WO2004101731A1 - 細胞分離装置 - Google Patents

細胞分離装置 Download PDF

Info

Publication number
WO2004101731A1
WO2004101731A1 PCT/JP2004/006299 JP2004006299W WO2004101731A1 WO 2004101731 A1 WO2004101731 A1 WO 2004101731A1 JP 2004006299 W JP2004006299 W JP 2004006299W WO 2004101731 A1 WO2004101731 A1 WO 2004101731A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell separation
cell
cells
fluid
separation space
Prior art date
Application number
PCT/JP2004/006299
Other languages
English (en)
French (fr)
Inventor
Kenji Yasuda
Kazunori Takahashi
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to EP04730647A priority Critical patent/EP1645621A4/en
Priority to US10/543,867 priority patent/US8703457B2/en
Priority to JP2005506174A priority patent/JP4420900B2/ja
Priority to CA002514115A priority patent/CA2514115A1/en
Publication of WO2004101731A1 publication Critical patent/WO2004101731A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/04Cell isolation or sorting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0681Filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0421Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic electrophoretic flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/043Moving fluids with specific forces or mechanical means specific forces magnetic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0433Moving fluids with specific forces or mechanical means specific forces vibrational forces
    • B01L2400/0439Moving fluids with specific forces or mechanical means specific forces vibrational forces ultrasonic vibrations, vibrating piezo elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • B01L2400/086Passive control of flow resistance using baffles or other fixed flow obstructions

