WO2004102085A1 - 吸収冷凍機 - Google Patents

吸収冷凍機 Download PDF

Info

Publication number
WO2004102085A1
WO2004102085A1 PCT/JP2004/006851 JP2004006851W WO2004102085A1 WO 2004102085 A1 WO2004102085 A1 WO 2004102085A1 JP 2004006851 W JP2004006851 W JP 2004006851W WO 2004102085 A1 WO2004102085 A1 WO 2004102085A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
heat exchanger
temperature
path
temperature regenerator
Prior art date
Application number
PCT/JP2004/006851
Other languages
English (en)
French (fr)
Inventor
Jun Aoyama
Jun Murata
Norio Arai
Toshio Matsubara
Original Assignee
Ebara Refrigeration Equipment & Systems Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Refrigeration Equipment & Systems Co., Ltd. filed Critical Ebara Refrigeration Equipment & Systems Co., Ltd.
Priority to EP04733137.6A priority Critical patent/EP1628090B1/en
Priority to US10/556,724 priority patent/US7316126B2/en
Publication of WO2004102085A1 publication Critical patent/WO2004102085A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/008Sorption machines, plants or systems, operating continuously, e.g. absorption type with multi-stage operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • the present invention relates to an absorption refrigerator, and more particularly to a high-efficiency absorption refrigerator that uses steam as a heat source to recover heat from the heat source and to effectively recover heat from an internal cycle.
  • Japanese Patent Publication No. 51-11332 discloses an example in which this drain heat exchanger is provided between a low-temperature solution heat exchanger and a high-temperature solution heat exchanger.
  • this drain heat exchanger is provided between a low-temperature solution heat exchanger and a high-temperature solution heat exchanger.
  • the heat recovery in the high-temperature solution heat exchanger is insufficient because the temperature of the dilute solution that has exited the drain heat exchange is rising.
  • Sho 5 1 _ 1 3 2 5 9 introduces a dilute solution heated in a low-temperature solution heat exchanger into a drain heat exchanger and a high-temperature solution heat exchanger in parallel. After that, it discloses a method of introducing it into a high-temperature regenerator.
  • the temperature at which the solution flashes also decreases because the concentration of the solution at the outlet of the absorber is considerably reduced. There is also a problem that it decreases according to.
  • the basic model is a standard model that prevents flashing due to a rise in solution temperature by limiting the temperature efficiency of the high-temperature solution heat exchanger and drain heat exchanger. If it is configured to add, the efficiency can be extremely easily increased, and the productivity can be further increased. Disclosure of the invention
  • the present invention has been made in view of the above-described problems, and has as its object to provide a highly efficient absorption refrigerator capable of effectively recovering an external heat source and effectively recovering internal heat.
  • an evaporator, an absorber, a condenser, a high-temperature regenerator, a low-temperature regenerator, a low-temperature solution heat exchanger, a high-temperature solution heat exchanger, and an absorption solution connecting these devices An absorption refrigerator having a path and a refrigerant path is provided.
  • the absorption refrigerator has a path in which the solution supply path of the dilute solution introduced from the absorber to the high-temperature regenerator is branched into two.
  • a drain heat exchanger for exchanging heat between the dilute solution in the path and a waste heat source after heating the high-temperature regenerator is provided in one of the branched paths.
  • a first high-temperature solution heat exchanger and a second high-temperature solution heat exchanger for exchanging heat between the dilute solution and the concentrated solution heated and concentrated by the high-temperature regenerator are provided in the other path.
  • the absorption refrigerator sets the dilute solution in the order of the first high-temperature solution heat exchanger and the second high-temperature solution heat exchanger.
  • the concentrated solution from the high-temperature regenerator flows in the order of the second high-temperature solution heat exchanger and the first high-temperature solution heat exchanger.
  • an evaporator, an absorber, a condenser, a high-temperature regenerator, a low-temperature regenerator, a low-temperature solution heat exchanger, a high-temperature solution heat exchanger, and an absorption solution path connecting these devices An absorption refrigerator having a medium path is provided.
  • the absorption refrigerator has a path in which the solution supply path of the dilute solution introduced from the absorber to the high-temperature regenerator is branched into two. One of the branched paths is provided with a high-temperature solution heat exchanger for exchanging heat between the dilute solution in the path and the concentrated solution heated and concentrated by the high-temperature regenerator.
  • a first drain heat exchanger and a second drain heat exchanger for exchanging heat between the dilute solution and the exhaust heat source after heating the high-temperature regenerator are provided in the other path.
  • the absorption refrigerator is configured such that the dilute solution flows in the order of the first drain heat exchanger and the second drain heat exchanger, and the exhaust heat source flows in the order of the second drain heat exchanger and the first drain heat exchanger.
  • an evaporator, an absorber, a condenser, a high-temperature regenerator, a low-temperature regenerator, a low-temperature solution heat exchanger, a high-temperature solution heat exchanger, and an absorption solution path connecting these devices An absorption refrigerator having a refrigerant path is provided.
  • the absorption refrigerator has a path in which the solution supply path of the dilute solution introduced from the absorber to the high-temperature regenerator is branched into two.
  • One of the branched paths is provided with a first drain heat exchanger and a second drain heat exchanger for exchanging heat between the dilute solution in the path and a waste heat source after heating the high-temperature regenerator.
  • the absorption refrigerator is configured such that the dilute solution flows in the order of the first drain heat exchanger and the second drain heat exchanger, and the exhaust heat source flows in the order of the second drain heat exchanger and the first drain heat exchanger.
  • a first high-temperature solution heat exchanger and a second high-temperature solution heat exchanger for exchanging heat between the dilute solution in the path and the concentrated solution heated and concentrated by the high-temperature regenerator are provided in the other path.
  • the dilute solution flows in the order of the first high-temperature solution heat exchanger and the second high-temperature solution heat exchanger, and the concentrated solution from the high-temperature regenerator flows in the second high-temperature solution heat exchanger and the first high-temperature solution heat exchange. It is configured to flow in the order of vessels.
  • the second high-temperature solution heat exchanger and the Z or second drain heat exchanger are arranged so that the dilute solution supplied to the high-temperature regenerator flows outside the heat exchanger.
  • these heat exchangers can be integrally formed with the high-temperature regenerator.
  • An absorption refrigerator having a refrigerant path is provided.
  • the absorption refrigerator has a solution supply path for dilute solution introduced from the absorber to the low-temperature regenerator and a solution supply path branched into two dilute solutions introduced from the absorber to the high-temperature regenerator. ing.
  • a recovery heat exchanger for exchanging heat between the dilute solution and the concentrated solution heated and concentrated in the high-temperature regenerator is provided in the middle of the solution supply path to the low-temperature regenerator.
  • a drain heat exchanger for exchanging heat between the dilute solution in the path and a waste heat source after heating the high temperature regenerator is provided in one of the solution supply paths to the high temperature regenerator.
  • the other path is provided with high-temperature solution heat exchange for exchanging heat between the dilute solution in the path and the concentrated solution that has exited the heating side of the recovery heat exchanger.
  • the recovery heat exchanger is arranged adjacent to a heat transfer tube group of the low-temperature regenerator and can be housed in the low-temperature regenerator.
  • the path of the dilute solution exiting the absorber can be branched into respective solution supply paths after passing through the heated side of the low-temperature solution heat exchanger.
  • one of the solution supply paths to the high-temperature regenerator branches off from the middle of the heated side of the low-temperature solution heat exchanger, and the branched solution path is connected to the high-temperature regenerator via the drain heat exchanger. can do.
  • the evaporator and absorber may be configured in multiple stages to operate in multiple pressure stages.
  • FIG. 1 is a flowchart showing an absorption refrigerator in the first embodiment of the present invention.
  • FIG. 2 is a flowchart showing an absorption refrigerator according to the second embodiment of the present invention.
  • FIG. 3 is a flowchart showing an absorption refrigerator in a third embodiment of the present invention.
  • FIG. 4 is a flowchart showing an absorption refrigerator in a fourth embodiment of the present invention.
  • FIG. 5 is a flowchart showing an absorption refrigerator in a fifth embodiment of the present invention.
  • FIG. 6 is a flowchart showing an absorption refrigerator in a sixth embodiment of the present invention.
  • FIG. 7 is a flowchart showing an absorption refrigerator in a seventh embodiment of the present invention.
  • FIG. 8 is a flowchart showing an absorption refrigerator in an eighth embodiment of the present invention.
  • FIG. 9 is a flowchart showing an absorption refrigerator in a ninth embodiment of the present invention.
  • FIG. 10 is a flowchart showing an absorption refrigerator in the tenth embodiment of the
  • FIG. 11 is a flowchart showing an absorption refrigerator in the eleventh embodiment of the present invention.
  • FIG. 12 is a flow chart showing an absorption refrigerator in a 12th embodiment of the present invention.
  • an internal cycle is provided by adding a second high-temperature solution heat exchanger and a Z or second drain heat exchanger to the first high-temperature solution heat exchanger and the Z or first drain heat exchanger.
  • a structure in which the solution can be effectively flashed by the second high-temperature solution heat exchanger and / or the second drain heat exchanger, and the flashed steam is used as a double-effect cycle. is there.
  • FIGS. 1 to 3 show an embodiment of an absorption refrigerator having first and second high-temperature solution heat exchangers according to the present invention.
  • FIGS. 4 to 6 show first and second drains according to the present invention.
  • 1 shows an embodiment of an absorption refrigerator having a heat exchanger.
  • FIGS. 7 to 9 show an embodiment of an absorption refrigerator having first and second high-temperature solution heat exchanges and first and second drain heat exchangers according to the present invention
  • FIGS. 10 to 12 show: 1 shows an embodiment of an absorption refrigerator having a recovery heat exchanger for recovering heat with a low-temperature regenerator according to the present invention.
  • GH is the high temperature regenerator
  • GL is the low temperature regenerator
  • DX is the drain heat exchanger
  • DX1 is the first drain heat exchanger
  • DX2 is the second drain heat exchanger
  • LX is Low temperature solution heat exchanger
  • HX is high temperature solution heat exchanger
  • HX1 is 1st high temperature solution heat exchanger
  • HX 2 is 2nd high temperature solution heat exchanger
  • GX is recovery heat exchanger
  • A absorber
  • E is Evaporator
  • AH high pressure absorber
  • AL is low pressure absorber
  • EH high pressure evaporator
  • EL low pressure evaporator
  • RP refrigerant pump
  • SP is solution pump
  • 30 to 34, 36, 37, 38, 136 and 137 are refrigerant paths
  • 50 and 51 are chilled water paths
  • 52 to 54 are cooling water paths
  • 60 and 61 are heat source paths .
  • FIG. 1 is a flowchart showing an absorption refrigerator according to the first embodiment of the present invention.
  • the dilute solution that has absorbed the refrigerant vapor from the evaporator E rises from the absorber A through the solution path 20 via the heated side of the low-temperature solution heat exchanger $ »LX by the solution pump SP. Warmed up.
  • the dilute solution flowing through the solution path 21 is divided into a first branch solution path 23 A toward the high-temperature regenerator GH at a branch point 22 on the solution path 21 and a second branch solution path toward the high-temperature regenerator GH. 23 B and a third branch solution path 23 C toward the low temperature regenerator GL.
  • a first high-temperature solution heat exchanger HX1 and a second high-temperature solution heat exchanger HX2 are provided in the first branch solution path 23A toward the high-temperature regenerator GH.
  • the dilute solution supplied to the high-temperature regenerator GH through the first branch solution path 23A flows in the order of the first high-temperature solution heat exchanger HX1 and the second high-temperature solution heat exchanger HX2, and is sequentially heated. Introduced to high-temperature regenerator GH.
  • a drain heat exchanger DX is provided in the second branch solution path 23B toward the high-temperature regenerator GH.
  • heat is exchanged between the heating source fluid after the absorption solution is heated and concentrated by the high-temperature regenerator GH and the dilute solution supplied to the high-temperature regenerator GH. We recover heat from heat sources.
  • the dilute solution is heated and concentrated by an external heating source introduced from the heat source path 60 to become a concentrated solution.
  • This concentrated solution passes through solution path 24 (2) Dilute solution introduced in the order of high-temperature solution heat exchanger HX2, first high-temperature solution heat exchanger HX1, and flowing on the heated side of second high-temperature solution heat exchanger HX2 and first high-temperature solution heat exchanger HX1 Here, heat is recovered from the internal cycle.
