WO2010010694A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2010010694A1
WO2010010694A1 PCT/JP2009/003430 JP2009003430W WO2010010694A1 WO 2010010694 A1 WO2010010694 A1 WO 2010010694A1 JP 2009003430 W JP2009003430 W JP 2009003430W WO 2010010694 A1 WO2010010694 A1 WO 2010010694A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
liquid crystal
cross
crystal display
linear
Prior art date
Application number
PCT/JP2009/003430
Other languages
English (en)
French (fr)
Inventor
島崎勝輔
小川容一
小山栄二
佐藤暢高
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Priority to CN2009801286747A priority Critical patent/CN102105833A/zh
Priority to US13/055,158 priority patent/US20110157521A1/en
Publication of WO2010010694A1 publication Critical patent/WO2010010694A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0051Diffusing sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer

Definitions

  • the present invention relates to a liquid crystal display device including an optical adjustment member that controls the traveling direction of incident light.
  • various lighting devices for example, a backlight unit of a liquid crystal display
  • a mechanism for adjusting the spread and brightness of light from a light source have a mechanism for adjusting the spread and brightness of light from a light source.
  • Many lighting devices include an optical adjustment member that controls the directivity of light.
  • the optical adjusting member is light transmissive and has a function of aligning incident light in a predetermined direction or a function of diffusing incident light.
  • a typical example of an optical adjustment member having a function of aligning incident light in a predetermined direction, that is, a function of controlling light directivity, is a prism sheet (see Japanese Laid-Open Patent Publication No. 10-506500).
  • the prism sheet includes a sheet-like base material and a plurality of optical structures arranged on the base material.
  • Typical examples of the optical structure are a prism-like structure and a lens-like structure.
  • the prism-like structure has a triangular cross section extending in a predetermined direction and perpendicular to the extending direction.
  • the lenticular structure extends in a predetermined direction and has a semicircular or semi-elliptical cross section perpendicular to the extending direction.
  • the prism sheet controls the traveling direction of the light beam by the prism effect or lens effect of the plurality of optical structures formed on the substrate.
  • a conventional backlight unit for a liquid crystal display device includes two prism sheets each having a prismatic structure.
  • the two prism sheets are arranged so that the extending directions of the prismatic structures of each prism sheet are orthogonal to each other (see Japanese Patent Publication No. 10-506500).
  • a general configuration of such a backlight unit is shown in FIG.
  • a general structure of the prism sheet is shown in FIG.
  • a backlight unit 501 includes a light source 503, a light guide plate 504 that converts light 510 emitted from the light source 503 into a surface light source, and a lower portion of the light guide plate 504 (on the side opposite to the liquid crystal display panel 502).
  • a functional optical sheet group disposed on the light guide plate 504 (on the liquid crystal display panel 502 side).
  • the functional optical sheet group includes a lower diffusion sheet 506, a prism sheet group 507, and an upper diffusion sheet 508.
  • the backlight unit 501 is a so-called edge light (side light) type illumination device in which a light source 503 is disposed on a side portion of the light guide plate 504.
  • Light 510 emitted from the light source 503 is incident on the side of the light guide plate 504.
  • the incident light is emitted from the surface 504 a of the light guide plate 504.
  • the directivity of the emitted light 511 from the light guide plate 504 is uniform to some extent. Specifically, the luminance of the emitted light 511 is maximized in a direction inclined at a predetermined angle with respect to the normal direction of the surface 504a of the light guide plate 504.
  • a light ray component that travels in a direction in which the luminance becomes maximum among the emitted light 511 is referred to as a “luminance peak light ray”.
  • the optical members are illustrated apart from each other for easy understanding of the configuration of the liquid crystal display device 500, but actually, the optical members are stacked in contact with each other.
  • the prism sheet group 507 includes two prism sheets 507a and 507b. As shown in FIG. 15, each prism sheet includes a sheet-like base material 507c and a plurality of prism-like structures 507d arranged on the sheet-like base material 507c. The extending direction of the prismatic structure 507d of the prism sheet 507a is orthogonal to the extending direction of the prismatic structure 507d of the prism sheet 507b.
  • a prism sheet (optical adjustment member) as shown in FIG. 15 is used to collect the light emitted from the light guide plate and effectively irradiate the liquid crystal display panel.
  • the prism sheet has excellent light collecting performance.
  • the color of light emitted from the prism sheet is separated.
  • the shadow edge portion of the object is colored and tends to spread.
  • one prism sheet is used for a backlight unit of a liquid crystal display device, the color is easily seen when viewed from a certain angle and when viewed from the front.
  • FIG. 16 is a cross-sectional view of a liquid crystal display device using only one prism sheet.
  • FIG. 17 is a diagram showing a state of light refraction in the prism sheet in FIG.
  • the liquid crystal display device 600 illustrated in FIG. 16 does not use the prism sheet 507a as compared with the liquid crystal display device 500 illustrated in FIG. Only the prism sheet 507b is used.
  • Other configurations are the same as those in FIG.
  • a light beam 512 in FIG. 17 indicates a light beam component that travels in a direction in which the luminance of the light beam reaches the maximum, that is, a luminance peak light beam, among the light beams incident on the prism sheet 507 b in the liquid crystal display device 600.
  • the luminance peak light beam 512 incident on the prismatic structure 507d is refracted by the surface 507e on the light traveling direction side of the prismatic structure 507d and is emitted in the thickness direction of the prism sheet 507b.
  • the refractive index of the material for forming the prismatic structure 507d varies depending on the wavelength of light. Therefore, the amount of refraction at the surface 507e varies depending on the wavelength component included in the luminance peak light beam 512.
  • the refraction direction of the refracted light on the surface 507e changes according to the wavelength. Based on the above principle, color separation occurs in the emitted light 513 in a predetermined pattern. In FIG. 17, only two wavelength components are separated in order to simplify the description.
  • the conventional backlight unit uses two prism sheets as shown in FIG. 14 in order to solve the above-described problems of color separation and insufficient luminance.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a liquid crystal display device that can solve the above-described problems of color separation and insufficient luminance with a single optical adjustment member. It is.
  • the liquid crystal display device of the present invention includes a light source, an optical adjustment member, and a liquid crystal display element.
  • the optical adjustment member is optically connected to the light source.
  • An optical adjustment member contains the base material which has a light transmittance, and a some linear body.
  • the substrate has a light incident surface on which light from the light source is incident.
  • the plurality of linear bodies are provided on the surface of the substrate opposite to the light incident surface.
  • the cross section orthogonal to the extending direction of the linear body has a first cross section and a second cross section.
  • the first cross section has a triangular shape defined by the first to third sides.
  • the second cross section has a substantially triangular shape having an area smaller than that of the first cross section and defined by the fourth to sixth sides.
  • the first side of the first cross section is in contact with the surface of the substrate opposite to the light incident surface in parallel.
  • the second cross section is provided on the second side of the first cross section.
  • the fourth side of the second cross section is in contact with the second side of the first cross section.
  • the angle formed by the first side and the second side of the first cross section is smaller than the angle formed by the first side and the third side.
  • the liquid crystal display element includes a first polarizing element, a liquid crystal layer, and a second polarizing element, which are stacked in this order.
  • the first polarizing element is disposed to face the plurality of linear bodies of the optical adjustment member.
  • the 1st polarizing element is arrange
  • the present inventors have made extensive studies on an optical adjustment member that controls the traveling direction of incident light. As a result, it was found that by using the optical adjustment member having the above-described structure, color separation of the emitted light from the optical adjustment member can be suppressed.
  • the light color separation pattern is a pattern opposite to the traveling direction of the light incident on the optical adjustment member.
  • the light refracted on the surface of the linear body including the fifth side of the triangular body of the second cross section and the light refracted on the surface of the linear body including the sixth side of the triangular body of the second cross section Cancel each other's color separation. (The principle of color separation suppression will be described in detail later).
  • the optical adjustment member of the present invention directly changes the traveling direction of the light beam having a certain degree of directivity emitted from the light guide plate to the thickness direction of the optical adjustment member. Therefore, it is not necessary to provide a lower diffusion sheet between the prism sheet group and the light guide plate as in the prior art. That is, in the above-described optical adjustment member, it is not necessary to once convert light having a certain degree of directivity emitted from the light guide plate using the lower diffusion sheet into broad light as in the prior art. Therefore, for example, the utilization efficiency of light emitted from a light guide plate or the like can be improved, and the luminance characteristics can be improved. That is, with the above-described optical adjustment member, the above-described problems of color separation of emitted light and insufficient luminance can be solved with one optical adjustment member.
  • the first polarizing element of the liquid crystal display element which is arranged to face the plurality of linear bodies, is arranged in a direction in which the P-polarized light component is preferentially transmitted.
  • the P-polarized light component is dominant in the light emitted from the optical adjustment member. Therefore, the light emitted from the optical adjustment member can be effectively incident on the liquid crystal display element by disposing the first polarizing element in a direction in which the P-polarized light component is preferentially transmitted.
  • the luminance of light transmitted through the liquid crystal display element and emitted from the liquid crystal display device can be increased.
  • the effect of suppressing color separation of light emitted from the liquid crystal display device can be enhanced.
  • each of the plurality of linear bodies includes a plurality of triangular bodies that define the second cross section.
  • the plurality of triangular bodies are arranged on the second side of the first cross section without any gaps.
  • the number of the triangular bodies is preferably 2 or more and 9 or less.
  • the plurality of triangular bodies are arranged on the second side of the first cross section without a gap means that the plurality of triangular bodies are arranged in contact with each other, and the plurality of triangular bodies are the second. It means covering the whole side.
  • the side closer to the apex angle facing the first side of the first cross section is shorter than the other side.
  • two apexes for example, the corner 12 e in FIG. 1
  • a condensing surface 12f of the linear body 13 that refracts the luminance peak light ray 52 in the thickness direction of the optical adjustment member 1 a surface including the side 12c far from the apex angle 11e of the first cross-sectional portion 11a.
  • the light incident on the light collection surface of the linear body increases (the light rays to be collected increase).
  • the utilization efficiency of incident light can be further improved, and the luminance characteristics can be further improved.
  • the fifth adjustment unit when a luminance peak ray traveling in a direction in which the luminance is maximized in the luminance characteristic of the light ray incident on the optical adjustment member is refracted by the optical adjustment member, the fifth adjustment unit includes the fifth side of the triangular body.
  • the traveling direction of the luminance peak light beam after being refracted on the surface of the linear body and the traveling direction of the luminance peak light beam after being refracted on the surface of the linear body including the sixth side of the triangular body are refracted.
  • the fifth side and the sixth side of the triangular body are inclined with respect to the fourth side so as to be opposite to each other with respect to the traveling direction of the previous luminance peak ray.
  • an inclination direction of the third side of the first cross section with respect to the first side is substantially parallel to a direction in which the luminance is maximum in the luminance characteristics of the light beam incident on the optical adjustment member.
  • the angle between the third side and the first side of the first cross section is a luminance peak ray (for example, in FIG. 2) incident on the optical adjustment member. Same or larger than the angle of the light beam 52) with respect to the substrate surface (for example, 90 degrees - ⁇ in FIG. 2).
  • the plurality of linear bodies are periodically arranged in a direction orthogonal to the extending direction.
  • the refractive index of the linear body is n 1
  • the refractive index n 0 of air surrounding the base material and the linear body is 1.0
  • the normal direction of the interface between air and the base material The angle between the direction of the light ray in the air is I 1
  • the angle between the normal direction and the direction of the light ray inside the linear body is I 2
  • the first side, the second side When the angles formed by the 4th side and the 5th side and the 4th side and the 6th side are ⁇ 1 , ⁇ 2 and ⁇ 2 , respectively.
  • n 0 sin I 1 n 1 sin I 2 0 ⁇ sin ( ⁇ 1 + ⁇ 2 ⁇ I 2 ) ⁇ 1 / n 1 I 2 ⁇ ⁇ 1 + ⁇ 2 ⁇ I 2 +90 -I 2 ⁇ ⁇ 2 - ⁇ 1 ⁇ 90-I 2 Meet.
  • the light incident on the substrate and the linear body can be extracted outside without being totally reflected on the light collecting surface and lost.
  • the refractive index of the linear body is n 1
  • the critical angle of total reflection of light rays at the interface between the air surrounding the base material and the linear body and the linear body is I 2max
  • the incident light beam can be emitted toward the outside of the optical adjustment member without being totally reflected by the condensing surface of the optical adjustment member.
  • the liquid crystal display device includes a light source, an optical adjustment member, and a liquid crystal display element.
  • the optical adjustment member is optically connected to the light source.
  • An optical adjustment member contains the base material which has a light transmittance, and a some linear body.
  • the substrate has a light incident surface on which light is incident.
  • the plurality of linear bodies are provided on the surface of the substrate opposite to the light incident surface.
  • the linear body is light transmissive.
  • Each linear body has a plurality of other linear bodies having a condensing surface and a correction surface.
  • the cross section orthogonal to the extending direction of the linear body is substantially triangular. Of the three sides that define the cross section of the linear body, one side is in parallel with the surface of the substrate opposite to the light incident surface.
  • the liquid crystal display element includes a first polarizing element, a liquid crystal layer, and a second polarizing element that are arranged to face the plurality of linear bodies of the optical adjustment member.
  • the first polarizing element, the liquid crystal layer, and the second polarizing element are stacked in this order.
  • the 1st polarizing element is arrange
  • the term “light condensing surface” is a light emitting surface of a linear body, and refracts light incident from the side of the substrate in the thickness direction of the optical adjustment member (thickness direction of the substrate). This refers to the surface to be made.
  • the term “correction surface” refers to a light exit surface of a linear body that refracts light incident from the substrate side in the surface direction of the optical adjustment member (surface direction of the substrate).
  • the angle between the side parallel to the base material and the stepped side of the cross section of the linear body is the intersection of the side parallel to the base material and the stepped side, and the condensing surface of the linear body It is defined by an angle formed by a straight line passing through the tip of the concave strip formed by the correction surface and a side parallel to the substrate.
  • the angle between the side parallel to the substrate and the stepped side of the cross section of the linear body is the stepped side passing through the intersection of the side parallel to the substrate and the stepped side. Is defined as the smallest angle among the angles formed by the straight line intersecting the line and the side parallel to the substrate.
  • the cross section of the linear body is formed by a side parallel to the substrate and a stepped side. The “angle” is ⁇ 1, and the “angle formed by the side parallel to the substrate and the remaining side” is ⁇ 1.
  • the liquid crystal display device of the present invention further includes a light guide plate that guides light from the light source to the optical adjustment member.
  • the light source is disposed at an end of the light guide plate.
  • the color separation of the emitted light can be suppressed and the luminance can be improved by one optical adjusting member. Therefore, it is not necessary to use two prism sheets as in the prior art. Further, unlike the prior art, it is not necessary to provide a lower diffusion sheet between the prism sheet group and the light guide plate. Therefore, when the liquid crystal display device of the present invention is applied to edge-light illumination, the number of optical members can be reduced, and the device can be reduced in thickness and cost.
  • the refractive index of the substrate is the same as the refractive index of the linear body.
  • light travels straight at the joint surface (interface) between the base material and the linear body. Therefore, the shape of the joint surface between the substrate and the linear body can be made arbitrary, and the degree of design freedom can be increased. It is also possible to integrally form the base material and the linear body with the same material.
  • the base material may have a refractive index different from the refractive index of the linear body, or may be formed in a parallel plate shape. In this case, the base material is formed in a parallel plate shape. Therefore, even if the base material has a refractive index different from the refractive index of the linear body, the light refraction angle at the interface between the base material and the linear body is the refractive index of the linear body of the base material. In the case where it has the same refractive index, the same as the light refraction angle at the interface between the substrate and air. Therefore, the present invention can be applied as it is.
  • the liquid crystal display device of the present invention further includes a reflection member disposed on the side of the light guide plate opposite to the optical adjustment member side.
  • the optical adjustment member used in the liquid crystal display device of the present invention is provided with a plurality of linear bodies on the base material in which a cross section perpendicular to the extending direction is substantially triangular and a stepped portion is formed on one side of the cross section. It is done. Therefore, color separation of emitted light can be suppressed by one optical adjustment member. Further, the optical adjustment member used in the liquid crystal display device of the present invention can directly change the traveling direction of the light emitted from the light guide plate with a certain degree of directivity to the thickness direction of the optical adjustment member. Therefore, the utilization efficiency of the light emitted from the light guide plate can be improved, and the luminance characteristics can be improved.
  • the first polarizing element of the liquid crystal display element is arranged in a direction that allows the P-polarized light component to pass through predominantly. Therefore, the luminance of light that is transmitted through the liquid crystal display element and emitted from the liquid crystal display device can be increased. Furthermore, the effect of suppressing color separation of light emitted from the liquid crystal display device can be enhanced.
  • the liquid crystal display device of the present invention since the above-described optical adjustment member is provided, it is possible to reduce the thickness and cost of the liquid crystal display device while solving the problems of light color separation and insufficient luminance. .
  • FIG. 1 is a schematic configuration diagram of an optical adjustment sheet used in the liquid crystal display device of Example 1.
  • FIG. 2 is an enlarged cross-sectional view of a linear optical structure used in the liquid crystal display device of Example 1.
  • FIG. 3 is a schematic configuration diagram of the liquid crystal display device according to the first embodiment.
  • FIG. 4 is an enlarged cross-sectional view of a linear optical structure used in the liquid crystal display device of Example 2.
  • FIG. 5 is a schematic configuration diagram of a linear optical structure used in the liquid crystal display devices of Examples 3 to 9.
  • FIG. 6A is an enlarged cross-sectional view of a linear optical structure used in the liquid crystal display device of Example 1 (Example 3).
  • FIG. 6B is a cross-sectional view of the linear optical structure used in the liquid crystal display device of Example 1 (Example 3).
  • 7A is an enlarged cross-sectional view of a linear optical structure used in the liquid crystal display device of Example 4.
  • FIG. 7B is a cross-sectional view of the linear optical structure used in the liquid crystal display device of Example 4.
  • FIG. 8A is an enlarged cross-sectional view of a linear optical structure used in the liquid crystal display device of Example 5.
  • FIG. 8B is a cross-sectional view of the linear optical structure used in the liquid crystal display device of Example 5.
  • FIG. 9A is an enlarged cross-sectional view of a linear optical structure used in the liquid crystal display device of Example 7.
  • FIG. 9B is a cross-sectional view of the linear optical structure used in the liquid crystal display device of Example 7.
  • FIG. 10A is a schematic cross-sectional view of a linear optical structure when the refractive indexes of the base material and the linear structure are the same.
  • FIG. 10B is a schematic cross-sectional view of the linear optical structure when the refractive index is different between the substrate and the linear structure.
  • FIG. 11 is a graph showing the intensity of the reflectance with respect to the incident angle of light traveling from the high refractive index first medium to the low refractive index second medium.
  • FIG. 12 is a diagram illustrating a dominant polarization component of light emitted from the light collection surface and the correction surface of the second linear prism portion of the optical adjustment sheet.
  • FIG. 13 is a layout diagram of an evaluation apparatus when performing luminance measurement and color sensory evaluation.
  • FIG. 14 is a schematic configuration diagram of a liquid crystal display device of a first conventional example.
  • FIG. 15 is a schematic configuration diagram of a prism sheet of a first conventional example.
  • FIG. 16 is a schematic configuration diagram of a liquid crystal display device of a second conventional example.
  • FIG. 17 is a diagram showing a state of color separation of emitted light.
  • a liquid crystal display device 100 of the present invention includes a liquid crystal display panel 7 (liquid crystal display element) and a backlight unit 6 (illumination device).
  • the backlight unit 6 includes an optical adjustment sheet 1. First, the optical adjustment sheet 1 will be described. Thereafter, the liquid crystal display panel 7 and the backlight unit 6 will be described. [Configuration of optical adjustment sheet]
  • an optical adjustment sheet 1 includes a sheet-like light transmissive (transparent) base material 10 and a plurality of linear optical structures 13 (linear bodies) formed on the base material 10. Prepare.
  • the base material 10 is a polyethylene terephthalate (PET) sheet having a thickness of 50 ⁇ m.
  • PET polyethylene terephthalate
  • the thickness of the substrate 10 is preferably in the range of 10 to 500 ⁇ m in consideration of the ease of processing the optical adjustment sheet, handling properties, and the like.
  • any light transmissive material such as an inorganic transparent substance such as polyethylene naphthalate, polystyrene, polycarbonate (PC), polyolefin, polypropylene, cellulose acetate, glass, or the like is used other than PET. Can do.
  • the shape of the base material 10 is typically a sheet shape as in this example.
  • the surface of the base material 10 is not limited to a flat surface and may be a three-dimensional surface.
  • the cross-sectional shape orthogonal to the extending direction of the linear optical structure 13 is substantially a triangle.
  • the linear optical structure 13 has a bottom surface 13a, a slope 13b, and a slope 13c.
  • the bottom surface 13 a is in contact with the surface of the substrate 10 in parallel. That is, the linear optical structure 13 is provided on the base material 10 so that the bottom surface 13 a faces the surface of the base material 10.
  • the shapes and dimensions of the plurality of linear optical structures 13 are all the same.
  • the plurality of linear optical structures 13 are periodically arranged in a direction orthogonal to the extending direction of the linear optical structures 13.
  • the bottom corners of adjacent linear optical structures 13 are in contact with each other.
  • the arrangement interval (pitch) of the plurality of linear optical structures 13 is preferably about 7 to 100 ⁇ m.
  • the pitch is smaller than 7 ⁇ m, high-precision mold processing is required for the mold used to form the linear optical structure 13. Therefore, the manufacturing cost is increased.
  • the pitch is larger than 100 ⁇ m, the following problems occur.
  • the pitch is larger than 100 ⁇ m, the size of the linear optical structure 13 is also relatively increased. Therefore, the volume of the resin that forms the linear optical structure 13 increases.
  • the amount of cure shrinkage of the resin when the linear optical structure 13 is formed by curing the resin also increases.
  • the so-called “biting” of the resin with respect to the mold becomes strong, and the resin becomes difficult to peel from the mold.
  • the linear optical structure 13 is destroyed at the time of peeling, or the linear optical structure 13 is on the mold surface. It is easy to remain in.
  • the pitch is larger than 100 ⁇ m, the height of the linear optical structure 13 is increased. Therefore, the optical adjustment member becomes thick.
  • the material for forming the linear optical structure 13 is an aromatic acrylate ultraviolet curable resin (refractive index of 1.60).
  • a forming material of the linear optical structure 13 any resin material having a refractive index of 1.3 to 1.9 can be used instead of the above forming material.
  • the forming material may be an acrylic resin, a urethane resin, a styrene resin, an epoxy resin, or a silicone resin.
  • a transparent plastic resin such as may be used.
  • the linear optical structure 13 may be formed of the same material as the base material 10.
  • the linear optical structure 13 includes a first linear prism portion 11 formed on the base material 10 and extending in the same direction as the extending direction of the linear optical structure 13, and the first linear prism portion 11. And a plurality of second linear prism portions 12 formed on one surface defining an apex angle and extending in the same direction as the extending direction of the linear optical structure 13.
  • the first linear prism portion 11 and the second linear prism portion 12 are integrally formed. That is, in this example, the surface 13b of the linear optical structure 13 on which the plurality of second linear prism portions 12 are formed is stepped (hereinafter also referred to as a stepped surface).
  • three second linear prism portions 12 are formed on one surface that defines the apex angle of the first linear prism portion 11, but the present invention is not limited to this.
  • the number and shape of the second linear prism portions 12 can be changed as appropriate according to the application, required optical characteristics, and the like.
