WO2004093299A1 - Elektromagnetischer energiewandler - Google Patents

Elektromagnetischer energiewandler Download PDF

Info

Publication number
WO2004093299A1
WO2004093299A1 PCT/DE2004/000681 DE2004000681W WO2004093299A1 WO 2004093299 A1 WO2004093299 A1 WO 2004093299A1 DE 2004000681 W DE2004000681 W DE 2004000681W WO 2004093299 A1 WO2004093299 A1 WO 2004093299A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
energy converter
force
electromagnetic energy
soft magnetic
Prior art date
Application number
PCT/DE2004/000681
Other languages
English (en)
French (fr)
Inventor
Frank Schmidt
Original Assignee
Enocean Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=33103237&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2004093299(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Enocean Gmbh filed Critical Enocean Gmbh
Priority to EP04724978A priority Critical patent/EP1611662B1/de
Priority to DE502004011924T priority patent/DE502004011924D1/de
Priority to DE112004001064T priority patent/DE112004001064D2/de
Publication of WO2004093299A1 publication Critical patent/WO2004093299A1/de
Priority to US11/245,615 priority patent/US7710227B2/en
Priority to US12/757,488 priority patent/US20100194213A1/en
Priority to US13/024,141 priority patent/US8228151B2/en
Priority to US13/555,912 priority patent/US8704625B2/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K35/00Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit
    • H02K35/04Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit with moving coil systems and stationary magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K35/00Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit
    • H02K35/02Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit with moving magnets and stationary coil systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/14Pivoting armatures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2239/00Miscellaneous
    • H01H2239/076Key stroke generating power

Definitions

  • the invention relates to an electromagnetic energy converter with a permanent magnet, a soft magnetic element, and an electrical coil.
  • Electromagnetic energy converters are known in many different embodiments. By way of example, mention may be made of e.g. Generators or electric motors. Basically, any electromagnetic energy converter is suitable for converting mechanical into electrical, or from electrical to mechanical energy. In most cases, these electromagnetic energy converters are designed so that a mechanical energy in the form of a rotational movement is converted by the electromechanical energy converter into electrical energy.
  • Such electromagnetic energy converters have the task in common to supply electrical consumers with energy over a long period of time and permanently or to convert electrical energy into mechanical energy over a relatively long period of time.
  • different sizes and embodiments are known.
  • the conversion from electrical to mechanical energy or from mechanical to electrical energy with increasing size of the electromagnetic transducer with higher efficiencies, ie to achieve lower losses.
  • the smaller an electromagnetic transducer is to be the greater will be the portions of the energy lost in the electromagnetic converter, or so the efficiency is lower.
  • This is particularly important for electromagnetic transducers which supply energy self-sufficient systems with electrical energy, for example radio switches or radio transmitters which do not have a battery-operated or a wired energy supply.
  • Electromagnetic converters used in this way must provide sufficient energy for the operation of such a system at the time of the energy requirement. Since the spatial conditions for such systems are often very limited so that the smallest electromagnetic transducers must be used, can also be assumed by very low efficiencies according to the above rule.
  • an electromagnetic energy converter which represents a power supply for miniaturized energy self-sufficient systems, in particular radio switches, which at the time of energy demand sufficient energy for operating the system, e.g. of the radio switch, provides.
  • an electromagnetic energy converter is proposed with at least one permanent magnet, at least one soft magnetic element and at least one electrical coil, wherein a magnetic circuit with a first flow direction is formed by the permanent magnet and the soft magnetic element and the coil surrounds a part of the magnetic circuit, wherein the soft magnetic element and the permanent magnet are mounted rotatably about an axis to each other and end points of a possible rotation of the axis are formed by stop locations.
  • the number of components for such an energy converter is very small, since basically describe the above three components, namely permanent magnet, soft magnetic element and electrical coil and the connecting axis all the necessary components.
  • Elaborate current collection and transfer systems, such as sliding contacts, contact collectors, etc., are not required, the associated friction losses and wear phenomena do not occur in the electromagnetic transducer according to the invention for this reason.
  • a reversal of the magnetic flux is caused by the electric coil in connection with the stop points.
  • the stop points is achieved that the reversal of the magnetic flux as quickly as possible, in particular abruptly.
  • the coil which is preferably around the soft magnetic element of the Magnetic circuit is arranged, thereby receives the highest induction. This is particularly advantageous because of this, since this high induction is not changed by closing or opening the magnetic circuit, but by changing the direction of the magnetic circuit by twice the amount.
  • the rapid magnetic flux change generated thereby leads to a momentary voltage induction in the coil, and the electrical energy generated with rectifiers preferably rectified HalbleitermetallKeydioden and after temporary storage as a capacitor for short-term operation of a radio switch or wireless sensor can be used.
  • the triggering of the rotational movement is done for example by introducing an additional force, for example by a user.
  • an additional force for example by a user.
  • the soft magnetic element is one end at the north pole of the permanent magnet and the other end at the south pole of the permanent magnet, this position is held by the magnetic force.
  • this magnetic holding force must be overcome. This is done by introducing an additional force from the outside in the direction of rotation, against the magnetic holding force. If the force applied is greater than the magnetic holding force, a rotational movement in the direction of the introduced force begins abruptly. 1.
  • the existing magnetic circuit is interrupted, and 2. When reaching the stop locations, the magnetic circuit is closed again in the reverse direction.
  • the contact surfaces at the abutment points are formed directly by the permanent magnet and the soft-magnetic element, then there is no further resistance to the magnetic flux, as would, for example, form an air gap, and a maximum change of the magnetic flux in an extremely short time is thus possible.
  • two end positions of the rotational movement are formed, between which the rotational movement takes place as a kind of rocking motion. Both end positions are supported by the magnetic self-holding forces stable end positions of the possible rotational movement. With each introduction of a force from the outside in each of the magnetic self-holding force counteracting direction, a snap is thus introduced in a sudden manner, and generates electrical energy.
  • the timing advantageously, it makes sense to keep the angle, which describes the rotational movement, small, so that by the movement itself, the time spent on it is as small as possible.
  • the decisive factor with regard to the generation of the quantity of electrical energy is not the distance of the rotary movement, but essentially the temporal change of the magnetic flux, which is in particular amplified by the reversal of the magnetic flux.
  • a rest position of the rotational movement is supported by a spring element in such a way that the second resting position snaps back after reaching by force from the outside immediately back to the first rest position, since the second rest position is made unstable by the force of the spring element. That is, the operation of the energy converter by the action of force from the outside against the magnetic self-holding force and against the spring force, when overcoming the self-holding force causes a sudden snapping into the second rest position. Driven by the spring force an equally sudden snap back into the first rest position is achieved. The so generated electrical energy is therefore twice the amount, as by a simple snapping from the first to the time rest position.
  • the spring element is dimensioned together with the magnetic elements so that a rotational movement from the first rest or the second rest position is supported by the force of the spring element, whereby a smaller force from the outside to actuate the electromagnetic transducer is required. That is, the spring element is not strong enough to reverse this process and thus cause a double energy yield.
  • the spring element could be designed so that the spring force with the magnetic forces in a central position of the rotational movement cancels and thus an energy generation in the form of a probe element in both directions is possible.
  • the amount of energy is of course less than in one of the aforementioned embodiments, but ultimately is also a question of the dimensioning of permanent magnet, soft magnetic element and coil.
  • the coil is advantageously arranged around the soft magnetic element so that the soft magnetic element forms a coil core, since there the largest flux change through the Permanent magnet can be reached. An arrangement of the coil around the permanent magnet would have far from this effect.
  • both elements permanent magnet and soft magnetic element are rotatably mounted to each other, it is ultimately up to the application, which of the two elements with a third element, e.g. a housing is firmly connected. Opposite this housing or third element, the spring also relies on the exercise of their power. Also, a spring is so to speak as a coil spring so arranged on the two elements that the force acts directly between the two elements. It is crucial in the context of the invention that the rotation should be as short as possible, a change, in particular a reversal of the magnetic flux is achieved by a coil. The impact of this change is crucial for the electrical energy gained.
  • Suitable soft magnetic material are, for example, iron ferrite, a nickel-iron alloy or the so-called electric or transformer sheets.
  • the use of such an electromagnetic transducer for wireless switches or wireless sensors, but especially for wireless switches is particularly advantageous because such an electromagnetic transducer at the time of pressing the radio switch, the switching movement can be used to initiate the rotational movement.
  • a voltage is induced due to the rotational movement, which is used to power the radio switch use.
  • FIG. 1 shows an electromagnetic converter in a first rest position
  • FIG. 2 shows an electromagnetic converter in a second rest position
  • FIG 3 shows an electromagnetic transducer in another embodiment.
  • Figure 1 shows an electromagnetic transducer according to the invention, in which a permanent magnet 1 with a first permanent magnet layer 2 and a second
  • Permanent magnet layer 3 is formed.
  • An axis 4 forms the axis of rotation around which the rotational movement takes place.
  • a movable element 5 is rotatably mounted with the axis 4 relative to the permanent magnet 1.
  • An electrical coil is arranged at least partially around the movable element 5 .
  • a spring element 7 counteracts with its spring force of an externally introduced force. The externally applied force then presses against the spring force down and thus overcomes the magnetic holding forces from a certain size, whereby a rotational movement is introduced by the force introduced from the outside, which transfers abruptly into the second rest position.
  • This second rest position is shown in FIG.
  • stop locations 8a, 8b, 8c and 8d are formed, which are each formed opposite as the north and south pole.
  • An abrupt striking of the movable element 5 at the abutment points 8a to 8d thus causes an abrupt, yes abrupt, changing the magnetic flow direction in the movable element 5.
  • this movable element is formed in the embodiment as a soft magnetic element 9. This soft magnetic design allows a quick reorientation of the magnetic flux direction in the movable element.
  • the spring force of the spring element 7 is adjustable so that the second rest position shown in Figure 2 is an unstable position, and by the spring element, the movable member 5 and the soft magnetic element 9 again in the first rest position, as shown in Figure 1 , is driven back. This is an example of the most energy efficient embodiment.
  • the energy converter shown in Figure 3 in another embodiment shows another structural design of the permanent magnet and the soft magnetic element 9.
  • the permanent magnet 1 also here preferably has a layer-like formation, so that a first permanent magnet layer 2 and a second
  • Permanent magnet layer 3 are formed.
  • the axis 4 also represents here the axis of rotation about which the two elements to each other, but in particular the permanent magnet is rotatably mounted within the degrees of freedom or degrees formed by the abutment points 8a to 8d.
  • the movable member 5 is formed as a permanent magnet and the soft magnetic element is fixed, which is particularly advantageous for the contact points for the coil 6, since this embodiment is then of longer life, since the mechanically electrical contact points of the coil 6 are not claimed.
  • both embodiments are particularly suitable for use with wireless switches that do not have their own power supply, but with a switching pulse to receive the power supply for a radio signal.
  • the magnetic flux through the part of the magnetic circuit 5 wound by the coil 6 changes its direction when it is folded over an axis 4 or a tilting point. This is preferable to constructions in which the magnetic flux is only interrupted or closed, since the flux change here is twice as large.
  • the rapid magnetic flux change leads to a short-term voltage induction in the coil, the electrical energy generated in this way can be rectified by rectifiers, preferably semiconductor metal contact diodes, and used after temporary storage in a capacitor for short-term operation of a radio switch or radio sensor. It is also conceivable to use several coils, and to dispense with a rectification of the energy, which generates high losses, especially at low voltages.
  • the spring element 7 serves to turn a switch with 2 fixed positions into a button.
  • the spring force is dimensioned so that after folding the spring force is sufficient to allow the movable part to snap back against the holding force in the initial position when the operating force is small enough. In this way, a structurally simple realization of a monostable switch is possible.
  • energy is generated when pressing as well as when the switch is released.
  • the polarity of the voltage generated changes with the type of operation. According to the invention, this polarity can be determined by the be measured closed electronics and the information contained therein on the direction of the state change with the radio signal to be transmitted.
  • the mechanism which acts on the moving part of the energy converter has at least one actuating means, e.g. a button surface.
  • actuating means e.g. a button surface.
  • a plurality of actuating devices can also act on the one energy converter in the same way if radio switches with several channels are to be realized.
  • a sufficient number of sensors, e.g. a sensor per actuator ensures that each activated actuator is determined by the connected electronics. The information is then introduced into the radio telegram to be transmitted.
  • the radio transmitter operable with the energy converter has at least one actuating device which acts mechanically on the energy converter. If it has several actuating devices, they all act on the one energy converter and additionally on a suitable number of sensors for detecting the respectively activated actuating device. The information about the identity of the operating field can thus be introduced into the radio signal to be transmitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Push-Button Switches (AREA)
  • Electromagnets (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)