Definitions

  • the present invention relates to a cell separation device (cell sorter).
  • Conventional technology is a cell separation device (cell sorter).
  • Separation and collection of specific cells in culture is an important technique in biological and medical analysis.
  • the cell sorter isolates the cells after the fluorescent staining treatment into charged droplets one cell at a time and drops them.Based on the presence or absence of fluorescence of the cells in these droplets and the amount of light scattering, the cell sorter In the process of dropping, by applying a high electric field in any direction in the normal direction to the drop direction, the drop direction is controlled and fractionated into multiple containers placed below. (Kamarck, ME, Methods Enzymol. Vol. 151, pl50-165 (1987)).
  • this technique is expensive, the equipment is large, a high electric field of several thousand volts is required, a large amount of sample is required, and the cell is prepared at the stage of creating droplets.
  • the present inventors have utilized microphone opening processing technology to solve such problems.
  • a cell analysis and separation device that can fractionate a sample based on the microstructure of the sample and the fluorescence distribution in the sample, and can easily analyze and separate the cell sample without damaging the sample to be recovered.
  • the present invention provides a cell analysis / separation apparatus that does not damage a cell sample, prevents loss of an electrode for applying a voltage to separate cells, and does not cause clogging of a flow path when performing long-time separation.
  • the purpose is to do.
  • the cell separation device of the present invention provides a means for moving cells by applying external force to the cells from the outside in the cell separation space, and providing a flow path through which cells can be separated and discharged, to thereby damage the cell sample. To prevent the electrode from disappearing due to electrolysis. Furthermore, the cell separation device of the present invention may have a means for capturing impurities at an upstream portion of the flow path into which the fluid containing the sample to be introduced into the cell separation space is introduced to prevent clogging of the flow path. it can.
  • the present invention provides a cell separation space, at least one flow path for injecting a fluid containing cells into the space, and at least two flow paths for discharging the fluid therefrom, and the outside of the cell separation space.
  • a cell separation device comprising means for applying an external force to cells, wherein the flow paths are different from the cell separation space when an external force is externally applied to the cell separation space.
  • a cell separation device arranged to be discharged to the cell.
  • Means for applying the external force include an electrostatic force, a dielectrophoretic force, a magnetic force, an ultrasonic radiation pressure, a light radiation pressure, and the like. It is convenient to use the electrostatic force.
  • an electrostatic force When an electrostatic force is used, it can be performed by applying an electric field to the cell separation space using a gel electrode containing an electrolyte.
  • a general gel such as agarose gel, aminopectin, and collagen can be used.
  • the voltage to be applied depends on the target cells, but it is preferable to set the voltage so that the cells can be separated by flowing the actual cells.
  • the distance between the electrodes is 10 to 15 / using an agarose gel.
  • white blood cells (about 5 m) can be separated at about 40 V.
  • a filter may be further provided in the injection channel downstream of the injection point of the fluid containing cells and upstream of the cell separation space.
  • the present invention also provides a cell separation space, at least one flow path for injecting a fluid containing cells into the space, and at least two flow paths for discharging the fluid therefrom, and the cell separation space from outside.
  • a cell separation device comprising means for applying an external force to cells, wherein a filter is provided in the injection flow path downstream of an injection point of a fluid containing cells and upstream of a cell separation space, and these flow paths are used for cell separation.
  • a cell separation device characterized in that cells are arranged to be discharged from the cell separation space to different flow paths when an external force is applied to the space and when no external force is applied to the space.
  • the cell separation device has two flow paths for injecting a fluid into the cell separation space, and two flow paths for discharging the fluid from the cell separation space. 4.
  • the cell separation device according to claim 1 wherein, when the external force is not applied, the fluid that has flowed into the cell separation space from one of the injection flow paths flows into almost one discharge flow path, and the other injection flow is performed.
  • the flow path is arranged so that the fluid that has flowed into the cell separation space from the flow path almost flows to the other discharge flow path, and the fluid containing cells flows into only one of the injection flow paths. You may. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a schematic view showing one example of the configuration of the cell sorter of the present invention.
  • FIG. 2 is a schematic diagram showing an example of the configuration of the flow path of the cell sorter of the present invention.
  • FIG. 3 is a schematic diagram showing an example of a configuration of a part of a filter of the cell sorter of the present invention.
  • FIG. 4 is a micrograph showing an example of the configuration of the cell separation section of the cell sorter of the present invention.
  • FIG. 5 is a schematic view showing one example of a cell sorting process of the cell sorter of the present invention.
  • FIG. 6 shows a micrograph illustrating the cell separation procedure of the present invention. Arrows indicate cells.
  • FIG. 1 schematically shows an example of the system configuration of the cell separation device (cell sorter) of the present invention.
  • This cell sorter is configured as a flow path in the chip 101.
  • a glass substrate 110 is attached to the bottom surface of the chip, and a microchannel is disposed immediately above the glass substrate.
  • the thickness of the glass substrate should be as thin as possible for optical measurement.
  • the thickness of the glass substrate is desirably 0.2 mm or less.
  • a hole 102 for introducing a sample solution containing cells into the microphone channel On the upper surface of the chip 101, a hole 102 for introducing a sample solution containing cells into the microphone channel, a hole 103 for introducing a solution containing no cells, and a hole 10 for inserting an electrode into the gel electrode 4, 105, 106, 107, and holes 108, 109 for collecting the separated and purified cells, respectively.
  • FIG. 2 schematically shows an example of the configuration of the flow path of the cell sorter described in FIG.
  • the solution containing the cells introduced into the hole 201 passes through the microchannel 204 and is introduced into the cell separation unit 210.
  • a filter portion 203 directly incorporated in the chip as a fine structure is disposed upstream of the micro flow channel 204.
  • the solution containing no cells introduced into the hole 202 passes through the flow path 205 and is similarly introduced to the cell separation unit 210.
  • Microphone mouth structures (spaces) 208 and 209 filled with a gel containing an electrolyte come into contact with the channel 204 side and the channel 205 side of the cell separation unit 210, respectively.
  • an electric field can be applied to the cell separation unit 210 through the electrodes inserted into the holes 206 and 207.
  • the flow is laminar, so that the cells flowing from the upstream of the flow path 204 do not receive the electric field, and the holes in the downstream cell reservoir 211 In addition, when receiving an electric field, it is guided to the hole 211 of the cell reservoir downstream.
  • the flow speed of the solution should be controlled by, for example, the amount of the solution introduced into the holes 201, 202, 211, 212, that is, the difference in the height of the solution surface. Can be.
  • the gel electrode is introduced into the microstructure of the cell sorter as in this embodiment, the alignment with the surface on which the metal electrode is deposited is aligned as in the case of the conventional metal electrode. No labor is required.
  • Fig. 3a schematically shows an example of the structure of a part of the filter, which was incorporated as a microstructure directly into the chip in order to prevent the microchannel from being clogged as described in Fig. 2. is there.
  • a part of this filter is directly embedded in the cell sorter chip with fine columnar structures 303 arranged periodically, and the cells 310 flowing from the upstream of the microchannel and the garbage 3 Of the particles 02, the dust 302 is captured by the columnar structure 303, thereby preventing the downstream microchannel from being clogged.
  • Figure 3b is an optical microscope photograph of an example in which a filter is actually incorporated into the cell sorter chip. In this photo, the dust 305 is captured by the columnar structure 304 incorporated directly into the chip.
  • the structure of this part of the filter is sufficiently wide relative to the width of the microchannel, so that even if dust is captured by the columnar structure, the flow of the channel is not obstructed.
  • FIG. 4 is an optical microscope image showing the structure of the gel electrode incorporated in the cell sorter.
  • Fig. 4a is an enlarged view of the cell separation part of the cell sorter.
  • Gel electrodes 403 and 404 are arranged for the two microchannels 401 and 402, respectively.
  • Fig. 4b shows the result of actually introducing a fluorescent dye into the gel electrode and observing it with a fluorescence microscope.
  • the gel electrode is connected to the flow paths 401 and 402 by minute communication holes 405 and 406.
  • l% (w / v) agarose was used as a gel electrode, and was used as an electrolyte in which sodium chloride sodium was dissolved in agarose.
  • pH on the cathode side acidic (pH 6.0) and the pH on the anode side basic (pH 8.0) the generation of gas generated at the electrode can be suppressed. it can.
  • FIG. 5 is a diagram schematically showing a process in which cells are sorted when an electric field is actually applied.
  • an electric field is not applied as shown in FIG. 5a, in each of the flow paths 501 and 502, the cells flowing in the flow path 501 are left as they are in the flow path 501. It flows downstream.
  • FIG. 5b when an electric field is applied, the cells flowing through the flow path 501 move to the flow path 502.
  • FIG. 6 is a micrograph showing an example in which cells were actually passed through one of two flow paths in a cell sorter.
  • the continuous photographs 1-3 in Fig. 6 show that an electric field is applied. When no cells are present, the cells flow from the upstream to the downstream in the same microchannel.
  • 4 to 6 in Fig. 6 show that cells move to another flow channel when an electric field is applied.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrostatic Separation (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Optical Measuring Cells (AREA)

