WO2004080940A1 - ペルフルオロジアシルフルオリド化合物の製造方法 - Google Patents

ペルフルオロジアシルフルオリド化合物の製造方法 Download PDF

Info

Publication number
WO2004080940A1
WO2004080940A1 PCT/JP2004/001971 JP2004001971W WO2004080940A1 WO 2004080940 A1 WO2004080940 A1 WO 2004080940A1 JP 2004001971 W JP2004001971 W JP 2004001971W WO 2004080940 A1 WO2004080940 A1 WO 2004080940A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
cof
reaction
fluorine
Prior art date
Application number
PCT/JP2004/001971
Other languages
English (en)
French (fr)
Inventor
Shu-Zhong Wang
Takashi Okazoe
Eisuke Murotani
Kunio Watanabe
Daisuke Shirakawa
Kazuya Oharu
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to CA002516342A priority Critical patent/CA2516342A1/en
Priority to JP2005503471A priority patent/JPWO2004080940A1/ja
Priority to EP04713196A priority patent/EP1602639A4/en
Publication of WO2004080940A1 publication Critical patent/WO2004080940A1/ja
Priority to US11/206,915 priority patent/US7301052B2/en
Priority to US11/770,889 priority patent/US7501540B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/40Unsaturated compounds
    • C07C59/58Unsaturated compounds containing ether groups, groups, groups, or groups
    • C07C59/60Unsaturated compounds containing ether groups, groups, groups, or groups the non-carboxylic part of the ether being unsaturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/09Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid esters or lactones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/235Saturated compounds containing more than one carboxyl group
    • C07C59/305Saturated compounds containing more than one carboxyl group containing ether groups, groups, groups, or groups
    • C07C59/315Saturated compounds containing more than one carboxyl group containing ether groups, groups, groups, or groups containing halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/14Preparation of carboxylic acid esters from carboxylic acid halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/31Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by introduction of functional groups containing oxygen only in singly bound form