  • the first high-temperature solution heat exchanger HX1 is not heated to a temperature level at which the solution flashes, but the second high-temperature solution heat exchanger HX2 may be heated to a level at which the solution flashes.
  • a pipe 36 and / or a pipe 37 for extracting flash vapor may be provided. If a pipe such as the pipe 37 is provided to remove the absorbing solution entrained in the flash steam, the eliminator inside the high-temperature regenerator GH can be used, which is effective.
  • the concentrated solution is introduced into the heat transfer medium (tube, plate) that constitutes the second high-temperature solution heat exchanger HX2. It is better to introduce a dilute solution to the outside.
  • the steam flashed here merges with the steam generated in the high-temperature regenerator GH, and is used for heating and concentrating the absorbing solution in the low-temperature regenerator GL, acting as a double effect, greatly improving efficiency. Can contribute.
  • the concentrated solution heated and concentrated by the high-temperature regenerator GH passes through the second high-temperature solution heat exchanger HX2, the first high-temperature solution heat exchanger HX1, the solution path 25, and then through the solution path 26. Merges with the concentrated solution returned from the low temperature regenerator GL.
  • the combined concentrated solution passes through the heating side of the low-temperature solution heat exchanger L X and returns to the absorber A through the solution path 27.
  • the refrigerant vapor regenerated by the high-temperature regenerator GH and the flash vapor of the second high-temperature solution heat exchanger HX2 are introduced from the refrigerant path 30 to the heating side of the low-temperature regenerator GL to remove the dilute solution flowing down from the sprayer. After heating and concentration, it is introduced into condenser C via refrigerant path 31.
  • the refrigerant vapor regenerated by the low-temperature regenerator GL is introduced into the condenser C via the eliminator.
  • This refrigerant vapor is condensed by the cooling water flowing inside the heat transfer tube of the condenser C to become a refrigerant liquid.
  • This refrigerant liquid joins the refrigerant condensed in the low-temperature regenerator GL, and is returned to the evaporator E via the refrigerant path 32.
  • the absorption chiller shown in FIG. 1 uses a cycle using a so-called branch flow. Power is not limited to this cycle.
  • FIG. 2 is a flowchart showing an absorption refrigerator in the second embodiment of the present invention.
  • the second high-temperature solution heat exchanger HX2 is formed integrally with the high-temperature regenerator GH.
  • the solution and the flash vapor heated and concentrated in the second high-temperature solution heat exchanger HX2 flow into the inside of the high-temperature regenerator GH from the opening 65 on the side surface of the high-temperature regenerator GH.
  • the flash steam flows into the heating side of the low-temperature regenerator GL via the eliminator.
  • the dilute solution flowing into the high-temperature regenerator GH is further heated and concentrated by an external heat source, where the refrigerant vapor is regenerated. Thereafter, the solution flows out of the high-temperature regenerator GH.
  • a part of the solution is branched from a branch point 122 in the middle of the path on the heated side of the low-temperature solution heat exchanger LX, and diluted into the high-temperature regenerator GH via the drain heat exchanger DX. It is configured to direct a solution.
  • the low-temperature solution heat exchanger LX into two cuts and branch the dilute solution from between the two units.
  • the temperature of the dilute solution supplied to the drain heat exchanger DX is lowered, heat recovery in the drain heat exchanger DX is facilitated, and the low-temperature solution heat exchanger LX is used.
  • Insufficient cooling of the concentrated solution due to a decrease in the flow rate of the diluted solution, that is, an increase in the load on the absorber A can be suppressed.
  • FIG. 3 is a flowchart showing an absorption refrigerator in a third embodiment of the present invention.
  • the absorber and the evaporator are configured in a plurality of stages.
  • Figure 3 shows an example in which the absorber consists of two stages, a high-pressure absorber AH and a low-pressure absorber AL, and the evaporator consists of two stages, a high-pressure evaporator EH and a low-pressure evaporator EL.
  • Equipment and evaporator is not limited to a two-stage configuration.
  • the relatively high-temperature cold water returned from the air conditioning load flows into the high-pressure evaporator EH and is cooled.
  • the cold water is further cooled by the low-pressure evaporator EL and supplied to the air conditioner.
  • the high-pressure evaporator EH and the low-pressure evaporator EL operate at an evaporation temperature of, for example, 8 ° C or 5 ° C.
  • the high-pressure absorber AH and the low-pressure absorber AL working in combination with these evaporators can greatly reduce the concentration of dilute solution exiting the absorber.
  • the circulation amount of the solution can be reduced and the concentration difference between the dilute solution and the concentrated solution can be set large, so that the efficiency of the absorption refrigerator can be further increased.
  • cooling water may be flown in parallel to the AH and low-pressure absorber AL, or it is possible to flow cooling water from the condenser C to the absorber, and any flow method can be adopted.
  • Figure 4 is the c 4 is a flow diagram showing an absorption refrigerating machine according to a fourth embodiment of the present invention, absorbed dilute solution refrigerant vapor from the evaporator E, due soluble pump SP from the absorber A
  • the solution passes through the heated side of the low-temperature solution heat exchanger LX via the solution path 20 and is heated. Thereafter, the dilute solution flowing through the solution path 21 is divided into a first branch solution path 23 A toward the high-temperature regenerator GH at a branch point 22 on the solution path 21 and a second solution path toward the high-temperature regenerator GH. And a third branch solution path 23 C toward the low-temperature regenerator GL.
  • a high-temperature solution heat exchanger HX is provided in the first branch solution path 23 A toward the high-temperature regenerator GH.
  • the high-temperature solution heat exchanger HX exchanges heat between the concentrated solution heated by the high-temperature regenerator GH and the dilute solution supplied to the high-temperature regenerator GH, and recovers internal heat. I have.
  • a second drain heat exchanger DX1 and a second drain heat exchanger DX2 are provided in the second branch solution path 23B toward the high temperature regenerator GH.
  • the dilute solution supplied to the high-temperature regenerator GH through the second branch solution path 23 B is supplied to the first drain heat exchanger.
  • the external heating source introduced from the heat source path 60 heats and concentrates the dilute solution with the high-temperature regenerator GH, and is then introduced in the order of the second drain heat exchanger DX2 and the first drain heat exchanger DX1.
  • This external heating source heats the dilute solution flowing on the heated side of the second drain heat exchanger DX2 and the first drain heat exchanger DX1, and is then discharged from the heat source path 61.
  • the first drain heat exchanger DX1 is not heated to the temperature level at which the solution flashes, but the second drain heat exchanger DX2 may be heated to the level at which the solution flashes.
  • the pipes 136 and Z or the pipe 137 for extracting flash vapor. If a pipe such as the pipe 137 is provided to remove the absorbing solution entrained in the flash vapor, the eliminator inside the high-temperature regenerator GH can be used, which is effective.
  • the heat source fluid is introduced into the inside of the heat transfer material (tubular, plate-like) that constitutes the second drain heat exchanger DX2, It is advisable to introduce a dilute solution.
  • the steam flashed here merges with the steam generated in the high-temperature regenerator GH, and is used for heating and concentrating the absorbing solution in the low-temperature regenerator GL, and acts as a double-effect, greatly contributing to improved efficiency. be able to.
  • the concentrated solution heated and concentrated in the high-temperature regenerator GH passes through the heating side of the high-temperature solution heat exchanger HX, and then joins with the concentrated solution returned from the low-temperature regenerator GL through the solution path 26.
  • the combined concentrated solution passes through the heating side of the low-temperature solution heat exchanger LX, and is returned to the absorber A through the solution path 27.
  • the refrigerant vapor regenerated by the high-temperature regenerator GH and the flash vapor of the second drain heat exchanger DX 2 are introduced from the refrigerant path 30 to the heating side of the low-temperature regenerator GL, and heat and dilute the dilute solution flowing down from the sprayer. After concentration, it is introduced into the condenser C via the refrigerant path 31.
  • the refrigerant vapor regenerated by the low-temperature regenerator GL is introduced into the condenser C via the eliminator.
  • This refrigerant vapor is generated by cooling water flowing inside the heat transfer tube of condenser C. It is condensed and becomes a refrigerant liquid.
  • This refrigerant liquid merges with the refrigerant condensed in the low-temperature regenerator GL, and is returned to the evaporator E via the refrigerant path 32.
  • the absorption refrigerator shown in FIG. 4 uses a cycle using a so-called branch flow.
  • the present invention is not limited to this cycle.
  • FIG. 5 is a flowchart showing an absorption refrigerator in a fifth embodiment of the present invention.
  • the second drain heat exchanger DX2 is configured integrally with the high-temperature regenerator GH.
  • the solution and the Franch steam heated and concentrated in the second drain heat exchanger DX 2 flow into the high-temperature regenerator GH through the opening 165 on the side of the high-temperature regenerator GH, and the flash steam passes through the eliminator. Flows into the heating side of the low temperature regenerator GL.
  • the dilute solution flowing into the high-temperature regenerator GH is further heated and concentrated by an external heat source, where the refrigerant vapor is regenerated. Thereafter, the solution flows out of the high-temperature regenerator GH.
  • a part of the solution is branched from the branch point 122 on the way to the heated side of the low-temperature solution heat exchanger LX, and the first drain heat exchanger DX1 and the second drain heat exchanger It is configured to guide the dilute solution to the high-temperature regenerator GH via DX2. Furthermore, it is also possible to divide the low-temperature solution heat exchange X into two units and to branch the dilute solution between the two units. With this configuration, the temperature of the dilute solution supplied to the first drain heat exchanger DX 1 is reduced, heat recovery in the first drain heat exchanger DX 1 is facilitated, and low-temperature solution heat exchange is performed. Insufficient cooling of the concentrated solution due to a decrease in the flow rate of the dilute solution in the vessel LX, that is, an increase in the load on the absorber A can be suppressed.
  • FIG. 6 is a flowchart showing an absorption refrigerator in a sixth embodiment of the present invention.
  • the absorber and the evaporator are configured in a plurality of stages.
  • Fig. 6 shows an example in which the absorber consists of two stages, a high-pressure absorber AH and a low-pressure absorber AL, and the evaporator consists of two stages, a high-pressure evaporator EH and a low-pressure evaporator EL.
  • the vessel and evaporator are not limited to the two-stage configuration.
  • the relatively high-temperature cold water returned from the air conditioning load flows into the high-pressure evaporator EH and is cooled.
  • the cold water is further cooled by the low-pressure evaporator EL and supplied to the air conditioner.
  • the high-pressure evaporator EH and the low-pressure evaporator EL operate at an evaporation temperature of, for example, 8 ° C or 5 ° C.
  • the high-pressure absorber AH and low-pressure absorber AL working in combination with these evaporators can greatly reduce the concentration of the dilute solution exiting absorber A.
  • the circulation amount of the solution can be reduced, and the concentration difference between the dilute solution and the concentrated solution can be set large, so that the efficiency of the absorption refrigerator can be further increased.
  • it is possible to further reduce the concentration of the dilute solution exiting the absorber by designing the temperature difference of the cold water to be larger than the normal 5 ° C, for example, about 8 ° C. .
  • the flow direction of the cooling water is illustrated as flowing in the order of the high-pressure absorber AH, the low-pressure absorber A L, and the condenser C, but is not limited thereto.
  • FIG. 7 is a flowchart showing an absorption refrigerator in a seventh embodiment of the present invention.
  • the dilute solution that has absorbed the refrigerant vapor from the evaporator E passes from the absorber A via the solution path 20 by the solution pump SP, passes through the heated side of the low-temperature solution heat exchanger LX, and is heated. Is done. Thereafter, the dilute solution flowing through the solution path 21 is divided into a first branch solution path 23 A toward the high-temperature regenerator GH at a branch point 22 on the solution path 21 and a second solution path toward the high-temperature regenerator GH. And a third branch solution path 23 C toward the low-temperature regenerator GL.
  • a first high-temperature solution heat exchanger HX1 and a second high-temperature solution heat exchanger HX2 are provided in the first branch solution path 23A toward the high-temperature regenerator GH.
  • the dilute solution supplied to the high-temperature regenerator GH through the first branch solution path 23A flows in the order of the first high-temperature solution heat exchanger HX1 and the second high-temperature solution heat exchanger HX2, and is sequentially heated. Then, it is introduced into the high-temperature regenerator GH.
  • a first drain heat exchanger DX1 and a second drain heat exchanger DX2 are provided in the second branch solution path 23B toward the high temperature regenerator GH.
  • the dilute solution supplied to the high-temperature regenerator GH through the second branch solution path 23B flows in the order of the first drain heat exchanger DXI and the second drain heat exchanger DX2, and is sequentially heated to a high temperature. Introduced to the regenerator GH.