Abstract

細胞試料に損傷を与えず、細胞を分離するために電圧を加える電極の消失を防ぎ、長時間の分離を行う際に流路の目詰まりを起こさない細胞分析分離装置を提供する。 本発明の細胞分離装置は、細胞分離空間に外部から細胞に外力を加えて細胞を移動させる手段と、細胞を分離して排出することのできる流路を設けることにより、細胞試料に損傷を防ぎ、電極の電気分解による消失を防ぐことを可能にした。この外力をかける手段として、電解質を含むゲル電極を用いて細胞分離用空間に電界を印加することが好ましい。更に、本発明の細胞分離装置は、細胞分離空間に導入される試料を含む流体が導入される流路の上流部にフィルターを配し不純物を捕獲して流路の目詰まりを防ぐことができる。

Description

細胞分離装置 技術分野
本発明は、 細胞分離装置 (セルソーター) に関する。 従来技術
培養液中の特定の細胞を分離し回収することは生物学 ·医学的な分析において は重要な技術である。 細胞の比重の違いで細胞を分離する場合には速度沈降法に 書
よって分離することができる。 し力 し、 未感作の細胞と感作した細胞とを見分け るような、 細胞の違いがほとんど無い場合には、 蛍光抗体で染色した情報あるい は目視の情報を基に細胞を 1つ 1つ分離する必要がある。
この技術については例えば、 セルソーターがある。 セルソーターは蛍光染色処 理後の細胞を電荷を持たせた液滴中に 1細胞単位で単離して滴下し、 この液滴中 の細胞の蛍光の有無、 光散乱量の大小を基に、 液滴が落下する過程で、 落下方向 に対して法平面方向に高電界を任意の方向に印加することで、 液滴の落下方向を 制御して、 下部に置かれた複数の容器に分画して回収する技術である (Kamarck,M.E. , Methods Enzymol. Vol.151, pl50-165 (1987))。 し力 し、 この技術は高価であること、 装置が大型であること、 数千ボルトとい う高電界が必要であること、 試料が多量に必要であること、 液滴を作成する段階 で細胞に損傷を与える可能性があること、 直接試料を観察できないことなどの課 題があることから、 近年、 マイクロ加工技術を用いて作った微細な流路にできた 層流中を流れる微粒子を直接顕微鏡観察しながら分離するセルソーターが開発さ れてレヽるカ S (Micro Total Analysis, 98, pp.77-80 (Kluwer Academic Publishers, 1998) ; Analytical Chemistry, 70, pp.1909-1915 (1998))、 観察手段に対する試料分離の応答速度が遅く、 実用化するためには、 試料に損傷を与えず、 かつ、 より応答の速い処理方法が必要であった。
本発明者らは、 このような問題点を解消するため、 マイク口加工技術を活用し て、 試料の微細構造と試料中の蛍光分布に基づいて試料を分画し、 回収する試料 に損傷を与えることなく、 簡便に細胞試料を分析分離することのできる細胞分析 分離装置を出願している(特願 2002-245902)。 発明が解決しょうとする課題
本発明は、 細胞試料に損傷を与えず、 細胞を分離するために電圧を加える電極 の消失を防ぎ、 長時間の分離を行う際に流路の目詰まりを起こさない細胞分析分 離装置を提供することを目的とする。
従来の細胞分析分離装置(例えば、 特願 2002-245902 )において、 試料溶液に 直接接する金属電極を用いると、 細胞試料に損傷を与える可能性があり、 また電 圧を長時間加える場合には、 電極が電気分解によって消失してしまう可能性があ つた。 更に、 細胞の精製を長時間にわたって連続して行う際に、 試料溶液に含ま れる組織断片ゃゴミ等の不純物により流路が目詰まりを起こすことを防止する必 要があった。 そのため、 これらの問題の無い細胞分離装置が求められていた。 課題を解決するための手段
本発明の細胞分離装置は、 細胞分離空間に外部から細胞に外力を加えて細胞を 移動させる手段と、 細胞を分離して排出することのできる流路を設けることによ り、細胞試料の損傷を防ぎ、電極の電気分解による消失を防ぐことを可能にした。 更に、 本発明の細胞分離装置は、 細胞分離空間に導入される試料を含む流体が導 入される流路の上流部で不純物を捕獲して流路の目詰まりを防ぐ手段を有するこ とができる。
即ち、 本発明は、 細胞分離用空間、 それに細胞を含む流体を注入するための少 なくとも一つの流路、 それから流体を排出するための少なくとも 2つの流路及ぴ 該細胞分離空間に外部から細胞に外力を加える手段から成る細胞分離装置であつ て、 これらの流路が、 細胞分離空間に外部から外力を加えた場合と加えない場合 に、 細胞が該細胞分離用空間からそれぞれ異なる流路へ排出されるよう配置され たことを特徴とする細胞分離装置である。
この.細胞分離装置にぉレ、ては、 細胞分離空間に外部から細胞に外力を加えるた め、 電極等が直接細胞を含む溶液に接することがなく、 細胞試料の損傷を防ぎ、 電極の電気分解による消失を防ぐことができる。
この外力を加える手段として、 静電気力、 誘電電気泳動力、 磁力、 超音波放射 圧、 光放射圧等が挙げられるが、 静電気力を用いるのが簡便である。
静電気力を用いる場合、 電解質を含むゲル電極を用いて細胞分離用空間に電界 を印加することにより行うことができる。
この電解質としては、 ァガロースゲル、 アミノぺクチン、 コラーゲンなどの一 般的なゲルを用いることができる。
また、 印加する電圧は、 対象とする細胞にも依存するが、 実際の細胞を流して みて分離できるよう設定することが好ましく、 例えば、 ァガロースゲルを用いて 電極間距離が 1 0〜: 1 5 / mの場合、 白血球細胞 ( 5 m程度) を 4 0 V程度で 分離することができる。
この細胞分離装置は、 更に、 注入流路において、 細胞を含む流体の注入点より 下流かつ細胞分離用空間より上流にフィルターを設けてもょレ、。
また、 本発明は、 細胞分離用空間、 それに細胞を含む流体を注入するための少 なくとも一つの流路、 それから流体を排出するための少なくとも 2つの流路及ぴ 該細胞分離空間に外部から細胞に外力を加える手段から成る細胞分離装置であつ て、 該注入流路において、 細胞を含む流体の注入点より下流かつ細胞分離用空間 より上流にフィルターを設け、 これらの流路が、 細胞分離空間に外部から外力を 加えた場合と加えない場合に、 細胞が該細胞分離用空間からそれぞれ異なる流路 へ排出されるよう配置されたことを特徴とする細胞分離装置である。
更に、 この細胞分離装置は、 細胞分離用空間に流体を注入するための流路を 2 つ有し、 細胞分離用空間から流体を排出するための流路を 2つ有する請求項 1又 は 2に記載の細胞分離装置であって、 前記外力を加えない場合に、 該注入用流路 の一つから細胞分離用空間へ流入した流体はほぼ一方の排出流路へ流れ、 他の注 入用流路から細胞分離用空間へ流入した流体はほぼ他方の排出流路へ流れるよう に流路が配置され、 該注入流路の一方のみへ細胞を含む流体を流すことを特徴と するものであってもよい。 図面の簡単な説明
