EP1125005B1 - Cathode utilisable pour l'electrolyse de solutions aqueuses - Google Patents

Cathode utilisable pour l'electrolyse de solutions aqueuses Download PDF

Info

Publication number
EP1125005B1
EP1125005B1 EP00958706A EP00958706A EP1125005B1 EP 1125005 B1 EP1125005 B1 EP 1125005B1 EP 00958706 A EP00958706 A EP 00958706A EP 00958706 A EP00958706 A EP 00958706A EP 1125005 B1 EP1125005 B1 EP 1125005B1
Authority
EP
European Patent Office
Prior art keywords
titanium
cathode according
cathode
zirconium
precious metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00958706A
Other languages
German (de)
English (en)
Other versions
EP1125005A1 (fr
Inventor
Françoise Andolfatto
Philippe Joubert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kem One SAS
Original Assignee
Arkema SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema SA filed Critical Arkema SA
Publication of EP1125005A1 publication Critical patent/EP1125005A1/fr
Application granted granted Critical
Publication of EP1125005B1 publication Critical patent/EP1125005B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • C25B11/063Valve metal, e.g. titanium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/081Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the element being a noble metal
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide

Definitions

  • the present invention relates to a cathode which can be used for electrolysis of aqueous solutions in which a reaction occurs water reduction.
  • the present invention relates to a cathode activated for the electrolysis of alkaline aqueous solutions of chlorides of alkali metals, and especially for the preparation chlorine and sodium hydroxide.
  • chlorine and sodium hydroxide are manufactured in electrolytic cells, each of them comprising several mild steel cathodes and several coated titanium anodes of a mixture of titanium oxides and ruthenium. They are usually fed with electrolytic solution of about 200 to 300 g / l sodium chloride.
  • overvoltage is meant the difference between the thermodynamic potential of the redox couple concerned (H 2 O / H 2 ) with respect to a reference cathode and the potential actually measured in the medium concerned, with respect to the same reference electrode.
  • overvoltage we use the term overvoltage to designate the absolute value of the cathode overvoltage.
  • a cathode whose substrate is a plate made of titanium, zirconium, niobium or alloy essentially consisting of an association of these metals and on which a layer of metal oxide is applied, essentially consisting of an oxide of one or more selected metals among ruthenium, rhodium, palladium, osmium, iridium and platinum and optionally an oxide of one or more metals selected from calcium, magnesium, strontium, barium, zinc, chromium, molybdenum, tungsten, selenium and tellurium.
  • US Pat. No. 4,100,049 discloses a cathode comprising a substrate of iron, nickel, cobalt or an alloy of these metals and a coating of palladium oxide and zirconium oxide.
  • cathode consisting of an electrically conductive nickel substrate, stainless steel or mild steel with a coating consisting of plurality of metal oxide layers, the surface layer being constituted by a valve metal oxide, that is to say a metal chosen from groups 4b, 5b and 6b of the Periodic Table of Elements and the intermediate layer consisting of a precious metal oxide of the group VIII, i.e., ruthenium, rhodium, palladium, osmium, iridium and platinum.
  • the intermediate and superficial layers can be formed by the oxide of the only metal concerned or by a mixed oxide of metal concerned and the second metal in a small proportion.
  • a cathode to reduce the overvoltage of the water reduction reaction in an alkaline medium, characterized in that it is constituted by an electroconductive substrate coated with an intermediate layer of oxides based on titanium and a metal Group VIII of the Periodic Table of Elements and an outer layer of metal oxides comprising titanium, zirconium and a precious metal of group VIII of the classification periodic element, the precious metal in the outer layer representing a molar amount of between 30% and 50% relative to the metals used in the composition of this layer.
  • ruthenium By precious metal of group VIII of the Periodic Table elements, ruthenium, rhodium, palladium, osmium, iridium or platinum. Preferably, we will use the ruthenium or iridium and especially ruthenium.
  • the intermediate layer contains oxides of titanium and ruthenium.
  • the outer layer of metal oxides contains oxides of titanium, zirconium and ruthenium.
  • the outer layer consists essentially of ZrTiO 4 accompanied by RuO 2 and optionally ZrO 2 and / or TiO 2 .
  • the material constituting the substrate may be chosen from electrically conductive materials. We will choose it advantageously in the group consisting of titanium, nickel, tantalum, zirconium, nobium, iron and their alloys.
  • titanium, nickel, iron or their alloys Preferably, titanium, nickel, iron or their alloys.
  • the molar ratio of precious metal / titanium in the layer intermediate is preferably between 0.4 and 2.4.
  • the zirconium / titanium molar ratio in the outer layer is generally between 0.25 and 9 and preferably between 0.5 and 2.
  • the precious metal in the outer layer is between 30% and 50% molar with respect to metals used in the composition of this layer.
  • Pretreatment generally involves subjecting the substrate, either to sandblasting followed by acid washing or stripping with an aqueous solution of oxalic acid, hydrofluoric acid, a mixture of hydrofluoric acid and nitric acid, a mixture of hydrofluoric acid and glycerol, a mixture of hydrofluoric acid, nitric acid and glycerol or a mixture of hydrofluoric acid, nitric acid and hydrogen peroxide, followed by one or more washing (s) with degassed demineralized water.
  • the substrate can be in the form of solid plate, plate perforated, expanded metal or cathode basket made from metal deployed or perforated.
  • Solution A is usually prepared by contacting at at room temperature and with stirring, essentially a mineral salt or organic titanium and a precious metal with water or in a organic solvent, optionally in the presence of a chelating agent.
  • the temperature can be raised above the ambient to facilitate the dissolution of salts.
  • a mineral or organic salt is brought into contact titanium and a precious metal with water or in a solvent organic, optionally in the presence of a chelating agent.
  • Titanium and the precious metal are preferably present in the solution A at a concentration at most equal to 10 mol / l.
  • Solution B is usually prepared by contacting, at at room temperature and with stirring, a mineral or organic salt of titanium, zirconium and a precious metal with water or in a organic solvent, optionally in the presence of a chelating agent.
  • a mineral or organic salt of titanium, zirconium and a precious metal with water or in a organic solvent, optionally in the presence of a chelating agent.
  • an ice bath is used to cool the reaction medium.
  • a mineral or organic salt is brought into contact of titanium, zirconium and a precious metal with water or in a organic solvent, optionally in the presence of a chelating agent.
  • the titanium salts and preferred precious metals are the chlorides, oxychlorides, nitrates, oxynitrates, sulphates and alkoxides.
  • the chlorides of the precious metals, the ruthenium chlorides, titanium chlorides and titanium oxychlorides are used.
  • zirconium salts it is possible to use the chlorides, sulfates, zirconyl chloride, zirconyl nitrate, alkoxides such as than butyl zirconate.
  • Zirconium and zirconyl chlorides are particularly preferred.
  • organic solvent mention may be made of the light alcohols of preferably isopropanol and ethanol, and more preferably isopropanol and absolute ethanol.
  • solvent is absolute ethanol or absolute isopropanol.
  • Titanium and zirconium are usually present in the solution B at a concentration ranging from 0.5 to 5 mol / l.
  • concentration of metal valuable in solution B is usually between 0.05 and 10 mol / l and preferably between 0.1 and 5 mol / l.
  • Solution A can be deposited on the pretreated substrate using different techniques such as sol-gel, electrochemical deposition, electroplating, spraying or coating.
  • the pretreated substrate is coated with solution A, for example with the aid of a brush.
