EP0209427A1 - Cathode pour électrolyse et un procédé de fabrication de la dite cathode - Google Patents

Cathode pour électrolyse et un procédé de fabrication de la dite cathode Download PDF

Info

Publication number
EP0209427A1
EP0209427A1 EP86401327A EP86401327A EP0209427A1 EP 0209427 A1 EP0209427 A1 EP 0209427A1 EP 86401327 A EP86401327 A EP 86401327A EP 86401327 A EP86401327 A EP 86401327A EP 0209427 A1 EP0209427 A1 EP 0209427A1
Authority
EP
European Patent Office
Prior art keywords
layers
cathode
metal
coating
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP86401327A
Other languages
German (de)
English (en)
Inventor
Francis Leroux
Dominique Ravier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Atochem SA
Elf Atochem SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atochem SA, Elf Atochem SA filed Critical Atochem SA
Publication of EP0209427A1 publication Critical patent/EP0209427A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material

Definitions

  • the present invention relates to a new cathode usable in electrolysis. It also relates to a method of manufacturing this cathode. It relates very particularly to a cathode which can be used in the electrolysis of aqueous alkali metal halide solution which is remarkable in particular for the low value of its working potential and for the stability over time of its electrochemical performance.
  • This cathode belongs to the family of metallic cathodes, activated, obtained by coating a cathode substrate by means of various activation materials, the aim being essentially to reduce the hydrogen overvoltage in an alkaline medium.
  • British patent 1,511,719 describes a cathode comprising a metal substrate, a cobalt coating and a second ruthenium coating.
  • a technique for depositing a coating consisting of a nickel-palladium alloy on a substrate, for example made of nickel, is also described in US Patent 3,216,919: according to this patent, an alloy layer is applied to the substrate in powder form and then sintered said alloy powder.
  • Japanese patent application published under the number 54-110983 (US Patent No. 4,465,580) describes a cathode carrying a coating consisting of a dispersion of particles of nickel or a nickel alloy and an activator consisting of platinum , ruthenium, iridium, rhodium, palladium or osmium or an oxide of these metals.
  • Japanese patent application published under number 53-010036 describes a cathode having a valve metal substrate and a coating of an alloy of at least one platinum group metal and a valve metal and, optionally a surface coating d '' at least one platinum group metal.
  • the invention provides a new cathode, usable in particular in the electrolysis of aqueous solutions of alkali metal halides, said cathode consisting of an electrically conductive substrate carrying a coating based on a platinum group metal oxide, this cathode being characterized in that it carries a coating consisting of a plurality of layers of metal oxides, the surface layer being substantially constituted by an oxide of a valve metal and the intermediate layer or at least one of the intermediate layers being substantially constituted by a metal oxide precious of group VIII of the periodic table.
  • substantially is used here, in relation to the surface and intermediate layers, to indicate that said layers may consist of the oxide of the only metal concerned or by a mixed oxide of the metal concerned and of the second metal in small proportion, by example in a molar ratio not exceeding 1/10.
  • the expression metal valve is used in its usual meaning, that is to say that it designates the metals of groups 4b, 5b and 6b of the periodic table, with the exception being of chromium.
  • the invention relates most particularly to cathodes comprising an electrically conductive substrate and a coating, the said coating consisting of one or more layers of ruthenium oxide (Ru 0 2 ) associated with one or more layers of oxides titanium and / or zirconium. It especially relates to cathodes whose coating comprises Ru 0 2 and Ti 0 2 .
  • Ru 0 2 ruthenium oxide
  • cathodes the coating of which comprises, from the electroconductive substrate either one or more layers of Ru O 2 followed by one or more layers of Ti 0 2 or a succession of one or more layers Ti 02 / one or more layers Ru 02 / one or more layers Ti 0 2 .
  • the term surface layer precisely designates the oxide layer whose surface is in contact direct with the electrolyte, the expression intermediate layer designating any layer disposed between the electroconductive substrate and said surface layer.
  • the invention particularly relates to cathodes in the coating of which all or part of the above-mentioned oxides are in the form of scales.
  • tortoiseshell designates a film of planar shape, of portion of cylinder or sphere or the combination of said shapes, the thickness of which is less than one tenth of the average of the two dimensions of the quadrilateral in which said tortoiseshell can be entered, the average value of said dimensions can be between 1 and 100 microns and more precisely between 3 and 30 microns.
  • the coating consists wholly or partially of at least one oxide of a precious metal, that is to say ruthenium, rhodium, palladium, osmium, iridium and platinum. Preference is given in the invention to ruthenium oxide or to a combination of said oxide with one or more other precious metal oxides.
  • the molar ratio of the oxides of precious metals and of valve metal generally between 10/1 and 1/10 and preferably between 1/5 and 5/1.
  • the material constituting the substrate can be chosen from electrically conductive materials. It will advantageously be chosen from the group consisting of nickel, stainless steel and mild steel without this list being limiting.
