WO2004087992A2 - Procede de formation d'un revetement d'oxydes metalliques sur un substrat electroconducteur, cathode activee en resultant et son utilisation pour l'electrolyse de solutions aqueuses de chlorures de metaux alcalins. - Google Patents

Procede de formation d'un revetement d'oxydes metalliques sur un substrat electroconducteur, cathode activee en resultant et son utilisation pour l'electrolyse de solutions aqueuses de chlorures de metaux alcalins. Download PDF

Info

Publication number
WO2004087992A2
WO2004087992A2 PCT/FR2004/000746 FR2004000746W WO2004087992A2 WO 2004087992 A2 WO2004087992 A2 WO 2004087992A2 FR 2004000746 W FR2004000746 W FR 2004000746W WO 2004087992 A2 WO2004087992 A2 WO 2004087992A2
Authority
WO
WIPO (PCT)
Prior art keywords
metal
substrate
acetylacetonate
cathode
solution
Prior art date
Application number
PCT/FR2004/000746
Other languages
English (en)
Other versions
WO2004087992A3 (fr
Inventor
Françoise Andolfatto
Philippe Joubert
Gérard DUBOEUF
Original Assignee
Arkema
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema filed Critical Arkema
Priority to US10/550,646 priority Critical patent/US7790233B2/en
Priority to BRPI0408905-7A priority patent/BRPI0408905A/pt
Priority to CN2004800147636A priority patent/CN1795291B/zh
Priority to EP04742353A priority patent/EP1608795B1/fr
Priority to UAA200510604A priority patent/UA80610C2/uk
Priority to DE602004001230T priority patent/DE602004001230T2/de
Priority to MXPA05010353A priority patent/MXPA05010353A/es
Priority to PL04742353T priority patent/PL1608795T3/pl
Priority to KR1020057018365A priority patent/KR101111369B1/ko
Priority to JP2006505751A priority patent/JP4532471B2/ja
Priority to CA2520584A priority patent/CA2520584C/fr
Publication of WO2004087992A2 publication Critical patent/WO2004087992A2/fr
Publication of WO2004087992A3 publication Critical patent/WO2004087992A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/04Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1275Process of deposition of the inorganic material performed under inert atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/14Alkali metal compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide

Definitions

  • the invention relates to a method for forming a coating of metal oxides comprising at least one precious metal of group VIII of the periodic table of elements possibly associated with titanium and / or zirconium, on an electroconductive substrate.
  • the invention also relates to an activated cathode obtained from the electroconductive substrate coated according to the method of the invention.
  • the invention also relates to the use of said activated cathode, in particular for the electrolysis of aqueous solutions of alkali metal chlorides and particularly for the preparation of chlorine and sodium hydroxide as well as for the preparation of sodium chlorate.
  • chlorine and sodium hydroxide as well as sodium chlorate
  • electrolytic cells each of which comprises a plurality of steel cathodes and a plurality of titanium anodes coated with a mixture of titanium oxides. and ruthenium.
  • electrolytic solution consisting of about 200 to 300 g / l of sodium chloride.
  • sodium chlorate they generally contain 50 to 250 g / l of sodium chloride.
  • overvoltage is meant the difference between the thermodynamic potential of the redox couple concerned (H2O / H2) with respect to a reference cathode and the potential actually measured in the medium concerned, with respect to the same reference electrode.
  • overvoltage we use the term overvoltage to designate the absolute value of the cathode overvoltage.
  • a cathode whose substrate is a plate of titanium, zirconium, niobium or alloy consisting essentially of a combination of these metals and on which is applied a layer of metal oxide, essentially consisting of an oxide of one or a plurality of metals selected from ruthenium, rhodium, palladium, osmium, iridium and platinum and optionally an oxide of one or more metals selected from calcium, magnesium, strontium, barium, zinc, chromium, molybdenum, tungsten, selenium and tellurium.
  • US Pat. No. 4,100,049 describes a cathode comprising a substrate of iron, nickel, cobalt or an alloy of these metals and a coating of palladium oxide and zirconium oxide.
  • the intermediate and superficial layers can be constituted by the oxide of the only metal concerned or by a mixed oxide of the metal in question and the second metal in a small proportion.
  • an activated cathode constituted by an electroconductive substrate, either titanium or nickel, coated with an intermediate layer of titanium-based oxides and a precious metal of the group VIII of the Periodic Table of Elements and an outer layer of metal oxides comprising titanium, zirconium and a precious metal of group VIII of the Periodic Table of Elements; said coating being obtained by thermal decomposition of a solution of chloride or oxychloride of these metals in ethanol or isopropanol.
  • the Applicant has found that by judiciously choosing organometallic compounds and their solvents, it obtained coatings of the aforementioned metal oxides having a very good adhesion to substrates made of steel or iron.
  • the subject of the invention is therefore a process for forming a coating of metal oxides comprising at least one precious metal of group VIII of the periodic table of elements possibly associated with titanium and / or zirconium, on an electroconductive substrate, said method consisting in applying to said substrate a solution comprising at least one organometallic compound and then converting said (or said) organometallic compound (s) into metal oxide (s) by means of a heat treatment; said method being characterized in that the electroconductive substrate is of steel or iron and in that the only solution applied to said substrate is a non-aqueous solution of metallic acetylacetonate or a mixture of dissolved metal acetylacetonates ( ) in a solvent (s) specifically solubilizing each metal acetylacetonate, the solvent (s)
  • precious metal of Group VIII of the Periodic Table of Elements is currently ruthenium, rhodium, palladium, osmium, iridium or platinum.
  • ruthenium or iridium and especially ruthenium will be used.
  • alcohols which can be used according to the present invention, mention may be made of ethanol and isopropanol.
  • ketones used according to the present invention include acetone, methyl ethyl ketone.
  • chloromethanes that may be used according to the present invention, mention may be made of methylene chloride or chloroform.
  • the solution which is applied to the electroconductive substrate is a solution of an acetylacetonate of a metal selected from the group: Ru, Rh, Pd, Os, Ir, Pt, Ti and Zr or a mixture of acetylacetonates of two or more of the metals included in this group.
  • a metal selected from the group: Ru, Rh, Pd, Os, Ir, Pt, Ti and Zr or a mixture of acetylacetonates of two or more of the metals included in this group.
  • said solution contains only a metal acetylacetonate, it can be obtained by dissolving this metal acetylacetonate in its specific solvent, or in a solvent mixture containing the specific solvent.
  • the solution can be advantageously carried out with stirring, at room temperature, or at a slightly higher temperature to improve the dissolution of metal acetylacetonates.
  • concentrated solutions of metal acetylacetonates will preferably be used and, to prepare said solutions, it is for the person skilled in the art to take into account the solubility of the various metal acetylacetonates in the solvents (or mixture of solvents). usable according to the present invention.
  • an ethanolic solution of ruthenium acetylacetonate (0.25 mole / liter) will be used, and an acetone solution of titanyl acetylacetonate (CsH7O2) 2 TiO 3 at 0, 8 mole / liter.
  • a preferred method of forming a metal oxide coating according to the present invention is, in a first step, to pretreat the steel or iron substrate to impart roughness characteristics to the surface and then, in a second step depositing on said pretreated substrate the solution containing the metal acetylacetonate (s) prepared as indicated above; then to dry and calcine the substrate thus coated.
  • This second step - impregnation / drying / calcination - can be advantageously repeated one or more times to obtain the coating.
  • this second step is repeated until a desired metal mass is obtained.
  • this step is repeated between 2 and 6 times.
  • the pretreatment generally consists of subjecting the substrate to sandblasting, followed optionally by acid washing, or to etching with an aqueous solution of oxalic acid, hydrofluoric acid, a mixture of hydrofluoric acid and nitric acid, a mixture of hydrofluoric acid and glycerol, a mixture of hydrofluoric acid, nitric acid and glycerol or a mixture of hydrofluoric acid, nitric acid and hydrogen peroxide, followed by one or more washing (s) with degassed demineralised water.
  • the substrate may be in the form of a solid plate, perforated plate, expanded metal or cathode basket made from the expanded or perforated metal.
  • the solution can be deposited on the pretreated substrate using various techniques such as sol-gel, spraying or coating.
  • the pretreated substrate is coated with the solution, for example with the aid of a brush.
  • the substrate thus coated is then dried in air and / or in an oven at a temperature at most equal to
  • the substrate is calcined under air or under inert gas enriched with oxygen at a temperature of at least 300 ° C and preferably between 400 ° C and 600 ° C for a period of 10 minutes to 2 hours.
  • This method of operation makes it possible to convert the acetylacetonate (s) metal (s) into a coating of metal oxide (s) uniform and adherent on the substrate steel or iron.
  • the solution can be deposited on one of the pretreated substrate faces as well as on both sides.
  • the weight of precious metal deposited, expressed in g / m 2 relative to the geometrical surface of the substrate is at least equal to 2 g / m 2 , generally between 2 and 20 g / m 2 and preferably between 5 and 10 g / m 2 .
  • the subject of the invention is also an so-called activated cathode obtained from an electroconductive substrate coated according to the invention.
  • the cathode of the present invention is particularly suitable for the electrolysis of aqueous solutions of alkali metal chlorides and especially aqueous solutions of NaCl.
  • the use of the cathode of the present invention in combination with an anode makes it possible to electrolytically synthesize the chlorine and hydroxide of an alkali metal.
  • the use of the cathode of the present invention in combination with an anode makes it possible to electrolytically synthesize the chlorate of an alkali metal.
  • DSA Dissionally Stable Anode
  • anodes consist of a titanium substrate coated with a layer of titanium oxide and ruthenium.
  • the ruthenium / titanium molar ratio in this layer is advantageously between 0.4 and 2.4.
