WO2004099833A1 - ホログラム光学素子及びそれを用いた面光源装置 - Google Patents

ホログラム光学素子及びそれを用いた面光源装置 Download PDF

Info

Publication number
WO2004099833A1
WO2004099833A1 PCT/JP2004/006486 JP2004006486W WO2004099833A1 WO 2004099833 A1 WO2004099833 A1 WO 2004099833A1 JP 2004006486 W JP2004006486 W JP 2004006486W WO 2004099833 A1 WO2004099833 A1 WO 2004099833A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
light
hologram optical
light source
angle
Prior art date
Application number
PCT/JP2004/006486
Other languages
English (en)
French (fr)
Inventor
Tetsuya Hoshino
Yasushi Sugimoto
Original Assignee
Hitachi Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co., Ltd. filed Critical Hitachi Chemical Co., Ltd.
Priority to JP2005506042A priority Critical patent/JP4265602B2/ja
Priority to US10/555,591 priority patent/US7768685B2/en
Publication of WO2004099833A1 publication Critical patent/WO2004099833A1/ja
Priority to US12/490,799 priority patent/US20100027084A1/en
Priority to US12/490,596 priority patent/US20100020374A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0252Diffusing elements; Afocal elements characterised by the diffusing properties using holographic or diffractive means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1866Transmission gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • G02B5/1871Transmissive phase gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H2001/2625Nature of the sub-holograms
    • G03H2001/264One hologram being a HOE