Abstract

Die Erfindung betrifft einen Elektromagnetischen Energiewandler mit zumindest einem Permanentmagneten (1) einem weichmagnetischem Element (9) und einer elektrischen Spule (6), wobei durch den Permanentmagnet (1) und das weichmagnetische Element (9) ein magnetischer Kreis mit einer ersten Flussrichtung gebildet ist und die Spule einen Teil des magnetischen Kreises umschließt, wobei das weichmagnetische Element (9) und der Permanentmagnet (1) um eine Achse (4) zueinander drehbar gelagert sind und durch Anschlagstellen (8a-8d) Endpunkte einer damit möglichen Drehbewegung gebildet sind.

Description

Beschreibung
Elektromagnetischer Energiewandler
Die Erfindung betrifft einen elektromagnetischen Energiewandler mit einem Permanentmagneten, einem weichmagnetischem Element, und einer elektrischen Spule.
Elektromagnetische Energiewandler sind in vielen verschiedenen Ausführungsformen bekannt. Beispielhaft seien hier genannt z.B. Generatoren oder Elektromotoren. Im Grunde ist jeder elektromagnetische Energiewandler zum Wandeln von mechanischer in elektrische, bzw. von elektrischer in mechanische Energie geeignet. Zumeist sind diese elektromagnetischen Energiewandler so ausgelegt, dass eine mechanische Energie in Form einer Drehbewegung durch den elektromechanischen Energiewandler in elektrische Energie gewandelt wird.
Solche elektromagnetischen Energiewandler haben die Aufgabe gemeinsam, beständig und über einen längeren Zeitraum elektrische Verbraucher mit Energie zu versorgen, oder beständig über einen längeren Zeitraum elektrische Energie in mechanische Energie zu wandeln. Je nach Anforderung sind dabei verschiedene Größen und Ausführungsformen bekannt. Als Grundregel kann dabei davon ausgegangen werden, dass die Wandlung von elektrischer in mechanische Energie bzw. von mechanischer in elektrische Energie mit zunehmender Größe des elektromagnetischen Wandlers mit höheren Wirkungsgraden, d.h. mit geringeren Verlusten zu bewerkstelligen ist. D.h. im Umkehrschluss, je kleiner ein elektromagnetischer Wandler sein soll, umso größer werden die im elektromagnetischen Wandler bedingten Anteile der Verlustenergie, bzw. umso geringer wird der Wirkungsgrad. Dies ist in besonderen für elektromagnetische Wandler von Bedeutung, die energieautarke Systeme mit elektrischer Energie versorgen, zum Beispiel Funkschalter oder Funksender, die über keine batteriebetriebene oder eine drahtgebundene Energieversorgung verfügen. So eingesetzte elektromagnetische Wandler müssen zum Zeitpunkt des Energiebedarfs ausreichend Energie zum Betrieb eines solchen Systems zur Verfügung stellen. Da die räumlichen Verhältnisse für solche Systeme oftmals stark begrenzt sind so dass kleinste elektromagnetische Wandler eingesetzt werden müssen, kann auch von sehr geringen Wirkungsgraden nach der oben genannten Grundregel ausgegangen werden.
Es ist demzufolge die Aufgabe der Erfindung, einen elektromagnetischen Energiewandler vorzuschlagen, der für miniaturisierte energieautarke Systeme, wie insbesondere Funkschalter, eine Energieversorgung darstellt, die zum Zeitpunkt des Energiebedarfs ausreichend Energie zum Betrieb des Systems, z.B. des Funkschalters, zur Verfügung stellt.
Diese Aufgabe wird erfindungsgemäß durch die in Patentanspruch 1 beschriebenen Maßnahmen gelöst, und durch die in den darauf rückbezogenen Unteransprüchen vorteilhaft erweitert .
Dabei ist ein elektromagnetischer Energiewandler vorgeschlagen mit zumindest einem Permanentmagneten, zumindest einem weichmagnetischen Element und zumindest einer elektrischen Spule, wobei durch den Permanentmagneten und das weichmagnetische Element ein magnetischer Kreis mit einer ersten Flussrichtung gebildet ist und die Spule einen Teil des magnetischen Kreises umschließt, wobei das weichmagnetische Element und der Permanentmagnet um eine Achse zueinander drehbar gelagert sind und durch Anschlagstellen Endpunkte einer mit der Achse möglichen Drehbewegung gebildet sind. Das Vorteilhafte an diesem elektromagnetischen Wandler ist, dass die Anzahl der bewegten Elemente gering ist, ebenso wie die Bewegung an sich eher gering ist, da sie nur eine vorbestimmte Wegstrecke in jeweils einer Richtung beschreibt, nämlich von Anschlagpunkt zu Anschlagpunkt . Rotationsbedingte Reibungsverluste durch beispielsweise Rollen- oder Kugel- oder Gleitlager, die hohe Drehzahlen über lange Zeit standhalten müssen, entfallen somit. Auch ist die Zahl der Bauteile für einen solchen Energiewandler denkbar klein, da im Grunde die oben genannten drei Bauteile, nämlich Permanentmagnet, weichmagnetisches Element und elektrische Spule und die verbindende Achse alle notwendigen Bauteile beschreiben. Aufwendige Stromabnahme und Übergabesysteme, wie Schleifkontakte, Kontaktkollektoren etc., sind nicht erforderlich, die damit verbundenen Reibungsverluste und Verschleißerscheinungen treten bei dem erfindungsgemäßen elektromagnetischen Wandler aus diesem Grund nicht auf.
Durch die Achse, mit der der Permanentmagnet und das weichmagnetische Element drehbar zueinander gelagert sind, wird im Zusammenhang mit den Anschlagstellen eine Umkehrung des magnetischen Flusses durch die elektrische Spule bewirkt. Durch die Anschlagstellen wird erreicht, dass die Umkehrung des magnetischen Flusses möglichst rasch, insbesondere schlagartig geschieht. Diese Eigenschaft trägt der Gesetzmäßigkeit Rechnung, dass die Geschwindigkeit der Änderung des magnetischen Flusses direkt proportional zur gewandelten elektrischen Energie ist. Die Spule, die dabei vorzugsweise um das weichmagnetische Element des Magnetkreises angeordnet ist, erhält dadurch die höchste Induktion. Dies ist besonders vorteilhaft dadurch bedingt, da diese hohe Induktion nicht durch ein Schließen oder Öffnen des Magnetkreises, sondern durch die Änderung der Richtung des Magnetkreises um den doppelten Betrag geändert wird. Die damit erzeugte rasche magnetische Flussänderung führt zu einer kurzzeitigen Spannungsinduktion in der Spule, und die damit erzeugte elektrische Energie kann mit Gleichrichtern vorzugsweise Halbleitermetallkontaktdioden gleichgerichtet und nach Zwischenspeicherung z.B. einen Kondensator zum kurzzeitigen Betrieb eines Funkschalters oder Funksensors genutzt werden.
Die Auslösung der Drehbewegung geschieht z.B. durch Einbringung einer zusätzlichen Kraft, beispielsweise durch einen Anwender. Liegt z.B. das weichmagnetische Element einem Ende an dem Nordpol des Permanentmagneten und mit dem anderen Ende an dem Südpol des Permanentmagneten, so wird diese Position durch die magnetische Kraft gehalten. Zur Betätigung des elektromagnetischen Energiewandlers muss diese magnetische Haltekraft überwunden werden. Dies geschieht durch Einbringen einer zusätzlichen Kraft von außen in der Drehrichtung, entgegen der magnetischen Haltekraft. Ist die eingebrachte Kraft größer als die magnetische Haltekraft, beginnt schlagartig eine Drehbewegung in Richtung der eingebrachten Kraft. Dabei wird 1. der bestehende Magnetkreis unterbrochen, und 2. beim Erreichen der Anschlagstellen der Magnetkreis in umgekehrter Richtung wieder geschlossen. Sind die Kontaktflächen an den Anschlagstellen direkt durch den Permanentmagnet und das weichmagnetische Element gebildet, so liegt dem magnetischen Fluss kein weiterer Widerstand entgegen, wie ihn beispielweise ein Luftspalt bilden würde, und eine maximale Änderung des magnetischen Flusses in einer extrem kurzen Zeit ist damit möglich.