  • the cathode of the present invention has the advantage of having a low overvoltage and of being a cheap substrate.
  • the coating solution is prepared by dissolving 0.653 g of ruthenium acetylacetonate, 0.329 g of titanyl acetylacetonate and 0.178 g of zirconium acetylacetonate in 10 ml of ethanol + 10 ml of acetone + 10 ml. chloroform to obtain a molar distribution 45 Ru / 45 Ti / 10 Zr.
  • the support consists of a solid iron plate (3.5 x 2.5 cm) on which is welded a steel rod; the total surface is 33 cm 2 .
  • the substrate is sandblasted with Corundum and then rinsed with acetone.
  • the support is then completely coated with the solution, placed in an oven at 120 ° C. for 15 minutes and then in an oven at 450 ° C. for 15 minutes. This gives a coating of 2.4 g / m 2 .
  • This procedure is repeated 3 times (4 layers in total) so as to obtain a coating having a mass of 7.9 g / m 2 , ie an equivalent weight of 3.3 g (Ru) / m 2 .
  • the last heat treatment of the support is 30 minutes at 450 ° C.
  • the steel rod Prior to the electrochemical evaluation, the steel rod is masked with Teflon tape to delineate a well-defined surface.
  • the coated support is then placed in an electrochemical cell containing 200 ml of 1 M sodium hydroxide at room temperature and will be tested cathode.
  • a counter electrode consisting of a titanium anode coated with RuO 2 -TiO 2 and a saturated Calomel reference electrode (ECS) extended with a capillary containing a saturated solution of KCl is used.
  • the electrodes are connected to the terminals of a potentiostat (Solartron).
  • the activity of the cathode is measured from the polarization curves (from the drop potential up to -1, 3 or -1.4 V / ECS at a rate of I mV / s).
  • An activation step is then carried out by applying a current of an intensity equal to 2 amperes to the cathode for 1 hour, and a new polarization curve is then drawn to evaluate the changes in the electrochemical performances of the cathode. This activation step is repeated until a stable polarization curve is obtained, that is to say identical to the curve preceding the last activation (generally 3 or 4 times).
  • Table (1) below shows the evolution of the cathode potential for a current density of 1, 6 kA / m 2 as a function of the number of activation steps.
  • the voltage gain is the difference between the potential of the activated cathode and the potential of the bare iron cathode for the same current density (here 1, 6 kA / m 2 ).
  • the solution is prepared by dissolving 0.500 g of ruthenium acetylacetonate and 0.329 g of titanyl acetylacetonate in 10 ml of ethanol + 10 ml of acetone so as to obtain an equimolar Ru / Ti solution.
  • the support consists of a solid iron plate (3.5 x 2.5 cm) on which is welded a steel rod; the total surface is 33 cm 2 .
  • the support is sandblasted with Corundum and then rinsed with acetone.
  • the support is then completely coated with the solution, placed in an oven at 120 ° C. for 15 minutes and then in an oven at 450 ° C. for 15 minutes. This gives a coating of 2.2 g / m 2 .
  • This procedure is repeated 3 times (4 layers in total) so as to obtain a coating having a mass of 9.8 g / m 2 , ie an equivalent mass of 4.6 g (Ru) / m 2 .
  • the last heat treatment is 30 minutes at 450 ° C.
  • the solution is prepared by dissolving 0.500 g of ruthenium acetylacetonate in 10 ml of ethanol + 10 ml of acetone.
  • the support consists of a solid iron plate (3.5 x 2.5 cm) on which is welded a steel rod; the total surface is 33 cm 2 .
  • the substrate is sandblasted with Corundum and then rinsed with acetone.
  • the support is then completely coated with the solution, placed in an oven at 120 ° C. for 15 minutes and then in an oven at 450 ° C. for 15 minutes. This gives a coating of 1.9 g / m 2 .
  • This procedure is repeated twice (3 layers in total) so as to obtain a coating having a mass of 3.8 g / m 2 , ie an equivalent mass of 2.9 g (Ru) / m 2 .
  • the last heat treatment is timed at 450 ° C.
  • the solution is prepared by dissolving 0.500 g of ruthenium acetylacetonate in 10 ml of ethanol.
  • the support consists of a solid steel plate (3.5 x 2.5 cm) on which - is welded a steel rod; the total surface is 33 cm 2 .
  • the substrate is sandblasted with Corundum and then rinsed with acetone.
  • the support is then completely coated with the solution, placed in an oven at 120 ° C. for 15 minutes and then in an oven at 450 ° C. for 15 minutes. This gives a coating of 2.1 g / m 2 . This procedure is repeated 3 times (4 layers in total) so as to obtain a coating having a mass of 7.6 g / 2 , ie an equivalent mass of 5.8 g (Ru) / m 2 .
  • the last heat treatment is 30 minutes at 450 ° C.
  • Cathode for chlorine-soda electrolysis pilot diaphragm An activated cathode of 72 cm 2 was prepared for a laboratory pilot of electrolysis chlorine-soda diaphragm.
  • the substrate consists of a steel mesh, used on industrial cells.
  • the desired coating is of equimolar composition in Ru and Ti, it is prepared according to the procedure described in Example 2, it is deposited on both sides of the support material.
  • the coating weight is 13.7 g / m 2 , ie 6.5 g (Ru) / m 2 , deposited in 4 layers. No electrochemical characterization is made on this cathode before its mounting on the pilot cell because of its size.
  • the activated cathode is mounted in an electrolysis cell pilot diaphragm chlor-soda ® Polyramix using a diaphragm and operating continuously 24h / 24h, 7days / 7.
  • a racking and feeding game keeps the concentration of the different products in the electrolysis cell constant.
  • the operating conditions are as follows: 2.5 kA / m 2 , 85 ° C., sodium hydroxide concentration in the cathode liquor between 120 g / l and 140 g / l, expanded titanium anode coated Ru0 2 -TiO ⁇ .
  • An uncoated iron cathode from the same industrial support is installed in an equivalent cell, operating with the same operating conditions.
  • Graph (1) shows the evolution of the potential of these two cathodes over 120 days of operation. In this graph: ⁇ denotes activated cathode and denotes bare steel cathode.
  • the gain in voltage, obtained by difference of the two potentials, is of the order of 180 mV over the period 20 days - 120 days of operation.
  • EXAMPLE 6 Use of an Activated Cathode for Sodium Chlorate Electrolysis
  • a 200 cm 2 (5 cm ⁇ 40 cm) activated cathode is prepared for a sodium chlorate electrolysis pilot.
  • An iron support is coated on these two faces with an equimolar deposit of Ru and Ti according to the procedure described in Example 2, except that the final heat treatment is 1 hour at 450 ° C.
  • the deposit mass is 10.3 g / m 2 , 4.9 g (Ru) / m 2 .
  • This cathode is then placed in a pilot cell of sodium chlorate electrolysis.
  • the anode consists of an expanded titanium support coated RuO2-TiO 2 .
  • a racking and feeding game keeps the concentration of the different products in the electrolysis cell constant.
  • a substrate consisting of a solid nickel plate and a substrate consisting of a solid iron plate are coated with an equimolar RuO 2 -TiO 2 deposit according to the procedure described in Example 2 by repeating the cycle "coating / drying / calcination "until a deposit of 9 - 10 g / m 2 is obtained, ie 4.3 to 4.7 g (Ru) / m 2 .
  • the last heat treatment is 30 minutes at 450 ° C. 3 layers are necessary for the iron support, 6 layers for the nickel support: the deposit is less adherent on nickel than on iron; these cathodes are then evaluated electrochemically according to the procedure described in Example 1.
  • Graph (2) shows the polarization curves after stabilization of each of these cathodes.
  • An equimolar coating solution Ru / Ti is prepared by dissolving 5.18 g of RuCl 3 , 1.5H 2 O and 3.1 ml of TiOCI 2 , 2HCl (124.5 g (Ti) / l) in 10 ml of absolute ethanol. The solution is stirred to allow the products to dissolve.
  • a first support consists of a solid iron plate (3.5 x 2.5 cm) on which is welded a steel rod; the total surface is 33 cm 2 .
  • the substrate is sandblasted with Corundum and then rinsed with acetone.
  • a second support consists of a solid nickel plate (3.5 x 2.5 cm) on which is welded a nickel rod; the total surface is 33 cm 2 .
  • the substrate is sandblasted with Corundum and then rinsed with acetone.
  • Each support is then completely coated with the solution, placed in an oven at 120 ° C for 15 minutes, and then in an oven at 450 ° C for 15 minutes.
  • the last heat treatment is 30 minutes at 450 ° C.
  • Table (5) shows the evolution of the mass of the deposit as a function of the number of cycles "coating / drying / calcination" for each of the two supports.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Chemically Coating (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