Definitions

  • the present invention relates to a method for producing a disulfide compound having one COF group at both ends of a molecule, which is an industrially useful compound. Further, the present invention relates to a novel intermediate useful for producing a perfluorinated fine silyl fluoride compound useful as a precursor of a fluororesin raw material. Background technology>
  • Perfluorosilyl fluoride compounds are important precursors for producing heat-resistant and chemical-resistant fluororesin raw material monomers.
  • perfluoro (alkyl vinyl ether) having a carboxyl group in the molecule which is useful as a raw material monomer of an ion exchange membrane
  • CF 2 CF_0 (CF 2 ) 3 COOCH 3
  • CF 2 CF-OCF 2 CF (CF 3 ) O (CF 3) 3 COOCH 3
  • the perfluoro (alkyl vinyl ether) is produced via perfluorodisyl fluorides (see J.
  • CF 2 CF— O (CF 2 ) 3 COOCH 3 , which is useful as a raw material monomer for ion exchange membranes with strong mechanical strength, is FCO (CF 2 ) 2 O (CF 2 ) 2 C ⁇ F or FCOCF (CF 3) O (CF 2 ) Ru is derived from 2 C oF.
  • the following method using iodine or fuming sulfuric acid is known as a general method for producing diacil fluorides.
  • CF 2 CF 2 + I 2 ⁇ I CF 2 CF 2 1
  • the present inventors have provided a method for producing perfluoro (diacyl fluoride) s from a diol by a method of performing fluorination using fluorine in a liquid phase (liquid phase fluorination method). (See WO 02/4397).
  • An object of the present invention is to provide a method for producing a perfluorosilyl fluoride compound from an inexpensive and easily available starting compound in a short process.
  • Another object of the present invention is to provide a novel intermediate which is useful for producing a perfluorodisyl fluoride compound useful as a precursor of a fluororesin raw material.
  • the gist of the present invention is as follows.
  • R B Fluorine-containing monovalent organic group.
  • R BF R same group or R B is fluorinated groups and B.
  • ⁇ 3> The production method according to ⁇ 1> or ⁇ 2>, wherein the fluorine content of the compound (3) is 30 to 76% by mass and the molecular weight is more than 200 to 1,000.
  • Q F _CF (CF 3 ) — or one CF 2 CF 2 —.
  • R BF1 Perfluoroalkyl group, perfluoro (mono or dichloroalkyl group), or a group in which an etheric oxygen atom is inserted between carbon and carbon atoms of these groups.
  • R BF1 is a perfluoroalkyl group having 2 to 20 carbon atoms or a perfluoroalkyl group having 2 to 20 carbon atoms in which an etheric oxygen atom is inserted between carbon-carbon bonds. A compound as described.
  • CF 2 CFO (CF 2 ) 30 (CF 2 ) 2 COOCH 3- (5-4).
  • CF 2 CF ⁇ (CF 2 ) 30 (CF 2 ) 2 COF
  • CF 2 CFO (CF 2 ) 30 (CF 2 ) 2 COOCH 3- (5-4)
  • the organic group in the present specification refers to a group having a carbon atom as an essential element, and may be a saturated group or an unsaturated group.
  • Examples of the organic group to be fluorinated include a group having a hydrogen atom bonded to a carbon atom and a group having a carbon-carbon unsaturated bond.
  • the organic group in the present invention preferably has 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, from the viewpoint of solubility in the liquid phase used during the fluorination reaction. Good.
  • the monovalent organic group is preferably a monovalent hydrocarbon group, a heteroatom-containing monovalent hydrocarbon group, a halogenated monovalent hydrocarbon group, or a halogenated heteroatom-containing monovalent hydrocarbon group.
  • a monovalent saturated hydrocarbon group is preferable, and an alkyl group, a cycloalkyl group, or a monovalent saturated hydrocarbon group having a ring portion (for example, a cycloalkyl group, a cycloalkylalkyl group, or a bicycloalkyl group)
  • a ring portion for example, a cycloalkyl group, a cycloalkylalkyl group, or a bicycloalkyl group
  • An alkyl group, a group having an alicyclic ring structure, or a group having these groups as a partial structure), and an alkyl group is particularly preferable.
  • the halogen atom in this specification is a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, and is preferably a fluorine atom, a chlorine atom, or a bromine atom.
  • a fluorinated group that is, a fluoro group, refers to a group in which one or more fluorine atoms have been introduced into a group, and may be a group having a hydrogen atom or a group not having a hydrogen atom.
  • a partially fluorinated group refers to a group in which a part of the fluorinable moiety has been fluorinated, usually a group having a hydrogen atom.
  • a perfluorinated group refers to a group in which substantially all of the fluorinable moiety has been fluorinated, usually a group in which no hydrogen atoms are present.
  • compound (5) which was conventionally difficult to obtain, can be produced using compound (1) as a raw material.
  • the compound represented by the formula (1) is the following compound. These compounds are known compounds or compounds that can be easily synthesized from known compounds by known methods.
  • R B in compound (2) is a fluorine-containing monovalent organic group, and is the same group as R BF described later or a group that becomes R BF by a fluorination reaction.
  • R B is the resulting compound (3)
  • the structure is preferably adjusted so that the fluorine content (the fluorine content means the ratio of fluorine atoms to the molecular weight of the compound) is 30% by mass or more.
  • the number of carbon atoms of R B is preferably 2-2 0, 2-1 0 are particularly preferred.
  • the number of carbon atoms of R B is that is 2 or more, preferably liable to the recovery of the compound (6).
  • R B is a linear structure, it is branched structure, even cyclic structure, or may have a structure partially having a ring.
  • R B a fluorine atom or a fluorine atom and a halogenated aralkyl kill group chlorine atom or a group having an etheric oxygen atom introduced between carbon, and one carbon atom of the alkyl group, is preferable.
  • a perfluoro group is preferable, and a perfluoroalkyl group, a perfluoro (mono- or dichloroalkyl group), or an etheric oxygen atom is inserted between carbon and carbon atoms of these groups. These groups are particularly preferred.
  • R B is a group other than the above, the following upper 1 Tsu carbon one-carbon single bonds in R BF of interest, carbon - like have been substituted carbon triple bond - carbon double bond or carbon.
  • a hydrogen atom or a fluorine atom is preferably bonded to a carbon atom forming a carbon-carbon double bond, and a hydrogen atom is preferably bonded.
  • a fluorine atom is added to a carbon atom forming an unsaturated bond by a fluorination reaction in a liquid phase, and a hydrogen atom is replaced with a fluorine atom.
  • Specific examples of such R B xenon alkenyl group cycloheteroalkyl, phenyl group, and an alkenyl group or alkynyl group, is.
  • R B in the present invention since a group containing a fluorine atom, there is an advantage that tends to implement a continuous process to be described later. Further, it is particularly preferable that R B is the same group as R BF in carrying out the continuous process described later. In that respect, R B and R BF are perfluorinated monovalent organic groups. Is particularly preferred.
  • X of the compound (2) represents a halogen atom, preferably a chlorine atom or a fluorine atom, and is preferably a fluorine atom for performing a continuous process described later.
  • the compound (2) may be a commercially available product, and may be a compound produced by the method of the present invention.
  • R B is below R BF (6) are preferred, especially compounds R B is R BF1 (6 A) is preferred. R BF COF (6).
  • R BF1 is a perfluoroalkyl group, a perfluoro (mono- or dichloroalkyl group), or a group in which an etheric oxygen atom is inserted between carbon-carbon atoms of these groups.
  • Perfluoroalkyl groups with an inserted atom are preferred.
  • the carbon number of R BF and R BF1 is preferably 2 to 20, particularly preferably 2 to 10.
  • R BF examples include: CF 2 CF 3 , CF 2 CF 2 CF 3 , CF 2 CF 2 CF 2 CF 3 , CF 2 CF 2 C 1, CF 2 CF 2 B r, — CF 2 CFC 1 CF 2 C 1, — CF (CF 3 ) 2 , CF 2 CF (CF 3 ) 2 , CF (CF 3 ) CF 2 CF 3 , — C (CF,) 3 , CF (CF 3 ) OCF 2 CF 2 CF 3 , — CF (CF 3 ) OCF 2 CF 2 CFC 1 CF 2 C 1, one CF (CF 3 ) OCF 2 CF 2 Br, — CF (CF 3 ) OCF 2 CF (CF 3 ) O (CF 2 ) 2 CF 3 and the like.
  • Specific examples of the compound (2) include the following compounds.
  • Compound (2) is a known compound or can be produced from a known compound by a known production method.
  • CF 3 CF 2 CF 2 ⁇ CF (CF 3 ) C ⁇ F is readily available as a perfluorinated (alkyl vinyl ether) intermediate.
  • the reaction between compound (1) and compound (2) can be carried out by applying known reaction methods and conditions. For example, it can be carried out under known esterification reaction conditions.
  • the esterification reaction may be performed in the presence of a solvent (hereinafter, referred to as an esterification reaction solvent), but is preferably performed in the absence of the esterification reaction solvent from the viewpoint of volumetric efficiency.
  • an esterification reaction solvent dichloromethane, chloroform, triethylamine, dichloropentylfluoropropane (hereinafter referred to as R-225), or a mixed solvent of triethylamine and tetrahydrofuran is preferable.
  • the amount of the esterification reaction solvent to be used is preferably 50 to 500% by mass based on the total amount of the compound (1) and the compound (2).
  • HF scavengers are compounds
  • (1) or compound (2) is an acid-labile compound, it is better to use it.
  • an HF scavenger is not used, it is preferable to carry out the reaction at a reaction temperature at which HF can be vaporized, and to discharge HF out of the reaction system together with a nitrogen stream.
  • the HF scavenger is preferably used in an amount of 1 to 10 times the molar amount of the compound (2).
  • the amount of the compound (2) is preferably 1.5 to 10 times the molar amount of the compound (1).
  • the molar amount is particularly preferably 2 to 5 times.
  • the lower limit of the reaction temperature with (2) is preferably -50 ° C, and the upper limit is preferably + 100 ° C or the lower of the boiling points of the solvents.
  • the reaction time can be appropriately changed depending on the supply rate of the raw materials and the amount of the compound used in the reaction.
  • Reaction pressure is 0-2 MP a (gauge pressure; hereinafter, pressure is described in gauge pressure) is preferable.
  • the compound (3) preferably has a fluorine content of 30% by mass or more, since a high reaction yield and a high reaction yield can be achieved.
  • Fluorine content can be adjusted by the structure of R B as described above, it is preferable to change according to the type of the liquid phase used for the fluorination reaction is usually preferably to a fluorine content in the 30-86 wt%, Particularly preferred is 30 to 76% by weight.
  • the molecular weight is preferably more than 200 to: L000.
  • the following compound (3-1) is preferable.
  • R BF1 Perfluoroalkyl group, perfluoro (mono- or dichloroalkyl group), or a group in which an etheric oxygen atom is inserted between carbon-carbon atoms of these groups.
  • R BF1 is preferably a perfluoroalkyl group or a perfluoroalkyl group in which an etheric oxygen atom is inserted between carbon and carbon atoms, particularly preferably a group having 2 to 20 carbon atoms, and more preferably 2 carbon atoms. -10 are especially preferred.
  • Specific examples of the compound (3) include the following compounds.
  • the crude product containing the compound (3) produced by the reaction of the compound (1) with the compound (2) may be purified according to the purpose or used as it is for the next reaction. Purification is preferred from the viewpoint of smoothly performing the fluorination reaction in the step. Purification methods include distillation of the crude product as it is, treatment of the crude product with diluted alkaline water, etc., separation of the crude product, extraction of the crude product with an appropriate organic solvent, and distillation. Mouth chromatography and the like.
  • the compound (3) is fluorinated.
  • the fluorination reaction can be carried out by electrolytic fluorination or gas-phase fluorination, but in the present invention, it is carried out by fluorination in a liquid phase. Fluorination in the liquid phase is an excellent method that can prevent the decomposition reaction of compound (3) and produce compound (4) in high yield.
  • the liquid phase fluorination method is a method in which the compound (3) and fluorine are reacted in a liquid phase.
  • the liquid phase may be formed from a substrate or a product of the reaction, and it is generally preferable that a solvent (hereinafter, referred to as a fluorination reaction solvent) is essential.
  • a fluorination reaction solvent a solvent
  • As the fluorine it is preferable to use fluorine gas or fluorine gas diluted with an inert gas.
  • the inert gas nitrogen gas and helium gas are preferable, and nitrogen gas is particularly preferable because it is economically advantageous.
  • the amount of fluorine gas in the nitrogen gas is not particularly limited, and is preferably 10 V o 1% or more from the viewpoint of efficiency, and particularly preferably 20 V o 1% or more.
  • a solvent that does not contain a C—H bond and requires a C—F bond is preferable, and is a perfluoroalkane or one selected from a chlorine atom, a nitrogen atom, and an oxygen atom
  • An organic solvent obtained by perfluorinating a known organic solvent having the above atoms in the structure is particularly preferable.
  • the fluorination reaction solvent it is preferable to use a solvent having high solubility of the compound (3), particularly preferably a solvent capable of dissolving the compound (3) in an amount of 1% by mass or more, and more preferably 5% by mass or more. Solvents are particularly preferred.
  • fluorination reaction solvent examples include compounds (5), compound (6), and perfluoroalkanes (Minnesota 'mining' manufactured by Manufacturing, Inc. (hereinafter referred to as 3M). ) Product name: 7-7 2 etc.), perfluoroethers
  • the amount of the fluorination reaction solvent is preferably at least 5 times the mass of the compound (3), particularly preferably 10 to: L00 mass.
  • the reaction system of the fluorination reaction is preferably a batch system or a continuous system. It is preferable that the fluorine gas be diluted with an inert gas such as nitrogen gas before being used in the batch mode or in the continuous mode.
  • an inert gas such as nitrogen gas
  • the amount of fluorine (F 2 ) is always in excess with respect to the hydrogen atom in the compound (3). It is preferably at least 1.5 times equivalent (ie, at least 1.5 times mol) from the viewpoint of selectivity. Since the amount of fluorine is preferably an excess amount from the beginning to the end of the reaction, when charging the fluorinated solvent into the reactor at the beginning of the reaction, a sufficient amount of fluorine is dissolved in the fluorinated solvent. Is preferred.