Vorteilhaft sind zwei Endlagen der Drehbewegung gebildet, zwischen denen die Drehbewegung wie eine Art Wippbewegung stattfindet. Beide Endlagen stellen unterstützt durch die magnetischen Selbsthaltekräfte stabile Endlagen der möglichen Drehbewegung dar. Mit jedem Einbringen einer Kraft von außen in die jeweils der magnetischen Selbsthaltekraft entgegenwirkende Richtung, wird somit ein Umschnappen in schlagartiger Weise eingeleitet, und elektrische Energie erzeugt. Um den zeitlichen Ablauf vorteilhaft zu beeinflussen, ist es sinnvoll, den Winkel, den die Drehbewegung beschreibt, klein zu halten, so dass durch die Bewegung an sich die dafür aufgewendete Zeit möglichst gering ist. Der entscheidende Faktor in Bezug auf die Erzeugung der Menge an elektrischer Energie ist nicht die Wegstrecke der Drehbewegung, sondern im wesentlichen die zeitliche Änderung des magnetischen Flusses, der insbesondere durch die Umkehrung des magnetischen Flusses verstärkt wird.
In einer vorteilhaften Ausführungsform ist eine Ruhelage der Drehbewegung durch ein Federelement unterstützt und zwar derart, dass die zweite Ruhelage nach dem Erreichen durch Krafteinbringung von außen sofort wieder in die erste Ruhelage zurückschnappt, da die zweite Ruhelage durch die Kraft des Federelementes instabil gestaltet ist. Das heißt, die Betätigung des Energiewandlers durch Krafteinwirkung von außen entgegen der magnetischen Selbsthaltekraft und entgegen der Federkraft, bewirkt beim Überwinden der Selbsthaltekraft ein schlagartiges Umschnappen in die zweite Ruhelage. Getrieben durch die Federkraft wird ein ebenso schlagartiges Zurückschnappen in die erste Ruhelage erreicht . Die damit erzeugte elektrische Energie ist demzufolge die doppelte Menge, als durch ein einfaches Umschnappen von der ersten in die zeite Ruhelage.
Es ist eine Frage der Dimensionierung des Federelementes und auch eine Frage des besonderen Anwendungsfalles, welche der im Folgenden kurz beschriebenen ebenso vorteilhaften Ausführungsformen Anwendung findet.
So ist das Federelement zusammen mit den magnetischen Elementen so dimensionierbar, dass eine Drehbewegung aus der ersten Ruhe- oder der zweiten Ruhelage heraus durch die Kraft des Federelements unterstützt wird, womit eine geringere Krafteinwirkung von außen zur Betätigung des elektromagnetischen Wandlers erforderlich ist. Das heisst, das Federelement ist nicht stark genug dimensioniert, um diesen Prozess wieder umzukehren und somit einen zweifachen Energieertrag zu bewirken.
Anders könnte beispielsweise das Federelement so gestaltet sein, dass sich die Federkraft mit den magnetischen Kräften in einer Mittellage der Drehbewegung aufhebt und damit eine Energieerzeugung in Form eines Tastelementes in beiden Richtungen möglich ist. Die Menge der Energie ist damit selbstverständlich geringer, als in einer der vorgenannten Ausführungsformen, ist aber letztendlich auch hier eine Frage der Dimensionierung von Permanentmagnet, weichmagnetischem Element und Spule.
Die Spule ist vorteilhaft um das weichmagnetische Element angeordnet so dass das weichmagnetische Element einen Spulenkern bildet, da dort die größte Flussänderung durch den Permanentmagneten erreichbar ist . Eine Anordnung der Spule um den Permanentmagneten hätte bei weitem nicht diese Wirkung.
Da beide Elemente, Permanentmagnet und weichmagnetisches Element zueinander drehbar gelagert sind, bleibt es letztendlich dem Anwendungsfall überlassen, welches der beiden Elemente mit einem dritten Element, z.B. einem Gehäuse fest verbunden ist . Gegenüber diesem Gehäuse oder drittem Element stützt sich auch die Feder zur Ausübung ihrer Kraft ab. Auch ist eine Feder gewissermaßen als Spiralfeder so an den beiden Elementen anordenbar, dass die Kraft direkt zwischen den beiden Elementen wirkt. Entscheidend ist im Sinne der Erfindung, dass durch die Drehbewegung die möglichst kurz gestaltet werden soll, eine Änderung, insbesondere eine Umkehrung des magnetischen Flusses durch eine Spule erreicht wird. Die Schlagartigkeit dieser Änderung ist ausschlaggebend für die gewonnene elektrische Energie.
Als weichmagnetisches Material eignen sich dazu beispielsweise Eisenferrit, eine Nickel-Eisen-Legierung oder auch die sogenannten Elektro- oder Trafobleche. In den oben genannten Ausführungsbeispielen ist die Verwendung eines solchen elektromagnetischen Wandlers für Funkschalter oder Funksensoren, insbesondere aber für Funkschalter besonders vorteilhaft, da ein solcher elektromagnetischer Wandler zum Zeitpunkt des Betätigen des Funkschalters die Schaltbewegung zur Einleitung der Drehbewegung verwendet werden kann. Damit ist infolge der Drehbewegung eine Spannung induziert, die zur Energieversorgung des Funkschalters Verwendung findet.
Im Folgenden ist die Erfindung anhand eines Ausführungsbeispiels und drei Figuren näher erläutert. Es zeigt : Figur 1 einen elektromagnetischen Wandler in einer ersten Ruhelage,
Figur 2 einen elektromagnetischen Wandler in einer zweiten Ruhelage,
Figur 3 einen elektromagnetischen Wandler in einer anderen Ausführungsform.
Figur 1 zeigt einen erfindungsgemäßen elektromagnetischen Wandler, bei dem ein Permanentmagnet 1 mit einer ersten Permanentmagnetschicht 2 und einer zweiten
Permanentmagnetschicht 3 gebildet ist. Eine Achse 4 bildet die Drehachse, um diese herum die Drehbewegung stattfindet. In dem Ausführungsbeispiel ist ein bewegliches Element 5 drehbar mit der Achse 4 gegenüber dem Permanentmagneten 1 gelagert. Um das bewegliche Element 5 ist zumindest teilweise eine elektrische Spule angeordnet, in die bei einer Änderung des magnetischen Flusses elektrischer Strom bzw. Spannung induziert wird. Ein Federelement 7 wirkt mit seiner Federkraft einer nach außen eingebrachten Kraft entgegen. Die von außen eingebrachte Kraft drückt dann entgegen der Federkraft nach unten und überwindet damit ab einer bestimmten Größe die magnetischen Haltekräfte, wodurch durch die von außen eingebrachte Kraft eine Drehbewegung eingeleitet wird, die schlagartig in die zweite Ruhelage überführt .