  • the substrate can be in the form of a plate, sheet, with or without a certain number of orifices or perforations, lattice, wire mesh or expanded metal, grids, the said materials being able to have a plane, cylindrical shape or any other shape depending on the technology used.
  • the invention also relates to a method of manufacturing these cathodes.
  • This process essentially consists of depositing on the substrate, optionally subjected to an appropriate preliminary treatment, the layers of metal salts and then subjecting the assembly to a heat treatment leading to the oxidized form.
  • the preliminary treatment of the substrate advantageously consists of a degreasing - if necessary - followed by a pickling, mechanical t / or chemical, according to techniques now well known.
  • the technique essentially consists in depositing successively the layers of metal salt solutions on the substrate.
  • the same technology can be used or the layers containing the two metal salts concerned can be directly deposited.
  • the metal salts are deposited in the form of a solution or suspension.
  • the solvent or diluent may consist of water, mineral or organic acid or even an organic solvent.
  • An organic solvent is preferably used such as dimethylformamide, an alcohol and in particular ethanol or 2-ethylhexanol.
  • the atomic concentration of metal is between 3.10 and 3 moles / liter and preferably between 1 and 2 moles / liter.
  • the metal salts which can be used in the invention generally consist of inorganic or organic salts of metals, such as, for example, halides, nitrates, carbonates, sulfates, or even acetates, acetylacetonates.
  • metals such as, for example, halides, nitrates, carbonates, sulfates, or even acetates, acetylacetonates.
  • hexachloroplatinic acid hexahydrate and ruthenium chloride hydrate will advantageously be used.
  • the above-mentioned layers of salt can be deposited using conventional techniques, immersing the substrates in the solution or suspensions, coating with a brush, brush or the like, electrostatic spraying.
  • the preparation of solutions or suspensions and the deposition are generally carried out at ambient temperature and in air. Naturally, it is possible, if necessary, to raise the temperature in particular to facilitate the dissolution of certain salts, and / or to work under an atmosphere of nitrogen or other inert gas with respect to said salts.
  • the transformation of metal salts into oxides is generally done by heat treatment.
  • This treatment is advantageously preceded by an air drying intended to totally or partially remove the solvent or diluent.
  • This steaming can be done at a temperature of up to 200 ° C, the temperature range from 100 to 150 ° C being particularly recommended.
  • the duration of this treatment is generally a few tens of minutes.
  • the actual treatment is generally carried out in air at a temperature varying, depending on the salts used, between 200 and 1000 ° C. Preferably one operates at a temperature between 400 and 750 ° C.
  • the duration of this heat treatment is generally between 15 min and 1 h per layer. This heat treatment can be carried out after each baking or after the last baking.
  • the cathode according to the invention is characterized by the excellent adhesion of the electroactive coatings to the substrate.
  • the cathode of the invention is suitable for use in electrolysis cells in which water or aqueous solution is electrolyzed with production of hydrogen by electrolysis, released at the cathode.
  • the cathode is particularly suitable for the electrolysis of aqueous solutions of alkali metal chlorides and in particular of aqueous solutions of sodium chlorides and to the electrolysis of water, for example in the electrolysis of aqueous hydroxide solutions. potassium.
  • microporous diaphragms can be used as separators, but the cathodes according to the invention are of particular interest in membrane technology.
  • the substrate consists of a nickel plate of 200 x 10 x 0.6 mm.
  • a surface treatment is carried out using corundum (average diameter of the beads 250 mm).
  • the nickel plate is coated with this solution. Steaming is carried out in air (120 ° C, 30 min), followed by a heat treatment in air (500 ° C, 30 min). After cooling, the coating / baking / heat treatment sequence is repeated.
  • a deposit of 1.4 mg / cm 2 of Ru O 2 is obtained in t in the form of scales of average dimensions of between 3 and 30 ⁇ m, and showing the structure of Ru 0 2 in X-ray.
  • a nickel substrate is used which has undergone a surface treatment under the conditions of Example 1.
  • Two layers of solution B are deposited on the nickel substrate, according to the coating / baking / heat treatment sequence of Example 1, then after cooling two layers of solution A, also following the coating / steaming / heat treatment sequence and again two layers of solution B followed by the same treatments.
  • the total deposit of metal oxides is 1.75 m g / cm 2 including 0.6 mg / cm 2 of Ru O 2 .
  • This cathode carrying a triple coating comprising Ti 0 2 , Ru 0 2 and Ti 0 2 is tested in soda, as in Example 1: the working potential is - 1240 mV compared to DHW After 40 hours the potential is from - 1210 mV.
  • This cathode, carrying a triple coating Zr 0 2 , Ru 0 2 , Zr O 2 is tested in sodium hydroxide as in Example 1.
  • the work potential is -1210 mV compared to E.C.S. ; after 16 hours, the potential is -1200 mV.
  • This cathode, carrying a double coating Ru 0 2 / Zr 0 2 is tested in soda as in Example 1.
  • the work potential is -1210 mV compared to E.C.S. After 16 hours, the potential is unchanged.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Inert Electrodes (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