  • the second linear prism portion 12 may be provided on both of the two surfaces that define the apex angle of the first linear prism portion 11 depending on the application, required optical characteristics, and the like.
  • FIG. 2 An enlarged cross-sectional view of the linear optical structure 13 is shown in FIG.
  • An incident light beam 52 shown in FIG. 2 is a light beam that travels in the direction in which the luminance is maximized in the luminance characteristics of the light beam that has entered the optical adjustment sheet 1 (travels through the optical adjustment sheet 1). That is, the light beam 52 indicates a luminance peak light beam.
  • the cross section perpendicular to the extending direction of the linear optical structure 13 includes a first cross section 11 a of the first linear prism section 11 and a second cross section of the second linear prism section 12. Part 12a.
  • the first cross section 11a includes a bottom side 11b (first side), an inclined side 11c (second side), and an inclined side 11d (third side).
  • the base 11b is in contact with the surface of the substrate 10 in parallel.
  • the inclined sides 11c and 11d extend at predetermined angles ( ⁇ 1 and ⁇ 1 in FIG. 2) from both ends of the bottom side 11b, respectively.
  • the length of the inclined side 11c (second side) in contact with the second cross-sectional portion 12a among the two inclined sides 11c and 11d that define the apex angle 11e facing the base 11b is the other inclination. It is longer than the side 11d (third side).
  • the first base angle alpha 1 between the bottom 11b and the inclined side 11c, the second base angle beta 1 is smaller than between the bottom 11b and the inclined side 11d. That is, in this example, the shape of the first cross-sectional portion 11a is an asymmetric triangle (not an isosceles triangle).
  • the inclination angle of the inclined side 11d with respect to the normal direction of the surface of the substrate 10 is substantially the same as the inclination angle ( ⁇ in FIG. 2) of the traveling direction of the luminance peak ray 52 with respect to the normal direction of the surface of the substrate 10. It is. That is, the inclination direction of the surface 13c of the linear optical structure 13 including the inclined side 11d (hereinafter, this surface is also referred to as a flat surface) is substantially parallel to the traveling direction of the luminance peak light ray 52. More specifically, as will be described later, the inclination angle ( ⁇ 1 in FIG. 2) of the flat surface 13c with respect to the substrate surface is the inclination angle of the luminance peak ray 52 in the linear optical structure 13 with respect to the substrate surface ( It is slightly larger than 90 degrees - ⁇ ).
  • first cross section 11a of this example Specific dimensions of the first cross section 11a of this example are as follows.
  • the length of the base 11b of the first cross section 11a is 35 ⁇ m.
  • the first base angle alpha 1 of the first cross-sectional portion 11a is 39.14 degrees.
  • the second base angle ⁇ 1 is 57.71 degrees.
  • the second cross-sectional portion 12a has a bottom side 12b (fourth side), an inclined side 12c (fifth side), and an inclined side 12d (sixth side).
  • the base 12b is in contact with the inclined side 11c (second side) in parallel.
  • the inclined sides 12c and 12d extend from both ends of the bottom side 12b at predetermined angles ( ⁇ 2 and ⁇ 2 in FIG. 2 ), respectively.
  • the length of the inclined side 12d located on the side closer to the apex angle 11e out of the two inclined sides 12c and 12d is shorter than the other inclined side 12c.
  • the first base angle alpha 2 between the base 12b and the inclined side 12c, the second base angle beta 2 is less than between the base 12b and the inclined side 12d.
  • the shape of the second cross section 12a is an asymmetric triangle (not an isosceles triangle).
  • the surface 12f of the second linear prism portion 12 including the inclined side 12c (fifth side) mainly refracts the traveling direction of the incident light beam in the thickness direction of the optical adjustment sheet 1 as described later.
  • the surface 12f has a function of collecting incident light. Therefore, in the following, the surface 12f is referred to as the light collecting surface 12f.
  • the surface 12r of the second linear prism portion 12 including the inclined side 12d (sixth side) mainly suppresses color separation of the emitted light from the optical adjustment sheet 1 as described later. Therefore, hereinafter, the surface 12r is referred to as a correction surface 12r.
  • the condensing surface 12f can be made wider. Therefore, the utilization efficiency of incident light is improved.
  • the first base angle ⁇ 2 and the second bottom of the second cross section 12a are such that the direction of refraction of the light beam 54 when refracted by 12r is opposite to the direction of travel of the luminance peak light beam 52 before refraction.
  • the angle ⁇ 2 is set.
  • the angle ⁇ 1 between the refraction direction of the predetermined wavelength component of the light beam 53 for example, the wavelength A component 53A in FIG.
  • the predetermined wavelength of the light beam 54 component e.g., the wavelength a component 54A in FIG. 2 the angle ⁇ 2 and that, so as to be substantially the same, the first base angle alpha 2 and second bottom between the refraction direction and the traveling direction of the luminance peak beam 52 of the The angle ⁇ 2 is set.
  • angle ⁇ 1 and the angle ⁇ 2 may be different as long as the color separation of the emitted light from the optical adjustment sheet 1 is sufficiently suppressed.
  • the length of the base 12b of the second cross section 12a is about 10.44 ⁇ m.
  • the angle alpha 2 of the first base angle of the second cross section 12a is 30 degrees.
  • the angle ⁇ 2 of the second base angle of the second cross section 12a is 70 degrees.
  • the shapes and dimensions of the three second linear prism portions 12 are all the same.
  • the three second linear prism portions 12 are periodically arranged in a direction orthogonal to the extending direction. Moreover, it arrange
  • the manufacturing method of the optical adjustment sheet 1 is as follows. First, a roll mold is prepared. An uneven pattern corresponding to the shape of the plurality of linear optical structures 13 as shown in FIG. 1 is formed on the surface of the roll-shaped mold by cutting. Next, an ultraviolet curable resin is filled between the prepared base material 10 and the mold surface. The filled ultraviolet curable resin is cured by irradiating with ultraviolet rays having a wavelength of 340 to 420 nm. After the ultraviolet curable resin is cured, the substrate 10 is peeled from the mold. In this way, the optical adjustment sheet 1 is obtained.
  • the manufacturing method of an optical adjustment sheet is not limited to the said method, A well-known arbitrary method can be used.
  • a base material is produced with a thermoplastic resin.
  • a die having a concavo-convex pattern corresponding to the shape of the plurality of linear optical structures 13 formed on the surface by cutting is heated and pressed against the produced substrate.
  • the uneven pattern of the mold is transferred to the surface of the substrate.
  • the optical structure may be directly formed on the substrate by such a thermal transfer method.
  • the plurality of linear optical structures 13 may be formed on the substrate by a known extrusion molding method, press molding method, or injection molding method in which a molten resin is injected into a mold. In this case, the base material 10 and the linear optical structure 13 are formed of the same material.
  • each optical member is illustrated separately. In an actual apparatus, the optical members are stacked in contact with each other.
  • the liquid crystal display panel 7 includes, in order from the backlight unit 6 side, a first polarizing plate 7a, a glass substrate 7b, a first transparent conductive film 7c that forms a pixel electrode, and a first alignment film 7d.
  • These members are stacked in the order described above from the backlight unit 6 side.
  • a first polarizing plate 7 a is disposed near the optical adjustment sheet 1. The light emitted from the optical adjustment sheet 1 enters the liquid crystal display panel 7 from the first polarizing plate 7a side.
  • the first polarizing plate 7a is arranged in a direction that preferentially transmits P-polarized light.
  • the second polarizing plate 7j is arranged in a direction that preferentially transmits S-polarized light. The reason why the two polarizing plates 7a and 7j are arranged in this way will be described below.
  • the condensing surface 12f of the second linear prism portion 12 of the optical adjustment sheet 1 is set so that the incident luminance peak light beam can be emitted to the outside without being totally reflected. As described above, it is known that a part of light passing through these surfaces is reflected even when total reflection does not occur. This is called Fresnel reflection. The magnitude of Fresnel reflection depends on the refractive index difference at the interface, the incident angle of light incident on the interface, and the polarization direction of the light. FIG.
  • .0 is a diagram showing the intensity of the reflectance with respect to the incident angle of light traveling to .0).
  • Rp represents the reflectance for the P-polarized component.
  • Rs represents the reflectance with respect to the S-polarized component.
  • ⁇ c represents the critical angle of total reflection.
  • the reflectance Rs of the S-polarized component is higher than the reflectance Rp of the P-polarized component.
  • the P polarization component and the S polarization component are defined as follows.
  • the incident surface is defined by the traveling direction of the luminance peak ray and the normal line of the optical adjustment sheet substrate.
  • a component in which the vibration direction of the electric field vector is parallel to the incident plane is defined as a P-polarized component.
  • a component in which the vibration direction of the electric field vector is perpendicular to the incident surface is defined as an S-polarized component.
  • the reflectance Rs of the S-polarized component is generally higher than the reflectance Rp of the P-polarized component. Therefore, the S-polarized component is reflected more at the interface than the P-polarized component. That is, the P-polarized component is dominant in the light transmitted through the interface.
  • the P-polarized light component is dominant also for the light emitted from the condensing surface 12f and the correction surface 12r of the second linear prism portion 12 of the optical adjustment sheet 1.
  • the direction of color separation of the light beam passing through the condensing surface 12f is opposite to the direction of color separation of the light beam passing through the correction surface 12r. Therefore, the second linear prism portion 12 greatly reduces color separation.
  • the first polarizing plate 7a of the liquid crystal display panel 7 disposed to face the condensing surface 12f and the correction surface 12r (light emitting surface) of the second linear prism portion 12 transmits the P-polarized component. It is desirable to arrange in. By arranging in this way, it is possible to effectively use the light of the P-polarized component emitted predominantly from the condensing surface 12f and the correction surface 12r.
  • the first polarizing plate 7a of the liquid crystal display panel 7 is disposed so as to transmit the P-polarized light component emitted from the light condensing surface 12f and the correction surface 12r.
  • the luminance of the light transmitted through the liquid crystal display panel 7 can be increased as compared with the case where the first polarizing plate 7a is disposed so as to transmit the light of the S polarization component.
  • color separation is further suppressed.
  • the direction of the first polarizing plate 7a (the polarizing plate disposed on the optical adjustment member side) and the second polarizing plate 7j (the polarizing plate disposed on the side opposite to the optical adjustment member) The direction is orthogonal.
  • the second polarizing plate 7j is directed to transmit the S-polarized component.
  • the first polarizing plate 7a is directed to transmit the S-polarized component
  • the second polarizing plate 7j is directed to transmit the P-polarized component.
  • the backlight unit 6 includes a light source (LED: light emitting diode) 2, a light guide plate 3, a reflection sheet 4 (reflection member), an optical adjustment sheet 1, and a diffusion sheet 5.
  • the light guide plate 3 emits the light 50 incident on the side portion from the upper surface 3a (emission surface).
  • the reflection sheet 4 is disposed below the light guide plate 3 (on the side opposite to the liquid crystal display panel 7).
  • the optical adjustment sheet 1 is disposed on the upper part (the liquid crystal display panel 7 side) of the light guide plate 3.
  • the diffusion sheet 5 is disposed on the optical adjustment sheet 1.
  • the light source 2 emits white light in the visible light band. Since the backlight unit 6 is an edge light type illumination device, the light source 2 is provided on the side of the light guide plate 3.
  • the light beam emitted from the light source 2 enters from the side portion of the light guide plate 3. Then, the light advances through the light guide plate 3 in the direction of the light 50. And it radiates
  • the outgoing light 51 has directivity as described above.
  • the optical adjustment sheet 1 is laid in such a direction that the stepped surface 13b of the linear optical structure 13 becomes the main light receiving surface of the inclined incident light beam 52.
  • the optical adjustment sheet 1 is laid such that the stepped surface 13b is farther from the light source 2 than the surface 13c.
  • the optical members other than the optical adjustment sheet 1 are the same as the optical members of the conventional backlight unit.
  • the light guide plate 3 of this example is formed of polycarbonate.
  • the light guide plate 3 of this example has an emission characteristic such that the angle formed by the traveling direction of the luminance peak light beam and the normal direction of the emission surface 3a is 70 degrees.
  • the light 51 is refracted on the lower surface of the substrate 10.
  • the refractive indexes of the base material and the linear body are different, the light 51 is also refracted at the interface between the base material and the linear body.
  • the reflection sheet 4 is a sheet in which silver is deposited on the surface of a PET film.
  • a PET film bead-coated is used, the thickness thereof is 70 ⁇ m, and the haze is 30%.
  • the incident light is mainly refracted by the step surface 13b, that is, the second linear prism portion 12.
  • the inclination direction of the flat surface 13c of the linear optical structure 13 is substantially parallel to the traveling direction of the luminance peak light ray 52 as described above. Therefore, it is difficult for incident light to enter the flat surface 13c.
  • the luminance peak light ray 52 incident on the staircase surface 13b is refracted by two surfaces that define each convex surface (step surface) of the staircase surface 13b, that is, the light condensing surface 12f and the correction surface 12r.
  • the luminance peak light beam 52 is refracted in the thickness direction of the optical adjustment sheet 1 (the normal direction of the surface of the substrate 10) on the light collecting surface 12f (light beam 53 in FIG. 2).
  • the luminance peak light beam 52 is refracted in the in-plane direction of the optical adjustment sheet 1 (in-plane direction of the base material 10) on the correction surface 12r (light beam 54 in FIG. 2).
  • the traveling direction of the light beam 53 refracted by the condensing surface 12f and the traveling direction of the light beam 54 refracted by the correction surface 12r are opposite to each other with respect to the traveling direction of the luminance peak light beam 52 before refraction.
  • the refractive index of the forming material of the linear optical structure 13 varies depending on the wavelength of incident light. Therefore, when the luminance peak light beam 52 is refracted on the staircase surface 13b, the refraction angle differs depending on each wavelength component included in the luminance peak light beam 52. As a result, color separation occurs in the refracted lights 53 and 54 as shown in FIG. In FIG. 2, only the separation of the two wavelength components (wavelength A and B, wavelength A> wavelength B) is shown for the sake of simplicity.
  • Light rays 53A and 54A in FIG. 2 indicate refracted light having a wavelength A component.
  • Light rays 53B and 54B indicate refracted light having a wavelength B component.
  • FIG. 2 shows a case where the refraction of the wavelength B component is larger than the refraction of the wavelength A component (the refraction angle is large).
  • the wavelength B component 53B of the refracted light 53 is refracted more than the wavelength A component 53A. Therefore, the traveling (refractive) direction of the wavelength B component 53B is further in the direction of the arrow A1 in FIG. 2 (the direction approaching the normal line of the optical adjustment sheet 1) than the wavelength A component 53A.
  • the wavelength B component 54B of the refracted light 54 is refracted more than the wavelength A component 54A. Therefore, the traveling direction of the wavelength B component 54B is further in the direction of the arrow A2 in FIG.
  • the separation pattern of the color (wavelength) of the light beam 53 and the separation pattern of the color (wavelength) of the light beam 54 are opposite to the traveling direction of the luminance peak light beam 52. Therefore, the color separation of the light beam 53 is canceled by the color separation of the light beam 54. As a result, color separation of light collected on the liquid crystal display surface is suppressed.
  • the optical adjustment sheet 1 can suppress color separation of emitted light with a single sheet. Therefore, if the optical adjustment sheet 1 is used for the backlight unit, it is not necessary to use two prism sheets as in the conventional case. Further, the optical adjustment sheet 1 directly changes the traveling direction of the emitted light 51 from the light guide plate 3 to the normal direction of the optical adjustment sheet 1. Therefore, it is not necessary to provide a lower diffusion sheet between the prism sheet group and the light guide plate as in the prior art. Since the lower diffusion sheet converts the emitted light 51 from the light guide plate 3 into broad light once, the light use efficiency is lowered. If the lower diffusion sheet is not used, the utilization efficiency of the light emitted from the light guide plate 3 is improved, and the luminance characteristics are improved.
  • the liquid crystal display device 100 can suppress color separation of emitted light. Further, it is not necessary to use two prism sheets, and it is not necessary to use a lower diffusion sheet. Therefore, in the liquid crystal display device 100, the number of optical members is smaller than in the conventional case. As a result, the liquid crystal display device 100 can be reduced in thickness and cost. [Optical characteristics evaluation]
  • the optical characteristics of the liquid crystal display device 100 of Example 1 were evaluated. Specifically, measurement of front luminance and sensory evaluation of color were performed. First, an evaluation device corresponding to the liquid crystal display device of Example 1 shown in FIG. 13 was manufactured.
  • the evaluation apparatus of Example 1 includes a light source 2, a light guide plate 3, an optical adjustment sheet 1, a reflection plate 4, a diffusion sheet 5, and a first polarizing plate 7a. Since the light transmitted through the first polarizing plate 7a becomes a direct light incident on the liquid crystal layer, the optical characteristics of the transmitted light through the first polarizing plate 7a were evaluated using an evaluation device. In other words, in the evaluation device corresponding to the liquid crystal display device 100 of Example 1, the polarizing plate was arranged in a direction to transmit the P-polarized component.
  • the front luminance of the transmitted light was measured using the luminance meter.
  • the sensory evaluation of color was performed visually. Specifically, the color of the emitted light from the evaluation device was visually observed from the front direction. Then, the color uniformity of the emitted light was examined.
  • an evaluation device to be Comparative Example 8 was manufactured.
  • the evaluation apparatus of Comparative Example 8 laid a second polarizing plate 7j on the diffusion sheet 5 instead of the first polarizing plate 7a. That is, the polarizing plate was arranged in a direction that allows the S-polarized light component to pass therethrough.
  • Other configurations were the same as those of the evaluation apparatus of Example 1.
  • the evaluation device of Comparative Example 8 the front luminance and the color of the emitted light were investigated.
  • an evaluation device corresponding to the liquid crystal display device 500 of Comparative Example 1 was prepared as follows. Compared with the evaluation apparatus of Example 1, instead of the optical adjustment sheet 1, prism sheets 507a and 507b and a lower diffusion sheet 506 were arranged. The lower diffusion sheet 506 was laid on the light guide plate 3. The prism sheet 507a was laid on the lower diffusion sheet 506, and the prism sheet 507b was laid on the prism sheet 507a. The arrangement method of the prism sheets 507a and 507b with respect to the light source 2 was the same as that in FIG.
  • the transverse shape of the prismatic structures of the prism sheets 507a and 507b was an isosceles triangle.
  • the width of the isosceles triangle was 30 ⁇ m and the height was 15 ⁇ m.
  • the apex angle was 90 degrees.
  • the base material 507c was a PET film
  • the prismatic structure 507d was formed of an ultraviolet curable acrylic resin.
  • As the lower diffusion sheet 506, a PET film bead-coated is used.
  • the thickness of the lower diffusion sheet 506 was 70 ⁇ m, and the haze was 85%.
  • Optical members other than the prism sheet group 507 (507a and 507b) and the lower diffusion sheet 506 were the same as those used in the evaluation apparatus of Example 1.
  • the polarizing plate of the evaluation apparatus of Comparative Example 1 was arranged in a direction to transmit the light of the P-polarized component. Using the evaluation apparatus of Comparative Example 1, the front luminance measurement and the sensory evaluation of the color of the light transmitted through the polarizing plate 7a were performed.
  • an evaluation device of Comparative Example 4 having the following configuration was manufactured. Compared with the evaluation apparatus of Comparative Example 1, the evaluation apparatus of Comparative Example 4 laid a polarizing plate 7j on the diffusion sheet 5 instead of the polarizing plate 7a. That is, the polarizing plate was laid in a direction that allows the S-polarized light component to pass therethrough. Other configurations were the same as those of the evaluation apparatus of Comparative Example 1. Similarly, for the evaluation device of Comparative Example 4, the front luminance and the color of the emitted light were investigated.
  • the above-described evaluation was performed on the liquid crystal display device 600 having the configuration as shown in FIG. Specifically, an evaluation device of Comparative Example 2 corresponding to the liquid crystal display device 600 was manufactured. As compared with the evaluation apparatus of Example 1, the evaluation apparatus of Comparative Example 2 laid one conventional prism sheet 507b instead of the optical adjustment sheet 1. Other configurations were the same as those of the evaluation apparatus of Example 1. Therefore, the polarizing plate of the evaluation apparatus of Comparative Example 2 was laid so as to transmit the P-polarized component.
  • an evaluation device of Comparative Example 5 was manufactured. Compared with the evaluation apparatus of Comparative Example 2, the evaluation apparatus of Comparative Example 5 was provided with a polarizing plate 7j instead of the polarizing plate 7a. That is, instead of the polarizing plate that transmits the P-polarized component, a polarizing plate that transmits the S-polarized component was laid. Other configurations were the same as those of the evaluation apparatus of Comparative Example 2.
  • Table 1 shows the number of optical sheets disposed between the light guide plate and the polarizing plate for the liquid crystal display panel.
  • the front luminance is indicated by a luminance ratio (%) based on the front luminance of Comparative Example 4 described later as a reference (100%).
  • Evaluation of color uniformity ⁇ and x in Table 1 are as follows.
  • the color of the emitted light from the evaluation device is the same white color as the emitted light from the light source. And the difference between the color of the emitted light from the evaluation device and the color of the emitted light from the light source cannot be discriminated visually.
  • Although the difference between the color of the emitted light from the evaluation device and the color of the emitted light from the light source can be visually determined, the difference is not as significant as “ ⁇ ”.
  • X Level at which it is possible to visually confirm that the emitted light 55 from the evaluation device has a color such as red or yellow.
  • Example 1 In addition to the evaluation results of Example 1 and Comparative Examples 1, 2, 4, 5 and 8, the evaluation results of Example 2 and Comparative Example 3 described later are also shown in Table 1.
  • the liquid crystal display device of Example 1 can improve the front luminance and reduce the number of optical sheets as compared with the liquid crystal display device of Comparative Example 1 (FIG. 14). It was. That is, it has been found that the liquid crystal display device of Example 1 can improve the optical characteristics while reducing the thickness and cost of the device. Further, in the liquid crystal display device of Example 1, both the front luminance and the color uniformity were improved as compared with the liquid crystal display device of Comparative Example 2 (FIG. 16).
  • Comparative Example 8 it was laid to transmit S-polarized light. Therefore, the front luminance was lower than that in Comparative Example 1. Further, the color separation suppressing effect was also reduced as compared with Example 1.
  • the optical adjustment sheet of Example 1 the case where the shapes and dimensions of the plurality of second prism structures constituting the linear optical structure are all the same has been described.
  • the optical adjustment sheet used in the present invention is not limited to this.
  • the shapes of the plurality of second prism structures may be similar to each other. Also in this case, the condensing surfaces and correction surfaces of the plurality of second prism structures are parallel to each other. Therefore, the same effect as in Example 1 can be obtained.
  • the diffusion sheet 5 was laid on the optical adjustment sheet 1.
  • the diffusion sheet 5 further improves the unevenness of the brightness of the light emitted from the optical adjustment sheet 1 and further improves the display quality.
  • the present invention is not limited to this.
  • the present invention is applied to a case where the quality of light emitted from the optical adjustment sheet is sufficiently good (when luminance unevenness is suppressed as much as possible) or a use that does not require high-quality display performance. In that case, the diffusion sheet 5 may not be used.
  • the reflective sheet 4 was disposed on the opposite side of the light guide plate 3 from the optical adjustment sheet 1 side.
  • the present invention is not limited to this.
  • the reflection sheet 4 may not be used.
  • Example 1 the dimensions of the optical adjustment sheet 1 are described. However, the dimensions of the optical adjustment sheet according to the present invention are not limited to the dimensions described in Example 1.
  • the optical adjustment sheet used in the present invention includes the number of second linear prism portions constituting the staircase surface of the linear optical structure, the position and area ratio of the condensing surface and the correction surface on the staircase surface, or as necessary. By adjusting the inclination angle of the condensing surface and the correction surface, it is possible to adjust the balance of the optical characteristics such as the luminance and chromatic dispersion of the emitted light.
  • the number, shape, and dimensions of the second linear prism portions are implemented so that the number of light rays incident on the condensing surface is relatively large with respect to the correction surface.
  • Example 1 Other configurations are the same configurations and forming materials as those in the first embodiment. Further, in the liquid crystal display device of the second embodiment, the configuration other than the optical adjustment sheet is the same as that of the liquid crystal display device of the first embodiment.
  • FIG. 4 shows an enlarged cross-sectional view of the linear optical structure of the optical adjustment sheet used in the liquid crystal display device of Example 2.
  • the cross-section orthogonal to the extending direction of the linear optical structure 24 of this example is substantially triangular.
  • the bottom surface (the surface including the base 21 b) along the extending direction is in contact with the surface of the substrate 20 in parallel. That is, the linear optical structure 24 is provided on the base material 20 so that the bottom surface thereof faces the surface of the base material 20.
  • the incident light ray 52 shown in FIG. 4 has shown the luminance peak light ray.
  • the cross section perpendicular to the extending direction of the linear optical structure 24 has a first cross section 21a and two second different shapes provided on one side of the first cross section 21a.
  • Including cross-sectional portions 22a and 23a That is, in this example, two second linear prisms having different shapes are formed on one surface of the first linear prism portion (the linear structure corresponding to the first cross-sectional portion 21a) of the linear optical structure 24.