Diese zweite Ruhelage ist in Figur 2 dargestellt. An den Permanentmagneten sind Anschlagstellen 8a, 8b, 8c und 8d ausgebildet, die jeweils gegenüberliegend als Nord- und Südpol, ausgebildet sind. Somit ist die Drehbewegung nur innerhalb dieser Anschlagstellen möglich. Ein abruptes Anschlagen des beweglichen Elementes 5 an den Anschlagstellen 8a bis 8d bewirkt damit ein abruptes, ja schlagartiges, Ändern der magnetischen Flussrichtung in dem beweglichen Element 5. Vorteilhafterweise ist dieses bewegliche Element in dem Ausführungsbeispiel als weichmagnetisches Element 9 ausgebildet. Diese weichmagnetische Ausbildung ermöglicht ein schnelles Umorientieren der magnetischen Flussrichtung in dem beweglichen Element. Die Federkraft des Federelementes 7 ist so einstellbar, dass die in Figur 2 dargestellte zweite Ruhelage eine instabile Lage ist, und durch das Federelement das bewegliche Element 5 bzw. das weichmagnetische Element 9 wieder in die erste Ruhelage, so wie sie in Figur 1 dargestellt ist, zurückgetrieben wird. Dies ist ein Beispiel für das energieeffizienteste Ausführungsbeispiel.
Der in Figur 3 in einer anderen Ausführungsform dargestellte Energiewandler zeigt eine andere konstruktive Ausführung des Permanentmagneten und des weichmagnetischen Elementes 9. Der Permanentmagnet 1 verfügt auch hier vorzugsweise über eine schichtartige Bildung, so dass eine erste Permanentmagnetschicht 2 und eine zweite
Permanentmagnetschicht 3 gebildet sind. Die Achse 4 stellt auch hier die Drehachse dar, um der sich die beiden Elemente zueinander, insbesondere aber der Permanentmagnet innerhalb der durch die Anschlagstellen 8a bis 8d gebildeten Freiheitsgrade bzw. Winkelgrade drehbar gelagert ist. In diesem Falle ist das bewegliche Element 5 als Permanentmagnet ausgebildet und das weichmagnetische Element steht demgegenüber fest, was insbesondere auf die Kontaktstellen für die Spule 6 vorteilhaft ist, da diese Ausführungsform dann von längerer Lebensdauer ist, da mechanisch die elektrischen Kontaktstellen der Spule 6 nicht beansprucht sind.
Im Prinzip eignen sich beide Ausführungsformen besonders für die Verwendung bei Funkschaltern, die keine eigene Energieversorgung, sondern mit einem Schaltimpuls die Energieversorgung für ein Funksignal erhalten.
Mit einem Energiewandler, wie er hier vorgeschlagen ist, ist es möglich, bei Krafteinwirkung und zusätzlich beim Nachlassen der Kraft Energie zu wandeln. Des weiteren ist eine von der Betätigungsgeschwindigkeit unabhängige Mindestenergie zu wandeln, da selbst bei langsamem Einbringen der Kraft mit dem Zeitpunkt des Überschreitens der Haltekraft ein schlagartiges Umschlagen in die andere Ruhelage erfolgt . Damit sind auf einfache Weise Kippschalter sowie Taster realisierbar. Da abhängig von der Richtung, in der die Änderung des magnetischen Flusses erfolgt, auch die Polung der erzeugten elektrischen Energie unterschiedlich ist, ist diese Information zusätzlich in einem Funkschalter verwendbar, um z.B. zwei verschiedene Funktionen eines Funkschalters voneinander getrennt abbilden zu können.
Wird Kraft auf dieses bewegliche Teil ausgeübt, passiert solange nichts, bis die durch den Permanentmagneten hervorgerufene Haltekraft des beweglichen Teils überschritten wird. Dann klappt der bewegliche Teil relativ rasch in die zweite stabile Position, in der er wieder durch die Selbsthaltekräfte des Permanentmagneten fixiert bleibt. Dieses Umklappen geschieht auch bei langsamer Erhöhung der Betätigungskraft mit einer minimalen Geschwindigkeit, die durch die Dimensionierung des Magnetkreises eingestellt werden kann. Auf diese Weise wird sichergestellt, daß auch bei lang- samer Betätigung hinreichend Energie zum Betrieb des Funksensors/Funkschalters gewandelt wird.
Der magnetische Fluß durch den von der Spule 6 umwickelten Teil des Magnetkreises 5 ändert beim Umklappen um eine Achse 4 oder einen Kipp-Punkt seine Richtung. Dies ist Konstruktionen vorzuziehen, in denen der magnetische Fluß lediglich unterbrochen oder geschlossen wird, da die Flußänderung hier doppelt so groß ist.
Die rasche magnetische Flußänderung führt zu einer kurzzeitigen Spannungsinduktion in der Spule, um die so erzeugte e- lektrische Energie kann mit Gleichrichtern, vorzugsweise Halbleiter-Metallkontakt-Dioden gleichgerichtet und nach Zwi- schenspeicherung in einem Kondensator zum kurzzeitigen Betrieb eines Funkschalters oder Funksensors genutzt werden. Denkbar ist auch, mehrere Spulen zu verwenden, und auf eine Gleichrichtung der Energie, die insbesondere bei kleinen Spannungen hohe Verluste erzeugt, zu verzichten.
Das Federelement 7 dient dazu, dass aus einem Umschalter mit 2 festen Positionen ein Taster wird. Dazu wird die Federkraft so dimensioniert, daß nach dem Umklappen die Federkraft ausreicht, um das bewegliche Teil wieder gegen die Haltekraft in die Anfangsposition zurückschnellen zu lassen, sobald die Betätigungskraft klein genug wird. Auf diese Weise ist eine konstruktiv einfache Realisierung eines monostabilen Schalters möglich. Hier wird erfindungsgemäß so-wohl beim Drücken als auch beim Loslassen des Schalters Ener-gie erzeugt .
Die Polarität der erzeugten Spannung wechselt mit der Art der Betätigung. Erfindungsgemäß kann diese Polarität von der an- geschlossenen Elektronik gemessen werden und die darin enthaltene Information über die Richtung des Zustandswechsels mit dem auszusendenden Funksignal übertragen werden.
Die Mechanik, welche auf den beweglichen Teil des Energiewandlers einwirkt, hat zumindest eine Betätigungseinrichtung, wie z.B. eine Tasterfläche. Erfindungsgemäß können auch mehrere Betätigungseinrichtungen auf den einen Energiewandler in der gleichen Weise einwirken, wenn Funkschalter mit mehreren Kanälen realisiert werden sollen. In diesem Fall wird durch eine hinreichende Anzahl von Sensoren, z.B. einen Sensor pro Betätigungseinrichtung, sichergestellt, daß die jeweils aktivierte Betätigungseinrichtung von der angeschlossenen Elektronik ermittelt wird. Die Information wird dann in das zu ü- bertragende Funktelegramm eingebracht .
Der mit dem Energiewandler betreibbare Funksender besitzt mindestens eine Betätigungseinrichtung, welches auf den Energiewandler mechanisch einwirkt. Besitzt er mehrere Betätigungseinrichtungen, wirken diese alle auf den einen Energiewandler und zusätzlich auf eine geeignete Anzahl Sensoren zur Detektion der jeweils aktivierten Betätigungseinrichtung. Die Informationen über die Identität des Betätigungsfeldes kann somit in das auszusendende Funksignal eingebracht werden.
Die Information über die Art der Betätigung (Drücken oder Loslassen bei Tastschaltern bzw. Drücken an verschiedenen Betätigungsflächen bei Kippschaltern) kann über die Polarität der erzeugten Spannung sensiert werden und ebenfalls mit dem Funksignal übertragen werden. Bezugszeichenliste
1 Permanentmagnet
2 erste PermanentmagnetSchicht
3 zweite Permanentmagnetschicht
4 Achse
5 bewegliches Element
6 elektrische Spule
7 Federelement
8, 8a, 8b, 8c, 8d Anschlagstellen
9 weichmagnetisches Element