L'invention concerne un procédé de formation d'un revêtement d'oxydes métalliques comprenant au moins un métal précieux du groupe VIII de la classification des éléments éventuellement associé à du titane et/ou du zirconium sur un substrat électroconducteur en acier ou en fer, qui consiste à appliquer une solution d'acétylacétonates dudit (desdits) métal (métaux) dissout(s) dans un (des) solvant(s) solubilisant spécifiquement chaque acétylacétonate métallique, puis à sécher et calciner le substrat revêtu. L'invention concerne également une cathode activée obtenue à partir du substrat électroconducteur revêtu d'oxydes métalliques et son utilisation pour l'électrolyse de solutions aqueuses de chlorures de métaux alcalins.

Description

PROCEDE DE FORMATION D'UN REVETEMENT D'OXYDES METALLIQUES
SUR UN SUBSTRAT ELECTROCONDUCTEUR, CATHODE ACTIVEE EN
RESULTANT ET SON UTILISATION POUR L'ELECTROLYSE DE SOLUTIONS
AQUEUSES DE CHLORURES DE METAUX ALCALINS.
L'invention concerne un procédé de formation d'un revêtement d'oxydes métalliques comprenant au moins un métal précieux du groupe VIII de la classification périodique des éléments éventuellement associé à du titane et/ou du zirconium, sur un substrat électroconducteur. L'invention se rapporte également à une cathode activée obtenue à partir du substrat électroconducteur revêtu selon le procédé de l'invention.
L'invention concerne également l'utilisation de ladite cathode activée, notamment pour l'électrolyse de solutions aqueuses de chlorures de métaux alcalins et particulièrement pour la préparation du chlore et d'hydroxyde de sodium ainsi que pour la préparation du chlorate de sodium.
Ainsi, industriellement le chlore et l'hydroxyde de sodium, ainsi que le chlorate de sodium, sont fabriqués dans des cellules électrolytiques, chacune d'elles comprenant plusieurs cathodes en acier et plusieurs anodes en titane revêtues d'un mélange d'oxydes de titane et de ruthénium. S'agissant de la préparation du chlore et de la soude, les cellules sont en général alimentées en solution électrolytique constituée d'environ 200 à 300 g/1 de chlorure de sodium. Dans le cas de la synthèse du chlorate de sodium, elles contiennent en général 50 à 250 g/1 de chlorure de sodium.
Cependant, ces cathodes en acier présentent une surtension relativement élevée en valeur absolue comme cathodes de réduction de l'eau et possèdent également une résistance à la corrosion par le chlore dissous insuffisante.
Par surtension, on entend l'écart entre le potentiel thermodynamique du couple redox concerné (H2O/H2) par rapport à une cathode de référence et le potentiel effectivement mesuré dans le milieu concerné, par rapport à la même électrode de référence. Par convention on utilisera le terme surtension pour désigner la valeur absolue de la surtension cathodique.
Afin de surmonter ces inconvénients, il a été proposé de nombreuses cathodes.
Ainsi, dans la demande de brevet français FR 231 1 108, on décrit une cathode dont le substrat est une plaque en titane, en zirconium, en niobium ou en alliage essentiellement constitué par une association de ces métaux et sur lequel est appliquée une couche d'oxyde métallique, essentiellement constituée par un oxyde d'un ou plusieurs métaux choisis parmi le ruthénium, le rhodium, le palladium, l'osmium, l'iridium et le platine et éventuellement un oxyde d'un ou plusieurs métaux choisis parmi le calcium, le magnésium, le strontium, le baryum, le zinc, le chrome, le molybdène, le tungstène, le sélénium el le tellure. Le brevet américain US 4,100,049 décrit une cathode comprenant un substrat en fer, nickel, cobalt ou en alliage de ces métaux et un revêtement d'oxyde de palladium et d'oxyde de zirconium.
Dans la demande de brevet européen EP 209427, on propose une cathode constifuée d'un substrat électriquement conducteur en nickel, en acier inoxydable ou en acier doux portant un revêtement constitué d'une pluralité de couches d'oxydes métalliques, la couche superficielle étant constituée par un oxyde de métal valve, c'est- à-dire un métal choisi dans les groupes 4b, 5b et 6b de la classification périodique des éléments et la couche intermédiaire étant constituée par un oxyde de métal précieux du groupe VIII, c'est-à-dire ruthénium, rhodium, palladium, osmium, iridium et platine. Les couches intermédiaires et superficielles peuvent être constituées par l'oxyde du seul métal concerné ou par un oxyde mixte du métal concerné et du second métal en faible proportion.
Dans la demande de brevet FR 2797646, la demanderesse a proposé une cathode activé constituée par un substrat électroconducteur, soit en titane, soit en nickel, revêtu d'une couche intermédiaire d'oxydes à base de titane et d'un métal précieux du groupe VIII de la classification périodique des éléments et d'une couche externe d'oxydes métalliques comprenant du titane, du zirconium et un métal précieux du groupe VIII de la classification périodique des éléments ; ledit revêtement étant obtenu par décomposition thermique d'une solution de chlorure ou d'oxychlorure de ces métaux dans l'éthanol ou l'isopropanol.
Dans un souci d'économie, il est de plus en plus souhaité d'utiliser des substrats moins coûteux tels que des substrats en acier ou en fer.
Cependant, la demanderesse a constaté que la méthode précédemment mentionnée ne permettait pas d'obtenir un revêtement adhérent sur un substrat électroconducteur en acier ou en fer.
La demanderesse a trouvé qu'en choisissant judicieusement des composés organométalliques et leurs solvants, elle obtenait des revêtements des oxydes métalliques précédemment mentionnés présentant une très bonne adhérence sur des substrats en acier ou en fer. L'invention a donc pour objet un procédé de formation d'un revêtement d'oxydes métalliques comprenant au moins un métal précieux du groupe VIII de la classification périodique des éléments éventuellement associé à du titane et/ou du zirconium, sur un substrat électroconducteur, ledit procédé consistant à appliquer sur ledit substrat une solution comprenant au moins un composé organométallique puis à transformer ledit (ou lesdits) composé(s) organométallique(s) en oxyde(s) métallique(s) au moyen d'un traitement thermique ; ledit procédé étant caractérisé en ce que le substrat électroconducteur est en acier ou en fer et en ce que la seule solution appliquée sur ledit substrat est une solution, non aqueuse, d'acétylacétonate métallique ou d'un mélange d'acétylacétonates métalliques dissout(s) dans un (des) solvant(s) solubilisant spécifiquement chaque acetylacetonate métallique, le (les) solvant(s) étant choisi(s) parmi les alcools, les cétones, les chlorométhanes ou un mélange de deux ou plusieurs solvants ci-dessus mentionnés.
Selon la présente invention, par métal précieux du groupe VIII de la classification périodique des éléments, on entend présentement le ruthénium, le rhodium, le palladium, l'osmium, l'iridium ou le platine. De préférence, on utilisera le ruthénium ou l'iridium et, tout particulièrement le ruthénium. A titre d'illustration d'alcools utilisables selon la présente invention, on citera l'éthanol, l'isopropanol.
A titre d'illustration de cétones utilisables selon la présente invention, on citera l'acétone, la méthyléthylcétone.
A titre d'illustration de chlorométhanes utilisables selon la présente invention, on citera le chlorure de méthylène, le chloroforme.
Selon la présente invention, la solution qui est appliquée sur le substrat électroconducteur est une solution d'un acetylacetonate d'un métal choisi dans le groupe : Ru, Rh, Pd, Os, Ir, Pt, Ti et Zr ou encore un mélange d'acétylacétonates de deux ou plusieurs des métaux repris dans ce groupe. Plusieurs cas de figures sont possibles pour préparer la solution d'acétylacétonate(s) métallique(s) servant au revêtement du substrat électroconducteur selon le procédé de l'invention.
Si ladite solution ne contient qu'un acetylacetonate métallique, elle peut être obtenue par dissolution de cet acetylacetonate métallique dans son solvant spécifique, ou dans un mélange de solvants contenant le solvant spécifique.
Si ladite solution contient plusieurs acetylacetonates métalliques, elle peut être obtenue :
- soit par dissolution desdits acetylacetonates métalliques dans un mélange de solvants contenant les solvants spécifiques desdits acetylacetonates métalliques ; - soit par mélange de solutions ne contenant qu'un seul acetylacetonate métallique obtenues par dissolution dudit acetylacetonate métallique dans un solvant spécifique ou dans un mélange de solvants contenant le solvant spécifique dudit acetylacetonate.
La solution peut être avantageusement réalisée sous agitation, à température ambiante, voir à une température légèrement supérieure pour améliorer la dissolution des acetylacetonates métalliques.