  • the substrate thus coated is then dried in air and / or in a oven at a temperature below 150 ° C.
  • the substrate is calcined under air or under inert gases such as nitrogen, argon or still under inert gases enriched with oxygen at a temperature at less than 300 ° C and preferably between 450 ° C and 550 ° C for a period ranging from 10 minutes to 2 hours.
  • step (c) of the process the same techniques can be used deposition and the same operating conditions for drying and calcination as step (b) except that the deposition is carried out with solution B.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • plasma projection are also suitable for coating the pretreated substrate with intermediate layer and an outer layer.
  • Solution A can be deposited on one of the faces of substrate pretreated only on both sides. We can also drop the solution B on both sides of the substrate coated with the layer intermediate.
  • step (b) Depending on the thickness of the desired intermediate layer, repeat step (b) several times. Similarly, we can repeat several times step (c) of the process.
  • the mass of deposited product is at least equal to 2 g / m 2 , generally between 10 g / m 2 and 60 g / m 2 and, preferably, between 20 g / m 2 and 35 g. / m 2 related to the geometrical surface of the substrate.
  • the concentration of solution A is judiciously chosen from so that this preferred deposited mass can be obtained in repeating step (b) in a reasonable number of times and preferably between 1 and 10 times.
  • the mass of deposited product is at least equal to 5 g / m 2 , generally between 5 g / m 2 and 70 g / m 2 and, preferably, between 25 g / m 2 and 50 g. / m 2 , related to the geometrical surface of the substrate.
  • solution B is prepared so that its concentration makes it possible to obtain a preferred deposited mass by repeating at least 1 time step (c) and preferably between 2 and 10 times.
  • the cathode of the present invention is particularly suitable electrolysis of aqueous solutions of alkali metal chlorides and especially aqueous solutions of NaCl.
  • cathode in combination with an anode allows to electrolytically synthesize the chlorine and hydroxide of a metal alkaline with a high Faraday yield.
  • the DSA anodes (Dimensionally Stable Anode) consisting of a titanium substrate coated with an oxide layer titanium and ruthenium.
  • the molar ratio ruthenium / titanium in this layer is advantageously between 0.4 and 2.4.
  • the cathode of the present invention has the advantage of having a overvoltage lower than the cathodes of the prior art during a operation in electrolysis.
  • the cathode of the present invention does not suffer from modification in the first characterization cycles and presents a greater chemical stability against aggressive alkaline media.
  • a solution A containing ruthenium and titanium in an equimolar quantity, is then prepared by mixing at room temperature with stirring 2.45 g of RuCl 3 , of purity greater than or equal to 98%, 3.64 cm 3 of TiOCl 2 , 2HCl at 127 g / l in Ti and 2.5 cm 3 of absolute isopropanol.
  • the end of one of the faces of the plate is then coated pretreated, representing a surface of 1 cm x 4 cm, with solution A to with a brush, then let it dry for 30 minutes in the open air and ambient temperature.
  • the coated plate is then dried additionally in an oven at 120 ° C for 30 minutes, then calcined in an oven under air at 500 ° C for 30 min.
  • Chloride or oxychloride is mixed with stirring. zirconium, ruthenium chloride and chloride or oxychloride titanium with absolute ethanol. In the case of chlorides, solution B is prepared cold and kept cold by a water / ice bath, under stirring until used.
  • solution B is prepared at 60 ° C. and maintained at this temperature, with stirring, until use.
  • the plate coated with 1.1 is then coated with solution B at using a paintbrush.
  • the coated plate is initially dried 30 minutes in the open air and at room temperature, then in a second time dried additionally in an oven at 120 ° C for 30 minutes, and finally calcined in an oven under air at 500 ° C for 30 minutes.
  • the performances of the cathode, vis-à-vis the reduction of the water, are evaluated from a polarization curve, carried out in a 1M sodium hydroxide solution and at a temperature of between 20 ° C and 25 ° C (room temperature).
  • polarization curve is meant the curve of variation of the measured cathodic potential relative to a reference electrode, by example a saturated calomel electrode (ECS), depending on the density current.
  • ECS saturated calomel electrode
  • the experimental setup consists of the cathode to be evaluated, a platinum counter-electrode (surface 5 cm 2 ) and an ECS reference electrode elongated with a capillary, which is placed in close proximity to the cathode.
  • the whole is immersed in the electrolytic solution (1M NaOH) stirred by magnetic stirring.
  • the three electrodes are connected to the terminals of a potentiostat.
  • the potential of the cathode is imposed by the apparatus and one raises after the equilibrium of the system the value of the current passing through said system.
  • This potential is varied from -0 mV / ECS to -1500 mV / ECS.
  • Solution B is prepared by mixing with stirring in a glass flask 1.07 g of RuCl 3 , 2.59 g of ZrOCl 2 , 8H 2 O, 1.55 ml of TiOCl 2 , 2HCl in 7 ml of absolute ethanol. or a total molar composition of 0.3 Ru-0.7 (Ti, 2Zr).
  • the coated plate of the intermediate layer is then coated with solution B thus prepared, and then dried and calcined in air as indicated in the general procedure. These operations are repeated 8 times and at the end of the last calcination, the deposited mass is 39 g / m 2 relative to the geometric surface of the plate.
  • the cathode thus prepared was evaluated using the procedure described previously.
  • the cathodic potential is -1.375 V / ECS for a current density of -2 kA / m 2 .
  • the cathodic potential of a cathode of nickel is -1.475 V / ECS under the same conditions.
  • Solution B is prepared by mixing with stirring in a glass flask 2.49 g RuCl 3 , 2.59 g of ZrOCl 2 , 8H 2 O, 1.55 ml of TiOCl 2 , 2HCl in 10 ml of absolute ethanol is an overall molar composition of 0.5 Ru-0.5 (Ti, 2Zr).
  • the coated plate of the intermediate layer is then coated with solution B thus prepared, and then dried and calcined in air as indicated in the general procedure. These operations are repeated 8 times and at the end of the last calcination, the external deposited mass is 41 g / m 2 relative to the geometric surface of the plate.
  • the cathode thus prepared was evaluated using the procedure described previously.
  • the cathode potential is -1.195 V / ECS for a current density of -2 kA / m 2 .
  • Solution B is prepared by mixing with stirring in a glass vessel, cooled with an ice bath, 2.49 g of RuCl 3 , 2.80 g of ZrCl 4 , 1.32 ml of TiCl 4. in 10 ml of absolute ethanol, ie a total molar composition of 0.5 Ru-0.5 (Ti, Zr).
  • the coated plate of the intermediate layer is then coated with solution B thus prepared, and then dried and calcined in air as indicated in the general procedure. These operations are repeated 8 times and at the end of the last calcination, the deposited mass is 45 g / m 2 of the plate, relative to the geometric surface of the plate.
  • the cathode thus prepared was evaluated using the procedure described previously.
  • the cathodic potential is -1.190 V / ECS for a current density of -2 kA / m 2 in a 1M NaOH solution.
  • a cathode is prepared according to the patent application EP 209 427 and we evaluate it.
  • the substrate consists of a plate of 4 x 1 x 0.2 cm, which has been welded a round rod of current supply. We perform a surface treatment with corundum.
  • a solution of 2 g of RuCl 3 in 2 ml of ethanol is prepared at ambient temperature.
  • the control plate is coated with this solution. Then, the plate is dried in air at 120 ° C for 30 minutes, followed by calcination in air (500 ° C, 30 minutes).
  • a deposit of 16 mg / m 2 of RuO 2 is obtained.
  • a solution in 2 cm3 of ethanol, 2.6 ml of TiOCl 2 , HCl at 2.5 mol / l of Ti is prepared at ambient temperature. The same treatments are applied coating / steaming / calcination under air. 8.5 g / m 2 of TiO 2 are thus deposited.
  • the cathode potential of this electrode is -1.240 V / ECS for a current density of -2 kA / m 2 evaluated according to the procedure described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