Definitions

  • the present invention relates to a hologram optical element that bends white light incident from an oblique direction in a vertical direction and emits the light, and a surface light source device using the same. Brightness can be improved. Background art
  • Liquid crystal displays are used not only for computer displays and control panel displays for home appliances, but also for mobile phone displays. There is a need for even lower power consumption, lighter weight, and thinner displays.
  • liquid crystal displays are not light emitting devices, it is necessary to use an external light source or ambient external light.
  • An external light source is a pack-light type in which a surface light source is installed on the back of a liquid crystal panel. In the case of the backlight method, it is necessary to emit the light emitted from the surface light source in the front direction of the observer.
  • Fig. 1 shows a typical configuration of such a pack write system.
  • the hologram optical grating 10 has conventionally been a prism sheet.
  • Light obliquely emitted from the light guide plate 12 is bent in the vertical direction by a prism sheet, is diffused by the diffuser 32 so as to reduce chromatic dispersion, and irradiates the liquid crystal panel 30 displaying an image.
  • the shape of the light guide plate or between the light guide plate and the liquid crystal By optimizing the shape of the prism sheet provided, the brightness of the front is designed to be high.
  • FIG. 2 illustrates the angle of incidence ⁇ i to the diffraction grating and the angle of emission ⁇ 0, but here, the explanation will be made with the prism sheet replaced.
  • the exit angle of the light emitted from the light guide plate depends on the design of the light guide plate, but the incident angle 0i is often about 20 ° to 70 °. Therefore, the role of the prism sheet is to efficiently bend this light in the direction where 0 is 0 °, that is, in the vertical direction. To do so, it is necessary to reduce Fresnel reflection, which is the interface reflection between the air layer and the prism sheet, and to make as much light as possible travel in the 0 ° direction.
  • the light bending angle is constant by providing light bending characteristics such that the luminance in the vertical direction does not decrease even if the incident angle 0 i force slightly fluctuates. Brightness in the front direction is higher than in the case.
  • the light source is white light, it is necessary to reduce the bending angle dependence of the wavelength and suppress the spectral distribution as much as possible. Dispersion degrades display quality, such as degrading the color reproducibility of the color display of liquid crystals.
  • each prism performs the function of bending light, so if there is a prism defect or foreign matter, the light passing through the prism becomes an extraordinary ray, causing display abnormalities such as bright spots .
  • Display devices are very sensitive to defects and foreign matter, causing display anomalies and reducing product quality. For this reason, it was necessary to take great care in handling and manufacturing so that there was no prism defect or foreign matter.
  • the hologram optical element has the following problems: 1) diffracted light other than the diffraction order in which incident light is diffracted vertically is generated; 2) the diffraction efficiency of the diffraction order is reduced; and 3) wavelength dispersion is large. For example, if the period is small, there will be no order for vertically diffracting, and the chromatic dispersion will increase. If the depth is not appropriate, the diffraction efficiency of the diffraction order will be low.
  • An object of the present invention is to use a hologram optical element utilizing a diffraction / interference phenomenon based on the wave property of light instead of a conventional prism sheet utilizing refraction, thereby achieving a high transmittance and a thinner light bending film. And a surface light source device using the same. Disclosure of the invention
  • the present invention provides a hologram optical element having small chromatic dispersion and small polarization dispersion and high diffraction efficiency so that white light emitted from a surface light source is bent in the vertical direction, and a surface light source using the same. Provide equipment.
  • the hologram optical element according to the present invention has a small wavelength dependence of the bending angle, suppresses the spectral distribution of white light incident from an oblique direction, and emits the white light after bending in the vertical direction.
  • the hologram optical element is a transmission type diffraction grating, wherein ⁇ 1, ⁇ 2, ⁇ 3 are in the range of 0.46 ⁇ 1 ⁇ 0.50 ⁇ m 0.53 ⁇ 2 ⁇ 0.57 ⁇ m, 0.60 ⁇ 3 ⁇ 0.64 ⁇ m.
  • ⁇ 1, ⁇ 2, ⁇ 3 are in the range of 0.46 ⁇ 1 ⁇ 0.50 ⁇ m 0.53 ⁇ 2 ⁇ 0.57 ⁇ m, 0.60 ⁇ 3 ⁇ 0.64 ⁇ m.
  • the diffraction angle at which the diffraction efficiency at each wavelength is maximized is within the range of 15 ° to + 5 °. Is preferred.
  • ⁇ 1 0.48 / im
  • ⁇ 2 0.55 ⁇ m
  • ⁇ 3 0.62 j m Force S preferred ⁇ .
  • the hologram optical element has three wavelengths of ⁇ 1, 2, and ⁇ 3 in a range of 1 ⁇ 0.50 ⁇ m, 0.53 ⁇ 2 ⁇ 0.57 ⁇ m, ⁇ 3 ⁇ 0.64i.
  • ⁇ 1 0.48 m
  • ⁇ 2 0.55 ⁇ m
  • ⁇ 3 0.62 ⁇ m Force S preferred level.
  • the grating has a sawtooth-shaped cross section, the lengths of two sides sandwiching the tip of the tooth differ by 10% or more, and the included angle is 60 ° or less.
  • the hologram optical element is a transmission type diffraction grating, and the grating groove is formed in an arc shape.
  • ⁇ i 60 ° ⁇ 15 ° in a vertical direction
  • the mouthpiece optical element is in the form of a film or a plate.
  • a film having a polarization separation, color separation, or antireflection function is disposed adjacent to the hologram optical element, or that the film is provided on the front and back of the hologram optical element.
  • the hologram optical element is preferably provided with a polarization separation, color separation, and antireflection function by a grating having a period of 0.6 ⁇ or less and a relief shape of 0.5 ⁇ m or less in depth.
  • the hologram optical element is arranged on a light emitting surface of the surface light source.
  • the surface light source device emits light in an angle range of 20 ° to 70 ° with respect to the normal direction of the light emitting surface of the surface light source, and When installed, 60% or more, and preferably 70% or more, of the total emitted light from the surface light source is between 110 ° and + 10 ° with respect to the normal direction of the light emission surface of the surface light source. It is preferable that the light is emitted in an angle range.
  • the surface light source device further uses a diffuser in addition to the hologram optical element. It is preferable that the surface light source device is a hologram diffuser in which the diffuser diffuses the incident light within a specific angle range in the space.
  • the hologram diffuser is integrally formed on the light emitting surface of the light guide plate.
  • an antireflection film is disposed on a light emission surface of the hologram optical element.
  • the surface light source device simultaneously arranges a film for the purpose of selecting polarization or wavelength.
  • the surface light source device is a surface light source in which a light source is disposed in contact with one end surface of a light guide plate, and a plurality of grooves substantially perpendicular to a direction of light propagating in the plate are formed on a back surface of the light guide plate. Is preferred.
  • the polarization of light emitted from the hologram optical element in a specific direction is strengthened so that the light incidence angle on the hologram optical element is near the pre-use star angle.
  • FIG. 1 is a diagram showing a configuration of a liquid crystal display.
  • FIG. 2 is a diagram for explaining the incident angle 0 i and the emission angle 00 in the hologram optical element (diffraction grating).
  • FIG. 3 is a diagram showing the relationship between the diffraction order and the diffraction angle of the diffracted light.
  • FIG. 4 is a diagram showing a deviation of the hologram optical element (diffraction grating) from the sawtooth shape.
  • FIG. 5 is a diagram illustrating the shape of the sawtooth of the hologram optical element (diffraction grating).
  • Figure 6 shows a hologram optical element (diffraction grating) with fan-shaped grooves.
  • FIG. 7 is a diagram for explaining that a hologram optical element (diffraction grating) bends light emitted obliquely from a surface light source in the vertical direction.
  • a hologram optical element diffiffraction grating
  • FIG. 8 is a diagram showing a configuration of a liquid crystal display.
  • FIG. 9 is an explanatory diagram showing a method for defining and measuring a diffusion characteristic of a transmission hologram diffuser.
  • FIG. 10 is a diagram showing a configuration of a liquid crystal display.
  • FIG. 11 is a cross-sectional view of the light guide plate.
  • FIG. 12 is a cross-sectional view schematically showing an apparatus for manufacturing a hologram optical element (diffraction grating).
  • FIG. 13 is a graph showing the relationship between the diffraction angle of the hologram optical element (diffraction grating) and the diffraction efficiency.
  • FIG. 14 is a graph showing the relationship between the diffraction angle of the hologram optical element (diffraction grating) and the diffraction efficiency.
  • FIG. 15 is a diagram showing a first specific example of the hologram optical element (diffraction grating).
  • FIG. 16 is a diagram showing a second specific example of the hologram optical element (diffraction grating). BEST MODE FOR CARRYING OUT THE INVENTION
  • the hologram optical element of the first embodiment has a small wavelength dependence of the bending angle, and suppresses the splitting of white light incident from an oblique direction to bend in the vertical direction and emit the light.
  • the hologram optical element controls outgoing light by multiple interference of diffracted light transmitted through many uneven shapes, so even if one uneven shape is lost or foreign matter is present, there is little effect on the emitted light. . In other words, it has the feature of being excellent in redundancy. Therefore, handling and processing are easier than conventional prism sheets.
  • a hologram optical element it is possible not only to bend but also to add other light control functions such as a condensing function.
  • the design method of this hologram optical element is described in, for example, the above-mentioned Victor Soifer et al.
  • a diffraction grating as an example of a hologram optical element, it is generally effective to increase the diffraction efficiency by making the grating cross section into a sawtooth shape. If the shape is further optimized, it is possible to bend white light with reduced spectral and diffusion.
  • a monochromatic light passes through a normal hologram optical element, a plurality of diffractions such as a primary light and a secondary light are generated, and the light propagates at each diffraction angle, so that the bending efficiency of the light is reduced.
  • the problem of color dispersion generally arises because the diffraction angle differs depending on the wavelength.
  • the hologram optical element is any optical member utilizing the diffraction and interference phenomenon based on wave optics.
  • White light means light containing the three primary colors of blue, green and red, and bending vertically means light obliquely incident on the surface of an optical member having a diffraction and interference effect, and the normal to the surface. This means that the light is emitted while changing the direction.
  • the hologram optical element according to the first embodiment may include a large number of pixels, such as a computer generated hologram (CGH).
  • CGH computer generated hologram
  • the type of the hologram optical element may be a surface relief type or a volume phase type, and may be on one side or both sides of the film, or may be overlaid. Further, it may be a transmission type or a reflection type. It may be combined with a prism based on the principle of geometric optics.
  • the hologram optical element according to the third embodiment is different from the hologram optical element according to the first or second embodiment, which is a transmission type diffraction grating, in that 0.46 ⁇ 1 ⁇ 0.50 IX m (blue light), 0.53 ⁇ ⁇ 2 0.57 ⁇ m (green light), near parallel light with three wavelengths of ⁇ 1, 22, ⁇ 3 in the range of 0.60 ⁇ 3 ⁇ 0.64 ⁇ (red light)
  • L1 0.48 ⁇ m
  • ⁇ 2 0.55 ⁇ m
  • ⁇ 3 0.62 ⁇ m
  • three wavelengths of light are incident at an angle of 0 i
  • the average period d satisfies Eq. (3).
  • the average period d can be set to about 4.85 ⁇ from equation (5).
  • Figure 3 shows the relationship between the diffraction order and the diffraction angle.
  • the zero-order light propagates in the same direction as the incident light. This The diffracted light of the positive order emerges in a direction closer to the normal direction of the exit surface, and the diffracted light of the negative order appears on the opposite side. Therefore, the light emitted in the normal direction of the emission surface is always a positive-order diffracted light.
  • the hologram optical element according to the fourth embodiment is the hologram optical element according to any one of the first to third embodiments, wherein the cross section of the grating has a sawtooth shape, and the length of two sides sandwiching the tip of the tooth. Differ by 10% or more, and the included angle is 60 ° or less.
  • the hologram optical element according to the fourth or fifth embodiment has a shape that is preferable for the grating cross-sectional shape of a transmission type diffraction grating (hologram optical element) used for bending white light in the vertical direction.
  • a transmission type diffraction grating hologram optical element
  • the lattice cross-sectional shape may deviate from the ideal sawtooth shape as shown in FIG. At this time, it is preferable that the maximum value of the deviation from the straight line (28 in FIG. 4) is 0.2 ⁇ or less. Depending on the conditions, the diffraction efficiency may be maximized at a slight deviation from the sawtooth shape.
  • the optimal grating shape depends on the angle of incidence, wavelength, period, depth, and refractive index. One of the optimal shapes can be obtained by calculating the exact solution of the diffraction efficiency of the periodic diffraction grating and changing the grating shape through trial and error and performing numerical calculations.
  • the hologram optical element according to the sixth embodiment is a hologram optical element according to the fourth or fifth embodiment, which is a transmission type diffraction grating, wherein the diffraction grating is formed from a material having a refractive index ⁇ , and The average depth h is X d / (n-1) ( ⁇ , 0.4 ⁇ Q! ⁇ 1.0, where d is the average period of the diffraction grating).
  • the depth of the grating groove of the transmission type diffraction grating (hologram optical element) used for bending the white light in the vertical direction in the hologram optical hatch of the sixth embodiment is preferable.
  • the range is shown.
  • Figure 5 shows the relationship between the depth of the diffraction grating and the displacement of the periodic sawtooth. If the average depth h of the grating grooves of the diffraction grating is too deep or too shallow, the efficiency with which light reaches vertically decreases. Thus, when the refractive index of the diffraction grating is n, the average depth h of the grating groove is a X dZ (n-1) (however, 0.4 ⁇ ⁇ ⁇ 1.0). Is high.
  • the optimal length h depends on the period d and the misalignment u of the sawtooth peak. For example, when the period is and uZ d is 20%, 5.5 ⁇ m is one of the optimal depths.
  • the transferred resin is cured by heat or UV light.
  • a method of forming a mold having a deep groove used in the present invention a method of applying an electron beam resist on a substrate, drawing an electron beam and then digging with RIE, a method of exposing and developing with X-ray radiation, One is a method of exposing and developing the pattern of one scale mask, and the other is a method of fabricating it by mechanical processing using pite.
  • the material to be transferred is preferably an acryl-based photocurable resin having good light transmission, depending on the use conditions.
  • the hologram optical element according to the seventh embodiment is the hologram optical element according to any one of the first to sixth embodiments, which is a transmission type diffraction grating, wherein the grating grooves are formed in an arc shape.
  • This hologram optical element has a grating groove arrangement of a diffraction grating suitable for a pack light in which an LED is installed at a corner of a light guide plate.
  • the grating grooves By making the grating grooves arc-shaped, light propagating from the LED at the corners is efficiently It can be bent vertically, and the brightness in the front direction can be increased.
  • the lattice section has a sawtooth shape, and the lattice grooves are formed concentrically around a certain point.
  • the arc-shaped lattice grooves need not necessarily be continuous grooves.
  • the hologram optical element according to the eighth embodiment includes first to seventh transmission type diffraction gratings used to bend white light in the visible region with an incident angle ⁇ i of 60 ° ⁇ 15 ° in the vertical direction.
  • ⁇ i 60 ° ⁇ 15 ° in the vertical direction.
  • the period and the grating groove of the transmission type diffraction grating suitable for the hologram optical element of the eighth embodiment particularly when the incident angle ⁇ i is in the range of 60 ° ⁇ 15 °.
  • the depth and cross-sectional shape are shown.
  • the direction of the groove of the transmission type diffraction grating may be perpendicular or parallel to the incident light. Also, it may be cut vertically and horizontally.
  • Figure 2 shows the relationship between the angle of incidence and the angle of emergence on the diffraction grating.