Selon la présente invention, on utilisera de préférence des solutions concentrées d'acétylacétonates métalliques et, pour préparer lesdites solutions, il appartient à l'homme du métier de prendre en compte la solubilité des divers acetylacetonates métalliques dans les solvants (ou mélange de solvants) utilisables selon la présente invention.
Par exemple, on utilisera, à température ambiante, une solution éthanolique d'acétyiacétonate de ruthénium - (CsHzO∑^Ru - à 0,25 mole/litre et une solution acétonique d'acétyiacétonate de titanyle - (CsH7θ2)2TiO - à 0,8 mole/litre.
Un mode préféré de formation d'un revêtement d'oxydes métalliques selon la présente invention consiste, dans une première étape, à prétraiter le substrat en acier ou en fer pour lui conférer des caractéristiques de rugosité à la surface, puis, dans une seconde étape à déposer sur ledit substrat prétraité la solution contenant le (ou les) acétylacétonate(s) métallique(s) préparée comme indiqué précédemment ; puis à sécher et à calciner le substrat ainsi revêtu. Cette seconde étape - imprégnation / séchage / calcination - peut être avantageusement répétée une ou plusieurs fois pour obtenir le revêtement. De préférence, cette seconde étape est répétée jusqu'à obtention d'une masse métallique souhaitée. Généralement, cette étape est répétée entre 2 et 6 fois.
Le prétraitement consiste en général à soumettre le substrat, soit à un sablage suivi éventuellement d'un lavage à l'acide, soit à un décapage à l'aide d'une solution aqueuse d'acide oxalique, d'acide fluorhydrique, d'un mélange d'acide fluorhydrique et d'acide nitrique, d'un mélange d'acide fluorhydrique et de glycérol, d'un mélange d'acide fluorhydrique, d'acide nitrique et de glycérol ou d'un mélange d'acide fluorhydrique, d'acide nitrique et de peroxyde d'hydrogène, suivi d'un ou de plusieurs lavage(s) à l'eau déminéralisée dégazéifiée.
Le substrat peut être sous forme de plaque massive, plaque perforée, métal déployé ou panier cathodique constitué à partir du métal déployé ou perforé.
On peut déposer la solution sur le substrat prétraité en utilisant différentes techniques telles que sol-gel, pulvérisation ou enduction. Avantageusement on enduit le substrat prétraité avec la solution, par exemple à l'aide d'un pinceau. Le substrat ainsi revêtu est ensuite séché à l'air et/ou dans une étuve à une température au plus égale à
150°C. Après le séchage, le substrat est calciné sous air ou bien encore sous gaz inerte enrichi avec de l'oxygène à une température au moins égale à 300°C et, de préférence, comprise entre 400°C et 600°C pendant une durée allant de 10 minutes à 2 heures.
Cette façon d'opérer permet de transformer le(s) acétylacétonate(s) métallique (s) en un revêtemenl d'oxyde(s) métallique(s) uniforme et adhérent sur le substrat en acier ou en fer.
On peut déposer la solution aussi bien sur l'une des faces de substrat prétraité que sur les deux faces.
La masse pondérale de métal précieux déposée, exprimée en g/m2 rapportée à la surface géométrique du substrat est au moins égale à 2 g/m2, généralement comprise entre 2 et 20 g/m2 et préférentiellement comprise entre 5 et 10 g/m2.
L'invention a également pour objet une cathode dite activée obtenue à partir d'un substrat électroconducteur revêtu selon l'invention.
La cathode de la présente invention convient tout particulièrement à l'électrolyse de solutions aqueuses de chlorures de métaux alcalins et notamment de solutions aqueuses de NaCI.
L'utilisation de la cathode de la présente invention en association avec une anode permet de synthétiser électrolytiquement le chlore et l'hydroxyde d'un métal alcalin. L'utilisation de la cathode de la présente invention en association avec une anode permet de synthétiser électrolytiquement le chlorate d'un métal alcalin.
On peut citer comme anode, les anodes DSA (Dimensionally Stable Anode) constituées d'un substrat en titane revêtu d'une couche d'oxydes de titane et de ruthénium. Le rapport molaire ruthénium /titane dans cette couche est avantageusement compris entre 0,4 et 2,4.
La cathode de la présente invention possède l'avantage d'avoir une surtension faible et d'être constituée d'un substrat bon marché.
Les exemples qui suivent illustrent l'invention. EXEMPLE 1 : Revêtement à base d'oxydes de Ru, Ti et Zr
La solution d'enduction est préparée par dissolution de 0,653 g d'acétyiacétonate de ruthénium, 0,329 g d'acétyiacétonate de titanyle et 0, 178 g d'acétyiacétonate de zirconium dans 10 ml d'éthanol + 10 ml d'acétone + 10 ml de chloroforme pour obtenir une répartition molaire 45 Ru / 45 Ti / 10 Zr. Le support est constitué d'une plaque pleine en fer (3,5 x 2,5 cm) sur laquelle est soudée une tige en acier ; la surface totale est de 33 cm2. Le support est préalablement sablé avec du Corindon puis rincé avec de l'acétone.
Le support est ensuite enduit dans sa totalité avec la solution, placé dans une étuve à 120°C pendant 15 minutes, puis dans un four à 450°C pendant 15 minutes. On obtient ainsi un revêtement de 2,4 g/m2. Cette procédure est répétée 3 fois (4 couches au total) de façon à obtenir un revêtement ayant une masse de 7,9 g/m2, soit une masse équivalente de 3,3 g(Ru)/m2. Le dernier traitement thermique du support est 30 minutes à 450°C. Avant l'évaluation électrochimique, la tige en acier est masquée avec du ruban Teflon pour délimiter une surface bien définie. Le support revêtu est ensuite placé dans une cellule électrochimïque contenant 200 ml de soude 1 M, à température ambiante et sera testé en cathode. On utilise une contre électrode constituée d'une anode de titane revêtu Ru02-Ti02, et une électrode de référence au Calomel Saturé (ECS) prolongée d'un capillaire contenant une solution saturée de KCI. Les électrodes sont connectées aux bornes d'un potentiostat (Solartron). L'activité de la cathode est mesurée à partir des courbes de polarisation (du potentiel d'abandon jusqu'à -1 ,3 ou - 1 ,4 V/ECS, à une vitesse de I mV/s). On réalise ensuite une étape d'activation en appliquant un courant d'une intensité égale à 2 ampères à la cathode pendant 1 heure, et l'on trace ensuite une nouvelle courbe de polarisation pour évaluer les modifications des performances électrochimiques de la cathode. Cette étape d'activation est reproduite jusqu'à obtenir une courbe de polarisation stable, c'est-à- dire identique à la courbe précédant la dernière activation (en général 3 ou 4 fois).
Le tableau ( 1 ) ci-dessous présente l'évolution du potentiel cathodique pour une densité de courant de 1 ,6 kA/m2 en fonction du nombre d'étapes d'activation. Moins le potentiel est négatif et plus la surtension de réduction de l'eau est faible, ce qui signifie plus la cathode est activée. En parallèle,' les mêmes procédures de caractérisation sont appliquées sur un support de forme et nature identiques mais vierge de tout dépôt. Le gain en tension est l'écart entre le potentiel de la cathode activée et le potentiel de la cathode en fer nu pour une même densité de courant (ici 1 ,6 kA/m2).
Figure imgf000008_0001
TABLEAU 1 EXEMPLE 2 :
Revêtement à base d'oxydes de Ru et Ti
La solution est préparée par dissolution de 0,500 g d'acétyiacétonate de ruthénium et 0,329 g d'acétyiacétonate de titanyle dans 10 ml d'éthanol + 10 ml d'acétone de façon à obtenir une solution équimolaire Ru /Ti.
Le support est constitué d'une plaque pleine en fer (3,5 x 2,5 cm) sur laquelle est soudée une tige en acier; la surface totale est de 33 cm2. Le support est préalablemenl sablé avec du Corindon puis rincé avec de l'acétone.
Le support est ensuite enduit dans sa totalité avec la solution, placé dans une étuve à 120°C pendant 15 minutes, puis dans un four à 450°C pendant 15 minutes. On obtient ainsi un revêtement de 2,2 g/m2. Cette procédure est répétée 3 fois (4 couches au total) de façon à obtenir un revêtement ayant une masse de 9,8 g/m2, soit une masse équivalente de 4,6 g(Ru)/m2. Le dernier traitement thermique est 30 minutes à 450°C.
La caractérisation électrochimique de cet élément est réalisée dans les mêmes conditions que celles décrites dans l'exemple 1. Le tableau (2) ci-dessous présente l'évolution du potentiel de la cathode et du gain en tension par comparaison avec une cathode en fer nu.
Figure imgf000009_0001
TABLEAU 2 Plus de 25 cathodes activées ayant un revêtement équimolaire en Ru et Ti ont été préparées dans des conditions proches de celles-ci, sur des supports pleins en fer ou en acier ou sur des supports déployés en fer ou en acier et caractérisées selon le mode opératoire décrit dans l'exemple 1 . Le gain en tension moyen constaté par comparaison avec une cathode de même forme et même nature non revêtue est de 160 ± 20 mV. EXEMPLE 3 :
Revêtement 100 % oxyde de Ru
La solution est préparée par dissolution de 0,500 g d'acétyiacétonate de ruthénium dans 10 ml d'éthanol + 10 ml d'acétone. Le support est constitué d'une plaque pleine en fer (3,5 x 2,5 cm) sur laquelle est soudée une tige en acier; la surface totale est de 33 cm2. Le support est préalablement sablé avec du Corindon puis rincé avec de l'acétone.