La présente invention concerne une cathode utilisable pour l'électrolyse de solutions aqueuses dans lesquelles a lieu une réaction de réduction de l'eau.
Plus particulièrement, la présente invention concerne une cathode activée utilisable pour l'électrolyse de solutions aqueuses alcalines de chlorures de métaux alcalins, et tout particulièrement pour la préparation du chlore et de l'hydroxyde de sodium.
Ainsi, industriellement le chlore et l'hydroxyde de sodium sont fabriqués dans des cellules électrolytiques, chacune d'elles comprenant plusieurs cathodes en acier doux et plusieurs anodes en titane revêtues d'un mélange d'oxydes de titane et de ruthénium. Elles sont en général alimentées en solution électrolytique constituée d'environ 200 à 300 g/l de chlorure de sodium.
Cependant, ces cathodes en acier doux présentent une surtension relativement élevée en valeur absolue comme cathodes de réduction de l'eau et possèdent également une résistance à la corrosion par le chlore dissous insuffisante.
Par surtension, on entend l'écart entre le potentiel thermodynamique du couple redox concerné (H2O/H2) par rapport à une cathode de référence et le potentiel effectivement mesuré dans le milieu concerné, par rapport à la même électrode de référence. Par convention on utilisera le terme surtension pour désigner la valeur absolue de la surtension cathodique.
Afin de surmonter ces inconvénients, il a été proposé de nombreuses cathodes.
Ainsi, dans la demande de brevet français FR2311108, on décrit une cathode dont le substrat est une plaque en titane, en zirconium, en niobium ou en alliage essentiellement constitué par une association de ces métaux et sur lequel est appliquée une couche d'oxyde métallique, essentiellement constituée par un oxyde d'un ou plusieurs métaux choisis parmi le ruthénium, le rhodium, le palladium, l'osmium, l'iridium et le platine et éventuellement un oxyde d'un ou plusieurs métaux choisis parmi le calcium, le magnésium, le strontium, le baryum, le zinc, le chrome, le molybdène, le tungstène, le sélénium et le tellure.
Le brevet américain US 4,100,049 décrit une cathode comprenant un substrat en fer, nickel, cobalt ou en alliage de ces métaux et un revêtement d'oxyde de palladium et d'oxyde de zirconium.
Dans la demande de brevet européen EP 209427, on propose une cathode constituée d'un substrat électriquement conducteur en nickel, en acier inoxydable ou en acier doux portant un revêtement constitué d'une pluralité de couches d'oxydes métalliques, la couche superficielle étant constituée par un oxyde de métal valve, c'est-à-dire un métal choisi dans les groupes 4b, 5b et 6b de la classification périodique des éléments et la couche intermédiaire étant constituée par un oxyde de métal précieux du groupe VIII, c'est-à-dire ruthénium, rhodium, palladium, osmium, iridium et platine.
Les couches intermédiaires et superficielles peuvent être constituées par l'oxyde du seul métal concerné ou par un oxyde mixte du métal concerné et du second métal en faible proportion.
Bien que ces cathodes présentent une surtension satisfaisante, la demanderesse a constaté lors de l'évaluation desdites cathodes une modification de la courbe de polarisation après le premier balayage mettant en évidence un endommagement de la couche superficielle, ce qui est préjudiciable pour une bonne protection du substrat et donc entraíne une durée de vie limitée desdites électrodes.
On a maintenant trouvé une cathode permettant de diminuer la surtension de la réaction de réduction de l'eau en milieu alcalin, caractérisée en ce qu'elle est constituée par un substrat électroconducteur revêtu d'une couche intermédiaire d'oxydes à base de titane et d'un métal précieux du groupe VIII de la classification périodique des éléments et d'une couche externe d'oxydes métalliques comprenant du titane, du zirconium et un métal précieux du groupe VIII de la classification périodique des éléments, le metal précieux dans la couche externe représentant une quantité molaire comprise entre 30 % et 50 % par rapport aux métaux entrant dans la composition de cette couche.
Par métal précieux du groupe VIII de la classification périodique des éléments, on entend présentement le ruthénium, le rhodium, le palladium, l'osmium, l'iridium ou le platine. De préférence, on utilisera le ruthénium ou l'iridium et tout particulièrement le ruthénium.
Avantageusement, la couche intermédiaire contient des oxydes de titane et de ruthénium.
De préférence la couche externe d'oxydes métalliques contient des oxydes de titane, de zirconium et de ruthénium.
Mieux encore, la couche externe est constituée essentiellement de ZrTiO4 accompagné de RuO2 et éventuellement de ZrO2 et/ou TiO2.
Le matériau constituant le substrat peut être choisi parmi les matériaux électriquement conducteurs. On le choisira avantageusement dans le groupe constitué par le titane, le nickel, le tantale, le zirconium, le nobium, le fer et leurs alliages.
De préférence, on utilisera le titane, le nickel, le fer ou leurs alliages.
Le rapport molaire métal précieux /titane dans la couche intermédiaire est de préférence compris entre 0,4 et 2,4.
Le rapport molaire zirconium /titane dans la couche externe est généralement compris entre 0,25 et 9 et, de préférence, compris entre 0,5 et 2.
Le métal précieux dans la couche externe est compris entre 30 % et 50 % molaire par rapport aux métaux entrant dans la composition de cette couche.
La cathode selon la présente invention peut être préparée selon un procédé qui consiste à effectuer les étapes suivantes :
  • a) prétraitement d'un substrat pour conférer des caractéristiques de rugosité à la surface,
  • b) revêtement du substrat prétraité à l'aide d'une solution A contenant essentiellement du titane et un métal précieux, suivi de séchage, puis calcination du substrat ainsi revêtu,
  • c) revêtement du substrat obtenu en (b) à l'aide d'une solution B comprenant du titane, du zirconium et un métal précieux, suivi de séchage, et de la calcination du substrat ainsi revêtu.
  • Le prétraitement consiste en général à soumettre le substrat, soit à un sablage suivi éventuellement d'un lavage à l'acide, soit à un décapage à l'aide d'une solution aqueuse d'acide oxalique, d'acide fluorhydrique, d'un mélange d'acide fluorhydrique et d'acide nitrique, d'un mélange d'acide fluorhydrique et de glycérol, d'un mélange d'acide fluorhydrique, d'acide nitrique et de glycérol ou d'un mélange d'acide fluorhydrique, d'acide nitrique et de peroxyde d'hydrogène, suivi d'un ou de plusieurs lavage(s) à l'eau déminéralisée dégazéifiée.
    Le substrat peut être sous la forme de plaque massive, plaque perforée, métal déployé ou panier cathodique constitué à partir du métal déployé ou perforé.