Claims

Patentansprüche
1. Elektromagnetischer Energiewandler mit zumindest einem Permanentmagneten (1) , einem weichmagnetischem Element (9) , und einer elektrischen Spule (6) , wobei durch den Permanentmagnet (1) und das weichmagnetische Element (9) ein magnetischer Kreis mit einer ersten Flussrichtung gebildet ist und die Spule einen Teil des magnetischen Kreises umschließt, wobei das weichmagnetische Element (9) und der Permanentmagnet (1) um eine Achse (4) zueinander drehbar gelagert sind und durch Anschlagstellen (8a-8d) Endpunkte einer damit möglichen Drehbewegung gebildet sind.
2. Elektromagnetischer Energiewandler nach Patentanspruch 1, dadurch gekennzeichnet, dass eine, in einer Betätigungsrichtung entgegen einer magnetischen Haltekraft, auf den elektromagnetischen Energiewandler eingebrachte Kraft, beim Überschreiten der magnetischen Haltekraft die Drehbewegung auslöst.
3. Elektromagnetischer Energiewandler nach Patentanspruch 1, dadurch gekennzeichnet, dass die Anschlagstellen (8a-8d) durch Kontaktflächen mit dem Permanentmagnet (1) und dem weichmagnetischem Element (9) gebildet sind.
4. Elektromagnetischer Energiewandler nach einem der vorhergehenden Patentansprüche, dadurch gekennzeichnet, dass eine erste und eine zweite Endlage der Drehbewegung gebildet ist .
5. Elektromagnetischer Wandler nach einem der vorhergehenden Patentansprüche, dadurch gekennzeichnet, dass das durch magnetische Selbsthaltekräfte in der ersten oder zweiten Endlage eine stabile erste oder zweite Ruhelage gebildet ist.
6. Elektromagnetischer Energiewandler nach einem der vorhergehenden Patentansprüche, dadurch gekennzeichnet, dass die Drehbewegung einen Winkel beschreibt, der kleiner ist als
90° .
7. Elektromagnetischer Energiewandler nach einem der vorhergehenden Patentansprüche, dadurch gekennzeichnet, dass ein Federelement (7) eine Kraft auf den Permanentmagneten (1) und/oder das weichmagnetische Element (9) in Richtung der ersten Endlage der Drehbewegung ausübt .
8. Elektromagnetischer Wandler nach Patentanspruch 7, dadurch gekennzeichnet, daß das Federelement (7) so gestaltet ist, daß eine Drehbewegung aus der ersten Ruhelage oder der zweiten Ruhelage heraus, durch die Kraft des Federelements (7) unterstützt wird.
9. Elektromagnetischer Energiewandler nach einem der Patentansprüche 7 - 8, dadurch gekennzeichnet, dass die durch das Federelement (7) ausgeübte Kraft so dimensioniert ist, dass die zweite Ruhelage instabil gestaltet wird, so dass nach einer Drehbewegung in die zweite Ruhelage eine durch das Federelement (7) ausgelöste Drehbewegung zurück in die erste Ruhelage erfolgt.
10. Elektromagnetischer Energiewandler nach einem der vorhergehenden Patentansprüche, dadurch gekennzeichnet, dass sich alle auf den Permanentmagneten (1) und/oder das weichmagnetische Element (9) wirkenden Kräfte, wie zum Beispiel die Federkraft und/oder die magnetische Kraft, in einer Mittelstellung der Drehbewegung gegenseitig aufheben, bis durch eine zusätzliche Kraft, zum Beispiel durch manuelle Betätigung, die Drehbewegung eingeleitet ist.
11. Elektromagnetischer Energiewandler nach einem der vorhergehenden Patentansprüche, dadurch gekennzeichnet, dass der Permanentmagnet (1) so gestaltet ist, das sich die magnetischen Nord- und Südpole jeweils an den Enden des weichmagnetischem Elementes (9) gegenüber befinden, und damit zugleich Anschlagstellen (8a-8d) bilden.
12. Elektromagnetischer Energiewandler nach einem der vorhergehenden Patentansprüche, dadurch gekennzeichnet, dass der Permanentmagnet (1) schichtweise aus zwei gegenläufig magnetisierten Permanentmagneten (2, 3) gebildet ist, wobei die magnetischen Pole der einzelnen Permanentmagnetschichten (2, 3) jeweils die Anschlagstellen (8a-8d) bilden.
13. Elektromagnetischer Energiewandler nach einem der vorhergehenden Patentansprüche, dadurch gekennzeichnet, dass das weichmagnetische Material Eisen, Ferrit, oder eine Nickel-Eisen-Legierung ist, oder aus sogenannten Elektro- oder Trafoblechen besteht .
14. Verwendung eines elektromagnetischen Wandlers nach einem der vorhergehenden Patentansprüche, dadurch gekennzeichnet, daß der elektromagnetische Wandler einen energieautarken Schalter, zum Beispiel einen Funkschalter oder Funksignalgeber, mit elektrischer Energie versorgt.
PCT/DE2004/000681 2003-04-07 2004-04-01 Elektromagnetischer energiewandler WO2004093299A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP04724978A EP1611662B1 (de) 2003-04-07 2004-04-01 Elektromagnetischer energiewandler
DE502004011924T DE502004011924D1 (de) 2003-04-07 2004-04-01 Elektromagnetischer energiewandler
DE112004001064T DE112004001064D2 (de) 2003-04-07 2004-04-01 Elektromagnetischer Energiewandler
US11/245,615 US7710227B2 (en) 2003-04-07 2005-10-06 Electromagnetic energy transducer
US12/757,488 US20100194213A1 (en) 2003-04-07 2010-04-09 Electromagnetic Energy Transducer
US13/024,141 US8228151B2 (en) 2003-04-07 2011-02-09 Electromagnetic energy transducer
US13/555,912 US8704625B2 (en) 2003-04-07 2012-07-23 Electromagnetic energy transducer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10315765.4A DE10315765C5 (de) 2003-04-07 2003-04-07 Verwendung eines elektromagnetischen Energiewandlers
DE10315765.4 2003-04-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/245,615 Continuation US7710227B2 (en) 2003-04-07 2005-10-06 Electromagnetic energy transducer

Publications (1)

Publication Number Publication Date
WO2004093299A1 true WO2004093299A1 (de) 2004-10-28

Family

ID=33103237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/000681 WO2004093299A1 (de) 2003-04-07 2004-04-01 Elektromagnetischer energiewandler

Country Status (4)

Country Link
US (4) US7710227B2 (de)
EP (2) EP2264875A1 (de)
DE (3) DE10315765C5 (de)
WO (1) WO2004093299A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2893780A1 (fr) * 2005-11-22 2007-05-25 Schneider Electric Ind Sas Dispositif autonome de generation d'energie electrique
EP2079154A2 (de) 2008-01-09 2009-07-15 Panasonic Electric Works Europe AG Energiewandler
WO2011069879A1 (fr) 2009-12-08 2011-06-16 Schneider Electric Industries Sas Dispositif generateur d'energie electrique
WO2011117031A1 (de) * 2010-03-23 2011-09-29 Zf Friedrichshafen Ag Induktionsgenerator
WO2012097911A3 (de) * 2011-01-17 2012-12-06 Zf Friedrichshafen Ag Induktionsgenerator und verfahren zum herstellen eines induktionsgenerators
EP2584683A1 (de) * 2011-10-21 2013-04-24 Université de Liège Energiegewinnungssystem mit mehreren Energiequellen
EP2697896A2 (de) * 2011-04-14 2014-02-19 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Vorrichtung zur umwandlung kinetischer energie in elektrische energie
WO2017133073A1 (zh) * 2016-02-04 2017-08-10 廖淑辉 动能生电装置
CN107578940A (zh) * 2017-09-13 2018-01-12 梁聪成 一种自发电开关