  • the external heating source introduced from the heat source path 60 heats and concentrates the dilute solution with the high-temperature regenerator GH, and then is introduced in the order of the second drain heat exchanger DX2 and the first drain heat exchanger DX1.
  • This external heat source heats the dilute solution flowing on the heated side of the second drain heat exchanger DX2 and the first drain heat exchanger DX1, and then is discharged from the heat source path 61.
  • the concentrated solution heated and concentrated in the high-temperature regenerator GH by the external heating source introduced from the heat source path 60 can be introduced into the second high-temperature solution heat exchanger HX2 and the first high-temperature solution heat exchanger HXI in this order. After heating the dilute solution flowing on the heated side of the second high-temperature solution heat exchanger HX2 and the first 'high-temperature solution heat exchanger HXI, it is discharged from the heat source path 61. Thus, heat recovery from the internal cycle is performed.
  • the first hot solution heat exchanger H XI and the first drain heat exchanger DX 1 are not heated to the temperature level at which the solution flashes, but the second hot solution heat exchanger HX2 and the second drain heat exchanger The DX 2 may be heated to a level where the solution flashes. Flushing the solution can make a significant contribution to improving efficiency.
  • a pipe 36 and / or a pipe 37 for extracting flash vapor should be provided. If a pipe such as the pipe 37 is provided to remove the absorbing solution entrained in the flash steam, the eliminator inside the high-temperature regenerator GH can be used, which is effective.
  • the pipes 136 and Z or the pipe 137 for extracting flash vapor may be provided. If a pipe such as the pipe 137 is provided to remove the absorbing solution entrained in the flash steam, the eliminator inside the high-temperature regenerator GH can be used, which is effective.
  • the steam flashed merges with the steam generated in the high-temperature regenerator GH, and is used for heating and concentrating the absorbing solution in the low-temperature regenerator GL, and acts as a double effect, contributing significantly to efficiency improvement. Can be.
  • the concentrated solution heated and concentrated by the high-temperature regenerator GH passes through the second high-temperature solution heat exchanger HX2, the first high-temperature solution heat exchanger HXI, and then passes from the low-temperature regenerator GL through the solution path 26. Merge with the concentrated solution back.
  • the combined concentrated solution passes through the heating side of the low-temperature solution heat exchanger L X and returns to the absorber A through the solution path 27.
  • the refrigerant vapor regenerated by the high-temperature regenerator GH and the flash vapor of the second high-temperature solution heat exchanger HX2 and the second drain heat exchanger DX2 are introduced from the refrigerant path 30 to the heating side of the low-temperature regenerator GL, After heating and concentrating the dilute solution flowing down from the sprayer, it is introduced into the condenser C via the refrigerant path 31.
  • Refrigerant vapor regenerated by the low-temperature regenerator GL is introduced into the condenser C via the eliminator.
  • This refrigerant vapor is condensed by the cooling water flowing inside the heat transfer tube of the condenser C to become a refrigerant liquid.
  • This refrigerant liquid merges with the refrigerant condensed in the low-temperature regenerator GL, and is returned to the evaporator E via the refrigerant path 32.
  • the absorption refrigerator shown in FIG. 7 utilizes a cycle using a so-called branch flow.
  • the power is not limited to this cycle.
  • 8 in the c present embodiment is a flow diagram illustrating an absorption refrigerating apparatus in the embodiment, the second high-temperature solution heat exchanger HX 2 and the second drain heat exchanger DX 2 is the high temperature of the present invention It is integrated with the vessel GH.
  • the solution and flash steam heated and concentrated in the second high-temperature solution heat exchanger HX2 or the second drain heat exchanger DX2 pass through the high-temperature regenerator through the openings 65 and 165 on the side of the high-temperature regenerator GH.
  • the flash steam flows into the GH and flows through the eliminator to the heating side of the low-temperature regenerator GL.
  • the dilute solution flowing into the high-temperature regenerator GH is further heated and concentrated by an external heat source, where refrigerant vapor is regenerated. Thereafter, the solution flows out of the hot regenerator GH.
  • a part of the solution is branched from the branch point 122 on the way to the heated side of the low-temperature solution heat exchanger LX, and the first drain heat exchanger DX1 and the second drain heat exchanger It is configured to guide the dilute solution to the high-temperature regenerator GH via DX2. Furthermore, it is also possible to divide the low-temperature solution heat exchanger LX into two units and branch the dilute solution from between the two units. With this configuration, the temperature of the dilute solution supplied to the first drain heat exchanger DX 1 is reduced, heat recovery in the first drain heat exchanger DX 1 is facilitated, and low-temperature solution heat exchange is performed. Insufficient cooling of the concentrated solution due to a decrease in the flow rate of the dilute solution in the vessel LX, that is, an increase in the load on the absorber A can be suppressed.
  • FIG. 9 is a flowchart showing an absorption refrigerator in the ninth embodiment of the present invention.
  • the absorber and the evaporator are configured in a plurality of stages.
  • Figure 9 shows an example in which the absorber consists of two stages, a high-pressure absorber AH and a low-pressure absorber AL, and the evaporator consists of two stages, a high-pressure evaporator EH and a low-pressure evaporator EL.
  • the vessel and evaporator are not limited to a two-stage configuration.
  • the relatively high-temperature cold water returned from the air conditioning load flows into the high-pressure evaporator EH and is cooled.
  • the cold water is further cooled by the low-pressure evaporator EL and supplied to the air conditioner.
  • the high-pressure evaporator EH and the low-pressure evaporator EL operate at an evaporation temperature of, for example, 8 ° C, 5 ° C, or the like.
  • the high-pressure absorber AH and low-pressure absorber AL working in combination with these evaporators can greatly reduce the concentration of dilute solution exiting the absorber.
  • the circulation amount of the solution can be reduced and the concentration difference between the dilute solution and the concentrated solution can be set to be large, so that the efficiency of the absorption refrigerator can be further increased.
  • the flow direction of the cooling water is shown to flow in the order of the high-pressure absorber AH, the low-pressure absorber AL, and the condenser C, but the present invention is not limited to this.
  • FIG. 10 is a flowchart showing the absorption refrigerator in the tenth embodiment of the present invention.
  • the dilute solution that has absorbed the refrigerant vapor from the evaporator E passes through the heated side of the low-temperature solution heat exchanger LX from the absorber A by the solution pump SP and is heated.
  • the dilute solution flowing through the solution path 21 is divided into a first branch solution path 23 A toward the high-temperature regenerator GH at a branch point 22 on the solution path 21 and a second branch path toward the high-temperature regenerator GH. It is branched into a branched solution path 23 B and a third branched solution path 23 C toward the low-temperature regenerator GL.
  • the third branch solution channel 23 C is provided with a recovery heat exchanger GX.
  • heat exchange is performed between the concentrated solution from the high-temperature regenerator GH and the dilute solution supplied to the low-temperature regenerator GL. Thereafter, the diluted solution is supplied to the spraying device of the low-temperature regenerator GL.
  • the refrigerant vapor flashed in the recovery heat exchanger G X is guided to the low-temperature regenerator G U through the refrigerant path 38. At this time, whether or not to perform flushing in the recovery heat exchanger GX is determined by the heat transfer capacity of the recovery heat exchanger GX.
  • a high-temperature solution heat exchanger HX is provided in the first branch solution path 23 A toward the high-temperature regenerator GH.
  • the dilute solution flowing on the heated side of the high-temperature solution heat exchanger HX is heated by the concentrated solution flowing from the heating side of the recovery heat exchanger GX, and then flows into the high-temperature regenerator GH.
  • a drain heat exchanger DX is provided in the second branch solution path 23 B toward the high-temperature regenerator GH. External heating source introduced from heat source path 60 After heating and concentrating the solution in the vessel GH, the solution is introduced to the heating side of the drain heat exchanger DX, and after heating the dilute solution flowing on the heated side of the drain heat exchanger DX, is discharged from the heat source path 61.
  • the concentrated solution heated and concentrated by the high-temperature regenerator GH passes through the recovery heat exchanger GX and the high-temperature solution heat exchange HX, then joins with the concentrated solution returned from the low-temperature regenerator GL to exchange the low-temperature solution heat. It is returned to absorber A via the heating side of vessel LX.
  • the refrigerant vapor regenerated by the high-temperature regenerator GH is introduced from the refrigerant path 30 to the heating side of the low-temperature regenerator GL, and after heating and concentrating the dilute solution flowing down from the sprayer, passes through the seventh medium path 31. And introduced into the condenser C.
  • Refrigerant vapor regenerated by the low-temperature regenerator GL is introduced into the condenser C via the eliminator.
  • This refrigerant vapor is condensed by the cooling water flowing inside the heat transfer tube of the condenser C to become a refrigerant liquid.
  • This refrigerant liquid merges with the refrigerant condensed in the low-temperature regenerator GL, and is returned to the evaporator E via the refrigerant path 32.
  • the absorption refrigerator shown in FIG. 10 utilizes a cycle using a so-called branch flow, but this cycle is not limited to this.
  • FIG. 11 is a flowchart showing an absorption refrigerator in the eleventh embodiment of the present invention.
  • the recovery heat exchanger GX is disposed below the low-temperature regenerator GL, and is disposed in the same container as the low-temperature regenerator GL.
  • the diluted solution supplied to the low-temperature regenerator G is sprayed to the heat transfer tubes of the low-temperature regenerator GL by a spraying device, heated and concentrated by the high-temperature refrigerant vapor flowing in the heat transfer tubes, and then heated and concentrated by the recovery heat exchanger GX.
  • the solution is further heated and concentrated by the high-temperature concentrated solution flowing in the heat transfer tube.
  • the recovery heat exchanger GX is located at the lower part of the low-temperature regenerator GL, but is not limited to this. It is also possible to arrange it laterally of the container GL. When arranged horizontally, the spraying device may be provided separately or may be used as a common spraying device. In addition, in Fig. 11, a part of the solution is branched from the branch point 122 on the way to the heated side of the low-temperature solution heat exchanger LX, and is sent to the high-temperature regenerator GH via the drain heat exchanger DX. It is configured to guide a dilute solution.
  • the low-temperature solution heat exchanger LX into two units and branch the dilute solution from between the two units.
  • the temperature of the dilute solution supplied to the drain heat exchanger DX is lowered, heat recovery in the drain heat exchanger DX is facilitated, and the low-temperature solution heat exchanger LX is used.
  • Insufficient cooling of the concentrated solution due to a decrease in the flow rate of the diluted solution, that is, an increase in the load on the absorber A can be suppressed.
  • FIG. 12 is a flowchart showing an absorption refrigerator in the 12th embodiment of the present invention.
  • the absorber and the evaporator are configured in a plurality of stages.
  • Fig. 12 shows an example in which the absorber is composed of two stages, a high pressure absorber AH and a low pressure absorber AL, and the evaporator is composed of two stages, a high pressure evaporator EH and a low pressure evaporator EL.
  • the absorber and evaporator are not limited to a two-stage configuration.
  • the relatively high-temperature cold water returned from the air conditioning load flows into the high-pressure evaporator EH and is cooled.
  • the cold water is further cooled by the low-pressure evaporator EL and supplied to the air conditioner.
  • the high-pressure evaporator EH and the low-pressure evaporator EL are, for example, 8 ° C, 5 ° C, etc. It operates at the evaporation temperature.
  • the high-pressure absorber AH and the low-pressure absorber A L operating in combination with these evaporators can greatly reduce the concentration of the dilute solution leaving the absorber A.
  • the circulation amount of the solution can be reduced, and the concentration difference between the dilute solution and the concentrated solution can be set large, so that the efficiency of the absorption refrigerator can be further increased.
  • the flow direction of the cooling water, high-pressure absorber AH, the low-pressure absorber AL, are shown as flow in the order of the condenser C, c for example but not limited to, a high pressure absorption Cooling water may flow in parallel to the condenser AH and the low-pressure absorber AL, or the cooling water can flow from the condenser C to the absorber A, and any flow method can be adopted.
  • the above configuration solves the problems of the prior art, and provides a high-efficiency absorption refrigerator capable of effectively recovering an external heat source and effectively recovering internal heat. It became possible to provide.
  • the present invention is applicable to a high-efficiency absorption refrigerator capable of using steam as a heat source, recovering heat from the heat source, and effectively recovering heat from an internal cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