    La solution A est en général préparée en mettant en contact à température ambiante et sous agitation, essentiellement un sel minéral ou organique de titane et d'un métal précieux avec de l'eau ou dans un solvant organique, éventuellement en présence d'un agent chélatant. La température peut être portée au dessus de l'ambiante pour faciliter la dissolution des sels.
    Avantageusement on met en contact un sel minéral ou organique de titane et d'un métal précieux avec de l'eau ou dans un solvant organique, éventuellement en présence d'un agent chélatant.
    Le titane et le métal précieux sont de préférence présents dans la solution A à une concentration au plus égale à 10 mole/l.
    La solution B est en général préparée en mettant en contact, à température ambiante et sous agitation, un sel minéral ou organique de titane, de zirconium et d'un métal précieux avec de l'eau ou dans un solvant organique, éventuellement en présence d'un agent chélatant. Lorsque la mise en contact est exothermique, on utilise un bain de glace pour refroidir le milieu réactionnel.
    Avantageusement, on met en contact un sel minéral ou organique de titane, de zirconium et d'un métal précieux avec de l'eau ou dans un solvant organique, éventuellement en présence d'un agent chélatant.
    Les sels de titane et des métaux précieux préférés sont les chlorures, les oxychlorures, les nitrates, les oxynitrates, les sulfates et les alkoxydes. Avantageusement, les chlorures des métaux précieux, les chlorures de ruthénium, les chlorures de titane et oxychlorures de titane sont utilisés.
    Comme sels de zirconium, on peut utiliser les chlorures, les sulfates, le chlorure de zirconyle, le nitrate de zirconyle, les alkoxydes tels que le zirconate de butyle.
    Les chlorures de zirconium et de zirconyle sont particulièrement préférés.
    Comme solvant organique, on peut citer les alcools légers de préférence l'isopropanol et l'éthanol, et mieux encore l'isopropanol et l'éthanol absolu.
    Bien que l'on puisse utiliser indifféremment de l'eau ou un solvant organique pour préparer la solution B, on préfère toutefois employer un solvant organique lorsque les sels métalliques sont solides à température ambiante.
    Ainsi lorsque le sel métallique est le chlorure de zirconium, on utilise comme solvant l'éthanol absolu ou l'isopropanol absolu.
    Le titane et le zirconium sont en général présents dans la solution B à une concentration allant de 0,5 à 5 mole/l. La concentration en métal précieux dans la solution B est généralement comprise entre 0,05 et 10 mole/l et, de préférence, comprise entre 0,1 et 5 mole/l.
    On peut déposer la solution A sur le substrat prétraité en utilisant différentes techniques telles que sol-gel, dépôt électrochimique, électrodéposition galvanique, pulvérisation ou enduction. Avantageusement on enduit le substrat prétraité avec la solution A, par exemple à l'aide d'un pinceau. Le substrat ainsi revêtu est ensuite séché à l'air et/ou dans une étuve à une température inférieure à 150°C. Après le séchage, le substrat est calciné sous air ou bien sous gaz inertes tels que azote, argon ou bien encore sous gaz inertes enrichis avec de l'oxygène à une température au moins égale à 300°C et, de préférence, comprise entre 450°C et 550°C pendant une durée allant de 10 minutes à 2 heures.
    Pour l'étape (c) du procédé, on peut utiliser les mêmes techniques de dépôt ainsi que les mêmes conditions opératoires de séchage et calcination que l'étape (b) sauf que le dépôt est effectué avec la solution B.
    D'autres techniques telles que dépôt chimique en phase vapeur (CVD), dépôt physique en phase vapeur (PVD), projection plasma, conviennent également pour le revêtement du substrat prétraité d'une couche intermédiaire et d'une couche externe.
    On peut déposer la solution A aussi bien sur l'une des faces de substrat prétraité que sur les deux faces. On peut également déposer la solution B sur les deux faces du substrat revêtu de la couche intermédiaire.
    Suivant l'épaisseur de la couche intermédiaire souhaitée on peut répéter plusieurs fois l'étape (b) du procédé. De même, on peut répéter plusieurs fois l'étape (c) du procédé.
    Dans la couche intermédiaire, la masse de produit déposé est au moins égale à 2 g/m2, généralement comprise entre 10 g/m2 et 60 g/m2 et, de préférence, comprise entre 20 g/m2 et 35 g/m2 rapportée à la surface géométrique du substrat.
    La concentration de la solution A est judicieusement choisie de manière à ce que cette masse déposée préférée puisse être obtenue en répétant l'étape (b) en un nombre de fois raisonnable et de préférence entre 1 et 10 fois.
    Dans la couche externe, la masse de produit déposé est au moins égale à 5 g/m2, généralement comprise entre 5 g/m2 et 70 g/m2 et, de préférence, comprise entre 25 g/m2 et 50 g/m2, rapportée à la surface géométrique du substrat. On prépare en général la solution B de manière à ce que sa concentration permette d'obtenir une masse déposée préférée en répétant au moins 1 fois l'étape (c) et de préférence entre 2 et 10 fois.
    La cathode de la présente invention convient tout particulièrement à l'électrolyse de solutions aqueuses de chlorures de métaux alcalins et notamment de solutions aqueuses de NaCl.
    L'utilisation de la cathode en association avec une anode permet de synthétiser électrolytiquement le chlore et l'hydroxyde d'un métal alcalin avec un rendement Faraday élevé.
    On peut citer comme anode, les anodes DSA (Dimensionally Stable Anode) constituées d'un substrat en titane revêtu d'une couche d'oxydes de titane et de ruthénium. Le rapport molaire ruthénium /titane dans cette couche est avantageusement compris entre 0,4 et 2,4.
    La cathode de la présente invention possède l'avantage d'avoir une surtension plus faible que les cathodes de l'art antérieur lors d'un fonctionnement en électrolyse.
    En outre, la cathode de la présente invention ne subit pas de modification dès les premiers cycles de caractérisation et présente une plus grande stabilité chimique vis-à-vis de milieux agressifs alcalins.
    Les exemples suivants illustrent l'invention sans la limiter.
    EXEMPLES 1. PREPARATION D'UNE CATHODE (conforme à l'invention) 1.1 PRETRAITEMENT ET DEPOT DE LA COUCHE INTERMEDIAIRE
    On sable avec des particules de corindon une plaque en titane d'une épaisseur de 2 mm et de dimensions 4 cm x 1 cm, à laquelle a été soudée une tige ronde d'amenée de courant.
    On prépare ensuite une solution A, contenant du ruthénium et du titane en quantité équimolaire, en mélangeant à température ambiante sous agitation 2,45 g de RuCl3, de pureté supérieure ou égale à 98 %, 3,64 cm3 de TiOCl2, 2HCl à 127 g/l en Ti et 2,5 cm3 d'isopropanol absolu.