L'invention concerne des cathodes.
Ces cathodes sont constituées par un substrat électriquement conducteur portant un revêtement constitué d'une pluralité de couches d'oxyde métallique, la couche superficieffe étant constituée par un oxyde de métal valve et la ou l'une des couches intermédiaires étant constituée par un oxyde d'un métal précieux du groupe VIII.
Les cathodes sont particulièrement utilisables dans les celluloses d'électrolyse de l'eau ou des solutions aqueuses d'halogénures de métaux alcalins, cellules utilisant la technologie membranes.

Description

  • La présente invention a pour objet une nouvelle cathode utilisable en électrolyse. Elle concerne également un procédé de fabrication de cette cathode. Elle concerne tout particulièrement une cathode utilisable dans l'électrolyse de solution aqueuse d'halogénure de métal alcalin remarquable notamment par la faible valeur de son potentiel de travail et par la stabilité dans le temps de ses performances électrochimiques.
  • Cette cathode appartient à la famille des cathodes métalliques, activées, obtenues en revêtant un substrat cathodique au moyen de divers matériaux d'activation, le but poursuivi étant essentiellement de réduire la surtension d'hydrogène en milieu alcalin.
  • Le brevet anglais 1.511.719 décrit une cathode comprenant un substrat métallique, un revêtement de cobalt et un second revêtement de ruthénium.
  • Le brevet américain 4.100.049 décrit une cathode comprenant un substrat et un revêtement constitué par un mélange d'oxyde de métal précieux et d'oxyde de métal valve, en particulier l'oxyde de zirconium.
  • Une technique de dépôt sur un substrat, par exemple constitué de nickel, d'un revêtement constitué par un alliage nickel-palladium est aussi décrite dans le brevet américain 3.216.919 : selon ce brevet, on applique sur le substrat une couche d'alliage sous forme de poudre puis procède au frittage de la dite poudre d'alliage.
  • La demande de brevet japonais publiée sous le numéro 54-110983 (brevet américain n° 4.465.580) décrit une cathode portant un revêtement constitué par une dispersion de particules de nickel ou d'un alliage de nickel et d'un activateur constitué de platine, ruthénium, iridium, rhodium, palladium ou osmium ou d'un oxyde de ces métaux.
  • La demande de brevet japonais publiée sous le numéro 53-010036 décrit une cathode ayant un substrat en métal valve et un revêtement d'un alliage d'au moins un métal du groupe du platine et un métal valve et, éventuellement un revêtement de surface d'au moins un métal du groupe du platine.
  • L'invention propose une nouvelle cathode, utilisable notamment dans l'électrolyse de solutions aqueuses d'halogénures de métaux alcalins, la dite cathode étant constituée d'un substrat électriquement conducteur portant un revêtement à base d'un oxyde de métal du groupe du platine, cette cathode étant caractérisée en ce qu'elle porte un revêtement constitué d'une pluralité de couches d'oxydes métalliques, la couche superficielle étant sensiblement constituée par un oxyde d'un métal valve et la couche intermédiaire ou l'une au moins des couches intermédiaires étant sensiblement constituée par un oxyde de métal précieux de groupe VIII de la classification périodique des éléments. Le terme "sensiblement" est utilisé ici, à propos des couches superficielles et intermédiaires, pour indiquer que lesdites couches peuvent être constituées par l'oxyde du seul métal concerné ou par un oxyde mixte du métal concerné et du second métal en faible proportion, par exemple dans un rapport molaire n'excédant pas 1/10.
  • Dans l'invention on utilise l'expression métal valve dans son acception usuelle c'est-à-dire qu'elle désigne les métaux des groupes 4b, 5b et 6b de la classification périodique, exception étant toutefois faite du chrome.
  • L'invention vise tout particulièrement des cathodes comprenant un substrat électriquement conducteur et un revêtement, le dit revêtement étant constitué d'une ou plusieurs couches d'oxyde de ruthénium (Ru 02) associée (s) à une ou plusieurs couches d'oxydes de titane et/ou zirconium. Elle concerne tout spécialement les cathodes dont le revêtement comprend Ru 02 et Ti 02.
  • Parmi de telles cathodes, on mentionne tout spécialement les cathodes dont le revêtement comprend, à partir du substrat électroconducteur soit une ou plusieurs couches de Ru O2 suivies d'une ou plusieurs couches de Ti 02 soit une succession d'une ou plusieurs couches Ti 02/une ou plusieurs couches Ru 02/une ou plusieurs couches Ti 02. On ne sortirait pas du cadre de l'invention en interposant dans cette succession de couches d'autres oxydes de métaux précieux ou non précieux ou en remplaçant tout ou partie de Ru 0 2 et/ou Ti 0 par (Ru x Ti 1-xO2 avec x croissant entre le substrat électroconducteur et la surface en contact avec l'électrolyte. Au sens de l'invention le terme couche superficielle désigne précisément la couche d'oxyde dont la surface est en contact direct avec l'électrolyte, l'expression couche intermédiaire désignant toute couche disposée entre le substrat électroconducteur et ladite couche superficielle. L'invention vise tout particulièrement les cathodes dans le revêtement desquelles tout ou partie des oxydes précités se présentent sous forme d'écailles.