第 1図は、 本発明のセルソーターの構成の 1例を示す模式図である。
第 2図は 本発明のセルソーターの流路の構成の 1例を示す模式図である。 第 3図は 本発明のセルソーターのフィルタ一部の構成の 1例を示す模式図で ある。
第 4図は 本発明のセルソーターの細胞分離部の構成の 1例を示す顕微鏡写真 を示す。
第 5図は 本発明のセルソーターのセルソーティングの過程の 1例を示す模式 図である。
第 6図は 本発明の細胞分離手順を説明した顕微鏡写真を示す。 矢印は細胞を 示す。
図中の符号の説明
101 チップ
102、 103、 104、 105、 106 107、 108、 109 穴 201 細胞を含む溶液の注入口
202 細胞を含まなレ、溶液の注入口
206、 207 電極用穴
21 1、 212 細胞取り出し口
203
204、 205、 401, 402、 501、 502 マイクロ流路
208、 209 電極 (電解質で満たされた空間)
210 細胞分離用空間
301、 304 細胞
302、 305 ゴミ
303 柱状構造 (フィルター)
403、 404 ゲル電極
405、 406 微小な連絡穴 発明の実施の形態 以下、 本発明の細胞分離装置の実施形態について説明するが、 本発明をこれら に限定することを意図するものではない。
第 1図に、 本発明の細胞分離装置 (セルソーター) のシステム構成の 1例を模 式的に示す。 このセルソーターはチップ 1 0 1中に流路として構成されている。 チップの底面にはガラス基板 1 1 0が貼り付けられており、 このガラス基板のす ぐ上にマイクロ流路が配置されている。 このとき、 ガラス基板の厚さは、 光学計 測をするために可能な限り薄いものを用いる。 例えば、 開口数 1 . 4、 倍率 1 0 0倍の対物レンズを用いる場合には、 ガラス基板の厚さは 0 . 2 mm以下である ことが望ましい。 チップ 1 0 1の上面には、 マイク口流路に細胞を含む試料溶液 を導入する穴 1 0 2、 細胞を含まない溶液を導入する穴 1 0 3、 ゲル電極に電極 を挿入する穴 1 0 4、 1 0 5、 1 0 6、 1 0 7、 そして分離精製した細胞を回収 する穴 1 0 8、 1 0 9がそれぞれ開けられている。
第 2図は、 第 1図で説明したセルソーターの流路の構成の一例を模式的に示し たものである。 穴 2 0 1に導入された細胞を含む溶液は、 マイクロ流路 2 0 4を 通過して、 細胞分離部 2 1 0まで導入される。 ここで、 マイクロ流路 2 0 4の上 流には、 マイクロ流路の目詰まりを防ぐために、 チップ中に直接微細構造として 組み込まれたフィルタ一部 2 0 3が配置されている。 他方、 穴 2 0 2に導入され た細胞を含まない溶液は流路 2 0 5を通過して、 同様に細胞分離部 2 1 0まで導 入される。 細胞分離部 2 1 0の流路 2 0 4側、 流路 2 0 5側にはそれぞれ、 電解 質を含むゲルで満たされたマイク口構造(空間) 2 0 8、 2 0 9が接触しており、 穴 2 0 6、 2 0 7に差し込まれた電極を通じて細胞分離部 2 1 0に電場を印加す ることができる。
この細胞分離部 2 1 0において、 流れは層流となっているため、 流路 2 0 4の 上流から流れてきた細胞は、 電場を受けない場合には、 下流の細胞溜の穴 2 1 1 に、 電場を受ける場合には、 下流の細胞溜の穴 2 1 2に誘導される。 このとき、 溶液の流れの速度は、 例えば、 穴 2 0 1、 2 0 2、 2 1 1、 2 1 2に導入された 溶液の量、 即ち、 溶液液面の高さの差によって制御することができる。 また、 こ の実施例のように、 ゲル電極をセルソーターの微細構造中に導入する場合には、 従来の金属電極の場合のように、 金属電極を蒸着した面とのァライメントを揃え る手間は不要である。
第 3図 aは、 第 2図で説明した、 マイクロ流路の目詰まりを防ぐために、 チッ プ中に直接微細構造として組み込まれたフィルタ一部の構造の 1例を模式的に示 したものである。 このフィルタ一部は、 セルソーターのチップ内に微細な柱状構 造 3 0 3が周期的に配置して直接埋め込まれており、 マイクロ流路の上流から流 れてくる細胞 3 0 1と、 ゴミ 3 0 2のうち、 ゴミ 3 0 2は、 この柱状構造 3 0 3 によって捕獲され、 下流のマイクロ流路が目詰まりすることを防いでいる。 第 3 図 bは実際に、 セルソーターのチップにフィルタ一部を組み込んだ一例の光学顕 微鏡写真である。 この写真では、 チップ内に直接組み込まれた柱状構造 3 0 4に よってゴミ 3 0 5が捕獲されている。 このフィルタ一部の構造は、 マイクロ流路 の幅に対して十分に広い幅となっており、 柱状構造にゴミが捕獲されても、 流路 の流れが妨げれられることはない。
第 4図は、 セルソーターに組み込まれるゲル電極の構造を示した光学顕微鏡画 像である。 第 4図 aは、 セルソーターの細胞分離部を拡大して観察したものであ る。 2つのマイクロ流路 4 0 1、 4 0 2に対して、 それぞれゲル電極 4 0 3、 4 0 4が配置されている。 第 4図 bは、 実際にゲル電極に蛍光色素を導入して、 蛍 光顕微鏡で観察したものである。 ゲル電極は、 微小な連絡穴 4 0 5、 4 0 6によ つて流路 4 0 1、 4 0 2とつながっている。 本実施例の場合、 l % (w/v)ァガロ ースをゲル電極として用い、 塩ィ匕ナトリゥムをァガロースに溶解させた電解質と して用レ、た。 また、 陰極側の p Hを酸性 ( p H 6 . 0 ) に、 陽極側の p Hを塩基性 ( p H 8 . 0 ) にすることで、 電極で発生する気体の発生を抑制することができ る。
第 5図は、 実際に電場を印加したときに細胞のセルソーティングがなされる過 程を模式的に示した図である。 第 5図 aのように電場を印加しない場合には、 流 路 5 0 1、 5 0 2それぞれの流れにおいて、 流路 5 0 1中を流れている細胞は、 そのまま、 流路 5 0 1の下流に流れてゆく。 他方、 第 5図 bのように、 電場を印 加した場合には、 流路 5 0 1を流れる細胞は、 流路 5 0 2に移動する。
第 6図は、 実際に、 セルソーター中で細胞を選択的に 2つの流路のいずれかに 流した例を示す顕微鏡写真である。 第 6図の 1〜3の連続写真は、 電場を印加し ないとき、 細胞が同一のマイクロ流路をそのまま上流から下流に流れてゆく姿を 示している。 他方、 第 6図の 4〜 6は、 電場を印加することで、 細胞が別のマイ ク口流路に移動する姿を示す。