    On enduit ensuite l'extrémité d'une des faces de la plaque prétraitée, représentant une surface de 1 cm x 4 cm, avec la solution A à l'aide d'un pinceau, puis on la laisse sécher 30 minutes à l'air libre et à température ambiante. La plaque enduite est ensuite séchée complémentairement en étuve à 120°C durant 30 minutes, puis calcinée dans un four sous air à 500°C durant 30 min.
    On répète ces opérations (enduction, séchage et calcination) encore 2 fois et au bout de ces trois enductions, la masse d'oxydes de Ru et de Ti déposée est égale à 18 g/m2 rapportée à la surface géométrique de la plaque.
    1.2 DEPOT DE LA COUCHE EXTERNE Mode opératoire général
    On mélange sous agitation le chlorure ou l'oxychlorure de zirconium, le chlorure de ruthénium et le chlorure ou l'oxychlorure de titane avec de l'éthanol absolu. Dans le cas des chlorures, la solution B est préparée à froid et maintenue à froid par un bain eau/ glace, sous agitation, jusqu'à son utilisation.
    Dans le cas des oxychlorures la solution B est préparée à 60°C et maintenue à cette température, sous agitation, jusqu'à son utilisation.
    On enduit ensuite la plaque revêtue en 1.1, avec la solution B à l'aide d'un pinceau. La plaque enduite est dans un premier temps séchée 30 minutes à l'air libre et à température ambiante, puis dans un deuxième temps séchée complémentairement en étuve à 120°C, durant 30 minutes, et enfin calcinée dans un four sous air à 500°C durant 30 minutes.
    On répète ces opérations (enduction, séchage et calcination) plusieurs fois jusqu'à obtention d'une masse d'oxydes déposée allant de 30 g/m2 à 45 g/m2 rapportée à la surface géométrique de la plaque.
    2. EVALUATION DE LA CATHODE - MODE OPERATOIRE :
    Les performances de la cathode, vis-à-vis de la réduction de l'eau, sont évaluées à partir d'une courbe de polarisation, réalisée dans une solution de soude NaOH 1M et à une température comprise entre 20°C et 25°C (température ambiante).
    Par courbe de polarisation, on entend la courbe de variation du potentiel cathodique mesurée par rapport à une électrode de référence, par exemple une électrode au calomel saturé (ECS), en fonction de la densité de courant.
    Le montage expérimental est constitué de la cathode à évaluer, d'une contre-électrode en platine (surface 5 cm2) et d'une électrode de référence ECS allongée d'un capillaire, lequel est placé à proximité immédiate de la cathode.
    L'ensemble est plongé dans la solution électrolytique (NaOH 1M) agitée au moyen d'une agitation magnétique.
    Les trois électrodes sont connectées aux bornes d'un potentiostat. Le potentiel de la cathode est imposé par l'appareillage et l'on relève après l'équilibre du système la valeur du courant traversant ledit système.
    On fait varier ce potentiel de -0 mV/ ECS à -1500 mV/ ECS.
    EXEMPLE 1 (SELON L'INVENTION)
    On prépare la solution B en mélangeant sous agitation dans un flacon en verre 1,07 g de RuCl3, 2,59 g de ZrOCl2, 8H2O, 1,55 ml de TiOCl2, 2HCl dans 7 ml d'éthanol absolu, soit une composition globale molaire de 0,3 Ru-0,7 (Ti, 2Zr).
    On enduit ensuite la plaque revêtue de la couche intermédiaire, avec la solution B ainsi préparée, puis on la sèche et la calcine sous air comme indiqué dans le mode opératoire général. Ces opérations sont répétées 8 fois et à l'issue de la dernière calcination, la masse déposée est de 39 g/m2 rapportée à la surface géométrique de la plaque.
    La cathode ainsi préparée a été évaluée à l'aide du mode opératoire décrit précédemment. Le potentiel cathodique est de -1,375 V/ECS pour une densité de courant de -2 kA/m2.
    A titre de comparaison, le potentiel cathodique d'une cathode de nickel est de -1,475 V/ECS dans les mêmes conditions.
    EXEMPLE 2 (SELON L'INVENTION)
    On prépare la solution B en mélangeant sous agitation dans un flacon en verre 2,49 g RuCl3, 2,59 g de ZrOCl2, 8H2O, 1,55 ml de TiOCl2, 2HCl dans 10 ml d'éthanol absolu soit une composition globale molaire de 0,5 Ru-0,5 (Ti, 2Zr).
    On enduit ensuite la plaque revêtue de la couche intermédiaire avec la solution B ainsi préparée, puis on la sèche et la calcine sous air comme indiqué dans le mode opératoire général. Ces opérations sont répétées 8 fois et à l'issue de la dernière calcination, la masse déposée externe est de 41 g/m2 rapportée à la surface géométrique de la plaque.
    La cathode ainsi préparée a été évaluée à l'aide du mode opératoire décrit précédemment. Le potentiel cathodique est de -1,195 V/ECS pour une densité de courant de -2 kA/m2.
    EXEMPLE 3 (SELON L'INVENTION):
    On prépare la solution B en mélangeant sous agitation dans un récipient en verre, refroidi à l'aide d'un bain de glace, 2,49 g de RuCl3, 2,80 g de ZrCl4, 1,32 ml de TiCl4 dans 10 ml d'éthanol absolu, soit une composition globale molaire de 0,5 Ru-0,5 (Ti, Zr).
    On enduit ensuite la plaque revêtue de la couche intermédiaire avec la solution B ainsi préparée, puis on la sèche et la calcine sous air comme indiqué dans le mode opératoire général. Ces opérations sont répétées 8 fois et à l'issue de la dernière calcination, la masse déposée est de 45 g/m2 de la plaque, rapportée à la surface géométrique de la plaque. La cathode ainsi préparée a été évaluée à l'aide du mode opératoire décrit précédemment. Le potentiel cathodique est de -1,190 V/ECS pour une densité de courant de -2 kA/m2 dans une solution de NaOH 1M.
    EXEMPLE 4 (NON CONFORME A L'INVENTION)
    On prépare une cathode selon la demande de brevet EP 209 427 et on effectue son évaluation.
    Le substrat est constitué par une plaque de 4 x 1 x 0,2 cm, à laquelle a été soudée une tige ronde d'amenée de courant. On effectue un traitement de surface au moyen de corindon.
    On prépare à température ambiante une solution de 2 g de RuCl3 dans 2 ml d'éthanol. On effectue une enduction de la plaque témoin au moyen de cette solution. Ensuite, un séchage de la plaque est effectué sous air à 120°C durant 30 minutes, suivi d'une calcination sous air (500°C, 30 minutes). On obtient un dépôt de 16 mg/m2 de RuO2.
    On prépare à température ambiante une solution dans 2 cm3 d'éthanol, de 2,6 ml de TiOCl2, HCl à 2,5 moles /l en Ti. On effectue les mêmes traitements enduction /étuvage /calcination sous air. On dépose ainsi 8,5 g/m2 de TiO2.
    Le potentiel cathodique de cette électrode est de -1,240 V/ECS pour une densité de courant de -2 kA/m2 évalué selon le mode opératoire décrit précédemment.
    Bien que ce potentiel soit satisfaisant, on observe cependant une importante modification de la courbe de polarisation après le premier balayage et l'apparition de particules solides dans la solution, ce qui est caractéristique d'une modification de la couche superficielle et de son endommagement, ce qui est rédhibitoire pour l'utilisation longue durée de cette cathode.