Le support est ensuite enduit dans sa totalité avec la solution, placé dans une étuve à 120°C pendant 15 minutes, puis dans un four à 450°C pendant 15 minutes. On obtient ainsi un revêtement de 1 ,9 g/m2. Cette procédure est répétée 2 fois (3 couches au total) de façon à obtenir un revêtement ayant une masse de 3,8 g/m2, soit une masse équivalente de 2,9 g(Ru)/m2. Le dernier traitement thermique est 30 minutés à 450°C.
La caractérisation électrochimique de l'élément est réalisée dans les mêmes conditions que celles décrites dans l'exemple 1. Le tableau (3) ci-dessous présente l'évolution du potentiel de la cathode et du gain en tension par comparaison avec une cathode en fer nu.
Figure imgf000010_0001
TABLEAU 3
EXEMPLE 4 :
Revêtement 100 % oxyde de Ru
La solution est préparée par dissolution de 0,500 g d'acétyiacétonate de ruthénium dans 10 ml d'éthanol.
Le support est constitué d'une plaque pleine en acier (3,5 x 2,5 cm) sur laquelle - est soudée une tige en acier; la surface totale est de 33 cm2. Le support est préalablement sablé avec du Corindon puis rincé avec de l'acétone.
Le support est ensuite enduit dans sa totalité avec la solution, placé dans une étuve à 120°C pendant 15 minutes, puis dans un four à 450°C pendant 15 minutes. On obtient ainsi un revêtement de 2, 1 g/m2. Cette procédure est répétée 3 fois (4 couches au total) de façon à obtenir un revêtement ayant une masse de 7,6 g/ 2, soit une masse équivalente de 5,8 g(Ru)/m2. Le dernier traitement thermique est de 30 minutes à 450°C.
La caractérisation électrochimique de l'élément est réalisée dans les mêmes conditions que celles décrites dans l'exemple 1 . Le tableau (4) ci-dessous présente l'évolution du potentiel de la cathode et du gain en tension par comparaison avec une cathode en acier nu.
Figure imgf000011_0001
TABLEAU 4 Plus de 25 cathodes activées ayant un revêtement 100% Ru02 ont été préparées dans des conditions voisines de celles décrites dans les exemples 3 et 4, sur des supports pleins en fer ou en acier ou sur des supports déployés en fer ou en acier, et caractérisées selon le mode opératoire décrit dans l'exemple 1 . Le gain en tension moyen constaté par comparaison avec une cathode de même forme et de même nature mais non revêtue est de 200 ± 50 mV. EXEMPLE 5 :
Cathode pour pilote d'électrolyse chlore-soude diaphragme On prépare une cathode activée de 72 cm2 pour un pilote de laboratoire d'électrolyse chlore-soude diaphragme. Le substrat est constitué d'un grillage en acier, utilisé sur les cellules industrielles. Le revêtement souhaité est de composition équimolaire en Ru et Ti, il est préparé selon le mode opératoire décrit dans l'exemple 2, il est déposé sur les deux faces du matériau support. La masse de revêtement est de 13,7 g/m2, soit 6,5 g(Ru)/m2, déposée en 4 couches. Aucune caractérisation électrochimique n'est faite sur cette cathode avant son montage sur la cellule pilote en raison de sa taille.
La cathode activée est montée dans une cellule pilote d'électrolyse chlore- soude diaphragme utilisant un diaphragme Polyramix® et fonctionnant en continu 24h/24h, 7jours/7. Un jeu de soutirage et d'alimentation permet de maintenir constante la concentration des différents produits dans la cellule d'électrolyse. Les conditions de fonctionnement sont les suivantes : 2,5 kA/m2, 85°C, concentration soude dans la liqueur cathodique entre 120 g/1 et 140 g/1, anode en titane déployé revêtu Ru02-TiO∑. Une cathode en fer non revêtu issue du même support industriel est installée dans une cellule équivalente, fonctionnant avec les mêmes conditions opératoires. Le graphique ( 1 ) présente l'évolution du potentiel de ces deux cathodes sur 120 jours de fonctionnement. Dans ce graphique : Ω désigne cathode activée et < désigne cathode acier nu.
Le gain en tension, obtenue par différence des deux potentiels, est de l'ordre de 180 mV sur la période 20 jours - 120 jours de fonctionnement.
EXEMPLE 6 : Utilisation d'une cathode activée pour l'électrolyse chlorate de sodium On prépare une cathode activée de 200 cm2 (5 cm x 40 cm) pour un pilote d'électrolyse chlorate de sodium. Un support en fer est revêtu sur ces deux faces d'un dépôt équimolaire en Ru et Ti selon le mode opératoire décrit dans l'exemple 2, hormis que le traitement thermique final est de 1 heure à 450°C. La masse de dépôt est de 10,3 g/m2, soit 4,9 g(Ru)/m2. Cette cathode est ensuite placée dans une cellule pilote d'électrolyse chlorate de sodium. L'anode est constituée d'un support en titane déployé revêtu Ruθ2-Ti02. Les conditions de fonctionnement de la cellule d'électrolyse chlorate de sodium sont les suivantes :
Figure imgf000012_0001
4 g/1, T= 80°C, distance anode-cathode = 3 mm, densité de courant = 4 kA/m2, fonctionnement en continu 24h/24 et 7jours/7. Un jeu de soutirage et d'alimentation permet de maintenir constante la concentration des différents produits dans la cellule d'électrolyse.
En parallèle de cet essai, une cellule similaire fonctionne dans les mêmes conditions opératoires avec une cathode en fer non revêtu de même forme. Ces deux cellules ont fonctionné pendant plus de 500 heures consécutives, une mesure de la tension de cellule est effectuée environ toutes les 50 heures. Sur toute la durée de l'essai, la tension de la cellule utilisant la cathode activée est inférieure de 200 ± 50 mV à la tension de la cellule utilisant une cathode en fer non revêtue. EXEMPLE 7 : (exemple comparatif) influence de la nature du substrat
Un substrat constitué d'une plaque de nickel pleine et un substrat constitué d'une plaque de fer pleine sont revêtues d'un dépôt équimolaire Ruθ2-Tiθ2 selon le mode opératoire décrit dans l'exemple 2 en répétant le cycle « enduction / séchage / calcination » jusqu'à obtenir un dépôt de 9 - 10 g/m2, soit 4,3 à 4,7 g(Ru)/m2 . Le dernier traitement thermique est 30 minutes à 450°C. 3 couches sont nécessaires pour le support en fer, 6 couches pour le support en nickel : le dépôt est moins adhérent sur nickel que sur fer ; ces cathodes sont ensuite évaluées électrochimiquement selon le mode opératoire décrit dans l'exemple 1. Le graphique (2) présente les courbes de polarisation après stabilisation de chacune de ces cathodes. Nous constatons que la cathode revêtue à substrat nickel (courbe 1 ) présente de moins bonnes performances que la cathode revêtue à substrat fer (courbe 2) : pour une même densité de courant, le potentiel de la cathode activée support nickel est plus négatif que le potentiel de la cathode activée support fer. EXEMPLE 8 : (exemple non conforme à l'invention) Dépose d'un revêtement de RuO∑-TiO∑ sur un support en fer et sur un support nickel à partir d'une solution contenant un chlorure de ruthénium et un oxychlorure de titane. Une solution d'enduction équimolaire Ru / Ti est préparée par dissolution de 5,18 g de RuCI3, l ,5H20 et de 3, 1 ml de TiOCI2,2HCI (124,5 g(Ti)/l) dans 10 ml d'éthanol absolu. La solution est agitée pour permettre la dissolution des produits.
Un premier support est constitué d'une plaque pleine en fer (3,5 x 2,5 cm) sur laquelle est soudée une tige en acier; la surface totale est de 33 cm2. Le support est préalablement sablé avec du Corindon puis rincé avec de l'acétone.
Un second support est constitué d'une plaque pleine en nickel (3,5 x 2,5 cm) sur laquelle est soudée une tige en nickel ; la surface totale est de 33 cm2. Le support est préalablement sablé avec du Corindon puis rincé avec de l'acétone.
Chaque support est ensuite enduit dans sa totalité avec la solution, placé dans une étuve à 120°C pendant 15 minutes, puis dans un four à 450°C pendant 15 minutes. Le dernier traitement thermique est 30 minutes à 450°C.
Le tableau (5) suivant présente l'évolution de la masse du dépôt en fonction du nombre de cycles « enduction / séchage / calcination » pour chacun des deux supports.
Figure imgf000013_0001
TABLEAU 5 La caractérisation électrochimique des électrodes est réalisée dans les mêmes conditions que celles décrites dans l'exemple 1 . Les tableaux (6) et (7) ci-après, présentent l'évolution du potentiel de la cathode support fer et du gain de tension par comparaison avec une cathode en fer nu- tableau (6) - et du potentiel de la cathode support nickel et du gain de tension par comparaison avec une cathode en fer nu - tableau 7 -.
Figure imgf000013_0002
TABLEAU 6 A fort dégagement gazeux, le dépôt de la cathode à support fer se décroche, et les performances obtenues ensuite sont celles d'une cathode en fer non revêtue. La couleur du dépôt après le traitement thermique final indique la présence importante d'oxyde de fer.
Figure imgf000014_0001
TABLEAU 7 Aucune détérioration de la cathode à support nickel n'est constatée après les différentes étapes de caractérisation électrochimique, et le gain en tension par comparaison avec une calhode en fer nu est amélioré par la caractérisation électrochimique.