  • a linear structure corresponding to the second cross-sectional portions 22a and 23a) is provided.
  • the two second cross-section portions 22a and 23a are provided such that the bottom corner portions thereof are in contact with each other.
  • the first cross section 21a is defined by a bottom side 21b (first side) and inclined sides 21c (second side) and 21d (third side).
  • the bottom side 21b is in contact with the surface of the substrate 20 in parallel.
  • the inclined sides 21c and 21d extend from both ends of the bottom side 21b at predetermined angles (base angle ⁇ 1 and base angle ⁇ 1 in FIG. 4), respectively.
  • the shape of the first cross-sectional portion 21a (the shape of the first linear prism portion) is the same as that of the first embodiment. That is, the base angles ⁇ 1 and ⁇ 1 are 39.14 degrees and 57.71 degrees, respectively.
  • the length of the bottom side 21b is 35 ⁇ m.
  • the relationship between the inclination angle (90- ⁇ 1 ) of the inclined side 21d with respect to the normal direction of the surface of the substrate 20 and the inclination angle ⁇ of the traveling direction of the luminance peak light ray 52 with respect to the normal direction of the surface of the substrate 20 is also implemented. Similar to Example 1. That is, the inclination direction of the surface (flat surface) of the linear optical structure 24 including the inclined side 21d is substantially parallel to the traveling direction of the luminance peak light ray 52. More specifically, the base angle ⁇ 1 is slightly larger than the inclination angle (90 ° ⁇ ) of the luminance peak light ray 52 in the linear optical structure 24 with respect to the surface of the substrate 20, as in the first embodiment.
  • the second cross-sectional portion 22a is located at a first base angle alpha 1 of the first cross-sectional portion 21a.
  • the second cross section 22a is triangular.
  • the second cross section 22a has a bottom side 22b (fourth side), an inclined side 22c (fifth side), and an inclined side 22d (sixth side).
  • the base 22b is in contact with the inclined side 21c (second side) in parallel.
  • the inclined sides 22c and 22d extend from both ends of the bottom side 22b at predetermined angles (base angles ⁇ 2 and ⁇ 2 in FIG. 4), respectively.
  • the shape of the second cross section 22a is similar to the second cross section 12a of the first embodiment.
  • the first base angle ⁇ 2 and the second angle ⁇ 2 of the second cross section 22a are 30 degrees and 70 degrees, respectively.
  • the base 22b is about 14.92 ⁇ m, which is longer than the base 12b (about 10.44 ⁇ m) of the second cross section 12a of the first embodiment. That is, the area of the second cross section 22a is larger than the area of the second cross section 12a of the first embodiment.
  • the surface of the second linear prism portion including the inclined side 22c is a condensing surface.
  • the condensing surface refracts the traveling direction of the incident light beam in the thickness direction of the optical adjustment sheet. That is, the condensing surface has an action of condensing incident light.
  • the surface of the linear optical structure 24 including the other inclined side 22d of the second cross section 22a is a correction surface.
  • the correction surface has an effect of suppressing color separation of the emitted light from the optical adjustment sheet.
  • the area of the condensing surface of the second linear prism portion located closest to the base angle side ( ⁇ 1 side in FIG. 4) of the first linear prism portion is larger than that of the first embodiment.
  • the condensing surface of the second linear prism portion located closest to the base angle side ( ⁇ 1 side in FIG. 4) of the first linear prism portion is wider, the use efficiency of incident light is improved. As a result, the luminance increases. The reason is as follows.
  • the surface of the first linear prism portion on which the second linear prism portion is formed (the surface including the second side 21c in FIG. 4) is referred to as a second linear prism portion forming surface.
  • the light beam that passes through the second linear prism portion forming surface that is, the light beam that is incident on the staircase surface of the optical adjustment sheet includes a light beam component other than the luminance peak light beam 52. Therefore, the intensity (illuminance) of the light beam passing through the second linear prism portion forming surface differs depending on the passing position of the second linear prism portion forming surface. Specifically, the intensity of light passing through the second linear prism portion forming surface is larger as closer to the base angle alpha 1 of the first linear prism portion.
  • the intensity of the light incident on the second linear prism portion located on the base angle side of the first linear prism portion is higher (the illuminance is higher). Therefore, as in this example, by condensing the condensing surface of the second linear prism portion located closest to the base angle side of the first linear prism portion, it is possible to condense a light beam having a higher intensity. Can do.
  • the optical adjustment sheet used in the liquid crystal display device of Example 2 can improve the utilization efficiency of incident light and can increase the luminance of emitted light.
  • the second cross section 23a is located on the apex angle 21e side of the first cross section 21a.
  • the second cross section 23a has a substantially triangular shape.
  • the second cross-sectional portion 23a has a bottom side 23b, an inclined side 23c, and an inclined side 23d.
  • the base 23b is in contact with the inclined side 21c (second side) of the first cross section 21a in parallel.
  • the inclined sides 23c and 23d extend from both ends of the bottom side 23b at predetermined angles ( ⁇ 2 and ⁇ 3 in FIG. 4), respectively.
  • the inclined side 23d is located on the apex angle 21e side of the first cross section 21a.
  • the inclined side 23d has two sides 23f and 23g.
  • the inclined side 23d has a shape bent in a convex shape toward the outside of the second cross-sectional portion 23a.
  • the side 23f is located on the inclined side 21d side of the first cross section 21a. As shown in FIG. 4, the side 23f extends in parallel with the inclined side 21d from the apex of the apex angle 21e. Therefore, the angle (second base angle) ⁇ 3 between the bottom side 23b and the inclined side 23d of the second cross-sectional portion 23a is ⁇ 1 + ⁇ 1 .
  • the side 23g is parallel to the inclined side 22d of the second cross section 22a. In this example, the inclined side 23c is parallel to the inclined side 22c.
  • the side 23f is parallel to the inclined side 21d.
  • the side 23g is parallel to the inclined side 22d.
  • the angle ⁇ 2 of the first base angle of the second cross section 23a is 30 degrees
  • the angle ⁇ 3 of the second base angle of the second cross section 23a is 96.85 degrees. .
  • the surface including the inclined side 23c is a condensing surface.
  • the surface including the side 23f is parallel to the surface including the inclined side 21d. Therefore, the inclination direction of the surface including the side 23 f is substantially parallel to the luminance peak light ray 52. On the surface including the side 23f, the influence of refraction and reflection of incident light is small.
  • the surface including the side 23g is a correction surface. Therefore, in this example, the second linear prism portion having the second cross-sectional portion 23a has a shape in which the area of the condensing surface is made as large as possible and the correction surface is made as small as possible.
  • optical characteristics of the optical adjustment sheet of this example were evaluated in the same manner as in Example 1. Specifically, the optical adjustment sheet of this example was attached to the evaluation apparatus shown in FIG. That is, the optical adjustment sheet of this example was mounted instead of the optical adjustment sheet 1 of Example 1 in FIG.
  • the front luminance of the evaluation device of Example 2 was measured using a luminance meter. Moreover, the sensory evaluation of color was performed visually.
  • the direction of the polarizing plate on the optical adjustment member side of the liquid crystal display device of Example 2 was directed so as to transmit light of the P-polarized component.
  • an evaluation device of Comparative Example 3 was manufactured.
  • the evaluation apparatus of Comparative Example 3 was provided with a polarizing plate 7j arranged to transmit the S-polarized component instead of the polarizing plate 7a.
  • Other configurations were the same as those of the evaluation apparatus of Example 2.
  • the optical adjustment member used in the liquid crystal display device of the present invention includes a base material and a plurality of linear optical structures formed on the base material and having light transmittance.
  • the cross section orthogonal to the extending direction of the linear optical structure is substantially triangular.
  • the cross section of the linear optical structure is defined by three sides. Of the three sides, one side is in contact with the surface of the substrate. One of the other two sides is stepped.
  • the stepped side is composed of a plurality of triangular triangular portions. Each triangular part has two sides sandwiching the apex angle. One side refracts light incident on the bottom surface of the base material in a direction perpendicular to the base material. The other side relaxes color separation.
  • the polarizing plate (polarizing plate 7a in FIG. 3) on the optical adjustment member side (light incident side) of the liquid crystal display panel is disposed in a direction that allows the P-polarized component to pass therethrough.
  • the front luminance is improved and the effect of suppressing chromatic dispersion is improved as compared with the case where the S-polarized light component is arranged in the transmitting direction.
  • the number of steps on the step-like slope of the linear optical structure is preferably 1 to 15. More preferably, it is 2-9.
  • the inventors produced a plurality of optical adjustment sheets in which the number of second linear prism portions was varied between 1 and 15 (Examples 3 to 9 and Comparative Examples 6 to 12).
  • Each second linear prism portion of each optical adjustment sheet had a first base angle ⁇ 2 of 30 degrees and a second base angle ⁇ 2 of 70 degrees.
  • the second linear prism portion is disposed on the surface including the side 11c. All the second linear prism portions of each optical adjustment sheet had the same shape.
  • each first linear prism portion of each optical adjustment sheet had a first base angle ⁇ 1 of 39.14 degrees and a second base angle ⁇ 1 of 57.71 degrees.
  • the length of the base 11b of each first linear prism portion was 35 ⁇ m.
  • the size of the second linear prism portion was appropriately changed in a similar manner according to the number of second linear prism portions arranged in contact with the side 11c. .
  • an evaluation apparatus corresponding to the liquid crystal display devices of Examples 3 to 9 and Comparative Examples 6 to 12 will be described in detail.
  • Example 3 In the same manner as in Examples 1 and 2, the front luminance of the evaluation apparatus of Example 3 was measured, and sensory evaluation of color was performed. The front luminance of Example 3 was very high (120% or more). Further, the effect of suppressing color separation was sufficient. The color of the emitted light was not visually confirmed.
  • Example 4 As shown in FIGS. 7A and 7B, in the optical adjustment member 1C used in the liquid crystal display device according to the fourth embodiment, two second linear prism portions 12 are provided on the hypotenuse 11c of each first linear prism portion 11. Arranged. That is, there were two substantially triangular bodies forming the second cross section.
  • a polarizing plate 7a arranged in a direction that transmits light of the P-polarized component was laid on the optical adjustment member 1C.
  • the other configuration of the evaluation apparatus of Example 4 was the same as that of Example 3.
  • Example 4 the front luminance of the evaluation apparatus of Example 4 was measured, and the sensory evaluation of color was performed.
  • the front luminance of the evaluation apparatus of Example 4 was very high (120% or more).
  • the effect of suppressing color separation was sufficient, and the coloring of the emitted light was not confirmed visually.
  • the auxiliary surface was installed on the side closer to the base angle ⁇ 1 compared to Example 7 described later. As a result, it is considered that a high front luminance and a high color separation suppressing effect can be achieved at the same time. (Note that the result of further balancing the condensing surface and the auxiliary surface with this configuration is Example 2 described above. In Example 2, adjustment is made by changing the shapes of the two second linear prism portions. went.)
  • each first linear prism portion 11 As shown in FIGS. 8A and 8B, in the optical adjustment member 1D used in the liquid crystal display device of Example 5, six second linear prism portions 12 are provided on the hypotenuse 11c of each first linear prism portion 11. Arranged. That is, there were six substantially triangular bodies forming the second cross section.
  • the evaluation apparatus of Example 5 as in Example 3, the direction of the polarizing plate was directed so as to transmit the light of the P-polarized component. That is, the polarizing plate 7a was used.
  • the front luminance of the evaluation apparatus of Example 5 was measured, and the sensory evaluation of color was performed.
  • the front luminance of Example 5 was very high (120% or more). In addition, the effect of suppressing color separation was sufficient, and the coloring of the emitted light was not visually confirmed.
  • the optical adjustment member (not shown) used in the liquid crystal display device of Example 6 nine second linear prism portions were arranged on the hypotenuse of each first linear prism portion. That is, there were nine substantially triangular bodies forming the second cross section.
  • the evaluation apparatus of Example 6 as in Example 3, the direction of the polarizing plate was directed so as to transmit the light of the P-polarized component. That is, the polarizing plate 7a was used.
  • the front luminance of the evaluation apparatus of Example 6 was measured, and the sensory evaluation of color was performed.
  • the front luminance of Example 6 was very high (120% or more). Further, the effect of suppressing color separation was sufficient, and the coloration of the emitted light was not visually confirmed.
  • one second linear prism portion 12 is arranged on the hypotenuse 11c of the first linear prism portion 11. It was done. That is, there was one substantially triangular body forming the second cross section.
  • the evaluation apparatus of Example 7 as in Example 3, the direction of the polarizing plate was directed so as to transmit the light of the P-polarized component. That is, the polarizing plate 7a was used.
  • the front luminance of the evaluation apparatus of Example 7 was measured, and the sensory evaluation of color was performed.
  • the front luminance of Example 7 was very high and was 120% or more.
  • the optical adjustment member 1E used for the liquid crystal display device of Example 7 was insufficient in the effect of suppressing color separation, and coloring of emitted light was visually confirmed.
  • the degree of coloring of the emitted light confirmed in Example 7 was smaller than the degree of coloring in Comparative Example 2 described above.
  • Second linear prism portion forming surface 11c of the first linear prism portion 11 and a large opening angle with respect to the more base surface close to the base angle alpha 1 side. Therefore, the intensity of the light beam that passes through the surface 11c increases (the illuminance increases) as it is closer to the base angle ⁇ 1 side of the first linear prism portion.
  • Example 7 when the second linear prism portion disposed on the first linear prism portion 11 is one, the condensing surface of the second linear prism portion positioned on alpha 1 side widest become. For this reason, since a light beam having a high intensity can be collected, the utilization efficiency of the incident light beam is good, and the luminance of the emitted light is increased. On the other hand, the amount of light transmitted through the auxiliary surface is relatively small. For this reason, the function of suppressing color separation is insufficient. As a result, coloring of the emitted light remains. In addition, since the amount of light transmitted through the auxiliary surface is relatively small, the dispersion effect of the emission angle by the auxiliary surface becomes insufficient. As a result, the viewing angle is narrowed. In Example 7, the luminance of the peak of the emitted light was sufficient, but the direction was not the front. Further, since the viewing angle is narrow, the front luminance is lower than the front luminance of the optical adjustment members of Examples 3 to 5 described above.
  • the optical adjustment member used in the liquid crystal display device of Example 8 (not shown), ten second linear prism portions were arranged on the hypotenuse of the first linear prism portion.
  • the optical adjustment member of Example 8 had ten substantially triangular bodies forming the second cross-section in each linear optical structure.
  • the direction of the polarizing plate used for the evaluation apparatus of Example 8 was directed so as to transmit the light of the P-polarized component.
  • the front luminance was 100% or more. Further, the effect of suppressing color separation was sufficient, and the coloration of the emitted light was not visually confirmed.
  • the optical adjustment member used in the liquid crystal display device of Example 9 (not shown) has 15 second linear prism portions arranged on the oblique side of the first linear prism portion. That is, the optical adjustment member of Example 9 had 15 substantially triangular bodies that form the second cross-section in each linear optical structure.
  • the direction of the polarizing plate used in the evaluation apparatus of Example 9 was directed so as to transmit the light of the P-polarized component. In Example 9, the front luminance was 100% or more. Further, the effect of suppressing color separation was sufficient, and the coloration of the emitted light was not visually confirmed.
  • the evaluation apparatus of Comparative Example 4 (not shown) is directed so that the direction of the polarizing plate transmits the light of the S polarization component. That is, the polarizing plate 7j was used instead of the polarizing plate 7a. Other configurations were the same as those in Comparative Example 1.
  • the front luminance of the evaluation device of Comparative Example 4 was measured, and the sensory evaluation of color was performed.
  • the direction of the polarizing plate was directed so as to transmit the light of the S-polarized component.
  • the evaluation apparatus of Comparative Example 5 (not shown) is directed so that the direction of the polarizing plate transmits the light of the S-polarized component. That is, the polarizing plate 7j was used instead of the polarizing plate 7a. Other configurations were the same as those in Comparative Example 2.
  • Comparative Example 5 as a result of directing the direction of the polarizing plate so as to transmit the light of the S-polarized component, the front luminance was further reduced as compared with Comparative Example 2. Also, the color separation suppressing effect was not sufficient as in Comparative Example 2.
  • Comparative Example 6 The evaluation apparatus of Comparative Example 6 (not shown) is directed so that the direction of the polarizing plate transmits the light of the S-polarized component as compared with Example 7. That is, the polarizing plate 7j was used instead of the polarizing plate 7a. Other configurations were the same as those in Example 7. In Comparative Example 6, as a result of directing the direction of the polarizing plate to transmit the light of the S-polarized component, the front luminance was further reduced as compared with Example 7. Further, the effect of suppressing color separation was not sufficient as in Example 7.
  • Comparative Example 7 The evaluation apparatus of Comparative Example 7 (not shown) is directed so that the direction of the polarizing plate transmits the light of the S-polarized component as compared with Example 4. That is, the polarizing plate 7j was used instead of the polarizing plate 7a. Other configurations were the same as those in Example 4.
  • Comparative Example 7 as a result of directing the direction of the polarizing plate so as to transmit the light of the S-polarized component, the front luminance was lowered as compared with Example 4. In addition, the color separation suppressing effect also decreased as compared with Example 4.
  • Comparative Example 8 The evaluation apparatus of Comparative Example 8 (not shown) is directed so that the direction of the polarizing plate transmits light of the S-polarized component as compared with Example 3. That is, the polarizing plate 7j was used instead of the polarizing plate 7a. Other configurations were the same as those in Example 3. In Comparative Example 8, as a result of directing the direction of the polarizing plate to transmit the light of the S-polarized component, the front luminance was lower than that in Example 3. Also, the color separation suppressing effect was lower than that in Example 3.
  • the evaluation device of Comparative Example 9 (not shown) is directed so that the direction of the polarizing plate transmits the light of the S-polarized component as compared with Example 5. That is, the polarizing plate 7j was used instead of the polarizing plate 7a. Other configurations were the same as those in Example 5.
  • Comparative Example 9 as a result of directing the direction of the polarizing plate so as to transmit the light of the S-polarized component, the front luminance was lowered as compared with Example 5. Further, the color separation suppressing effect was also reduced as compared with Example 5.
  • Comparative Example 10 The evaluation apparatus of Comparative Example 10 (not shown) is directed so that the direction of the polarizing plate transmits the light of the S-polarized component as compared with Example 6. That is, the polarizing plate 7j was used instead of the polarizing plate 7a. Other configurations were the same as those in Example 6. In Comparative Example 10, as a result of directing the direction of the polarizing plate to transmit the light of the S-polarized component, the front luminance was lower than that in Example 6. Further, the color separation suppressing effect was also reduced as compared with Example 6.
  • the evaluation device of Comparative Example 11 directed the direction of the polarizing plate so as to transmit the light of the S-polarized component. That is, the polarizing plate 7j was used instead of the polarizing plate 7a. Other configurations were the same as those in Example 8.
  • Comparative Example 11 as a result of directing the direction of the polarizing plate to transmit the light of the S-polarized component, the front luminance was lower than that of Example 8 (being less than 100%). Further, the effect of suppressing color separation was further reduced as compared with Example 8.
  • the evaluation device of Comparative Example 12 directed the direction of the polarizing plate so as to transmit the light of the S-polarized component. That is, the polarizing plate 7j was used instead of the polarizing plate 7a. Other configurations were the same as those in Example 9.
  • Comparative Example 12 as a result of directing the direction of the polarizing plate so as to transmit the light of the S-polarized component, the front luminance was lower than that of Example 9 (being less than 100%). Further, the effect of suppressing color separation was further reduced as compared with Example 9.
  • the liquid crystal display panel when the direction of the polarizing plate on the optical adjustment member side is directed so as to transmit the light of the P-polarized component, compared to the case where it is directed so as to transmit the light of the S-polarized component, Brightness can be improved. Furthermore, the effect of suppressing color separation can be enhanced.
  • the combinations of the base angles ⁇ 1 , ⁇ 1 , ⁇ 2 , ⁇ 2 , etc. have been described as examples. However, similar results were obtained as a result of a plurality of experiments conducted on an optical adjustment member satisfying the following mathematical formula when the incident angle of the luminance peak ray was in the range of 45 to 85 degrees.
  • the refractive index n 0 of air is 1.0, and the unit of angle is degrees.
  • the highest luminance peak beam can be refracted without being totally reflected by the condensing surface.
  • the luminance peak light can be efficiently extracted from the optical adjustment sheet.
  • the incident light has an angle distribution in which the angle of the luminance peak light is a peak
  • the incident light having an arbitrary incident angle is efficiently reflected from the optical adjustment sheet without being totally reflected on the light collecting surface. Can be taken out.
  • the optical adjustment sheet having the combination of angles satisfying the above angle condition suppresses color separation and improves luminance characteristics. Moreover, total reflection on the condensing surface of incident light is suppressed. As a result, light can be efficiently extracted from the optical adjustment sheet.
  • the optical adjustment sheet of the present invention does not necessarily satisfy the above-described angle condition, and the present invention can be applied to an optical adjustment sheet having a combination of arbitrary angles.
  • the optical adjustment sheet including the first and second linear prism portions having a predetermined size has been described.
  • the length of the base 11b of the first linear prism in contact with the substrate of the optical adjustment sheet is 35 ⁇ m, but the present invention is not limited to this.
  • the length of the base portion 11b is 7 ⁇ m to 100 ⁇ m, high front luminance and high color separation are achieved when the number of the plurality of substantially triangular bodies forming the second cross section is in the range of 2 to 9. Both suppression effects can be achieved.
  • the base material and the linear optical structure of the optical control sheet was formed together with the optical material having a refractive index n 1, the present invention is not limited thereto.
  • Refractive index n b of the base material of the optical control sheet may be different from the refractive index n 1 of the linear optical structure.
  • the optical adjusting sheet 1F shown in FIG. 10B an optical material having a refractive index n b (n b ⁇ n 1 ) and the linear optical structure 34 formed of an optical material having a refractive index n 1 And a formed base material 110.
  • the light 51 incident on the bottom surface 10a (interface with air) of the substrate 10 in FIG. 10A at the incident angle I1 is refracted at the bottom surface 10a.
  • the refraction angle I2 here is expressed by the following formula 3 (Snell's law).
  • the base material 10 and the linear structure 34 are made of an optical material having the same refractive index n1. Therefore, the light 52 traveling inside the substrate 10 travels straight without being refracted at the interface between the substrate 10 and the first linear prism portion 31 of the linear structure 34 (the surface including the bottom 31b).
  • the light 51 incident on the bottom surface 110a (interface with air) of the substrate 110 at the incident angle I1 is refracted at the bottom surface 110a.
  • the refraction angle Ib here is expressed by the following mathematical formula 4.
  • the substrate 110 (refractive index n b ) and the linear structure 34 (refractive index n 1 ) are formed of materials having different refractive indexes. Therefore, the light 52 ⁇ / b> A traveling through the base material 110 is refracted at the interface (the surface including the base 31 b) between the base material 110 and the first linear prism portion 31.
  • the refraction angle I 2 ′ at the interface between the base material 110 and the first linear prism portion 31 is expressed by the following formula: It is represented by 5.
  • Equation 4 (sinI 1 ) / n 1 .
  • I 2 ′ is found to be equal to the refraction angle I 2 when the refractive index of air is directly incident on the medium is n 1. Therefore, as in the optical adjustment sheet 1F, when the refractive indexes of the substrate and the linear body are different, n 1 is the refractive index of the linear structure, and I 2 is the interface between the substrate and the linear structure.
  • the optical adjustment member used in the liquid crystal display device of the present invention is a single optical adjustment member that can suppress the color separation of the emitted light and can improve the utilization efficiency of the incident light. Therefore, the optical characteristics can be improved while reducing the thickness and cost of the apparatus.
  • it is suitable as an optical member having a function of controlling the light directivity of an edge light type illumination device and a liquid crystal display device.
  • the polarizing plate on the optical adjustment member side (light incident surface side) of the liquid crystal display panel is arranged in a direction to transmit the P-polarized light component. Therefore, compared to the case where the polarizing plate on the optical adjustment member side is arranged in a direction that transmits the S-polarized component, the front luminance of the light emitted from the liquid crystal display panel can be improved, and the color separation suppressing effect can be achieved. Can be increased. Therefore, the liquid crystal display device of the present invention is suitable for liquid crystal display devices for all uses.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)