Claims

請 求 の 範 囲
1 . 細胞分離用空間、 それに細胞を含む流体を注入するための少なくとも一つ の流路、 それから流体を排出するた'めの少なくとも 2つの流路及ぴ該細胞分離空 間に外部から細胞に外力を加える手段から成る細胞分離装置であって、 これらの 流路が、 細胞分離空間に外部から外力を加えた場合と加えない場合に、 細胞が該 細胞分離用空間からそれぞれ異なる流路へ排出されるよう配置されたことを特徴 とする細胞分離装置。
2 . 前記外力を加える手段が、 電解質を含むゲル電極を用いて細胞分離用空間 に電界を印加することから成る請求項 1に記載の細胞分離装置。
3 . 細胞分離用空間に流体を注入するための流路を 2つ有し、 細胞分離用空間 から流体を排出するための流路を 2つ有する請求項 1又は 2に記載の細胞分離装 置であって、 前記外力を加えない場合に、 該注入用流路の一つから細胞分離用空 間へ流入した流体はほぼ一方の排出流路へ流れ、 他の注入用流路から細胞分離用 空間へ流入した流体はほぼ他方の排出流路へ流れるように流路が配置され、 該注 入流路の一方のみへ細胞を含む流体を流すことを特徴とする細胞分離装置。
4 . 注入流路において、 細胞を含む流体の注入点より下流かつ細胞分離用空間 より上流にフィルターを設けた請求項 1〜 3のいずれか一項に記載の細胞分離装 置。
5 . 細胞分離用空間、 それに細胞を含む流体を注入するための少なくとも一つ の流路、 それから流体を排出するための少なくとも 2つの流路及び該細胞分離空 間に外部から細胞に外力を加える手段から成る細胞分離装置であって、 該注入流 路において、 細胞を含む流体の注入点より下流かつ細胞分離用空間より上流にフ ィルターを設け、 これらの流路が、 細胞分離空間に外部から外力を加えた場合と 加えない場合に、 細胞が該細胞分離用空間からそれぞれ異なる流路へ排出される よう配置されたことを特徴とする細胞分離装置。
6 . 細胞分離用空間に流体を注入するための流路を 2つ有し、 細胞分離用空間 から流体を排出するための流路を 2つ有する請求項 5に記載の細胞分離装置であ つて、 前記外力を加えない場合に、 該注入用流路の一つから細胞分離用空間へ流 入した流体はほぼ一方の排出流路へ流れ、 他の注入用流路から細胞分離用空間へ 流入した流体はほぼ他方の排出流路へ流れるように流路が配置され、 該注入流路 の一方のみへ細胞を含む流体を流すことを特徴とする細胞分離装置。
PCT/JP2004/006299 2003-05-19 2004-04-30 細胞分離装置 WO2004101731A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP04730647A EP1645621A4 (en) 2003-05-19 2004-04-30 APPARATUS FOR SEPARATING CELLS
US10/543,867 US8703457B2 (en) 2003-05-19 2004-04-30 Cell separation apparatus
JP2005506174A JP4420900B2 (ja) 2003-05-19 2004-04-30 細胞分離装置
CA002514115A CA2514115A1 (en) 2003-05-19 2004-04-30 Cell separation apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003139774 2003-05-19
JP2003-139774 2003-05-19