  • Au sens de l'invention le terme écaille désigne une pellicule de forme plane, de portion de cylindre ou de sphère ou la combinaison des dites formes, dont l'épaisseur est inférieure au dixième de la moyenne des deux dimensions du quadrilatère dans laquelle la dite écaille peut être inscrite, la valeur moyenne des dits dimensions pouvant être comprise entre 1 et 100 microns et plus précisément entre 3 et 30 microns.
  • Ainsi qu'il a été indiqué, le revêtement est constitué totalement ou partiellement par au moins un oxyde d'un métal précieux c'est-à-dire ruthénium, rhodium, palladium, osmium, iridium et platine. On donne la préférence dans l'invention à l'oxyde de ruthénium ou à une association du dit oxyde avec un ou plusieurs autres oxydes de métaux précieux.
  • Dans le revêtement des cathodes conformes à l'invention, le rapport molaire des oxydes de métaux précieux et de métal valve généralement compris entre 10/1 et 1/10 et de préférence entre 1/5 et 5/1.
  • Le matériau constituant le substrat peut être choisi parmi les matériaux électriquement conducteurs. On le choisira avantageusement dans le groupe constitué par le nickel, l'acier inoxydable et l'acier doux sans que cette énumération soit limitative.
  • Le substrat peut se présenter sous forme de plaque, feuille, présentant ou non un certain nombre d'orifices ou perforations, treillis, toile métallique ou métal déployé, grilles, les dits matériaux pouvant avoir une forme plane, cylindrique ou toute autre forme suivant la technologie employée.
  • L'invention concerne également un procédé de fabrication de ces cathodes.
  • Ce procédé consiste essentiellement à déposer sur le substrat, éventuellement soumis à un traitement préalable approprié, les couches de sels des métaux puis à soumettre l'ensemble à un traitement thermique conduisant à la forme oxydée.
  • Le traitement préalable du substrat consiste avantageusement en un dégraissage - si nécessaire - suivi d'un décapage, mécanique t/ou chimique, suivant des techniques maintenant bien connues.
  • La technique consiste essentiellement à déposer sur le substrat sucessivement les couches de solutions de sels métalliques.
  • Dans l'hypothèse du dépôt d'oxydes mixtes on peut utiliser la même technologie ou déposer directement les couches contenant les deux sels métalliques concernés. D'une manière générale les sels métalliques sont déposés sous forme de solution ou suspension. Selon la nature du sel, le solvant ou le diluant pourra consister en eau, acide minéral ou organique ou encore en solvant organique. On utilise de préférence un solvant organique tel que le diméthyl- formamide, un alcool et notamment l'éthanol ou l'éthyl-2 hexanol. D'une manière générale, la concentration atomique de métal est comprise entre 3.10 et 3 moles/litre et de préférence entre 1 et 2 mole/litre.
  • Les sels métalliques utilisables dans l'invention sont généralement constitués par les sels minéraux ou organiques des métaux, tels que par exemple les halogénures, les nitrates, les carbonates, les sulfates, ou encore les acétates, acétylacétonates. Dans le cas des sels conduisant aux oxydes de platine et de ruthénium on utilisera avantageusement l'acide hexachloroplatinique hexahydraté et le chlorure de ruthénium hydraté.
  • Le dépôt des couches de sels précités peut être réalisé suivant les techniques conventionnelles immersion des substrats dans la ou les solutions ou suspensions, enduction au moyen de pinceau, brosse ou assimilés, projection électrostatique.
  • La préparation des solutions ou suspensions et le dépôt se font généralement à température ambiante et à l'air. Naturellement on peut le cas échéant élever la température en particulier pour faciliter la dissolution de certains sels, et/ou travailler sous atmosphère d'azote ou autre gaz inerte vis-à-vis des dits sels.
  • La transformation des sels métalliques en oxydes se fait généralement par traitement thermique. Ce traitement est avantageusement précédé d'un étuvage sous air destiné à éliminer totalement ou partiellement le solvant ou diluant. Cet étuvage peut s'effectuer à une température pouvant atteindre 200°C, la gamme de température allant de 100 à 150°C étant particulièrement recommandée. La durée de ce traitement est généralement de quelques dizaines de minutes. Le traitement proprement dit s'effectue généralement sous air à une température variant, selon les sels utilisés, entre 200 et 1000°C. De préférence on opère a une température comprise entre 400 et 750°C. La durée de ce traitement thermique est généralement comprise entre 15 mn et 1 h par couche. On peut effectuer ce traitement thermique après chaque étuvage ou après le dernier étuvage.
  • La cathode conforme à l'invention est caractérisé par l'excellente adhérence des revêtements électroactifs sur le substrat.