Abstract

 本発明の液晶表示装置(100)は、光源(2)と、光学調整部材(1)と、液晶表示パネル(7)とを有する。前記光学調整部材は、光透過性を有する基材(6)と、該基材上に設けられた複数の線状体(13)とを備え、該線状体の延在方向に直交する断面が、第1~第3辺で画成された三角形状の第1断面部(11a)と、各々が第1断面部より面積が小さく且つ第4~第6辺で画成された複数の三角形状体を有する第2断面部(12a)とを有し、該第1断面部の第1辺が前記基材の表面と平行に接しており、該第2断面部が第該1断面部の第2辺上に設けられており、且つ、該第2断面部の第4辺が該第1断面部の第2辺と平行に接している。この前記光学調整部材の、光出射面側に、P偏光成分を透過させる向きに配置された偏光板(7a)を有する前記液晶表示パネルを配置する。そのため、本発明の液晶表示装置は、色分離及び輝度不足の課題を解決することができる。

Description

液晶表示装置
 本発明は入射光線の進行方向を制御する光学調整部材を備える液晶表示装置に関する。
 従来、各種照明装置(たとえば、液晶ディスプレイのバックライトユニット等)は、光源からの光線の広がりや明るさを調整する機構を備えている。多くの照明装置は、光の指向性を制御する光学調整部材を備える。光学調整部材は、光透過性を有し、入射光を所定の方向に揃える機能、または、入射光を拡散させる機能を有する。
 入射光を所定の方向に揃える機能、すなわち、光指向性を制御する機能を有する光学調整部材の代表的な例は、プリズムシートである(特表平10-506500号公報参照)。プリズムシートは、シート状の基材と、基材上に並べられた複数の光学構造体とを備える。光学構造体の代表例は、プリズム状構造体とレンズ状構造体である。プリズム状構造体は、所定の方向に延在し且つその延在方向に直交する断面が三角形状である。レンズ状構造体は所定の方向に延在し且つその延在方向に直交する断面が半円形状又は半楕円形状である。プリズムシートは、基材上に形成された複数の光学構造体が有するプリズム効果またはレンズ効果によって光線の進行方向を制御する。
 従来の液晶表示装置用のバックライトユニットは、各々がプリズム状構造体を有する2枚のプリズムシートを備える。2枚のプリズムシートは、各プリズムシートのプリズム状構造体の延在方向が互いに直交するように配置される(特表平10-506500号公報参照)。このようなバックライトユニットの一般的な構成を図14に示す。また、プリズムシートの一般的な構造を図15に示す。図14を参照して、バックライトユニット501は、光源503と、光源503から放射された光510を面光源に変える導光板504と、導光板504の下部(液晶表示パネル502とは反対側)に配置された反射シート505と、導光板504の上部(液晶表示パネル502側)に配置された機能性光学シート群とを備える。機能性光学シート群は、下部拡散シート506、プリズムシート群507及び上部拡散シート508を含む。
 バックライトユニット501は、導光板504の側部に光源503が配置された、いわゆるエッジライト(サイドライト)方式の照明装置である。光源503から放射された光510は導光板504の側部に入射される。そして、入射された光は、導光板504の表面504aから出射される。導光板504からの出射光511の指向性はある程度揃っている。具体的には、導光板504の表面504aの法線方向に対して所定の角度で傾斜した方向において、出射光511の輝度が最大となる。以下、本明細書では、出射光511のうち、輝度が最大となる方向に進行する光線成分を「輝度ピーク光線」と称す。なお、図14では、液晶表示装置500の構成を分かり易くするために各光学部材を離して記載しているが、実際には、各光学部材は接して重ねられている。
 プリズムシート群507は、2枚のプリズムシート507a及び507bを含む。各プリズムシートは、図15に示すように、シート状基材507cと、シート状基材507c上に並ぶ複数のプリズム状構造体507dとを備える。プリズムシート507aのプリズム状構造体507dの延在方向は、プリズムシート507bのプリズム状構造体507dの延在方向と直交する。
 上述のように、従来のバックライトユニットでは、導光板から出射される光を集光して効果的に液晶表示パネルに照射するために、図15に示すようなプリズムシート(光学調整部材)が用いられてきた。プリズムシートは、すぐれた集光性能を有する。しかしながら、プリズムシートを1枚だけ用いた場合、プリズムシートから出射される光の色が分離してしまうという問題があった。その結果、1枚のプリズムシートを用いた照明装置で物体を照明した場合、物体の影のエッジ部に色がついて滲みやすい。また、1枚のプリズムシートを液晶表示装置のバックライトユニットに用いた場合、ある角度で見た場合と正面で見た場合とで色が異なって見えやすい。
 上述した色分離について説明する。図16は、プリズムシートを1枚のみ使用した液晶表示装置の断面図である。図17は、図16中のプリズムシート内の光の屈折の様子を示した図である。図16に示す液晶表示装置600は、図14に示す液晶表示装置500と比較して、プリズムシート507aを使用していない。プリズムシート507bのみを使用している。その他の構成は図14と同じである。図17中の光線512は、液晶表示装置600内のプリズムシート507bに入射された光線のうち、該光線の輝度が最大となる方向に進行する光線成分、すなわち、輝度ピーク光線を示している。
 図17を参照して、プリズム状構造体507dに入射された輝度ピーク光線512は、プリズム状構造体507dの光進行方向側の面507eで屈折し、プリズムシート507bの厚さ方向に出射される。プリズム状構造体507d(プリズムシート507b)の形成材料の屈折率は光の波長により異なる。そのため、輝度ピーク光線512に含まれる波長成分に応じて面507eにおける屈折量が異なる。その結果、図17に示すように、波長に応じて面507eにおける屈折光の屈折方向が変わる。以上の原理により、出射光513に所定のパターンで色分離が生じる。なお、図17中では、説明を簡略化するために、2つの波長成分のみの分離を示した。
 また、1枚のプリズムシートを用いただけでは、輝度が不足しやすい。そこで、従来のバックライトユニットは、上述した色分離及び輝度不足の課題を解決するために、図14に示すように、プリズムシートを2枚重ねて用いている。
 しかしながら、多数の光学シート群(図14の例では、プリズムシート2枚、拡散シート2枚)は、液晶表示装置の薄型化及び低コスト化を阻害する。
 本発明は上記課題を解決するためになされたものであり、本発明の目的は、1つの光学調整部材で上述した色分離及び輝度不足の課題を解決することができる液晶表示装置を提供することである。
 本発明の液晶表示装置は、光源と、光学調整部材と、液晶表示素子とを備える。光学調整部材は、光源と光学的に接続される。光学調整部材は、光透過性を有する基材と、複数の線状体とを含む。基材は、光源からの光が入射される光入射面を有する。複数の線状体は、基材の、光入射面と反対側の面の上に設けられる。線状体の延在方向に直交する断面は、第1断面部と、第2断面部とを有する。第1断面部は、第1~第3辺で画成された三角形状である。第2断面部は、第1断面部より面積が小さく且つ第4~第6辺で画成された略三角形状である。第1断面部の第1辺が上記基材の上記光入射面と反対側の面と平行に接している。第2断面部が第1断面部の第2辺上に設けられている。第2断面部の第4辺が第1断面部の第2辺と平行に接している。第1断面部の第1辺と第2辺のなす角は、第1辺と第3辺のなす角よりも小さい。液晶表示素子は、第1の偏光素子、液晶層、及び第2の偏光素子を含み、これらがこの順に積層されている。第1の偏光素子は、光学調整部材の複数の線状体に対向して配置される。第1の偏光素子が、P偏光成分を優勢に透過させる方向に配置されている。
 本発明者らは、入射光線の進行方向を制御する光学調整部材について鋭意検討を重ねた。その結果、上述した構造の光学調整部材を用いることにより、光学調整部材からの出射光の色分離を抑制できることが分かった。第2断面部の三角形状体の第5辺を含む線状体の面で屈折した光の色分離パターンと、第2断面部の三角形状体の第6辺を含む線状体の面で屈折した光の色分離パターンとは、光学調整部材に入射された光の進行方向に対して互いに逆パターンとなる。そのため、第2断面部の三角形状体の第5辺を含む線状体の面で屈折した光と、第2断面部の三角形状体の第6辺を含む線状体の面で屈折した光との間で互いに色分離を打ち消しあう。(色分離抑制の原理は後で詳述する)。
 さらに、本発明の光学調整部材は、導光板から出射されたある程度指向性の揃った光線の進行方向を光学調整部材の厚さ方向に直接変更する。そのため、従来のように、プリズムシート群と導光板との間に下部拡散シートを設ける必要がなくなる。すなわち、上述の光学調整部材では、従来のように、下部拡散シートを用いて導光板から出射されたある程度指向性の揃った光を一旦ブロードな光に変換する必要がない。それゆえ、例えば導光板等から出射された光の利用効率を向上させ、輝度特性を向上させることができる。すなわち、上述の光学調整部材では、一つの光学調整部材で、上述した出射光の色分離及び輝度不足の課題を解消することができる。
 さらに、本発明においては、液晶表示素子の、複数の線状体に対向して配置された第1の偏光素子がP偏光成分を優勢に透過させる方向に配置されている。後述のように、光学調整部材から出射される光は、P偏光成分が優勢である。そのため、第1の偏光素子を、P偏光成分を優勢に透過させる方向に配置することにより、光学調整部材から出射される光を有効に液晶表示素子に入射させることができる。第1の偏光素子を、P偏光成分を優勢に透過させる方向に配置することにより、液晶表示素子を透過して液晶表示装置から出射される光の輝度を高めることができる。また、液晶表示装置から出射される光の色分離抑制の効果を高めることができる。
 本発明の液晶表示装置において、前記複数の線状体は、それぞれ、第2断面部を画成する複数の三角形状体を含む。前記複数の三角形状体は、第1断面部の第2辺上に隙間なく配置されている。前記三角形状体の数は2個以上9個以下であることが好ましい。
 この場合には、三角形状体の数が2個以上9個以下であれば、色分離を充分に抑制することができるとともに、輝度特性を向上させることができる。そのため、一つの光学調整部材で、上述した出射光の色分離及び輝度不足の課題を解消することができる。なお、複数の三角形状体が第1断面部の第2辺上に隙間なく配置されるとは、複数の三角形状体が互いに接した状態で配置されており、複数の三角形状体が第2辺全体を覆っていることを意味する。
 好ましくは、複数の三角形状体の第5及び第6辺のうち、第1断面部の第1辺に対向する頂角に近い方の辺が、他方の辺より短い。このような構成にすると、例えば、図1及び2に示すように、第2断面部12aの第4辺12bに対向する頂角(例えば、図1中の角部12e)を画成する2つの面のうち、輝度ピーク光線52を光学調整部材1の厚さ方向に屈折させる線状体13の集光面12f(第1断面部11aの頂角11eに遠い方の辺12cを含む面)をより広くすることができる。それゆえ、線状体の集光面に入射される光が増大する(集光させる光線が増大する)。その結果、入射光の利用効率をさらに向上させ、輝度特性をさらに向上させることができる。
 好ましくは、上記光学調整部材に入射された光線の輝度特性において輝度が最大となる方向に進行する輝度ピーク光線が上記光学調整部材で屈折した際に、前記三角形状体の第5辺を含む上記線状体の面で屈折した後の輝度ピーク光線の進行方向と、前記三角形状体の第6辺を含む上記線状体の面で屈折した後の該輝度ピーク光線の進行方向とが、屈折前の輝度ピーク光線の進行方向に対して互いに逆となるように、前記三角形状体の第5辺及び第6辺が第4辺に対して傾斜している。
 好ましくは、第1断面部の第3辺の第1辺に対する傾斜方向が、上記光学調整部材に入射された光線の輝度特性において輝度が最大となる方向と略平行である。より好ましくは、第1断面部の第3辺と第1辺との間の角度(例えば、図2中のβ)が、光学調整部材に入射された輝度ピーク光線(例えば、図2中の光線52)の基材表面に対する角度(例えば、図2中の90度-θ)と同じまたは大きい。このような構成にすると、第1断面部の第3辺を含む線状体の面(例えば、図1中の面13c)における入射光の反射及び屈折が非常に小さくなるので、入射光の利用効率がさらに向上する。
 好ましくは、上記複数の線状体が、その延在方向に直交する方向に周期的に配置されている。
 好ましくは、線状体の屈折率がnであって、基材及び線状体を取り囲む空気の屈折率nが1.0であって、空気と基材との界面の法線方向と空気中における光線の方向とのなす角度がIであって、法線方向と線状体の内部における光線の方向とのなす角度がIであって、第1辺と第2辺、第4辺と第5辺、及び、第4辺と第6辺のなす角度がそれぞれα、α及びβであるとき、
 sin I = n sin I
0 ≦ sin (α+α-I) ≦ 1/n
 ≦ α+α ≦ I+90
-I ≦ β-α ≦ 90-I
を満たしている。
 この場合には、基板及び線状体に入射した光線を、集光面において全反射させてロスすることなく、外部に取り出すことができる。
 好ましくは、線状体の屈折率がnであって、光線の、基材及び線状体を取り囲む空気と線状体との界面における全反射の臨界角がI2maxであって、sin I2max = 1/nを満たし、第1辺と第2辺、及び、第4辺と第5辺のなす角度がそれぞれα及びαであるとき、
α+α ≦ 2・I2max
を満たしている。
 この場合には、入射した光線の入射角度によらず、入射した光線は光学調整部材の集光面で全反射することなく、光学調整部材の外部に向かって出射できる。
 本発明による液晶表示装置は、光源と、光学調整部材と、液晶表示素子とを備える。光学調整部材は、光源と光学的に接続される。光学調整部材は、光透過性を有する基材と、複数の線状体とを含む。基材は、光が入射される光入射面を有する。複数の線状体は、基材の、光入射面と反対側の面の上に設けられる。線状体は光透過性を有する。各線状体は、集光面及び補正面を有する複数の他の線状体を有する。線状体の延在方向に直交する断面が略三角形である。線状体の断面を画成する3つの辺のうち、一つの辺が上記基材の上記光入射面と反対側の面と平行に接している。他の2辺のうちの一方の辺が階段状である。階段状の辺は、線状体の延在方向に直交する断面と、集光面及び補正面との交線である。線状体の延在方向に直交する断面の、基材に平行な辺と階段状の辺とのなす角度は、基材に平行な辺と残りの辺とのなす角度よりも小さい。液晶表示素子は、光学調整部材の複数の線状体に対向して配置された第1の偏光素子、液晶層、及び第2の偏光素子を有する。第1の偏光素子、液晶層及び第2の偏光素子はこの順に積層される。第1の偏光素子が、P偏光成分を優勢に透過させる方向に配置されている。
 本明細書において用語「集光面」は、線状体の光出射面であって、基材の側から入射された光線を光学調整部材の厚さ方向(基材の厚さ方向)に屈折させる面をいう。用語「補正面」は、線状体の光出射面であって、基材の側から入射された光線を光学調整部材の面方向(基材の面方向)に屈折させる面をいう。「線状体の断面の、基材に平行な辺と階段状の辺とのなす角度」は、基材に平行な辺と階段状の辺との交点と、線状体の集光面と補正面とで形成される凹条部の先端とを通る直線と、基材に平行な辺とのなす角度で定義される。換言すれば、「線状体の断面の、基材に平行な辺と階段状の辺とのなす角度」は、基材に平行な辺と階段状の辺との交点を通り階段状の辺と交差する直線と、基材に平行な辺とのなす角度のうち、最も小さい角度として定義される。例えば、図4に示されているような、断面が階段状の辺を有する線状光学構造体24において、「線状体の断面の、基材に平行な辺と階段状の辺とのなす角度」はα1であり、「基材に平行な辺と残りの辺とのなす角度」はβ1である。
 好ましくは、本発明の液晶表示装置は、さらに、光源からの光を光学調整部材に導く導光板を備える。前記光源は前記導光板の端部に配置されている。
 この場合には、本発明の液晶表示装置にエッジライト方式の照明を適用した場合であっても、一つの光学調整部材により出射光の色分離を抑制し、且つ輝度を向上させることができる。そのため、従来のように、2枚のプリズムシートを用いる必要が無くなる。また、従来のように、プリズムシート群と導光板との間に下部拡散シートを設ける必要がなくなる。それゆえ、本発明の液晶表示装置にエッジライト方式の照明に適用する際に、光学部材の数を減らすことができ、装置の薄型化及び低コスト化を図ることができる。
 好ましくは、基材の屈折率が線状体の屈折率と同じである。この場合には、基材と線状体の接合面(界面)において光は直進する。そのため、基材と線状体との接合面の形状を任意にすることができ、設計の自由度を増すことができる。また、基材と線状体とを同一の材質で一体に形成することも可能である。
 本発明の液晶表示装置において、基材が、線状体の屈折率とは異なる屈折率を有してもよく、平行平板状に形成されていてもよい。この場合には、基材が平行平板状に形成されている。そのため、基材が線状体の屈折率と異なる屈折率を持っている場合であっても、基材と線状体との界面における光の屈折角は、基材が線状体の屈折率と同じ屈折率を有する場合における、基材と空気との界面での光の屈折角と同じになる。そのため、本発明をそのまま適用することができる。
 好ましくは、本発明の液晶表示装置では、さらに、上記導光板の上記光学調整部材側とは反対側に配置された反射部材を備える。
 本発明の液晶表示装置に用いられる光学調整部材は、延在方向に直交する断面が略三角形であり且つ該断面の一つの辺に階段部が形成された線状体が基材上に複数設けられる。そのため、一つの光学調整部材により出射光の色分離を抑制することができる。また、本発明の液晶表示装置に用いられる光学調整部材は、導光板から出射されたある程度指向性の揃った光の進行方向を光学調整部材の厚さ方向に直接変更することができる。そのため、導光板から出射された光の利用効率を向上させ、輝度特性を向上させることもできる。すなわち、上述の光学調整部材によれば、一つの光学調整部材により出射光の色分離を抑制することができ且つ輝度特性を向上させることができる。さらに、液晶表示素子の第1の偏光素子は、P偏光成分を優勢に透過させる方向に配置される。そのため、液晶表示素子を透過して液晶表示装置から出射される光の輝度を高めることができる。さらに、液晶表示装置から出射される光の色分離抑制の効果を高めることができる。
 本発明の液晶表示装置によれば、上述の光学調整部材を備えているので、光の色分離及び輝度不足の課題を解決しつつ、液晶表示装置の薄型化及び低コスト化を図ることができる。