Publications (1)

Publication Number Publication Date
WO2004101731A1 true WO2004101731A1 (ja) 2004-11-25

Family

ID=33447361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006299 WO2004101731A1 (ja) 2003-05-19 2004-04-30 細胞分離装置

Country Status (7)

Country Link
US (1) US8703457B2 (ja)
EP (1) EP1645621A4 (ja)
JP (1) JP4420900B2 (ja)
KR (1) KR100700437B1 (ja)
CN (1) CN100347282C (ja)
CA (1) CA2514115A1 (ja)
WO (1) WO2004101731A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100594408B1 (ko) 2004-12-17 2006-06-30 한국과학기술연구원 초음파장 및 진행파 유전영동을 이용한 세포 분리 장치
JP2006180810A (ja) * 2004-12-28 2006-07-13 Japan Science & Technology Agency 細胞計測および分離チップ
KR100746431B1 (ko) * 2005-02-08 2007-08-03 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 셀 소터 칩
JP2007330201A (ja) * 2006-06-16 2007-12-27 Ab Size:Kk 細胞分取用マイクロチップ及び細胞分取方法
KR100942364B1 (ko) 2008-02-26 2010-02-12 광주과학기술원 미세 입자분리 장치
WO2010090279A1 (ja) 2009-02-06 2010-08-12 株式会社オンチップ・バイオテクノロジーズ 使い捨てチップ型フローセルとそれを用いたフローサイトメーター
WO2011086990A1 (ja) 2010-01-15 2011-07-21 株式会社オンチップ・バイオテクノロジーズ 使い捨てチップ型フローセルとそれを用いたセルソーター
JP2011257241A (ja) * 2010-06-08 2011-12-22 Kanagawa Acad Of Sci & Technol 細胞分析装置
WO2013147114A1 (ja) 2012-03-30 2013-10-03 公益財団法人神奈川科学技術アカデミー イメージングセルソーター
US8703457B2 (en) 2003-05-19 2014-04-22 On-Chip Cellomics Consortium Co., Ltd. Cell separation apparatus
US9109197B2 (en) 2009-03-31 2015-08-18 Kanagawa Academy Of Science And Technology Device for concentrating and separating cells
US11725179B2 (en) 2015-05-12 2023-08-15 On-Chip Biotechnologies Co., Ltd. Single-particle analysis method, and system for performing said analysis