  • White light including the three primary colors of red, green, and blue is emitted from a surface light source that emits in a planar manner, such as a light guide plate used for liquid crystal displays.
  • the angle formed between the normal direction of the incident surface of the diffraction grating and the incident light that is, the incident angle 0i, is often in the range of 20 to 70 degrees due to the design of the surface light source device.
  • Diffraction gratings may have not only the function of bending light but also the functions of collecting and diffusing light.
  • the surface on which the diffraction grating is fabricated is not only a flat surface but also a curved surface for adding optical functions. It may be made on top.
  • a diffraction grating may be used with a prism sheet. For example, when considering the xyz space, it is conceivable that light is bent in the X direction by a diffraction grating and bent by a prism sheet in the y direction.
  • the hologram optical element according to the ninth embodiment is the hologram optical element according to any one of the first to eighth embodiments, wherein the hologram optical element is in a film or plate shape.
  • the shape of the hologram optical element is less bulky in the form of a film or a plate than in the form of a cube or a sphere.
  • the hologram optical element of the tenth embodiment is a hologram optical element according to any one of the first to ninth embodiments, wherein a film having a polarization separation, color separation, or antireflection function is adjacent to the hologram optical element. Or on the front and back of the hologram optical element.
  • the hologram optical element of the eleventh embodiment is the same as the hologram optical element of the tenth embodiment, except that the polarization separation, color separation, and antireflection functions have a period of 0.6 ⁇ m or less and a depth of 0.5. It is provided by a grating having a relief shape of ⁇ m or less. In this way, by combining the hologram optical element used to bend the white light emitted from the surface light source in the vertical direction with the functions of polarization separation, color separation, and anti-reflection, light utilization efficiency can be increased. .
  • the polarization separation, color separation, and antireflection functions can be realized by creating a fine periodic structure.
  • the twelfth embodiment is a surface light source device characterized in that the hologram optical element according to any one of the first to eleventh embodiments is arranged on the light emission surface of a surface light source.
  • the hologram optical element of the present embodiment bends light obliquely emitted from a surface light source in the vertical direction as shown in FIG.
  • a hologram optical element as in the first and second embodiments, the white light emitted from the surface light source can be bent efficiently, and the surface light source device having a high luminance in the front direction and small coloring due to spectral separation. Is obtained.
  • the thirteenth embodiment is different from the surface light source device of the first and second embodiments in that the hologram optical element is not arranged.
  • the hologram optical element is not arranged.
  • the hologram optical element is a transmission type diffraction grating having a sawtooth-shaped cross section
  • the light emitted from the surface light source travels along the longer side of the tooth in the direction of the sawtooth shown in FIG. It is preferable that the light is incident on the diffraction grating so as to be substantially parallel to the direction in which the diffraction efficiency is increased.
  • the angle range is from 10 ° to + 10 °.
  • the front-side luminance of the liquid crystal display device can be increased, and the surface light source device for a pack light that enables high-quality display with little spectral separation. Can be realized.
  • a diffuser is used in addition to the hologram optical element in the surface light source device according to the twelfth or thirteenth embodiment.
  • a diffuser may be inserted in this way, since even the slightest chromatic dispersion is perceived by the human eye.
  • the method disclosed in Japanese Patent Application No. 2002-237797 of the present inventors can be used.
  • the arrangement and combination of the hologram optical element and the diffuser may be on both sides of one film, or may be two diffraction gratings and one diffuser. Even if the light guide plate 12, the hologram optical element 10 and the diffuser 32 are arranged in this order as shown in FIG. 1, the light guide plate 12, the diffuser 32 and the hologram optical element 10 are arranged in this order as shown in FIG. You may. Further, a light guide plate, a diffuser, a hologram optical element, and a diffuser may be used.
  • the diffusion of the diffuser may be due to surface irregularities or may be due to the refractive index distribution inside the film.
  • the hologram diffuser diffuses incident light within a specific angle range in space.
  • a hologram diffuser that can define a diffusion angle and has high diffusion efficiency is preferable as the diffuser. Diffraction when light propagates in the z direction
  • x be the direction parallel to the grooves of the lattice.
  • the direction of light scattering by the diffuser is defined by the unit vector (Sx, Sy, Sz).
  • the maximum values of SX and Sy are defined by sin (01) and sin (02), respectively.
  • chromatic dispersion occurs in the y direction, so the range of 01 is made as small as possible, and the range of ⁇ 2 is set to the minimum angle required to eliminate chromatic dispersion.
  • the hologram diffuser may be a surface relief type or a volume phase type. Further, the diffusion characteristics of the hologram diffuser may differ depending on the location.
  • the hologram diffuser is integrally formed on the light exit surface of the light guide plate.
  • the hologram diffuser can be integrally molded with the light exit surface of the light guide plate to reduce Fresnel loss. it can.
  • the anti-reflection film is arranged on the light emission surface of the hologram optical element in the surface light source device according to any one of the twelfth to sixteenth embodiments.
  • an antireflection film (antireflection film) may be provided.
  • the anti-reflection function can be realized by covering with a dielectric multilayer film. For example, how to make an anti-reflection film using a dielectric multilayer film, edited by Shiro Fujiwara, Hideo Ikeda, Kozo Ishiguro, Eiji Yokota, "Optical Thin Film 2nd Edition," Kyoritsu Shuppan, 1998, p.
  • This function can also be realized by providing a grating with a small period. It is desirable that this period is 0.28 ⁇ 0.08 jum and the depth is 0.22 ⁇ 0. ⁇ . Further, in order to minimize the Fresnel loss by reducing the interface between the film and the air, it is preferable that the relief shape for bending light and the grating having a small period are on the front and back of the same film. Further, a plurality of such films may be stacked. Further, it is preferable that a diffuser or an antireflection film be provided on the surface of the light guide plate from which the emitted light is emitted.
  • a film for polarization or wavelength selection is arranged at the same time.
  • Providing a film for the purpose of polarization or wavelength selection in this manner can increase the light use efficiency. For example, when the light emitted from the surface light source of the light guide plate enters the film near the incident angle of 60 °, if the relief shape has a period of 0.6 m or less and a depth of 0.5 / zm or less, it is specified. Only light with a wavelength and polarization of 80% is reflected with an efficiency of 80% or more, and the remaining light is transmitted with an efficiency of 80% or more. At this time, the optimum relief shape is selected according to the wavelength and the incident angle. If the light reflected here is reused, the light use efficiency can be improved.
  • the period and depth are designed according to the red, green and blue matrix of the color filter with a relief shape with a period of 0.5 ⁇ or less and a depth of 0.5 ⁇ or less, and a film that bends light vertically.
  • a liquid crystal display device with improved utilization efficiency of light lost by polarizing films and color filters can be made. Because a polarizing film loses one of the two polarizations, or 50% of the amount of light, and a color filter loses two of the three primary colors, or 67% of the amount of light. Transmits only the colors with If it can be reused, will it be possible to greatly increase the light use efficiency?
  • the relief shape for bending light and the small lattice of the sub-mic aperture period be on the front and back of the same film in order to reduce Fresnel reflection at the interface between the air and the film.
  • a plurality of lattice layers having a small submicron period may be stacked.
  • a diffuser or an anti-reflection film be provided on the surface of the surface light source, from which the light is emitted from the light guide plate serving as the light emitting layer.
  • the nineteenth embodiment is directed to a surface light source in which the light source is disposed in contact with one end surface of the light guide plate in any one of the surface light source devices according to the first to the eighteenth embodiments.
  • the back surface of the optical plate has a plurality of grooves formed substantially perpendicular to the direction of light propagating in the plate.
  • Light incident from the left end face in FIG. 10 is reflected by the back surface 50 of the light guide plate, then diffused by the diffuser 46 on the surface of the light guide plate, and further diffused by a hologram optical element such as a diffraction grating. ) And is emitted in the vertical direction.
  • the brightness in the vertical direction is adjusted by optimally adjusting the reflection angle from the back surface of the light guide plate, the diffusion angle on the light guide plate surface, and the bending angle of the hologram optical element (light bending film). Can be higher.
  • the twentieth embodiment is directed to the hologram according to any one of the twelfth to nineteenth embodiments, wherein the light incident angle on the hologram optical element is close to the pre-Uster angle.
  • the polarized light in a specific direction is enhanced for the light emitted from the optical element.
  • the light incident angle on the hologram optical element to be close to the Pre-Uster angle
  • the light emitted from the surface light source device has an increased P polarization intensity.
  • the brightness in the front direction can be further increased by combining with a liquid crystal panel using P-polarized light.
  • FIG. 10 shows a pack-light structure using the light guide plate 48 according to the present embodiment, and this backlight structure is for a small liquid crystal display device such as a mobile phone.
  • the pack light consists of a reflector 56, a light guide 48, a hologram diffuser 46, and a hologram optical element (light diffraction grating) 10 from the bottom of the figure.
  • the light guide 48 and the hologram diffuser 46 Is integrally molded.
  • An LED light source 54 is provided on the light incident end face 52 side of the light guide plate 48. With this configuration, light emitted from the LED light source 54 is made incident on the light incident end surface 52 of the light guide plate 48, and is totally reflected several times by the reflection groove formed on the back surface 50 of the light guide plate. The light is emitted from the hologram diffuser 46 formed on the emission surface.
  • a hologram optical element 10 diffracts light in the vertical direction, and transmits a distributed light flux having substantially uniform luminance to a liquid crystal
  • the light guide plate 48 was manufactured by injection molding using polycarbonate. 0.8 mm thick, reflective groove on the back has the structure shown in Fig. 11 Are random in the range of 120 to 150 m to prevent moire with the pixels of the liquid crystal panel.
  • the hologram diffuser 46 formed on the exit surface is 60 degrees in the direction parallel to the incident end face 52 (the diffusion angle at which the light intensity is halved is 60 degrees), and is perpendicular to the incident end face 52. The diffusion characteristics were once in the direction.
  • an acrylic resin-based ultraviolet curable resin for example, urethane acrylate or epoxyacrylate is used. In FIG.
  • the manufacturing apparatus 88 and the manufacturing method of the hologram optical element 10 will be described.
  • a supply head 68 for supplying a photocurable resin 70 is arranged opposite to the mold roll 82.
  • a metering roll 78, a nip roll 80, an ultraviolet irradiation device 86, and a release roll 84 are provided in this order downstream of the mold roll 82 in the rotation direction.
  • a diffraction grating groove is formed on the peripheral surface of the mold roll 82, and the diffraction grating groove is transferred to the surface of the photocurable resin 70.
  • a diamond byte was manufactured, and the surface of the mold roll 82 was subjected to groove processing using a diamond pipe and a precision processing machine.
  • This mold roll 82 was made of a brass material, and after grooving with a diamond byte, chromium electroless plating was immediately performed to protect the surface from oxidation, gloss, and mechanical strength.
  • the light-curable resin 70 Sunrat R201 (trade name, manufactured by Sanyo Chemical Industries, Ltd.) was used as the light-curable resin 70.
  • the photocurable resin 70 is supplied from the resin tank 64 to the mold rolls 82 via the pressure control device 66 and the supply head 68.
  • the supply pressure of the photocurable resin 70 is detected by a pressure sensor, and the pressure is controlled.
  • the pressure applied to the mold rolls 82 is adjusted by the control device 66.
  • the film thickness of the photocurable resin 70 applied to the mold roll 82 is adjusted to be constant by the metering roll 78.
  • the metering roll 78 is provided with a doctor blade 72 to remove the resin adhering to the metering roll 78 and stabilize the uniformity of the resin applied to the mold roll 82. Let me.
  • a transparent base film (translucent film) 74 is supplied between the nip roll 80 and the mold roll 82 located downstream of the metering rolls 78, and the transparent base film 74 is connected to the epoxy rolls 80.
  • the transparent base film 74 is adhered to the photocurable resin 70 by being sandwiched between the mold opening holes 82.
  • the ultraviolet irradiation device 86 the ultraviolet light emitted from the ultraviolet irradiation device 86 cures the photocurable resin 70 and the transparent base.
  • the integral film sheet 76 is peeled off from the mold opening 82 by a release roll 84. Thus, a long film sheet 76 can be continuously obtained.
  • the hologram optical element 10 is obtained by cutting the film sheet 76 thus manufactured into a predetermined size.
  • the hologram optical element (diffraction grating) can be manufactured by injection molding or hot pressing.
  • polyethylene terephthalate PET
  • PET polyethylene terephthalate
  • the present invention is not limited to this, and it is possible to use polycarbonate, acrylic resin, thermoplastic urethane, or the like.
  • the photocurable resin 70 other materials such as acryl-modified epoxy acryl-modified polyurethane can be selected.
  • the light source of the ultraviolet irradiation device 86 uses a metal halide lamp (maximum 8 Kw), The feed speed of g 76 was manufactured at 3 m / min. Feed speed is light curable resin
  • the surface light source device manufactured in this way had sufficient frontal luminance, showed no unevenness due to moiré and no coloration due to spectrum, and exhibited excellent characteristics as a backlight for a liquid crystal display device.
  • the optical characteristics of this hologram optical element are shown in FIGS. 13 and 14.
  • Figure 13 shows the wavelength 4 8
  • Fig. 14 shows a similar experiment with a wavelength of 633 nm. In both cases, at 60 ° incidence, the light is diffracted by 0 ° in the vertical direction and emitted. On the other hand, at 70 ° incidence, the distribution does not shift as it is by 10 °, but the distribution is slightly biased in the vertical direction. In other words, light is diffracted more toward the front. By using this effect, the brightness in the front direction can be increased.
  • FIG. 15 is a cross-sectional view showing a first specific example of a hologram optical element that is a transmission diffraction grating.
  • the first specific example corresponds to the hologram optical element of the second, fourth, and eighth embodiments.
  • FIG. 16 is a cross-sectional view showing a second specific example of the hologram optical element which is a transmission type diffraction grating.
  • the second specific example corresponds to the hologram optical element according to the second and eighth embodiments.
  • incident light having an incident angle of 67 degrees in the direction shown in the figure (a sufficiently collimated light close to parallel light)
  • Table 2 Table 2 below were obtained.
  • the ninth and tenth orders of 0.48 ⁇ m are almost equal in diffraction efficiency, and the seventh and eighth orders of 0.62 ⁇ m are also almost equal.
  • a pack light obtained by combining the first and second specific examples of the hologram optical element, which is a transmission type diffraction grating, with the light guide plate in the above-described embodiment can provide sufficient frontal luminance and also provide coloration due to spectrum. I could't see it.
  • the emitted light is controlled by the multiple interference of the diffracted light transmitted through the many uneven shapes, so that one uneven shape is lost or foreign matter is present.
  • there is little effect on the emitted light and handling and processing are easier than with conventional prism sheets.
  • high transmittance and thinning can be realized at the same time.
  • white light incident from an oblique direction can be suppressed and can be efficiently bent and emitted in the vertical direction, thereby increasing the brightness in the frontal direction.