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10025561A1 (de) * 2000-05-24 2001-12-06 Siemens Ag Energieautarker Hochfrequenzsender
AU2002320270B2 (en) 2001-07-03 2008-06-05 Clark Davis Boyd Self-powered switch initiation system
DE10150128C2 (de) * 2001-10-11 2003-10-02 Enocean Gmbh Drahtloses Sensorsystem
DE202005000784U1 (de) 2005-01-17 2006-05-24 Hoppe Ag Vorrichtung zum Erfassen der Position einer Betätigungshandhabe
DE102008003596A1 (de) 2008-01-09 2009-07-23 Panasonic Electric Works Europe Ag Schalteinrichtung und Verfahren zum Einschalten eines Elektrogeräts
DE102008031407A1 (de) 2008-07-02 2010-01-14 Enocean Gmbh Initialisierungsverfahren und Betriebsverfahren für ein Funknetzwerk
US20110221192A1 (en) * 2008-12-09 2011-09-15 Siemens Aktiengesellschaft Generator for generating eletrical energy from mechanical vibrations, and method for adjusting the resonant frequency of such a generator
US8624700B2 (en) * 2009-06-12 2014-01-07 University Of Florida Research Foundation, Incorporated Electromechanical inductors and transformers
FR2953659B1 (fr) * 2009-12-04 2011-12-23 Schneider Electric Ind Sas Dispositif generateur d'energie electrique et telecommande pourvue d'un tel dispositif
DE102009057132B4 (de) 2009-12-08 2019-12-05 Westfälische Hochschule Gelsenkirchen Bocholt Recklinghausen Drahtlose Desinfektionsmittelspenderüberwachung
DE102010028622A1 (de) 2010-05-05 2011-11-10 Zf Friedrichshafen Ag Induktionsgenerator
DE102010003151A1 (de) 2010-03-23 2011-09-29 Zf Friedrichshafen Ag Induktionsgenerator
DE102010028623A1 (de) 2010-05-05 2011-11-10 Zf Friedrichshafen Ag Induktionsgenerator
US8514040B2 (en) * 2011-02-11 2013-08-20 Clodi, L.L.C. Bi-stable electromagnetic relay with x-drive motor
JP5859763B2 (ja) * 2011-07-07 2016-02-16 アルプス電気株式会社 発電入力装置および前記発電入力装置を使用した電子機器
DE102011078932A1 (de) 2011-07-11 2013-01-17 Zf Friedrichshafen Ag Induktionsgenerator
CN102938605B (zh) * 2011-09-21 2016-05-18 武汉领普科技有限公司 跷跷板式双线圈磁发电装置
CN102938606A (zh) * 2011-09-21 2013-02-20 武汉领普科技有限公司 跷跷板式单线圈磁发电装置
CN103988405B (zh) 2011-12-09 2016-10-05 松下知识产权经营株式会社 发电装置
DE102012002115A1 (de) * 2012-02-06 2013-08-08 Bonnel Technologie Gmbh Einrichtung zum Überwachen eines Flüssigkeitsniveaus
DE102012203861A1 (de) 2012-03-13 2013-05-16 Zf Friedrichshafen Ag Induktionsgenerator, Verfahren zum Herstellen eines Induktionsgenerators, Verfahren zum Erzeugen einer Induktionsspannung mittels eines Induktionsgenerators und Funkschalter
DE102012205305A1 (de) 2012-03-30 2013-10-02 Zf Friedrichshafen Ag Signalausgabeeinheit und Verfahren zum Betrieb einer Signalausgabeeinheit
US9343931B2 (en) 2012-04-06 2016-05-17 David Deak Electrical generator with rotational gaussian surface magnet and stationary coil
WO2013159247A1 (zh) * 2012-04-28 2013-10-31 深圳蓝色飞舞科技有限公司 电磁能量转换器
WO2013159248A1 (zh) * 2012-04-28 2013-10-31 深圳蓝色飞舞科技有限公司 电磁能量转换器
CN103516170A (zh) * 2012-06-27 2014-01-15 赵俐娟 具有人手开关动作能量收集功能的rf开关控制系统
WO2014042525A1 (en) 2012-09-11 2014-03-20 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Reluctance transducer
DE102012220419A1 (de) 2012-11-09 2014-05-15 Zf Friedrichshafen Ag Induktionsgenerator und Verfahren zum Generieren eines elektrischen Stroms unter Verwendung eines Induktionsgenerators
JP5979028B2 (ja) * 2013-01-31 2016-08-24 オムロン株式会社 発電装置、発信装置、切替装置
US20150042470A1 (en) * 2013-08-07 2015-02-12 Zf Friedrichshafen Ag Non-battery operated personal emergency response system
US10211715B2 (en) * 2013-08-26 2019-02-19 Yuan Fang LIU Self-powered wireless switch
US9419496B2 (en) * 2013-09-10 2016-08-16 Omron Corporation Return mechanism, acceleration mechanism, power generator, transmitter, and switching arrangement
US9382960B2 (en) 2014-02-19 2016-07-05 Massachusetts Institute Of Technology Beam-based nonlinear spring
DE102014207043B4 (de) 2014-04-11 2019-07-04 KompetenzCenter Braunschweig UG Aktivitätserfassungsvorrichtung, Toilette und Aktivitätserfassungssystem
US9680324B2 (en) 2015-03-06 2017-06-13 Ruskin Company Energy harvesting damper control and method of operation
CN104638873B (zh) * 2015-03-06 2017-04-12 华北水利水电大学 一种按压式电磁转换脉冲能量发生器
CN106033926A (zh) * 2015-03-12 2016-10-19 邢志伟 一种发电装置、控制器以及开关系统
US10317099B2 (en) 2015-04-16 2019-06-11 Air Distribution Technologies Ip, Llc Variable air volume diffuser and method of operation
JP6558048B2 (ja) * 2015-04-24 2019-08-14 ミツミ電機株式会社 発電スイッチ
CN104836412B (zh) * 2015-05-18 2017-06-16 浙江信基电气股份有限公司 利用磁场极性转移自发电的通讯和控制器
US10784863B2 (en) * 2015-05-29 2020-09-22 YuanFang LIU Self-powered wireless switch and application thereof
US9843248B2 (en) * 2015-06-04 2017-12-12 David Deak, SR. Rocker action electric generator
JP6643697B2 (ja) * 2015-09-24 2020-02-12 ミツミ電機株式会社 電磁変換装置及びアクチュエータ及びポンプ
NL2016006B1 (en) 2015-12-22 2017-07-03 Kinetron Bv Autonomous, low-power signal producing unit, assembly, and method for operating such a unit.
US10673313B2 (en) * 2016-02-24 2020-06-02 YuanFang LIU Self-powered wireless switch
US10132553B2 (en) 2016-07-05 2018-11-20 Johnson Controls Technology Company Drain pan removable without the use of tools
US10704800B2 (en) 2016-09-28 2020-07-07 Air Distribution Technologies Ip, Llc Tethered control for direct drive motor integrated into damper blade
DE102016119809A1 (de) * 2016-10-18 2018-04-19 Jungheinrich Aktiengesellschaft Flurförderzeug mit einer Fernsteuereinheit
US10404150B2 (en) 2017-01-12 2019-09-03 United States Of America As Represented By The Secretary Of The Navy Low profile kinetic energy harvester
SE541768C2 (en) * 2017-01-16 2019-12-10 Revibe Energy Ab Device and method for micro transient energy harvesting generator arrangement
US10141144B2 (en) * 2017-02-08 2018-11-27 Eaton Intelligent Power Limited Self-powered switches and related methods
USD848958S1 (en) 2017-02-08 2019-05-21 Eaton Intelligent Power Limited Toggle for a self-powered wireless switch
US10541093B2 (en) 2017-02-08 2020-01-21 Eaton Intelligent Power Limited Control circuits for self-powered switches and related methods of operation
FR3071678B1 (fr) 2017-09-28 2019-09-13 Commissariat A L'energie Atomique Et Aux Energies Alternatives Convertisseur d'energie electromagnetique
US11251007B2 (en) 2017-10-30 2022-02-15 Wepower Technologies Llc Magnetic momentum transfer generator
US11742852B2 (en) * 2017-11-28 2023-08-29 YuanFang LIU Self-powered wireless switch with micro generator and applications thereof
CN108365725B (zh) * 2018-02-06 2020-04-28 武汉领普科技有限公司 一种自发电开关装置
US10923261B2 (en) * 2018-10-30 2021-02-16 Microsoft Technology Licensing, Llc Magnetic fastening assembly
CN109818476B (zh) * 2018-12-29 2020-12-18 南京邮电大学 一种按压自发电装置
FR3093874B1 (fr) * 2019-03-15 2021-04-16 Commissariat Energie Atomique dispositif électromagnétique
KR102195849B1 (ko) * 2019-03-20 2020-12-28 한양대학교 산학협력단 자기장을 이용하는 에너지 하베스팅 장치
KR102243861B1 (ko) * 2019-10-04 2021-04-22 한양대학교 산학협력단 자속 변화를 이용하는 에너지 하베스팅 장치 및 스위치
DE102019127605A1 (de) * 2019-10-14 2021-04-15 Enocean Gmbh Elektromagnetischer Energiewandler
WO2021102316A1 (en) 2019-11-21 2021-05-27 Wepower Technologies Llc Tangentially actuated magnetic momentum transfer generator
GB2592190B (en) 2020-02-12 2022-09-14 Wireless Navitas Ltd Actuation mechanism for a controller of a wireless electric switch system
KR102414618B1 (ko) * 2020-04-17 2022-06-28 한양대학교 산학협력단 도로용 에너지 하베스팅 장치
CN212909311U (zh) * 2020-06-01 2021-04-06 常州工学院 一种c型双磁铁微型自发电装置及应用其的无线开关
US11705788B2 (en) * 2020-09-02 2023-07-18 Michael Robert Maurice Electromagnetic drive unit with hingeably movable coil around magnet with resilient band holding coil to magnet
CN112290739B (zh) * 2020-12-28 2021-07-06 广东易百珑智能科技有限公司 发电装置、发电方法和复位方法及其应用
US20240136858A1 (en) * 2021-02-25 2024-04-25 Cochlear Limited Electromagnetic transducer charging
FR3122049B1 (fr) 2021-04-15 2023-03-03 Commissariat Energie Atomique Dispositif électromagnétique de conversion d'une énergie mécanique en une énergie électrique
US11581828B2 (en) 2021-05-05 2023-02-14 Enervibe Ltd Electromagnetic vibration and energy harvester having vibrating body, magnets and stationary magnet and hinge
KR102555209B1 (ko) * 2021-05-25 2023-07-13 가천대학교 산학협력단 2구 스위치 적용이 가능한 무전원 자가발전장치
KR102468222B1 (ko) * 2021-12-07 2022-11-18 주식회사 휴젝트 전자기 유도를 이용하는 에너지 하베스팅 블록
US11916462B2 (en) 2022-01-26 2024-02-27 Enervibe Ltd. Electromagnetic kinetic energy harvester
US20230246532A1 (en) * 2022-02-03 2023-08-03 Enervibe Ltd. Electromagnetic Kinetic Energy Harvester