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4773348B2 (ja) 2003-07-12 2011-09-14 アクセラー8 テクノロジー コーポレイション 高感度かつ迅速なバイオ検出法
US20120077206A1 (en) 2003-07-12 2012-03-29 Accelr8 Technology Corporation Rapid Microbial Detection and Antimicrobial Susceptibility Testing
US8216528B2 (en) * 2005-09-29 2012-07-10 Sysmex Corporation Sample preparation kit, sample preparation container, and sample processing device
KR100745754B1 (ko) * 2005-12-29 2007-08-02 삼성전자주식회사 금속 기둥 전극 구조를 포함하는 유전 영동을 이용하여입자를 조작하기 위한 장치 및 그를 이용하여 빠른유속으로 유전 영동에 의하여 입자를 조작할 수 있는 방법
US8137626B2 (en) * 2006-05-19 2012-03-20 California Institute Of Technology Fluorescence detector, filter device and related methods
WO2008036614A1 (en) 2006-09-18 2008-03-27 California Institute Of Technology Apparatus for detecting target molecules and related methods
US20080080302A1 (en) * 2006-09-29 2008-04-03 Fujifilm Corporation Droplet mixing method and apparatus
WO2008153056A1 (ja) * 2007-06-14 2008-12-18 Mitsui Engineering & Shipbuilding Co., Ltd. 細胞分別処理機能を有するフローサイトメータ、および生細胞分別処理方法
JP2011521640A (ja) * 2008-05-30 2011-07-28 コーニング インコーポレイテッド 超音波細胞除去方法
JP2011237201A (ja) * 2010-05-06 2011-11-24 Sony Corp 微小粒子分取装置、マイクロチップ及びマイクロチップモジュール
ES2551922T3 (es) * 2011-03-07 2015-11-24 Accelerate Diagnostics, Inc. Sistemas rápidos de purificación celular
US10254204B2 (en) 2011-03-07 2019-04-09 Accelerate Diagnostics, Inc. Membrane-assisted purification
CN102899247B (zh) * 2012-10-26 2014-01-01 中国科学技术大学 一种血细胞分离装置
US9677109B2 (en) 2013-03-15 2017-06-13 Accelerate Diagnostics, Inc. Rapid determination of microbial growth and antimicrobial susceptibility
CN106459863A (zh) 2014-05-01 2017-02-22 阿卜杜拉国王科技大学 分离细胞的微流体装置
KR101702745B1 (ko) 2014-11-13 2017-02-03 인제대학교 산학협력단 단일세포 분리장치 및 방법
KR20160062521A (ko) 2014-11-25 2016-06-02 인제대학교 산학협력단 목디스크 예방시스템 및 방법
US10253355B2 (en) 2015-03-30 2019-04-09 Accelerate Diagnostics, Inc. Instrument and system for rapid microorganism identification and antimicrobial agent susceptibility testing
AU2016243656A1 (en) 2015-03-30 2017-11-09 Accelerate Diagnostics, Inc. Instrument and system for rapid microorganism identification and antimicrobial agent susceptibility testing
CN110087749B (zh) * 2016-09-13 2022-07-05 海世欧申有限责任公司 微流体过滤装置和捕获通孔中物体的方法
DE112018004857B4 (de) 2017-08-23 2024-03-28 Istanbul Teknik Universitesi Mikrofluidisches system für krebszellen-separation, -erfassung und -medikamentscreening-analysen
CN109913352B (zh) * 2019-03-27 2021-07-23 中国科学院上海微系统与信息技术研究所 一种基于非接触式介电电泳力操控捕获微颗粒和细胞的微流控装置及方法
JPWO2021033750A1 (ja) 2019-08-21 2021-02-25

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998010267A1 (en) * 1996-09-04 1998-03-12 Technical University Of Denmark A micro flow system for particle separation and analysis
JP2001000178A (ja) * 1999-06-23 2001-01-09 Asahi Medical Co Ltd 細胞分離方法及び細胞分離装置
JP2003265915A (ja) * 2002-03-14 2003-09-24 Hitachi Ltd 磁気分離装置及び磁気分離方法
JP2003274924A (ja) * 2002-03-26 2003-09-30 Kikuchi Jun 細胞分離方法及び装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2071743B (en) * 1979-10-05 1983-04-13 Longdon Doors Panelled structures
US4362165A (en) * 1980-01-08 1982-12-07 Ipco Corporation Stable gel electrode
US5427663A (en) * 1993-06-08 1995-06-27 British Technology Group Usa Inc. Microlithographic array for macromolecule and cell fractionation
US6403367B1 (en) * 1994-07-07 2002-06-11 Nanogen, Inc. Integrated portable biological detection system
AU9472998A (en) * 1997-09-04 1999-03-22 Science Research Laboratory, Inc. Cell separation using electric fields
JPH11326155A (ja) * 1998-05-20 1999-11-26 Hitachi Ltd 細胞分画装置
JP4093740B2 (ja) 2001-09-27 2008-06-04 独立行政法人科学技術振興機構 微粒子分別マイクロチップと微粒子分別装置
JP3898103B2 (ja) 2002-08-26 2007-03-28 独立行政法人科学技術振興機構 細胞分析分離装置
EP1645621A4 (en) 2003-05-19 2009-08-05 Japan Science & Tech Corp APPARATUS FOR SEPARATING CELLS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998010267A1 (en) * 1996-09-04 1998-03-12 Technical University Of Denmark A micro flow system for particle separation and analysis
JP2001000178A (ja) * 1999-06-23 2001-01-09 Asahi Medical Co Ltd 細胞分離方法及び細胞分離装置
JP2003265915A (ja) * 2002-03-14 2003-09-24 Hitachi Ltd 磁気分離装置及び磁気分離方法
JP2003274924A (ja) * 2002-03-26 2003-09-30 Kikuchi Jun 細胞分離方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1645621A4 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8703457B2 (en) 2003-05-19 2014-04-22 On-Chip Cellomics Consortium Co., Ltd. Cell separation apparatus
KR100594408B1 (ko) 2004-12-17 2006-06-30 한국과학기술연구원 초음파장 및 진행파 유전영동을 이용한 세포 분리 장치
US8361412B2 (en) 2004-12-28 2013-01-29 Japan Science And Technology Agency Cell measuring and sorting chip
JP4601423B2 (ja) * 2004-12-28 2010-12-22 独立行政法人科学技術振興機構 細胞計測および分離チップ
JP2006180810A (ja) * 2004-12-28 2006-07-13 Japan Science & Technology Agency 細胞計測および分離チップ
KR100746431B1 (ko) * 2005-02-08 2007-08-03 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 셀 소터 칩
JP2007330201A (ja) * 2006-06-16 2007-12-27 Ab Size:Kk 細胞分取用マイクロチップ及び細胞分取方法
KR100942364B1 (ko) 2008-02-26 2010-02-12 광주과학기술원 미세 입자분리 장치
WO2010090279A1 (ja) 2009-02-06 2010-08-12 株式会社オンチップ・バイオテクノロジーズ 使い捨てチップ型フローセルとそれを用いたフローサイトメーター
EP3907488A1 (en) 2009-02-06 2021-11-10 On-chip Biotechnologies Co., Ltd. Disposable chip-type flow cell and flow cytometer using same
US11002660B2 (en) 2009-02-06 2021-05-11 On-Chip Biotechnologies Co., Ltd. Disposable chip-type flow cell and flow cytometer using same
US9945769B2 (en) 2009-02-06 2018-04-17 On-Chip Biotechnologies Co., Ltd. Disposable chip-type flow cell and flow cytometer using same
US8951474B2 (en) 2009-02-06 2015-02-10 On-Chip Biotechnologies Co., Ltd. Disposable chip-type flow cell and flow cytometer using same
US9109197B2 (en) 2009-03-31 2015-08-18 Kanagawa Academy Of Science And Technology Device for concentrating and separating cells
US10101261B2 (en) 2010-01-15 2018-10-16 On-Chip Biotechnologies Co., Ltd. Disposable chip-type flow cell and cell sorter using the same
EP3671180A1 (en) 2010-01-15 2020-06-24 On-chip Biotechnologies Co., Ltd. Disposable chip-type flow cell and flow cytometer using the same
US10724938B2 (en) 2010-01-15 2020-07-28 On-Chip Biotechnologies Co., Ltd. Disposable chip-type flow cell and cell sorter using the same
WO2011086990A1 (ja) 2010-01-15 2011-07-21 株式会社オンチップ・バイオテクノロジーズ 使い捨てチップ型フローセルとそれを用いたセルソーター
EP4191227A1 (en) 2010-01-15 2023-06-07 On-chip Biotechnologies Co., Ltd. Disposable chip-type flow cell and flow cytometer using the same
JP2011257241A (ja) * 2010-06-08 2011-12-22 Kanagawa Acad Of Sci & Technol 細胞分析装置
WO2013147114A1 (ja) 2012-03-30 2013-10-03 公益財団法人神奈川科学技術アカデミー イメージングセルソーター
US11725179B2 (en) 2015-05-12 2023-08-15 On-Chip Biotechnologies Co., Ltd. Single-particle analysis method, and system for performing said analysis