Claims

REVEND1CATIOMS
1. Procédé de formation d'un revêtement d'oxydes métalliques comprenant au moins un métal précieux du groupe VIII de la classification périodique des éléments éventuellement associé à du titane et/ou du zirconium, sur un substrat électroconducteur, ledit procédé consistant à appliquer sur ledit substrat une solution comprenant au moins un composé organométallique puis à transformer ledit (ou lesdits) composé(s) organométallique(s) en oxyde(s) métallique(s) au moyen d'un traitement thermique, ledit procédé étant caractérisé en ce que le substrat électroconducteur est en acier ou en fer et en ce que la seule solution appliquée sur ledit substrat est une solution, non aqueuse, d'acétyiacétonate métallique ou d'un mélange d'acétylacétonates métalliques dissout(s) dans un (des) solvant(s) solubilisant spécifiquement chaque acetylacetonate métallique, le (les) solvant(s) étant choisi(s) parmi les alcools, les cétones, les chlorométhanes ou un mélange de deux ou plusieurs solvants ci-dessus mentionnés.
2. Procédé selon la revendication 1 , caractérisé en ce que le métal précieux du groupe VIII de la classification périodique des éléments est le ruthénium, le rhodium, le palladium, l'osmium, l'iridium ou le platine.
3. Procédé selon la revendication 2, caractérisé en ce que le métal précieux est le ruthénium ou l'iridium.
4. Procédé selon la revendication 3, caractérisé en ce que le métal précieux est le ruthénium.
5. Procédé selon la revendication 1 , caractérisé en ce que l'alcool est l'éthanol ou l'isopropanol.
6. Procédé selon la revendication 1 , caractérisé en ce que la cétone est l'acétone.
/. Procédé selon la revendication 1 , caractérisé en ce que le chlorométhane est le chloroforme.
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la solution d'acétyiacétonate métallique est obtenue par dissolution dudit acetylacetonate métallique dans son solvant spécifique ou dans un mélange de solvants contenant le solvant spécifique.
9. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la solution contenant plusieurs acetylacetonates métalliques est obtenue :
- soit par dissolution desdits acetylacetonates métalliques dans un mélange de solvants contenant les solvants spécifiques desdits acetylacetonates métalliques ;
- soit par mélange de solutions ne contenant qu'un seul acetylacetonate métallique obtenues par dissolution dudit acetylacetonate métallique dans un solvant spécifique ou dans un mélange de solvants contenant le solvant spécifique dudit acetylacetonate.
J 0. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que, pour obtenir le revêtement d'oxyde(s) métallique(s), on effectue dans une première étape, un prétraitement du substrat en acier ou en fer puis dans une seconde étape, on dépose sur ledit substrat prétraité la solution contenant le (ou les) acétylacétonate(s) métallique(s), on sèche puis on calcine le substrat ainsi revêtu.
î ï . Procédé selon la revendication 10, caractérisé en ce que le séchage est effectué à une température au plus égale à 150°C. -
12. Procédé selon la revendication 10, caractérisé en ce que le substrat revêtu par le (ou les) acétylacétonate(s) métallique(s) est calciné sous air ou bien sous gaz inerte enrichi avec de l'oxygène à une température au moins égale à 300°C et, de préférence, à une température comprise entre 400°C et 600°C pendant une durée allant de 10 minutes à 2 heures.
13. Procédé selon la revendication 10, caractérisé en ce que la seconde étape est répétée au moins 1 fois et, de préférence, répétée entre 2 et 6 fois.
14. Substrat électroconducteur en acier ou en fer portant un revêtement d'oxydes métalliques formé au moyen d'un procédé selon l'une des revendications 1 à 13.
15. Utilisation du substrat électroconducteur selon la revendication 14 pour l'obtention d'une cathode activée.
î é. Utilisation d'une cathode activée selon la revendication 15 pour l'électrolyse de solutions aqueuses de chlorures de métaux alcalins.
î 7. Utilisation selon la revendication 1 6, caractérisée en ce que les solutions aqueuses de chlorures de métaux alcalins sont des solutions aqueuses de chlorure de sodium.
18. Procédé de fabrication de chlore et d'hydroxyde de métal alcalin par électrolyse du chlorure correspondant au moyen d'une cathode selon la revendication 15.
19. Procédé de fabrication de chlorate de métaux alcalins par électrolyse du chlorure correspondant au moyen d'une cathode selon la revendication 15.
PCT/FR2004/000746 2003-03-28 2004-03-25 Procede de formation d'un revetement d'oxydes metalliques sur un substrat electroconducteur, cathode activee en resultant et son utilisation pour l'electrolyse de solutions aqueuses de chlorures de metaux alcalins. WO2004087992A2 (fr)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US10/550,646 US7790233B2 (en) 2003-03-28 2004-03-25 Method for the formation of a coating of metal oxides on an electrically-conductive substrate, resultant activated cathode and use thereof for the electrolysis of aqueous solutions of alkaline metal chlorides
BRPI0408905-7A BRPI0408905A (pt) 2003-03-28 2004-03-25 processo de formação de um revestimento de óxidos metálicos sobre um substrato eletrocondutor, catodo ativado que resulta dele e sua utilização para a eletrólise de soluções aquosas de cloretos de metais alcalinos
CN2004800147636A CN1795291B (zh) 2003-03-28 2004-03-25 在导电基材上形成金属氧化物涂层的方法,由此得到的活化阴极及其在碱金属氯化物水溶液电解中的应用
EP04742353A EP1608795B1 (fr) 2003-03-28 2004-03-25 Procede de formation d un revetement d'oxydes metalliques sur un substrat electroconducteur, cathode activee en resultant et son utilisation pour l'electrolyse de solutions aqueuses de chlorures de metaux alcalins.
UAA200510604A UA80610C2 (en) 2003-03-28 2004-03-25 Method for the coating of metal oxides formation on the electroconductive support, activated cathode, which is obtained by this method and its use for electrolysis of water solutions of alkali chlorides
DE602004001230T DE602004001230T2 (de) 2003-03-28 2004-03-25 Verfahren zur herstellung einer metalloxidbeschichtung auf einem leitfähigen substrat, aktivierte kathode davon und ihre verwendung zur elektrolyse von wässriger alkalichlorid-lösungen
MXPA05010353A MXPA05010353A (es) 2003-03-28 2004-03-25 Procedimiento de formacion de un revestimiento de oxidos metalicos sobre un substrato electroconductor, catodo activado resultante y su utilizacion para la electrolisis de soluciones acuosas de cloruros de metales alcalinos.
PL04742353T PL1608795T3 (pl) 2003-03-28 2004-03-25 Sposób wytwarzania powłoki z tlenków metali na podłożu elektroprzewodzącym, katoda aktywowana będąca jego rezultatem i jej zastosowanie w elektolizie wodnych roztworów chlorków metali alkaicznych
KR1020057018365A KR101111369B1 (ko) 2003-03-28 2004-03-25 전도성 기판상에 금속 산화물의 코팅을 형성하는 방법,그로 얻어진 활성 음극, 및 알카리 금속 염화물 수용액의전기분해에 사용되는 상기 음극의 용도
JP2006505751A JP4532471B2 (ja) 2003-03-28 2004-03-25 導電性基材上に金属酸化物の被膜を形成する方法と、それによって得られる活性カソードと、アルカリ金属塩化物水溶液の電気分解でのその使用
CA2520584A CA2520584C (fr) 2003-03-28 2004-03-25 Procede de formation d'un revetement d'oxydes metalliques sur un substrat electroconducteur, cathode activee en resultant et son utilisation pour l'electrolyse de solutions aqueuses de chlorures de metaux alcalins

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR03/03867 2003-03-28
FR0303867A FR2852973B1 (fr) 2003-03-28 2003-03-28 Procede de formation d'un revetement d'oxydes metalliques sur un substrat electroconducteur; cathode activee en resultant et son utilisation pour l'electrolyse de solutions acqueuses de chorures de meteaux alcalins.

Publications (2)

Publication Number Publication Date
WO2004087992A2 true WO2004087992A2 (fr) 2004-10-14
WO2004087992A3 WO2004087992A3 (fr) 2005-02-17

Family

ID=32947259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/000746 WO2004087992A2 (fr) 2003-03-28 2004-03-25 Procede de formation d'un revetement d'oxydes metalliques sur un substrat electroconducteur, cathode activee en resultant et son utilisation pour l'electrolyse de solutions aqueuses de chlorures de metaux alcalins.