 本発明は、外部熱源を有効に回収すると共に、内部熱の回収をも有効に行うことのできる高効率吸収冷凍機を提供する。吸収冷凍機は、蒸発器、吸収器(A)、凝縮器(C)、高温再生器(GH)、低温再生器(GL)、低温溶液熱交換器(LX)、高温溶液熱交換器(HX)、及びこれらを連結する吸収溶液経路、冷媒溶液経路を備える。吸収冷凍機は、吸収器(A)から高温再生器(GH)へ導入される希溶液の溶液供給路が2つに分岐された経路を備える。一方の経路には、該経路の希溶液と高温再生器(GH)を加熱後の排熱源とを熱交換するドレーン熱交換器(DX)を設ける。他方の経路には、該経路の希溶液と高温再生器(GH)で加熱及び濃縮された濃溶液とを熱交換する第1高温溶液熱交換器(HX1)及び第2高温溶液熱交換器(HX2)を設ける。希溶液は、第1高温溶液熱交換器(HX1)及び第2高温溶液熱交換器(HX2)の順に流れ、高温再生器(GH)からの濃溶液は、第2高温溶液熱交換器(HX2)及び第1高温溶液熱交換器(HX1)の順に流れる。

Description

明 細 書 吸収冷凍機 技術分野
本発明は、 吸収冷凍機に係り、 特に、 蒸気を熱源とし、 該熱源の熱回収を行 うと共に、 内部サイクルからの熱回収をも有効に行うことのできる高効率吸収 冷凍機に関する。 背景技術
蒸気を熱源とする吸収冷凍機の効率を高めるために、 高温再生器で溶液を加 熱及び濃縮した後の蒸気ドレーンと吸収溶液を熱交換するためのドレーン熱交 換器を設ける方法が知られている。 例えば、 特公昭 5 1— 1 1 3 3 2号公報は、 低温溶液熱交換器と高温溶液熱交換器の間にこのドレーン熱交換器を設けた例 を開示している。 この例では、 ドレーン熱交!^を出た希溶液の温度が上昇し ているために、 高温溶液熱交換器での熱回収が不十分となる問題がある。 特公 昭 5 1 _ 1 3 2 5 9号公報は、 これを改善するために、 低温溶液熱交換器で加 熱後の希溶液を、 ドレーン熱交換器と高温溶液熱交換器に並列に導いた後、 高 温再生器に導入する方法を開示している。
しかしながら、 この従来の手法で、 更に熱回収を十分に行い吸収冷凍機の効 率を高めるために、 高温溶液熱交換器やドレーン熱交換器の温度効率を高めよ うとすると、 高温溶液熱交換器、 ドレーン熱交換器の内部で溶液がフラッシュ してしまい、 腐食の問題や高温溶液熱交換器及ぴドレーン熱交換器内部の流動 を妨げ、 伝熱性能が低下する等の新たな問題が発生してくる。
この問題は、 高温再生器に供給される希溶液の経路が 2つに分岐されている 場合に、 特に顕著となる。 これは、 高温溶液熱交換器及びドレーン熱交換器を 流れる希溶液の流量が少なくなつているために、 希溶液側の温度上昇が大きく なり、 希溶液の濃度と圧力により決まる飽和温度以上になってしまうからであ る。 これを防止するためには、 高温溶液熱交換器、 ドレーン熱交換器の出口側に 背圧を確保するためにオリフィス等の抵抗を付加することが考えられる。 しか しながら、 この場合はオリフィスの抵抗分だけポンプ動力が大きくなるという 別の問題が発生する。
更には、 蒸発器と吸収器が多段で作動するように構成された吸収冷凍機では、 吸収器の出口での溶液の濃度がかなり低下するために、 溶液がフラッシュする 温度も、 その濃度の低下に従って低下してしまうという問題もある。
また、 吸収冷凍機の製品化のラインアップとして、 標準型と、 更に効率を高 めた高効率型の二種類の製品ラインァップを提供することにより、 顧客要求に 応じようとする場合が多くなっている。
この場合は、 高温溶液熱交換器やドレーン熱交換器の温度効率を制限するこ とにより、 溶液の温度上昇によるフラッシュを防止した標準型を基本モデルと し、 これに効率向上のための付加機能を追加するように構成すれば、 極めて簡 便に高効率化を図ることができ、 更に生産性を高めることが可能となる。 発明の開示
本発明は、 上述した問題点に鑑みてなされたものであり、 外部熱源を有効に 回収すると共に、 内部熱の回収をも有効に行うことのできる高効率な吸収冷凍 機を提供することを目的とする。
本楽明の第 1の態様によれば、 蒸発器、 吸収器、 凝縮器、 高温再生器、 低温 再生器、 低温溶液熱交換器、 高温溶液熱交換器、 及びこれらの機器を連結する 吸収溶液経路、 冷媒経路を備えた吸収冷凍機が提供される。 吸収冷凍機は、 吸 収器から高温再生器へ導入される希溶液の溶液供給経路が 2つに分岐された経 路を備えている。 前記分岐された一方の経路には、 該経路の希溶液と高温再生 器を加熱後の排熱源とを熱交換するドレーン熱交換器を設ける。 前記分岐され た他方の経路には、 該経路の希溶液と高温再生器で加熱及び濃縮された濃溶液 とを熱交換する第 1高温溶液熱交換器及び第 2高温溶液熱交換器を設ける。 吸 収冷凍機は、 該希溶液が第 1高温溶液熱交換器、 第 2高温溶液熱交換器の順に 流れ、 高温再生器からの濃溶液が第 2高温溶液熱交換器、 第 1高温溶液熱交換 器の順に流れる様に構成される。
本発明の第 2の態様によれば、 蒸発器、 吸収器、 凝縮器、 高温再生器、 低温 再生器、 低温溶液熱交換器、 高温溶液熱交換器、 及びこれらの機器を連結する 吸収溶液経路、 令媒経路を備えた吸収冷凍機が提供される。 吸収冷凍機は、 吸 収器から高温再生器へ導入される希溶液の溶液供給経路が 2つに分岐された経 路を備えている。 前記分岐された一方の経路には、 該経路の希溶液と高温再生 器で加熱及び濃縮された濃溶液とを熱交換する高温溶液熱交換器を設ける。 前 記分岐された他方の経路には、 該経路の希溶液と高温再生器を加熱後の排熱源 とを熱交換する第 1ドレーン熱交換器及び第 2ドレーン熱交換器を設ける。 吸 収冷凍機は、 該希溶液が第 1 ドレーン熱交換器、 第 2ドレーン熱交換器の順に 流れ、 排熱源が第 2ドレーン熱交換器、 第 1 ドレーン熱交換器の順に流れる様 に構成される。
本発明の第 3の態様によれば、 蒸発器、 吸収器、 凝縮器、 高温再生器、 低温 再生器、 低温溶液熱交換器、 高温溶液熱交換器、 及びこれらの機器を連結する 吸収溶液経路、 冷媒経路を備えた吸収冷凍機が提供される。 吸収冷凍機は、 吸 収器から高温再生器へ導入される希溶液の溶液供給経路が 2つに分岐された経 路を備えている。 前記分岐された一方の経路には、 該経路の希溶液と高温再生 器を加熱後の排熱源とを熱交換する第 1ドレーン熱交換器及ぴ第 2ドレーン熱 交換器を設ける。 吸収冷凍機は、 前記希溶液が第 1 ドレーン熱交換器、 第 2ド レーン熱交換器の順に流れ、 排熱源が第 2ドレーン熱交換器、 第 1 ドレーン熱 交換器の順に流れるように構成される。 前記分岐された他方の経路には、 該経 路の希溶液と高温再生器で加熱及び濃縮された濃溶液とを熱交換する第 1高温 溶液熱交換器及び第 2高温溶液熱交換器を設ける。 吸収冷凍機は、 前記希溶液 が第 1高温溶液熱交換器、 第 2高温溶液熱交換器の順に流れ、 高温再生器から の濃溶液が第 2高温溶液熱交換器、 第 1高温溶液熱交換器の順に流れる様に構 成される。
前記吸収冷凍機において、 第 2高温溶液熱交換器及び Z又は第 2ドレーン熱 交換器は、 その伝熱体の外部側に高温再生器に供給される希溶液を流すように 構成するのがよく、 また、 これらの熱交換器は、 前記高温再生器と一体で構成 することができる。
本発明の第 4の態様によれば、 蒸発器、 吸収器、 凝縮器、 高温再生器、 低温 再生器、 低温溶液熱交 »、 高温溶液熱交換器、 及びこれらの機器を連結する 吸収溶液経路、 冷媒経路を備えた吸収冷凍機が提供される。 吸収冷凍機は、 吸 収器から低温再生器へ導入される希溶液の溶液供給経路と、 吸収器から高温再 生器へ導入される希溶液の 2つに分岐された溶液供給経路とを備えている。 前 記低温再生器への溶液供給経路の途中に、 該経路の希溶液と高温再生器で加熱 及び濃縮された濃溶液とを熱交換する回収熱交換器を設ける。 前記高温再生器 への溶液供給経路の一方の経路には、 該経路の希溶液と高温再生器を加熱後の 排熱源とを熱交換するドレーン熱交換器を設ける。 他方の経路には、 該経路の 希溶液と前記回収熱交換器の加熱側を出た濃溶液とを熱交換する高温溶液熱交 を設ける。
前記回収熱交換器は、 低温再生器の伝熱管群と隣接配置され、 該低温再生器 內に収納することができる。
さらに、 本発明の吸収冷凍機において、 吸収器を出た希溶液の経路は、 低温 溶液熱交換器の被加熱側を通った後、 それぞれの溶液供給経路に分岐すること ができる。 また、 高温再生器への溶液供給経路の一方が、 前記低温溶液熱交換 器の被加熱側の途中から分岐し、 該分岐溶液経路が前記ドレーン熱交換器を経 由して高温再生器に接続することができる。 前記蒸発器と吸収器は、 複数の圧 力段階で作動するように多段で構成することもできる。 図面の簡単な説明
図 1は本 明の第 1の実施形態における吸収冷凍機を示すフロー図である。 図 2は本発明の第 2の実施形態における吸収冷凍機を示すフロー図である。 図 3は本発明の第 3の実施形態における吸収冷凍機を示すフロー図である。 図 4は本発明の第 4の実施形態における吸収冷凍機を示すフロー図である。 図 5は本発明の第 5の実施形態における吸収冷凍機を示すフロー図である。 図 6は本発明の第 6の実施形態における吸収冷凍機を示すフロー図である。 図 7は本発明の第 7の実施形態における吸収冷凍機を示すフロー図である。 図 8は本発明の第 8の実施形態における吸収冷凍機を示すフロー図である。 図 9は本発明の第 9の実施形態における吸収冷凍機を示すフロー図である。 図 1 0は本発明の第 1 0の実施形態における吸収冷凍機を示すフロー図であ る。
図 1 1は本発明の第 1 1の実施形態における吸収冷凍機を示すフロー図であ る。
図 1 2は本発明の第 1 2の実施形態における吸収冷凍機を示すフロー図であ る。 発明を実施するための最良の形態
本発明によれば、 第 1高温溶液熱交換器及び Z又は第 1ドレーン熱交換器に 対し、 更に第 2高温溶液熱交換器及び Z又は第 2ドレーン熱交換器を追加する ことにより、 内部サイクルからの熱を有効に回収すると共に、 第 2高温溶液熱 交換器及び/又は第 2ドレーン熱交換器で溶液をフラッシュさせ得る構造とし、 ここでフラッシュした蒸気を二重効用サイクルとして利用するものである。
また、 高温溶液熱交換器で回収される熱量の一部を低温再生器に供給される 希溶液に与えることにより、 内部熱を有効に回収すると共に、 高温溶液熱交換 器におけるフラッシュを防止するものである。
次に、 本発明に係る吸収冷凍機の実施形態について図 1から図 1 2を参照し て詳細に説明する。