    Claims (14)

    1. Cathode pour l'électrolyse de solutions aqueuses, constituée par un substrat électroconducteur revêtu d'une couche intermédiaire d'oxydes à base de titane et d'un métal précieux du groupe VIII de la classification périodique des éléments et d'une couche externe d'oxydes métalliques comprenant du titane, du zirconium et un métal précieux du groupe VIII de la classification périodique des éléments, caractérisée en ce que le métal précieux dans la couche externe représente une quantité molaire comprise entre 30% et 50% par rapport aux métaux entrant dans la composition de cette couche.
    2. Cathode selon la revendication 1, caractérisée en ce que le substrat est choisi dans le groupe constitué par le titane, le nickel, le tantale, le zirconium, le nobium, le fer et leurs alliages.
    3. Cathode selon la revendication 2, caractérisée en ce que le substrat est en titane, en fer ou en nickel.
    4. Cathode selon l'une des revendications 1 à 3, caractérisée en ce que le métal précieux du groupe VIII de la classification périodique des éléments est le ruthénium, le rhodium, le palladium, l'osmium, l'iridium ou le platine.
    5. Cathode selon la revendication 4, caractérisée en ce que le métal précieux est le ruthénium ou l'iridium.
    6. Cathode selon l'une des revendications 1 à 5, caractérisée en ce que la couche intermédiaire est constituée d'oxydes de titane et de ruthénium.
    7. Cathode selon l'une des revendications 1 à 6, caractérisée en ce que la couche externe d'oxydes métalliques contient des oxydes de zirconium, de titane et de ruthénium.
    8. Cathode selon la revendication 7, caractérisée en ce qu'elle est constituée essentiellement de ZrTiO4 accompagné de RuO2 et éventuellement de ZrO2 et/ou TiO2.
    9. Cathode selon l'une des revendications 1 à 8, caractérisée en ce que le rapport molaire métal précieux/ titane dans la couche intermédiaire est compris entre 0,4 et 2,4.
    10. Cathode selon l'une des revendications 1 à 8, caractérisée en ce que le rapport molaire zirconium /titane dans la couche externe est compris entre 0,25 et 9.
    11. Cathode selon la revendication 10, caractérisée en ce que le rapport molaire zirconium /titane est compris entre 0,5 et 2.
    12. Utilisation d'une cathode selon l'une des revendications 1 à 11 pour l'électrolyse de solutions aqueuses de chlorures de métaux alcalins.
    13. Utilisation selon la revendication 12, caractérisée en ce que les solutions aqueuses de chlorures de métaux alcalins sont des solutions aqueuses de NaCl.
    14. Procédé de fabrication de chlore et d'hydroxyde de métal alcalin par électrolyse du chlorure correspondant au moyen d'une cathode selon l'une des revendications 1 à 11.
    EP00958706A 1999-08-20 2000-08-18 Cathode utilisable pour l'electrolyse de solutions aqueuses Expired - Lifetime EP1125005B1 (fr)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    FR9910659 1999-08-20
    FR9910659A FR2797646B1 (fr) 1999-08-20 1999-08-20 Cathode utilisable pour l'electrolyse de solutions aqueuses
    PCT/FR2000/002341 WO2001014615A1 (fr) 1999-08-20 2000-08-18 Cathode utilisable pour l'electrolyse de solutions aqueuses