図1は、実施例1の液晶表示装置に用いる光学調整シートの概略構成図である。 図2は、実施例1の液晶表示装置に用いる線状光学構造体の拡大断面図である。 図3は、実施例1の液晶表示装置の概略構成図である。 図4は、実施例2の液晶表示装置に用いる線状光学構造体の拡大断面図である。 図5は、実施例3~9の液晶表示装置に用いる線状光学構造体の概略構成図である。 図6Aは、実施例1(実施例3)の液晶表示装置に用いる線状光学構造体の拡大断面図である。 図6Bは、実施例1(実施例3)の液晶表示装置に用いる線状光学構造体の断面図である。 図7Aは、実施例4の液晶表示装置に用いる線状光学構造体の拡大断面図である。 図7Bは、実施例4の液晶表示装置に用いる線状光学構造体の断面図である。 図8Aは、実施例5の液晶表示装置に用いる線状光学構造体の拡大断面図である。 図8Bは、実施例5の液晶表示装置に用いる線状光学構造体の断面図である。 図9Aは、実施例7の液晶表示装置に用いる線状光学構造体の拡大断面図である。 図9Bは、実施例7の液晶表示装置に用いる線状光学構造体の断面図である。 図10Aは、基材と線状構造体との屈折率が同じ場合における線状光学構造体の概略断面図である。 図10Bは、基材と線状構造体との屈折率が異なる場合における線状光学構造体の概略断面図である。 図11は、高屈折率の第1媒質から低屈折率の第2媒質へと進む光の、入射角に対する反射率の強度を示したグラフである。 図12は、光学調整シートの第2線状プリズム部の集光面、補正面から出射する光の、優勢な偏光成分を表した図である。 図13は、輝度測定及び色みの官能評価を行った際の評価装置の配置図である。 図14は、第1の従来例の液晶表示装置の概略構成図である。 図15は、第1の従来例のプリズムシートの概略構成図である。 図16は、第2の従来例の液晶表示装置の概略構成図である。 図17は、出射光の色分離の様子を示した図である。
 以下、本発明の実施の形態を図面を参照して詳しく説明する。図中同一又は相当部分には同一符号を付してその説明を援用する。
 図3を参照して、本発明の液晶表示装置100は、液晶表示パネル7(液晶表示素子)と、バックライトユニット6(照明装置)とを備える。バックライトユニット6は、光学調整シート1を備える。初めに、光学調整シート1について説明する。その後、液晶表示パネル7及びバックライトユニット6について説明する。
[光学調整シートの構成]
 図1を参照して、光学調整シート1は、シート状の光透過性(透明)基材10と、基材10上に形成された複数の線状光学構造体13(線状体)とを備える。
 本例では、基材10は、厚さ50μmのポリエチレンテレフタレート(PET)シートである。ただし、基材10の形成材料及び厚さはこれに限られない。基材10の厚さは、光学調整シートの加工の容易性、ハンドリング性等を考慮すると、10~500μmの範囲が好ましい。また、基材10の形成材料としては、PET以外では、ポリエチレンナフタレート、ポリスチレン、ポリカーボネート(PC)、ポリオレフィン、ポリプロピレン、セルロースアセテート、ガラスなどの無機透明物質等、任意の光透過性材料を用いることができる。基材10の形状は、典型的には、本例のようにシート状である。基材10の形状は、より肉厚の板状または任意の形状の基材を用いてもよい。さらに、基材10の表面は平坦に限らず、立体面であってもよい。
 線状光学構造体13の延在方向に直交する断面形状は略三角形である。線状光学構造体13は底面13a、斜面13b及び斜面13cを有する。底面13aは、基材10の表面と平行に接している。すなわち、線状光学構造体13は、その底面13aが基材10の表面と対向するように、基材10上に設けられている。
 本例では、複数の線状光学構造体13の形状及び寸法は全て同じである。複数の線状光学構造体13は、線状光学構造体13の延在方向と直交する方向に周期的に配置される。隣り合う線状光学構造体13の底角部は互いに接する。複数の線状光学構造体13の配置間隔(ピッチ)は7~100μm程度であることが好ましい。ピッチが7μmより小さくなると、線状光学構造体13を形成するために用いる金型に対して精度の高い金型加工が必要となる。そのため、製造コストが高くなる。また、ピッチが100μmより大きくなると、次のような問題が生じる。ピッチが100μmより大きくなると、線状光学構造体13のサイズも相対的に大きくなる。そのため、線状光学構造体13を形成する樹脂の体積が増大する。この結果、樹脂を硬化させて線状光学構造体13を形成した際の樹脂の硬化収縮量も増大する。この場合、金型に対する樹脂のいわゆる「食いつき」が強くなり、樹脂が金型から剥離し難くなる。特に、ロール状の金型を用いてシート状基材上に線状光学構造体13を形成した場合、剥離時に線状光学構造体13が破壊されたり、線状光学構造体13が金型表面に残留したりしやすい。ピッチが100μmより大きくなると、線状光学構造体13の高さが高くなる。そのため、光学調整部材が厚くなる。
 本例では、線状光学構造体13の形成材料は芳香族系アクリレートの紫外線硬化型樹脂(屈折率1.60)である。なお、線状光学構造体13の形成材料としては上記形成材料に代えて、屈折率1.3~1.9の任意の樹脂材料が利用可能である。また、本例のように、線状光学構造体13を基材10の形成材料と異なる材料で形成する場合、その形成材料としては、アクリル樹脂やウレタン樹脂、スチレン樹脂、エポキシ樹脂、シリコーン系樹脂などの透明プラスチック樹脂を用いてもよい。なお、線状光学構造体13を基材10と同じ材料で形成してもよい。
 線状光学構造体13は、基材10上に形成され且つ線状光学構造体13の延在方向と同じ方向に延在した第1線状プリズム部11と、第1線状プリズム部11の頂角を画成する一つの面上に形成され且つ線状光学構造体13の延在方向と同じ方向に延在した複数の第2線状プリズム部12とを備える。本例では、後述するように、第1線状プリズム部11と第2線状プリズム部12とは一体的に形成されている。すなわち、本例では、複数の第2線状プリズム部12が形成されている線状光学構造体13の面13bは、階段状である(以下、階段面ともいう)。
 本例では、第1線状プリズム部11の頂角を画成する一つの面上に3つの第2線状プリズム部12を形成したが、本発明はこれに限定されない。第2線状プリズム部12の数や形状は、用途、必要とする光学特性等に応じて適宜変更し得る。また、用途、必要とする光学特性等に応じて、第1線状プリズム部11の頂角を画成する2つの面の両方に第2線状プリズム部12を設けてよい。
 線状光学構造体13の拡大断面図を図2に示す。図2中に示した入射光線52は、光学調整シート1に入射された(光学調整シート1内を進行する)光線の輝度特性において輝度が最大となる方向に進行する光線である。すなわち、光線52は、輝度ピーク光線を示す。線状光学構造体13のその延在方向に直交する断面は、図2に示すように、第1線状プリズム部11の第1断面部11aと、第2線状プリズム部12の第2断面部12aとから構成される。
 第1断面部11aは、底辺11b(第1辺)と、傾斜辺11c(第2辺)と傾斜辺11d(第3辺)とを有する。底辺11bは基材10の表面と平行に接する。傾斜辺11c及び11dは、底辺11bの両端からそれぞれ所定の角度(図2中のα1及びβ1)で延在する。本例では、底辺11bと対向する頂角11eを画成する2つの傾斜辺11c及び11dのうち、第2断面部12aと接する傾斜辺11c(第2辺)の長さが、もう一方の傾斜辺11d(第3辺)より長い。それゆえ、底辺11bと傾斜辺11cとの間の第1底角αは、底辺11bと傾斜辺11dとの間の第2底角βより小さい。すなわち、本例では、第1断面部11aの形状は、非対称の三角形である(二等辺三角形でない)。
 本例では、傾斜辺11dの基材10表面の法線方向に対する傾斜角は、基材10表面の法線方向に対する輝度ピーク光線52の進行方向の傾斜角(図2中のθ)と略同じである。すなわち、傾斜辺11dを含む線状光学構造体13の面13c(以下、この面を平坦面ともいう)の傾斜方向は、輝度ピーク光線52の進行方向と略平行である。より具体的には、後述するように、平坦面13cの基材表面に対する傾斜角度(図2中のβ)は線状光学構造体13内の輝度ピーク光線52の基材表面に対する傾斜角度(90度-θ)より若干大きい。
 本例の第1断面部11aの具体的な寸法は以下のとおりである。第1断面部11aの底辺11bの長さは35μmである。第1断面部11aの第1底角αは39.14度である。第2底角βは57.71度である。
 第2断面部12aは、底辺12b(第4辺)と、傾斜辺12c(第5辺)と、傾斜辺12d(第6辺)とを有する。底辺12bは、傾斜辺11c(第2辺)と平行に接する。傾斜辺12c及び12dは、底辺12bの両端からそれぞれ所定の角度(図2中のα及びβ)で延在する。本例では、図2に示すように、2つの傾斜辺12c及び12dのうち、頂角11eに近い側に位置する傾斜辺12dの長さが、もう一方の傾斜辺12cより短い。それゆえ、底辺12bと傾斜辺12cとの間の第1底角αは、底辺12bと傾斜辺12dとの間の第2底角βより小さい。本例では、第2断面部12aの形状は、非対称の三角形である(二等辺三角形でない)。
 傾斜辺12c(第5辺)を含む第2線状プリズム部12の面12fは、後述するように、主に、入射光線の進行方向を光学調整シート1の厚さ方向に屈折させる。面12fは入射光線を集光させる作用を有する。それゆえ、以下では、面12fを集光面12fという。一方、傾斜辺12d(第6辺)を含む第2線状プリズム部12の面12rは、後述するように、主に、光学調整シート1からの出射光の色分離を抑制する。それゆえ、以下では、面12rを補正面12rという。
 頂角11eに遠い側に位置する傾斜辺12cの長さが、もう一方の傾斜辺12dより長ければ、集光面12fをより広くすることができる。そのため、入射光線の利用効率が向上する。
 本例では、図2に示すように、光学調整シート1に入射された輝度ピーク光線52が集光面12fで屈折した際の光線53の屈折方向と、第2線状プリズム部12の補正面12rで屈折した際の光線54の屈折方向とが、屈折前の輝度ピーク光線52の進行方向に対して互いに逆になるように、第2断面部12aの第1底角α及び第2底角βが設定される。また、本例では、光線53の所定の波長成分(例えば、図2中の波長A成分53A)の屈折方向と輝度ピーク光線52の進行方向との間の角度γ1と、光線54の所定の波長成分(例えば、図2中の波長A成分54A)の屈折方向と輝度ピーク光線52の進行方向との間の角度γ2とが、略同じになるように、第1底角α及び第2底角βが設定される。このような構成にすることにより、光学調整シート1からの出射光の色分離を一層抑制することができる。
 なお、光学調整シート1からの出射光の色分離が十分抑制できる程度の範囲内であれば、角度γ1と角度γ2とが異なっていてもよい。
 本例の第2断面部12aの具体的な寸法は以下のとおりである。第2断面部12aの底辺12bの長さは約10.44μmである。第2断面部12aの第1底角の角度αは30度である。第2断面部12aの第2底角の角度βは70度である。
 なお、本例では、3つの第2線状プリズム部12の形状及び寸法は全て同じとした。また、3つの第2線状プリズム部12は、その延在方向と直交する方向に周期的に配置されている。また、隣り合う第2線状プリズム部12の底角部が互いに接するように配置されている。すなわち、本例では、線状光学構造体13の階段面13bを構成する複数の第2線状プリズム部12の集光面12f及び補正面12rはそれぞれ、互いに平行で且つ等間隔に配置される。
[光学調整シートの製造方法]
 光学調整シート1の製造方法は次の通りである。初めに、ロール状の金型を用意する。ロール状の金型の表面には、図1に示すような複数の線状光学構造体13の形状に対応する凹凸パターンが切削加工により形成されている。次いで、用意した基材10と金型表面との間に、紫外線硬化樹脂を充填する。波長340~420nmの紫外線を照射して充填した紫外線硬化樹脂を硬化する。紫外線硬化樹脂が硬化した後、金型から基材10を剥離する。このようにして、光学調整シート1が得られる。
 光学調整シートの製造方法は上記方法に限定されず、公知の任意の方法を用いることができる。例えば、熱可塑性樹脂で基材を作製する。次に、複数の線状光学構造体13の形状に対応する凹凸パターンが切削加工により表面に形成された金型を、作製された基材に加熱押圧する。このとき、金型の凹凸パターンが基材表面に転写される。このような熱転写法により、基材上に光学構造体を直接形成しても良い。また、周知の押出成型法やプレス成型法、あるいは金型に溶融樹脂を注入する射出成形法等により基材上に複数の線状光学構造体13を形成しても良い。この場合、基材10と、線状光学構造体13とは同じ材料で形成される。
[液晶表示パネル]
 液晶表示パネルの構成を説明する。図3では、液晶表示装置の構成を分かり易くするために、各光学部材を離して記載している。実際の装置内では各光学部材は接した状態で重ねられる。
 図3に示すように、液晶表示パネル7は、バックライトユニット6側から順に、第1の偏光板7a、ガラス基板7b、画素電極を成す第1の透明導電膜7c、第1の配向膜7d、液晶層7e、第2の配向膜7f、対抗電極を成す透明導電膜7g、カラーフィルター7h、ガラス基板7i、及び、第2の偏光板7jを備える。これらの部材は、バックライトユニット6側から上述の順番で積層されている。光学調整シート1に近い方には、第1の偏光板7aが配置されている。光学調整シート1から出射した光は、第1の偏光板7a側から液晶表示パネル7に入射する。
 液晶表示パネル7では、第1の偏光板7aはP偏光を優勢に透過する方向に配置される。第2の偏光板7jはS偏光を優勢に透過する方向に配置される。2つの偏光板7a,7jをこのように配置する理由について以下に説明する。
 光学調整シート1の第2線状プリズム部12の集光面12f等は、入射した輝度ピーク光線が全反射することなく、外部に向かって出射できるように設定されている。このように、全反射を起こさない場合であっても、これらの面を通過する光の一部は反射することが知られている。これをフレネル反射と呼ぶ。フレネル反射の大きさは、界面における屈折率の差、界面へ入射する光の入射角、及び、光の偏光方向に依存する。図12(文献「波動光学エンジニアリングの基礎」(オプトロニクス社)の第47頁より抜粋)は、高屈折率の第1媒質(n1=1.5)から低屈折率の第2媒質(n2=1.0)へと進む光の、入射角に対する反射率の強度を示す図である。図中、RpはP偏光成分に対する反射率を示す。RsはS偏光成分に対する反射率を示す。θcは全反射の臨界角を示す。図12のグラフによると、臨界角θcよりも小さい入射角度(界面の法線と光の進行方向とのなす角度)では、全ての光が界面を透過するわけではなく、光の一部は界面において反射する。また、全般的にS偏光成分の反射率Rsの方がP偏光成分の反射率Rpよりも高い。なお、P偏光成分に関して、反射率Rpがゼロとなる角度、いわゆるブリュスター角θBが存在する。本明細書においては、P偏光成分とS偏光成分とを以下のとおりに定義する。入射面は輝度ピーク光線の進行方向と光学調整シート基材の法線とによって規定される。電場ベクトルの振動方向が入射面に平行である成分をP偏光成分と定義する。また、電場ベクトルの振動方向が入射面に垂直である成分をS偏光成分と定義する。
 上述のように、高屈折率の第1媒質から低屈折率の第2媒質へと進む光は、全反射の臨界角以下の入射角であってもこれらの媒質の界面において一部反射される。この場合、反射率はP偏光成分とS偏光成分とで異なる。図12に示すとおり、全般的にS偏光成分の反射率Rsの方がP偏光成分の反射率Rpよりも高い。そのため、界面において、S偏光成分はP偏光成分よりも多く反射される。つまり、界面を透過する光は、P偏光成分が優勢となる。
 図11に示すように、光学調整シート1の第2線状プリズム部12の集光面12f及び補正面12rから出射する光についても、P偏光成分が優勢となる。集光面12fを通過する光線の色分離の方向は、補正面12rを通過する光線の色分離の方向とは逆になっている。そのため、第2線状プリズム部12は色分離を大きく低減する。
 上述のように、集光面12f及び補正面12rのいずれの面からも、P偏光成分の光が優勢に出射される。そのため、第2線状プリズム部12の集光面12f及び補正面12r(光出射面)に対向して配置される液晶表示パネル7の第1の偏光板7aは、P偏光成分を透過させる方向に配置することが望ましい。このように配置することにより、集光面12f及び補正面12rから優勢に出射されるP偏光成分の光を有効に利用することができる。
 換言すれば、集光面12f及び補正面12rから出射されるP偏光成分の光を透過するように、液晶表示パネル7の第1の偏光板7aを配置する。この場合、S偏光成分の光を透過させるように第1の偏光板7aを配置する場合と比べて、液晶表示パネル7を透過する光の輝度を高めることができる。さらに、色分離もより抑制される。なお、以下の説明において、第1の偏光板7a(光学調整部材側に配置された偏光板)の向きと、第2の偏光板7j(光学調整部材と反対側に配置された偏光板)の向きとは直交する。つまり、第1の偏光板7aがP偏光成分を透過する向きに向けられている場合には、第2の偏光板7jはS偏光成分を透過する向きに向けられる。逆に、第1の偏光板7aがS偏光成分を透過する向きに向けられている場合には、第2の偏光板7jはP偏光成分を透過する向きに向けられる。
[バックライトユニット]
 図3を参照して、バックライトユニット6は、光源(LED:発光ダイオード)2と、導光板3と、反射シート4(反射部材)と、光学調整シート1と、拡散シート5とを備える。導光板3は、側部に入射された光50を上面3a(出射面)から射出する。反射シート4は、導光板3の下部(液晶表示パネル7とは反対側)に配置される。光学調整シート1は、導光板3の上部(液晶表示パネル7側)に配置される。拡散シート5は光学調整シート1の上部に配置される。光源2は、可視光帯域の白色光を放出する。バックライトユニット6はエッジライト方式の照明装置であるため、光源2は導光板3の側部に設けられている。光源2から出射した光線は導光板3の側部から入射する。そして、導光板3の内部を光50の方向に進む。そして、出射面3aから出射する。出射光51は、上述のとおり指向性を有する。
 光学調整シート1は、線状光学構造体13の階段面13bが該傾斜した入射光線52の主な受光面となる向きに敷設される。換言すれば、線状光学構造体13の2つの面13b及び13cのうち、階段面13bの方が面13cよりも光源2から遠くなるように、光学調整シート1が敷設される。
 光学調整シート1以外の光学部材は、従来のバックライトユニットの光学部材と同じである。具体的には、本例の導光板3はポリカーボネートで形成される。本例の導光板3は、輝度ピーク光線の進行方向と、出射面3aの法線方向とがなす角度が70度となるような出射特性を有する。導光板3からの出射光51が光学調整シート1に入射されると、光51は基材10の下面で屈折する。後述するように基材と線状体の屈折率が異なる場合には、光51は基材と線状体の界面においても屈折する。線状光学構造体13内における輝度ピーク光線52の進行方向と基材10表面の法線(光学調整シート1の厚さ方向)とがなす傾斜角θは約36度である。すなわち、傾斜角θは、平坦面13cの傾斜角度(底角β)と基材10表面の法線とがなす角度(90度-β=32.29度)より少し大きくなっている。
 反射シート4にはPETフィルムの表面に銀が蒸着されたシートを用いられる。拡散シート5にはPETフィルムをビーズコーティングしたものが用いられ、その厚さは70μmとし、ヘイズは30%である。