図 1から図 3は、 本発明に係る第 1及び第 2高温溶液熱交換器を有する吸収 冷凍機の実施形態を示し、 図 4から図 6は、 本発明に係る第 1及ぴ第 2ドレー ン熱交換器を有する吸収冷凍機の実施形態を示すものである。 図 7から図 9は、 本発明に係る第 1及び第 2高温溶液熱交 と第 1及び第 2 ドレーン熱交換器 を有する吸収冷凍機の実施形態を示し、 図 1 0から図 1 2は、 本発明に係る、 低温再生器で熱回収する回収熱交換器を有する吸収冷凍機の実施形態を示すも のである。 図 1から図 12において、 G Hは高温再生器、 G Lは低温再生器、 D Xはド レーン熱交換器、 D X 1は第 1 ドレーン熱交換器、 D X 2は第 2ドレーン熱交 換器、 LXは低温溶液熱交換器、 HXは高温溶液熱交換器、 HX1は第 1高温 溶液熱交換器、 HX 2は第 2高温溶液熱交換器、 GXは回収熱交換器、 Aは吸 収器、 Eは蒸発器、 AHは高圧吸収器、 A Lは低圧吸収器、 EHは高圧蒸発器、 E Lは低圧蒸発器、 R Pは冷媒ポンフ、 S Pは溶液ポンプ、 20〜 22, 23 A, 23 B, 23 C, 24〜27, 122は溶液経路、 30〜34, 36, 3 7, 38, 136, 137は冷媒経路、 50, 51は冷水経路、 52〜 54は 冷却水経路、 60, 61は熱源経路である。
まず、 本発明に係る第 1及び第 2高温溶液熱交換器を有する吸収冷凍機の実 施形態について説明する。
図 1は、 本発明の第 1の実施形態における吸収冷凍機を示すフロー図である。 図 1において、 蒸発器 Eからの冷媒蒸気を吸収した希溶液は、 吸収器 Aから溶 ' 液ポンプ S Pにより溶液経路 20を経由し低温溶液熱交 $»L Xの被加熱側を 通過して昇温される。 その後、 溶液経路 21を流れる希溶液は、 溶液経路 21 上の分岐点 22で、 高温再生器 GHに向かう第 1の分岐溶液経路 23 Aと、 高 温再生器 GHに向かう第 2の分岐溶液経路 23 Bと、 低温再生器 GLに向かう第 3の分岐溶液経路 23 Cとに分岐される。
高温再生器 GHに向かう第 1の分岐溶液経路 23 Aには、 第 1高温溶液熱交 換器 HX1、 第 2高温溶液熱交換器 HX 2が設けられている。 第 1の分岐溶液 経路 23 Aを通って高温再生器 GHに供給される希溶液は、 第 1高温溶液熱交 換器 HX1、 第 2高温溶液熱交換器 HX 2の順に流れ、 順次加熱されて高温再 生器 GHに導入される。
高温再生器 GHに向かう第 2の分岐溶液経路 23Bには、 ドレーン熱交換器 DXが設けられている。 このドレーン熱交換器 DXでは、 高温再生器 GHで吸 収溶液を加熱及び濃縮した後の加熱源流体と、 高温再生器 GHに供給される希 溶液との間で熱交換を行い、 ここで外部熱源からの熱の回収を行っている。
高温再生器 GH內では、 熱源経路 60から導入された外部加熱源により希溶 液が加熱及び濃縮され濃溶液となる。 この濃溶液は、 溶液経路 24を通って第 2高温溶液熱交換器 H X 2、 第 1高温溶液熱交換器 H X 1の順に導入され、 第 2高温溶液熱交換器 H X 2、 第 1高温溶液熱交換器 H X 1の被加熱側を流れる 希溶液を加熱し、 ここで、 内部サイクルからの熱回収を行っている。
通常は、 第 1高温溶液熱交換器 H X 1では溶液がフラッシュする温度レベル までは加熱されないが、 第 2高温溶液熱交換器 H X 2では溶液がフラッシュす るレベルまで加熱される場合もある。 第 2高温溶液熱交換器 H X 2で溶液がフ ラッシュする場合は、 フラッシュ蒸気を取出すための配管 3 6及び/又は配管 3 7を設けるとよい。 フラッシュ蒸気に同伴される吸収溶液を除去するために は、 配管 3 7のような配管を設ければ、 高温再生器 G Hの内部のエリミネータ を利用することが可能となり、 効果的である。 また、 フラッシュ蒸気と溶液を うまく分離するためには、 第 2高温溶液熱交換器 H X 2を構成する伝熱体 (チ ユーブ状、 プレート状) の内部に濃溶液を導入し、 伝熱体の外部に希溶液を導 入するのがよい。 ここでフラッシュした蒸気は、 高温再生器 G Hで発生した蒸 気と合流し、 低温再生器 G Lでの吸収溶液の加熱及ぴ濃縮に使用され、 二重効 用として作用するため、 効率改善に大きく寄与することができる。
高温再生器 G Hで加熱及び濃縮された濃溶液は、 第 2高温溶液熱交換器 H X 2、 第 1高温溶液熱交換器 H X 1、 溶液経路 2 5を経由した後、 溶液経路 2 6 を通って低温再生器 G Lから戻る濃溶液と合流する。 合流した濃溶液は、 低温 溶液熱交換器 L Xの加熱側を経由し、 溶液経路 2 7を通って吸収器 Aに戻され る。
高温再生器 G Hで再生された冷媒蒸気及び第 2高温溶液熱交換器 H X 2のフ ラッシュ蒸気は、 冷媒経路 3 0から低温再生器 G Lの加熱側に導入され、 散布 器から流下する希溶液を加熱及び濃縮後、 冷媒経路 3 1を経由して凝縮器 Cに 導入される。
低温再生器 G Lで再生された冷媒蒸気は、 エリミネータを経由し、 凝縮器 C に導入される。 この冷媒蒸気は、 凝縮器 Cの伝熱管内部を流れる冷却水により 凝縮されて冷媒液となる。 この冷媒液は、 低温再生器 G Lで凝縮された冷媒と 合流し、 冷媒経路 3 2を経由して、 蒸発器 Eに環流される。 図 1に示す吸収冷凍機は、 所謂分岐フローを用いたサイクルを利用している 力 このサイクルに限定されるものではない。
図 2は、 本究明の第 2の実施形態における吸収冷凍機を示すフロー図である。 本実施形態においては、 第 2高温溶液熱交換器 H X 2が高温再生器 G Hと一体 に構成されている。 第 2高温溶液熱交換器 H X 2内で加熱及び濃縮された溶液 とフラッシュ蒸気は、 高温再生器 G Hの側面の開口部 6 5から高温再生器 G H の内部に流入する。 フラッシュ蒸気は、 エリミネータを経由し、 低温再生器 G Lの加熱側に流入する。 高温再生器 G Hに流入した希溶液は更に外部熱源によ り加熱及び濃縮され、 ここで冷媒蒸気が再生される。 その後、 溶液は高温再生 器 G Hから流出する。
このように、 第 2高温溶液熱交換器 H X 2と高温再生器 G Hを一体に構成す ることにより、 フラッシュ蒸気用の配管が不要となり放熱損失を低減すること が可能となる。
また、 図 2では、 低温溶液熱交換器 L Xの被加熱側の経路の途中の分岐点 1 2 2から溶液の一部を分岐し、 ドレーン熱交換器 D Xを経由して高温再生器 G Hに希溶液を導くように構成されている。
さらには、 低温溶液熱交換器 L Xを 2つのュ-ットに分割し、 2つのュニッ トの間から希溶液を分岐するように構成することも可能である。 このような構 成にすれば、 ドレーン熱交換器 D Xに供給する希溶液の温度を低下させ、 ドレ ーン熱交換器 D Xでの熱回収を容易にすると共に、 低温溶液熱交換器 L Xにお ける希溶液の流量の低下による濃溶液の冷却不足、 即ち吸収器 Aの負荷増大も 抑制可能となる。
図 3は、 本発明の第 3の実施形態における吸収冷凍機を示すフロー図である。 本実施形態においては、 吸収器及び蒸発器が複数段で構成されている。 図 3で は吸収器が高圧吸収器 AH、 低圧吸収器 A Lの 2段で構成され、 蒸発器が高圧 蒸発器 E H、 低圧蒸発器 E Lの 2段で構成された例を示しているが、 吸収器及 ぴ蒸発器は 2段の構成に限定されるものではない。
空調負荷から戻った比較的高温の冷水は、 高圧蒸発器 E Hに流入後、 冷却さ れる。 次に冷水は、 低圧蒸発器 E Lでさらに冷却されて、 空調機に供給される。 このような構成の場合は、 高圧蒸発器 E H、 低圧蒸発器 E Lは、 例えば、 8 °C、 5 °C等の蒸発温度で作動する。 これらの蒸発器と組み合わされて作動する高圧 吸収器 AH、 低圧吸収器 A Lにより、 吸収器を出る希溶液の濃度を大幅に低下 させることができる。 この結果、 溶液の循環量を少なくし、 希溶液と濃溶液の 濃度差を大きく設定することができるので、 吸収冷凍機の効率を更に高めるこ とが可能となる。 この方法では、 冷水の温度差を通常の 5 °Cよりも大きく、 例 えば 8 °C程度の温度差として設計することにより、 吸収器を出る希溶液の濃度 をさらに低下させることが可能となる。
図 3においては、 冷却水の流れ方向を、 高圧吸収器 AH、 低圧吸収器 A L、 凝縮器 Cの順に流すように図示されているが、 これに限定されるものではない c 例えば、 高圧吸収器 AHと低圧吸収器 A Lに冷却水を並列に流してもよいし、 凝縮器 Cから吸収器に向けて冷却水を流すことも可能であり、 任意の流し方を 採用することができる。
次に、 本発明に係る第 1及び第 2ドレーン熱交換器を有する吸収冷凍機の実 施形態について説明する。
図 4は、 本発明の第 4の実施形態における吸収冷凍機を示すフロー図である c 図 4において、 蒸発器 Eからの冷媒蒸気を吸収した希溶液は、 吸収器 Aから溶 液ポンプ S Pにより溶液経路 2 0を経由し低温溶液熱交換器 L Xの被加熱側を 通過して昇温される。 その後、 溶液経路 2 1を流れる希溶液は、 溶液経路 2 1 上の分岐点 2 2で、 高温再生器 G Hに向かう第 1の分岐溶液経路 2 3 Aと、 高 温再生器 G Hに向かう第 2の分岐溶液経路 2 3 Bと、 低温再生器 G Lに向かう 第 3の分岐溶液経路 2 3 Cとに分岐される。
高温再生器 G Hに向かう第 1の分岐溶液経路 2 3 Aには、 高温溶液熱交換器 H Xが設けられている。 高温溶液熱交換器 H Xでは、 高温再生器 G Hで加熱さ れた濃溶液と、 高温再生器 G Hに供給される希溶液との間で熱交換を行い、 こ こで内部熱の回収を行っている。
高温再生器 G Hに向かう第 2の分岐溶液経路 2 3 Bには、 第 1 ドレーン熱交 換器 D X 1、 第 2ドレーン熱交換器 D X 2が設けられている。 第 2の分岐溶液 経路 2 3 Bを通って高温再生器 G Hに供給される希溶液は、 第 1 ドレーン熱交 換器 DX 1、 第 2ドレーン熱交換器 DX 2の順に流れ、 順次加熱されて高温再 生器 GHに導入される。
熱源経路 60から導入された外部加熱源は、 高温再生器 GHで希溶液を加熱 及び濃縮した後、 第 2ドレーン熱交換器 DX2、 第 1 ドレーン熱交換器 DX1 の順に導入される。 この外部加熱源は、 第 2ドレーン熱交換器 DX 2、 第 1ド レーン熱交換器 DX1の被加熱側を流れる希溶液を加熱した後、 熱源経路 61 力 ら排出される。