Abstract

薄型で光透過率の高く、取扱い性に優れるホログラム光学素子及びそれを用いた面光源装置を提供する。曲げ角度の波長依存性が小さく、斜め方向から入射した白色光の分光を抑えて垂直方向に曲げて出射するホログラム光学素子。透過型回折格子で、0.46≦λ1≦0.50μm(青色光)、0.53≦λ2≦0.57μm(緑色光)、0.60≦λ3≦0.64μm(赤色光)の範囲にあるλ1、λ2、λ3の3波長の光を角度θiで入射させた時、各波長の回折効率が最大となる回折角度が、−5度から+5度の範囲に含まれるホログラム光学素子。

Description

明細書 ホログラム光学素子及ぴそれを用いた面光源装置 技術分野
本発明は、 斜め方向から入射した白色光を垂直方向に曲げて出射する ホログラム光学素子及ぴそれを用いた面光源装置に関するもので、 特に 液晶ディスプレイのパックライ トに用いることにより観察者の正面方向 への輝度を向上することができる。 背景技術
液晶ディスプレイは、 コンピュータの表示部や家電製品の制御パネル の表示部のほか、 携帯電話の表示部に用いられ、 より一層の低消費電力 化と軽量化、 薄型化が求められている。
液晶ディスプレイはき発光デバイスではないので、 外部光源または周 囲の外光を利用する必要がある。 外部光源としては、 液晶パネルの背面 に面光源を設置するパックライ ト方式が代表例である。 バックライ ト方 式の場合、 面光源からの出射光を観察者の正面方向へ出射させることが 必要になる。
このようなパックライ ト方式の代表的な構成を図 1に示した。 ただ し、 ホログラム光学格子 1 0のところが従来はプリズムシートとなって いた。 導光板 1 2から斜めに出射された光はプリズムシ一トで垂直方向 に曲げられ、 拡散体 3 2で色分散が小さくなるよう拡散され、 画像を表 示する液晶パネル 3 0を照射する。 導光板の形状や導光板と液晶の間に 設けたプリズムシートの形状を最適化して、 正面の輝度が高くなるよう 設計されてレ.、る。
図 2は回折格子への入射角 Θ i と出射角 Θ 0を図示したものである が、 ここではプリズムシートに置き換えて説明する。 導光板から出射さ れる光の出射角は導光板の設計に依存するが, 入射角 0 iが 2 0° 〜 7 0° く らいになることが多い。 そこで、 プリズムシートの役割はこの光 を効率よく 0 0が 0° の方向、 つまり垂直方向に曲げることである。 そ のためには、 空気層とプリズムシートとの界面反射であるフレネル反射 を小さく し、 かつ、 なるべく、 多くの光が 0° の方向に進むようにする 必要がある。 また、 出射光が角度分布を持つ場合には、 入射角 0 i力 多少変動しても、 垂直方向への輝度が減少しないような光曲げ特性を持 たせることで、 光曲げ角が一定であるよりも正面方向への輝度を高く出 来る。 さらに、 光源は白色光であるので、 波長による曲げ角度依存性を 小さく して、 分光をできるだけ抑制する必要がある。 分光は、 液晶の力 ラー表示の色再現性を劣化させるなど、 表示品質を落とす。
従来のプリズムシートは、 屈折、 全反射を利用して幾何光学的に出射 光を曲げている。 これに対して、 波動光学に基づく回折 ·干渉現象を利 用した光学部材 (ホログラム光学素子) は幾何光学的効果を利用した素 子に比べて、 薄型にできるという利点や集光や拡散などの複数の機能を 一つの素子で実現できるという利点がある。 ただし、 分光や高次の回折 を伴うため白色光を曲げるという用途ではなく、 むしろ、 白色光を拡散 して視野角を広げるという用途 (特開平 7— 1 1 40 1 5号公報 (第 1 — 2頁、 代表図) 、 特開平 9— 3 2 5 2 1 8号公報 (第 1一 2頁、 代表 図) 及ぴ特表平 1 0— 5 0 6 5 0 0号公報 (第 1— 4頁、 第 1— 5 図) 、 特開平 1 1— 2 9 6 0 54号公報 (第 1— 2頁、 第 2— 5図) 、 特開 2000— 395 1 5号公報 (第 1— 2頁、 第 1— 2図) 参照) や、 白色光を分光するという用途 (特開平 9— 1 1 3 730号公報 (第 1— 5頁、 代表図) 及ぴ特開平 1 0— 30 1 1 1 0号公報 (第 1— 2 頁、 第 6 8図) 参照) で使われてきた。 また、 白色光を拡散するという 効果を利用して、 ドットマトリタスの表示欠陥を見えないようにするこ とにも使われてきた (特開平 5— 30 7 1 74号公報 (第 1— 2頁、 代 表図) 、 特開平 6— 59257号公報 (第 1— 2頁、 代表図) 、 特開平 6 - 2949 55号公報 (第 1— 2頁、 代表図) 、 特開平 7— 2804 7号公報 (第 1— 2頁、 代表図) 及ぴ特開平 7— 49490号公報 (第 1一 2頁、 代表図) 参照) 。 ホログラム光学素子の設計方法について は、 例えば、 ビク トール ' ソィファー ( Victor Soifer ) , ビク トール · コトラール (Victor Kotlyar) , レオニード ' ドスコロヴイッチ
( Leonid Doskolovich ) 著 : "アイテラティブ メソッド フォー デ ィフラタティブ オプティカル エレメンッ コンピュテーション
( Iterative Methods ior Diffiactive Optical Elements Computation ) ", 、米 国) , ティラー アンド フランシス ( Taylor & Francis ) 、 1 9 9 7 年、 p . 1 - 1 0に記載されている。
上述のように幾何光学的に出射光を曲げる方法では、 凹凸の高さが大 きいためシートの膜厚が厚くなり薄型化に寄与しにくくなる。 また、 従 来のプリズムシートでは個々のプリズムが、 光を曲げる機能を果たして いるため、 プリズム欠陥や異物があるとそのプリズムを通過する光は、 異常光線となり輝点などの表示異常を引き起こしてしまう。 表示装置 は、 欠陥や異物に非常に敏感であり表示異常を引き起こしてしまうため 商品の品質を低下させてしまう。 このためプリズム欠陥や異物がないよ うに取扱いや製造に非常に気をつける必要があった。 一方、 ホログラム光学素子は、 1 ) 入射光が垂直に回折する回折次数 以外の回折光が発生する、 2 ) 当該回折次数の回折効率が低くなる、 3 ) 波長分散が大きいといった問題があった。 例えば、 周期が小さいと 垂直に回折する次数がなかったり、 波長分散が大きくなつたりする。 深 さが適当でないと、 当該回折次数の回折効率が低くなる。
本発明の目的は、 従来の屈折を利用したプリズムシートでなく、 光の 波動的性質に基づく回折 ·干渉現象を利用したホログラム光学素子を用 いることで、 光曲げフィルムの高透過率と薄型化を同時に実現したホロ グラム光学素子及びそれを用いた面光源装置を提供する。 発明の開示
上記目的を達成するため、 本発明は、 面光源から出射される白色光が 垂直方向に曲がるよう、 色分散、 偏波分散が小さく、 回折効率の高いホ ログラム光学素子及びそれを用いた面光源装置を提供する。
本発明に係るホログラム光学素子は、 曲げ角度の波長依存性が小さ く、 斜め方向から入射した白色光の分光を抑えて垂直方向に曲げて出射 するものである。
前記ホログラム光学素子は、 透過型回折格子であって、 0.46≤ λ 1≤ 0.50 ιχ m 0.53≤ λ 2≤ 0.57 μ m , 0.60≤ 3≤ 0.64 μ mの範囲にある ぇ 1、 λ 2 , λ 3の 3波長の平行光に近い充分にコリメートされた光を 角度 0 iで入射させた時、 各波長の回折効率が最大となる回折角度が、 一 5度から + 5度の範囲に含まれることが好ましい。 ここで、 λ 1=0.48 /i m、 λ 2=0.55 μ m λ 3=0.62 j m力 S好まし ヽ。
前記ホログラム光学素子は、 え 1≤0.50 μ m、 0.53≤ λ 2≤ 0.57 μ m , λ 3≤0.64 iの範囲にある λ 1、 2、 λ 3の 3波長 の平行光に近い充分にコリメートされた光を角度 0 iで入射させた時、 各波長の回折効率が最大となる回折次数が (m+mO) 、 m、 (m — mO)、 (但し、 mO=l 、 2、 。 。 )である透過型回折格子において、 mが 式 (1 ) 及び式 (2) を満たす範囲にあり、 平均周期 dが式 (3 ) を満 たすことが好ましい。 ここで、 λ 1=0.48 m、 λ 2=0.55 μ m, λ 3=0.62 μ m力 S好ましレヽ。
m X { え 2 X (1— sin δノ sin Θ i) - 11}≤ mO X λ 1
≤ m X { λ 2 X (1 + sin δ / sin Θ i) - λ 1} · · ( 1 )
m X { λ 3 - λ 2 X (1 + sin δ / sin Θ i)}≤ mO X λ 3
≤ m X { λ 3 - λ 2 X (1 - sin δ / sin Θ i)} .· ( 2 )
(ただし δは、 0≤ δ ≤ 5 (度)の範囲)
d =mX X 2/ sin Θ i ·· ( 3)
前記ホログラム光学素子は、 格子の断面が鋸歯形状であって、 歯の先 端をはさむ二辺の長さが 1 0 %以上異なり、 夾角が 6 0° 以下であるこ とが好ましい。
前記ホログラム光学素子は、 子断面形状を Nレベル(N=4, 5,6, 7, 8, · · · )の階段状に近似した格子断面形状を持つことが好ましい。 前記ホログラム光学素子は、 透過型回折格子であって、 回折格子が屈 折率 nの材料から形成されており、 格子溝の平均の深さ hが、 h = a X ά/ (η - 1 ) (但し、 0. 4≤ α≤ 1. 0、 dは回折格子の平均周 期) であることが好ましい。
前記ホログラム光学素子は、 透過型回折格子であって、 格子溝が円弧 状に形成されていることが好ましい。 前記ホログラム光学素子は、 入射角 Θ iが 6 0° ± 1 5° の可視領域 の白色光を垂直方向に曲げるために使用する透過型回折格子であって、 m 1, m 2 = 1 , 2, 3 。 ' ' としたとき、 平均の周期 dが m l
X (6. 0 ± 2. 0) μ m、 平均の深さ hが m 2 X (5. 0 ± 1. 0 ) ;/ mである鋸歯形状、 あるいはこの鋸歯形状を Nレベル (N=4, 5, 6, 7, 8, · · · ) で近似した表面形状を持つことが好ましい。
前記ホ口グラム光学素子は、 フィルムまたは板状であることが好まし レ、。
前記ホログラム光学素子は、 偏光分離、 色分離、 または反射防止機能 を有する膜がホログラム光学素子に隣接して配置されているか、 また は、 ホログラム光学素子表裏にあることが好ましい。
前記ホログラム光学素子は、 偏光分離、 色分離、 反射防止機能が周期 0. 6 μ πι以下で、 深さ 0. 5 μ m以下のレリーフ形状を有する格子に よって付与されることが好ましい。
本発明に係る面光源装置は、 前記ホログラム光学素子を面光源の光出 射面上に配置したものである。
前記面光源装置は、 ホログラム光学素子を配置しない場合には、 面光 源の光出射面の法線方向に対して 20° から 7 0° の角度範囲に光が出 射され、 ホログラム光学素子を設置した場合には、 面光源からの全出射 光の 6 0%以上、 好ましくは 70%以上が、 面光源の光出射面の法線方 向に対して一 1 0° から + 1 0° の角度範囲に出射されることが好まし い。
前記面光源装置は、 ホログラム光学素子に加えさらに拡散体を用いる ことが好ましい。 前記面光源装置は、 拡散体が入射光を空間内の特定角度範囲内に限定 して拡散するホログラム拡散体であることが好ましい。
前記面光源装置は、 ホログラム拡散体が導光板の光出射面に一体成型 されていることが好ましい。
前記面光源装置は、 ホログラム光学素子の光出射面上に反射防止膜を 配置したことが好ましい。
前記面光源装置は、 偏光または波長選択を目的としたフィルムを同時 に配置することが好ましい。
前記面光源装置は、 導光板の一側端面に接して光源が配置された面光 源であって、 導光板の裏面は板中を伝播する光の向きと略垂直な複数の 溝が形成されていることが好ましい。
前記面光源装置は、 ホログラム光学素子への光 射角度がプリユース ター角の近傍となるようにして、 ホログラム光学素子からの出射光につ いて特定方向の偏光が強められていることが好ましい。 図面の簡単な説明
図 1は、 液晶ディスプレイの構成を示す図である。
図 2は、 ホログラム光学素子 (回折格子) における入射角 0 i と出射 角 0 0を説明する図である。
図 3は、 回折された光の回折次数と回折角の関係を示す図である。 図 4は、 ホログラム光学素子 (回折格子) の鋸歯形状からのずれを示 す図である。
図 5は、 ホログラム光学素子 (回折格子) の鋸歯の形状を説明する図 である。 図 6は、 扇形の溝を持つホログラム光学素子 (回折格子) を示す図で める。
図 7は、 面光源から斜めに出射した光をホログラム光学素子 (回折格 子) が垂直方向に曲げることを説明する図である。
図 8は、 液晶ディスプレイの構成を示す図である。
図 9は、 透過のホログラム拡散体の、 拡散特性の規定方法おょぴ測定 方法を示す説明図である。
図 1 0は、 液晶ディスプレイの構成を示す図である。
図 1 1は、 導光板の断面図である。
図 1 2は、 ホログラム光学素子 (回折格子) の製造装置を概略的に示 した断面図である。
図 1 3は、 ホログラム光学素子 (回折格子) の回折角と回折効率の関 係を示したグラフである。
図 1 4は、 ホログラム光学素子 (回折格子) の回折角と回折効率の関 係を示したグラフである。
図 1 5は、 ホログラム光学素子 (回折格子) の第 1の具体例を示す図 である。
図 1 6は、 ホログラム光学素子 (回折格子) の第 2の具体例を示す図 である。 発明を実施するための最良の形態
以下に、 添付図面を参照しながら本発明に係るホログラム光学素子及 ぴそれを用いた面光源装置の実施の形態について説明する。 なお、 本発 明の形態はこれに制限されない。 第 1の実施の形態のホログラム光学素子は、 曲げ角度の波長依存性が 小さく、 斜め方向から入射した白色光の分光を抑えて垂直方向に曲げて 出射するものである。
ホログラム光学素子は、 多数の凹凸形状を透過した回折光の多重干渉 により出射光を制御しているので、 ひとつの凹凸形状が欠損したり、 異 物が存在しても出射光への影響は少ない。 すなわち冗長性に優れるとい う特徴がある。 したがって、 取扱いや加工が、 従来のプリズムシートよ り楽になる。 また、 ホログラム光学素子を用いることで、 曲げるだけで なく、 集光の機能など他の光制御機能を付加することも可能である。 こ のホログラム光学素子の設計方法については、 例えば、 前記ビク トー ル · ソィファー他の文献に記載されている。
ホログラム光学素子として、 回折格子を例にとれば、 一般に格子断面 形状を鋸歯形状とすることが回折効率を高くするのに有効である。 さら に形状を最適化すれば、 白色光を分光や拡散を抑えて曲げることが可能 である。 単色の光を通常のホログラム光学素子に通すと、 1次光、 2次 光といった複数の回折が生じ、 それぞれの回折角に光が伝播するので光 の曲げ効率が落ちるという問題がある。 また、 白色光を回折で曲げよう とすると、 一般には波長によって、 回折角が異なるので色の分散という 問題が生じる。 しかし、 ホログラム光学素子を適切に設計することで分 散や光曲げ効率の低下を抑えることが出来る。 ここで、 ホログラム光学 素子とは波動光学に基づく回折 ·干渉現象を利用した光学部材全般であ る。 また、 白色光とは青緑赤の 3原色を含む光を意味し、 垂直方向に曲 げるとは、 回折 ·干渉効果をもつ光学部材の面に斜めから入射した光 を、 面の法線方向に向きを変えて出射させることを意味している。 第 1の実施の形態のホログラム光学素子としては、 C G H (Computer Generated Hologram) のように、 多数のピクセルを含むものであっても 良い。 ホログラム光学素子のタイプは表面レリーフ型でも体積位相型で もよく、 フィルムの片面にあっても両面にあっても、 または、 重ねられ ていてもよい。 さらに、 透過型でも反射型でもよい。 幾何光学的な原理 に基づくプリズムと組み合わせても良い。