[色分離の抑制原理]
 光学調整シート1が出射光の色分離を抑制する原理を図1~3を参照しながら説明する。
 光学調整シート1に出射光51が入射されると、入射光線は、主に、階段面13b、すなわち、第2線状プリズム部12で屈折される。線状光学構造体13の平坦面13cの傾斜方向は、上述のように、輝度ピーク光線52の進行方向と略平行である。そのため、入射光線は平坦面13cに入射しにくい。
 階段面13bに入射された輝度ピーク光線52は、階段面13bの各凸面(階段部表面)を画成する2つの面、すなわち、集光面12f及び補正面12rで屈折する。この際、輝度ピーク光線52は、図2に示すように、集光面12fにおいて光学調整シート1の厚さ方向(基材10表面の法線方向)に屈折する(図2中の光線53)。一方、輝度ピーク光線52は、補正面12rにおいて光学調整シート1の面内方向(基材10の面内方向)に屈折する(図2中の光線54)。そのため、集光面12fで屈折する光線53の進行方向と、補正面12rで屈折する光線54の進行方向とは、屈折前の輝度ピーク光線52の進行方向に対して、互いに逆になる。
 線状光学構造体13の形成材料の屈折率は入射光の波長により異なる。そのため、輝度ピーク光線52が階段面13bで屈折するとき、輝度ピーク光線52に含まれる各波長成分によって屈折角は異なる。その結果、図2に示すように屈折光53及び54に色分離が生じる。図2では、説明を簡略化するため、2つの波長成分(波長A及びB、波長A>波長B)の分離のみを示す。図2中の光線53A及び54Aは波長A成分の屈折光を示す。光線53B及び54Bは波長B成分の屈折光を示す。図2では波長B成分の屈折が波長A成分の屈折より大きい(屈折角が大きい)場合を示している。
 図2に示すように、輝度ピーク光線52が集光面12fで屈折したとき、屈折光53の波長B成分53Bは、波長A成分53Aより大きく屈折される。そのため、波長B成分53Bの進行(屈折)方向は、波長A成分53Aよりさらに図2中の矢印A1の方向(光学調整シート1の法線に近づく方向)に向く。一方、輝度ピーク光線52が補正面12rで屈折したとき、屈折光54の波長B成分54Bは、波長A成分54Aより大きく屈折される。そのため、波長B成分54Bの進行方向は、波長A成分54Aよりさらに図2中の矢印A2の方向(光学調整シート1の法線から離れる方向)に向く。すなわち、光線53の色(波長)の分離パターンと光線54の色(波長)の分離パターンとは、輝度ピーク光線52の進行方向に対して逆になる。それゆえ、光線53の色分離が光線54の色分離により打ち消される。その結果、液晶表示面に集光される光の色分離が抑制される。
 光学調整シート1は、一枚で出射光の色分離を抑制できる。したがって、光学調整シート1をバックライトユニットに利用すれば、従来のように2枚のプリズムシートを用いる必要が無くなる。また、光学調整シート1は、導光板3からの出射光51の進行方向を光学調整シート1の法線方向に直接変更する。そのため、従来のように、プリズムシート群と導光板との間に下部拡散シートを設ける必要がなくなる。下部拡散シートは導光板3からの出射光51を一旦ブロードな光に変換するため、光の利用効率を低下する。下部拡散シートを利用しなければ、導光板3から出射された光の利用効率が向上し、輝度特性が向上する。
 以上のとおり、液晶表示装置100は、出射光の色分離を抑制できる。また、2枚のプリズムシートを用いる必要が無く、且つ、下部拡散シートを用いる必要もない。それゆえ、液晶表示装置100では、従来に比べて光学部材の数が少ない。その結果、液晶表示装置100は薄型化及び低コスト化を実現できる。
[光学特性評価]
 実施例1の液晶表示装置100の光学特性を評価した。具体的には、正面輝度の測定と色みの官能評価を行なった。初めに、図13に示す実施例1の液晶表示装置に対応する評価装置を製造した。実施例1の評価装置は、光源2、導光板3、光学調整シート1、反射板4、拡散シート5、及び第1の偏光板7aを備えた。第1の偏光板7aを透過した光が液晶層に入射する直接の光線となるので、第1の偏光板7aの透過光の光学特性を評価装置を用いて評価した。つまり、実施例1の液晶表示装置100に対応する評価装置は、偏光板をP偏光成分を透過させる向きに配置した。そして、輝度計を用いて透過光の正面輝度を測定した。また、目視により色みの官能評価を行なった。具体的には、評価装置からの出射光の色みを、正面方向から目視観察した。そして、出射光の色の均一性を調べた。
 また、比較例8となる評価装置を製造した。比較例8の評価装置は、第1の偏光板7aに代えて、第2の偏光板7jを拡散シート5上に敷設した。つまり、偏光板を、S偏光成分を透過させる向きに配置した。その他の構成は実施例1の評価装置と同じとした。比較例8の評価装置についても同様に、正面輝度及び出射光の色みを調査した。
 さらに、比較例1として、図14に示した従来の液晶表示装置500についても上記評価を行った。具体的には、比較例1の液晶表示装置500に対応する評価装置を以下のとおり準備した。実施例1の評価装置と比較して、光学調整シート1の代わりに、プリズムシート507a及び507bと、下部拡散シート506とを配置した。下部拡散シート506は導光板3上に敷設した。また、プリズムシート507aは下部拡散シート506上に敷設し、プリズムシート507bはプリズムシート507a上に敷設した。光源2に対する各プリズムシート507a及び507bの配置方法は図14と同じとした。各プリズムシート507a及び507bのプリズム状構造体の横断形状は二等辺三角形であった。二等辺三角形の幅は30μmであり、高さは15μmであった。頂角は90度であった。基材507cは、PETフィルムであり、プリズム状構造体507dは紫外線硬化型のアクリル系樹脂で形成した。下部拡散シート506にはPETフィルムをビーズコーティングしたものを用いた。下部拡散シート506の厚さは70μm、ヘイズは85%であった。プリズムシート群507(507a及び507b)及び下部拡散シート506以外の光学部材は、実施例1の評価装置と同じものを用いた。そのため、比較例1の評価装置の偏光板はP偏光成分の光を透過する向きに配置された。比較例1の評価装置を用いて偏光板7aを透過した光線の正面輝度測定および色みの官能評価を行った。
 また、以下の構成の比較例4の評価装置を製造した。比較例4の評価装置は、比較例1の評価装置と比較して、偏光板7aに代えて、偏光板7jを拡散シート5上に敷設した。つまり、S偏光成分を透過させる向きに偏光板を敷設した。その他の構成は比較例1の評価装置と同じとした。比較例4の評価装置についても同様に、正面輝度及び出射光の色みを調査した。
 さらに、図16に示すような構成の液晶表示装置600についても上記評価を行った。具体的には、液晶表示装置600に対応する比較例2の評価装置を製造した。比較例2の評価装置は、実施例1の評価装置と比較して、光学調整シート1の代わりに、従来のプリズムシート507bを一枚敷設した。その他の構成は実施例1の評価装置と同じとした。そのため、比較例2の評価装置の偏光板は、P偏光成分を透過するように敷設された。
 さらに、比較例5の評価装置を製造した。比較例5の評価装置は、比較例2の評価装置と比較して、偏光板7aの代わりに偏光板7jが敷設された。つまり、P偏光成分を透過する偏光板の代わりに、S偏光成分を透過させる偏光板が敷設された。その他の構成は比較例2の評価装置と同じとした。
 上記評価結果を下記表1に示す。表1には、導光板と液晶表示パネル用の偏光板との間に配置された光学シートの枚数も示す。正面輝度は後述の比較例4の正面輝度を基準(100%)とした輝度比(%)で示す。表1の色の均一性の評価◎及び×の基準は次の通りである。
 ◎:評価装置からの出射光の色みが、光源からの出射光と同じ白色である。そして、評価装置からの出射光の色みと光源からの出射光の色みとの相違を目視により判別できない。
 ○:評価装置からの出射光の色みと光源からの出射光の色みとの相違を目視により判断できるが、「×」ほど相違が顕著ではない。
 ×:評価装置からの出射光55が、赤色、黄色等の色みを帯びていることが目視で確認できるレベル。
 実施例1、比較例1、2、4、5及び8の評価結果の他、後述する実施例2及び比較例3の評価結果も合わせて表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1の液晶表示装置では、比較例1(図14)の液晶表示装置に比べて、正面輝度を向上させることができ且つ光学シートの数を減らすことができた。すなわち、実施例1の液晶表示装置では、装置の薄型化、低コスト化を図りつつ、光学特性を向上させることができることが分かった。また、実施例1の液晶表示装置では、比較例2の液晶表示装置(図16)に比べて、正面輝度及び色の均一性ともに改善できた。
 比較例8では、S偏光成分の光を透過するよう敷設された。そのため、正面輝度は、比較例1と比較して低下した。また、色分離抑制効果についても、実施例1と比較して低下した。
 上記実施例1の光学調整シートでは、線状光学構造体を構成する複数の第2プリズム構造体の形状及び寸法が全て同じ場合について説明した。しかしながら、本発明に用いられる光学調整シートはこれに限定されない。複数の第2プリズム構造体の形状が互いに相似形であっても良い。この場合も、複数の第2プリズム構造体の集光面及び補正面は、それぞれ互いに平行となる。そのため、実施例1と同様の効果が得られる。
 上記実施例1の液晶表示装置100では、光学調整シート1の上に拡散シート5を敷設した。拡散シート5は光学調整シート1からの出射光の輝度のムラ等をさらに改善して、表示品位をさらに向上させる。しかしながら、本発明はこれに限定されない。例えば、光学調整シートからの出射光の品質が十分に良好である場合(輝度のムラ等が極力抑制されている場合)、または、高品質の表示性能を必要としない用途に本発明を適用する場合、拡散シート5を用いなくてもよい。
 上記実施例1で用いた液晶表示装置100では、導光板3の光学調整シート1側と反対側に反射シート4を配置した。しかしながら、本発明はこれに限定されない。例えば、導光板3の光学調整シート1側とは反対側の表面が十分な反射作用を得られる構造(凹凸構造等)を有している場合、反射シート4を用いなくても良い。
 また、上述の実施例1では、光学調整シート1の寸法を記載したが、本発明による光学調整シートの寸法は、実施例1で記載した寸法に制限されない。
 本発明に用いられる光学調整シートは、線状光学構造体の階段面を構成する第2線状プリズム部の数、階段面における集光面と補正面の位置や面積比、または、必要に応じて集光面や補正面の傾斜角度などを調整することにより、出射光の輝度や色分散などの光学的な特性のバランスを整えることができる。
 実施例2の液晶表示装置に用いられる光学調整シートでは、集光面に入射する光線が補正面に対して相対的に多くなるように、第2線状プリズム部の数、形状及び寸法が実施例1と異なる。その他の構成は、実施例1と同様の構成及び形成材料である。また、実施例2の液晶表示装置のうち、光学調整シート以外の他の構成は実施例1の液晶表示装置と同じである。
 実施例2の液晶表示装置に用いられる光学調整シートの線状光学構造体の拡大断面図を図4に示す。本例の線状光学構造体24は、その延在方向に直交する断面が略三角形状である。そして、その延在方向に沿った底面(底辺21bを含む面)が基材20の表面と平行に接している。すなわち、線状光学構造体24は、その底面が基材20の表面と対向するように、基材20上に設けられている。なお、図4中に示した入射光線52は、輝度ピーク光線を示している。
 図4に示すように、線状光学構造体24のその延在方向に直交する断面は、第1断面部21aと、第1断面部21aの一辺上に設けられた形状の異なる2つの第2断面部22a及び23aとを含む。すなわち、本例では、線状光学構造体24の第1線状プリズム部(第1断面部21aに対応する線状構造体)の一つの面上に、形状の異なる2つの第2線状プリズム部(第2断面部22a及び23aに対応する線状構造体)が設けられる。2つの第2断面部22a及び23aは、互いの底角部が接するように設けられる。
 第1断面部21aは、底辺21b(第1辺)と、傾斜辺21c(第2辺)及び21d(第3辺)とにより画成される。底辺21bは基材20の表面と平行に接する。傾斜辺21c及び21dは底辺21bの両端からそれぞれ所定の角度(図4中の底角α及び底角β)で延在する。本例の光学調整シートでは、第1断面部21aの形状(第1線状プリズム部の形状)は実施例1と同じである。すなわち、底角α及びβは、それぞれ、39.14度及び57.71度である。底辺21bの長さは35μmである。
 また、基材20表面の法線方向に対する傾斜辺21dの傾斜角(90-β)と、基材20表面の法線方向に対する輝度ピーク光線52の進行方向の傾斜角θとの関係も実施例1と同様である。すなわち、傾斜辺21dを含む線状光学構造体24の面(平坦面)の傾斜方向は、輝度ピーク光線52の進行方向と略平行である。より具体的には、底角βは、実施例1と同様に、線状光学構造体24内の輝度ピーク光線52の基材20表面に対する傾斜角度(90度-θ)より若干大きい。
 第2断面部22aは、第1断面部21aの第1底角α側に位置する。第2断面部22aは三角形状である。第2断面部22aは、底辺22b(第4辺)と、傾斜辺22c(第5辺)と、傾斜辺22d(第6辺)とを有する。底辺22bは傾斜辺21c(第2辺)と平行に接する。傾斜辺22c及び22dは、底辺22bの両端からそれぞれ所定の角度(図4中の底角α及びβ)で延在する。第2断面部22aの形状は実施例1の第2断面部12aと相似である。第2断面部22aの第1底角α及び第2角度βはそれぞれ30度及び70度である。底辺22bは約14.92μmであり、実施例1の第2断面部12aの底辺12b(約10.44μm)より長い。すなわち、第2断面部22aの面積は実施例1の第2断面部12aの面積より大い。
 傾斜辺22cを含む第2線状プリズム部の面は、集光面である。集光面は、入射光線の進行方向を光学調整シートの厚さ方向に屈折させる。すなわち、集光面は入射光線を集光させる作用を有する。一方、第2断面部22aのもう一方の傾斜辺22dを含む線状光学構造体24の面は、補正面である。補正面は、光学調整シートからの出射光の色分離を抑制する作用を与える。本例では、第1線状プリズム部の最も底角側(図4中のα側)に位置する第2線状プリズム部の集光面の面積が、実施例1のそれより大きい。
 第1線状プリズム部の最も底角側(図4中のα側)に位置する第2線状プリズム部の集光面がより広ければ、入射光の利用効率が向上する。そのため、輝度が増大する。その理由は次の通りである。
 第2線状プリズム部が形成されている第1線状プリズム部の面(図4中の第2辺21cを含む面)を、以下、第2線状プリズム部形成面という。第2線状プリズム部形成面を通過する光線、すなわち、光学調整シートの階段面に入射される光線は、輝度ピーク光線52以外の光線成分を含む。そのため、第2線状プリズム部形成面を通過する光線の強度(照度)は、第2線状プリズム部形成面の通過位置により異なる。具体的には、第2線状プリズム部形成面を通過する光線の強度は、第1線状プリズム部の底角α側に近いほど大きくなる。すなわち、第1線状プリズム部の底角側に位置する第2線状プリズム部に入射される光線ほど、その強度が強い(照度が高い)。それゆえ、本例のように、最も第1線状プリズム部の底角側に位置する第2線状プリズム部の集光面をより広くすることにより、より強度の強い光線を集光することができる。以上の理由により、実施例2の液晶表示装置に用いられる光学調整シートは、入射光線の利用効率を向上でき、出射光の輝度を増大させることができる。
 一方、第2断面部23aは、第1断面部21aの頂角21e側に位置する。第2断面部23aは、図4に示すように、略3角形状である。第2断面部23aは、底辺23bと、傾斜辺23cと、傾斜辺23dとを有する。底辺23bは、第1断面部21aの傾斜辺21c(第2辺)と平行に接する。傾斜辺23c及び23dは、底辺23bの両端からそれぞれ所定の角度(図4中のα及びβ)で延在する。傾斜辺23dは、第1断面部21aの頂角21e側に位置する。傾斜辺23dは2つの辺23f及び23gを有する。傾斜辺23dは、第2断面部23aの外側に向かって凸状に折れ曲がった形状を有する。
 辺23fは、第1断面部21aの傾斜辺21d側に位置する。辺23fは、図4に示すように、頂角21eの頂点から傾斜辺21dと平行に延在している。それゆえ、第2断面部23aの底辺23bと傾斜辺23dとの間の角度(第2底角)βは、α+βである。辺23gは、第2断面部22aの傾斜辺22dと平行である。本例では、傾斜辺23cは傾斜辺22cに平行である。辺23fは傾斜辺21dと平行である。辺23gは傾斜辺22dと平行である。第2断面部23aの第1底角の角度αは30度であり、第2断面部23aの第2底角の角度βは96.85度である。。
 第2断面部23aを有する第2線状プリズム部において、傾斜辺23cを含む面は集光面である。辺23fを含む面は、傾斜辺21dを含む面と平行である。そのため、辺23fを含む面の傾斜方向は輝度ピーク光線52と略平行になる。辺23fを含む面では、入射光の屈折及び反射の影響は小さい。
 第2断面部23aを有する第2線状プリズム部において、辺23gを含む面は補正面である。それゆえ、本例では、第2断面部23aを有する第2線状プリズム部は、集光面の面積をできる限り大きくし、且つ、補正面をできる限り小さくした形状を有する。
 本例の光学調整シートに対しても、実施例1と同様に、光学特性を評価した。具体的には、図13に示した評価装置にこの例の光学調整シートを装着した。つまり、図13中の実施例1の光学調整シート1の代わりにこの例の光学調整シートを装着した。輝度計を用いて、実施例2の評価装置の正面輝度を測定した。また、目視により色みの官能評価を行なった。なお、実施例2の液晶表示装置の、光学調整部材側の偏光板の方向は、P偏光成分の光を透過するように向けられた。
 比較のために、以下の比較例3の評価装置を製造した。比較例3の評価装置は、実施例2の評価装置と比較して、偏光板7aに代えて、S偏光成分を透過するよう配置される偏光板7jを備えた。その他の構成は実施例2の評価装置と同じとした。
 評価結果を表1に示す。表1から明らかなように、実施例2の評価装置の正面輝度は134%となり、実施例1の場合(128%)よりもさらに正面輝度が向上した。実施例2の光学調整シートでは、上述したように、線状光学構造体を構成する複数の第2線状プリズム部のうち、最も第1線状プリズム部の底角側に位置する第2線状プリズム部(第2断面部22aに対応する第2線状プリズム部)の集光面を、対応する実施例1の第2線状プリズム部の集光面よりも広くしたためと考えられる。また、実施例2の光学調整シートでは、上述のように、頂角21e側に位置する第2線状プリズム部(第2断面部23aに対応)の補正面は、より小さかった。しかしながら、表1に示すように、色の均一性に関しては、実施例1と2とで有意な差は確認されなかった。すなわち、実施例2の光学調整シートを液晶用バックライトユニットをはじめ各種照明装置に使用した場合であっても、十分な光学性能が得られることが確認できた。一方、比較例3の評価装置では、実施例2の評価装置と比較して、正面輝度が低下した。また、色分離の抑制効果も低下した。