通常は、 第 1 ドレーン熱交換器 DX 1では溶液がフラッシュする温度レベル までは加熱されないが、 第 2ドレーン熱交換器 DX 2では溶液がフラッシュす るレベルまで加熱される場合もある。 第 2 ドレーン熱交換器 DX 2で溶液がフ ラッシュする場合は、 フラッシュ蒸気を取出すための配管 136及ぴ Z又は配 管 137を設けるとよい。 フラッシュ蒸気に同伴される吸収溶液を除去するた めには、 配管 137のような配管を設ければ、 高温再生器 GHの内部のエリミ ネータを利用することが可能となり、 効果的である。 また、 フラッシュ蒸気と 溶液をうまく分離するためには、 第 2ドレーン熱交換器 DX 2を構成する伝熱 体 (チューブ状、 プレート状) の内部に加熱源流体を導入し、 伝熱体の外部に 希溶液を導入するのがよい。 ここでフラッシュした蒸気は、 高温再生器 GHで 発生した蒸気と合流し、 低温再生器 G Lでの吸収溶液の加熱及び濃縮に使用さ れ、 二重効用として作用するため、 効率改善に大きく寄与することができる。 高温再生器 G Hで加熱及び濃縮された濃溶液は、 高温溶液熱交換器 H Xの加 熱側を経由した後、 溶液経路 26を通って低温再生器 GLから戻る濃溶液と合 流する。 合流した濃溶液は、 低温溶液熱交換器 LXの加熱側を経由し、 溶液経 路 27を通って吸収器 Aに戻される。
高温再生器 GHで再生された冷媒蒸気及び第 2ドレーン熱交換器 DX 2のフ ラッシュ蒸気は、 冷媒経路 30から低温再生器 GLの加熱側に導入され、 散布 器から流下する希溶液を加熱及び濃縮後、 冷媒経路 31を経由して凝縮器 Cに 導入される。
低温再生器 GLで再生された冷媒蒸気は、 エリミネータを経由し、 凝縮器 C に導入される。 この冷媒蒸気は、 凝縮器 Cの伝熱管内部を流れる冷却水により 凝縮されて冷媒液となる。 この冷媒液は、 低温再生器 G Lで凝縮された冷媒と 合流し、 冷媒経路 3 2を経由して、 蒸発器 Eに環流される。
図 4に示す吸収冷凍機は、 所謂分岐フローを用いたサイクルを利用している ヽ このサイクルに限定されるものではない。
図 5は、 本発明の第 5の実施形態における吸収冷凍機を示すフロー図である。 本実施形態においては、 第 2ドレーン熱交換器 D X 2が高温再生器 G Hと一体 に構成されている。 第 2ドレーン熱交換器 D X 2内で加熱及ぴ濃縮された溶液 とフランシュ蒸気は、 高温再生器 G Hの側面の開口部 1 6 5から高温再生器 G Hの内部に流入し、 フラッシュ蒸気はエリミネータを経由し、 低温再生器 G L の加熱側に流入する。 高温再生器 G Hに流入した希溶液は更に外部熱源により 加熱及び濃縮され、 ここで冷媒蒸気が再生される。 その後、 溶液は高温再生器 G Hから流出する。
このように、 第 2ドレーン熱交換器 D X 2と高温再生器 G Hを一体に構成す ることにより、 フラッシュ蒸気用の配管が不要となり、 放熱損失を低減するこ とが可能となる。
また、 図 5では、 低温溶液熱交換器 L Xの被加熱側の経路の途中の分岐点 1 2 2から溶液の一部を分岐し、 第 1 ドレーン熱交換器 D X 1、 第 2ドレーン熱 交換器 D X 2を経由して高温再生器 G Hに希溶液を導くように構成されている。 さらには、 低温溶液熱交 Xを 2つのュニットに分割し、 2つのュニッ トの間から希溶液を分岐するように構成することも可能である。 このような構 成にすれば、 第 1 ドレーン熱交換器 D X 1に供給する希溶液の温度を低下させ、 第 1ドレーン熱交換器 D X 1での熱回収を容易にすると共に、 低温溶液熱交換 器 L Xにおける希溶液の流量の低下による濃溶液の冷却不足、 即ち吸収器 Aの 負荷増大も抑制可能となる。
図 6は、 本発明の第 6の実施形態における吸収冷凍機を示すフロー図である。 本実施形態においては、 吸収器及び蒸発器が複数段で構成されいる。 図 6では 吸収器が高圧吸収器 AH、 低圧吸収器 A Lの 2段で構成され、 、 蒸発器が高圧 蒸発器 E H、 低圧蒸発器 E Lの 2段で構成された例を示しているが、 吸収器及 び蒸発器は 2段の構成に限定されるものではない。 空調負荷から戻った比較的高温の冷水は、 高圧蒸発器 E Hに流入後、 冷却さ れる。 次に冷水は、 低圧蒸発器 E Lでさらに冷却されて、 空調機に供給される。 このような構成の場合は、 高圧蒸発器 E H、 低圧蒸発器 E Lは、 例えば、 8 °C、 5 °C等の蒸発温度で作動する。 これらの蒸発器と組み合わされて作動する高圧 吸収器 AH、 低圧吸収器 A Lにより、 吸収器 Aを出る希溶液の濃度を大幅に低 下させることができる。 この結果、 溶液の循環量を少なくし、 希溶液と濃溶液 の濃度差を大きく設定することができるので、 吸収冷凍機の効率を更に高める ことが可能となる。 この方法では、 冷水の温度差を通常の 5 °Cよりも大きく、 例えば 8 °C程度の温度差として設計することにより、 吸収器を出る希溶液の濃 度をさらに低下させることが可能となる。
図 6においては、 冷却水の流れ方向を、 高圧吸収器 AH、 低圧吸収器 A L、 凝縮器 Cの順に流すように図示されているが、 これに限定されるものではない。 例えば、 高圧吸収器 A Hと低圧吸収器 A Lに冷却水を並列に流してもよいし、 凝縮器 Cから吸収器 Aに向けて冷却水を流すことも可能であり、 任意の流し方 を採用することができる。
次に、 本発明に係る第 1及び第 2高温溶液熱交換器と第 1及び第 2ドレーン 熱交換器を有する吸収冷凍機の実施形態について説明する。
図 7は、 本発明の第 7の実施形態における吸収冷凍機を示すフロー図である。 図 7において、 蒸発器 Eからの冷媒蒸気を吸収した希溶液は、 吸収器 Aから溶 液ポンプ S Pにより溶液経路 2 0を経由し低温溶液熱交換器 L Xの被加熱側を 通過して昇温される。 その後、 溶液経路 2 1を流れる希溶液は、 溶液経路 2 1 上の分岐点 2 2で、 高温再生器 G Hに向かう第 1の分岐溶液経路 2 3 Aと、 高 温再生器 G Hに向かう第 2の分岐溶液経路 2 3 Bと、 低温再生器 G Lに向かう 第 3の分岐溶液経路 2 3 Cとに分岐される。
高温再生器 G Hに向かう第 1の分岐溶液経路 2 3 Aには、 第 1高温溶液熱交 換器 H X 1、 第 2高温溶液熱交換器 H X 2が設けられている。 第 1の分岐溶液 経路 2 3 Aを通って高温再生器 G Hに供給される希溶液は、 第 1高温溶液熱交 換器 H X 1、 第 2高温溶液熱交換器 H X 2の順に流れ、 順次加熱されて高温再 生器 G Hに導入される。 高温再生器 GHに向かう第 2の分岐溶液経路 23 Bには、 第 1 ドレーン熱交 換器 DX1、 第 2ドレーン熱交換器 DX 2が設けられている。 第 2の分岐溶液 経路 23 Bを通って高温再生器 GHに供給される希溶液は、 第 1 ドレーン熱交 換器 D XI、 第 2ドレーン熱交換器 D X 2の順に流れ、 順次加熱されて高温再 生器 GHに導入される。
熱源経路 60から導入された外部加熱源は、 高温再生器 GHで希溶液を加熱 及び濃縮した後、 第 2ドレーン熱交換器 DX 2、 第 1 ドレーン熱交換器 DX1 の順に導入される。 この外部加熱源は、 第 2ドレーン熱交 DX2、 第 1 ド レーン熱交換器 DX 1の被加熱側を流れる希溶液を加熱した後、 熱源経路 61 力 ら排出される。
熱源経路 60から導入された外部加熱源により高温再生器 G H内で加熱及び 濃縮された濃溶液は、 第 2高温溶液熱交換器 HX 2、 第 1高温溶液熱交換器 H XIの順に導入きれ、 第 2高温溶液熱交換器 HX 2、 第 1'高温溶液熱交換器 H XIの被加熱側を流れる希溶液を加熱した後、 熱源経路 61から排出される。 このように、 内部サイクルからの熱回収が行われる。
通常は、 第 1高温溶液熱交換器 H XI、 第 1 ドレーン熱交換器 D X 1では、 溶液がフラッシュする温度レベルまでは加熱されないが、 第 2高温溶液熱交換 器 HX2、 第 2ドレーン熱交換器 DX 2では溶液がフラッシュするレベルまで 加熱される場合もある。 溶液をフラッシュさせた方が効率改善に大きく寄与す ることができる。 第 2高温溶液熱交換器 HX 2で溶液がフラッシュする場合は、 フラッシュ蒸気を取出すための配管 36及び/又は配管 37を設けるとよレ、。 フラッシュ蒸気に同伴される吸収溶液を除去するためには、 配管 37のような 配管を設ければ、 高温再生器 GHの内部のエリミネータを利用することが可能 となり、 効果的である。
同様に、 第 2ドレーン熱交換器 DX 2で溶液がフラッシュする場合は、 フラ ッシュ蒸気を取出すための配管 136及び Z又は配管 137を設けるとよい。 フラッシュ蒸気に同伴される吸収溶液を除去するためには、 配管 137のよう な配管を設ければ、 高温再生器 GHの内部のエリミネータを利用することが可 能となり、 効果的である。 また、 フラッシュ蒸気と溶液をうまく分離するためには、 第 2高温溶液熱交 換器 H X 2又は第 2ドレーン熱交換器 D X 2を構成する伝熱体 (チューブ状、 プレート状) の内部に濃溶液を導入し、 伝熱体外部側に希溶液を導入するのが よい。 ここでフラッシュした蒸気は、 高温再生器 G Hで発生した蒸気と合流し、 低温再生器 G Lでの吸収溶液の加熱及び濃縮に使用され、 二重効用として作用 するため、 効率改善に大きく寄与することができる。
高温再生器 G Hで加熱及び濃縮された濃溶液は、 第 2高温溶液熱交換器 H X 2、 第 1高温溶液熱交換器 H X Iを経由した後、 溶液経路 2 6を通って低温再 生器 G Lから戻る濃溶液と合流する。 合流した濃溶液は'、 低温溶液熱交換器 L Xの加熱側を経由し、 溶液経路 2 7を通って吸収器 Aに戻される。
高温再生器 G Hで再生された冷媒蒸気及び第 2高温溶液熱交換器 H X 2、 第 2ドレーン熱交換器 D X 2のフラッシュ蒸気は、 冷媒経路 3 0から低温再生器 G Lの加熱側に導入され、 散布器から流下する希溶液を加熱及び濃縮後、 冷媒 経路 3 1を経由して凝縮器 Cに導入される。
低温再生器 G Lで再生された冷媒蒸気は、 エリミネータを経由し、 凝縮器 C に導入される。 この冷媒蒸気は、 凝縮器 Cの伝熱管内部を流れる冷却水により 凝縮されて冷媒液となる。 この冷媒液は、 低温再生器 G Lで凝縮された冷媒と 合流し、 冷媒経路 3 2を経由して、 蒸発器 Eに環流される。
図 7に示す吸収冷凍機は、 所謂分岐フローを用いたサイクルを利用している 力 このサイクルに限定されるものではない。