Country Status (16)

Country Link
US (1) US7790233B2 (fr)
EP (1) EP1608795B1 (fr)
JP (1) JP4532471B2 (fr)
KR (1) KR101111369B1 (fr)
CN (1) CN1795291B (fr)
AT (1) ATE330043T1 (fr)
BR (1) BRPI0408905A (fr)
CA (1) CA2520584C (fr)
DE (1) DE602004001230T2 (fr)
ES (1) ES2270380T3 (fr)
FR (1) FR2852973B1 (fr)
MX (1) MXPA05010353A (fr)
PL (1) PL1608795T3 (fr)
UA (1) UA80610C2 (fr)
WO (1) WO2004087992A2 (fr)
ZA (1) ZA200507825B (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283143A (ja) * 2005-03-31 2006-10-19 Dainippon Printing Co Ltd 金属酸化物膜の製造方法
CN102482337A (zh) * 2009-05-26 2012-05-30 新加坡科技研究局 吡咯啉-5-羧酸还原酶1的突变蛋白

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0714021D0 (en) * 2007-07-18 2007-08-29 Green Metals Ltd Improvements in anode materials
US8022004B2 (en) * 2008-05-24 2011-09-20 Freeport-Mcmoran Corporation Multi-coated electrode and method of making
CN102505127A (zh) * 2011-12-29 2012-06-20 文广 贵金属改性钛阳极材料的制备方法
WO2015137193A1 (fr) * 2014-03-12 2015-09-17 Jsr株式会社 Composition de production de dispositif à semi-conducteur et procédé de formation de motif faisant appel à ladite composition de production de dispositif à semi-conducteur
CN106521433A (zh) * 2015-09-09 2017-03-22 宁波江丰电子材料股份有限公司 环件结构及其加工方法
IT201900020026A1 (it) * 2019-10-30 2021-04-30 Industrie De Nora Spa Elettrodo per evoluzione elettrolitica di idrogeno

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4100049A (en) * 1977-07-11 1978-07-11 Diamond Shamrock Corporation Coated cathode for electrolysis cells
EP0209427A1 (fr) * 1985-06-24 1987-01-21 Elf Atochem S.A. Cathode pour électrolyse et un procédé de fabrication de la dite cathode
GB2347145A (en) * 1999-02-25 2000-08-30 Agency Ind Science Techn Method for producing a metal oxide and forming a minute pattern thereof
US6527924B1 (en) * 1999-08-20 2003-03-04 Atofina Cathode for electrolyzing aqueous solutions

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850668A (en) 1972-06-05 1974-11-26 Johnson Matthey Co Ltd Impregnation of graphite with ruthenium compounds
US4300992A (en) 1975-05-12 1981-11-17 Hodogaya Chemical Co., Ltd. Activated cathode
FR2596776B1 (fr) * 1986-04-03 1988-06-03 Atochem Cathode pour electrolyse et un procede de fabrication de ladite cathode
JPH0766816B2 (ja) * 1989-01-13 1995-07-19 東洋インキ製造株式会社 ガス拡散型複合電極の製造方法
DE69636627T2 (de) * 1995-08-04 2007-08-30 Ngimat Co. Chemischen gasphasenabscheidung und pulverbildung mittels einer thermischen spritzmethode aus beinahe superkitischen und superkritischen flussigkeitlösungen
US5864051A (en) * 1997-11-10 1999-01-26 Uop Selective oxidation catalyst process for preparing the catalyst and process using the catalyst
US7258899B1 (en) * 2001-12-13 2007-08-21 Amt Holdings, Inc. Process for preparing metal coatings from liquid solutions utilizing cold plasma
US20040077494A1 (en) * 2002-10-22 2004-04-22 Labarge William J. Method for depositing particles onto a catalytic support

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4100049A (en) * 1977-07-11 1978-07-11 Diamond Shamrock Corporation Coated cathode for electrolysis cells
EP0209427A1 (fr) * 1985-06-24 1987-01-21 Elf Atochem S.A. Cathode pour électrolyse et un procédé de fabrication de la dite cathode
GB2347145A (en) * 1999-02-25 2000-08-30 Agency Ind Science Techn Method for producing a metal oxide and forming a minute pattern thereof
US6527924B1 (en) * 1999-08-20 2003-03-04 Atofina Cathode for electrolyzing aqueous solutions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283143A (ja) * 2005-03-31 2006-10-19 Dainippon Printing Co Ltd 金属酸化物膜の製造方法
CN102482337A (zh) * 2009-05-26 2012-05-30 新加坡科技研究局 吡咯啉-5-羧酸还原酶1的突变蛋白
US9862986B2 (en) 2009-05-26 2018-01-09 Agency For Science, Technology And Research Muteins of the pyrroline-5-carboxylate reductase 1

Also Published As

Publication number Publication date
JP2006521469A (ja) 2006-09-21
CA2520584C (fr) 2011-08-23
ES2270380T3 (es) 2007-04-01
UA80610C2 (en) 2007-10-10
JP4532471B2 (ja) 2010-08-25
CN1795291B (zh) 2011-08-31
FR2852973A1 (fr) 2004-10-01
EP1608795A2 (fr) 2005-12-28
KR20050114265A (ko) 2005-12-05
MXPA05010353A (es) 2005-12-14
ATE330043T1 (de) 2006-07-15
FR2852973B1 (fr) 2006-05-26
BRPI0408905A (pt) 2006-03-28
US7790233B2 (en) 2010-09-07
US20060263614A1 (en) 2006-11-23
DE602004001230T2 (de) 2007-04-19
DE602004001230D1 (de) 2006-07-27
CA2520584A1 (fr) 2004-10-14
KR101111369B1 (ko) 2012-04-09
WO2004087992A3 (fr) 2005-02-17
PL1608795T3 (pl) 2006-11-30
ZA200507825B (en) 2007-01-31
EP1608795B1 (fr) 2006-06-14
CN1795291A (zh) 2006-06-28

Similar Documents

Publication Publication Date Title
EP1125005B1 (fr) Cathode utilisable pour l&#39;electrolyse de solutions aqueuses
US3773555A (en) Method of making an electrode
US4331528A (en) Coated metal electrode with improved barrier layer
AU2007306373B2 (en) Cathode for electrolytic processes
EP0240413B1 (fr) Cathode pour électrolyse et un procédé de fabrication de ladite cathode
JP3883597B2 (ja) 金属基質または金属被覆した伝導基質上に改良された電気触媒混合酸化物被膜をつくるための新規な安定な被覆溶液、およびそのような溶液から製造される寸法安定性陽極
JP2009052069A (ja) 電解用電極
ZA200507825B (en) Method for the formation of a coating of metal oxides on an electrically-conducting substrate, resultant activated cathode and use thereof for the electrolysis of aqueous solutions of alkaline metal chlorides
EP0027051B1 (fr) Electrode métallique plaquée à couche d&#39;arrêt et procédés pour sa fabrication et son utilisation
EP0867527A1 (fr) Electrode à recouvrement catalytique pour des procesus électrochimiques et procédé de fabrication de celle-ci
FI84496B (fi) Anod foer anvaendning foer framstaellning av vaeteperoxidloesning och foerfarande foer framstaellning av anoden.
KR890003514B1 (ko) 전해용 음극과 그 제조방법
KR20200077927A (ko) 복합 금속 인화물을 포함하는 산화 전극 및 이의 제조방법
JPH03240987A (ja) 有機物電解用電極及びその製造方法
JPS6125789B2 (fr)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005/07825

Country of ref document: ZA

Ref document number: 2520584

Country of ref document: CA

Ref document number: PA/a/2005/010353

Country of ref document: MX

Ref document number: 200507825

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 2006505751

Country of ref document: JP

Ref document number: 1020057018365

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004742353

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20048147636

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057018365

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004742353

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0408905

Country of ref document: BR

WWG Wipo information: grant in national office

Ref document number: 2004742353

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006263614

Country of ref document: US

Ref document number: 10550646

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10550646

Country of ref document: US