 [第2線状プリズム部の数について]
 上述のとおり、本発明の液晶表示装置に用いられる光学調整部材は、基材と、基材上に形成され、光透過性を有する複数の線状光学構造体とを備える。線状光学構造体の延在方向に直交する断面は略三角形である。線状光学構造体の横断面は3つの辺で画成される。3つの辺のうち、一つの辺は上記基材の表面と平行に接する。他の2辺のうちの一方の辺は階段状である。階段状の辺は、複数の三角形状の三角部で構成される。各三角部は頂角を挟んだ2つの辺を有する。一方の辺は基材の底面部に傾斜して入射された光線を、基材の垂直方向に屈折する。他方の辺は色分離を緩和する。
 また、液晶表示パネルの、光学調整部材側(光入射側)の偏光板(図3中の偏光板7a)は、P偏光成分を通過させる向きに配置する。この場合、S偏光成分を透過させる向きに配置する場合に比べて、正面輝度が向上し色分散の抑制効果が向上する。
 線状光学構造体の階段状の斜面における階段数(つまり、1つの線状光学構造体における第2線状プリズム部の数)は好ましくは1~15である。より好ましくは2~9である。 発明者らは、図5に示すように、第2線状プリズム部の数を1~15の間で変えた複数の光学調整シートを作製した(実施例3~9及び比較例6~12)。各光学調整シートの各第2線状プリズム部は、いずれも30度の第1底角αと、70度の第2底角βとを有した。第2線状プリズム部は、辺11cを含む面上に配置される。各光学調整シートの第2線状プリズム部は全て同一の形状であった。さらに、各光学調整シートの各第1線状プリズム部はいずれも、39.14度の第1底角αと、57.71度の第2底角βとを有した。各第1線状プリズム部の底辺11bの長さは35μmであった。以下の各実施例及び各比較例においては、辺11c上に接して配置される第2線状プリズム部の個数に応じて、第2線状プリズム部の大きさを適宜相似的に変化させた。以下、実施例3~9及び比較例6~12の液晶表示装置に対応する評価装置について詳述する。
 図6A及び図6Bに示すように、実施例3の液晶表示装置に用いられる光学調整部材1Bでは、各第1線状プリズム部11上に3つの第2線状プリズム部12が配置された。すなわち、第2断面部をなす略三角形状体の数が3つであった。実施例3の評価装置では、光学調整部材1B上に、P偏光成分を透過するよう配置される偏光板7aを敷設した。その他の構成は実施例1と同じであった。
 実施例1及び2と同様に、実施例3の評価装置の正面輝度を測定し、色みの官能評価を行った。実施例3の正面輝度は非常に高かった(120%以上)。また、色分離の抑制効果は十分であった。出射光の色付きは目視で確認されなかった。
 図7A及び図7Bに示すように、実施例4の液晶表示装置に用いられる光学調整部材1Cでは、各第1線状プリズム部11の斜辺11c上に、2つの第2線状プリズム部12が配置された。すなわち、第2断面部をなす略三角形状体が2つであった。実施例4の評価装置では、実施例3と同様に、光学調整部材1C上にP偏光成分の光を透過する方向に配置される偏光板7aを敷設した。実施例4の評価装置のその他の構成は実施例3と同じであった。
 実施例1及び2と同様に、実施例4の評価装置の正面輝度を測定し、色みの官能評価を行った。実施例4の評価装置の正面輝度は非常に高かった(120%以上)。また、色分離の抑制効果が十分であり、出射光の色付きは目視で確認されなかった。実施例4では、後述する実施例7と比較して補助面がより底角αに近い側に設置された。その結果、高い正面輝度と高い色分離抑制効果を両立させることができたと考えられる。(なお、この構成でさらに集光面と補助面のバランスを図った結果が、上述の実施例2である。この実施例2においては2つの第2線状プリズム部の形状を変えて調整を行った。)
 図8A及び図8Bに示すように、実施例5の液晶表示装置に用いられる光学調整部材1Dでは、各第1線状プリズム部11の斜辺11c上に、6つの第2線状プリズム部12が配置された。すなわち、第2断面部をなす略三角形状体が6つであった。実施例5の評価装置では、実施例3と同様に、偏光板の方向は、P偏光成分の光を透過するように向けられた。つまり、偏光板7aを使用した。実施例5の評価装置の正面輝度を測定し、色みの官能評価を行った。実施例5の正面輝度は非常に高かった(120%以上)。また、色分離の抑制効果が十分であって、出射光の色付きは目視で確認されなかった。
 実施例6の液晶表示装置に用いられる光学調整部材(不図示)では、各第1線状プリズム部の斜辺上に、9個の第2線状プリズム部が配置された。すなわち、第2断面部をなす略三角形状体が9個であった。実施例6の評価装置では、実施例3と同様に、偏光板の方向は、P偏光成分の光を透過するように向けられた。つまり、偏光板7aを使用した。実施例6の評価装置の正面輝度を測定し、色みの官能評価を行った。実施例6の正面輝度は非常に高かった(120%以上)。また、色分離の抑制効果が十分であって、出射光の色付きは目視で確認されなかった。
 図9A及び図9Bに示すように、実施例7の液晶表示装置に用いられる光学調整部材1Eでは、第1線状プリズム部11の斜辺11c上に、1つの第2線状プリズム部12が配置された。つまり、第2断面部をなす略三角形状体が1つであった。なお、実施例7の評価装置では、実施例3と同様に、偏光板の方向は、P偏光成分の光を透過するように向けられた。つまり、偏光板7aを使用した。実施例7の評価装置の正面輝度を測定し、色みの官能評価を行った。実施例7の正面輝度は非常に高く、120%以上であった。なお、実施例7の液晶表示装置に用いられる光学調整部材1Eは、色分離の抑制効果が不十分であり、出射光の色付きが目視で確認された。しかしながら、実施例7において確認された出射光の色付きの程度は、前述の比較例2における色付きの程度よりは小さかった。
 この結果は次の理由によると考えられる。上述の通り、第1線状プリズム部11の最も底角側(α側)に位置する第2線状プリズム部の集光面が広ければ、入射光の利用効率が向上し、輝度が増大する。第1線状プリズム部11の第2線状プリズム部形成面11cは、底角α側に近いほど基材面に対する開口角が広い。そのため、面11cを通過する光線の強度は、第1線状プリズム部の底角α1側に近いほど大きくなる(照度が高くなる)。
 実施例7のように、第1線状プリズム部11上に配置される第2線状プリズム部がひとつである場合、α側に位置する第2線状プリズム部の集光面がもっとも広くなる。そのため、強度の強い光線を集光することができるので、入射光線の利用効率がよく、出射光の輝度が増大する。その一方、補助面を透過する光線が相対的に少なくなる。そのため、色分離を抑制する働きが不十分となる。結果として出射光の色付きが残留する。また、補助面を透過する光線が相対的に少なくなってしまうため、補助面による出射角の分散効果も不十分となる。結果として視野角が狭くなってしまう。実施例7では出射光のピークの輝度は十分であったが、その方向が正面ではなかった。また、視野角が狭いため正面の輝度としては上述の実施例3~5の光学調整部材の正面輝度と比べて小さかった。
 不図示の実施例8の液晶表示装置に用いられる光学調整部材は、第1線状プリズム部の斜辺上に、10個の第2線状プリズム部が配置された。すなわち、実施例8の光学調整部材は、各線状光学構造体に、第2断面部をなす10個の略三角形状体を有した。なお、実施例8の評価装置に用いられる偏光板の方向は、P偏光成分の光を透過するように向けられた。実施例8では、正面輝度が100%以上であった。また、色分離の抑制効果が十分であって、出射光の色付きは目視で確認されなかった。
 不図示の実施例9の液晶表示装置に用いられる光学調整部材は、第1線状プリズム部の斜辺上に、15個の第2線状プリズム部が配置された。すなわち、実施例9の光学調整部材は、各線状光学構造体に、第2断面部をなす15個の略三角形状体を有した。なお、実施例9の評価装置に用いられる偏光板の方向は、P偏光成分の光を透過するように向けられた。実施例9では、正面輝度が100%以上であった。また、色分離の抑制効果が十分であって、出射光の色付きは目視で確認されなかった。
 実施例8、9では、第1の底角αに近い側に設置された第2線状プリズム部の補助面の面積が大きかった。しかしながら、集光面の面積が相対的に小さかった。その結果、色分離抑制効果は十分であった。正面輝度は100%以上ではあるものの、実施例3~6に比べると僅かに低かった。
 [比較例4]
 不図示の比較例4の評価装置は、比較例1の評価装置と比較して、偏光板の方向を、S偏光成分の光を透過するように向けた。つまり、偏光板7aの代わりに偏光板7jを使用した。その他の構成は比較例1と同じであった。比較例4の評価装置の正面輝度を測定し、色みの官能評価を行った。比較例4では、偏光板の方向を、S偏光成分の光を透過するように向けた結果、色分離抑制効果は十分であるものの、比較例1に比べて正面輝度が低下した。
 [比較例5]
 不図示の比較例5の評価装置は、比較例2の評価装置と比較して、偏光板の方向を、S偏光成分の光を透過するように向けた。つまり、偏光板7aの代わりに偏光板7jを使用した。その他の構成は比較例2と同じであった。比較例5では、偏光板の方向を、S偏光成分の光を透過するように向けた結果、比較例2に比べて、さらに正面輝度が低下した。また、色分離抑制効果についても、比較例2と同様に十分ではなかった。
 [比較例6]
 不図示の比較例6の評価装置は、実施例7と比較して、偏光板の方向を、S偏光成分の光を透過するように向けた。つまり、偏光板7aの代わりに偏光板7jを使用した。その他の構成は実施例7と同じであった。比較例6では、偏光板の方向を、S偏光成分の光を透過するように向けた結果、実施例7に比べて、さらに正面輝度が低下した。また、色分離抑制効果についても、実施例7と同様に十分ではなかった。
 [比較例7]
 不図示の比較例7の評価装置は、実施例4と比較して、偏光板の方向を、S偏光成分の光を透過するように向けた。つまり、偏光板7aの代わりに偏光板7jを使用した。その他の構成は実施例4と同じであった。比較例7では、偏光板の方向を、S偏光成分の光を透過するように向けた結果、実施例4に比べて、正面輝度が低下した。また、色分離抑制効果についても、実施例4と比較して低下した。
 [比較例8]
 不図示の比較例8の評価装置は、実施例3と比較して、偏光板の方向を、S偏光成分の光を透過するように向けた。つまり、偏光板7aの代わりに偏光板7jを使用した。その他の構成は実施例3と同じであった。比較例8では、偏光板の方向を、S偏光成分の光を透過するように向けた結果、実施例3に比べて、正面輝度が低下した。また、色分離抑制効果についても、実施例3と比較して低下した。
 [比較例9]
 不図示の比較例9の評価装置は、実施例5と比較して、偏光板の方向を、S偏光成分の光を透過するように向けた。つまり、偏光板7aの代わりに偏光板7jを使用した。その他の構成は実施例5と同じであった。比較例9では、偏光板の方向を、S偏光成分の光を透過するように向けた結果、実施例5に比べて、正面輝度が低下した。また、色分離抑制効果についても、実施例5と比較して低下した。
 [比較例10]
 不図示の比較例10の評価装置は、実施例6と比較して、偏光板の方向を、S偏光成分の光を透過するように向けた。つまり、偏光板7aの代わりに偏光板7jを使用した。その他の構成は実施例6と同じであった。比較例10では、偏光板の方向を、S偏光成分の光を透過するように向けた結果、実施例6に比べて、正面輝度が低下した。また、色分離抑制効果についても、実施例6と比較して低下した。
 [比較例11]
 不図示の比較例11の評価装置は、偏光板の方向を、S偏光成分の光を透過するように向けた。つまり、偏光板7aの代わりに偏光板7jを使用した。その他の構成は実施例8と同じであった。比較例11では、偏光板の方向を、S偏光成分の光を透過するように向けた結果、実施例8に比べて正面輝度が低下した(100%未満であること)。また、色分離抑制効果についても、実施例8と比較してさらに低下した。
 [比較例12]
 不図示の比較例12の評価装置は、偏光板の方向を、S偏光成分の光を透過するように向けた。つまり、偏光板7aの代わりに偏光板7jを使用した。その他の構成は実施例9と同じであった。比較例12では、偏光板の方向を、S偏光成分の光を透過するように向けた結果、実施例9に比べて正面輝度が低下した(100%未満であること)。また、色分離抑制効果についても、実施例9と比較してさらに低下した。
 以上の評価結果を、表2にまとめた。なお、正面輝度は比較例4の正面輝度を基準(100%)とした。また、表2の色の均一性の評価の基準は表1と同様である。なお、色の均一性の評価欄中の「△」は「○」よりも色みの違いを認識できるが、「×」よりも色みの違いを認識できないことを示す。
Figure JPOXMLDOC01-appb-T000002
 以上より、第2線状プリズム部の数、即ち、第2断面部をなす複数の略三角形状体の数が、1個以上9個以下の範囲において、比較的高い正面輝度(100%以上)と色分離抑制とを両立できる。換言すれば、第2断面部をなす略三角形状体の数が2個以上9個以下の範囲において、非常に高い正面輝度(120%以上)と高い色分離抑制を両立できる。線状光学構造体13の階段面13bにおける階段の数は、2段以上9段以下であることが特に好適である。さらに、液晶表示パネルにおいて、光学調整部材側の偏光板の方向を、P偏光成分の光を透過するように向けた場合、S偏光成分の光を透過するように向けた場合に比べて、正面輝度を向上させることができる。さらに、色分離抑制の効果を高めることができる。
 以上の実施例においては、底角α、β、α、βの大きさなどに関して、特定の組合せを例に挙げて説明した。しかしながら、輝度ピーク光線の入射角が45~85度の範囲において、下記の数式を満たす光学調整部材において複数の実験を行った結果、同様の結果が得られた。下記数式において、空気の屈折率nは1.0であり、角度の単位は度である。
Figure JPOXMLDOC01-appb-M000001
 この場合、最も輝度の高い輝度ピーク光線を集光面で全反射させることなく屈折させることができる。また、光学調整シートから輝度ピーク光線を効率的に取り出すことができる。
 また、I2maxが全反射の臨界角であるとき、即ち、sin I2max = 1/nである場合、下記の数式を満たす光学調整部材において複数の実験を行った結果、同様の結果が得られた。
Figure JPOXMLDOC01-appb-M000002
 この場合、入射光線は、輝度ピーク光線の角度をピークとする角度分布を有している場合において、任意の入射角度の入射光線を、集光面において全反射させることなく、光学調整シートから効率的に取り出すことができる。
 このように、上述の角度条件を満たす角度の組み合わせを有する光学調整シートは、色分離を抑制し、輝度特性を向上する。また、入射光線の集光面での全反射を抑制する。その結果、光学調整シートから光線を効率的に取り出すことができる。なお、本発明の光学調整シートは、必ずしも上述の角度条件を満たしていなければならないわけではなく、任意の角度の組み合わせの光学調整シートについて本発明を適用することもできる。
 なお、上述の実施例では、所定の大きさの第1、第2線状プリズム部を含む光学調整シートについて説明した。例えば、上記実施例3~6において、第1線状プリズムの、光学調整シートの基材と接する底辺部11bの長さは35μmであったが、本発明はこれに限られない。例えば、底辺部11bの長さが7μm~100μmであっても、第2断面部をなす複数の略三角形状体の数が、2個以上9個以下の範囲において、高い正面輝度と高い色分離抑制効果を両立できる。
 また、上述の説明においては、光学調整シートの基材と線状光学構造体とは共に屈折率nの光学材料で形成されていたが、本発明はこれに限られない。光学調整シートの基材の屈折率nが、線状光学構造体の屈折率nと異なっていてもよい。図10Aに示された実施例3に係る光学調整シート1Bは、共に屈折率nの光学材料で形成された基材10と線状光学構造体34とを有する。これに対して、図10Bに示された光学調整シート1Fは、屈折率nの光学材料で形成された線状光学構造体34と屈折率n(n≠n)の光学材料で形成された基材110とを有する。
 上述の説明のように、図10Aにおいて基材10の底面10a(空気との界面)に入射角I1で入射された光51は、底面10aで屈折する。ここでの屈折角I2は、以下に示される数式3により表される(スネルの法則)。
Figure JPOXMLDOC01-appb-M000003
 基材10と線状構造体34とは同じ屈折率n1の光学材料で形成されている。そのため、基材10の内部を進行する光52は、基材10と線状構造体34の第1線状プリズム部31との界面(底辺31bを含む面)で屈折せずに直進する。
 これに対して、図10Bにおいて、基材110の底面110a(空気との界面)に入射角I1で入射された光51は、底面110aで屈折する。ここでの屈折角Ibは、以下に示される数式4により表される。
Figure JPOXMLDOC01-appb-M000004
 基材110(屈折率n)と線状構造体34(屈折率n)とは、それぞれ屈折率が異なる材料で形成されている。そのため、基材110中を進む光52Aは、基材110と第1線状プリズム部31との界面(底辺31bを含む面)で屈折する。ここで、図10Bに示された基材110のように、上下面が平行である場合、基材110と第1線状プリズム部31との界面における屈折角I'は以下に示される数式5により表される。
Figure JPOXMLDOC01-appb-M000005
 数式5に数式4を代入すると、sinI'=(sinI)/nとなる。これは、数式3と同じである。すなわち、I'は、空気から屈折率がnである媒質に直接入射した際の屈折角Iと等しいことがわかる。そのため、光学調整シート1Fのように、基材と線状体の屈折率が異なる場合には、nを線状構造体の屈折率とし、Iを基材と線状構造体との界面における屈折角とすることで、上述の説明における数式は、そのまま適用することができる。
 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
 本発明の液晶表示装置に用いられる光学調整部材は、一つの光学調整部材で、出射光の色分離を抑制することができ、且つ、入射光の利用効率も向上させることができる。そのため、装置の薄型化、低コスト化を図りつつ、光学特性を向上させることができる。特に、エッジライト方式の照明装置及び液晶表示装置の光指向性を制御する機能を有する光学部材として好適である。
 本発明の液晶表示装置は、液晶表示パネルの光学調整部材側(光入射面側)の偏光板が、P偏光成分を透過する向きに配置されている。そのため、光学調整部材側の偏光板がS偏光成分を透過する向きに配置されている場合に比べて、液晶表示パネルから出射される光の正面輝度を向上させることができ、色分離抑制効果を高めることができる。それゆえ、本発明の液晶表示装置は、あらゆる用途の液晶表示装置に好適である。