図 8は、 本発明の第 8の実施形態における吸収冷凍機を示すフロー図である c 本実施形態においては、 第 2高温溶液熱交換器 H X 2及び第 2ドレーン熱交換 器 D X 2が高温再生器 G Hと一体に構成されている。
第 2高温溶液熱交換器 H X 2又は第 2ドレーン熱交換器 D X 2内で加熱及び 濃縮された溶液とフラッシュ蒸気は、 高温再生器 G Hの側面の開口部 6 5, 1 6 5から高温再生器 G Hの内部に流入し、 フラッシュ蒸気はエリミネ一タを経 由し、 低温再生器 G Lの加熱側に流入する。 高温再生器 G Hに流入した希溶液 は更に外部熱源により加熱及び濃縮され、 ここで冷媒蒸気が再生される。 その 後、 溶液は高温再生器 G Hから流出する。 このように、 第 2高温溶液熱交換器 H X 2、 第 2ドレーン熱交 D X 2と 高温再生器 G Hを一体に構成することにより、 フラッシュ蒸気用の配管が不要 となり、 更には放熱損失を低減することも可能となる。
また、 図 8では、 低温溶液熱交換器 L Xの被加熱側の経路の途中の分岐点 1 2 2から溶液の一部を分岐し、 第 1 ドレーン熱交換器 D X 1、 第 2ドレーン熱 交換器 D X 2を経由して高温再生器 G Hに希溶液を導くように構成されている。 さらには、 低温溶液熱交換器 L Xを 2つのユニットに分割し、 2つのュニッ トの間から希溶液を分岐するように構成することも可能である。 このような構 成にすれば、 第 1 ドレーン熱交換器 D X 1に供給する希溶液の温度を低下させ、 第 1ドレーン熱交換器 D X 1での熱回収を容易にすると共に、 低温溶液熱交換 器 L Xにおける希溶液の流量の低下による濃溶液の冷却不足、 即ち吸収器 Aの 負荷増大も抑制可能となる。
図 9は、 本突明の第 9の実施形態における吸収冷凍機を示すフロー図である。 本実施形態においては、 吸収器及び蒸発器が複数段で構成されている。 図 9で は吸収器が高圧吸収器 AH、 低圧吸収器 A Lの 2段で構成され、 蒸発器が高圧 蒸発器 E H、 低圧蒸発器 E Lの 2段で構成された例を示しているが、 吸収器及 び蒸発器は 2段の構成に限定されるものではなレ、。
空調負荷から戻った比較的高温の冷水は、 高圧蒸発器 E Hに流入後、 冷却さ れる。 次に冷水は、 低圧蒸発器 E Lでさらに冷却されて、 空調機に供給される。 このような構成の場合は、 高圧蒸発器 E H、 低圧蒸発器 E Lは、 例えば、 8 °C、 5 °C等の蒸発温度で作動する。 これらの蒸発器と組み合わされて作動する高圧 吸収器 AH、 低圧吸収器 A Lにより、 吸収器を出る希溶液の濃度を大幅に低下 させることができる。 この結果、 溶液の循環量を少なくし、 希溶液と濃溶液の 濃度差を太きく設定することができるので、 吸収冷凍機の効率を更に高めるこ と力 S可能となる。 この方法では、 冷水の温度差を通常の 5 °Cよりも大きく、 例 えば 8 °C程度の温度差として設計することにより、 吸収器を出る希溶液の濃度 をさらに低下させることが可能となる。
図 9においては、 冷却水の流れ方向を、 高圧吸収器 AH、 低圧吸収器 A L、 凝縮器 Cの順に流すように図示されているが、 これに限定されるものではない。 例えば、 高圧吸収器 AHと低圧吸収器 A Lに冷却水を並列に流してもよいし、 凝縮器 Cから吸収器に向けて冷却水を流すことも可能であり、 任意の流し方を 採用することができる。
次に、 本発明に係る、 低温再生器で熱回収する回収熱交換器を有する吸収冷 凍機の実施形態について説明する。
図 1 0は、 本 明の第 1 0の実施形態における吸収冷凍機を示すフロー図で ある。 図 1 0において、 蒸発器 Eからの冷媒蒸気を吸収した希溶液は、 吸収器 Aから溶液ポンプ S Pにより低温溶液熱交換器 L Xの被加熱側を通過して昇温 される。 その後、 溶液経路 2 1を流れる希溶液は、 溶液経路 2 1上の分岐点 2 2で、 高温再生器 G Hに向かう第 1の分岐溶液経路 2 3 Aと、 高温再生器 G H に向かう第 2の分岐溶液経路 2 3 Bと、 低温再生器 G Lに向かう第 3の分岐溶 液経路 2 3 Cとに分岐される。
第 3の分岐溶液柽路 2 3 Cには、 回収熱交換器 G Xが設けられている。 この 回収熱交換器 G Xでは、 高温再生器 G Hからの濃溶液と、 低温再生器 G Lに供 給される希溶液との間で熱交換が行われる。 その後、 希溶液は低温再生器 G L の散布装置に供給される。
回収熱交換器 G Xでフラッシュした冷媒蒸気は、 冷媒経路 3 8を経由し、 低 温再生器 G Uこ導かれる。 この際、 回収熱交換器 G Xでフラッシュするかどう かは、 回収熱交換器 G Xの伝熱能力により決定される。
高温再生器 G Hに向かう第 1の分岐溶液経路 2 3 Aには、 高温溶液熱交換器 H Xが設けられている。 高温溶液熱交換器 H Xの被加熱側を流れる希溶液は、 回収熱交換器 G Xの加熱側から流入する濃溶液により加熱された後、 高温再生 器 G Hに流入する。
このように、 高温再生器 G Hからの濃溶液が持っている熱量の一部を、 低温 再生器 G Lに供給される希溶液に与えることにより、
Figure imgf000018_0001
の 内部で希溶液の温度が過度に上昇し、 フラッシュすることを防止することがで さる。
高温再生器 G Hに向かう第 2の分岐溶液経路 2 3 Bには、 ドレーン熱交換器 D Xが設けられている。 熱源経路 6 0から導入された外部加熱源は、 高温再生 器 G Hで溶液を加熱及び濃縮後、 ドレーン熱交換器 D Xの加熱側に導入され、 ドレーン熱交換器 D Xの被加熱側を流れる希溶液を加熱後、 熱源経路 6 1から 排出される。
高温再生器 G Hで加熱及び濃縮された濃溶液は、 回収熱交換器 G X、 高温溶 液熱交 H Xの加熱側を経由した後、 低温再生器 G Lから戻る濃溶液と合流 し、 低温溶液熱交換器 L Xの加熱側を経由し、 吸収器 Aに戻される。
高温再生器 G Hで再生された冷媒蒸気は、 冷媒経路 3 0から低温再生器 G L の加熱側に導入され、 散布器から流下する希溶液を加熱及び濃縮後、 7令媒経路 3 1を経由して凝縮器 Cに導入される。
低温再生器 G Lで再生された冷媒蒸気は、 エリミネータを経由し、 凝縮器 C に導入される。 この冷媒蒸気は、 凝縮器 Cの伝熱管内部を流れる冷却水により 凝縮されて冷媒液となる。 この冷媒液は、 低温再生器 G Lで凝縮された冷媒と 合流し、 冷媒経路 3 2を経由して、 蒸発器 Eに環流される。
図 1 0に示す吸収冷凍機は、 所謂分岐フローを用いたサイクルを利用してい るが、 このサイク こ限定されるものではない。
図 1 1は、 本発明の第 1 1の実施形態における吸収冷凍機を示すフロー図で ある。 本実施形態においては、 回収熱交換器 G Xが低温再生器 G Lの下部に配 置され、 低温再生器 G Lと同一の容器内に配置されている。 低温再生器 G に 供給された希溶液は、 散布装置により低温再生器 G Lの伝熱管に散布され、 伝 熱管内を流れる高温冷媒蒸気により加熱及び濃縮され、 次に回収熱交換器 G X の伝熱管に滴下し、 伝熱管内を流れる高温濃溶液により更に加熱及び濃縮され る。 このような構成にすれば、 コンパクトに構成できると共に、 回収熱交換器 G Xからのフラッシュ蒸気用の配管を省略することもできる。
図 1 1の例では、 回収熱交換器 G Xの配置場所として低温再生器 G Lの下部 に配置しているが、 これに限定されることなく、 低温再生器 G Lの上部でもよ く、 又低温再生器 G Lの横方向に配置することも可能である。 横方向に配置し た場合は、 散布装置は個別に設けてもよく、 また共通の散布装置としてもよい また、 図 1 1では、 低温溶液熱交換器 L Xの被加熱側の経路の途中の分岐点 1 2 2から溶液の一部を分岐し、 ドレーン熱交換器 D Xを経由して高温再生器 G Hに希溶液を導くように構成されている。
さらには、 低温溶液熱交換器 L Xを 2つのユニットに分割し、 2つのュニッ トの間から希溶液を分岐するように構成することも可能である。 このような構 成にすれば、 ドレーン熱交換器 D Xに供給する希溶液の温度を低下させ、 ドレ ーン熱交換器 D Xでの熱回収を容易にすると共に、 低温溶液熱交換器 L Xにお ける希溶液の流量の低下による濃溶液の冷却不足、 即ち吸収器 Aの負荷増大も 抑制可能となる。
図 1 2は、 本発明の第 1 2の実施形態における吸収冷凍機を示すフロー図で ある。 本実施形態においては、 吸収器及び蒸発器が複数段で構成されいる。 図 1 2では吸収器が高圧吸収器 AH、 低圧吸収器 A Lの 2段で構成され、 、 蒸発 器が高圧蒸発器 E H、 低圧蒸発器 E Lの 2段で構成された例を示しているが、 吸収器及び蒸発器は 2段の構成に限定されるものではない。
空調負荷から戻った比較的高温の冷水は、 高圧蒸発器 E Hに流入後、 冷却さ れる。 次に冷水は、 低圧蒸発器 E Lでさらに冷却されて、 空調機に供給される このような構成の場合は、 高圧蒸発器 E H、 低圧蒸発器 E Lは、 例えば、 8 °C、 5 °C等の蒸発温度で作動する。 これらの蒸発器と組み合わされて作動する高圧 吸収器 AH、 低圧吸収器 A Lにより、 吸収器 Aを出る希溶液の濃度を大幅に低 下させることができる。 この結果、 溶液の循環量を少なくし、 希溶液と濃溶液 の濃度差を大きく設定することができるので、 吸収冷凍機の効率を更に高める ことが可能となる。 この方法では、 冷水の温度差を通常の 5 °Cよりも大きく、 例えば 8 °C程度の温度差として設計することにより、 吸収器を出る希溶液の濃 度をさらに低下させることが可能となる。
図 1 2においては、 冷却水の流れ方向を、 高圧吸収器 AH、 低圧吸収器 A L、 凝縮器 Cの順に流すように図示されているが、 これに限定されるものではない c 例えば、 高圧吸収器 A Hと低圧吸収器 A Lに冷却水を並列に流しても良いし、 凝縮器 Cから吸収器 Aに向けて冷却水を流すことも可能であり、 任意の流し方 を採用することができる。 本発明によれば、 上記の構成としたことにより、 従来技術の問題点を解決し、 外部熱源を有効に回収すると共に、 内部熱の回収をも有効に行うことの出来る 高効率吸収冷凍機を提供することが可能となった。
これまで本発明の一実施形態について説明したが、 本発明は上述の実施形態 に限定されず、 その技術的思想の範囲内において種々異なる形態にて実施され てよいことは言うまでもない。 産業上の利用の可能性 ·
本発明は、 蒸気を熱源とし、 該熱源の熱回収を行うと共に、 内部サイクルか らの熱回収をも有効に行うことのできる高効率吸収冷凍機に利用可能である。