第 2の実施の形態のホログラム光学素子は、 透過型回折格子である第 1の実施の形態のホログラム光学素子において、 0.46≤ λ 1≤ 0.50 IX m (青色光) 、 0.53≤ λ 2≤ 0.57 μ m (緑色光) 、 0.60≤ λ 3≤ 0.64 μ (赤色光) の範囲にある λ 1、 2、 え 3の 3波長の平行光に近い充分 にコリメートされた光、 例えば λ 1=0.48 μ m、 λ 2=0.55 n m , λ 3=0.62 /x mを角度 Θ iで入射させた時、 各波長の回折効率が最大となる回折角 度が、 一 5度から + 5度の範囲に含まれるものである。 このようなホロ グラム光学素子は、 透過型回折格子における波長による回折角度の違い の許容できる範囲を具体的に規定するものである。 青色、 緑色、 赤色の 3原色に対応する; I 1=0.48 t m、 λ 2=0.55 μ m , λ 3=0.62 μ mの 3波長 の平行光に近い充分にコリメートされた光を角度 6 iで入射させた時、 各波長の回折効率が最大となる回折角度が、 一 5度から + 5度 (0度が 回折格子出射面の法線方向) の範囲に含まれるようにすれば、 この 3波 長以外の波長成分を含む白色光についても分光を抑えて垂直方向に曲げ ることができる。
第 3の実施の形態のホログラム光学素子は、 透過型回折格子である第 1又は第 2の実施の形態のホログラム光学素子において、 0.46 ^ 1≤ 0.50 IX m (青色光) 、 0.53≤ λ 2 0.57 μ m (緑色光) 、 0.60≤ λ 3≤ 0.64 μ (赤色光) の範囲にあるぇ 1、 え 2、 え 3の 3波長の平行光に近 い充分にコリメートされた光、 例えば; L 1=0.48 μ m、 λ 2=0.55 μ m , λ 3=0.62 μ mの 3波長の光を角度 0 iで入射させた時、 各波長の回折効率 が最大となる回折次数が(m+mO)、 m、 (m — mO)、 (但し、 mO=l、 2、 ' · · ' )であり、 mが式 (1 ) 及ぴ式 (2 ) を満たす範囲にあ り、 平均周期 dが式 (3 ) を満たすものである。
mX { 2 2 X (l— sin δ / sin Θ i)— λ 1ί≤ mO X λ 1
sin. δ / sin Θ i)— λ 1} · · ( 1 )
m X { λ 3 - λ 2 X (1 + sin δ / sin θ i)}≤ mO X λ 3
≤ m X { λ 3 - λ 2 X (1 - sin δ / sin θ i)} . · ( 2 )
(ただし δは、 0≤ δ ≤ 5 (度)の範囲)
d = m X λ 2 sin 0 i (3)
これらの式によって、 分光を抑えて白色光を垂直方向に曲げる第 3の 実施の形態のホログラム光学素子のより具体的な形が示される。 λ 1=0.48 μ m λ 2=0.55 μ m, λ 3=0.62 μ mの 3波長の光を角度 θ iで入 射させた時、 各波長の回折効率が最大となる回折次数が(m+mO)、 m、 (m _ mO)、 (mO=l、 2、 . · · · )である平均周期 dの透過型回折格 子を考える。 この時、 λ 2=0.55 mに対する m次の回折角を 0 2とする と、 式 (4 ) が成り立つ。
d X (sin Θ i + sin Θ 2) = m X λ 2 · · ( 4 )
したがって、 λ 2の波長の光を垂直方向、 すなわち 0 2= 0、 に曲げる には、
d =mX ^ 2 / sin Θ i ·■ ( 5 )
であることが必要である。
この時、 λ 1に対する (m + mO)次の回折角を 0 1、 λ 3に対する (m — mO)次の回折角を 0 3、 とすると、 d X (sin Θ i + sin Θ l) = m X 1 2 X (l + sin Θ 1 / sin Θ i)
= (m + m0) Xえ 1 · · ( 6 )
d X (sin Θ i + sin Θ 3) = ΠΙ Χ 1 2 Χ (1+ sin 0 3/ sin Θ i)
= (m - mO) X λ 3 -- ( 7)
分光を抑えるためには、 δを、 0≤ δ ≤ 5 (deg) の範囲の定数として、
- δ ≤ θ 1 , Θ 3≤ δ ·■ (8 )
であることが必要である。
式 (6 ) 、 ( 7) 、 ( 8 ) から、 mが満たすべき式として、
m X { λ 2 X (1 - sin δ / sin θ i) - λ l}≤ mO X λ 1
≤ m X { λ 2 X (1 + sin δ / sin Θ i) - λ 1} ·· ( 9 )
m X { λ 3 - λ, 2 X (1 + sin δ / sin θ i)}≤ mO X λ 3
≤ m X { λ 3 - λ 2 X (1 - sin δ / sin θ i)} · · ( 1 0)
s 力れ'る。
式 (5) 、 (9) 、 ( 1 0) を満たせば、 波長 λ 1、 λ 2、 λ 3の光 は土 δ度以内の範囲に回折されることになる。 たとえば 0 i = 6 5度、 mO = l、 δ = 1度として、 適合する透過型回折格子を求めてみる。 こ の場合、 式 (9) 、 (1 0 ) から
7. 6 9≤m≤ 8. 0 8 ( 1 1 )
となるので、 これを満たす整数としては、 m= 8しかない。 したがつ て、 平均周期 dは式 (5 ) より、 約 4. 8 5 μ πιとすればよい。 格子の 断面形状は、 λ 1=0.48 /z mにたいしては 9次の、 λ 2=0.55 mにたいし ては 8次の、 λ 3=0.62 mに対しては 7次の回折効率が最大となるよう に適宜選べばよい。
図 3には回折次数と回折角度の関係を示した。 ホログラム光学素子か らの出射光の中で入射光と同じ方向に伝播するのが 0次光である。 これ より出射面の法線方向に近づく方向に出るのが正の次数の回折光であ り、 反対側が負の次数の回折光である。 したがって、 出射面の法線方向 に出射される光は必ず正の次数の回折光となる。
第 4の実施の形態のホログラム光学素子は、 第 1ないし第 3の実施の 形態のいずれかのホログラム光学素子において、 格子の断面が鋸歯形状 であって、 歯の先端をはさむ二辺の長さが 1 0 %以上異なり、 夾角が 6 0 ° 以下であるものである。
第 5の実施の形態のホログラム光学素子は、 第 4の実施の形態のホロ グラム光学素子において、 格子断面形状を Nレベル(N=4, 5,6, 7, 8, · · · )の階段状に近似した格子断面形状を持つものである。
第 4又は第 5の実施の形態のホログラム光学素子は、 白色光を垂直方 向に曲げるために使用される透過型回折格子 (ホログラム光学素子) の 格子断面形状にとって好ましい形状を有している。 先端のとがった鋸歯 形状あるいは、 それを Nレベルの階段状に近似した形状にすることで、 効率よく垂直方向に曲げることができる。
なお格子断面形状は、 理想的な鋸歯形状から図 4に示したようにずれ てもかまわない。 この時、 直線からのずれ量 (図 4の 2 8 ) の最大値が 0 . 2 μ πι以下であることが好ましい。 条件によっては、 鋸歯形状から 少しずれたところで回折効率が最大になる場合もある。 最適な格子形状 は、 入射角度、 波長、 周期、 深さ、 屈折率によって異なる。 周期的回折 格子の回折効率の厳密解を求める方法で、 格子形状を試行錯誤で変えて 数値計算すれば、 最適な形状の一つが得られる。
第 6の実施の形態のホログラム光学素子は、 透過型回折格子である第 4または第 5の実施の形態のホログラム光学素子において、 回折格子が 屈折率 ηの材料から形成されており、 格子溝の平均の深さ hが、 ·1ι = α X d/ (n - 1) (伹し、 0. 4≤ Q!≤ 1. 0、 dは回折格子の平均周 期) であるものである。
前記関係式によって、 第 6の実施の形態のホログラム光学秦子におけ る、 白色光を垂直方向に曲げるために使用される透過型回折格子 (ホロ グラム光学素子) の格子溝の深さの好ましい範囲が示されている。
回折格子の深さと周期おょぴ鋸歯の位置ずれの関係を図 5に示した。 回折格子の格子溝の平均の深さ hは深すぎても浅すぎても、 垂直方向に 光が届く効率は落ちる。 このように、 回折格子の屈折率を nとしたとき 格子溝の平均の深さ hが a X dZ (n— 1 ) (但し、 0. 4く αく 1. 0) の条件のとき、 効率が高い。 このとき、 最適な滦さ hは、 周期 dと 鋸歯の山の位置ずれ uに依存する。 たとえば周期が で uZ dが 2 0%のときは 5. 5 μ mが最適な深さの一つである。 ここで使われる深 溝で面積の広い回折格子を量産するには鍚型から転写して作る。 転写さ れた樹脂は熱または UV光で硬化する。 本発明で用いる深い溝を持つ铸 型を作る方法としては、 基板上に電子線用レジス トを塗布し、 電子線描 画したのち R I Eで掘る方法や X線放射光で露光 ·現像する方法、 ダレ 一スケールマスクのパターンを露光 ·現像する方法、 パイ トを用いて機 械加工法で作製する方法が挙げられる。 転写される材質は使用条件に応 じて、 光透過性の良いァクリル系の光硬化樹脂が望ましい。
第 7の実施の形態のホログラム光学素子は、 透過型回折格子である第 1ないし第 6の実施の形態のいずれかのホログラム光学素子において、 格子溝が円弧状に形成されているものである。
このホログラム光学素子は、 導光板のコーナー部に L EDを設置する 方式のパックライ トに適した回折格子の格子溝配置を有している。 格子 溝を円弧状にすることで、 コーナー部の L EDから伝播する光を効率良 く垂直方向に曲げることができ、 正面方向の輝度を高くすることができ る。 図 6に示したように格子断面は鋸歯形状とし、 ある一点を中心とす る同心円状に格子溝を形成するのが好ましい。 円弧状の格子溝は必ずし も連続した溝である必要はない。
第 8の実施の形態のホログラム光学素子は、 入射角 Θ iが 6 0 ° ± 1 5° の可視領域の白色光を垂直方向に曲げるために使用する透過型回折 格子である第 1ないし第 7の実施の形態のいずれかのホログラム光学素 子において、 ml,m 2 = l , 2 , 3 · · · としたとき、 平均の周期 dが m i x (6. 0 ± 2. 0) μ m, 平均の深さ hが m 2 X ( 5. 0 ± 1. 0) / mである鋸歯形状、 あるいはこの鋸歯形状を Nレベル (N= 4, 5, 6, 7 , 8 , · · · ) で近似した表面形状を持つものである。
上記関係式によっては、 第 8の実施の形態のホログラム光学素子にお ける、 特に入射角 Θ iが 6 0° ± 1 5° の範囲にある場合に好適な透過 型回折格子の周期、 格子溝深さ、 断面形状が示されている。
第 1から第 8の実施の形態のいずれのホログラム光学素子において も、 透過型回折格子の溝の向きは、 入射光に対して、 垂直でも平行でも 良い。 また、 縦横に切ってあっても良い。
回折格子への入射角と出射角の関係を図 2に示した。 液晶表示に使わ れる導光板のように面状に発光する面光源から、 赤緑青の 3原色を含む 白色光が出射される。 そのとき、 面光源装置の設計の都合上、 回折格子 入射面の法線方向と入射光のなす角度、 つまり入射角 0 iは 2 0〜 7 0 度の範囲になることが多い。 このとき、 回折格子を通過した白色光が土 1 0° の範囲内の垂直方向つまり観察者から見て正面方向に、 6 0 %以 上の光が集まれば、 垂直方向に曲げられたと言える。 また、 回折角の波 長依存性は差が 1 0° 以下のとき小さい。 前記波長分散の他に偏波分散 についても考慮する必要がある。 最も垂直に近い次数の回折効率につい て、 回折効率の大きい偏波を A、 小さい偏波を Bとすると、 (A— B ) ZAが 2 0 %以下であるとき偏波依存性が小さいといえる。 偏波依存性 が 5 %以上のときには、 液晶表示装置で回折効率の高い方の偏波を用い るようにするのが望ましい。 回折格子は光を曲げる機能だけでなく、 集 光や拡散の機能を付加してもよく、 また、 回折格子の作製される面は平 面だけでなく、 光学的な機能を付加するために曲面の上に作製されても 良い。 さらに、 回折格子は、 プリズムシートと一緒に用いられても良 い。 たとえば、 x y z空間を考えたとき、 回折格子で X方向に光を曲 げ、 y方向にはプリズムシートで曲げるということも考えられる。
第 9の実施の形態のホログラム光学素子は、 第 1ないし第 8のいずれ かのホログラム光学素子において、 ホログラム光学素子がフィルムまた は板状であるものである。
このように、 ホログラム光学素子の形状はフィルムまたは板状である 方が、 立方体や球であるよりもかさばらないですむ。
第 1 0の実施の形態のホログラム光学素子は、 第 1ないし第 9のいず れかのホログラム光学素子において、 偏光分離、 色分離、 または反射防 止機能を有する膜がホログラム光学素子に隣接して配置されているか、 または、 ホログラム光学素子の表裏にあるものである。
第 1 1の実施の形態のホログラム光学素子は、 第 1 0の実施の形態の ホログラム光学素子において、 偏光分離、 色分離、 反射防止機能が周期 0 . 6 β m以下で、 深さ 0 . 5 μ m以下のレリーフ形状を有する格子に よって付与されるものである。 このように、 面光源から出射される白色光を垂直方向に曲げるために 使用されるホログラム光学素子と偏光分離や色分離や反射防止の機能を 組み合わせることで、 光の利用効率を上げることができる。
偏光分離、 色分離、 反射防止機能は、 微細な周期構造を作ることで実 現できる。
第 1 2の実施の形態は、 第 1ないし第 1 1の実施の形態のいずれかの ホログラム光学素子を面光源の光出射面上に配置したことを特徴とする 面光源装置である。
本実施の形態のホログラム光学素子は図 7のように面光源から斜めに 出た光を垂直方向に曲げる。 第 1 2の実施の形態のように、 ホログラム 光学素子を使うことで面光源から出射される白色光を効率よく曲げるこ とができ、 正面方向の輝度が高く、 分光による色づきの小さい面光源装 置が得られる。
第 1 3の実施の形態は、 第 1 2の実施の形態の面光源装置において、 ホログラム光学素子を配置しなレ、場合には、 面光源の光出射面の法線方 向に対して 2 0 ° から 7 0 ° の角度範囲に光が出射され、 ホログラム光 学素子を設置した場合には、 面光源からの全出射光の 6 0 %以上、 好ま しくは 7 0 %以上が、 面光源の光出射面の法線方向に対して一 1 0 ° か ら + 1 0 ° の角度範囲に出射されるものである。
ホログラム光学素子の格子断面形状が鋸歯形状の透過型回折格子の場 合には、 面光源からの出射光が、 図 5の 1 8に示す鋸歯の歯の向きの歯 の長い方の辺に沿った方向とおおむね平行になるようにして、 回折格子 に入射させた方が回折効率が高くなり好ましい。
また一般に光が膜の斜めから入射 · 出射するとフレネル損失が増大す る。 したがって鋸歯形状を有する格子面を面光源側に向ける方が、 逆向 きに設置する場合よりもフレネル損失を低減できる。 また、 板状の回折 格子であれば出射光は面に垂直に出ることになり、 これによつても、 フ レネル損失は低減する。
第 1 3の実施の形態のように、 一 1 0 ° から + 1 0 ° の角度範囲に 6
0 %以上、 好ましくは 7 0 %以上の光を出射させることにより、 液晶表 示装置の正面方向輝度を高められ、 かつ分光が少なく高品位の表示を可 能にするパックライ ト用の面光源装置が実現できる。
第 1 4の実施の形態は、 第 1 2または第 1 3の実施の形態の面光源装 置において、 ホログラム光学素子に加えさらに拡散体を用いるものであ る。