    Publications (2)

    Publication Number Publication Date
    EP1125005A1 EP1125005A1 (fr) 2001-08-22
    EP1125005B1 true EP1125005B1 (fr) 2005-04-06

    Family

    ID=9549257

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00958706A Expired - Lifetime EP1125005B1 (fr) 1999-08-20 2000-08-18 Cathode utilisable pour l'electrolyse de solutions aqueuses

    Country Status (15)

    Country Link
    US (1) US6527924B1 (fr)
    EP (1) EP1125005B1 (fr)
    JP (1) JP4464023B2 (fr)
    KR (1) KR100735588B1 (fr)
    CN (1) CN1205359C (fr)
    AT (1) ATE292696T1 (fr)
    AU (1) AU7014300A (fr)
    CA (1) CA2347728C (fr)
    DE (1) DE60019256T2 (fr)
    ES (1) ES2240152T3 (fr)
    FR (1) FR2797646B1 (fr)
    MX (1) MXPA01003960A (fr)
    NO (1) NO322413B1 (fr)
    PT (1) PT1125005E (fr)
    WO (1) WO2001014615A1 (fr)

    Families Citing this family (24)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2852973B1 (fr) * 2003-03-28 2006-05-26 Atofina Procede de formation d'un revetement d'oxydes metalliques sur un substrat electroconducteur; cathode activee en resultant et son utilisation pour l'electrolyse de solutions acqueuses de chorures de meteaux alcalins.
    FR2853329B1 (fr) * 2003-04-02 2006-07-14 Onera (Off Nat Aerospatiale) Procede pour former sur un metal un revetement protecteur contenant de l'aluminium et du zirconium
    BRPI0409985B1 (pt) * 2003-05-07 2014-05-20 Eltech Systems Corp Artigo de metal de um substrato de metal de válvula para uso em processos eletrocatalíticos e processo para a produção do referido artigo de metal
    ITMI20061974A1 (it) * 2006-10-16 2008-04-17 Industrie De Nora Spa Anodo per elettrolisi
    EP1923487B1 (fr) * 2006-11-20 2010-12-22 Permelec Electrode Ltd. Procédé de réactivation d'électrode pour électrolyse
    TW200846499A (en) * 2007-05-24 2008-12-01 Liung Feng Ind Co Ltd Method of generating hydrogen using dissimilar metal
    EP2085501A1 (fr) * 2008-01-31 2009-08-05 Casale Chemicals S.A. Cathodes haute performance pour électrolyseurs d'eau
    JP5456744B2 (ja) * 2010-11-04 2014-04-02 ペルメレック電極株式会社 金属電解採取方法
    ITMI20102354A1 (it) * 2010-12-22 2012-06-23 Industrie De Nora Spa Elettrodo per cella elettrolitica
    CN102352517B (zh) * 2011-10-21 2014-04-30 重庆大学 一种高活性阴极及其制备方法
    FI2823079T3 (fi) 2012-02-23 2023-05-04 Treadstone Tech Inc Korrosiota kestävä ja sähköä johtava metallin pinta
    CN102677092B (zh) * 2012-05-30 2015-01-14 浙江大学 一种钛阳极的制备方法
    CN102719859A (zh) * 2012-07-07 2012-10-10 西安泰金工业电化学技术有限公司 一种电沉积镍用钛网阳极及其制备方法
    ITMI20122030A1 (it) * 2012-11-29 2014-05-30 Industrie De Nora Spa Catodo per evoluzione elettrolitica di idrogeno
    CN104973661B (zh) * 2014-04-10 2017-09-29 中国石油化工股份有限公司 一种复合阴极电极及其制备方法和应用
    KR101949517B1 (ko) * 2017-07-12 2019-02-19 경북대학교 산학협력단 혼합 금속 산화물 코팅층을 포함하는 전기화학적 수처리용 전극, 그 제조방법 및 이를 이용한 수처리 방법
    KR102043423B1 (ko) * 2018-06-12 2019-11-11 경북대학교 산학협력단 복합 산화물을 코팅한 수처리용 전기전도성 분리막 및 이의 제조방법
    CN109097790B (zh) * 2018-06-19 2020-04-21 重庆大学 体相析氢电极的制备方法及电解水制氢反应器
    US11668017B2 (en) 2018-07-30 2023-06-06 Water Star, Inc. Current reversal tolerant multilayer material, method of making the same, use as an electrode, and use in electrochemical processes
    US11075435B2 (en) * 2018-10-25 2021-07-27 International Business Machines Corporation Electroplating of niobium titanium
    CN109553224A (zh) * 2018-12-07 2019-04-02 杭州水处理技术研究开发中心有限公司 一种化学镀镍废水处理设备及其方法
    US20220243338A1 (en) * 2019-06-12 2022-08-04 Olin Corporation Electrode coating
    US11735802B2 (en) 2020-04-27 2023-08-22 International Business Machines Corporation Electroplated metal layer on a niobium-titanium substrate
    CN114250454B (zh) * 2021-11-22 2023-08-04 广东省科学院资源利用与稀土开发研究所 一种金属氧化物电极用钛基体防护涂层及其制备方法

    Family Cites Families (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4530742A (en) * 1983-01-26 1985-07-23 Ppg Industries, Inc. Electrode and method of preparing same
    MX169643B (es) * 1985-04-12 1993-07-16 Oronzio De Nora Impianti Electrodo para procesos electroquimicos, procedimiento para su produccion y cuba de electrolisis conteniendo dicho electrodo
    JPH09120820A (ja) * 1990-02-09 1997-05-06 Osaka Gas Co Ltd 固体電解質燃料電池用電極及びその製造方法
    US5516598A (en) * 1994-07-28 1996-05-14 Polyplus Battery Company, Inc. Secondary cell using organosulfur/metal charge transfer materials as positive electrode
    US5582623A (en) * 1994-11-23 1996-12-10 Polyplus Battery Company, Inc. Methods of fabricating rechargeable positive electrodes
    JPH08279357A (ja) * 1995-04-05 1996-10-22 Sanyo Electric Co Ltd リチウム二次電池及びその製造方法
    JPH1021898A (ja) * 1996-07-04 1998-01-23 Nippon Glass Fiber Co Ltd リチウム電池
    FR2775486B1 (fr) * 1998-03-02 2000-04-07 Atochem Elf Sa Cathode specifique, utilisable pour la preparation d'un chlorate de metal alcalin et son procede de fabrication