  • La cathode de l'invention est adaptée à l'utilisation dans des cellules d'électrolyse dans lesquelles l'eau ou solution aqueuse est électrolysée avec production d'hydrogène par électrolyse, dégagé à la cathode. La cathode convient tout particulièrement à l'électrolyse de solutions aqueuses de chlorures de métaux alcalins et notamment de solutions aqueuses de chlorures de sodium et à-l'électrolyse de l'eau, par exemple dans l'électrolyse de solutions aqueuses d'hydroxyde de potassium. Dans les cellules d'électrolyse, on peut utiliser comme séparateurs des diaphragmes microporeux mais les cathodes selon l'invention sont un intérêt tout particulier dans la technologie membrane.
  • Les exemples suivants illustrent l'invention.
  • EXEMPLE 1 :
  • Le substrat est constitué par une plaque de nickel de 200 x 10 x 0,6 mm.
  • On effectue un traitement de surface au moyen de corindon (diamètre moyen des billes 250 mm).
  • a) On prépare à 23°C une solution dans 2 cm3 d'éthanol, de 2 g de Ru Cl3, xHCL, yH20, contenant environ 38% en poids de ruthénium métal.
  • On effectue une enduction de la plaque de nickel au moyen de cette solution. On effectue un étuvage sous air (120°C, 30 mn), suivi d'un traitement thermique sous air (500°C, 30 mn). Après refroidissement on répète la séquence enduction/étuvage/traitement thermique.
  • On obtient un dépôt de 1,4 mg/cm2 de Ru O2 sous forme d'écailles de dimensions moyennes comprises entre 3 et 30 µm, et présentant en radiographie X la structure de Ru 02.
    • b) On prépare à 23°C une solution dans 2 cm3 d'éthanol de 2,6 cm3 de Ti OCl2, 2HCl à 2,5 moles/1 en Ti. On effectue les mêmes traitements (2 couches) enduction/étuvage/traitement thermique que sous a. On dépose ainsi 0,8 mg/cm2 de Ti 02.
    • c) Cette cathode, testée dans la soude à 450 g/1, à 85°C et sous 50 A/dm2 présente un potentiel de travail de - 1225 mV par rapport à l'électrode au calomel saturé (E.C.S.).
    • d) Un disque de 80 mm de diamètre, constitué par un grillage de nickel déployé et laminé, revêtu de Ru O2/Ti 02 en suivant le processus décrit ci-avant, est utilisé comme cathode d'une cellule d'électrolyse de solution aqueuse de chlorure de sodium - technologie membrane.
  • Les conditions de fonctionnement sont :
    • - intensité = 30 A/dm 2
    • - température = 85°C
    • - soude 32% en poids.
  • On observe :
    • - que la tension aux bornes de cette cellule présente, par rapport à la tension aux bornes d'une cellule dans laquelle la cathode est constituée du seul nickel non revêtu un gain de 300 mV.
    • - que ce gain est constant à 300 mV après 6 jours-de fonction-- nement continu.
    EXEMPLE 2 :
  • On utilise un substrat en nickel ayant subi un traitement de surface dans les conditions de l'exemple 1.
  • On prépare à 23°C deux solutions :
    • - Solution A : la solution dans 2 cm3 d'éthanol d'2 g de Ru C13, xHCL, yH20 de l'exemple 1.
    • - Solution B : une solution dans 1 cm3 d'éthanol de 1,3 cm3 de Ti OC12, 2 HCl à 2,5 moles/1 en Ti
  • On dépose sur le substrat en nickel deux couches de la solution B, selon la séquence enduction/étuvage/traitement thermique de l'exemple 1, puis après refroidissement deux couches de la solution A en suivant également la séquence enduction/étuvage/traitement thermique et de nouveau deux couches de la solution B suivie des mêmes traitements. Le dépôt total d'oxydes métalliques est de 1,75 mg/cm2 dont 0,6 mg/cm2 de Ru O2.
  • Cette cathode portant un triple revêtement comprenant Ti 02, Ru 02 et Ti 02 est testée dans la soude, comme dans l'exemple 1 : le potentiel de travail est de - 1240 mV par rapport à E.C.S. Après 40 heures le potentiel est de - 1210 mV.
  • EXEMPLE 3 :
    • a) On utilise un substrat de Ni ayant subi un traitement de surface dans les conditions de l'exemple 1.
    • b) On prépare à 23°C deux solutions :
      • - Solution A : la solution dans 2cm3 d'éthanol de 2 g de Ru Cl3, xHCL, yH20 de l'exemple 1.
      • - Solution B : une solution dans l'éthanol (2,4 cm3)/HCl (1 cm3 - 1 N) de 1 g de ZrOCl2, 8H2O.
    • c) On dépose sur le substrat deux couches de la solution B selon la séquence enduction/étuvage/traitement thermique de l'exemple 1 puis, après refroidissement, deux couches de la solution A, en suivant également la séquence enduction/étuvage/traitement thermique et de nouveau deux couches de la solution B, suivie des mêmes traitements.
    • d) Le dépôt total d'oxydes métalliques est de 1,8 mg/cm2 dont 0,7 mg/cm2 de Ru O2.
  • Cette cathode, portant un triple revêtement Zr 02, Ru 02, Zr O2 est testée dans la soude comme dans l'exemple 1.
  • Le potentiel de travail est de -1210 mV par rapport à E.C.S. ; après 16 heures, le potentiel est de -1200 mV.
  • EXEMPLE 4
    • a) On utilise le substrat nickel et les solutions A et B de l'exemple 3.
    • b) On dépose sur le substrat deux couches de la solution A puis deux couches de la solution B en suivant le processus et conditions d'enduction/étuvage/traitement thermique de l'exemple 1.
    • c) Le dépôt total d'oxydes métalliques est de 1,2 mg/cm2 dont 0,7 mg/cm2 de Ru O2.
  • Cette cathode, portant un double revêtement Ru 02/Zr 02 est testée dans la soude comme dans l'exemple 1.
  • Le potentiel de travail est de -1210 mV par rapport à E.C.S. Après 16 heures, le potentiel est inchangé.