Claims

請求の範囲
1 . 蒸発器と'、
吸収器と、
凝縮器と、
高温再生器と、
低温再生器と、
低温溶液熱交換器と、
吸収溶液を流通させる溶液経路と、
冷媒を流通させる冷媒経路と、
前記吸収器から前記高温再生器へ導入される希溶液を分岐する第 1の分岐溶 液経路及び第 2の分岐溶液経路と、
第 1の分岐溶液経路内の希溶液と、 前記高温再生器で加熱及び濃縮された濃 溶液との間で熱交換を行う第 1高温溶液熱交換器及び第 2高温溶液熱交換器と 第 2の分岐溶液経路内の希溶液と、 前記高温再生器において希溶液を加熱し た後の排熱源との間で熱交換を行うドレーン熱交換器と、
を備え、
第 1の分岐溶液経路内の希溶液は、 前記第 1高温溶液熱交換器及び前記第 2 高温溶液熱交換器の順に流れ、
前記高温再生器からの濃溶液は、 前記第 2高温溶液熱交換器及び前記第 1高 温溶液熱交換器の順に流れる、 吸収冷凍機。
2 . 前記高温再生器に供給される希溶液は、 前記第 2高温溶液熱交換器の伝熱 体の外部側を流れる、 請求項 1に記載の吸収冷凍機。
3 . 前記第 2高温溶液熱交換器は、 前記高温再生器と一体に構成される、 請求 項 1又は 2に記載の吸収冷凍機。
4 . 蒸発器と、
吸収器と、
凝縮器と、
高温再生器と、
低温再生器と、
低温溶液熱交 i»と、
吸収溶液を流通させる溶液経路と、
冷媒を流通させる冷媒経路と、
前記吸収器から前記高温再生器へ導入される希溶液を分岐する第 1の分岐溶 液経路及び第 2の分岐溶液経路と、
第 1の分岐溶液経路内の希溶液と、 前記高温再生器で加熱及び濃縮された濃 溶液との間で熱交換を行う高温溶液熱交換器と、
第 2の分岐溶液経路内の希溶液と、 前記高温再生器において希溶液を加熱し た後の排熱源との間で熱交換を行う第 1ドレーン熱交換器及び第 2ドレーン熱 交換器と、
を備え、
第 2の分岐溶液経路内の希溶液は、 前記第 1 ドレーン熱交換器及び前記第 2 ドレーン熱交換器の順に流れ、
前記高温再生器からの排熱源は、 前記第 2ドレーン熱交換器及び前記第 1 ド レーン熱交換器の順に流れる、 吸収冷凍機。
5 . 前記高温再生器に供給される希溶液は、 前記第 2ドレーン熱交換器の伝熱 体の外部側を流れる、 請求項 4に記載の吸収冷凍機。
6 . 前記第 2 ドレーン熱交 は、 前記高温再生器と一体に構成される、 請求 項 4又は 5に記載の吸収冷凍機。
7 . 蒸発器と、
吸収器と、
凝縮器と、
高温再生器と、
低温再生器と、
低温溶液熱交換器と、
吸収溶液を流通させる溶液経路と、
冷媒を流通させる冷媒経路と、
前記吸収器から前記高温再生器へ導入される希溶液を分岐する第 1の分岐溶 液経路及ぴ第 2の分岐溶液経路と、
第 1の分岐溶液経路内の希溶液と、 前記高温再生器で加熱及び濃縮された濃 溶液との間で熱交換を行う第 1高温溶液熱交換器及び第 2高温溶液熱交換器と . 第 2の分岐溶液経路内の希溶液と、 前記高温再生器において希溶液を加熱し た後の排熱源との間で熱交換を行う第 1ドレーン熱交換器及び第 2ドレーン熱 交換器と、
を備え、
第 1の分岐溶液経路内の希溶液は、 前記第 1高温溶液熱交換器及び前記第 2 高温溶液熱交換器の順に流れ、
前記高温再生器からの濃溶液は、 前記第 2高温溶液熱交換器及び前記第 1高 温溶液熱交換器の順に流れ、
第 2の分岐溶液経路内の希溶液は、 前記第 1 ドレーン熱交換器及び前記第 2 ドレーン熱交換器の順に流れ、
前記高温再生器からの排熱源は、 前記第 2ドレーン熱交換器及び前記第 1ド レーン熱交換器の順に流れる、 吸収冷凍機。
8 . 前記高温再生器に供給される希溶液は、 前記第 2高温溶液熱交換器及び第 2ドレーン熱交^^の少なくとも一方の伝熱体の外部側を流れる、 請求項 7に 記載の吸収冷凍機。
9 . 前記第 2高温溶液熱交換器及び第 2ドレーン熱交換器の少なくとも一方は、 前記高温再生器と一体に構成される、 請求項 7又は 8に記載の吸収冷凍機。
1 0 . 蒸発器と、
吸収器と、
凝縮器と、
高温再生器と、
低温再生器と、
低温溶液熱交換器と、
吸収溶液を流通させる溶液経路と、
冷媒を流通させる冷媒経路と、
前記吸収器から前記高温再生器へ導入される希溶液を分岐する第 1の分岐溶 液経路及び第 2の分岐溶液経路と、
前記吸収器から前記低温再生器へ希溶液を導入する溶液経路中に設けられ、 該溶液経路内の希溶液と、 前記高温再生器で加熱及び濃縮された濃溶液との間 で熱交換を行う回収熱交換器と、
第 1の分岐溶液経路内の希溶液と、 前記高温再生器で加熱及び濃縮された濃 溶液との間で熱交換を行う高温溶液熱交換器と、
第 2の分岐溶液経路内の希溶液と、 前記高温再生器において希溶液を加熱し た後の排熱源との間で熱交換を行うドレーン熱交換器と、
を備えた、 吸収冷凍機。
1 1 . 前記回収熱交換器が、 前記低温再生器の伝熱管群と隣接配置され、 該低 温再生器の容器内に収納された、 請求項 1 0に記載の吸収冷凍機。
1 2 . 前記吸収器を出た希溶液の溶液経路が、 前記低温溶液熱交換器の被加熱 側を通った後、 前記第 1の分岐溶液経路と前記第 2の分岐溶液経路とに分岐さ れるように構成された、 請求項 1から 1 1のいずれか 1項に記載の吸収冷凍機。
1 3 . 前記高温再生器への溶液経路が、 前記低温溶液熱交換器の被加熱側の途 中で前記第 1の分岐溶液経路と前記第 2の分岐溶液経路とに分岐されるように 構成された、 請求項 1カゝら 1 1のいずれか 1項に記載の吸収冷凍機。
1 4 . 前記蒸発器と前記吸収器が、 複数の圧力段階で作動するように多段で構 成された、 請求項 1力 ら 1 3のいずれか 1項に記載の吸収冷凍機。
PCT/JP2004/006851 2003-05-14 2004-05-14 吸収冷凍機 WO2004102085A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04733137.6A EP1628090B1 (en) 2003-05-14 2004-05-14 Absorption chiller
US10/556,724 US7316126B2 (en) 2003-05-14 2004-05-14 Absorption refrigerating machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003135359A JP4521855B2 (ja) 2003-05-14 2003-05-14 吸収冷凍機
JP2003-135359 2003-05-14

Publications (1)

Publication Number Publication Date
WO2004102085A1 true WO2004102085A1 (ja) 2004-11-25

Family

ID=33447180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006851 WO2004102085A1 (ja) 2003-05-14 2004-05-14 吸収冷凍機

Country Status (5)

Country Link
US (1) US7316126B2 (ja)
EP (1) EP1628090B1 (ja)
JP (1) JP4521855B2 (ja)
CN (2) CN101240950B (ja)
WO (1) WO2004102085A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4720558B2 (ja) * 2006-03-15 2011-07-13 ダイキン工業株式会社 吸収冷凍機用発生器
KR100765082B1 (ko) 2007-01-11 2007-10-09 엘에스전선 주식회사 흡수식 냉온수기의 냉매 증기회수장치
US8020397B2 (en) * 2008-10-30 2011-09-20 General Electric Company Reduction of diluent nitrogen compressor power using vapor absorption chiller
CN101619907B (zh) * 2009-07-24 2011-04-13 大连三洋制冷有限公司 一种高效率蒸汽双效溴化锂吸收式制冷机组
CN101825370A (zh) * 2009-09-19 2010-09-08 李华玉 回热式双效和多效第二类吸收式热泵
JP2011075180A (ja) * 2009-09-30 2011-04-14 Sanyo Electric Co Ltd 吸収式冷凍機
JP2011247508A (ja) * 2010-05-27 2011-12-08 Sanyo Electric Co Ltd 排ガス式吸収冷温水機の運転制御方法
JP2015200426A (ja) * 2014-04-04 2015-11-12 日立アプライアンス株式会社 吸収冷温水機、モジュール連結型吸収冷温水機及びその搬入据付方法
KR102292399B1 (ko) * 2020-01-15 2021-08-20 엘지전자 주식회사 냉동기
US20240027106A1 (en) * 2022-07-19 2024-01-25 King Fahd University Of Petroleum And Minerals Absorption chiller refrigerator system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160276A (ja) * 1996-11-27 1998-06-19 Tokyo Gas Co Ltd 吸収冷温水機
JP2777427B2 (ja) * 1989-10-30 1998-07-16 三洋電機株式会社 吸収冷凍機
JP2003065624A (ja) * 2001-08-28 2003-03-05 Hitachi Ltd 蒸気駆動型二重効用吸収冷温水機
JP2003121021A (ja) 2001-10-11 2003-04-23 Ebara Corp 二重効用吸収冷凍機

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111332B1 (ja) * 1968-02-13 1976-04-10
JPS5113259B2 (ja) * 1971-09-16 1976-04-27
JPH06101932A (ja) * 1992-08-27 1994-04-12 Hitachi Ltd 排熱を利用する吸収ヒートポンプ及びコ−ジェネレ−ションシステム
CN1068669C (zh) * 1992-09-05 2001-07-18 三洋电机株式会社 单、双效应吸收型致冷器
JP3144261B2 (ja) * 1995-03-15 2001-03-12 松下電器産業株式会社 電子機器用操作釦装置
JP2001056160A (ja) * 1999-08-17 2001-02-27 Tokyo Gas Co Ltd 吸収冷温水機
JP2001227838A (ja) * 2000-02-17 2001-08-24 Tokyo Gas Co Ltd 吸収冷温水機
JP3750474B2 (ja) * 2000-03-08 2006-03-01 株式会社日立製作所 熱電併給設備およびその運転方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2777427B2 (ja) * 1989-10-30 1998-07-16 三洋電機株式会社 吸収冷凍機
JPH10160276A (ja) * 1996-11-27 1998-06-19 Tokyo Gas Co Ltd 吸収冷温水機
JP2003065624A (ja) * 2001-08-28 2003-03-05 Hitachi Ltd 蒸気駆動型二重効用吸収冷温水機
JP2003121021A (ja) 2001-10-11 2003-04-23 Ebara Corp 二重効用吸収冷凍機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1628090A4 *

Also Published As

Publication number Publication date
EP1628090A4 (en) 2012-11-14
US7316126B2 (en) 2008-01-08
US20060196222A1 (en) 2006-09-07
CN101240950A (zh) 2008-08-13
CN101240950B (zh) 2011-02-09
JP4521855B2 (ja) 2010-08-11
JP2004340423A (ja) 2004-12-02
EP1628090A1 (en) 2006-02-22
CN100402950C (zh) 2008-07-16
EP1628090B1 (en) 2014-08-20
CN1788184A (zh) 2006-06-14

Similar Documents

Publication Publication Date Title
WO2004102085A1 (ja) 吸収冷凍機
CN110030758A (zh) 一种多级高效大温差吸收式热泵及吸收式换热器
JP2011163601A (ja) 吸収式ヒートポンプ装置
JP2012202589A (ja) 吸収式ヒートポンプ装置
CN210980423U (zh) 一种复合型吸收式制冷机组
JP6903852B2 (ja) 吸収式熱交換システム
JP3481530B2 (ja) 吸収冷温水機
JPS5812507B2 (ja) ハリブリツド型吸収式ヒ−トポンプ
KR20040095692A (ko) 일중 이중 효용 흡수 냉동기
JP3812934B2 (ja) 二重効用吸収冷凍機
CN112402995B (zh) 一种应用于切削液浓缩的空气源多效真空式蒸发系统
JP2004011928A (ja) 吸収式冷凍装置
CN204421416U (zh) 一种吸收式制冷机组及其管壳式发生器
JP3469144B2 (ja) 吸収冷凍機
JP2005300126A (ja) 吸収式冷凍機
JP3811632B2 (ja) 排熱投入型吸収冷凍機
JPH03244971A (ja) 吸収冷凍機
JP3948548B2 (ja) 排ガス駆動吸収冷温水機
JP3851136B2 (ja) 吸収冷凍機
JP3479269B2 (ja) 吸収冷凍機
KR101076923B1 (ko) 난방부하 응동형 흡수식 냉온수기
CN108534393A (zh) 可变效的溶液串联型溴化锂吸收式制冷热泵机组
JP2004340424A (ja) 吸収冷凍機
JP2006170587A (ja) 吸収式冷凍機
JPH01244257A (ja) 二重効用吸収冷温水機

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048130989

Country of ref document: CN

Ref document number: 10556724

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004733137

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004733137

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10556724

Country of ref document: US