人の目にはわずかな色分散でも認識されるので、 このように拡散体を 入れてもよい。 拡散体とホログラム光学素子の組み合わせ方としては、 本発明者らの特願 2 0 0 2 - 2 3 7 9 7号公報の方法を使用することが できる。 ホログラム光学素子と拡散体の配置 ·組み合わせは、 一枚のフ イルムの両面でもよく、 回折格子 2枚と拡散体 1枚でもよい。 図 1のよ うに導光板 1 2、 ホログラム光学素子 1 0、 拡散体 3 2の順に配置して も、 図 8のように導光板 1 2、 拡散体 3 2、 ホログラム光学素子 1 0の 順に配置しても良い。 また、 導光板、 拡散体、 ホログラム光学素子、 拡 散体の構成でもよい。 拡散体の拡散は表面の凹凸によるものでも、 フィ ルム内部の屈折率分布によるものでもよい。
第 1 5の実施の形態は、 第 1 4の実施の形態の面光源装置において、 ホログラム拡散体が入射光を空間内の特定角度範囲内に限定して拡散す るものである。
このように、 拡散体としては、 拡散角度が規定でき、 かつ拡散効率の 高い、 ホログラム拡散体が好ましい。 光が z方向に伝播するとき、 回折 格子の溝と平行な向きを xとする。 図 9のように拡散体による光の散乱 方向を単位べク トル (S x、 S y、 S z ) で定義する。 また、 S X、 S yの最大値はそれぞれ、 sin( 0 1)、 sin( 0 2)で定義する。 この場合色分 散は y方向に生じるので、 0 1の範囲をなるベく小さくして、 Θ 2の範 囲を色分散を消すのに最低限必要な角度に設定する。 このようなホログ ラム拡散体の製法としては、 特開 2 0 0 2— 7 1 9 5 9号公報の実施例 に記載の方法を採用することができる。 ホログラム拡散体は表面レリー フ型でも体積位相型でもよい。 また、 ホログラム拡散体の拡散特性は場 所により異なっていてもかまわない。
第 1 6の実施の形態は、 第 1 5の実施の形態の面光源装置において、 ホログラム拡散体が導光板の光出射面に一体成型されているものであ る。
導光板、 ホログラム拡散体、 ホログラム光学素子の順に配置して用い る場合には、 このように、 ホログラム拡散体を導光板の光出射面に一体 成型することにより、 フレネル損を低減する.ことができる。
第 1 7の実施の形態は、 第 1 2ないし第 1 6のいずれかの実施の形態 の面光源装置において、 ホログラム光学素子の光出射面上に反射防止膜 を配置したものである。
面光源から出た光は、 レリーフ形状を持ったフィルムで曲げられ、 フ イルムの反対側から垂直に出射するが、 そのさい空気とフィルムの界面 を通るたびに約 4 %がフレネル反射する。 それを防ぐには、 このように 反射防止膜 (無反射膜) を備えればよい。 反射防止機能は、 誘電体多層 膜で覆うことで実現できる。 誘電体多層膜による反射防止膜の作り方 は、 例えば、 藤原史郎編、 池田英生 ·石黒浩三 ·横田英嗣著 「光学薄膜 第 2版」 共立出版、 1 9 8 4年、 p . 9 8 - 1 0 9に記載されてい る。 また、 この機能は、 周期の小さな格子を設けることでも実現でき る。 この周期は 0. 2 8 ± 0. 0 8 jum、 深さは 0. 2 2 ± 0. Ι μπι であることが望ましい。 また、 フィルムと空気の界面を少なく してフレ ネル損を最小限にするためには、 光を曲げるレリーフ形状と周期の小さ な格子は同じフィルムの表裏にあるのが好ましい。 さらに、 このフィル ムは複数重ねても良い。 また、 導光板の出射光の出る表面には、 拡散体 や反射防止膜があるのが好ましい。
第 1 8の実施の形態は、 第 1 2ないし第 1 7の実施の形態のいずれか の面光源装置において、 偏光または波長選択を目的としたフィルムを同 時に配置するものである。
このように偏光または波長選択を目的としたフィルムを設けること で、 光の利用効率を上げることができる。 たとえば、 導光板の面光源か ら出た光が、 入射角 6 0° 近傍でフィルムに入射するとき周期 0. 6 m以下で、 深さ 0. 5 /z m以下のレリーフ形状が存在すると、 特定の波 長及び偏光を持った光だけが、 8 0%以上の効率で反射され、 残りの光 は 80%以上の効率で透過する。 このとき、 波長や入射角度で最適なレ リーフ形状を選択する。 ここで反射された光を再利用すれば、 光の利用 効率を上げることができる。 たとえば、 周期 0. β μ ηι以下で、 深さ 0. 5 μ πι以下のレリーフ形状をカラーフィルタの赤緑青のマトリクス にあわせて、 周期や深さを設計し、 光を垂直方向に曲げるフィルムと組 み合わせ、 かつ、 マトリクスの位置を合わせることで、 偏光フィルムや カラーフィルタでロスしていた光の利用効率を上げた液晶表示装置がで きる。 なぜなら、 偏光フィルムでは二つの偏光のうち一つ、 つまり、 光 量の 5 0%を失い、 カラーフィルタでは 3原色のうち 2つ、 つまり、 光 量の 6 7%を失っているが、 ある偏光のある色だけを透過し、 戻り光を 再利用することができれば、 光の利用効率を大幅に増大させることが可 能となるか である。 また、 光を曲げるレリーフ形状とサブミク口ン周 期の小さな格子は、 空気とフィルムの界面でのフレネル反射を少なくす るために、 同じフィルムの表裏にあるのが好ましい。 さらに、 サブミク ロン周期の小さな格子の層は複数重ねても良い。 また、 面光源における 発光層となる導光板の出射光の出る表面には、 拡散体や反射防止膜があ るのが好ましい。
第 1 9の実施の形態は、 第 1 2ないし第 1 8の実施の形態のいずれか の面光源装置において、 導光板の一側端面に接して光源が配置された面 光源であって、 導光板の裏面は板中を伝播する光の向きと略垂直な複数 の溝が形成されているものである。
図 1 0で左の端面から入射した光は導光板の裏面 5 0で反射され、 次 に、 導光板表面の拡散体 4 6で拡散され、 さらに回折格子などのホログ ラム光学素子 (光曲げフィルム) で曲げられて、 垂直方向へと出射す る。 このような配置において、 導光板の裏面からの反射角度と導光板表 面での拡散角度およびホログラム光学素子 (光曲げフィルム) の曲げ角 度を最適に調整することで、 垂直方向での輝度を高くすることができ る。
第 2 0の実施の形態は、 第 1 2ないし第 1 9の実施の形態のいずれか の面光源装置において、 ホログラム光学素子への光入射角度がプリユー スター角の近傍となるようにして、 ホログラム光学素子からの出射光に ついて特定方向の偏光が強められているものである。
nl 、 ηθ をそれぞれ、 フィルムと空気の屈折率とすると、 フィルム に入射する場合のプリユースター角 θ Bは式 (1 2 ) で、 定義される。
tan( Θ B) = nl / ηθ - - ( 1 2 ) プリユースター角で光が入射すると、 電場べク トルの振動方向が入射 面に垂直な成分は完全に透過するので、 こちらの偏光 (P偏光) を選べ ば、 界面での透過率を 1 0 0 %にできる。 また、 ホログラム光学素子も 偏波依存性がある。 たいてい、 平面に対して透過率の高い偏光とホログ ラム光学素子で透過率の高い偏光は向きが一致する。 したがって、 この ようにホログラム光学素子への光入射角度をプリユースター角の近傍に なるようにすることにより、 面光源装置からの出射光は P偏光強度が強 められたものになる。 この場合 P偏光を用いる液晶パネルと組合わせる ことにより、 より正面方向の輝度を高めることができる。 実施例
図 1 0は、 本実施の形態にかかる導光板 4 8を用いたパックライ ト構 造を示しており、 このバックライ ト構造は、 携帯電話等の小型液晶表示 装置用のものである。 パックライ トは、 図の下から反射板 5 6、 導光板 4 8、 ホログラム拡散体 4 6、 ホログラム光学素子 (光曲げ用回折格 子) 1 0からなり、 導光板 4 8とホログラム拡散板 4 6は一体成形され ている。 導光板 4 8の入光端面 5 2側には、 L E D光源 5 4が設けられ ている。 この構成により、 L E D光源 5 4から発せられた光を導光板 4 8の入光端面 5 2から入射させ、 導光板の裏面 5 0に形成した反射グル ーブに何度か全反射した後、 出射面に形成したホログラム拡散体 4 6か ら出射させる。 ホログラム光学素子 1 0により光を垂直方向に回折さ せ、 図示しない液晶面に対して略均一な輝度の分布光束を伝達するもの あ 。
導光板 4 8は、 ポリカーボネートを用いて、 射出成型法により作製し た。 厚み 0 . 8 mm、 裏面の反射グルーブは図 1 1に示す構造で、 周期 は液晶パネルの画素とのモアレを防止するため 1 2 0〜 1 5 0 mの範 囲でランダムとなっている。 また出射面に形成したホログラム拡散体 4 6は、 入光端面 5 2に平行な方向に 6 0度 (光強度が半分になる拡散角 度が 6 0度) 、 入光端面 5 2に垂直な方向に 1度の拡散特性とした。 ホログラム光学素子 1 0を形成するための光硬化型榭脂としては、 ァ クリル榭脂系の紫外線硬化樹脂、 例えば、 ウレタンアタリレートや、 ェ ポキシァクリレートが用いられる。 ホログラム光学素子の回折格子の形 状は図 5において、 h = 6 . 2 μ d = 5 μ m , u = 1 /x mとした。 次に、 ホログラム光学素子 1 0の製造装置 8 8及び製造方法について 説明する。 図 1 2に示したように、 ホログラム光学素子 1 0の製造装置 8 8において、 金型ロール 8 2には、 光硬化型樹脂 7 0を供給する供給 ヘッド 6 8が対向して配置されており、 金型ロール 8 2の回転方向下流 には、 メータリングロール 7 8、 ニップロール 8 0、 紫外線照射装置 8 6、 離型ロール 8 4が、 この順序で設けられている。
金型ロール 8 2には、 その周面に回折格子溝が形成されており、 光硬 化型樹脂 7 0の表面に回折格子溝を転写するようになっている。 回折格 子溝の形成は、 ダイヤモンドバイ トを製作し、 金型ロール 8 2の表面に ダイヤモンドパイ トと精密加工機により溝加工を施した。 この金型ロー ル 8 2は真鍮の材質で製作し、 ダイヤモンドバイ トで溝加工後、 速やか にクロム無電解メツキを行い表面の酸化、 光沢、 機械強度保護を行つ た。 光硬化型樹脂 7 0としては、 本実施の形態では商品名サンラット R 2 0 1 (三洋化成工業株式会社製商品名) を用いた。
製造時には、 光硬化型樹脂 7 0を樹脂タンク 6 4から圧力制御装置 6 6、 供給ヘッド 6 8を介して金型ロール 8 2に供給する。 供給の際に は、 光硬化型樹脂 7 0の供給圧力は圧力センサで検知しながら、 圧力制 御装置 6 6で制御し、 金型ロール 8 2に塗布する圧力を調整している。 金型ロール 8 2に塗布した光硬化型樹脂 7 0は、 メータリングロール 7 8により膜厚を一定に調節している。 メータリングロール 7 8には、 ド クタ一ブレード 7 2が設けられており、 メータリングロール 7 8に付着 した樹脂を搔き取り、 金型ロール 8 2に塗布された樹脂の均斉度を安定 化させている。
メータリングロール 7 8の下流にあるニップロール 8 0と金型ロール 8 2 との間には、 透明ベースフィルム (透光フィルム) 7 4が供給され ており、 透明ベースフィルム 7 4をエップロール 8 0と金型口 ノレ 8 2 とで挟み込んで、 光硬化型樹脂 7 0に透明ベースフィルム 7 4を密着さ せている。 光硬化型樹脂 7 0に透明ベースフィルム 7 4が密着した状態 で紫外線照射装置 8 6に到達すると、 紫外線照射装置 8 6から発した紫 外線により光硬化型樹脂 7 0が硬化するとともに、 透明ベースフィルム 7 4に接着し、 一体のフィルムとした後、 離型ロール 8 4により金型口 ール 8 2から一体のフィルムシート 7 6を剥離する。 これにより、 長尺 のフィルムシ一ト 7 6を連続的に得ることができる。
このようにして製造したフィルムシ一ト 7 6を所定の寸法に裁断して ホログラム光学素子 1 0を得る。 なお、 ホログラム光学素子 (回折格 子) は射出成形や熱プレス工法で作製することもできる。
尚、 本実施形態における透明ベースフィルム 7 4としては、 ポリェチ レンテレフタレート ( P E T ) を用いたが、 これに限らず、 ポリカーボ ネートやアクリル樹脂、 熱可塑性ウレタン等を用いることができる。 ま た、 光硬化型樹脂 7 0としてもァクリル変性エポキシゃァクリル変性ゥ レタン等の他の材料を選定することが可能である。 紫外線照射装置 8 6 の光源は、 メタルハライ ドランプ (最大 8 K w ) を用い、 フィルムシ一 ト 7 6の送り速度は、 3 m/分で製作した。 送り速度は、 光硬化型樹脂
70の硬化特性、 透明ベースフィルム 74の光吸収特性により変化する が、 更に W (ワット数) の高いメタルハライ ドランプを用いることによ り、 送り速度を速めることが可能である。
このように作製した面光源装置は、 充分な正面方向輝度を有してお り、 モアレによるムラや分光による色づきも見られず液晶表示装置用の バックライ トとして優れた特性を示した。 このホログラム光学素子 (回 折格子) の光学特性を図 1 3および 1 4に示した。 図 1 3は、 波長 4 8
8 nmのレーザー光の入射角度を 5 0、 6 0, 70° 、 偏光角を 0° (P偏光) と 9 0° (S偏光) に設定して、 計 6種類の実験を行ったも のである。 凡例の "5 0— 0" は入射角 5 0° 、 偏光角 0° を意味して いる。 」方、 図 1 4は波長を 6 3 3 nmにして同様の'実験を行ったもの である。 ともに、 6 0° 入射のときには、 垂直方向の 0°. に回折され、 出射されている。 一方、 7 0° 入射のときには、 そのまま、 1 0° ずれ るのではなく、 やや垂直方向に分布が偏る。 つまり、 より正面方向に光 が回折される。 この効果を利用すれば、 正面方向での輝度を上げること ができる。
図 1 5は、 透過型回折格子であるホログラム光学素子の第 1の具体例 を示す断面図である。
この第 1の具体例は、 前記第 2、 第 4及ぴ第 8の実施の形態のホログ ラム光学素子に該当するものである。 このホログラム素子 1 0は、 屈折 率 1. 4 8の光硬化アクリル樹脂からなり、 周期 d = 5 mの鋸歯状の 格子を有する。 このホログラム光学素子に図の方向で入射角 6 7度の入 射光 (平行光に近い充分にコリメートされた光) を与えたとき、 次の表 1のような結果が得られた。 波長 m ) 回折効率最大次数 回折角度
0.48 9次 ― .3 £s
0.55 8次 一 3.2 度
0.62 7次 ― 3.0 度 図 1 6は、 透過型回折格子であるホログラム光学素子の第 2の具体例 を示す断面図である。
この第 2の具体例は、 前記第 2及ぴ第 8の実施の形態のホログラム光 学素子に該当するものである。 このホログラム素子 1 0は、 屈折率 1 . 4 8の光硬化ァクリル樹脂からなり、 周期 d = 5 // mの鋸歯状の格子を 有する。 このホログラム光学素子に図の方向で入射角 6 7度の入射光 (平行光に近い充分にコリメートされた光) を与えたとき、 次の表 2の ような結果が得られた。
Figure imgf000028_0001
表 2
この第 2の具体例において、 0.48 μ mの 9次と 1 0次はほぼ回折効率 等しく、 0.62 μ mの 7次と 8次もほぼ等しい。
これら透過型回折格子であるホログラム光学素子の第 1及ぴ第 2の具 体例を前記実施の形態における導光板と組合わせたパックライ トは、 充 分な正面方向輝度が得られ、 分光による色づきも見られなかった。 以上説明したように、 本発明のホログラム光学素子は、 多数の凹凸形 状を透過した回折光の多重干渉により出射光を制御しているので、 ひと つの凹凸形状が欠損したり、 異物が存在しても出射光への影響は少な く、 取扱いや加工が、 従来のプリズムシ一トより容易になる。 また、 高 透過率と薄型化を同時に実現することができる。 このホログラム光学素 子を面光源装置に用いることで斜め方向から入射した白色光の分光を抑 えて垂直方向に効率的に曲げて出射することができ、 正面方向での輝度 を上げることができる。