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1312927A (en) * 1970-05-22 1973-04-11 Zentronik Veb K Non-contacting switching device for producing electrical pulses
US3928988A (en) * 1972-08-12 1975-12-30 Luth Claus Peter Magnetic control device for yarn guides
DE2532621A1 (de) * 1975-07-22 1977-02-03 Bergwerksverband Gmbh Einrichtung zur informationsuebertragung, insbesondere fuer den bergbau

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE207083C (de) 1907-12-05 1909-03-02 Paul Mauser Sperrvorrichtung an selbsttätigen Feuerwaffen
US2135843A (en) * 1936-04-13 1938-11-08 Associated Electric Lab Inc Magnetogenerator
US2185460A (en) * 1937-07-13 1940-01-02 Robert C Harris Electric generator
US2436354A (en) * 1943-10-11 1948-02-17 Morgan Maree Jr A Electromagnet with armature
US2471741A (en) * 1946-05-10 1949-05-31 Robert C Harris Electric generator
GB707842A (en) * 1951-07-13 1954-04-21 Asea Ab Means for creating current impulses
US2784327A (en) * 1955-05-09 1957-03-05 John F Drescher Impulse generator
US2832902A (en) * 1956-09-17 1958-04-29 John F Drescher Impulse generator
US2904707A (en) * 1957-01-11 1959-09-15 John F Drescher Impulse generator
GB856607A (en) * 1958-07-02 1960-12-21 Ibm Improvements in electrical pulse generators
US3130332A (en) * 1959-03-19 1964-04-21 Rheinmetall Gmbh Electric impulse generator for the detonation of charges
US3116428A (en) * 1961-10-16 1963-12-31 Space Equipment Corp Force responsive electrical impulse generator
US3480808A (en) * 1964-01-14 1969-11-25 Packard Bell Electronics Corp Power generator
US3348080A (en) * 1965-06-07 1967-10-17 Gen Dynamics Corp Impulse generator
US3799205A (en) * 1966-07-18 1974-03-26 Us Army Fluid oscillators
US3582695A (en) * 1969-08-18 1971-06-01 Scm Corp Mechanically toggled electrical pulse generator
US3693033A (en) * 1971-06-24 1972-09-19 Electromechanisms Inc Key operated pulse generating device
US3984707A (en) * 1973-07-13 1976-10-05 Mcclintock Richard D Spring return linear signal generator
US3895244A (en) * 1973-12-28 1975-07-15 Norse Systems Inc Encapsulated electromagnetic generator
US4177800A (en) * 1978-04-10 1979-12-11 Enger Carl C Implantable biotelemetry transmitter and method of using same
DE3043589A1 (de) * 1980-11-19 1982-11-04 Peter Budapest Köszegi Magnetomechanischer umwandler
US4471353A (en) 1981-10-14 1984-09-11 Hughes Aircraft Company Push-button switch for an electrical power source
US4412355A (en) * 1981-10-14 1983-10-25 Hughes Aircraft Company Push-button operated electrical power source for an optical communication link
EP0303054B1 (de) * 1984-04-04 1993-06-09 Omron Tateisi Electronics Co. Elektromagnetischer Antrieb und polarisiertes Relais
DD226069A1 (de) * 1984-07-03 1985-08-14 Inst Prueffeld Elekt Induktiv-optischer geber ohne hilfsenergie
DE3425889C1 (de) 1984-07-13 1986-02-13 SDS-Relais AG, 8024 Deisenhofen Sicherheitsrelais
JPS61102008A (ja) * 1984-10-25 1986-05-20 Matsushita Electric Works Ltd 電磁石装置
JPH0744808B2 (ja) * 1987-02-19 1995-05-15 ▲えな▼吉 早坂 磁気制御同性磁極誘導発電機
AT388467B (de) * 1987-08-27 1989-06-26 Schrack Elektronik Ag Relaisantrieb fuer ein polarisiertes relais
JPH0287435A (ja) * 1988-09-22 1990-03-28 Fujitsu Ltd 有極電磁継電器
GB9012475D0 (en) * 1990-06-05 1990-07-25 P E D Limited Solenoids
JPH05243038A (ja) * 1992-02-28 1993-09-21 Matsushita Electric Works Ltd 有極電磁石
JPH07245052A (ja) 1994-03-04 1995-09-19 Omron Corp 電磁石装置
DE19627998A1 (de) 1996-02-12 1997-08-14 Pohl & Mueller Gmbh Sicherheitseinrichtung
DE59801856D1 (de) * 1997-02-12 2001-11-29 Siemens Ag Anordnung und verfahren zur erzeugung kodierter hochfrequenzsignale
AU9059698A (en) 1998-03-25 1999-10-18 Detra S.A. Converter of mechanical energy into electric energy and apparatus equipped with same
DE19818580A1 (de) * 1998-04-25 1999-10-28 Dynamit Nobel Ag Gasgenerator zur Erzeugung kurzzeitiger elektrischer Energieimpulse
DE19822781C1 (de) 1998-05-20 2000-02-10 Siemens Ag Optimierter pyroelektrischer Hochspannungsgenerator
DE19839464C2 (de) 1998-08-29 2001-07-05 Contitech Formteile Gmbh Elektrodynamischer Aktuator mit schwingendem Feder-Masse-System
DE19852470A1 (de) * 1998-11-13 2000-05-25 Gerhard Wessel Elektrisches Energieerzeugungssystem
DE19854949A1 (de) 1998-11-27 2000-05-31 Achim Hein Verfahren mittels Vorrichtung zur Gewinnung von elektrischer Energie aus mechanischen Feder-Masse-Dämpfungs-Systemen
DE50001701D1 (de) 1999-01-21 2003-05-15 Enocean Gmbh Anordnung zum erzeugen eines eine information tragenden antwortsignals und verfahren zur fernabfrage einer solchen anordnung
DE10011448A1 (de) * 1999-03-11 2000-09-14 Akira Matsushita Kawasaki Generator zur Erzeugung einer elektromotorischen Kraft unter Verwendung eines Magnetbündels
US6271660B1 (en) * 1999-06-11 2001-08-07 Mts Sytems Corporation Permanent multi-pole position magnet
WO2001067580A2 (en) * 2000-03-10 2001-09-13 Hager Engineering Limited Electric switch devices
DE10025561A1 (de) * 2000-05-24 2001-12-06 Siemens Ag Energieautarker Hochfrequenzsender
DE10103952A1 (de) * 2001-01-30 2002-10-02 Enocean Gmbh Vorrichtung zur Energieversorgung eines Sensors
US6479920B1 (en) * 2001-04-09 2002-11-12 Wisconsin Alumni Research Foundation Direct charge radioisotope activation and power generation
US6512435B2 (en) * 2001-04-25 2003-01-28 Charles Willard Bistable electro-magnetic mechanical actuator
DE10125059C5 (de) * 2001-05-22 2016-07-21 Enocean Gmbh Induktiver Spannungsgenerator
US20020196110A1 (en) * 2001-05-29 2002-12-26 Microlab, Inc. Reconfigurable power transistor using latching micromagnetic switches
US20030222740A1 (en) * 2002-03-18 2003-12-04 Microlab, Inc. Latching micro-magnetic switch with improved thermal reliability
DE10221420A1 (de) * 2002-05-14 2003-12-11 Enocean Gmbh Vorrichtung zur Umwandlung mechanischer Energie in elektrische Energie
US6853103B2 (en) * 2003-01-31 2005-02-08 Hiro Moriyasu Low profile push-pull magnetic vibrating apparatus
US7081685B2 (en) * 2003-10-29 2006-07-25 Meng-Hua Fu Shoe generator having a rotor with forward/reverse movement
US7026900B1 (en) * 2005-09-22 2006-04-11 John Gregory Magnetic motion device
US7482899B2 (en) * 2005-10-02 2009-01-27 Jun Shen Electromechanical latching relay and method of operating same
US7498682B2 (en) * 2007-03-07 2009-03-03 Aaron Patrick Lemieux Electrical energy generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1312927A (en) * 1970-05-22 1973-04-11 Zentronik Veb K Non-contacting switching device for producing electrical pulses
US3928988A (en) * 1972-08-12 1975-12-30 Luth Claus Peter Magnetic control device for yarn guides
DE2532621A1 (de) * 1975-07-22 1977-02-03 Bergwerksverband Gmbh Einrichtung zur informationsuebertragung, insbesondere fuer den bergbau