  • Fluorination reaction, - CH 2 0 CO - is preferably carried out under conditions that prevent the cleavage reaction
  • the lower limit of the reaction temperature - boiling point of 6 is preferably a 0 ° C
  • the upper limit of the compound (3) is preferable.
  • the reaction temperature is particularly preferably from -50 ° C to 110 ° C, and more preferably 120, from the viewpoints of reaction yield, selectivity, and ease of industrial implementation.
  • C to 150 ° C is particularly preferred.
  • the reaction pressure of the fluorination reaction is not particularly limited, and is preferably from atmospheric pressure to 2 MPa from the viewpoint of reaction yield, selectivity, and ease of industrial implementation.
  • a C-H bond-containing compound may be added to the reaction system, and / or ultraviolet irradiation may be performed. These are preferably carried out at a later stage of the fluorination reaction. This allows the compound (3) present in the reaction system to be efficiently fluorinated.
  • the C-H bond-containing compound is preferably an organic compound other than the compound (3), particularly preferably an aromatic hydrocarbon, and particularly preferably benzene, toluene and the like.
  • the amount of the C—H bond-containing compound to be added is based on the hydrogen atom in the compound (3). It is preferably from 0.1 to 10 mol%, particularly preferably from 0.1 to 5 mol%.
  • the C_H bond-containing compound is preferably added to a reaction system in which fluorine is present. Further, when a C-H bond-containing compound is added, it is preferable to pressurize the reaction system.
  • the pressure at the time of pressurization is preferably 0.01 to 5 MPa.
  • the ultraviolet irradiation is preferably performed for 0.1 to 3 hours using a known ultraviolet lamp or the like.
  • the amount is preferably 1 to 20 times, and particularly preferably 1 to 5 times, the molar amount of the total hydrogen atoms present in the compound (3).
  • a cooler preferably maintained at 10 C to room temperature, particularly preferably maintained at about 2 Ot :
  • NaF NaF
  • a cooler preferably holding at 78 to 11 Ot, preferably at 30 to 0 ° C) -It is preferable to install them in series in the order of (c).
  • a liquid return line for returning the condensed liquid from the cooler in (c) to the reactor may be provided.
  • R BF in the compound (4) is R B identical or different fluorinated monovalent organic radical, when different is a group in which R B fluorinated.
  • R B of the compound (3) is a group having a hydrogen atom, and the R BF when hydrogen atoms are substituted by fluorine atom by a fluorination reaction, are different groups and R B.
  • R B is a group having no hydrogen atom (e.g., if a perhalogenated group, such as Perufuruoro of radicals) R BF when it is is the same group as R B.
  • R BF is preferably a perfluorinated group.
  • R BF As a specific example of R BF, the same example as R B in the case of a perfluorinated group Is mentioned.
  • Q F in compound (4) is a group in which Q is perfluorinated.
  • Q is —CH 2 CH 2 —
  • Q F is —CF 2 CF 2 —
  • Q is —CH (CH 3 ) If one is Q F is one CF (CF 3 ) —.
  • the following compound (4-1) is preferable.
  • R BF1 Perfluoroalkyl group, perfluoro (mono- or dichloroalkyl group), or a group in which an etheric oxygen atom is inserted between carbon and carbon atoms of these groups.
  • R BF1 is preferably a perfluoroalkyl group or a perfluoroalkyl group in which an etheric oxygen atom is inserted between carbon and carbon atoms, particularly preferably a group having 2 to 20 carbon atoms, and more preferably 2 carbon atoms. -10 are especially preferred.
  • Specific examples of the compound (4) include the following compounds.
  • the crude product containing the compound (4) obtained by the fluorination reaction may be used as it is in the next step, or may be purified to high purity.
  • Examples of the purification method include a method of distilling the crude product as it is under normal pressure or reduced pressure.
  • the compound (5) or the compound (5) and the compound (6) are then obtained by a decomposition reaction of the ester bond of the compound (4).
  • the decomposition reaction of an ester bond is a reaction in which one CF 2 OC ⁇ bond is cleaved and one COF group is formed from one bond.
  • the decomposition reaction of the ester bond of compound (4) is preferably performed by a thermal decomposition reaction or a decomposition reaction performed in the presence of a nucleophile or an electrophile.
  • the reaction produces a compound (5) having one COF at both ends.
  • compound (6) is formed together with compound (5).
  • the thermal decomposition reaction can be carried out by heating compound (4).
  • the reaction type of the thermal decomposition reaction is preferably selected depending on the boiling point of compound (4) and its stability.
  • a vapor phase pyrolysis method in which the gas containing the compound (5) is continuously decomposed in the gas phase to condense and recover the outlet gas may be employed.
  • the reaction temperature of the gas phase pyrolysis method is preferably from 50 to 350 ° C, particularly preferably from 50 to 300 ° C, particularly preferably from 150 to 250 ° C.
  • an inert gas not directly involved in the reaction may be allowed to coexist in the reaction system.
  • the inert gas include nitrogen gas and carbon dioxide gas. It is preferable to add about 0.01 to 50 V o 1% of the inert gas to the compound (4). Large amounts of inert gas may reduce the amount of product recovered.
  • reaction temperature in this liquid phase pyrolysis method is preferably from 50 to 300 ° C, particularly preferably from 100 to 250 ° C.
  • the thermal decomposition may be performed without a solvent or in the presence of a solvent (hereinafter, referred to as a decomposition reaction solvent). It is preferably carried out in The decomposition reaction solvent is not particularly limited as long as it does not react with compound (4) and is compatible with compound (4) and does not react with compound (5) to be produced. As the decomposition reaction solvent, it is preferable to select a solvent that is easily separated during purification.
  • an inert solvent such as perfluorotrialkylamine and perfluoronaphthylene, and a chlorotrifluorofluoroethylene oligomer having a high boiling point are preferable among black fluorocarbons and the like.
  • the amount of the decomposition reaction solvent is 0.10 times as large as that of compound (4). A 10-fold mass is preferred.
  • the reaction may be carried out in the absence of a solvent or in the presence of a decomposition reaction solvent.
  • the fluorination may be carried out without solvent or in the same solvent as the liquid phase fluorination.
  • F- is preferable, and particularly, F- derived from the fluoride of an alkali metal is preferable.
  • the alkali metal fluoride NaF, NaHF 2 , KF, CsF and the like are preferable, and among these, NaF is particularly preferable from the viewpoint of economy. It is particularly preferable to carry out the ester bond decomposition reaction without a solvent, because compound (4) itself also acts as a solvent, and there is no need to separate the solvent from the reaction product.
  • the amount of the nucleophile such as F— is preferably from 1 to 500 mol%, particularly preferably from 1 to 100 mol%, particularly preferably from 5 to 50 mol%, based on the compound (4).
  • the reaction temperature is preferably from ⁇ 30 ° C. to the boiling point of the solvent or the boiling point of the compound (4), and particularly preferably from 20 ° C. to 250 ° C.
  • the liquid phase pyrolysis method is also preferably carried out while performing distillation in a reactor equipped with a distillation column.
  • Compound (5) is the following compound.
  • R B and R BF is, (CF 3) 2 CF- or CF 3 (CF 2) 2 OCF (OF,) CF 2 OCF (CF 3) if an Method.
  • R B and R BF of compound (3) and compound (4) are the above groups, respectively.
  • the following compound is a novel compound.
  • compound (5) can be converted to the following compound (7) having two vinyl fluoride groups by a thermal decomposition reaction.
  • the compound is a useful fluororesin raw material.
  • the fluororesin obtained from the compound (5-4) is useful as a fluororesin for an ion exchange membrane, can be obtained by a method which is more economically and industrially advantageous than conventional methods, and is superior to conventional methods. Excellent durability with fluororesin.
  • the following compound (5-12) is reacted with HFPO in the presence of CsF to give the following compound (5-2), and the compound (5-2) is thermally decomposed to give the following compound (5-3) and a method for producing the following compound (5-4) by reacting the compound (5-3) with methanol.
  • CF 2 CFO (CF 2 ) 30 (CF 2 ) 2 COOCH 3 ⁇ (5-4).
  • the compound (5-2), the compound (5-3) and the compound (514) in the above production method are novel compounds not described in any literature.
  • a fluororesin containing a repeating unit of the compound (5-4) can be a fluororesin having excellent durability.
  • the compound (6) and the compound (2) is the same compound.
  • compound (5) can be produced by recovering compound (6) and using it as compound (2) to be reacted with compound (1).
  • the method of manufacture is a more efficient method that can be implemented as a continuous process.
  • the carbon number of RBF is preferably 2 or more, more preferably 2 to 20, and particularly preferably 4 to 10.
  • ADVANTAGE OF THE INVENTION According to the manufacturing method of this invention, a difluoride compound (5) can be manufactured with a short process and high yield from a raw material which can be obtained cheaply.
  • various compounds having a polymerizable vinyl fluoride group can be produced by utilizing the reactivity of the terminal COF group of the compound (5).
  • a novel compound useful for producing the disulfide fluoride compound (5) is provided.
  • GC gas chromatography
  • NMR purity purity determined from the peak area ratio of GC
  • NMR yield the yield determined from NMR
  • TMS Tetramethylsilane
  • the organic phase was wash with N a HC 0 3 saturated aqueous solution (5 OmL), and washed with further NaC l saturated aqueous (5 OmL). The organic phase was dried over magnesium sulfate and then filtered to obtain 36.13 g of a crude liquid.
  • the solution dissolved in 3 (50 g) was injected over 1.5 hours.
  • the internal pressure was adjusted to 0.15 MPa, and while blowing 20% fluorine gas at the same flow rate, 0.01 g / benzene was added.
  • R-113 solution (9 mL) containing mL was injected.
  • the benzene solution (6 mL) was injected after 15 minutes while maintaining the temperature at 40 ° C. After another 15 minutes, the above benzene solution (6 mL) was injected.
  • the total amount of benzene injected was 0.215 g and the total amount of R-113 injected was 2 mL.
  • nitrogen gas was blown for 1 hour.
  • the product was the title compound as the main product, and the NMR yield was 92%.
  • the NMR spectrum of the product was as follows.
  • Example 1- 3 F CO (CF 2 ) due to decomposition reaction of the ester bond in the liquid phase
  • Example 1 (CF 3 ) 2 CFCOO (CF 2 ) 3 ⁇ (CF 2 ) 3 ⁇ COCF (CF 3 ) 2 and CF 3 (CF 2 ) 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COF 7: 5 (molar ratio)
  • a mixture (342 g) of KF powder (4.8 g) was charged into a flask and heated at 80 ° C for 3 hours in an oil bath with vigorous stirring. A distillate was used, and a fraction having a boiling point of 100 or less was collected to collect a liquid sample (75 g). From the NMR spectrum, it was confirmed that the title compound was the main component. The NMR yield of the title compound was 34%. ⁇
  • a fluidized-bed tubular reactor (100 mm ID, 500 mm height, made of SUS) filled with glass beads (3500 m 1, central particle size 160 m, specific gravity 1.47 gZmL) was heated at an internal temperature of 275 using a cylindrical mantle heater. Heated. At the outlet of the tubular reactor, a glass trap cooled with dry ice was installed.
  • the reactor was cooled, and methanol (190 g) was slowly introduced so that the internal temperature was kept at 30 or less at normal pressure. At the same time, while sufficiently stirring, nitrogen gas is bubbled in, The resulting HF was driven out of the system.
  • CF 2 CFO (CF 2 ) 30 (CF 2 ) 2 COOCH 3 19 F-NMR, 13 C-NMR, C-F two-dimensional NMR, GC-Mass spectrum (EI detection , CI detection) determined by analysis.
  • Example 2-2 Preparation of HO (CH 2 ) 3 OCH (CH 3 ) CH 2 OC (CH 3 ) 3 Potassium hydroxide (274.27 g) and HO (CH 2 ) 3 OH were added to dioxane (3 L). (371.93 g) was added, and TsOCH (CH 3 ) CH 2 OC (CH 3 ) 3 (700 g) obtained in Example 2-1 was added little by little. After heating under reflux for 16 hours and allowing to cool, the reaction solution was poured into ice (500 g), neutralized with 2N hydrochloric acid, concentrated, and the precipitated salt was filtered.
  • the filtrate was extracted with dichloromethane (250 mL), the organic layer was washed with water (500 mL), and the operation was repeated 17 times.
  • the organic layer was dried over magnesium sulfate, filtered, and the filtrate was concentrated with an evaporator, and the concentrate was purified by silica gel chromatography to obtain the title compound (203.77 g).
  • the NMR spectrum of the product was as follows.
  • the autoclave was charged with CF 3 (CF 2 ) 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) C ⁇ F (120.69 g), and stirred while blowing in nitrogen gas to obtain the HO obtained in Example 2-3.
  • (CH 2 ) 3 OCH (CH 3 ) CH 2 OH (15.1 g) was fed in 2 hours while maintaining the internal temperature at 3 Ot: or less. Thereafter, while introducing nitrogen gas and stirred overnight at room temperature, the reaction mixture was added to ice containing saturated NaHCO 3 solution (50 OmL).
  • the resulting crude liquid was extracted twice with R- 225 (25 OmL), the lower layer was washed twice with saturated NaHC 0 3 solution (250 mL), further saturated N a C 1 twice with an aqueous solution (250 mL) After washing and drying over magnesium sulfate, the mixture was filtered, and concentrated by evaporation at an evaporator to obtain a crude liquid.
  • the NMR spectrum of the product was as follows.
  • R-113 (323 g) was added to a 50 OmL nickel autoclave, and the mixture was stirred and kept at 25.
  • a cooler kept at 20 ° C, NaF pellets, and a cooler kept at 110 ° C were installed in series. After nitrogen gas was blown for 1 hour, 20% fluorine gas was blown at 9.9 OLZh for 1 hour. Next, while blowing 20% fluorine gas at the same flow rate, the CF obtained in Example 2-4 was used.
  • Example 2-6 Production example of F CO CF (CF 3 ) O (CF 2 ) 2 COF by decomposition reaction of ester bond in liquid phase
  • a compound useful as a raw material for producing a fluororesin can be obtained in a short step by using an inexpensive and easily available starting material in a high yield. Further, according to the present invention, a novel compound useful as a raw material for producing a fluororesin is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