Claims (14)

  1.  液晶表示装置であって、
     光源と、
     前記光源と光学的に接続された光学調整部材であって、前記光源からの光が入射される光入射面を有し且つ光透過性を有する基材と、前記基材の前記光入射面と反対側の面上に設けられた光透過性を有する複数の線状体とを含み、上記線状体の延在方向に直交する断面は、第1~第3辺で画成された三角形状の第1断面部と、前記第1断面部より面積が小さく且つ第4~第6辺で画成された略三角形状の第2断面部とを有し、前記第1断面部の第1辺が前記基材の前記光入射面と反対側の面と平行に接しており、前記第2断面部が第1断面部の第2辺上に設けられており、且つ、前記第2断面部の第4辺が第1断面部の第2辺と平行に接しており、前記第1断面部の第1辺と第2辺のなす角は、第1辺と第3辺のなす角よりも小さい光学調整部材と、
     前記光学調整部材の前記複数の線状体に対向して配置された第1の偏光素子、液晶層、及び第2の偏光素子を有し、これらがこの順に積層された液晶表示素子とを備え、
     第1の偏光素子が、P偏光成分を優勢に透過させる方向に配置されている液晶表示装置。
  2.  さらに、前記光源からの光を前記光学調整部材に導く導光板を備え、前記光源が前記導光板の端部に配置されている請求項1に記載の液晶表示装置。
  3.  前記各線状体は、各々が前記第2断面部を画成する複数の三角形状体を含み、
     前記複数の三角形状体は、第1断面部の第2辺上に隙間なく配置されており、且つ、前記三角形状体の数が2個以上9個以下である請求項1または請求項2に記載の液晶表示装置。
  4.  前記複数の三角形状体の第5及び第6辺のうち、前記第1断面部の第1辺に対向する頂角に近い方の辺が、他方の辺より短い請求項3に記載の液晶表示装置。
  5.  前記光学調整部材に入射された光線の輝度特性において輝度が最大となる方向に進行する輝度ピーク光線が前記光学調整部材で屈折した際に、前記三角形状体の第5辺を含む前記線状体の面で屈折した後の輝度ピーク光線の進行方向と、前記三角形状体の第6辺を含む前記線状体の面で屈折した後の該輝度ピーク光線の進行方向とが、屈折前の輝度ピーク光線の進行方向に対して互いに逆となるように、前記三角形状体の第5辺及び第6辺が第4辺に対して傾斜している請求項3又は請求項4に記載の液晶表示装置。
  6.  前記第1断面部の第3辺の第1辺に対する傾斜方向が、前記光学調整部材に入射された光線の輝度特性において輝度が最大となる方向と略平行である請求項1~5のいずれか一項に記載の液晶表示装置。
  7.  前記複数の線状体が、その延在方向に直交する方向に配置されている請求項1~6のいずれか一項に記載の液晶表示装置。
  8.  前記線状体の屈折率がnであって、前記基材及び前記線状体を取り囲む空気の屈折率nが1.0であって、前記空気と前記基材との界面の法線方向と前記空気中における前記光線の方向とのなす角度がIであって、前記法線方向と前記線状体の内部における前記光線の方向とのなす角度がIであって、第1辺と第2辺、第4辺と第5辺、及び、第4辺と第6辺のなす角度がそれぞれα、α及びβであるとき、
     n sin I = n sin I
     0 ≦ sin (α+α-I) ≦ 1/n
     I ≦ α+α ≦ I+90
     -I ≦ β-α ≦ 90-I
    を満たしている請求項1~7のいずれか一項に記載の液晶表示装置。
  9.  前記線状体の屈折率がnであって、前記光線の、前記基材及び前記線状体を取り囲む空気と前記線状体との界面における全反射の臨界角がI2maxであって、sin I2max = 1/n
    を満たし、第1辺と第2辺、及び、第4辺と第5辺のなす角度がそれぞれα及びαであるとき、
    α+α ≦ 2・I2max
    を満たしている請求項1~8のいずれか一項に記載の液晶表示装置。
  10.  液晶表示装置であって、
     光源と、
     前記光源と光学的に接続された光学調整部材であって、光が入射される光入射面を有し且つ光透過性を有する基材と、複数の線状体であって、前記基材の、前記光入射面と反対側の面の上に設けられ、光透過性を有し、且つ、それぞれが集光面及び補正面を有する複数の線状体とを含み、
     前記線状体の延在方向に直交する断面が略三角形であり、前記断面を画成する3つの辺のうち、一つの辺が前記基材の前記光入射面と反対側の面と平行に接しており且つ他の2辺のうちの一方の辺が階段状であって、前記階段状の辺は、前記断面と、前記集光面及び前記補正面との交線であって、前記断面の、前記基材に平行な辺と前記階段状の辺とのなす角度は、前記基材に平行な辺と残りの辺とのなす角度よりも小さい光学調整部材と、
     前記光学調整部材の前記複数の線状体に対向して配置された第1の偏光素子、液晶層、及び第2の偏光素子を有し、これらがこの順に積層された液晶表示素子とを備え、
     第1の偏光素子が、P偏光成分を優勢に透過させる方向に配置されている液晶表示装置。
  11.  さらに、前記光源からの光を前記光学調整部材に導く導光板を備え、前記光源が前記導光板の端部に配置されている請求項10に記載の液晶表示装置。
  12.  前記基材の屈折率が前記線状体の屈折率と同じである請求項1~11のいずれか一項に記載の液晶表示装置。
  13.  前記基材が、前記線状体の屈折率とは異なる屈折率を有し、且つ、平行平板状に形成されている請求項1~11のいずれか一項に記載の液晶表示装置。
  14.  さらに、前記導光板の前記光学調整部材側とは反対側に配置された反射部材を備える請求項2又は請求項11に記載の液晶表示装置。
PCT/JP2009/003430 2008-07-22 2009-07-22 液晶表示装置 WO2010010694A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801286747A CN102105833A (zh) 2008-07-22 2009-07-22 液晶显示装置
US13/055,158 US20110157521A1 (en) 2008-07-22 2009-07-22 Liquid crystal display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008188169A JP2010026280A (ja) 2008-07-22 2008-07-22 液晶表示装置
JP2008-188169 2008-07-22

Publications (1)

Publication Number Publication Date
WO2010010694A1 true WO2010010694A1 (ja) 2010-01-28

Family

ID=41570163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003430 WO2010010694A1 (ja) 2008-07-22 2009-07-22 液晶表示装置

Country Status (4)

Country Link
US (1) US20110157521A1 (ja)
JP (1) JP2010026280A (ja)
CN (1) CN102105833A (ja)
WO (1) WO2010010694A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9829622B2 (en) 2010-03-12 2017-11-28 Panasonic Liquid Crystal Display Co., Ltd. Illuminating device and liquid crystal display device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG185030A1 (en) * 2010-04-27 2012-11-29 Sharp Kk Backlight unit and liquid crystal display device
EP3542100A1 (en) * 2016-11-18 2019-09-25 Corning Incorporated Microstructured light guide plates and devices comprising the same
CN110140009B (zh) * 2016-12-29 2022-02-25 康宁股份有限公司 微结构化和图案化光导板及包含该光导板的装置
CN106647003B (zh) * 2017-01-18 2020-04-21 京东方科技集团股份有限公司 一种显示装置及显示方法
TWI657277B (zh) * 2018-03-06 2019-04-21 友達光電股份有限公司 顯示裝置
JP6886992B2 (ja) * 2018-03-30 2021-06-16 恵和株式会社 光拡散板積層体、バックライトユニット、及び液晶表示装置
CN211319246U (zh) * 2019-09-20 2020-08-21 深圳市汇顶科技股份有限公司 指纹识别装置、背光模组、液晶显示屏和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618707A (ja) * 1992-06-30 1994-01-28 Dainippon Printing Co Ltd レンチキュラーレンズ、面光源及び液晶表示装置
JPH06250182A (ja) * 1993-03-01 1994-09-09 Enplas Corp 面光源装置用プリズムシート
JPH10319217A (ja) * 1997-05-22 1998-12-04 Omron Corp 色分離素子及び画像表示装置
JP2001091709A (ja) * 1999-09-24 2001-04-06 Keiwa Inc 光学シート、光学ユニット及びバックライトユニット
JP2007041431A (ja) * 2005-08-05 2007-02-15 Dainippon Printing Co Ltd プリズムアレイシート、エッジライト型面光源、及び透過型画像表示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW565733B (en) * 1998-03-18 2003-12-11 Hitachi Ltd Liquid crystal display device
TW586023B (en) * 1999-09-24 2004-05-01 Keiwa Inc Optical sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618707A (ja) * 1992-06-30 1994-01-28 Dainippon Printing Co Ltd レンチキュラーレンズ、面光源及び液晶表示装置
JPH06250182A (ja) * 1993-03-01 1994-09-09 Enplas Corp 面光源装置用プリズムシート
JPH10319217A (ja) * 1997-05-22 1998-12-04 Omron Corp 色分離素子及び画像表示装置
JP2001091709A (ja) * 1999-09-24 2001-04-06 Keiwa Inc 光学シート、光学ユニット及びバックライトユニット
JP2007041431A (ja) * 2005-08-05 2007-02-15 Dainippon Printing Co Ltd プリズムアレイシート、エッジライト型面光源、及び透過型画像表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9829622B2 (en) 2010-03-12 2017-11-28 Panasonic Liquid Crystal Display Co., Ltd. Illuminating device and liquid crystal display device

Also Published As

Publication number Publication date
JP2010026280A (ja) 2010-02-04
CN102105833A (zh) 2011-06-22
US20110157521A1 (en) 2011-06-30

Similar Documents

Publication Publication Date Title
US9164216B2 (en) Illumination device and display device
TWI438531B (zh) 面型光源模組以及光學膜片
WO2010010694A1 (ja) 液晶表示装置
TWI235807B (en) Light guiding board, and lighting device, plane light source device and display device using the light guiding board
US20060109681A1 (en) Prism sheet and backlight unit employing the same
WO2011065052A1 (ja) 面状照明装置およびそれを備えた表示装置
TWI608258B (zh) 導光板、背光模組以及顯示裝置
WO2002065173A1 (fr) Corps de guidage de lumiere, feuille reflechissant la lumiere, dispositif source de lumiere de surface, dispositif d'affichage a cristaux liquides utilisant la feuille reflechissant la lumiere, et procede de fabrication de la feuille reflechissant la lumiere
EP1953576A1 (en) Polarized Light Guide Plate With Improved Brightness And Method Of Manufacturing The Same
JP2008288195A (ja) 偏光転向フィルムを含む、低減された色分解を有するバックライトユニット
US20090195729A1 (en) Display having integrated functions in one or more layers
JP5493312B2 (ja) 面発光装置及び画像表示装置
JP5071827B2 (ja) 面光源装置
JP4395197B1 (ja) 液晶表示装置
JP2009003412A (ja) 低減された色分解を有する偏光転向フィルム
JP2008299131A (ja) 液晶表示装置
US8368839B2 (en) Optical adjusting member and illumination device and liquid crystal display device including the same
JP4410840B2 (ja) 光学調整部材、並びに、それを備える照明装置及び液晶表示装置
JP4448555B2 (ja) 液晶表示装置の製造方法
JP4250192B2 (ja) 光学調整部材、並びに、それを備える照明装置及び液晶表示装置
JP4945414B2 (ja) 光学調整部材、並びに、それを備える照明装置及び液晶表示装置
JP5070891B2 (ja) 光学シートとそれを用いたバックライト・ユニットおよびディスプレイ
JP4410841B2 (ja) 照明装置及び液晶表示装置
JP2009128764A (ja) 光学調整部材、並びに、それを備える照明装置及び液晶表示装置
JP2013020932A (ja) 光学モジュールおよび表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980128674.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09800210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09800210

Country of ref document: EP

Kind code of ref document: A1