    Also Published As

    Publication number Publication date
    AU7014300A (en) 2001-03-19
    EP1125005A1 (fr) 2001-08-22
    CA2347728A1 (fr) 2001-03-01
    ES2240152T3 (es) 2005-10-16
    FR2797646B1 (fr) 2002-07-05
    KR20010083919A (ko) 2001-09-03
    CN1348510A (zh) 2002-05-08
    FR2797646A1 (fr) 2001-02-23
    US6527924B1 (en) 2003-03-04
    ATE292696T1 (de) 2005-04-15
    DE60019256T2 (de) 2006-03-09
    JP4464023B2 (ja) 2010-05-19
    KR100735588B1 (ko) 2007-07-04
    CN1205359C (zh) 2005-06-08
    PT1125005E (pt) 2005-08-31
    MXPA01003960A (es) 2002-04-24
    NO322413B1 (no) 2006-10-02
    NO20011931D0 (no) 2001-04-19
    CA2347728C (fr) 2010-10-19
    NO20011931L (no) 2001-05-28
    JP2003507580A (ja) 2003-02-25
    DE60019256D1 (de) 2005-05-12
    WO2001014615A1 (fr) 2001-03-01

    Similar Documents

    Publication Publication Date Title
    EP1125005B1 (fr) Cathode utilisable pour l'electrolyse de solutions aqueuses
    US3773555A (en) Method of making an electrode
    EP0240413B1 (fr) Cathode pour électrolyse et un procédé de fabrication de ladite cathode
    EP0023368A1 (fr) Cathode pour la production électrolytique d'hydrogène
    US5059297A (en) Durable electrode for use in electrolysis and process for producing the same
    FR2599386A1 (fr) Electrodes durables pour l'electrolyse et procede pour leur fabrication
    EP0063540B1 (fr) Application d'un revêtement d'électrode
    ZA200507825B (en) Method for the formation of a coating of metal oxides on an electrically-conducting substrate, resultant activated cathode and use thereof for the electrolysis of aqueous solutions of alkaline metal chlorides
    KR860001050B1 (ko) 할로겐 화합물 또는 산함유 전해질의 전해용 금속전극
    EP1060296B1 (fr) Cathode specifique, utilisable pour la preparation d'un chlorate de metal alcalin, et son procede de fabrication
    EP0867527B1 (fr) Electrode à recouvrement catalytique pour des processus électrochimiques et procédé de fabrication de celle-ci
    JP2019119930A (ja) 塩素発生用電極
    EP0707095B1 (fr) Electrode pour procédé électrochimique et utilisation de ladite électrode
    US4223049A (en) Superficially mixed metal oxide electrodes
    RU2379380C2 (ru) Высокоэффективное анодное покрытие для получения гипохлорита
    FR2583781A1 (fr) Cathode pour electrolyse et un procede de fabrication de ladite cathode
    US3677917A (en) Electrode coatings
    CA1190184A (fr) Electrode metallique enduite, generatrice de pellicule, avec couche antioxydation a base de rhodium ou d'iridium
    JPS62260086A (ja) 電解用電極及びその製造方法
    JPH03240987A (ja) 有機物電解用電極及びその製造方法
    FR2653786A1 (fr) Cathode a degagement d'hydrogene.

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20010406

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17Q First examination report despatched

    Effective date: 20030709

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    RBV Designated contracting states (corrected)

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ARKEMA

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

    REF Corresponds to:

    Ref document number: 60019256

    Country of ref document: DE

    Date of ref document: 20050512

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20050615

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050706

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050706

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: SUSI PRYDE-HAENI BSC

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050818

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050818

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050831

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Effective date: 20050615

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2240152

    Country of ref document: ES

    Kind code of ref document: T3

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20060110

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20110812

    Year of fee payment: 12

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20110812

    Year of fee payment: 12

    Ref country code: NL

    Payment date: 20110818

    Year of fee payment: 12

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20120813

    Year of fee payment: 13

    Ref country code: GB

    Payment date: 20120815

    Year of fee payment: 13

    Ref country code: FI

    Payment date: 20120810

    Year of fee payment: 13

    Ref country code: IE

    Payment date: 20120810

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20120907

    Year of fee payment: 13

    Ref country code: BE

    Payment date: 20120820

    Year of fee payment: 13

    Ref country code: DE

    Payment date: 20120816

    Year of fee payment: 13

    Ref country code: FR

    Payment date: 20120926

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: PT

    Payment date: 20120220

    Year of fee payment: 13

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: V1

    Effective date: 20130301

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: PC4A

    Owner name: KEM ONE, FR

    Effective date: 20130305

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20120726

    Year of fee payment: 13

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    Owner name: KEM ONE, FR

    Effective date: 20130306

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: SD

    Effective date: 20130410

    Ref country code: NL

    Ref legal event code: TD

    Effective date: 20130410

    Ref country code: NL

    Ref legal event code: V1

    Effective date: 20130301

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130301

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    Free format text: REGISTERED BETWEEN 20130404 AND 20130410

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120818

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PFA

    Owner name: ARKEMA FRANCE, FR

    Free format text: FORMER OWNER: ARKEMA, FR

    Ref country code: CH

    Ref legal event code: PUE

    Owner name: KEM ONE, FR

    Free format text: FORMER OWNER: ARKEMA FRANCE, FR

    BECA Be: change of holder's address

    Owner name: KEM ONE

    Effective date: 20130625

    Owner name: 210 AVENUE JEAN JAURES,F-69007 LYON

    Effective date: 20130625

    BECH Be: change of holder

    Owner name: KEM ONE

    Effective date: 20130625

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: MM4A

    Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

    Effective date: 20140218

    BERE Be: lapsed

    Owner name: KEM ONE

    Effective date: 20130831

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: EUG

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MM01

    Ref document number: 292696

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20130818

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20130818

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130831

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130818

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130819

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140301

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130831

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: MM4A

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20140430

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130818

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130831

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 60019256

    Country of ref document: DE

    Effective date: 20140301

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140218

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130818

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130818

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130902

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20141010

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130819