ペルフルォロジァシルフルオリド化合物の製造方法 <技術分野 >
本発明は、 工業的に有用な化合物である一 CO F基を分子の両末端に有するジ ァシルフルオリド化合物の製造方法明に関する。 また、 本発明は、 フッ素樹脂原料 の前駆体として有用なペルフルォロジァ細 1シルフルオリド化合物の製造に有用な 新規な中間体に関する。 ぐ背景技術 >
ペルフルォロジァシルフルオリド化合物は、 耐熱性かつ耐薬品性のフッ素樹脂 の原料モノマーを製造する上で重要な前駆体である。 たとえば、 イオン交換膜の 原料モノマーとして有用である分子中にカルボキシル基を有するペルフルォロ (アルキルビニルエーテル)としては、 CF2 = CF_0(CF2) 3COOCH3、 CF2 = CF-OCF2CF (CF3) O (C F3) 3COOCH3、 CF2 = CF- O (CF2) 3CH2C〇OCH3等が知られている(特開昭 52— 153897)。 該ペルフルォロ (アルキルビニルエーテル) は、 ペルフルォロジァシルフルォ リド類を経由して製造される (J. F l u o r i ne Ch em. , 94, 65 -68 (1999) 参照) 。 特に、 機械的強度の強いイオン交換膜の原料モノマ —として有用である CF2=CF— O (CF2) 3COOCH3は、 FCO (CF2) 2 O (CF2) 2C〇Fまたは FCOCF (CF3) O (CF2) 2C OFから誘導され る。
ジァシルフルオリド類の一般的な製造方法としては、 ヨウ素や発煙硫酸を使用 する下記方法が知られている。
CF2=CF2 + I2 → I CF2CF21
I CF2CF2I + CF2=CF2 → I C F2C F2C F2C F21
I CF2CF2CF2CF2I + S 03 → FCOCF2CF2COF また本発明者らは、 液相中でフッ素を用いてフッ素化を行う方法 (液相フッ素 化法) により、 ジオールから、 ペルフルォロ (ジァシルフルオリド) 類を製造す る方法を提供している (WO02/4397号明細書参照) 。
一方、 C一 H部分を C— Fにフッ素化する方法としては、 フッ素 (E l eme n t a 1 F l uo r i n e) を用いてフッ素化する方法が知られている。
分子の両末端にフッ化ビニルを有する化合物の製造方法としては、 片末端に C F2= C F—を有し、 他末端に一 C〇 Fを有する化合物の C F 2= C F—を塩素ガ ス等のハロゲンを付加させた後に、― c O F末端を熱分解して C F 2= C F—とし、 さらに脱ハロゲン化により C F2=C F—を再生する方法が提案されている(特開 平 1一 143843号公報) 。
しかし、 テトラフルォロエチレンを原料とする従来のペルフルォロジァシルフ ルオリド化合物の製造方法は、 原料の価格が高く、 経済的に不利である問題があ つた。 また、 ヨウ素や発煙硫酸等を使用することから、 装置が腐食する問題や、 反応試薬の取り扱いが難しい問題があった。 ぐ発明の開示 >
本発明は、 安価で入手容易な原料化合物から短工程でペルフルォロジァシルフ ルオリド化合物を製造する方法の提供を目的とする。
また、 本発明は、 フッ素樹脂原料の前駆体として有用なペルフルォロジァシル フルオリド化合物の製造に有用な新規な中間体の提供を目的とする。
すなわち、 本発明の要旨は以下のとおりである。
< 1 >下記化合物 (1) と下記化合物 (2) とを反応させて下記化合物 (3) と し、 該化合物 (3) を液相中でフッ素化して下記化合物 (4) とし、 次に該化合 物 (4) のエステル結合の分解反応により化合物 (5) 、 または化合物 (5) お よび化合物 (6) を得ることを特徴とする含フッ素化合物の製造方法。
HOCH2 - Q— 0_ (CH2) 「ΟΗ · · · (1) 、
RBCOX · · · (2) 、
RBCOOCH2_Q—〇_ (CH2) 3— OCORB' · · (3) 、 RBFCOOCF2 - QF—0— (CF2) 3-OCORBF - · · (4) 、
FCO-QF-0- (CF2) 2-COF - · · (5) 、
RBFCOF · · · (6) 。
ただし、
Q :— CH (CH3) 一または一CH2CH2—。
QF : - CF (CF3) 一または一 CF2CF2—。
X:ハロゲン原子。
RB:含フッ素 1価有機基。
RBF: RBと同一の基または RBがフッ素化された基。
< 2〉 Xがフッ素原子である化合物 (2) として、 エステル結合の分解反応で 得た化合物 (6) を用いる <1>に記載の製造方法。
<3>化合物 (3) のフッ素含量が 30〜 76質量%であり、 かつ分子量が 2 00超〜 1000である < 1 >またはく 2 >に記載の製造方法。
<4>Qがー CH2CH2—であり、 QFが— CF2CF2—であるく 1>、く 2>、 またはぐ 3 >に記載の製造方法。
< 5 >下式で表される化合物から選ばれるいずれかの化合物。
RBF1COOCH2-Q-0- (CH2) 3_〇CORB" · · · (3— 1)
RBF1COOCF2-QF-0- (CF2) 3-OCORBF1 - · · (4— 1) ただし、
Q :— CH (CH3) 一または一 CH2CH2—。
QF: _CF (CF3) —または一 CF2CF2—。
RBF1:ペルフルォロアルキル基、 ペルフルォロ (モノまたはジクロ口アルキル 基) 、 またはこれらの基の炭素一炭素原子間にエーテル性酸素原子が挿入された 基。
<6>RBF1が、 炭素数 2〜20のペルフルォロアルキル基、 または炭素一炭素 結合間にエーテル性酸素原子が挿入された炭素数 2〜 20のペルフルォロアル キル基である < 5 >に記載の化合物。
< 7 >下式で表される化合物から選ばれるいずれかの化合物。 (CF3) 2CFC00 (CH2) 30 (CH2) 30C0CF (CF3) 2 - · · (3- 12) ,
(CF3) 2CFC00 (CF2) 30 (CF2) 30C0CF (CF3) 2 - · · (4一 12) 、
CF3 (CF2) 20CF (CF3) CF20CF (CF3) C00CH2CH (CH3) 0 (CH2) 30C0CF (CF3) 0CF2CF (CF3) 0 (CF2) 2
CF3 - · · (3— 13) 、
CF3 (CF2) 20CF (CF3) CF20CF (CF3) C00CF2CF (CF3) 0 (CF2)'30C0CF (CF3) 0CF2CF (CF3) 0 (CF2) 2
CF3 - · · (4— 13) 。
< 8 >下式 (5- 12) で表わされる化合物にへキサフルォロプロピレンォキ シドを C s Fの存在下に反応させて下式 (5-2) で表わされる化合物とし、 該 式 (5-2) で表わされる化合物を熱分解して下式 (5-3) で表わされる化合 物とし、 該式 (5-3) で表わされる化合物にメタノールを反応させることを特 徴とする下式 (5-4) で表わされる化合物の製造方法。
FCO (CF2) 20 (CF2) 2COF · · · (5- 12) 、
FCOCF (CF3) O (CF2) 30 (CF2) 2COF · · · (5— 2) 、 CF2=CFO (CF2) 30 (CF2) 2COF · · · (5-3) 、
CF2=CFO (CF2) 30 (CF2) 2COOCH3 - · · (5— 4) 。
<9>式 (5- 12) で表わされる化合物が、 <4>に記載の製造方法によつ て得た化合物であるぐ 8 >に記載の製造方法。
く 10 >下式で表わされる化合物から選ばれるいずれかの化合物。
FCOCF (CF3) O (CF2) 30 (CF2) 2COF · · · (5-2)
CF2=CF〇 (CF2) 30 (CF2) 2COF · · · (5-3)
CF2=CFO (CF2) 30 (CF2) 2COOCH3 - · · (5-4)
<発明を実施するための最良の形態 >
本明細書における有機基とは、 炭素原子を必須とする基をいい、 飽和の基であ つても不飽和の基であってもよい。 フッ素化される有機基としては、 炭素原子に 結合する水素原子を有する基、 炭素一炭素不飽和結合を有する基等が挙げられる。 本発明における有機基は、 フッ素化反応時に用いる液相への溶解性の観点から、 その炭素数が 1〜 20であるのが好ましく、 特に炭素数が 1〜 10であるのが好 ましい。
1価有機基としては、 1価炭化水素基、 ヘテロ原子含有 1価炭化水素基、 ハロ ゲン化 1価炭化水素基、 またはハロゲン化されたヘテロ原子含有 1価炭化水素基 が好ましい。
1価炭化水素基としては、 1価飽和炭化水素基が好ましく、 アルキル基、 シク 口アルキル基、 または環部分を有する 1価飽和炭化水素基 (たとえば、 シクロア ルキル基、 シクロアルキルアルキル基、 またはビシクロアルキル基、 脂環式スピ 口構造を有する基、 またはこれらの基を部分構造とする基) 等が挙げられ、 アル キル基が特に好ましい。
本明細書におけるハロゲン原子とは、 フッ素原子、 塩素原子、 臭素原子、 また はヨウ素原子であり、フッ素原子、塩素原子、または臭素原子が好ましい。また、 フッ素化された基、 すなわちフルォロ基とは、 フッ素原子が 1つ以上基中に導入 された基をいい、 水素原子が存在する基であっても、 存在しない基であってもよ い。 部分フッ素化された基とは、 フッ素化されうる部分の一部がフッ素化された 基をいい、 通常は水素原子が存在する基である。 ペルフルォロ化された基とは、 フッ素化されうる部分の実質的に全てがフッ素化された基をいい、 通常は水素原 子が存在しない基である。
本発明によれば、 化合物 ( 1 ) を原料として、 従来は入手が困難であった化合 物 (5 ) を製造できる。
式 (1 ) で表される化合物とは、 下記化合物である。 これらの化合物は、 公知 の化合物、 または、 公知の化合物から公知の方法により容易に合成できる化合物 である。
HO (C H2) 30 (C H2) 3〇H、
HO C H2C H (C H3) O (C H2) 3OH
本発明においては、まず、化合物(1 ) と化合物(2 )を反応させて化合物(3 ) を得る。 ,,
化合物 (2 ) 中の RBは、 含フッ素 1価有機基であり、 後述する RBFと同一の基 またはフッ素化反応によって RBFになる基である。 RBは、 得られる化合物 (3 ) のフッ素含量 (フッ素含量とは、 化合物の分子量に対するフッ素原子の割合をい う。 ) が 3 0質量%以上となるように、 その構造を調節するのが好ましい。
RBの炭素数は 2〜 2 0が好ましく、 2〜 1 0が特に好ましい。 RBの炭素数は 2以上であるのが、 化合物 (6 ) の回収をし易いため好ましい。 RBは直鎖構造で あっても、 分岐構造であっても、 環構造であっても、 部分的に環を有する構造で あってもよい。
RBとしては、フッ素原子またはフッ素原子と塩素原子でハロゲン化されたアル キル基、 または該アルキル基の炭素一炭素原子間にエーテル性酸素原子が導入さ れた基が好ましい。 さらに RBとしては、 ペルフロォ口化された基が好ましく、 ぺ ルフルォロアルキル基、 ペルフルォロ (モノまたはジクロロアルキル基) 、 また はこれらの基の炭素一炭素原子間にエーテル性酸素原子が挿入された基がとり わけ好ましい。
RBが上記以外の基である場合、 目的とする RBF中の炭素一炭素単結合の 1っ以 上を、 炭素 -炭素二重結合または炭素—炭素三重結合に置換した基が挙げられる。 炭素—炭素二重結合を形成する炭素原子には、 水素原子やフッ素原子が結合して いるのが好ましく、 水素原子が結合しているのが好ましい。 不飽和結合を形成す る炭素原子には、 液相中でのフッ素化反応によって、 フッ素原子が付加し、 水素 原子はフッ素原子に置換される。 このような RBの具体例としては、 シクロへキセ ニル基、 フエニル基、 アルケニル基、 またはアルキニル基等が挙げられる。
本発明における RBは、 フッ素原子を含む基であるので、後述する連続プロセス を実施しやすい利点がある。 さらに、 RBは RBFと同一の基であるのが後述する連 続プロセスを実施する上で特に好ましく、 その点で RBおよび RBFは、 ペルフルォ 口化された 1価有機基であるのが特に好ましい。
化合物 (2 ) の Xは、 ハロゲン原子を示し、 塩素原子またはフッ素原子が好ま しく、後述する連続プロセスを実施する上では、フッ素原子であるのが好ましい。 化合物 (2 ) は、 市販品を用いてもよく、 また、 本発明の方法で生成する化合物
( 6 ) を用いてもよい。 さらに化合物 (2 ) は RBが下記 RBFである化合物 (6 ) が好ましく、 とりわけ RBが RBF1である化合物 (6 A) が好ましい。 RBFCOF · · · (6) .、
RBF1COF · · · (6 A) 。
ただし、 RBF1は、 ペルフルォロアルキル基、 ペルフルォロ (モノまたはジクロ 口アルキル基) 、 またはこれらの基の炭素一炭素原子間にエーテル性酸素原子が 挿入された基であり、 ペルフルォロアルキル基、 ペルフルォロ (部分クロ口アル キル) 基、 ペルフルォロ (アルコキシアルキル) 基、 またはペルフルォロ (部分 クロ口アルコキシアルキル) 基が挙げられ、 ペルフルォロアルキル基または炭素 一炭素原子間にエーテル性酸素原子が挿入されたペルフルォロアルキル基が好 ましい。 RBFおよび RBF1の炭素数は 2〜20が好ましく、 2〜10が特に好まし い。
RBFの例としては、 一 CF2CF3、 一 CF2CF2CF3、 一 C F2C F2C F2C F3、 一 CF2CF2C 1、 一 CF2CF2B r、 — CF2CFC 1 CF2C 1、 — CF (CF3) 2、 一 CF2CF (CF3) 2、 一 CF (CF3) CF2CF3、 — C (CF,) 3、 一 CF (CF3) OCF2CF2CF3、 — CF (CF3) OCF2CF2CFC 1 CF2C 1、 一 CF (CF3) OCF2CF2B r、 — CF (CF3) OCF2CF (CF3) O (CF2) 2CF3等が挙げられる。
化合物 (2) の具体例としては、 下記化合物が挙げられる。
CF3CF2COF、
(CF3) 2CFCOF、
CF2C 1 CFC 1 CF2COF、
CF2C 1 CF2CFC 1 COF、
CF3CF2CF2〇CF (CF3) COF、
CF2C 1 CFC 1 CF2CF2OCF (CF3) C〇F、
CF2C 1 CF2COF、
CF2B r CF2COF、
CF2B r CF2〇CF (CF3) COF、
CF2C 1 CFC 1 CF2CF (CF3) OCF (CF3) COF、
CF3CF2CF2OCF (CF3) CF2OCF (CF3) C〇F、 CH3CH2CH2OCF (CF3) C〇F、
CF3CF2CF2〇CF2CF2COF。