Claims

請求の範囲
1. 曲げ角度の波長依存性が小さく、 斜め方向から入射した白色光 の分光を抑えて垂直方向に曲げて出射するホログラム光学素子。
2. 透過型回折格子であって、 0.46≤ λ 1 ≤ 0.50 μ m、 0.53≤ λ 2 0.57 μ m、 0.60 λ 3≤ 0.64 μ mの範囲にある λ 1、 λ 2、 λ 3の 3 波長の光を角度 θ iで入射させた時、 各波長の回折効率が最大となる回 折角度が、 一 5度から + 5度の範囲に含まれることを特徴とする請求の 範囲第 1項に記載のホログラム光学素子。
3. 0.46≤ λ 1≤ 0.50 μ m、 0.53≤ λ 2≤ 0.57 μ m、 0.60≤ λ 3≤ 0.64/ζ mの範囲にあるえ 1、 λ 2 , λ 3の 3波長の光を角度 0 iで入射 させた時、 各波長の回折効率が最大となる回折次数が(m+mO) 、 m、 (m — mO)、 (但し、 mO=l、 2、 · · · · :)である透過型回折格子に おいて、 mが式 (1 ) 及び式 (2) を満たす範囲にあり、 平均周期 dが 式 (3) を満たすことを特徴とする請求の範囲第 1項または第 2項に記 載のホログラム光学素子。
m X { λ 2 X (1 - sin δ / sin θ ΐ) - λ ΐ}≤ πιΟ Χ λ 1
≤ m X { λ 2 X (1 + sin δ / sin θ i) - λ 1} · · ( 1 )
m X { λ 3 - λ 2 X (1 + sin δ / sin θ i)}≤ mO X λ 3
≤ m X { 1 3 - λ 2 X (1 - sin δ / sin θ i)} · · ( 2 )
(ただし δは、 0 ^ δ ^ 5 (度)の範囲)
d =mX X 2/ sin Θ i ·· ( 3)
4. 格子の断面が鋸歯形状であって、 歯の先端をはさむ二辺の長さ が 1 0 %以上異なり、 夾角が 6 0° 以下であることを特徴とする請求の 範囲第 1項ないし第 3項のいずれかに記載のホログラム光学素子。
5. 請求の範囲第 4項に記載のホログラム光学素子における格子断 面形状を Nレベル(N=4, 5,6,7,8, · · · ) の階段状に近似した格子断面 形状を持つことを特徴とする請求の範囲第 4項に記載のホログラム光学 素子。
6. 透過型回折格子であって、 回折格子が屈折率 nの材料から形成 されており、 格子溝の平均の深さ hが、 h oi X dZ in— 1) (伹 し、 0. 4≤ α≤ 1. 0、 dは回折格子の平均周期) である請求の範囲 第 4項または第 5項に記載のホログラム光学素子。
7. 透過型回折格子であって、 格子溝が円弧状に形成されているこ とを特徴とする請求の範囲第 1項ないし第 6項のいずれかに記載のホロ グラム光学素子。
8. 入射角 θ ίが 60° ± 1 5° の可視領域の白色光を垂直方向に 曲げるために使用する透過型回折格子であって、 ml,m2 = l, 2,
3 · · · としたとき、 平均の周期 dが m i x ( 6. 0 ± 2. 0) μ m 平均の深さ hが m2 X (5. 0 ± 1. 0) t mである鋸歯形状、 あるい はこの鋸歯形状を Nレベル (N=4, 5, 6, 7, 8, · · · ) で近似 した表面形状を持つことを特徴とする請求の範囲第 1項ないし第 7項の いずれかに記載のホログラム光学素子。
9. ホログラム光学素子がフィルムまたは板状であることを特徴と する請求の範囲第 1項ないし第 8項のいずれかに記載のホログラム光学 素子。
10. 偏光分離、 色分離、 または反射防止機能を有する膜がホログ ラム光学素子に隣接して配置されているか、 または、 ホログラム光学素 子表裏にあることを特徴とする請求の範囲第 1項ないし第 9項のいずれ かに記載のホログラム光学素子。
1 1. 請求の範囲第 1 0項に記載の偏光分離、 色分離、 反射防止機 能が周期 0. 6 ;z m以下で、 深さ 0. 5 /Z m以下のレリーフ形状を有す る格子によって付与されることを特徴とするホログラム光学素子。
1 2. 請求の範囲第 1項ないし第 1 1項のいずれかに記載のホログ ラム光学素子を面光源の光出射面上に配置したことを特徴とする面光源
1 3. 請求の範囲第 1 2項に記載の面光源装置において、 ホロダラ ム光学素子を配置しない場合には、 面光源の光出射面の法線方向に対し て 2 0° から 7 0° の角度範囲に光が出射され、 ホログラム光学素子を 設置した場合には、 面光源からの全出射光の 6 0%以上が、 面光源の光 出射面の法線方向に対して一 1 0° から + 1 0° の角度範囲に出射され ることを特徴とする請求の範囲第 1 2項に記載の面光源装置。
14. ホログラム光学素子に加えさらに拡散体を用いることを特徴 とする請求の範囲第 1 2項または第 1 3項に記載の面光源装置。
1 5. 拡散体が入射光を空間内の特定角度範囲内に限定して拡散す るホログラム拡散体であることを特徴とする請求の範囲第 1 4項に記載 の面光源装置。
1 6. ホログラム拡散体が導光板の光出射面に一体成型されている ことを特徴とする請求の範囲第 1 5項に記載の面光源装置。
1 7. ホログラム光学素子の光出射面上に反射防止膜を配置したこ とを特徴とする請求の範囲第 1 2項ないし第 1 6項のいずれかに記載の 面光源装置。
1 8. 偏光または波長選択を目的としたフィルムを同時に配置する ことを特徴とする請求の範囲第 1 2項ないし第 1 7項のいずれかに記載 の面光源装置。
1 9 . 導光板の一側端面に接して光源が配置された面光源であつ て、 導光板の裏面は板中を伝播する光の向きと略垂直な複数の溝が形成 されていることを特徴とする請求の範囲第 1 2項ないし第 1 8項のいず れかに記載の面光源装置。
2 0 . ホログラム光学素子への光入射角度がプリユースター角の近 傍となるようにして、 ホログラム光学素子からの出射光について特定方 向の偏光が強められていることを特徴とする請求の範囲第 1 2項ないし 第 1 9項のいずれかに記載の面光源装置。
PCT/JP2004/006486 2003-05-07 2004-05-07 ホログラム光学素子及びそれを用いた面光源装置 WO2004099833A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005506042A JP4265602B2 (ja) 2003-05-07 2004-05-07 ホログラム光学素子及びそれを用いた面光源装置
US10/555,591 US7768685B2 (en) 2003-05-07 2004-05-07 Hologram optical element and surface light source device using the hologram optical element
US12/490,799 US20100027084A1 (en) 2003-05-07 2009-06-24 Hologram optical element and surface light source device using the hologram optical element
US12/490,596 US20100020374A1 (en) 2003-05-07 2009-06-24 Hologram optical element and surface light source device using the hologram optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-128929 2003-05-07
JP2003128929 2003-05-07