Claims (13)

1/ Cathode utilisable dans une cellule d'électrolyse, constituée d'un substrat électriquement conducteur portant un revêtement à base d'un oxyde de métal du groupe du platine, cette cathode étant caractérisée en ce qu'elle porte un revêtement constitué d'une pluralité de couches d'oxydes métalliques, la couche superficielle étant sensiblement constituée par un oxyde de métal valve et la couche intermédiaire ou l'une au moins des couches intermédiaires étant sensiblement constituée par un oxyde de métal précieux du groupe VIII de la classification périodique des éléments.
2/ Cathode selon la revendication 1, caractérisée en ce que la couche superficielle et/ou la ou les couches intermédiaires sont constituées par les oxydes de seuls métaux concernés.
3/ Cathode selon la revendication 1, caractérisée en ce que la couche superficielle et/ou la couche intermédiaire ou l'une au moins des couches intermédiaires est constituée par un oxyde mixte du métal concerné et du second métal en faible proportion.
4/ Cathode selon l'une quelconque des revendications 1 à 3, caractérisée en ce que le revêtement est constitué d'une ou plusieurs couches d'oxyde de ruthénium (Ru O2), associée (s) à une ou plusieurs couches d'oxydes de titane et/ou zirconium.
5/ Cathode selon l'une quelconque des revendications 1 à 4, caractérisée en ce que le revêtement comprend, à partir du substrat une ou plusieurs couches de Ru O2 puis une ou plusieurs couches de Ti 02 et/ou Zr 02, ou une succession d'une ou plusieurs couches de Ti 02 et/ou Zr 02/une ou plusieurs couches de Ru 02/une ou plusieurs couches de Ti O2 et/ou Zr O2.
6/ Cathode selon l'une quelconque des revendications 1 à 5, caractérisée en ce que, dans le revêtement, tout ou partie des oxydes se présentent sous forme d'écailles.
7/ Cathode selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le substrat est choisi dans le groupe constitué par le nickel, l'acier inoxydable et l'acier doux.
8/ Procédé de fabrication des cathodes selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'il consiste à déposer sur le substrat, éventuellement soumis à un traitement préalable appropriée, les couches de sels des métaux, puis à soumettre l'ensemble à un traitement thermique conduisant à la forme oxydée.
9/ Procédé selon la revendication 8, dans lequel on dépose successivement sur le substrat les couches de solutions ou suspension de sels de métaux.
10/ Procédé de fabrication des cathodes selon la revendication 3, caractérisé en ce que les sels de métaux destinés à former l'oxyde mixte sont déposés sous forme d'une ou plusieurs couches d'une même solution des dits sels.
11/ Procédé selon l'une quelconque des revendications 8 à 10, caractérisé en ce que les sels de métaux sont choisis parmi les sels minéraux ou organiques des métaux, tels que par exemple les halogénures, les nitrates, les carbonates, les sulfates, ou encore les acétates, acétylacétonates.
12/ Procédé selon l'une quelconque des revendications 8 à 11, caractérisé en ce que le traitement thermique est effectué à une température comprise entre 200 et 1000°C.
13/ Procédé selon la revendication 12, caractérisé en ce que le traitement thermique est précédé d'un étuvage destiné à éliminer totalement ou partiellement le solvant ou diluant des sels de métaux, le dit étuvage étant effectué à une température pouvant atteindre 200°C.
EP86401327A 1985-06-24 1986-06-17 Cathode pour électrolyse et un procédé de fabrication de la dite cathode Ceased EP0209427A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8509540 1985-06-24
FR8509540A FR2583781A1 (fr) 1985-06-24 1985-06-24 Cathode pour electrolyse et un procede de fabrication de ladite cathode