化合物 (2) は公知の化合物であるか、 公知の化合物から公知の製造方法によ り製造できる。 たとえば、 CF3CF2CF2〇CF (CF3) C〇Fは、 ペルフルォ 口 (アルキルビニルエーテル) の中間体として容易に入手できる。
化合物 (1) と化合物 (2) との反応は、 公知の反応方法および条件を適用し て実施できる。 たとえば公知のエステル化反応の条件により実施できる。 エステ ル化反応は、 溶媒 (以下、 エステル化反応溶媒という。 ) の存在下に実施しても よいが、 エステル化反応溶媒の不存在下に実施するのが容積効率の点から好まし い。
エステル化反応溶媒を用いる場合には、 ジクロロメタン、 クロ口ホルム、 トリ ェチルァミン、ジクロロペン夕フルォロプロパン (以下、 R- 225と記す。 )、 または卜リェチルァミンとテトラヒドロフランとの混合溶媒が好ましい。 エステ ル化反応溶媒の使用量は、 化合物 (1) と化合物 (2) の総量に対して 50〜 5 00質量%とするのが好ましい。
化合物 (1) と化合物 (2) との反応では、 HXで表される酸が発生する。 化 合物 (2) として、 Xがフッ素原子である化合物を用いた場合には H Fが発生す るため、 アルカリ金属フッ化物 (NaF、 KFが好ましい。 ) やトリアルキルァ ミン等を HF捕捉剤として反応系中に存在させてもよい。 HF捕捉剤は、 化合物
(1) または化合物 (2) が酸に不安定な化合物である場合には、 使用したほう がよい。 また、 HF捕捉剤を使用しない場合には、 HFが気化しうる反応温度で 反応を行い、 かつ、 H Fを窒素気流に同伴させて反応系外に排出するのが好まし い。 HF捕捉剤は化合物 (2) に対して 1〜10倍モルを用いるのが好ましレ^ エステル化反応において、 化合物 (1) に対する化合物 (2) の量は 1. 5〜 10倍モルが好ましく、 特には 2〜 5倍モルが好ましい。 化合物 (1) と化合物
(2) との反応温度の下限は _ 50°Cであるのが好ましく、 上限は +100°Cお よび溶媒の沸点のうち低い温度とするのが好ましい。 また、 反応時間は原料の供 給速度と、 反応に用いる化合物量に応じて適宜変更されうる。 反応圧力は 0〜2 MP a (ゲージ圧。 以下、 圧力はゲージ圧で記載する。 ) が好ましい。
化合物 (1) と化合物 (2) との反応から生成する化合物 (3) のフッ素含量 が高いと、 フッ素化反応の液相中への溶解性が格段に優れ、 かつ、 フッ素化反応 の操作性がよく、 高い反応収率の反応を達成できるので、 化合物 (3) のフッ素 含量は 30質量%以上であることが好ましい。 フッ素含量は上記したように RB の構造により調節でき、 フッ素化反応に用いる液相の種類に応じて適宜変更する のが好ましく、 通常はフッ素含量を 30〜86質量%にするのが好ましく、 30 〜76質量%にするのが特に好ましい。 さらに、 化合物 (3) は、 次工程の液相 中でのフッ素化反応において、 化合物 (3) の気化や分解反応を防止し反応を円 滑に行うため、 また、 取り扱いや精製を容易とするため、 その分子量が 200超 〜: L 000であるのが好ましい。
化合物 (3) としては、 下記化合物 (3- 1) が好ましい。
RBF1COOCH2-Q-0- (CH2) 「OCORBF1 · · · (3-1) ただし、
Q :— CH (CH3) 一または一 CH2CH2—。
RBF1 :ペルフルォロアルキル基、 ペルフルォロ (モノまたはジクロロアルキ ル基) 、 またはこれらの基の炭素一炭素原子間にエーテル性酸素原子が挿入され た基を示す。
RBF1としては、 ペルフルォロアルキル基または炭素一炭素原子間にエーテル 性酸素原子が挿入されたペルフルォロアルキル基が好ましく、 炭素数 2〜20の 該基が特に好ましく、 炭素数 2〜10の該基がとりわけ好ましい。
化合物 (3) の具体例としては、 下記化合物が挙げられる。
(CF3) 2CFC00 (CH2) 30 (CH2) 30C0CF (CF3) 2
CF3 (CF2) 20CF (CF3) CF20CF (CF3) C00C¾CH (C¾) 0 (C¾) 30C0CF (CF3) 0CF2CF (CF3) 0 (CF2) 2 CF3
化合物 (1) と化合物 (2) との反応で生成した化合物 (3) を含む粗生成物 は、 目的に応じて精製を行っても、 そのまま、 つぎの反応等に用いてもよく、 次 の工程におけるフッ素化反応を円滑に行う観点から、 精製するのが好ましい。 精製方法としては、 粗生成物をそのまま蒸留する方法、 粗生成物を希アルカリ 水などで処理して分液する方法、 粗生成物を適当な有機溶媒で抽出した後に蒸留 する方法、 シリ力ゲルカラムク口マトグラフィ等が挙げられる。
つぎに本発明においては、 該化合物 (3 ) をフッ素化する。 フッ素化反応は、 電解フッ素化、 気相フッ素化によっても実施できるが、 本発明では液相中でのフ ッ素化によって実施する。 液相中でのフッ素化は、 化合物 (3 ) の分解反応を防 ぎ、 高収率で化合物 (4 ) を生成させることのできる優れた方法である。
液相フッ素化法は、化合物(3 )とフッ素とを液相中で反応させる方法である。 液相は、 反応の基質や生成物から形成されてもよく、 通常は溶媒 (以下、 フッ素 化反応溶媒という。)を必須とするのが好ましい。フッ素としては、フッ素ガス、 または、 不活性ガスで希釈したフッ素ガスを用いるのが好ましい。 不活性ガスと しては、 窒素ガス、 ヘリウムガスが好ましく、 経済的に有利である点から窒素ガ スが特に好ましい。 窒素ガス中のフッ素ガス量は特に限定されず、 1 0 V o 1 % 以上であるのが効率の点で好ましく、 2 0 V o 1 %以上であるのが特に好ましい。 フッ素化反応溶媒としては、 C—H結合を含まず C一 F結合を必須とする溶媒 が好ましく、 ペルフルォロアルカン類、 または、 塩素原子、 窒素原子、 および酸 素原子から選ばれる 1種以上の原子を構造中に有する公知の有機溶剤をペルフ ルォロ化した有機溶剤が特に好ましい。 また、 フッ素化反応溶媒としては、 化合 物 ( 3 )の溶解性が高い溶媒を用いるのが好ましく、特に化合物 ( 3 )を 1質量% 以上溶解しうる溶媒が好ましく、 5質量%以上溶解しうる溶媒が特に好ましい。 フッ素化反応溶媒の例としては、 後述する化合物 (5 ) 、 化合物 ( 6 ) 、 ペル フルォロアルカン類(ミネソタ 'マイニング 'マ二ュファクチユアリング社製 (以 下、 3 M社製と記載する。 ) 商品名: 〇ー7 2等) 、 ペルフルォロエーテル類
( 3 M社製商品名 ·· F C—7 5、 ー7 7等) 、 ペルフルォロポリエ一テル類
( 3 M社製商品名:クライトツクス、 デュポン社製商品名:フォンブリン、 ァゥ ジモント社製商品名:ガルデン、 ダイキン社製商品名:デムナム等) 、 クロロフ ルォロカーボン類、 クロ口フルォロポリエーテル類、 ペルフルォロアルキルアミ ン (たとえば、 ペルフルォロトリアルキルアミン等) 、 不活性流体 (3 M社製商 品名:フロリナート) 等が挙げられ、 ペルフルォロトリアルキルァミン、 化合物
(5) 、 または化合物 (6) が好ましい。 特に化合物 (5) または化合物 (6) を用いた場合には反応後の後処理が容易になる利点があり好ましい。
フッ素化反応溶媒の量は、 化合物 (3) に対して、 5倍質量以上が好ましく、 特に 1 0〜: L 0 0倍質量が好ましい。
フッ素化反応の反応形式は、 バッチ方式または連続方式が好ましい。 またフッ 素ガスは、 バッチ方式で実施する場合においても、 連続方式で実施する場合にお いても、 窒素ガス等の不活性ガスで希釈して使用するのが好ましい。
フッ素化反応においては、 化合物 (3) 中の水素原子に対して、 フッ素 (F2) の量が常に過剰量になるようにするのが好ましく、 フッ素量は 1. 1倍当量以上 (すなわち 1. 1倍モル以上) であるのが好ましく、 特に 1. 5倍当量以上 (す なわち、 1. 5倍モル以上)であるのが選択率の点から好ましい。フッ素の量は、 反応の最初から最後まで過剰量であるのが好ましいことから、 反応当初に反応器 にフッ素化溶媒を仕込む際には、 該フッ素化溶媒に充分量のフッ素を溶解させて おくのが好ましい。
フッ素化反応は、 ― C H20 CO -の切断反応を防止する条件で実施するのが 好ましく、 反応温度の下限は— 6 0°Cであるのが好ましく、 上限は化合物 (3) の沸点が好ましい。 さらに、 反応収率、 選択率、 および工業的実施のしゃすさの 点から、 反応温度は— 50°C〜十 1 00°Cが特に好ましく、 一 2 0。C〜十 5 0°C がとりわけ好ましい。 フッ素化反応の反応圧力は特に限定されず、 大気圧〜 2 M P aが、 反応収率、 選択率、 工業的な実施のしゃすさの観点から特に好ましい。 さらに、 フッ素化反応を効率的に進行させるためには、 反応系中に C一 H結合 含有化合物を添加する、 および/または、 紫外線照射を行ってもよい。 これらは フッ素化反応後期に行うのが好ましい。 これにより、 反応系中に存在する化合物 (3) を効率的にフッ素化できる。
C一 H結合含有化合物としては、 化合物 (3) 以外の有機化合物であるのが好 ましく、 特に芳香族炭化水素が好ましく、 とりわけベンゼン、 トルエン等が好ま しい。 該 C—H結合含有化合物の添加量は、 化合物 (3) 中の水素原子に対して 0. 1〜10モル%であるのが好ましく、 特に 0. 1〜5モル%であるのが好ま しい。
また、 C_H結合含有化合物は、 フッ素が存在する反応系中に添加するのが好 ましい。 さらに、 C一 H結合含有化合物を加えた場合には、 反応系を加圧するの が好ましい。 加圧時の圧力としては、 0. 01〜5MP aが好ましい。 紫外線照 射は、 公知の紫外線ランプなどを用い、 0. 1〜3時間行うのが好ましい。
化合物 (3) を液相中でフッ素化する反応において、 化合物 (3) 中の水素原 子がフッ素原子に置換された場合には、 HFが副生する。 副生した HFを除去す るには、 反応系中に HF捕捉剤を共存させる、 または反応器ガス出口で HF捕捉 剤と出口ガスを接触させるのが好ましい。 該 HF捕捉剤としては、 前述のものと 同様のものが用いられ、 N a Fが好ましい。
反応系中に H F捕捉剤を共存させる場合の量は、 化合物 (3) 中に存在する全 水素原子量に対して 1〜20倍モルが好ましく、 1〜 5倍モルが特に好ましい。 反応器ガス出口に HF捕捉剤をおく場合には、 (a) 冷却器 (10 C〜室温に保 持するのが好ましく、 特には約 2 Ot:に保持するのが好ましい。 ) (b) NaF ペレツ卜充填層、 および (c) 冷却器 (一 78t〜十 1 Otに呆持するのが好ま しく、 一 30°C〜0°Cに保持するのが好ましい) を (a) 一 (b) ― (c) の順 に直列に設置するのが好ましい。 なお、 (c) の冷却器からは凝集した液を反応 器に戻すための液体返送ラインを設置してもよい。
化合物 (3) のフッ素化反応では、 化合物 (4) が生成する。 化合物 (4) 中 の RBFは RBと同一または異なる含フッ素 1価有機基であり、 異なる場合には RB がフッ素化された基である。 たとえば、 化合物 (3) の RBが、 水素原子を有する 基であり、 かつ、 該水素原子がフッ素化反応によりフッ素原子に置換された場合 の RBFは、 RBと異なる基である。 一方、 RBが水素原子を有しない基 (たとえば、 ペルフルォロ化された基等のペルハロゲン化基である場合)である場合の RBFは、 RBと同一の基である。 このうち RBFは、 ペルフルォロ化された基であるのが好ま しい。
RBFの具体例としては、 ペルフルォロ化された基である場合の RBと同様の例 が挙げられる。
化合物 (4) における QFは Qがペルフルォロ化された基であり、 Qがー CH2 CH2—である場合の QFは— CF2CF2—であり、 Qが— CH (CH3) 一であ る場合の QFは一 CF (CF3) —である。
化合物 (4) としては、 下記化合物 (4一 1) が好ましい。
RBF1COOCF2 - QF - O - (CF2) 3-OCORBF1 - · - (4—1) ただし、
QF: - CF (CF3) —または一 CF2CF2—。
RBF1:ペルフルォロアルキル基、 ペルフルォロ (モノまたはジクロロアルキル 基) 、 またはこれらの基の炭素一炭素原子間にエーテル性酸素原子が挿入された 基。 RBF1としては、 ペルフルォロアルキル基または炭素一炭素原子間にエーテル 性酸素原子が挿入されたペルフルォロアルキル基が好ましく、 炭素数 2〜20の 該基が特に好ましく、 炭素数 2〜10の該基がとりわけ好ましい。
化合物 (4) の具体例としては、 下記化合物が挙げられる。
(CF3) 2CFC00 (CF2) 30 (CF2) 30C0CF (CF3) 2
CF3 (CF2) 20CF (CF3) CF20CF (CF3) C00CF2CF (CF3) 0 (CF2) 30C0CF (CF3) 0CF2CF (CF3) 0CF2CF2 CF
フッ素化反応で得た化合物 (4) を含む粗生成物は、 そのまま次の工程に用い てもよく、 精製して高純度のものにしてもよい。 精製方法としては、 粗生成物を そのまま常圧または減圧下に蒸留する方法等が挙げられる。
本発明においては、 つぎに化合物 (4) のエステル結合の分解反応により化合 物 (5) 、 または化合物 (5) および化合物 (6) を得る。 エステル結合の分解 反応は、 一 CF2OC〇一結合が切断し、 1個の該結合から 2個の一 COF基が形 成する反応である。
化合物 (4) のエステル結合の分解反応は、 熱分解反応、 または求核剤もしく は求電子剤の存在下に行う分解反応により実施するのが好ましい。 該反応により 両末端に一 CO Fを有する化合物 (5) が生成する。 また、 通常の場合には、 化 合物 (5) とともに化合物 (6) も生成する。 熱分解反応は、 化合物 (4) を加熱することにより実施できる。 熱分解反応の 反応形式としては、 化合物 (4) の沸点とその安定性により選択するのが好まし い。
たとえば、 気化しやすい化合物 (4) を熱分解する場合には、 気相で連続的に 分解させて、 化合物 (5) を含む出口ガスを凝縮、 回収する気相熱分解法を採用 しうる。
気相熱分解法の反応温度は 50〜 350 °Cが好ましく、 50〜 300 °Cが特に 好ましく、 とりわけ 150〜250°Cが好ましい。 また、 該反応には直接は関与 しない不活性ガスを反応系中に共存させてもよい。 不活性ガスとしては、 窒素ガ ス、 二酸化炭素ガス等が挙げられる。 不活性ガスは化合物 (4) に対して 0. 0 1〜50 V o 1 %程度を添加するのが好ましい。 不活性ガスの添加量が多いと、 生成物の回収量が低減することがある。