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/490,596 Division US20100020374A1 (en) 2003-05-07 2009-06-24 Hologram optical element and surface light source device using the hologram optical element
US12/490,799 Division US20100027084A1 (en) 2003-05-07 2009-06-24 Hologram optical element and surface light source device using the hologram optical element

Publications (1)

Publication Number Publication Date
WO2004099833A1 true WO2004099833A1 (ja) 2004-11-18

Family

ID=33432060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006486 WO2004099833A1 (ja) 2003-05-07 2004-05-07 ホログラム光学素子及びそれを用いた面光源装置

Country Status (5)

Country Link
US (3) US7768685B2 (ja)
JP (1) JP4265602B2 (ja)
KR (1) KR100865607B1 (ja)
CN (1) CN100520457C (ja)
WO (1) WO2004099833A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129783A1 (en) * 2006-05-10 2007-11-15 Chinsoo Hong Optical waveguide
JP2010101965A (ja) * 2008-10-21 2010-05-06 Seiko Epson Corp 光学素子及び表示装置
JP2012150291A (ja) * 2011-01-19 2012-08-09 Hitachi Chem Co Ltd 回折型集光シート及びそれを用いた面光源装置
CN113544556A (zh) * 2019-04-23 2021-10-22 株式会社小糸制作所 光学元件和光源装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100865607B1 (ko) * 2003-05-07 2008-10-27 히다치 가세고교 가부시끼가이샤 홀로그램 광학소자 및 그것을 이용한 면광원장치
KR100682875B1 (ko) * 2005-06-08 2007-02-15 삼성전기주식회사 다중 주기의 패턴을 갖는 도광판 및 이를 채용한디스플레이 소자용 조명장치
JP2007242775A (ja) * 2006-03-07 2007-09-20 Canon Inc 露光装置及びデバイス製造方法
WO2009103517A1 (en) * 2008-02-22 2009-08-27 Osram Opto Semiconductors Gmbh Optical arrangement and production method
US9642687B2 (en) 2010-06-15 2017-05-09 The Procter & Gamble Company Methods for whitening teeth
TW201248221A (en) * 2011-05-16 2012-12-01 Chimei Innolux Corp Display and light guide thereof
US8944662B2 (en) 2012-08-13 2015-02-03 3M Innovative Properties Company Diffractive luminaires
TWI547717B (zh) * 2015-05-13 2016-09-01 華邦電子股份有限公司 頭戴式顯示裝置
CN105938271A (zh) * 2016-05-24 2016-09-14 江苏生辉光电科技有限公司 一种投射型全息光栅背光结构
CN106657970A (zh) * 2016-10-25 2017-05-10 乐视控股(北京)有限公司 一种深度图成像装置
KR20180072356A (ko) * 2016-12-21 2018-06-29 삼성전자주식회사 백라이트 유닛 및 이를 포함하는 홀로그래픽 디스플레이 장치
US20190033782A1 (en) * 2017-07-26 2019-01-31 Luminit, Llc Flap top light
CN115151844B (zh) * 2020-02-25 2024-01-16 华为技术有限公司 用于电子设备的成像系统
JP2022137900A (ja) * 2021-03-09 2022-09-22 パナソニックIpマネジメント株式会社 照明装置
US20220373725A1 (en) * 2021-05-21 2022-11-24 Meta Platforms Technologies, Llc Coating composition and planarization of high refractive index overcoat on gratings

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253955A (ja) * 1997-03-12 1998-09-25 Fujitsu Ltd 液晶表示装置
JPH1164846A (ja) * 1997-08-18 1999-03-05 Fujitsu Ltd 液晶投影表示装置
JPH11295713A (ja) * 1998-04-16 1999-10-29 Hitachi Ltd 液晶表示装置
JP2000137194A (ja) * 1998-10-30 2000-05-16 Minolta Co Ltd 偏光分離器および投射型画像表示装置
JP2002222604A (ja) * 2000-09-25 2002-08-09 Mitsubishi Rayon Co Ltd 漏光モジュレータを有する光源装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4786124A (en) * 1987-04-27 1988-11-22 University Of Rochester Broad-spectrum achromatic phase shifters, phase modulators, frequency shifters, and frequency modulators
JPH05307174A (ja) 1992-04-28 1993-11-19 Omron Corp 画像表示装置
JPH0659257A (ja) 1992-08-06 1994-03-04 Seiko Epson Corp 表示装置
JPH06294955A (ja) 1993-04-08 1994-10-21 Seiko Epson Corp 液晶表示装置
JPH0728047A (ja) 1993-07-07 1995-01-31 Seiko Epson Corp 液晶表示装置
JPH0749490A (ja) 1993-08-06 1995-02-21 Seiko Epson Corp 液晶表示装置
JPH07114015A (ja) 1993-10-19 1995-05-02 Olympus Optical Co Ltd 液晶表示装置
US5589982A (en) * 1994-06-03 1996-12-31 Rochester Photonics Corporation Polychromatic diffractive lens
KR100451602B1 (ko) 1994-09-27 2004-12-17 미네소타 마이닝 앤드 매뉴팩춰링 캄파니 휘도제어필름
JP2950219B2 (ja) 1995-10-13 1999-09-20 オムロン株式会社 面光源装置、当該面光源装置を用いた画像表示装置及び当該面光源装置に用いるプリズムアレイ
EP0819970B1 (en) * 1996-02-07 2006-08-30 Nitto Jushi Kogyo Kabushiki Kaisha Surface light source device, liquid crystal display and asymmetric prism sheet
JP2865618B2 (ja) 1996-05-31 1999-03-08 嶋田プレシジョン株式会社 導光板および導光板アセンブリ
JP4201218B2 (ja) 1998-04-16 2008-12-24 大日本印刷株式会社 計算機ホログラム
JPH10301110A (ja) 1998-05-15 1998-11-13 Omron Corp 画像表示装置
JP2000039515A (ja) 1998-07-22 2000-02-08 Toppan Printing Co Ltd 光拡散板とそれを用いた液晶表示装置
KR100865607B1 (ko) * 2003-05-07 2008-10-27 히다치 가세고교 가부시끼가이샤 홀로그램 광학소자 및 그것을 이용한 면광원장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253955A (ja) * 1997-03-12 1998-09-25 Fujitsu Ltd 液晶表示装置
JPH1164846A (ja) * 1997-08-18 1999-03-05 Fujitsu Ltd 液晶投影表示装置
JPH11295713A (ja) * 1998-04-16 1999-10-29 Hitachi Ltd 液晶表示装置
JP2000137194A (ja) * 1998-10-30 2000-05-16 Minolta Co Ltd 偏光分離器および投射型画像表示装置
JP2002222604A (ja) * 2000-09-25 2002-08-09 Mitsubishi Rayon Co Ltd 漏光モジュレータを有する光源装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129783A1 (en) * 2006-05-10 2007-11-15 Chinsoo Hong Optical waveguide
JP2010101965A (ja) * 2008-10-21 2010-05-06 Seiko Epson Corp 光学素子及び表示装置
JP2012150291A (ja) * 2011-01-19 2012-08-09 Hitachi Chem Co Ltd 回折型集光シート及びそれを用いた面光源装置
CN113544556A (zh) * 2019-04-23 2021-10-22 株式会社小糸制作所 光学元件和光源装置
CN113544556B (zh) * 2019-04-23 2023-08-25 株式会社小糸制作所 光学元件和光源装置

Also Published As

Publication number Publication date
KR20060014389A (ko) 2006-02-15
US20070053030A1 (en) 2007-03-08
US20100020374A1 (en) 2010-01-28
KR100865607B1 (ko) 2008-10-27
JPWO2004099833A1 (ja) 2006-07-13
CN100520457C (zh) 2009-07-29
JP4265602B2 (ja) 2009-05-20
CN1784617A (zh) 2006-06-07
US20100027084A1 (en) 2010-02-04
US7768685B2 (en) 2010-08-03

Similar Documents

Publication Publication Date Title
WO2004099833A1 (ja) ホログラム光学素子及びそれを用いた面光源装置
JP4240037B2 (ja) 光学フィルム及びそれを用いた面光源装置
JP4747627B2 (ja) 回折型集光フィルム及びそれを用いた面光源装置
US7688511B2 (en) Diffraction type light-condensing film and planar light source device using the same
JP4539160B2 (ja) 光学素子、光学素子の製造方法及び面光源装置
JP5027969B2 (ja) 二次元視野拡大部材の製造方法
US20080239216A1 (en) Optical device, labeled article, optical kit and discrimination method
WO2020008949A1 (ja) 導光板、導光板モジュール、画像表示装置および導光板の製造方法
WO2010010694A1 (ja) 液晶表示装置
JP4677716B2 (ja) 光学素子及びそれを用いた面光源装置
JP7352862B2 (ja) 光学部材及び表示装置
JP2014157247A (ja) 光学フィルム及び面光源装置
JP4968728B2 (ja) プロジェクションスクリーン用光制御膜積層体、その製造方法、及びプロジェクションスクリーン
JP5942527B2 (ja) 光拡散フィルムの設計方法、光拡散フィルムの製造方法、および、光拡散フィルムの拡散特性の評価方法
JP2012150291A (ja) 回折型集光シート及びそれを用いた面光源装置
JP5011870B2 (ja) 背面投射型スクリーン
WO2019107249A1 (ja) 光学素子および導光素子
JP5194859B2 (ja) 光学シート及びバックライトユニット並びにディスプレイ装置
WO2023190626A1 (ja) 導光積層体、及び、面状光源装置
JP2023020220A (ja) コンバイナ、ヘッドアップディスプレイ及び移動体
WO2023086231A1 (en) Metasurface waveguide coupler for display unit
CN114846386A (zh) 图像显示元件以及图像显示装置
JP2012194397A (ja) 光学シート、面光源装置、透過型表示装置、光学シートの製造方法
JP2015184322A (ja) 光制御シート、映像源ユニット、及び光制御シートの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057020883

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048120703

Country of ref document: CN

Ref document number: 2005506042

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007053030

Country of ref document: US

Ref document number: 10555591

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057020883

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10555591

Country of ref document: US