Publications (1)

Publication Number Publication Date
EP0209427A1 true EP0209427A1 (fr) 1987-01-21

Family

ID=9320572

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86401327A Ceased EP0209427A1 (fr) 1985-06-24 1986-06-17 Cathode pour électrolyse et un procédé de fabrication de la dite cathode

Country Status (5)

Country Link
EP (1) EP0209427A1 (fr)
JP (1) JPS61295386A (fr)
KR (1) KR890003514B1 (fr)
CN (1) CN86104356A (fr)
FR (1) FR2583781A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0298055A1 (fr) * 1987-06-29 1989-01-04 Permelec Electrode Ltd Cathode pour l'électrolyse et procédé pour sa fabrication
FR2775486A1 (fr) * 1998-03-02 1999-09-03 Atochem Elf Sa Cathode specifique, utilisable pour la preparation d'un chlorate de metal alcalin et son procede de fabrication
FR2852973A1 (fr) * 2003-03-28 2004-10-01 Atofina Procede de formation d'un revetement d'oxydes metalliques sur un substrat electroconducteur; cathode activee en resultant et son utilisation pour l'electrolyse de solutions acqueuses de chorures de meteaux alcalins.
RU2505624C2 (ru) * 2008-01-31 2014-01-27 Касале Кемикэлз С.А. Катод электролизеров для разложения воды с высокими рабочими характеристиками
US20150308004A1 (en) * 2012-11-29 2015-10-29 Industrie De Nora S.P.A. Cathode for electrolytic evolution of hydrogen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013166994A (ja) * 2012-02-15 2013-08-29 Asahi Kasei Chemicals Corp 電解用電極、電解槽及び電解用電極の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3915838A (en) * 1968-04-02 1975-10-28 Ici Ltd Electrodes for electrochemical processes
FR2289632A1 (fr) * 1974-10-29 1976-05-28 Marston Excelsior Ltd Procede de realisation d'electrodes pour operations electrolytiques
FR2311108A1 (fr) * 1975-05-12 1976-12-10 Hodogaya Chemical Co Ltd Cathode activee pour electrolyse

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927391B2 (ja) * 1976-12-15 1984-07-05 三洋電機株式会社 光エネルギ−利用の水分解装置
GB2083837B (en) * 1980-08-18 1984-06-27 Diamond Shamrock Corp Manufacture of electrode with manganese dioxide coating valve metal base intermediate semiconducting layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3915838A (en) * 1968-04-02 1975-10-28 Ici Ltd Electrodes for electrochemical processes
FR2289632A1 (fr) * 1974-10-29 1976-05-28 Marston Excelsior Ltd Procede de realisation d'electrodes pour operations electrolytiques
FR2311108A1 (fr) * 1975-05-12 1976-12-10 Hodogaya Chemical Co Ltd Cathode activee pour electrolyse