一方、 化合物 (4) が気化しにくい化合物である場合には、 反応器内で液のま ま加熱する液相熱分解法を採用するのが好ましい。 この場合の反応圧力は限定さ れない。通常の場合、化合物(5)を含む生成物は、より低沸点であることから、 生成物を気化させて連続的に抜き出す反応蒸留形式による方法で得るのが好ま しい。 また加熱終了後に反応器中から一括して生成物を抜き出す方法であつても よい。 この液相熱分解法の反応温度は 50〜 300 °Cが好ましく、 特に 100〜 250でが好ましい。
液相熱分解法で熱分解を行う場合には、 無溶媒で行っても、 溶媒 (以下、 分解 反応溶媒という。 ) の存在下に行ってもよく、 無溶媒または液相フッ素化と同一 溶媒中で行うのが好ましい。 分解反応溶媒としては、 化合物 (4) と反応せず、 かつ化合物 (4) と相溶性のあるもので、 生成する化合物 (5) と反応しないも のであれば特に限定されない。 また、 分解反応溶媒としては、 精製時に分離しや すいものを選択するのが好ましい。 分解反応溶媒の具体例としては、 ペルフルォ ロトリアルキルァミン、 ペルフルォロナフ夕レンなどの不活性溶媒、 クロ口フル ォロカ一ボン類等のなかでも高沸点であるクロロトリフルォロエチレンオリゴ マーが好ましい。 また、 分解反応溶媒の量は化合物 (4) に対して 0. 10倍〜 10倍質量が好ましい。
また、 化合物 (4) を液相中で求核剤または求電子剤と反応させてエステル結 合の分解反応を行う場合、 該反応は、 無溶媒で行っても、 分解反応溶媒の存在下 に行ってもよく、 無溶媒または液相フッ素化と同一溶媒中で行うのが好ましい。 求核剤としては F-が好ましく、 特にアル力リ金属のフッ化物由来の F—が好まし い。 アルカリ金属のフッ化物としては、 NaF、 NaHF2、 KF、 Cs Fなどが よく、 これらのうち経済性から N a Fが特に好ましい。 エステル結合の分解反応 を無溶媒で行うことは、 化合物 (4) 自身が溶媒としても作用し、 反応生成物中 から溶媒を分離する必要もないため特に好ましい。
また、 F_を求核剤とするエステル結合の分解反応を行う場合には、化合物 (4) のエステル結合中に存在するカルポニル基に F-が求核的に付加し、 RBFC F2〇_ が脱離するとともに化合物 (5) が生成する。 RBFC F2〇—からはさらに F—が脱 離して化合物 (6) が生成する。 脱離した F—は別の化合物 (4) の分子と同様に 反応する。 したがって、 反応の最初に用いる求核剤は触媒纛であってもよく、 過 剰に用いてもよい。 F—等の求核剤の量は化合物(4) に対して 1〜500モル% が好ましく、 1〜 100モル%が特に好ましく、 とりわけ 5〜 50モル%が好ま しい。 反応温度は、 — 30°C〜溶媒の沸点または化合物 (4) の沸点までの間が 好ましく、 一 20°C〜250°Cが特に好ましい。 液相熱分解法も、 蒸留塔をつけ た反応装置で蒸留をしながら実施するのが好ましい。
化合物 (5) とは、 下記化合物である。
FCO (CF2) 20 (CF2) 2COF、
FCOCF (CF3) OCF2CF2COF。
また、 化合物 (6) の具体例としては、 下記化合物が挙げられる。
CF3CF2COF、
(CF3) 2CFCOF、
CF2C 1 CFC 1 CF2C〇F、
CF2C 1 CF2CFC 1 COF、
CF3CF2CF2OCF (CF3) C〇F、 CF2C 1 CFC 1 CF2CF2OCF (CF3) COF、
CF2C 1 CF2C〇F、
CF2B r CF2COF、
CF2B rCF2〇CF (CF3) COF、
CF2C 1 CFC 1 CF2CF (CF3) OCF (CF3) C〇F、
CF3CF2CF2OCF (CF3) CF2〇CF (CF3) COF、
CF3CF2CF2OCF2CF2COF。
本発明の製造方法の好ましい態様としては、 RBおよび RBFが、 (CF3) 2C F—または CF3 (CF2) 2OCF (OF,) CF2OCF (CF3) 一である場合の 方法が挙げられる。
化合物 (3) および化合物 (4) の RBおよび RBFが、 それぞれ上記の基である 下記化合物は新規な化合物である。
(CF3) 2CFC00 (C¾) 30 (C¾) 30C0CF (CF3) 2 - · · (3-12) 、
(CF3) 2CFC00 (CF2) 30 (CF2) 30C0CF (CF3) 2 ' · ' (4- 12) 、
CF3 (CF2) 20CF (CF3) CF20CF (CF3) C00C¾CH (CH3) 0 (C¾) 30C0CF (CF3) 0CF2CF (CF3) 0 (CF2) 2 CF3 · · · (3-13) .
CF3 (CF2) 20CF (CF3) CF20CF (CF3) C00CF2CF (CF3) 0 (CF2) 30C0CF (CF3) 0CF2CF (CF3) 0 (CF2) 2 CF3 - · · (4-13) 。
本発明方法により得られる化合物 (5) においては、 末端の— CF2COF部 分および— CF (CF3) C OF部分は、 それぞれ公知の熱分解反応 (Me t h od s o f Or an i c Chemi s t ry, 4, Vo l. 10b, P a r t 1 , p. 703. および J . F l uo r i n e C h e m. , 94, 6 5 - 68 (1999) . J. Or g. C h e m. , 34, 1841 (1969) 等) によって、 一 CF = CF2に変換されうる。
たとえば、 化合物 (5) は熱分解反応により、 フッ化ビニル基を 2個有する下 記化合物 (7) に変換され得る。
CF2=CF-0-CF = CF2 - · · (7) 。
また、化合物(5)の末端の— COF基を一 COOR (Rは 1価有機基であり、 アルキル基が好ましく、 特にメチル基が好ましい。 ) に変換した後に熱分解する ことにより式 CF2=CFO (CF2) 2COOCH3で表される化合物が導かれる。 該化合物は有用なフッ素樹脂原料である。
また、 化合物 (5) の片末端の— CO F基にへキサフルォロプロピレンォキシ ド (HFPO) を反応させ、 つぎに前記と同様の方法で一 C〇〇Rに変換するこ とによって、 CF2=CFO (CF2) 30 (CF2) 2C〇OCH3 (下記化合物 (5 -4) ) 等の有用なフッ素樹脂原料に導くこともできる。 化合物 (5— 4) から 得られるフッ素樹脂は、 イオン交換膜用のフッ素樹脂として有用であり、 従来の 方法よりも経済的に有利かつ工業的に有利な方法で入手でき、 かつ従来よりも優 れた耐久性をフッ素樹脂である。
上記方法の例としては、 下記化合物 (5-12) に HFPOを C s Fの存在下 に反応させて下記化合物 (5-2) とし、 該化合物 (5-2) を熱分解して下記 化合物 (5-3) とし、 該化合物 (5-3) にメタノールを反応させることによ り下記化合物 (5-4) を製造する方法が挙げられる。
FCO (CF2) 20 (CF2) 2COF - · · (5— 12) 、
FCOCF (CF3) O (CF2) 30 (CF2) 2COF · · · (5-2) 、
CF2=CFO (CF2) 30 (CF2) 2C〇F · · · (5-3) 、
CF2=CFO (CF2) 30 (CF2) 2COOCH3 · · · (5-4) 。
上記製造方法における化合物 (5-2) 、 化合物 (5-3) および化合物 (5 一 4) は、 文献未記載の新規化合物である。 化合物 (5-4) の繰返単位を含む フッ素樹脂は、 耐久性に優れたフッ素樹脂になりうる。
本発明の製造方法において、 RBと RBFが同一構造である場合には、化合物 (6) と化合物 (2) は同一化合物になる。 この場合には、 化合物 (6) を回収して化 合物 (1) と反応させる化合物 (2) として用いることにより化合物 (5) を製 造することがでる。 該製造の方法は連続プロセスとして実施できるより効率的な 方法である。 化合物 (6) を回収する場合には、 RBFの炭素数は 2以上にするの が好ましく、 特に 2〜 20にするのが好ましく、 とりわけ 4〜 10にするのが好 ましい。 本発明の製造方法によれば、 安価に入手できる原料から、 短い工程かつ高い収 率でジァシルフルオリド化合物 (5) が製造できる。 また、 該化合物 (5) の末 端一 C O F基の反応性を利用して、 重合性のフッ化ビニル基を有する種々の化合 物が製造できる。 さらに、 本発明によれば、 ジァシルフルオリド化合物 (5) の 製造に有用な新規な化合物が提供される。
(実施例)
以下に本発明を実施例を挙げて具体的に説明するが、 これらによって本発明は 限定されない。 なお、 以下においてガスクロマトグラフィを GCと記す。 また、 GCのピーク面積比より求まる純度を GC純度、 NMRスぺクトルのピーク面積 比より求まる純度を NMR純度、 N M Rから求まる収率を N M R収率と記す。 19 F—NMRの定量には、 内部標準試料としてペルフルォロベンゼンを用いた。 ま た、 テトラメチルシランは TMSと記す。 また、 NMRスぺクトルデータは、 み かけの化学シフ卜範囲として示した。
[実施例 1 ]
(例 1 _ 1 ) (CF3) 2CFCOO (CI- 12) 30 (CH2) 3OCOCF (CF3) 2 の製造例
HO (CH2) 30 (CH2) 3OH (10 g) をオートクレーブに入れて密閉状態 で撹拌し、 FCOCF (CF,) 2 (36. 95 g) を室温で 7時間かけて注入し た。 その間、 時々注入を止めて密閉系を開放して窒素ガスをバブリングした。 注 入終了後、 室温で 1時間撹拌し、 密閉系を開放して窒素ガスをバブリングした。 反応液を NaHC03飽和水溶液 (10 OmL) で中和し、 R- 225 (100m L) で 2回に分けて抽出した。 有機相を N a H C 03飽和水溶液 (5 OmL) で洗 浄し、 さらに NaC l飽和水溶液 (5 OmL) で洗浄した。 有機相を硫酸マグネ シゥムで乾燥した後、 ろ過し、 粗液 36. 13 gを得た。
粗液の一部 (9. 07 g) をシリカゲルカラムクロマトグラフィ (展開溶媒: R- 225) で精製して、 下記 NMRスペクトルで同定される標記化合物を得た
(8. 02 g) 。 NMR収率は 81 %であった。 G C純度は 98 %であった。 生成物の NMRスぺクトル Ή-NMR (300. 4MHz、 溶媒: CDC 13、 基準: TMS) δ (pp m) : 1. 99 (m, 4H) , 3. 48 ( t , 4H) , 4. 51 (t, 4H) 。
19F— NMR (282. 65 MH z、 溶媒: C D C 13、 基準: C F C 13) δ (p pm) : -74. 4 (12 F) , 一 180. 8 (2F) 。
(例 1— 2) (CF3) 2CFCOO (CF2) 30 (CF2) 3OCOCF (CF3) 2の製造例
50 OmLのニッケル製ォ一トクレーブに、 1, 1 , 2—トリクロロー 1, 2,
2—トリフルォロェタン (以下、 R— 113と記す。 ) (323 g) を加えて撹 拌し、 25 °Cに保った。 オートクレープガス出口には一 10^に保持した冷却器 を設置した。 窒素ガスを 1時間吹き込んだ後、 窒素ガスで 20 V o 1 %に希釈し たフッ素ガス (以下、 20%フッ素ガスと記す。 ) を 13. 22 LZhで 1時間 吹き込んだ。
つぎに、 20 %フッ素ガスを同じ流速で吹き込みながら、 例 1一 1で得た (C F3) 2CFCOO (CH2) 30 (CH2) 3OCOCF (CF3) 2 (5 g) を R— 1 1
3 (50 g) に溶解した溶液を 1. 5時間かけて注入した。 反応器内の温度を 2 5°Cから 40°Cにまで昇温すると同時に、内圧を 0. 15 MP aに調節し、 20% フッ素ガスを同じ流速で吹き込みながら、 ベンゼンを 0. 01 g/mL含む R— 1 13溶液 (9mL) を注入した。 温度を 40°Cに保ちながら、 15分後に上記 のベンゼン溶液(6mL)を注入した。さらに 15分後に上記のベンゼン溶液(6 mL) を注入した。 ベンゼンの注入総量は 0. 215 g、 R— 113の注入総量 は 2 lmLであった。 さらに 20%フッ素ガスを同じ流速で 1時間吹き込んだ後、 窒素ガスを 1時間吹き込んだ。 生成物は標記化合物を主生成物とし、 NMR収率 は 92%であった。 生成物の NMRスぺクトルは以下のとおりであった。
19F— NMR (376. 0MHz、 溶媒: CDC 13、 基準: C F C 13) δ (ρ pm) : -74. 6 (12 F) , 一 83. 8 (4F) , 一 86. 8 (4F) , 一 129. 4 (4F) , — 181. 6 (2 F) 。
(例 1— 3)液相中でのエステル結合の分解反応による F CO (CF2) 20 (C F2) 2C OFの製造例 例 1一 2で得た (CF3) 2CFCOO (CF2) 3〇 (CF2) 3〇COCF (CF3) 2と CF3 (CF2) 2OCF (CF3) CF2OCF (CF3) COFの 7 : 5 (モル比) 混合物 (342 g) の KF粉末 (4. 8 g) とともにフラスコに仕込み、 激しく 撹拌を行いながらオイルバス中で 80°Cで 3時間加熱した。 蒸留装置に変えて、 沸点 100 以下の留分を集めて、 液状サンプル (75 g) を回収した。 NMR スペクトルより、 標記化合物が主成分であることを確認した。 標記化合物の NM R収率は 34%であった。 ·
l9F— NMR (282. 65 MHz、 溶媒: CDC 13、 基準: C F C 13) δ (ρ pm) : 24. 8 (2 F) , 一 85. 8 (4F) , 一 121. 6 (4F;) 。
(例 1—4) HFPOの付加反応による FCOCF (CF3) O (CF2) 30 (CF2) 2COFの製造例
ハステロィ C製の 2 Lのオートクレープに、 脱水乾燥した C s F (30 g) を 仕込んだ後、 反応器内を脱気した。 この反応器中に例 1一 3の方法で得た F C O
(CF2) 20 (CF2) 2COF (1245 g) とテトラグライム (153 g) を仕 込み、 反応器を一 20DCに冷却して、 反応温度が 0°C以上に上がらないように供 給量をコントロールしながら H F P O (674 g) を連続的に供給した。 反応終 了後、分液ロートによりフルォロカーボン層(下層) (1836 g)を回収した。 フルォロカーボン層に含まれる化合物が F C〇 C F (CF3) O (CF2) 30 (C F2) 2COFであることを1 9 F— NMR、 GC—Ma s sスぺクトル (E I検 出) 解析により決定した。