Also Published As

Publication number Publication date
CN100347282C (zh) 2007-11-07
KR100700437B1 (ko) 2007-03-28
JP4420900B2 (ja) 2010-02-24
EP1645621A1 (en) 2006-04-12
CA2514115A1 (en) 2004-11-25
JPWO2004101731A1 (ja) 2006-07-13
EP1645621A4 (en) 2009-08-05
US20060141618A1 (en) 2006-06-29
US8703457B2 (en) 2014-04-22
KR20050100669A (ko) 2005-10-19
CN1764715A (zh) 2006-04-26

Similar Documents

Publication Publication Date Title
WO2004101731A1 (ja) 細胞分離装置
US9109197B2 (en) Device for concentrating and separating cells
EP1677094B1 (en) Cell measuring and sorting chip
KR100746431B1 (ko) 셀 소터 칩
JP4091255B2 (ja) 液滴前駆物質領域の分析に基づくフローサイトメータの液滴の選択的精製および富化選別
TW201105971A (en) Microfluidic device having onboard tissue or cell sample handling capability
JP2007503597A (ja) 血液から赤血球および血小板をサイズに基づいて除去するための微少流体システム
JP2004085323A (ja) 細胞分析分離装置
WO2015053393A1 (ja) イメージングセルソーター
WO2021033750A1 (ja) 細胞分析装置システムおよび細胞分析方法
JP2020533567A (ja) 粒子捕捉用チャンバ、粒子捕捉用チップ、粒子捕捉方法、装置、粒子解析システム
CN109107621A (zh) 基于细胞形变量和介电泳力的癌细胞分离装置及控制系统
EP1621211A1 (en) Soft capsule film and soft capsule
EP3579973A1 (en) Microfluidic system with combined electrical and optical detection for high accuracy particle sorting and methods thereof
JP2008116211A (ja) セルセパレータ及びそれを用いた細胞分離方法
JP2004113223A (ja) 細胞分離方法、細胞分離装置および細胞分離装置の製造方法
CN112553048A (zh) 一种细胞分选方法和芯片
EP2701851B1 (en) Fluidic in-line particle immobilization and collection system and method for using the same
CN114641450A (zh) 使用光力和拉曼光谱取样和分析细胞的微流体装置和方法
Tu et al. Microfluidic cell analysis and sorting using photonic forces
JP2001095558A (ja) 微小検体分離用セルプレート
Galas et al. High Frequency Chemical Stimulation of Living Cells
Xie et al. Nanoelectrodes for Neuron Recording and Stimulation
Hall et al. Capture & Release of Single Cells on a Microfluidic Chip Via Conical Nanopores

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005506174

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 805/MUMNP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2514115

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2006141618

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10543867

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004730647

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057014723

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048071834

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057014723

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004730647

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10543867

Country of ref document: US