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0298055A1 (fr) * 1987-06-29 1989-01-04 Permelec Electrode Ltd Cathode pour l'électrolyse et procédé pour sa fabrication
US4900419A (en) * 1987-06-29 1990-02-13 Permelec Electrode Ltd. Cathode for electrolysis and process for producing the same
FR2775486A1 (fr) * 1998-03-02 1999-09-03 Atochem Elf Sa Cathode specifique, utilisable pour la preparation d'un chlorate de metal alcalin et son procede de fabrication
WO1999045175A1 (fr) * 1998-03-02 1999-09-10 Atofina Cathode specifique, utilisable pour la preparation d'un chlorate de metal alcalin, et son procede de fabrication
FR2852973A1 (fr) * 2003-03-28 2004-10-01 Atofina Procede de formation d'un revetement d'oxydes metalliques sur un substrat electroconducteur; cathode activee en resultant et son utilisation pour l'electrolyse de solutions acqueuses de chorures de meteaux alcalins.
WO2004087992A2 (fr) * 2003-03-28 2004-10-14 Arkema Procede de formation d'un revetement d'oxydes metalliques sur un substrat electroconducteur, cathode activee en resultant et son utilisation pour l'electrolyse de solutions aqueuses de chlorures de metaux alcalins.
WO2004087992A3 (fr) * 2003-03-28 2005-02-17 Arkema Procede de formation d'un revetement d'oxydes metalliques sur un substrat electroconducteur, cathode activee en resultant et son utilisation pour l'electrolyse de solutions aqueuses de chlorures de metaux alcalins.
US7790233B2 (en) 2003-03-28 2010-09-07 Arkema France Method for the formation of a coating of metal oxides on an electrically-conductive substrate, resultant activated cathode and use thereof for the electrolysis of aqueous solutions of alkaline metal chlorides
CN1795291B (zh) * 2003-03-28 2011-08-31 阿肯马公司 在导电基材上形成金属氧化物涂层的方法,由此得到的活化阴极及其在碱金属氯化物水溶液电解中的应用
RU2505624C2 (ru) * 2008-01-31 2014-01-27 Касале Кемикэлз С.А. Катод электролизеров для разложения воды с высокими рабочими характеристиками
US20150308004A1 (en) * 2012-11-29 2015-10-29 Industrie De Nora S.P.A. Cathode for electrolytic evolution of hydrogen

Also Published As

Publication number Publication date
KR870000455A (ko) 1987-02-18
KR890003514B1 (ko) 1989-09-23
CN86104356A (zh) 1986-12-24
JPS61295386A (ja) 1986-12-26
JPS6328998B2 (fr) 1988-06-10
FR2583781A1 (fr) 1986-12-26

Similar Documents

Publication Publication Date Title
EP0240413B1 (fr) Cathode pour électrolyse et un procédé de fabrication de ladite cathode
US4797182A (en) Electrode with a platinum metal catalyst in surface film and its use
CA2347728C (fr) Cathode utilisable pour l'electrolyse de solutions aqueuses
US3773555A (en) Method of making an electrode
US4331528A (en) Coated metal electrode with improved barrier layer
US4585540A (en) Composite catalytic material particularly for electrolysis electrodes and method of manufacture
DE69115213T2 (de) Elektrode.
EP2534282B1 (fr) Cathode activée destinée à l'évolution d'hydrogène
FR2480795A1 (fr) Cathode pour reactions electrochimiques et procede de fabrication
JPH0694597B2 (ja) 電気化学的工程において使用する電極とその製造方法
US5503663A (en) Sable coating solutions for coating valve metal anodes
FR2460343A1 (fr) Cathode pour la production electrolytique d'hydrogene
FR2599386A1 (fr) Electrodes durables pour l'electrolyse et procede pour leur fabrication
US5954928A (en) Activated cathode and method for manufacturing the same
US4456518A (en) Noble metal-coated cathode
EP0209427A1 (fr) Cathode pour électrolyse et un procédé de fabrication de la dite cathode
EP0867527B1 (fr) Electrode à recouvrement catalytique pour des processus électrochimiques et procédé de fabrication de celle-ci
EP0027051B1 (fr) Electrode métallique plaquée à couche d'arrêt et procédés pour sa fabrication et son utilisation
JPH02247392A (ja) 寸法安定性をもった陽極
EP0198752A1 (fr) Cathode pour électrolyse et un procédé de fabrication de ladite cathode
US4586998A (en) Electrolytic cell with low hydrogen overvoltage cathode
EP1608795B1 (fr) Procede de formation d un revetement d'oxydes metalliques sur un substrat electroconducteur, cathode activee en resultant et son utilisation pour l'electrolyse de solutions aqueuses de chlorures de metaux alcalins.
EP0131978A1 (fr) Procédé de fabrication d'une électrode pour procédés électrochimiques et cathode pour la production électrolytique d'hydrogène
FR2461023A1 (fr) Procede de preparation de substrats conducteurs et d'electrodes pour l'electrolyse d'une saumure, et l'electrode a faible surtension ainsi obtenue
NO861978L (no) Katalytisk komposittmateriale, spesielt for elektrolyseelektroder, og fremstillingsmetode.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19860621

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19871210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19890603

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RAVIER, DOMINIQUE

Inventor name: LEROUX, FRANCIS