19F-NMR (282. 7 MH z、 溶媒: CD C 13、 基準: C F C 13) δ (p pm) : 26. 4 (1) 、 24. 6 (I F) , -78. 5 (I F) , — 81. 6 (3 F) 、 -82. 2 (2F) 、 一 85. 0 (2F) 、 一 86. 0 (I F) , ― 120. 7 (2F) 、 一 128. 3 (2 F) 、 一 130. 1 (1 F) 。
E I -MS ; 313、 166。
19F— NMR (282. 7 MH z、 溶媒: C D C 13、 基準: C F C 13) δ ( p pm) : 26. 4 (I F) , 24. 6 (I F) , -78. 5 (I F) , 一 81 . 6 (3F) 、 -82. 2 (2F) 、 一 85. 0 (2F) 、 一86. 0 (I F) 、 -120. 7 (2F) 、 一 128. 3 (2F) 、 -130. 1 (1 F) 。
E I一 MS ; 313、 166。
(例 1— 5) FCOCF (CF3) O (CF2) 30 (CF2) 2COFの熱分解反 応による CF2 = CFO (CF2) 3〇 (CF2) 2COFの製造例
ガラスビーズ (3500m 1、 中心粒度 160 m、 比重 1. 47 gZmL) を充填した流動層の管型反応器 (内径 100mm、 高さ 500mm、 SUS製) を、 筒型マントルヒーターを用いて内温 275 に加熱した。 管型反応器の出口 には、 ドライアイスで冷却したガラストラップを設置した。
つぎに、 窒素ガス (14. 7mo 1 /h) と、 例 1一 4で得た原料 F CO C F
(CF3) O (CF2) 30 (CF2) 2COF (0. 94mo 1 Zh、 447 g/ h) と、 蒸留水 (1. 5 g/h) を混合し、 150 に加熱することで気化させ 、 その混合ガスを管型反応器の底部より導入し、 ガラスピーズと接触させて反応 させた。 この反応を 4時間続け、 原料 1788 gを供給した後、 原料と蒸留水の 供給を停止し窒素のみを流通させ、 ガラスビーズの空焼きを実施した。 空焼きを 実施した後、 ガラストラップに留出した液体 (1364 g) を回収した。 液体を ガスクロマトグラフ、 19F— NMR、 E I—MSで分析した結果、 収率 71. 0 %で標記化合物の生成を確認した。
19F— NMR (282. 7MHz, 溶媒: CDC 13、 基準: C F C 13) δ ( ppm) : 24. 6 (I F) , -83. 4 (2F) 、 -85. 2 (2.F) 、 一 8 5. 3 (2 F) 、 一 112. 5 (I F) , - 120. 8 (2F) 、 -121. 0
(I F) , -128. 5 (2 F) 、 -134. 7 (1 F) 。
E I -MS ; 410 (M+) 。
(例 1— 6) CF2 = CFO (CF2) 30 (CF2) 2C〇Fにメタノールを付加 させることによる CF2 = CF〇 (CF2) 3〇 (CF2) 2CO〇CH3の製造例 ハステロィ C製の 2Lのオートクレーブに、 例 1一 5の方法で得た C F 2 = C FO (CF2) 3〇 (CF2) 2C〇F (2200 g) を入れた。 反応器を冷却して 、 常圧で内温が 30 以下に保たれるようにゆっくりとメタノール (190 g) を導入した。 同時に充分に撹拌しながら、 窒素ガスをバプリングさせ、 反応によ り生じた HFを系外に追い出した。 メタノールの全量を投入後、 30°Cでさらに 12時間、 窒素ガスをバブリングさせ、 2260 gの生成物を得た。 生成物が C F2 = CFO (CF2) 30 (CF2) 2COOCH3であることを1 9 F-NMR 、 13C— NMR、 C一 F 2次元 NMR、 GC— Ma s sスペクトル (E I検出、 C I検出) 解析により決定した。
19F— NMR (282. 7MHz、 溶媒: C D C 13、 基準: C F C 13) δ ( ppm) : -84. 1 (2 F、 t t、 12. 2Hz、 6. 1Hz) 、 一 85. 7 (2 F、 m) 、 —85. 9 (2 F、 t、 1 2. 2Hz) 、 — 1 14. 3 (1 F、 dd、 85Hz、 66Hz) 、 - 1 22. 0 (2F、 s) 、 - 122. 3 (1 F 、 dd t、 1 13Hz, 85Hz、 6Hz) 、 一 129. 5 (2F、 s) 、 一 1 35. 9 (1 F、 dd t、 1 13Hz、 66Hz、 6Hz;) 。
13C— NMR (282. 7MH'z、 溶媒: CDC 13、 基準: CDC 13) δ (p pm) : 54. 1、 106. 5、 107. 2、 1 1 5. 7、 1 16. 2、 1 16 . 3、 129. 8、 147. 4、 158. 9。
各ピークの帰属は C一 F 2次元 NMRも併用して行った。
C I—MS (メタン) ; 423 (M+ 1) 。
E I— MS ; 325 (M— CF2CF〇) 。
[実施例 2]
(例 2— 1) Ts OCH (CH3) CH2OC (CH3) 3 (ただし、 T sは p—卜ル エンスルホニル基を示す。 以下同様。 ) の製造例
4つ口フラスコに HOCH (CH3) CH2OC (CH3) 3 (400. 54 g) を 仕込み、 ピリジン (100 OmL)を加えて撹拌した。氷浴で冷却し、内温を 5°C に保ちながら p—トルエンスルホン酸クロリド (605. 82 g) を 2時間かけ て少しずつ加えた。 反応液を水 (1 L) に加えて、 クロ口ホルム (50 OmL) で 2回抽出し、 2層に分離した液を分液した。 有機層を水 (1 L) で洗浄し、 N aHC03 (1 L) で 2回洗浄し、 さらに水 (1 L) で 7回洗浄した後、 硫酸マグ ネシゥムで乾燥し、 ろ過した。 濾液をエバポレー夕一で濃縮して、 約 9%のピリ ジンを含む標記化合物 (909. 93 g) を得た。 生成物の NMRスペクトルは 以下のとおりであった。
Ή-NMR (300. 4MHz、 溶媒: CDC 13、 基準: TMS) δ (ρρ m) : 1. 03 (s, 9H) 、 1. 33 (d, J = 6. 3Hz, 3H) 、 2. 4 3 ( s , 3 H) 、 3. 34 (m, 2 H) 、 4. 58 (m, 1 H) 、 7. 31 (m, 2H) 、 7. 81 (m, 2H) 。
(例 2— 2) HO (CH2) 3OCH (CH3) CH2OC (CH3) 3の製造例 ジォキサン (3L) に水酸化カリウム (274. 27 g) および HO (CH2 ) 3OH (371. 93 g) を加え、 例 2— 1で得た TsOCH (CH3) CH2 OC (CH3) 3 (700 g) を少量ずつ加えた。 16時間加熱還流し、 放冷後、 反応液を氷 (500 g) に注ぎ、 2N塩酸で中和し、 濃縮後析出した塩を濾過し た。 濾液をジクロロメタン (250mL) で抽出し、 有機層を水 (500mL) で洗浄し、 その操作を 17回繰り返した。 有機層を硫酸マグネシウムで乾燥し、 ろ過後、 濾液をエバポレーターで濃縮して、 これをシリカゲルクロマトグラフィ で精製して、 標記化合物 (203. 77 g) を得た。 生成物の NMRスぺクトル は以下のとおりであった。
Ή-NMR (300. 4MHz、 溶媒: CDC 13、 基準: TMS) δ (ρ ρ m) : 1. 15 (d, J = 6. 2 Hz , 3 H) , 1. 19 (s ' 9 H) 、 1. 8 1 (m, 2 H) 、 3. 2 ( b s, 1 H) 、 3. 24- 3. 36 (m, 2 H) 、 3. 54- 3. 68 (m, 2H) 、 3. 75 - 3. 86 (m, 3 H) 。
(例 2— 3 ) HO (CH2) 3OCH (CH3) CH2OHの製造例
丸底フラスコに例 2— 2で得た HO (CH2) 3OCH (CH3) CH2OC (CH 3) 3 (203. 39 g) を仕込み、 5N塩酸 (1 L) を加え、 室温で 43時間撹 拌した。 反応液をエバポレー夕一で濃縮し、 最後にトルエンを加えて、 エバポレ 一ターで濃縮して標記化合物 (131 g) を得た。 生成物の NMRスぺクトルは 以下のとおりであった。
Ή-NMR (300. 4MHz、 溶媒: CDC 13、 基準: TMS) δ (ρ ρ m) : 1. 12 (d, J = 6. 2Hz, 3 H) , 1. 85 (m, 2 H) , 3. 4 5 (m, 1H) 、 3. 54-3. 88 (m, 6 H) 、 4. 55 (b s, 2 H;) 。 (例 2— 4) CF3 (CF2) 2OCF (CF3) CF2OCF (CF3) COOCH2 CH (CH3) O (CH2) 3OCOCF (CF3) OCF2CF (CF3) O ( CF2) 2CF3の製造例
オートクレープに CF3 (CF2) 2OCF (CF3) CF2OCF (CF3) C〇F (120. 69 g) を仕込み、 窒素ガスを吹き込みながら撹拌し、 例 2— 3で得 た HO (CH2) 3OCH (CH3) CH2OH (15. 1 g) を内温を 3 Ot:以下に 保ちながら 2時間でフィードした。 その後、 窒素ガスを吹き込みながら室温で一 夜撹拌し、 氷が入った飽和 NaHC03水溶液 (50 OmL) に反応液を加えた。 得られた粗液を R— 225 (25 OmL) で 2回抽出し、 下層を飽和 NaHC 03水溶液( 250 mL)で 2回洗浄し、 さらに飽和 N a C 1水溶液( 250 mL) で 2回洗浄し、 硫酸マグネシウムで乾燥した後、 ろ過し、 エバポレー夕一での濃 縮により粗液を得た。 粗液をシリカゲル力ラムクロマトグラフィ (展開溶媒:へ キサン ZR— 225 = 3 : 2 (体積比) ) で精製して標記化合物 (86. 3 g) を得た。 GC純度は 99%であった。 NMR収率は 75%であった。 生成物の N MRスぺクトルは以下のとおりであった。
Ή-NMR (300. 4MHz, 溶媒: CDC 13、 基準: TMS) δ (ρ ρ m) : 1. 18 (d, J = 6. 3 Hz, 3 H) , 1. 90〜1. 98 (m, 2 H) , 3. 45〜3. 71 (m, 3 H) , 4. 18〜4. 53 (m, 4H) 。
19F— NMR (282. 7MHz、 溶媒: CDC 13、 基準: C F C 13) δ (p p m) : -79 (2 F) , -80. 2 (6 F), —81 (10 F) , -82 (6 F) , -85 (2 F) , 一 129. 5 (4 F) , -131 (2 F) , - 145 (2 F) 。
(例 2 - 5) CF3 (CF2) 2OCF (CF3) CF2OCF (CF3) CO〇CF2 CF (CF3) O (CF2) 3OCOCF (CF3) OCF2CF (CF3) O (CF2) 2CF3の製造例
50 OmLのニッケル製オートクレーブに、 R- 113 (323 g) を加えて 撹拌し、 25 に保った。 オートクレープガス出口には、 20°Cに保持した冷却 器、 NaFペレット、 一 10°Cに保持した冷却器を直列に設置した。 窒素ガスを 1時間吹き込んだ後、 20%フッ素ガスを 9. 9 OLZhで 1時間吹き込んだ。 つぎに、 2 0 %フッ素ガスを同じ流速で吹き込みながら、 例 2— 4で得た CF
3 (CF2) 2OCF (CF3) CF2OCF (CF3) COOCH2CH (CH3) O (C H2) 3OCOCF (CF3) OCF2CF (CF3) O (CF2) 2CF3 (2 5 g) を R 一 1 1 3 (2 50 g) に溶解した溶液を 7. 0時間かけて注入した。 反応器内の 温度を 2 5°Cから 40でにまで昇温すると同時に、 内圧を 0. 1 5 MP aに調節 し、 2 0%フッ素ガスを同じ流速で吹き込みながら、 ベンゼンを 0. 0 1 g/m L含む R— 1 1 3溶液 (9mL) を注入した。 注入後、 ベンゼン溶液注入ロを閉 め、 温度を 40°Cに保ちながら 1 5分攪拌した。 次に内圧 0. 1 5 MP a、 内温
40 に保ちながら、 上記のベンゼン溶液 (6mL) を注入した後、 注入ロを閉 め、 1 5分攪拌した。 更に同様の操作を 1回行った。 ベンゼンの注入総量は 0. 2 1 5 g、 R— 1 1 3の注入総量は 2 lmLであった。 さらに 20 %フッ素ガス を同じ流速で 1時間吹き込んだ後、 窒素ガスを 1時間吹き込んだ。 生成物は標記 化合物を主生成物とし、 NMR収率は 84%であった。 生成物の NMRスぺク卜 ルは以下のとおりであった。
1 F-NMR (3 7 6. 0MHz、 溶媒: CDC 13、 基準: C F C 13) δ (ρ ρ m) : - 7 9. 0〜8 1 · 3 (1 1 F) , — 8 1. 9〜82. 7 ( 1 6 F) , 一 8 3. 5〜 8 6 · 0 (4 F) , - 8 6. 5〜8 9. 0 (4 F) , - 1 2 9. 3 (2 F) , — 1 3 0. 2 (4 F) , - 1 3 1. 9 (2 F) , - 1 45. 6 (3 F) 。
(例 2— 6) 液相中でのエステル結合の分解反応による F CO CF (CF3) O (CF2) 2C OFの製造例
例 2— 5で得た CF3 (CF2) 2OCF (CF3) CF2OCF (CF3) COOC F2CF (CF3) O (CF2) 3OCOCF (CF3) OCF2CF (CF3) O (CF 2) 2CF3 (748. 2 5 g) を KF粉末 (3. 1 1 g) とともにフラスコに仕込 み、 激しく撹拌を行いながらオイルバス中で 1 0 Ot:で 5時間加熱した。 フラス コ上部には 9 0°Cに温度調節した還流器を通して液状サンプル(1 1 5. 2 3 g) を回収した。 NMRスぺクトルより、標記化合物が主成分であることを確認した。 さらに、 反応残留物より蒸留して標記化合物 2 8 %を含む留分 1 1 5. 7 1 gを 回収した。 合計収率は 7 8 %であった。 ,9F-NMR (376MHz、 溶媒: CDC 1 基準: C F C 13) δ (p pm) : 26. 6 (I F) , 25. 0 (I F) , 一 80. 0〜一 80. 6 (I F) , - 8 1. 4 (3 F) , -87. 7〜一 88. 3 (I F) , —120. 3 (2F) , - 130. 2 (1 F) 。 ぐ産業上の利用可能性 >
本発明の方法によれば、 安価で入手容易な出発物質を用いて、 短い工程で、 フ ッ素樹脂の製造原料として有用な化合物を高収率で得ることができる。 また、 本 発明によれば、 フッ素樹脂の製造原料として有用な新規な化合物が提供される。