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2893780A1 (fr) * 2005-11-22 2007-05-25 Schneider Electric Ind Sas Dispositif autonome de generation d'energie electrique
WO2007060072A1 (fr) * 2005-11-22 2007-05-31 Schneider Electric Industries Sas Dispositif autonome de generation d'energie electrique
EP1952516A1 (de) * 2005-11-22 2008-08-06 Schneider Electric Industries S.A.S. Selbständige einrichtung zum erzeugen von elektrischer energie
US8148856B2 (en) 2005-11-22 2012-04-03 Schneider Electric Industries Sas Stand-alone device for generating electrical energy
DE102008003595A1 (de) * 2008-01-09 2009-07-30 Panasonic Electric Works Europe Ag Energiewandler
EP2079154A2 (de) 2008-01-09 2009-07-15 Panasonic Electric Works Europe AG Energiewandler
DE102008003595B4 (de) * 2008-01-09 2009-10-08 Panasonic Electric Works Europe Ag Energiewandler
WO2011069879A1 (fr) 2009-12-08 2011-06-16 Schneider Electric Industries Sas Dispositif generateur d'energie electrique
US9484786B2 (en) 2010-03-23 2016-11-01 Zf Friedrichshafen Ag Induction generator
WO2011117031A1 (de) * 2010-03-23 2011-09-29 Zf Friedrichshafen Ag Induktionsgenerator
US9484796B2 (en) 2011-01-17 2016-11-01 Zf Friedrichshafen Ag Induction generator and method for producing an induction generator
US9236788B2 (en) 2011-01-17 2016-01-12 Zf Friedrichshafen Ag Induction generator and method for producing an induction generator
WO2012097911A3 (de) * 2011-01-17 2012-12-06 Zf Friedrichshafen Ag Induktionsgenerator und verfahren zum herstellen eines induktionsgenerators
EP2697896A2 (de) * 2011-04-14 2014-02-19 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Vorrichtung zur umwandlung kinetischer energie in elektrische energie
EP2584683A1 (de) * 2011-10-21 2013-04-24 Université de Liège Energiegewinnungssystem mit mehreren Energiequellen
US9653980B2 (en) 2011-10-21 2017-05-16 Universite De Liege Energy harvesting system using several energy sources
WO2017133073A1 (zh) * 2016-02-04 2017-08-10 廖淑辉 动能生电装置
CN107578940A (zh) * 2017-09-13 2018-01-12 梁聪成 一种自发电开关

Also Published As

Publication number Publication date
DE502004011924D1 (de) 2011-01-05
US20060091984A1 (en) 2006-05-04
DE10315765B4 (de) 2006-12-07
US7710227B2 (en) 2010-05-04
US20120293288A1 (en) 2012-11-22
EP1611662B1 (de) 2010-11-24
DE112004001064D2 (de) 2006-03-16
DE10315765C5 (de) 2021-03-11
US20100194213A1 (en) 2010-08-05
US8704625B2 (en) 2014-04-22
US20110285487A1 (en) 2011-11-24
DE10315765A1 (de) 2004-11-04
US8228151B2 (en) 2012-07-24
EP2264875A1 (de) 2010-12-22
EP1611662A1 (de) 2006-01-04

Similar Documents

Publication Publication Date Title
EP1611662B1 (de) Elektromagnetischer energiewandler
EP2666234B1 (de) Induktionsgenerator und verfahren zum herstellen eines induktionsgenerators
EP0658745B1 (de) Positionsdetektor
DE10315764B4 (de) Elektromagnetischer Energiewandler für miniaturisierte Funkschalter
DE69931868T2 (de) Elektromagnetischer Wandler und elektronisches Gerät das diesen Wandler enthält
DE202007005001U1 (de) Antrieb für ein verstellbares Funktionselement in einem Kraftfahrzeug
DE10063693C1 (de) Drehknebeleinrichtung
DE102007062905A1 (de) Sensor
DE102018102216A1 (de) Lenksystem mit Reluktanzbremse
DE4342069A1 (de) Positionsdetektor
WO2014072267A2 (de) Induktionsgenerator und verfahren zum generieren eines elektrischen stroms unter verwendung eines induktionsgenerators
WO2013173932A1 (de) Schaltvorrichtung
EP0078787B1 (de) Elektromechanisches Zählwerk zum fortlaufenden numerischen Addieren oder Subtrahieren
EP0583444B1 (de) Energieversorgungseinrichtung
DE19712062A1 (de) Elektromagnetische Stelleinrichtung
WO2021074245A1 (de) Elektromagnetischer energiewandler
EP2743940B1 (de) Elektromagnetischer Aktor
DE1665759C3 (de) Magnetfeldbetätigte Kontaktanordnung
DE3005921A1 (de) Monostabiles drehankersystem
AT215009B (de) Einrichtung zur Umsetzung einer im wesentlichen kontinuierlichen Verstellbewegung eines Antriebes in eine diskontinuierliche Nachstellbewegung eines Abtriebes
DE2518214A1 (de) Vorrichtung zum betaetigen von schaltwerken
DE602004005243T2 (de) Elektromechanischer aktor
DE10330460A1 (de) Elektrischer Aktor
DE1232250B (de) Polarisierter Synchron-Kleinstmotor
DE2648994A1 (de) Elektromagnetisches relais

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11245615

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004724978

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004724978

Country of ref document: EP

REF Corresponds to

Ref document number: 112004001064

Country of ref document: DE

Date of ref document: 20060316

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112004001064

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 11245615

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Country of ref document: DE