | 2012-12-25 |
| JP4794449B2 (ja) | 2011-10-19 |
| ATE470949T1 (de) | 2010-06-15 |
| JP2007501530A (ja) | 2007-01-25 |
| WO2004102638A3 (en) | 2005-07-28 |
| TW200504870A (en) | 2005-02-01 |
| EP1620876B1 (en) | 2010-06-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7976673B2 (en) | RF pulsing of a narrow gap capacitively coupled reactor | |
| US11670486B2 (en) | Pulsed plasma chamber in dual chamber configuration | |
| US4581100A (en) | Mixed excitation plasma etching system | |
| US5900162A (en) | Plasma etching method and apparatus | |
| KR100807131B1 (ko) | 단일 주파수 rf전력을 이용하여 웨이퍼를 처리하는 플라즈마 처리시스템, 웨이퍼를 식각하기 위한 플라즈마 처리장치, 및 단일 주파수 rf전력을 이용하여 플라즈마 처리챔버에서 웨이퍼를 처리하는 방법 | |
| US8968588B2 (en) | Low electron temperature microwave surface-wave plasma (SWP) processing method and apparatus | |
| KR20080048541A (ko) | 기판에서 불소계 폴리머를 제거하기 위한 장치 및 그를위한 방법 | |
| US5783100A (en) | Method of high density plasma etching for semiconductor manufacture | |
| WO2000041228A1 (en) | Method of plasma processing | |
| JP2569019B2 (ja) | エッチング方法及びその装置 | |
| JPH06122983A (ja) | プラズマ処理方法およびプラズマ装置 | |
| JP2000332000A (ja) | プラズマ処理装置及びプラズマ処理装置の制御方法 | |
| CA2387432C (en) | Method and apparatus for etching and deposition using micro-plasmas | |
| JP3002033B2 (ja) | ドライエッチング方法 | |
| JP4391127B2 (ja) | プラズマ処理方法 | |
| JPH09260352A (ja) | プラズマ処理装置及びプラズマ処理方法 | |
| JP2675000B2 (ja) | プラズマ処理装置 | |
| JP4373685B2 (ja) | プラズマ処理方法 | |
| JP4243615B2 (ja) | 反応性イオンエッチング装置 | |
| JPH08246146A (ja) | プラズマ処理方法及びその装置 | |
| JPS6373624A (ja) | 有磁場マイクロ波プラズマ処理装置 | |
| JPH0794482A (ja) | ドライエッチング方法 | |
| KR20220031988A (ko) | 플라스마 처리 장치 및 플라스마 처리 방법 | |
| JPS6276627A (ja) | ドライエツチング装置 | |
| KR20050077165A (ko) | 건식 식각 장치 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 200480019139.5 Country of ref document: CN |
|
| AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2006532543 Country of ref document: JP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1020057021083 Country of ref document: KR |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2004751199 Country of ref document: EP |
|
| WWP | Wipo information: published in national office |
Ref document number: 2004751199 Country of ref document: EP |
|
| WWP | Wipo information: published in national office |
Ref document number: 1020057021083 Country of ref document: KR |