Claims

請求の範囲
1. 下記化合物(1) と下記化合物(2) とを反応させて下記化合物(3) とし、 該化合物(3)を液相中でフッ素化して下記化合物(4)とし、次に該化合物(4) のエステル結合の分解反応により化合物 (5) 、 または化合物 (5) および化合 物 (6) を得ることを特徴とする含フッ素化合物の製造方法。
H〇CH2 - Q— O— (CH2) 3— ΟΗ · · · (1) 、
RBCOX · · · (2) 、
RBCOOCH2-Q-0- (CH2) 3— OCORB' · · (3) 、
RBFCO〇CF2— QF— O— (CF2) 3-OCORBF - · · (4) 、
FCO— QF—〇一 (CF2) 2— C〇F · · · (5) 、
RBFCOF · · · (6) 。
ただし、
Q :— CH (CH3) —または一 CH2CH2—。
QF : - C F (CF3) —または— CF2CF2—。
X:ハロゲン原子。
RB :含フッ素 1価有機基。
RBF: RBと同一の基または RBがフッ素化された基。
2. Xがフッ素原子である化合物 (2) として、 エステル結合の分解反応で得た 化合物 (6) を用いる請求項 1に記載の製造方法。
3. 化合物 (3) のフッ素含量が 30〜76質量%であり、 かつ分子量が 200 超〜 1000である請求項 1または 2に記載の製造方法。
4. Qがー CH2CH2—であり、 QFが— CF2CF2—である請求項 1、 2、 また は 3に記載の製造方法。
5. 下式で表わされる化合物から選ばれるいずれかの化合物。
RBF1COOCH2-Q-0- (CH2) 3-OCORBFl - · · (3— 1)
RBF1COOCF2— QF— O - (CF2) 3 - OCORBF1. · · (4- 1)
ただし、
Q : 一 CH (CH3) 一または一 CH2CH2—。
QF :— CF (CF3) —または一CF2CF2—。
RBF1:ペルフルォロアルキル基、ペルフルォロ (モノまたはジクロロアルキル) 基、 またはこれらの基の炭素一炭素原子間にエーテル性酸素原子が挿入された基。
6. RBF1が、 炭素数 2〜 20のペルフルォロアルキル基、 または炭素一炭素原子 間にエーテル性酸素原子が挿入された炭素数 2〜20のペルフルォロアルキル 基である請求項 5に記載の化合物。
7 · 下式で表される化合物から選ばれるいずれかの化合物。
(CF3) 2CFC00 (CH2) 30 (C¾) 30C0CF (CF3) 2 - · · (3- 12) ,
(CF3) 2CFC00 (CF2) 30 (CF2) 30C0CF (CF3) 2 - · · (4— 12) 、
CF3 (CF2) 20CF (CF3) CF20CF (CF3) C00C¾CH (CH3) 0 (C¾) 30C0CF (CF3) 0CF2CF (CF3) 0 (CF2) 2 CF3 · · · (3- 13) 、
CF3 (CF2) 20CF (CF3) CF20CF (CF3) C00CF2CF (CF3) 0 (CF2) 30C0CF (CF3) 0CF2CF (CF3) 0 (CF2) 2 CF3 - · · (4- 13) 。
8. 下式 (5— 12) で表わされる化合物にへキサフルォロプロピレンォキシド を C s Fの存在下に反応させて下式( 5— 2 )で表わされる化合物とし、該式(5 一 2)で表わされる化合物を熱分解して下式(5— 3)で表わされる化合物とし、 該式 (5— 3) で表わされる化合物にメタノールを反応させることを特徴とする 下式 (5— 4) で表わされる化合物の製造方法。
FCO (CF2) 2〇 (CF2) 2COF · · · (5- 12) 、
FCOCF (CF3) O (CF2) 30 (CF2) 2COF · · · (5-2) 、 CF2=CF〇 (CF2) 30 (CF2) 2COF - · · (5-3) 、
CF2=CFO (CF2) 3〇 (CF2) 2COOCH3 - · · (5-4) 。
9. 式 (5— 12) で表わされる化合物が、 請求項 4に記載の製造方法によって 得た化合物である請求項 8に記載の製造方法。
10. 下式で表わされる化合物から選ばれるいずれかの化合物。
FCOCF (CF3) 〇 (CF2) 30 (CF2) 2COF - · · (5-2) CF2=CFO (CF2) 30 (CF2) 2COF · · · (5-3)
CF2=CFO (CF2) 30 (CF2) 2C〇〇CH3 · · · (5-4)
PCT/JP2004/001971 2003-02-21 2004-02-20 ペルフルオロジアシルフルオリド化合物の製造方法 WO2004080940A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002516342A CA2516342A1 (en) 2003-02-21 2004-02-20 Process for producing perfluorodiacyl fluorinated compounds
JP2005503471A JPWO2004080940A1 (ja) 2003-02-21 2004-02-20 ペルフルオロジアシルフルオリド化合物の製造方法
EP04713196A EP1602639A4 (en) 2003-02-21 2004-02-20 PROCESS FOR PREPARING PERFLUORODIACYL FLUORIDES
US11/206,915 US7301052B2 (en) 2003-02-21 2005-08-19 Process for producing perfluorodiacyl fluorinated compounds
US11/770,889 US7501540B2 (en) 2003-02-21 2007-06-29 Process for producing perfluorodiacyl fluorinated compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003044581 2003-02-21
JP2003-44581 2003-02-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/206,915 Continuation US7301052B2 (en) 2003-02-21 2005-08-19 Process for producing perfluorodiacyl fluorinated compounds

Publications (1)

Publication Number Publication Date
WO2004080940A1 true WO2004080940A1 (ja) 2004-09-23

Family

ID=32984342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001971 WO2004080940A1 (ja) 2003-02-21 2004-02-20 ペルフルオロジアシルフルオリド化合物の製造方法

Country Status (6)

Country Link
US (2) US7301052B2 (ja)
EP (2) EP1602639A4 (ja)
JP (1) JPWO2004080940A1 (ja)
CN (1) CN1747923A (ja)
CA (1) CA2516342A1 (ja)
WO (1) WO2004080940A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013903A1 (ja) * 2004-08-04 2006-02-09 Asahi Glass Company, Limited 含フッ素イオン交換膜および含フッ素重合体の製造方法
JP2007119526A (ja) * 2005-10-25 2007-05-17 Asahi Glass Co Ltd 含フッ素重合体の製造方法
WO2015029839A1 (ja) * 2013-08-26 2015-03-05 旭硝子株式会社 含フッ素化合物の製造方法
JP2015163662A (ja) * 2014-02-28 2015-09-10 三菱マテリアル電子化成株式会社 ノニオン系含フッ素界面活性剤及びその製造方法、並びにフッ素樹脂分散剤

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004080940A1 (ja) 2003-02-21 2006-06-08 旭硝子株式会社 ペルフルオロジアシルフルオリド化合物の製造方法
KR101089078B1 (ko) * 2004-01-13 2011-12-05 아사히 가라스 가부시키가이샤 함불소 폴리에테르 화합물
RU2522640C2 (ru) * 2012-05-31 2014-07-20 Общество с ограниченной ответственностью Научно Производственный Центр "Квадра" Фторсодержащее пав и способ его получения
CN109422628B (zh) * 2017-08-31 2021-11-19 中化近代环保化工(西安)有限公司 一种全氟甲基乙烯基醚的制备方法
CN111333502B (zh) * 2018-12-19 2022-11-01 中蓝晨光化工研究设计院有限公司 一种分离全氟二酰氟同分异构体的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264834A (ja) * 1985-12-12 1987-03-23 Tokuyama Soda Co Ltd イオン交換膜
WO2002004397A1 (fr) * 2000-07-11 2002-01-17 Asahi Glass Company, Limited Procede de preparation d'un compose renfermant du fluor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB858671A (en) 1956-04-23 1961-01-11 Minnesota Mining & Mfg Fluorocarbon acid and derivatives
US3849504A (en) 1967-03-10 1974-11-19 Minnesota Mining & Mfg Perfluoropolyethers and process for making
JPS5939452B2 (ja) * 1976-05-17 1984-09-22 株式会社トクヤマ 陽イオン交換体の処理方法
JPS6014110B2 (ja) 1976-06-18 1985-04-11 旭硝子株式会社 水酸化アルカリの製造方法
JP2503549B2 (ja) 1987-12-01 1996-06-05 旭硝子株式会社 含フッ素化合物の製造方法
KR100816697B1 (ko) 2000-09-27 2008-03-27 아사히 가라스 가부시키가이샤 함불소 다가 카르보닐 화합물의 제조방법
JPWO2004080940A1 (ja) 2003-02-21 2006-06-08 旭硝子株式会社 ペルフルオロジアシルフルオリド化合物の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264834A (ja) * 1985-12-12 1987-03-23 Tokuyama Soda Co Ltd イオン交換膜
WO2002004397A1 (fr) * 2000-07-11 2002-01-17 Asahi Glass Company, Limited Procede de preparation d'un compose renfermant du fluor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASAAKI YAMABE ET AL.: "Synthesis of perfluorinated vinyl ethers having ester group", JOURNAL OF FLUORINE CHEMISTRY, vol. 94, no. 1, 1999, pages 65 - 68, XP002947256 *
See also references of EP1602639A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013903A1 (ja) * 2004-08-04 2006-02-09 Asahi Glass Company, Limited 含フッ素イオン交換膜および含フッ素重合体の製造方法
JP2007119526A (ja) * 2005-10-25 2007-05-17 Asahi Glass Co Ltd 含フッ素重合体の製造方法
WO2015029839A1 (ja) * 2013-08-26 2015-03-05 旭硝子株式会社 含フッ素化合物の製造方法
KR20160048083A (ko) * 2013-08-26 2016-05-03 아사히 가라스 가부시키가이샤 함불소 화합물의 제조 방법
JPWO2015029839A1 (ja) * 2013-08-26 2017-03-02 旭硝子株式会社 含フッ素化合物の製造方法
US9783483B2 (en) 2013-08-26 2017-10-10 Asahi Glass Company, Limited Process for producing fluorinated compound
KR102258218B1 (ko) * 2013-08-26 2021-05-28 에이지씨 가부시키가이샤 함불소 화합물의 제조 방법
JP2015163662A (ja) * 2014-02-28 2015-09-10 三菱マテリアル電子化成株式会社 ノニオン系含フッ素界面活性剤及びその製造方法、並びにフッ素樹脂分散剤

Also Published As

Publication number Publication date
US20060030733A1 (en) 2006-02-09
US7301052B2 (en) 2007-11-27
US7501540B2 (en) 2009-03-10
CN1747923A (zh) 2006-03-15
JPWO2004080940A1 (ja) 2006-06-08
EP1602639A1 (en) 2005-12-07
CA2516342A1 (en) 2004-09-23
EP2163536A1 (en) 2010-03-17
EP1602639A4 (en) 2007-12-26
US20070287856A1 (en) 2007-12-13

Similar Documents

Publication Publication Date Title
US6951957B2 (en) Process for producing a fluorine-containing compound by liquid phase fluorination
JP5076269B2 (ja) 含フッ素化合物の製造方法
JP4905214B2 (ja) 含フッ素スルホニルフルオリド化合物の製造方法
JP4934939B2 (ja) 含フッ素ケトンの製造方法
US7501540B2 (en) Process for producing perfluorodiacyl fluorinated compounds
JPWO2002055471A1 (ja) 含フッ素エステル、含フッ素アシルフルオリドおよび含フッ素ビニルエーテルの製造方法
JP4626118B2 (ja) vic−ジクロロ酸フルオリド化合物の製造方法
JP4961656B2 (ja) ペルフルオロアシルフルオリド類の製造方法
KR20030038667A (ko) 불소 함유 아실플루오라이드의 제조방법 및 불소 함유비닐에테르의 제조방법
RU2268876C2 (ru) Способ получения фторированного поливалентного карбонильного соединения
JP4770461B2 (ja) 含フッ素スルホニルフルオリドの製造方法
JP4126542B2 (ja) 含フッ素エステル化合物の分解反応生成物の製造方法
WO2002026682A1 (fr) Processus de production d&#39;ethers vinyliques fluores
JP2001240576A (ja) フルオリド化合物の製造方法
WO2004050649A1 (ja) ペルフルオロ五員環化合物
JP2005002014A (ja) ペルフルオロ環状ラクトン誘導体の製造方法およびペルフルオロ環状ラクトンを含む混合物
WO2002066452A1 (fr) Procedes permettant la preparation d&#39;ethers cycliques fluores et leur utilisation
WO2004094365A1 (ja) 含フッ素スルホニルフルオリド化合物の製造方法
WO2003002501A1 (en) Process for preparation of fluorine-containing carbonyl compounds
JP2002255901A (ja) 新規なvic−ジクロロ酸フルオリド化合物
JP2003183222A (ja) 含フッ素ジカルボニル化合物の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005503471

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20048037015

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2516342

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11206915

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004713196

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004713196

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11206915

Country of ref document: US